THESIS

A COMPARISON OF AIR SAMPLES AT GROUND LEVEL AND AERIAL GAMMA COUNT RATES FROM THE RESPONSE TO THE FUKUSHIMA DAI-ICHI NUCLEAR POWER PLANT ACCIDENT

Submitted by

Sarah Miriam Sublett

Department of Environmental and Radiological Health Sciences

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2014

Master's Committee:

Advisor: Alexander Brandl

Sandra Biedron Thomas Johnson Copyright by Sarah Miriam Sublett 2014

All Rights Reserved

ABSTRACT

A COMPARISON OF AIR SAMPLES AT GROUND LEVEL AND AERIAL GAMMA COUNT RATES FROM THE RESPONSE TO THE FUKUSHIMA DAI-ICHI NUCLEAR POWER PLANT ACCIDENT

March 11, 2011 will be a day that will never be forgotten in the minds of the thousands of Japanese people whose lives were forever changed by a series of natural disasters, including a 9.0 earthquake and subsequent tsunami that triggered the Fukushima Dai-Ichi Nuclear Power Plant (FDNPP), located on the eastern coast of Japan, to become cripplingly damaged. The FDNPP nuclear accident resulted in the emission of radionuclides into the environment and those released nuclides, specifically ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I and their measurement by ground and air based means, are the subject of this research project. Within the first few days following the start of the disaster, numerous US federal agencies responded and deployed to Japan to help characterize and measure the release of radionuclides from FDNPP. Over the course of approximately a two-month span, over 500,000 measurements were obtained and analyzed, including air and soil samples and in situ spectra. The core of this research project was to analyze and compare ground air samples to aerial gamma count rate measurements obtained in Fukushima Prefecture within the first two months following the disaster. The results of this project estimate the ground deposition of radionuclides in Fukushima Prefecture, which accounted for 99.4% of the measured aerial net gamma count rate. Another finding of this project is the estimated ground deposition of nuclides based upon aerial gamma count rates in areas where there was measurable ground air contamination was 14.25 times higher than in areas where there was no measurable ground air contamination as determined by the evaluated air samples in this project. Of the samples evaluated in this project, ground deposition averaged 5.4E6 Bq/m² in areas where there was measurable ground air contamination, versus $3.79E5 \text{ Bq/m}^2$ in areas where there was no measurable ground air contamination.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Alex Brandl, for all of the help and encouragement throughout my time as a student at Colorado State University. I would also like to thank the team of scientists at the Remote Sensing Laboratory at Nellis Air Force Base, Las Vegas, NV for providing access to their valuable data and expertise, without this, I would not have had a project.

I would also like to acknowledge the Health Physics class of 2014 for all of their help and camaraderie; these last two years would not have as much fun or rewarding without all of you.

I would be remiss if I did not express my utmost gratitude to my amazing husband, Reuben, for without his support, none of my accomplishments would ever be possible.

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	iii
Introduction	1
Fukushima accident:	1
Comparing Fukushima to Chernobyl:	2
What is gamma spectrometry?	4
Air sampling:	8
Response to Fukushima:	8
AMS background and response to Fukushima:	10
Ground air sampling:	12
Nuclide ratios:	13
Impact of environment and nuclides released following the Fukushima accident:	13
Materials and Methods	15
Compiling the data:	15
Characterization of data sets:	15
Assumptions made during data analysis:	16
FRMAC:	16
AMS Aerial Data:	
Pairing of ground air samples to AMS aerial survey measurements:	19
Detector efficiency determined by Monte Carlo N-Particle (MCNP):	21
Determining Background:	23
Method of data analysis:	23
Results	
Discussion	
Conclusion	
Future work:	
References	35
Appendix A: ArcMap screen shots of data points from AMS aerial survey flights	
Appendix B: MCNP model for AMS detector efficiency for submersion source	
Appendix C: MCNP model for AMS detector efficiency of ground deposition	
Appendix D: Ground vs. Aerial Activity Concentrations	64

Appendix E: Estimated	l Ground Deposition	65
-----------------------	---------------------	----

INTRODUCTION

Fukushima accident:

The Great East Japan earthquake shook the northeastern coast of Japan with an intensity of 9.0 on the Richter scale on 11 March 2011 at 2:46 pm. (Fujiwara, et al., 2012) The earthquake triggered massive tsunamis displacing seawater over 560 km² of dry land, the damage from these two events resulted in over 19,000 lives lost and over a million buildings being partially collapsed or destroyed. (World Nuclear Association, 2014) This devastating series of events was further complicated by the fact that 14 nuclear power reactors at four nuclear power plant installations (NPP) were located in the path of the devastating earthquake and ensuing tsunami. Of the 14 nuclear power reactors, 11 were in service at the time of the earthquake, the three nonoperational ones were receiving regular maintenance. (Baba, 2013) As part of the standard operating procedure of a nuclear power plant, once the earthquake was sensed, all of the reactors shut down automatically and began cooling their reactors. Six of the nuclear power reactors in the path of the devastation were at the Fukushima Dai-Ichi NPP (FDNPP) operated by Tokyo Electric Power Company (TEPCO). They were boiling water reactors (BWRs) brought into operation between 1971 and 1979, protected by a 10 m sea wall. (Steinhauser, Brandl, & Johnson, 2014) When fully operational, FDNPP provided a total of 4.7 gigawatts of electrical power, making it one of the 15 largest nuclear power installations in the world. (Thakur, Ballard, & Nelson, 2013) FDNPP was equipped with 13 emergency power generators; unfortunately 12 out of the 13 generators became inoperable when seawater from the 14meter high tsunami engulfed the coastal NPP. (Fujiwara, et al., 2012)

Several events associated with the damaged FDNPP resulted in release of radioactive materials into the environment, including planned and unplanned venting of the reactor vessels, leakage of highly contaminated water from containment, associated fires, and possible partial core meltdowns. Atmospheric releases began on 12 March 2011, with the greatest release phase from 14-17 March, and additional events on 21-23 March, causing widespread contamination of agricultural lands, woodlands, and urban areas of eastern Japan. (Thakur, Ballard, & Nelson, 2013) (Terada, Katata, Chino, & Nagai, 2012) From the initial characterization of the FDNPP accident; there have been numerous estimations as to the source term of released radioactivity.

"The radioactivity released was dominated by volatile fission products including isotopes of the noble gases xenon (¹³³Xe) and krypton (⁸⁵Kr), iodine (¹³¹I, ¹³²I), cesium (¹³⁴Cs, ¹³⁶Cs, ¹³⁷Cs), and tellurium (¹³²Te)" (Thakur, Ballard, & Nelson, 2013). The total amount of radionuclides released into the atmosphere between 12-31 March 2011 is estimated to be approximately 1,020 PBq, after this time frame, only very small amounts were released into the atmosphere. (World Nuclear Association, 2014) Based upon TEPCO's published estimates in May 2012, FDNPP "released a total of about 500 PBq of ¹³¹I, 10 PBq of ¹³⁷Cs, and 10 PBq ¹³⁴Cs into the atmosphere" from 12 March to 31 March 2011, with approximately 500 PBq of noble gases, primarily ¹³³Xe. Of the entire released radioactivity, around 20% came from Unit 1, 40% from Unit 2, and 40% from Unit 3. (Thakur, Ballard, & Nelson, 2013)

The damage caused by the earthquake, tsunami, and ensuing radiological accident prompted the evacuation of over 300,000 people from Fukushima Prefecture; many still remain evacuated from their homes three years following the disaster. (Smith, 2013) Residents living inside a 20 km radius from the FDNPP and those residing in highly contaminated areas outside this perimeter were evacuated due to the radiation hazard presented by the FDNPP. (Fujiwara, et al., 2012)

Due to the high level of radioactive materials released in the first few days following the accident, Fukushima was rated a level 7 event, the highest level event and the same level also given to Chernobyl, on the International Nuclear Event Scale (INES). While the release from the FDNPP accident was significant, the levels are not considered a public health concern. This in large part is due to the fact the releases occurred when favorable weather patterns transported the majority of the radionuclides into the atmosphere and away from land over the Pacific Ocean. It should be noted that Fukushima radionuclides were detectable as far away as China and the Philippines; very little deposition of radionuclides from the accident was received in countries outside of Japan. (Thakur, Ballard, & Nelson, 2013)

Comparing Fukushima to Chernobyl:

The impact of the FDNPP accident is best understood by comparing it to another well-known nuclear power plant accident, specifically the 26 April 1986 nuclear power plant meltdown at Chernobyl. Both Fukushima and Chernobyl have been classified as level 7 accidents, the highest on the scale, but there are key differences in their causes and impacts.

The Chernobyl NPP accident occurred as a direct result of inappropriate operator actions during the course of an experiment on Unit 4, involving the RBMK-1000 graphite moderated, light water-cooled reactor operating at low power level. The operation of the reactor outside its safe limits led to xenon-poisoning of the reactor, which was not properly recognized by the operators, who reacted by improper operation of the reactor's control rods, leading to thermal destruction of the reactor by sudden power excursion, resulting steam explosion, and subsequent ignition of the graphite moderators. The reactor was designed without a full containment vessel, allowing the release of a large amount of radionuclides from the reactor into the environment, which continued over a 10-day period following the initial explosion while the graphite moderators burned. (Steinhauser, Brandl, & Johnson, 2014) FDNPP reactors were designed with full containment, which allowed for the controlled release of radionuclides in order to relieve the pressure within the system. The releases from Chernobyl were continuous and uncontrolled, unlike with Fukushima, where the releases were controlled and targeted to ensure that the releases of radionuclides into the environment were performed is such a manner as to allow the least amount of radioactive contaminant into the surrounding area. It is estimated that 80% of the release from Fukushima occurred when favorable winds pushed the plume out to the ocean and away from land. (Steinhauser, Brandl, & Johnson, 2014) While both accidents at Chernobyl and Fukushima resulted in radionuclide contamination and are categorized as level 7 accidents, the impact from Fukushima is far less than that of Chernobyl. Table 1 details some of the main differences in the two accidents.

(Steninauser, Dianui, & Joinison, 2014)		
	Chernobyl Accident	Fukushima
		Accident
Amount of activity released into	$5.3 \times 10^{18} \mathrm{Bq}$	$5.2 \times 10^{17} \text{ Bq}$
atmosphere		
Area contaminated within country	450,000 km ²	8,000 km ²
Area contaminated other countries	250,000 km ² in Western Europe	None
Area evacuated	10,800 km ²	1,100 km ²
Population evacuated due to radiation	400,000	83,000
Lives lost from Acute Radiation	28 (within 4 months of accident)	0
Syndrome		

Table 1: Comparison between Chernobyl and Fukushima accidents (Kortov & Ustyantsev, 2013) (Steinhauser, Brandl, & Johnson, 2014)

By comparing the source term of both accidents alone, Chernobyl released 5300 PBq, which is about 10 times more than Fukushima, which released about 520 PBq, excluding noble gases for both accidents. (Steinhauser, Brandl, & Johnson, 2014) Environmental impact monitoring following both accidents reveals that Chernobyl had a much greater effect than Fukushima, which is demonstrated by the smaller highly contaminated areas and the evacuation areas of Fukushima when compared to those for Chernobyl. Additionally, the projected health effects in Japan are significantly lower than after the Chernobyl accident. This is mainly due to the fact that food safety campaigns and evacuations worked quickly and efficiently after the Fukushima accident. In contrast to Chernobyl, no fatalities due to acute radiation effects occurred in Fukushima. The releases within a 30 km radius of the failed Chernobyl reactor were so intense that they caused grave health consequences for the liquidators as well as causing a "nuclear sunburn" from beta radiation on the exposed hands and faces of the first liquidators as well as "nuclear quinsy," described as a continuous hoarse cough caused by burns to the throat and bronchia. (Kortov & Ustyantsev, 2013) No such effects have been reported from Fukushima.

What is gamma spectrometry?

In order to properly characterize the released radionuclides and subsequent impact following a radiological event such as Fukushima, the use of gamma spectrometry is a necessary and important tool. While Fukushima released nuclides with alpha, beta, and gamma radiation, detection of gamma radiation and determining the radionuclide from which it was emitted is simpler, quicker, and better fit for this type of environment. Gamma spectrometry is the evaluation of the energy signals or spectra from ionizing radiation and the determination of the associated nuclide responsible for emitting the gamma ray detected.

A gamma ray photon travels a much further distance than alpha or beta radiation, allowing it to be detected from a much greater distance than the other two. Gamma ray photons are uncharged and produce no direct ionization or excitation of the material they pass through. Gamma ray detection is heavily reliant on the gamma ray photon interacting with the absorbing material within the detector and transferring all or part of its energy to an electron. Without this transfer and creation of a photoelectron, the detector has no way of seeing or characterizing the incident gamma ray. The maximum energy of these electrons equals the energy of the incident gamma ray minus the electron binding energy. The electron will lose its energy through ionization and excitation of atoms within the absorbing material and through bremsstrahlung emission. A gamma ray spectrometer must function as a conversion medium with a reasonable likelihood of interaction with incident gamma rays yielding at least one electron and it must also be capable of detecting the secondary electrons produced. (Knoll, 2010)

In-situ gamma spectroscopy was introduced in 1972 "to determine the concentration of natural and artificial radionuclides in soil, the relevant outdoor gamma dose rate in the air above, and the relative contribution of the U-238 and Th-232 series and K-40 to the dose rate" (Nuccetelli, 2008). In-situ gamma spectroscopy originally employed two basic assumptions: the source must be capable of being modeled as an infinite half-space and the vertical distribution of radionuclides is uniformly distributed for natural radionuclides and exponentially distributed for artificial radionuclides. (Nuccetelli, 2008) Continuing research in the field rendered these assumptions unnecessary and in-situ gamma spectrometry is now independent of source geometry and vertical distribution of the radionuclides, as well as making this technique applicable in indoor scenarios. (Nuccetelli, 2008) By providing "rapid and integrated measurements of the investigated environment and dose rate contributions of radionuclides" (Nuccetelli, 2008), in-situ gamma spectroscopy has become a powerful tool for environmental monitoring in numerous research, routine, and emergency applications. For example, in-situ gamma spectroscopy has been used to characterize sites in terms of natural background radiation, characterization of contamination by NORM and/or artificial radionuclides, measurement of nuclear weapons fallout, accidental releases from nuclear power plants as well as radionuclide characterization following a nuclear power plant accident, like Fukushima.

In-situ gamma spectrometry "provides not only qualitative information (identification of radionuclides by the corresponding peak positions) but also quantitative information (photon flux energy distribution at the point of measurement)" (Kluson, 2010). Quantitative information is not generally available immediately since the spectra need to be processed and the efficiency of the detector based upon the radionuclides seen needs to be established before this information is known.

Aerial in-situ gamma spectrometry or airborne gamma spectrometry (AGS) works by averaging values from relatively large areas, given as a function of the aircraft's altitude and speed and the acquisition time of one spectrum. (Kluson, 2010) Factors that also contribute to the footprint are the gamma ray energy and the atmospheric attenuation of the gamma rays, allowing the detector array the capability of detecting gamma rays from large distances. The atmospheric attenuation shields the distant gamma rays from detection, making the gross gamma count rate more of an average count rate, than a precise one. (Lyons & Colton, 2012) Figure 1 depicts the orientation of aerial in-situ gamma spectrometry with respect to aircraft altitude. The ground surface area or detector field of view (FOV) represented by a given spectrum is generally accepted to be a circle with a radius equal to the above ground altitude of the aircraft. (Lyons & Colton, 2012)

Figure 1: Airborne gamma spectrometry (AGS) orientation.

AGS is an essential tool for prompt and wide-ranging nuclide specific characterization of contamination following an accidental release of radionuclides from a nuclear facility, geological mapping, determination of cause of irregularities of natural radionuclides, assessment of uranium mine site rehabilitation, mineral exploration, and detection of lost radioactive sources. (Kock & Samuelsson, 2011) The low flying aircraft used in AGS typically operates with 30 - 100 m ground clearance and is capable of mapping the gamma ray emitting radiation distribution at ground level at a rate $10^2 - 10^3$ times faster and covering areas $10^6 - 10^7$ times greater than other ground-based methods. (Sanderson, Cresswell, Hardeman, & Debauche, 2004) The aircraft used in this application of gamma spectrometry are usually equipped with a large-volume sodium iodide (NaI(TI)) detector array coupled with a high purity germanium-semiconductor (HPGe) detector. The HPGe-detector more clearly identifies individual radionuclides than the NaI(TI)-

detector, but takes longer to determine the results. (Winkelmann, Strobl, & Thomas, 2004). The advantages of using a NaI(TI)-detector when compared to other detectors, like the HPGe, is that it requires less time, its highly portable and less expensive. (Caciolli, et al., 2012). Some of the parameters affecting the gamma radiation field when using AGS are the topography, soil density, moisture, and geology. (Kock & Samuelsson, 2011) Kock and Samuelsson conducted a study where they compared airborne and terrestrial gamma spectrometry measurements and found that "the spatial correlation between AGS and ground data is stronger in areas where the activity variability is large; given a large enough mean activity" (Kock & Samuelsson, 2011).

When conducting a routine or non-emergency survey of a small area, ground-based mobile in-situ gamma spectrometry is seen as a good alternative or compliment to AGS. The advantage of using the ground-based method is that there is better spatial resolution. However, the difference in the field of view for a ground based mobile in-situ gamma spectrometry versus an aerial one makes the comparison between the two less straight forward. (Kock & Samuelsson, 2011). During each AGS flight, "sequences of gamma ray spectra, geographic positioning information and ground clearance data are recorded, and are used to quantify levels of individual radionuclides and the general gamma-dose rate. This results in a practical means of conducting surveys with total effective coverage" (Sanderson, Cresswell, Hardeman, & Debauche, 2004). The information gained from an AGS flight can then be used to find a missing source, plot a plume, or characterize the background radiation for the surveyed area.

There are many successful examples where AGS has been used to identify and locate missing sources, including "the urban area of Goiania in Brazil, following the dispersion of Cs-137 in the form of CsCl salt when a hospital radiotherapy unit was dismantled" (Cresswell & Sanderson, 2012). AGS not only proves useful in finding sources, but also is capable of demonstrating the "absence of sources > 5-10 MBq Cs-137 within large areas, and identify areas where patchy anthropogenic distributions would require further ground based investigations to confirm the absence of sources. Rates of area coverage and detection for relevant sources significantly in excess of ground based approaches have been demonstrated" (Cresswell & Sanderson, 2012). One of the main advantages of AGS is that it can help focus ground based efforts and remediation, which can be very time consuming and expensive.

Air sampling:

An air sampling system is composed of three main components, all requiring proper calibration: a vacuum pump to draw air through the system, a collection device to separate the contaminant from the air, and a metering device to measure the volume of air sampled. (Cember & Johnson, 2009) The airborne radioactivity concentration is determined by dividing the quantity of activity collected by the sampled air volume. The most common type of collection device is filtration. There are several types of collection devices or sampling media including glass fiber, paper, and membrane; the type used depends on the characteristics of the target contaminant or the goal of the measurement. (Cember & Johnson, 2009) When sampling for iodine, air is pulled through a cartridge containing activated charcoal which binds to the iodine. With all air samples, the collection device or sampling medium requires further analysis, generally in a lab, to determine the captured contaminant. A hasty measurement can be made at the time of the filter exchange, but generally, it is best to evaluate each sample in the lab where more robust detectors are available.

Response to Fukushima:

As soon as the gravity of the events on 11 March 2011 were felt across the globe, many scientists and response teams, with their home nation's reach-back capabilities, flocked to Japan to help with humanitarian relief, disaster assessment, area stabilization, and recovery efforts. (VanHorne-Sealy, Livingston, & Al, 2012) With numerous US military personnel and their families residing in Japan, the US had a vested interest in ensuring the safety of Americans, as well as a duty to help out an ally during a tragic event. "The US government maintains the capability to respond to real or perceived release of radiological or nuclear material into the environment" (Blumenthal, Bowman, & Remick, 2012). The US responded by activating the US Department of Energy's Nuclear Incident Team (NIT) on 11 March 2011 to act as a command center coordinating all US efforts in Japan. The NIT coordinated the following agencies: "US Department of Energy National Nuclear Security Administration (DOE/NNSA) Consequent Management (CM) assets, which include the Aerial Measuring System (AMS), the National Atmospheric Release Advisory Center (NARAC), the Consequence Management Response Team (CMRT), the Consequence Management Home Team (CMHT), and the Radiation Emergercy Assistance Center/Training Site (REAC/TS)" (Blumenthal,

Bowman, & Remick, 2012). The NIT remained operational in Japan until 28 May 2011, when all activated US assets returned. DOE/ NNSA's Radiological Assistance Program (RAP) and Radiological Triage program also provided additional assistance. During an incident in the US, the Federal Radiological Monitoring and Assessment Center (FRMAC) coordinates all federal agencies responding to a radiological incident. FRMAC is responsible for the "collection, analysis, and assessment of environmental radiological data" (Blumenthal, Bowman, & Remick, 2012) and coordinating the release of products to the decision makers. Although the incident was not on US soil, FRMAC played its role by coordinating the efforts of those agencies responding to Fukushima and has been the repository of radiological data analyzed and collected from Fukushima.

The NIT first activated NARAC, who provided initial atmospheric plume predictions without any radiation source term data to provide the emergency manager with enough information to make the decision as to whether to direct protective action and if so, at what level. As time progressed and more data were collected, NARAC updated their plume predictions and the emergency manager to make more informed decisions and directives as well as providing guidance to the US in the event of any necessary actions to be taken on US soil as a result of their predictions.

Due to the nature of their responsibilities, NARAC was able to begin working immediately, but it took the DOE/NNSA a few days to arrive on scene in Japan and begin operations there. Once in country, the DOE/NNSA's AMS were able to begin initial data collection using their tested AGS systems on aircraft already in country within 12 hours and proceeded to log over 500 flight hours over the course of the twomonth span of their deployment. (Blumenthal, Bowman, & Remick, 2012) AMS was able to provide the data necessary to validate and enhance the plume models produced by NARAC. Ground measurements which included air and soil samples, contamination swipes, exposure rates, and in-situ gamma spectroscopy, were also obtained and used to calibrate and normalize the AGS measurements. (Blumenthal, Bowman, & Remick, 2012) The teams deployed to Japan were limited in personnel, but had extensive reach back capabilities which included a large number of scientist and support staff with a large variety of specialties, including nuclear physics, health physics, geographic information systems, analysts, and logistical support staff. (Blumenthal, Bowman, & Remick, 2012) Over the two-month span of time, a substantial amount of data was collected and analyzed. The main objectives of data analysis included "defining the mix of radionuclides released from the reactor, characterizing the inhalation component of integrated dose, and assessing the vertical and horizontal migration of deposited material in the soil." (Blumenthal, Bowman, & Remick, 2012). Once the data were analyzed, they were used to produce maps that were then used by the decision makers, including the US Military, the US Department of State, the White House, and the Japanese Government, to define "relocation zones, inform decisions on agricultural products, determine stay times for responder safety, identify safe transportation corridors, and for many other purposes," (Blumenthal, Bowman, & Remick, 2012), as well as planning humanitarian activities, risk evaluations, travel advisories, and protective measures for the population and responders. The importance and validity of the data were crucial because it could impact tens of thousands of people, so all data were very closely monitored and checked when making the maps.

Responder safety was also taken very seriously, which is shown by the fact that "despite traveling to within several kilometers of the Fukushima Daiichi Nuclear Power Plant or flying aerial radiological survey missions when airborne releases were still occurring, none of the 100 DOE/NNSA responders who spent time in Japan received any recordable radiation dose (i.e., each was < 0.15 mSv total dose)" (Blumenthal, Bowman, & Remick, 2012). This is a testament to not only individual safety and precautions taken, but also the skilled level to which the responders were trained.

AMS background and response to Fukushima:

The DOE/NNSA's AMS is a response asset initially established to support the aboveground nuclear testing program in the 1960's at the Nevada Test site. AMS is designed to respond quickly to a radiological emergency event and utilizes dedicated fixed and rotary winged aircraft along with advanced radiation detection systems. AMS maintains two bases of operation within the US, one at Nellis Air Force Base in Las Vegas, NV and the other at Joint Base Andrews Naval Air Facility located just outside of Washington, DC. (Lyons & Colton, 2012) The mission of the AMS "is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency" (Lyons & Colton, 2012).

The fixed-wing aircraft is designed to produce a ground deposition map with a one-meter above ground exposure rate equivalent, used to amend or authenticate the deposition models produced by NARAC. The ground deposition map produced by the fixed-wing data analysis does not generally account for cosmic radiation, radon, natural terrestrial background radiation, or aircraft background, making its work product coarse, but sufficient for comparison, given its mission requirements. (Lyons & Colton, 2012)

AMS uses a detector pod containing three 5 cm \times 10 cm \times 40 cm (2" \times 4" \times 16") NaI(Tl) crystals with two to three pods per aircraft, depending upon availability of units and mission requirements. During their response to the Fukushima accident, AMS deployed with a total of four Radiation Solutions Inc. (RSI) RSX3 detector pods (Lyons & Colton, 2012).

AMS aircraft ground speed, line spacing, and altitude are set based upon optimization of the detector system's spatial resolution and sensitivity given the existing survey data and the current NARAC deposition model, as well as ensuring a safe flight configuration and time constraints. AMS uses two different types of aircraft to obtain their data, one is a fixed wing aircraft and the other is a rotary wing aircraft. Fixed-wing aircraft conducting a survey over populated areas generally travel at a speed of 140 knots with an altitude of 1000 ft and flight line spacing of 2000 ft. Rotary-wing aircraft conducting a survey over populated areas generally travel at a speed of 1000 ft. (Lyons & Colton, 2012) The advantage of a fixed-wing is that it can carry more weight and equipment than a rotary-wing aircraft, but it cannot fly as low as a rotary-wing aircraft.

AMS's response to the Fukushima accident spanned 14 March – 28 May 2011, where they collected data over the course of 100 survey flights spanning 525 flight hours, all planned to avoid any encounters with an airborne plume. (Lyons & Colton, 2012) During the response to Fukushima, "aerial data includes gamma count rates and 1,024 channel spectra acquired at 1-s intervals correlated with GPS latitude/longitude coordinates. The gamma count rates acquired at survey altitude are extrapolated to one meter above ground using air attenuation coefficients and then converted to 1-m exposure rates" (Lyons & Colton, 2012). The nature of the response to Fukushima was unique in that there was airborne radioactivity present, but the normal geometry of the systems could not distinguish between airborne and ground deposited radioactivity.

Several different configurations were tested during the beginning of the response to determine the best geometry to enable AMS to discern between airborne and ground based radioactivity, ultimately placing the detector in the aircraft in an area that was not shielded by aircraft components proved to be optimal. (Lyons & Colton, 2012)

AMS conducted two different types of calibration flight lines, the test line and the water line. The test line, flown at the beginning and end of each flight, was to verify the stability of the system and determine if the background radiation level changed during the course of the flight. The test line is flown at the altitude and speed of the survey over a relatively short (two to three kilometers), easily recognizable flight path, void of any artificial radioactive contamination with a relatively constant count rate. There is generally variation between test lines from one flight to the next, based on changes in radon or airborne contamination, but adjustment for these variations is performed to match the survey data from one flight to the next. (Lyons & Colton, 2012) The water line is also flown at survey altitude and speed over a sufficiently large body of water whose detector field of view excludes the shoreline for at least a minute and is used to determine the background radiation count rate when there is no terrestrial radiation present. (Lyons & Colton, 2012) The water line will contain count rate contributions, which consist of cosmic rays, airborne contamination, aircraft and equipment contributions, as well as gamma rays from radon and its airborne progeny. (Lyons & Colton, 2012)

Ground air sampling:

The majority of the contamination released from FDNPP was airborne, so one of the important survey techniques used to quantify and characterize airborne contamination was ground air sampling. "Representative measurements require ideal operating conditions, e.g. unhindered air flow from all directions and 100% aerosol collection efficiency. In most cases, however, these conditions are not given in reality" (Wershofen, 2013). The specific air sampling systems and media used to sample the ambient air in Fukushima prefecture and other areas of interest in response to the FDNPP accident were the DF-AB-40L Emergency Response Sampling System, coupled with Hi-Q model FP2063-20 glass fiber filters for particulate collection and Hi-Q TC-12 TEDA impregnated carbon cartridges for collection of iodine. (Mena, Pemberston, & Beal,

2012) Ten-minute grab samples were taken for routine field measurements. No specific information regarding the exact conditions or specific collection efficiency are known, but it is important to note that "a range of variability of up to $\pm 40\%$ can be applied for the radionuclides which occur in smaller activity concentrations" (Wershofen, 2013).

Nuclide ratios:

Understanding the radionuclides released from FDNPP and their characteristics and activity ratios was important in determining how to allocate assets in response to the accident, as well as how, when, or if any protective measures need to be put into place. The main nuclides of concern following FDNPP were ¹³¹I, ¹³⁴Cs, and ¹³⁷Cs. ¹³¹I occurs most readily as a vapor, whereas cesium has a high affinity to bond to aerosols and is subject to both wet and dry deposition. The ratio between ¹³⁴Cs and ¹³⁷Cs can be used to distinguish between nuclear weapons testing fallout and the release of fission products from a NPP, due to their different half-lives. The ¹³⁴Cs/¹³⁷Cs ratio can also be used to separate samples from Chernobyl and Fukushima. The average 134Cs/137Cs ratio from Fukushima is calculated to be around 1, but samples obtained from Fukushima prefecture and surrounding areas have been found to be 0.8 - 0.9. (Thakur, Ballard, & Nelson, 2013) The significance of a ¹³⁴Cs/¹³⁷Cs ratio of 1 is that it is suggestive of a release from a nuclear reactor, not nuclear weapons testing. Another telling finding is the presence of ¹³²Te, which is mainly released from active fuel rods, not spent nuclear fuel. (Thakur, Ballard, & Nelson, 2013) The 131I/137Cs activity ratio may indicate the age of the nuclide mixture and transport time from its source, due to ¹³¹I's relatively short half-life of 8 days, compared to that of ¹³⁷Cs with a half-life of the approximately 30 years. During 14 March - 5 April 2011, the activity ratio of measured particulate ¹³¹I/¹³⁷Cs ranged from 1.1 to 131, with the peak values observed 15 - 17 March and 21 - 24 March. (Thakur, Ballard, & Nelson, 2013).

Impact of environment and nuclides released following the Fukushima accident:

"Climatic, geographic, ecosystem, living and dietary habit differences, as well as economic and social conditions, can affect the transfer of radionuclides through the food chain and the doses to human populations" (Tracy, et al., 2013). Radioecological sensitivity is the analysis of the combinations of those

factors, which contribute to the highest doses, and understanding of the factors is vital for scientists and decision makers to effectively mitigate and manage the risks associated. (Tracy, et al., 2013)

"From a radiological point of view, ¹³¹I and ¹³⁷Cs are the most important radionuclides to consider, because they are responsible for most of the radiation exposure received by the general population" (Thakur, Ballard, & Nelson, 2013). Given identical releases modeled following a major nuclear accident, the highest predicted doses resulted from the ground deposition of ¹³⁷Cs across agricultural, forest or tundra, coastal marine, and freshwater aquatic environments, when compared to ⁹⁰Sr and ¹³¹I. (Tracy, et al., 2013) The highest dose to an adult from 137Cs deposition was found to be in an agricultural environment, then in a forest setting, then lake and lastly marine. ¹³¹I becomes a greater hazard in the marine environment due to the "enhanced uptake by seaweeds," (Tracy, et al., 2013), given the high consumption of seaweed in the Japanese culture, this is also of concern. "The two factors that had the greatest influence on the variability of radiation doses were the time of year when the deposition occurred and the consumption rates of contaminated food items" (Tracy, et al., 2013). This difference could account for as much as two orders of magnitude of predicted dose, depending on whether the deposition occurred during the peak growing season, or after all crops were harvested, making the impact of the Fukushima accident lower due to the fact it occurred prior to the start of the agricultural season. (Tracy, et al., 2013) "Releases of radio-iodine from a real nuclear event are expected to be considerably higher than those of radiocesium, due to the higher volatility of iodine. UNSEAR (2008) indicates that ¹³¹I releases from Chernobyl were of the order of 1800 PBq, 20 times as high as the estimate of 86 PBq for ¹³⁷Cs" (Tracy, et al., 2013).

MATERIALS AND METHODS

Compiling the data:

The data used in this work came from two main sources, both under the Department of Energy's (DOE) National Nuclear Security Administration (NNSA): aerial gross gamma count rate data from the Remote Sensing Laboratory (RSL)'s AMS and lab-processed ground-based air samples from the Federal Radiological Monitoring and Assessment Center (FRMAC). Both data sets are massive and required extensive paring down to obtain a manageable, yet still descriptive and large data set to be further evaluated. The timeframe represented by the RSL data included aerial measurements from 15 March 2011 through 10 May 2011, which included over 100 aerial flights and over 525 hours of flight time. The set of ground-based air samples obtained from FRMAC's database include those samples obtained from 13 March - 10 May 2011. The measurements contained in both data sets were tagged with Global Positioning Satellite (GPS) coordinates, allowing for the comparison of the measurements. The GPS coordinates provided with the samples varied in length between four and seven decimal places; for consistency of measurements and evaluation, all given GPS coordinates were rounded to five decimal places to be within one meter from the exact location. (Bartlett, 2007) "Over 500,000 fixed and handheld instrument-derived exposure/dose rate measurements, data from over 500 different flights, more than 600 air sample media pairs, 89 soil cores, and hundreds of in situ spectra all collected/transcribed by roughly 200 responders, there were some issues with incomplete data" (Mena, Pemberston, & Beal, 2012). Efforts have been made to fill in any gaps in data.

Characterization of data sets:

The two data sets compared during this project are ground based air samples and aerial gross gamma count rate measurements. The ground based air samples represent activity concentrations, reported in units of μ Ci/mL, which represents the concentration of radioactive material present in the air sampled, but does not include any ground deposition or an exposure rate and is directly tied to the specific nuclide(s) detected in each sample. The aerial gross gamma count rate measured and reported by AMS survey flights is reported as counts per second (cps), representing the total activity over the given area, is independent of any information on the origin of the radiation, as far as its location (ground deposition or air) or any specific nuclide

information. In order to provide a comparison of the two different data sets and provide meaningful results, further analysis of the data and systems used to obtain the data was required.

The three nuclides of interest for this project were ¹³¹I, ¹³⁴Cs, and ¹³⁷Cs. These three nuclides were selected based upon being gamma emitters, their individual half-lives, and their association with a release following a nuclear power plant accident. Table 2 depicts the pertinent information for these three nuclides that were used for this project.

Table 2: Half-life, gamma constant, and summed branching ratios for the three nuclides of interest for this study. (Johnson & Birky, 2012)

Nuclide	Half-life	Gamma Constant	Summed Branching
		(Gy-m ² per Bq-s)	Ratio
¹³⁴ Cs	2.0648 у	5.79E-17	0.918
¹³⁷ Cs	30.07 y	2.27E-17*	0.851
¹³¹ I	8.0207 d	1.45E-17	0.790

* Note that the gamma constant used for ¹³⁷Cs is that of ¹³⁷mBa

Assumptions made during data analysis:

Some of the data were difficult to interpret and required additional assumptions in order to fill in the gaps where information was either incomplete, or necessary in order to effectively compare the given data. The results of the ground air samples are considered to include the efficiency of the air sampling systems and lab detectors. Ground air sample results are assumed to be representative of the plume or column of air from the location from which the samples were collected. For comparison between the ground air sample data and the AGS data, the activity concentration reported by the ground air sample measurements characterized the activity concentration for the entire column of air for the pair of ground and AGS data points from the ground to the survey flight altitude. These assumptions provide an opportunity for further study and provide insight into the nature of the radiation measured by the aerial survey flights that were not accounted for by the ground air samples.

FRMAC:

FRMAC has a log of approximately 1700 individual ground-based air samples obtained throughout Japan, with the main concentration in and around Fukushima Prefecture following the FDNPP disaster from 13 March 2011-14 January 2012. Just over 800 individual ground air samples taken between 13 March and 10 May 2011 were used for comparison. The FRMAC database contains approximately 10,000 corresponding

results to those 800 individual samples. The large difference between the number of samples and the number of results is based upon the method of evaluation that was performed on the sample and the various nuclides for which it was evaluated, in the case of gamma spectrometry. The nature of the ground measurements were air samples that were obtained on filters and sent to a qualified lab where gamma spectroscopy was conducted on them using counting times ranging from 20 minutes to several days. The contract lab also evaluated the samples using a variety of methods including: alpha spectrometry, liquid scintillation counting (LSC), and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), but only the samples evaluated using gamma spectroscopy were considered for this project.

Further review of those samples and results narrowed the pool of data to those samples with GPS coordinates geographically within or reasonably close to Fukushima Prefecture that had a result (inclusive of 0 or below Minimum Detectable Activity (MDA)). This further limitation brought the number of samples to 104 and corresponding results down to 312. Note that all samples had results for all three nuclides of interest, albeit some results were 0 or below the MDA. Of those 104 samples, there were 69 different sampling locations evaluated, with 34 locations having two or more samples obtained at that location. For samples obtained at the same locations, generally they had the exact same GPS coordinates or where within a few meters of each other, and some were obtained on the same or different days. Figure 2 is a map of Japan with pins depicting each evaluated ground sample location.

Figure 2: The map depicts the 69 unique locations of the ground-based air samples obtained 13 March through 10 May 2011 and evaluated for use during this project for comparison to the RSL aerial gamma count rate data following the FDNPP accident. The blue pins depict a site where one sample was obtained, the yellow pins depict a site where two samples were obtained, the green pin depicts a site where three samples were obtained, and the red trefoil depicts the location of the FDNPP.

AMS Aerial Data:

The vast amount of data provided by AMS required the use of ArcGIS software, specifically ArcMap to view and mine. Each point of data represents one second of flight time that captures several useable data quantities, including a gamma spectrum and gross gamma count rate, which are all GPS-tagged. Appendix A depicts two different screen shots from ArcMap showing examples of the data available for each data point. While the amount of inputs available for each data point is vast, they require the user to define and link the output to the detectors in order for the information to be useable. For the FDNPP mission, the defined outputs included: identification number, latitude, longitude, altitude above ground in meters, and gross gamma count rate. HPGe spectra were also obtained during the survey flights, but were not geo-referenced, so are not been included with this analysis. AMS personnel reported that for the FDNPP mission, their "key sources of error were due to the rough, rapidly varying terrain compared to a flat plane for which this procedure is appropriate" (Lyons & Colton, 2012). Every effort was made during data collection and analysis to account for terrain features. The AMS aerial data used for this project were from the manufacturer set parameters, not AMS, which creates an additional level of uncertainty in the data, but that extent is not known to this project team.

Pairing of ground air samples to AMS aerial survey measurements:

All of the AMS aerial flight data and ground air samples within the vicinity of Fukushima Prefecture were uploaded into ArcMap to compare the GPS locations of the ground samples and the aerial survey flight lines. Once entered, a systematic approach was used to evaluate each individual ground air sample location in order to find an aerial measurement that contained the ground sample within its field of view. Numerous ground air samples were obtained outside of the field of view of an aerial measurement, removing the ground air sample from further analysis in the scope of this study. Another factor that removed ground air samples from further analysis was when the coupled aerial survey occurred during a time greater than 10 days either before or after the ground air sample was obtained.

Once analysis of the viability of the ground air samples was completed, a total of 54 different ground air samples, obtained from 36 unique locations, with a total of 112 different results were compared to the aerial measurements. There were 17 ground air samples which measured no detectable activity for any of the three nuclides of interest, but were included in the analysis and comparison of the aerial gamma count data to further evaluate ground deposition. Figure 3 is the revised ground air sample location map with the 36 unique sample locations that were used to compare the aerial gamma count rate data.

Figure 3: The map depicts the 36 unique sample locations of the ground-based air samples compared to the AMS aerial measurements used during this project. The blue pins depict a site where one sample was obtained, the yellow pins depict a site where two samples were obtained, the green pin depicts a site where three samples were obtained, and the red trefoil depicts the location of the FDNPP.

There were a total of 50 ground air samples removed from analysis for various reasons. Thirty-seven of those ground air samples were removed due to the ground sample lacking an aerial measurement within 10 days of the ground measurement that was within the field of view of an aerial measurement. The 10-day assumption is based upon the decay of the nuclides of interest and variation caused by changes in weather and the airborne contamination being analyzed. The other 13 ground air samples removed from further comparison were due to errors or inconsistencies with the aerial gamma count rate measurements to which they were paired. The original set of ground air samples considered for comparison were collected on 12 different days during the sampling period (March 13, 19-24, 27, April 2, and May 8-10). This pairing down of viable ground air samples to be used also resulted in the majority of the sample collection dates to fall during the time periods of 19-24 March and 8-10 May 2011.

Detector efficiency determined by Monte Carlo N-Particle (MCNP):

Monte Carlo N-Particle (MCNP) is a computer modeling program developed in the 1940's at Los Alamos National Lab during the development of nuclear weapons as a method that uses essentially the game of chance to model large numbers of particle interactions. (Kalos & Whitlock, 2008) The efficiency of the detectors used to obtain the aerial measurements is unknown to the project team, so two different MCNP models were created to simulate the detector's efficiency based on two different source definition scenarios: a plume where the detector is submersed within the source and aerial measurement of ground deposition of the source. Both models were based on determining the efficiency of one detector pod consisting of three 5 cm \times 10 cm \times 40 cm (2" \times 4" \times 16") NaI(TI) scintillation crystals used by AMS to obtain the gross count rate during their response to the FDNPP accident. Only one detector pod was modeled because the limited availability of pods at times during the FDNPP accident response sometimes left a survey flight with only one pod to conduct the measurements. The MCNP model represents a more restrictive estimate of the actual detector efficiency during the response. Note that an F8 tally was used with four energy bins and the total modeled efficiency was calculated by taking the sum of the bins and subtracting those gammas detected that were below 10 keV in energy to more accurately represent the real world scenario being modeled. Lower energy gammas are not measurable by the NaI(TI) detectors, because below 10 keV is too low an energy to enter into the detector. The other justification for omitting these low energy gammas is that none of the nuclides of interest emit gamma radiation in that energy range and if detected could be from another source of radiation.

To model the submersion or plume scenario for the detector, 500 million particles were sufficient to produce acceptable statistics with uncertainty less than 3%, the input developed for this model is shown in Appendix B. The three nuclides of interest, ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I were each modeled independently, assuming a homogenous activity concentration within an air space outside of the aircraft housing the detector pod. All three models passed all 10 statistical checks performed by MCNP.

Modeling the efficiency of the detector for the ground deposition required a different model with one billion particles to provide a reasonable estimate with good statistics of the actual efficiency of a single detector pod. The input file used for this second model is shown in Appendix C. This model required the use of an array of detector pods in order to achieve an acceptable uncertainty averaging 4.29%. Ninety-six different detectors, divided into thirty-two different pods were simultaneously run and their resulting efficiency in particle detected per particle emitted calculated using Equation 1 to obtain the weighted mean efficiency for one individual detector pod. Equation 2 was used to calculate the uncertainty or standard deviation for this result. Multiple models were run; each at different representative altitudes for the aerial survey flights, ranging from 100 m to 550 m in height above ground and a fit parameter was calculated to extrapolate the efficiency of the detector at varying altitudes for each nuclide of interest.

$$\mu = \frac{\sum_{i=1}^{\frac{x_i}{\sigma_i^2}}}{\sum_{i=1}^{\frac{1}{\sigma_i^2}}} = \frac{\frac{x_1}{\sigma_1^2} + \frac{x_2}{\sigma_2^2} + \frac{x_3}{\sigma_3^2} + \cdots}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} + \frac{1}{\sigma_3^2} + \cdots}$$
[1]

Where:

 μ = weighted average of the individual detector efficiencies x_i = efficiency of detector *i*, in particle detected per particle emitted σ_i = standard deviation of detector i

$$\sigma_T^2 = \frac{1}{\Sigma_{\sigma_i^2}^{\frac{1}{2}}} = \frac{1}{\frac{1}{\sigma_1^2 + \frac{1}{\sigma_2^2} + \frac{1}{\sigma_3^2} + \frac{1}{\sigma_3^2} + \frac{1}{\sigma_3^2} + \cdots}}$$
[2]

Where:

 σ_T = standard deviation of the weighted average μ (calculated in Equation 1) σ_i = standard deviation of detector i

The associated efficiencies for the three nuclides of interest are given in Table 3 and represent the

modeled efficiency of one three-detector pod for a detector submersed within a contamination plume. The

associated uncertainties for the efficiency of the detector for all three nuclides were less than 3%.

plume a NaI(Tl)	detector pod used by AMS during their response to the FDNPP	accide
Nuclide	Calculated Detector Efficiency for Detector Submersion	
	Scenario (per particle emitted)	
¹³⁴ Cs	2.303E-5	
¹³⁷ Cs	2.286E-5	
131 I	2.363E-5	

Ί	able	e 3: 1	MCN	JP o	calcul	ated	l nuc	clide	effi	cienc	cies	for a	dete	ector	subn	nersed	l within :	a contam	ination
p	lum	e a l	NaI(T1)	detec	tor j	pod	used	by	AMS	6 dui	ring	their	resp	onse	to the	FDNP	P accider	nt.
•	T 11	1			0 1	4	. 17				•	0	n		0 1		,		

The associated efficiencies for each nuclide at the four different modeled altitudes for a ground

deposition source are given in Table 4. The overall uncertainty of the efficiency of the detector for each of

the nuclides varied based upon flight altitude, with the least amount of uncertainty being at the lower

elevations and the most uncertainty being at the highest elevations. For instance, ¹³¹I had the widest range of

uncertainty at different elevations which ranged from 0.5% at 100 m up to 14.6% at 550 m., while both

cesium isotopes ranged from 1.6% to 10% for the modeled elevations.

Table 4: MCNP calculated nuclide efficiencies, reported in per particle emitted for each nuclide at
each of the modeled altitudes in meters, for a detector pod measuring ground deposition for the
NaI(TI) detectors used by AMS during their response to the FDNPP accident.

	Detector Efficiency	for Ground Deposition	n (per particle emitted)	at given Altitude (m)
Nuclide	100 m	200 m	350 m	550 m
¹³⁴ Cs	3.28E-02	2.35E-02	1.19E-02	5.35E-03
¹³⁷ Cs	2.96E-02	2.19E-02	1.12E-02	3.98E-03
¹³¹ I	2.55E-02	1.69E-02	6.84E-03	3.16E-03

Determining Background:

The method employed by AMS to determine background radiation for a given geographical area was to establish test lines over geographically similar areas, known or suspected to be free of unnecessary contamination, and to subtract those measurements from the gross gamma count rate obtained during a survey flight over the area of interest. An average background count rate was obtained from a random sampling of eleven different measurements from several representative test line surveys and was used to calculate a net gamma count rate from the gross gamma count rate measurements used to compare the ground air samples to the aerial gross gamma count rates.

Method of data analysis:

All air sample activity concentrations were decay-corrected to the day, at which the aerial survey flight that most closely matched in proximity and time was obtained, and based on the half-life of the nuclide for which the air sample had a result.

Ground air sample results were reported in units of μ Ci/mL and were converted to units of Bq/m³, by a simple unit conversion.

For samples where more than one nuclide was measured in the ground air sample, the individual expected net count rates associated with each result were calculated and added and then compared to the measured aerial gamma count rate.

To compare the ground air samples to the net aerial gamma count rate, Equation 3 was used to convert the cps measured in the air into Bq/m^3 . Once both the ground and aerial measurements were in the same units, the ground measurement was divided by the aerial measurement to show the comparison.

$$C_{A_i} = \frac{\dot{R}}{V \times \varepsilon_i \times Y_i} \quad [3]$$

Where:

 $C_{A_i} = activity concentration (nuclide specific) (Bq/m³)$ $\dot{R} = net gamma count rate (cps)$ V = volume of air surrounding the aircraft, as modeled in MCNP (m³) $\varepsilon_i = modeled efficiency of the NaI(Tl)detector pod used to obtain aerial gamma$ count rate (nuclide specific) $<math>Y_i = branching ratio associated with nuclide of interest$

To determine the expected net count rate based upon the decay-corrected activity concentration

measured in the ground air samples, Equation 4 was used.

Expected net count rate_i =
$$C_{A_i} \times V \times \varepsilon_i \times Y_i$$
 [4]

Where:

 $C_{A_i} = decay - corrected activity concentration as measured by the ground air$ sample (nuclide specific) (Bq/m³)<math>V = volume of air surrounding the aircraft, as modeled in MCNP $\varepsilon_i = modeled efficiency of the NaI(Tl)detector pod used to obtain aerial gamma$ count rate (nuclide specific) $<math>Y_i = branching ratio associated with nuclide of interest$

To determine the activity measured as ground deposition, Equation 5 was used to convert the measured net aerial count rate in cps into Bq/m^2 . The results obtained with Equation 5 provide the activity concentration on the ground that would account for the aerial net gamma count rate measured.

$$C_{A_i} = \frac{\dot{R}}{A \times \varepsilon_i \times Y_i} \quad [5]$$

Where:

 $C_{A_i} = activity \ concentration \ (nuclide \ specific) \ (Bq/m^2)$ $\dot{R} = net \ gamma \ count \ rate \ (cps)$ $A = area \ of \ ground \ in the \ field \ of \ view \ of \ the \ aircraft \ during \ measurement \ (m^2)$ $\varepsilon_i = modeled \ efficiency \ of \ the \ NaI(Tl) \ detector \ pod \ used \ to \ obtain \ aerial \ gamma \ count \ rate \ (nuclide \ specific)$ $Y_i = branching \ ratio \ associated \ with \ nuclide \ of \ interest$

In order to relate the activity concentration in terms of the three nuclides of concern, the ratio of the three nuclides found needed to be determined. Based upon the ground air samples evaluated for this project, where all three nuclides were measured, the ratio of activity concentrations was calculated to be 1% each for ¹³⁴Cs and ¹³⁷Cs and 98% ¹³¹I. These measurements were taken during the period 20-23 March, which is in a

relatively short period of time following the releases from the power plant, which would also account for the higher ratio of ¹³¹I, but still reasonable to be used for this analysis. These percentages were used to scale the total activity concentration attributable to each nuclide and related detector efficiency for use in equation 5. It is noted that there are varying reports on activity concentrations measured in Fukushima Prefecture following the FDNPP disaster, but these findings are in line with published findings, specifically those reported by Thakur, Ballard and Nelson. (2013)

RESULTS

The paired ground air samples were an average of 207 meters from the aerial survey point from which they were compared to, which is well within the FOV of the survey flights. The average height above earth altitude for the data points compared during this project was 623 meters.

The measured activity concentrations in units of Bq/m^3 from the ground air samples were compared to the expected activity concentration, also given in units of Bq/m^3 , as calculated with Equation 4. Table 5 depicts the results from those ground air samples with measurable results (those which exceeded 0 or were above the MDA of the detection system) for all three nuclides of interest.

Table 5: Comparison of decay-corrected ground air samples with representative results for ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I, compared to calculated activity concentrations of net aerial gamma count rates. Note that the dashed lines in the table represent non-detectable results and that the calculated averages omit this number from consideration.

Ground	Decay-corrected	Calculated Aerial	Comparison of Ground
Sample ID	Measured Ground Air	Activity	vs. Aerial Activity
	Activity Concentration	Concentration	Concentrations
	(Bq/m^3)	(Bq/m ³)	
SCF-00003	1.482	296.77	0.50%
SCF-00057	7.734	1385.09	0.56%
SCF-00058	14.068	1385.09	1.02%
SCF-00061	5.423	1388.05	0.40%
SCF-00065	1.849	-	-
SCF-00092	2101.790	91493.81	2.30%
SCF-00093	652.801	88672.39	0.74%
SCF-00094	588.431	74275.15	0.79%
SCF-00096	172.407	38935.85	0.44%
SCF-00139	130.956	71268.34	0.18%
SCF-00140	101.633	71110.87	0.14%
SCF-00142	27.216	47377.63	0.06%
SCF-00516	0.125	30846.58	0.0004%
SCF-08991	50.482	30011.03	0.17%
Average:	275.46	42188.20	0.56%

Appendix D shows the complete results for all samples not represented in Table 5.

Table 5 demonstrates that the measured activity concentration attributable to radioactive contamination in the air as measured in ground air samples accounted for an average of 0.56% of the calculated aerial activity concentration.

The findings of the MCNP detector efficiency for each nuclide of interest for ground deposition produced the graph depicted in Figure 4 for the modeled flight altitudes of 100, 200, 350, and 550 meters

above ground. The detectors efficiency changes with altitude because the further a particle has to travel to reach the detector, the less likely it is to interact and be detected. The overall uncertainty of the efficiency of the detector for each of the nuclides varied based upon flight altitude, with the least amount of uncertainty being at the lower elevations and the most uncertainty being at the highest elevations. For instance, ¹³¹I had the widest difference between the uncertainty at different elevations and ranged from 0.5% uncertainty at 100 m up to 14.6% uncertainty at 550 m. Based on Figure 4, it can be seen that the detectors are slightly more efficient at measuring emissions from a ¹³⁴Cs source than ¹³⁷Cs and ¹³¹I, at all altitudes, with the difference in efficiencies remaining relatively constant through all modeled altitudes.

Figure 4: Detector pod efficiency for measuring ground deposition based upon nuclide and flight altitude (m).

Additional analysis was conducted to compare the aerial net gamma count rate measurements void of the ground air sample measurements, the result is an estimate of the ground deposition that would have been measured during the aerial survey flights, but not detected in the ground air measurements due to the fact that the radioactivity would no longer be airborne, but rather be deposited onto the ground surface. Table 6 represents the estimated ground deposition for those ground air samples with positive results for all three nuclides of interest.

Table 6: Estimated ground deposition calculated from measured aerial net gamma count rate minus the expected net count rate based upon the measured ground air samples, inclusive of the ground air samples with representative results for ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I. Note that the dashed lines in the table represent non-detectable results and the calculated averages omit this number from consideration.

Ground	Expected Net	Actual Net Count	Net Counts Divided	Estimated
Sample ID	Count Rate Based	Rate Minus	by Area Covered by	Ground
	on Ground Air	Expected Net	Aircraft (cps/m ²)	deposition
	Sample (s ⁻¹)	Count Rate (s-1)		(Bq/m^2)
SCF-00003	1.83	361.22	0.00031	2.98E+06
SCF-00057	9.47	1684.93	0.0014	1.23E+07
SCF-00058	17.33	1677.07	0.0014	1.23E+07
SCF-00061	6.80	1691.22	0.00079	2.48E+07
SCF-00065	2.27	-	-	-
SCF-00092	2571.407	109354.13	0.66	2.67E+05
SCF-00093	797.34	107676.69	0.62	2.79E+05
SCF-00094	719.777	90141.96	0.24	7.67E+05
SCF-00096	211.00	47419.72	0.22	4.95E+05
SCF-00139	160.76	87022.70	0.53	2.93E+05
SCF-00140	124.57	86866.25	0.53	2.97E+05
SCF-00142	33.29	57924.37	0.042	9.11E+06
SCF-00516	0.15	37734.85	0.11	9.46E+05
SCF-08991	64.64	36648.23	0.11	9.37E+05
Average:	337.19	51246.41	0.24	5.40E+06

Appendix E shows the complete results for all samples not represented in Table 6.

Table 6 demonstrates that the ground deposition after the removal of the measured activity concentration in the air and the measured aerial gamma count rate averaged $5.4E6 \text{ Bq/m}^2$ over the field of view of the aircraft, which averages an area of 0.66 km² for the evaluated measurements in Table 6.

There were also 17 different ground air samples which did not detect any measurable amount of any of the three nuclides of interest, but were matched to appropriate aerial gamma count rate measurements. Table 7 depicts those samples and the estimated ground radiation contamination, based on the supposition that all measured aerial gamma count rate would be due to ground deposition since the presence of air contamination was not detected.

Table 7: Estimated ground deposition calculated from measured aerial net gamma count rate, adjusted to ground level, for the ground air samples with non-detectable results for ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I. Note that the dashed lines in the table represent non-detectable results and the calculated averages omit this number from consideration.

Ground	Collection	Gross	Net Count	Activity concentration	Ground
Sample ID	Date	count rate	Rate (cps)	based on Net Count	deposition
		(cps)		Rate (Bq/m ²)	(Bq/m^2)
SCF-00050	19-Mar-11	45201.32	39019.96	10060.42	5.50E+05
SCF-00625	9-May-11	4323.46	-	-	-
SCF-00625C	9-May-11	4323.46	-	-	-
SCF-00627	9-May-11	4187.21	-	-	-
SCF-00627C	9-May-11	4187.21	-	-	-
SCF-00629	9-May-11	13865.86	7684.50	1981.276	4.02E+05
SCF-00629C	9-May-11	14003.84	7822.48	2016.85	4.10E+05
SCF-00631	9-May-11	14556.42	8375.06	2159.321	4.43E+05
SCF-00633	9-May-11	11712.49	5531.13	1426.077	2.62E+05
SCF-00633C	9-May-11	11756.69	5575.33	1437.474	2.63E+05
SCF-00635	9-May-11	11211.72	5030.37	1296.967	2.39E+05
SCF-00635C	9-May-11	11133.01	4951.65	1276.672	2.35E+05
SCF-08666	2-Apr-11	6579.09	397.73	102.5462	4.21E+04
SCF-08832	10-May-11	1947.30	-	-	-
SCF-08832C	10-May-11	1878.29	-	-	-
SCF-08834	10-May-11	18009.3	11827.95	3049.569	6.56E+05
SCF-08834C	10-May-11	18113.23	11931.88	3076.366	6.64E+05
Average:		11587.64	9831.64	2534.87	3.79E+05

Table 7 demonstrates that the activity concentration attributable to ground deposition calculated from the measured net aerial gamma count rate averaged 3.79E5 Bq/m² for the measurements with finite net count rates in the detectors over the field of view of the aircraft, which averages an area of 1.6 km² for the evaluated measurements in Table 7. The average reported excludes six measurements which did not result in a finite net count rate, so the average only represents the remaining eleven samples.

A comparison of the average total ground deposition calculated from aerial measurements where there was detectable activity concentration of ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I to those aerial measurements where there was not any detectable activity of those nuclides shows a difference of a factor of 14.25. Thus indicating that there was approximately 14.25 times more ground deposition in areas where there was measurable activity concentration of ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I, versus areas where there was no detectable activity concentration of ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I, versus areas where there was no detectable activity concentration of those nuclides.

DISCUSSION

The comparison of ground air samples to aerial gamma count rate shows an average difference of one and a half orders of magnitude. This is an expected finding when factors like the timeline of events following the FDNPP accident along with weather patterns and the nature of ground deposition from an event such as this are considered. While every effort to compare the ground air sample to an aerial gamma measurement obtained at the same time, the fact is that the average time in between paired samples was just over four days and although that time frame can be accounted for as far as the decay of measured nuclides, the potential for changes in wind and weather can alter the measured air and ground activity concentrations. Such weather factors as rainout and washout of particulate in the air as well as movement of ground deposition by wind and rain, both typical weather patterns in Japan, also contribute to this variability. Pooling of nuclides in locations other than where they were originally deposited can occur, although it is more likely that dramatic changes would take a more considerable amount of time than the average of four days in between samples, it could still account for part of this difference.

Saito, et al. published their study of soil samples collected from Fukushima Prefecture for the time period 4 June-8 July 2011 and their findings are consistent with the calculated ground depositions of this project. (Saito, et al., 2014) While their methods included direct measurement of the soil obtained from Fukushima Prefecture and this project was based upon relating ground air samples and AGS data, the fact that Saito, et al's findings are consistent with this project gives more strength to the methods used in this project.

The significance of the data in Table 7, the estimated ground deposition determined by the aerial net gamma count measurement in locations where there were no measurable nuclides in the ground air samples, is that it represents the radioactivity of ground deposition as measured from the aerial surveys. This proves beneficial to responders in that it helps to concentrate efforts for remediation following an accident such as FDNPP.

It is important to note that one significant difference between ¹³¹I and ¹³⁴Cs and ¹³⁷Cs is that ¹³¹I is a vapor and is best sampled using a charcoal filter when air sampling is the method used for detection. We were

not able to identify with certainty which individual filter media were used during the air sample collection during the response to the FDNPP accident.

There has been research into the actual nuclide ratios measured following the FDNPP accident and the use of the actual ratios measured in this project is a viable method for determining estimated ground deposition based upon net aerial gamma count rate, but knowing the actual nuclide ratio for the location this method is applied to would also strengthen the results of this project, especially for samples without a measured ground air sample showing the ratio. The nuclide ratios measured in the ground air samples used in this project are consistent with the ranges found in other research projects, specifically those reported by Thakur, Ballard, and Nelson. (2013)

The data used for this project was the fundamental output of the detectors with only minimal processing by default routines and had not been corrected for background, altitude, decay, or detector efficiency. Since virtually no processing had been performed on the data since its collection, it provided an open path to interpretation and analysis. It also provided the opportunity to interpret the data and make educated assumptions about it. Without knowing the actual background radiation measurement for the area being surveyed, applying the method used by the survey team to the unprocessed data provided an adequate background measurement, but knowing the actual value would strengthen the results of this project.

The aerial gross gamma count measurements used for this project were from parameters set by the manufacturer, not by AMS, which could influence the strength of the data, since the known window or parameters set to collect these data points is not known by AMS or this project team. RSI, the detector manufacturer is a leader in their industry, so assuming factory defaults are reasonable is a good assumption, but does leave room for error or unexpected exclusion of data.

Only the efficiency of one detector pod was modeled, because it was reported that some survey flights only had one pod, but as many as three pods may have been used during an individual survey flight, making the overall efficiency of the system better and this analysis representative of the lower end of the spectrum of system efficiencies. Another assumption made that could influence the strength of the findings of this project is the modeled efficiency of the detectors used, rather than having the actual detector efficiency. MCNP has been a proven tool to estimate the efficiency of a detector, but having the actual efficiency is preferred and would also strengthen the results. Using MCNP to model detector efficiency for aerial radiation measurements was a proven method used by Sinclair et al. to determine radioxenon concentrations following the FDNPP accident (Sincalir, et al., 2011) The MCNP models used to determine the efficiency of the detector are basic in nature and reflect the actual size of each NaI(TI) crystal, but do not take into account other factors such as detector or aircraft components that would affect the real efficiency of the detector.

CONCLUSION

The importance of this study is that it could provide a basis for differentiating between ground air samples and aerial gamma count rate measurements. This details a method used to characterize the expected ground deposition based upon the net gamma count rate observed. The advantage of this is to help provide a map for emergency responders and remediation teams to focus their efforts on areas which require a greater level of personal protective gear to prevent further contamination and remediation.

The calculated and modeled ground deposition in Fukushima Prefecture as determined from this project shows an estimated ground deposition of averaged 3.79E5 Bq/m², with the major contribution coming from ¹³¹I, based on the measured activity concentrations in air for this time period and location. The significance of the majority being from ¹³¹I is that with its eight day half-life, the majority of ground deposition would now be considered to be decayed away. This shows the importance of knowing not only the nuclide ratios that are being surveyed, but also their half-lives, the way they move in the environment, and their activity concentration. If the ratio were reversed and the majority of ground deposition was from ¹³⁷Cs, with its 30 year half-life, then there would still be a considerable amount of that nuclide in those areas and additional precautions would need to be evaluated.

The main sources of uncertainty of the findings of this project are related to where assumptions were made in the place of actual data. For instance modeling the detector efficiency instead of knowing the actual measured detector efficiency lends a level of uncertainty to the project. Also assuming the gross gamma count rate used for data analysis was from an open window of detection and not knowing this creates additional uncertainty in the findings, but the same assumption was applied across the project, thus the overall findings should account for the same level of uncertainty and not create a level of overall bias.

The methods used in this project could be applied to other scenarios with the same assumptions, but moving forward, ensuring the measurements are performed with set parameters for different energy channels and the efficiency of the detector known, the strength of the findings would be more certain. The different energy channels would make identification of specific nuclides easier and potentially much quicker, enabling recommendations to be made to emergency responders in a timely manner and with better guidance for personal protection based upon the requirements for each type of nuclide present, in the case of an accident, such as FDNPP.

Future work:

The vast amount of data collected in response to the FDNPP accident lends itself to a wealth of possibilities in future research and analysis. I would recommend trying to locate ground soil samples in the areas where the estimated ground deposition was calculated to compare the findings of this project.

REFERENCES

Baba, M. (2013). Fukushima accident: What happened? Radiation Measurements , 55, 17-21.

Bartlett, D. (2007, January 7). *A Practical Guide to GPS - UTM*. Retrieved April April, 2014, from http://www.dbartlett.com/

Blumenthal, D. J., Bowman, D. R., & Remick, A. (2012, May). Adapting the U.S. domestic radiological emergency response process to an overseas incident: FRMAC without the F. *Health Physics*, 485-488.

Caciolli, A., Baldoncini, M., Bezzon, G. P., Broggini, C., Buso, G. P., Callegari, I., et al. (2012). A new FSA approach for in situ gamma ray spectroscopy. *Science of the Total Environment*, 639-645.

Cember, H., & Johnson, T. E. (2009). Introduction to Health Physics (Fourth ed.). United States: McGraw-Hill.

Cresswell, A. J., & Sanderson, D. C. (2012). Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: A case study of Irish Sea Beaches. *Science of the Total Environment*, 285-296.

Fujiwara, T., Saito, T., Muroya, Y., Sawahata, H., Yamashita, Y., Nagasaki, S., et al. (2012). Isotopic ratio and vertical distribution of radionuclides in soil affected by the accident of Fukushima Dai-ichi nuclear power plants. *Journal of Environmental Radioactivity*, 37-44.

Johnson, T. E., & Birky, B. K. (2012). *Health Physics and Radiological Health*. Baltimore, MD: Lippincott Williams & Wilkins.

Kalos, M. H., & Whitlock, P. A. (2008). Monte Carlo Methods. Great Britian: Wiley-VCH.

Kluson, J. (2010). In-situ gamma spectrometry in environmental monitoring. *Applied Radiation and Isotopes, 68*, 529-535.

Knoll, G. F. (2010). Radiation Detection and Measurement (4th ed.). Hoboken, NJ: Wiley.

Kock, P., & Samuelsson, C. (2011). Comparison of airborne and terrestrial gamma spectrometry measurements - evaluation of three areas in souther Sweden. *Journal of Environmental Radioactivity*, 605-613.

Kortov, V., & Ustyantsev, Y. (2013). Chernobyl accident: Causes, consequences and problems of radiation measurements. *Radiation Measurements*, 12-16.

Lyons, C., & Colton, D. (2012). Aerial measuring system in Japan. Health Physics, 102 (5), 509-515.

Mena, R., Pemberston, W., & Beal, W. (2012). Emergency response health physics. *Health Physics*, 102 (5), 542-548.

Nuccetelli, C. (2008). In situ gamma spectroscopy in environmental research and monitoring. *Applied Radiation and Isotopes , 66*, 1615-1618.

Sanderson, D. C., Cresswell, A. J., Hardeman, F., & Debauche, A. (2004). An airborne gamma-ray spectrometry survey of nuclear sites in Belgium. *Journal of Environmental Radioactivity*, 213-224.

Smith, A. (2013, September 10). Fukushima evacuation has killed more than earthquake and tsunami, survey says. Retrieved May 17, 2014, from NBC News: http://www.nbcnews.com/news/other/fukushima-evacuation-has-killed-more-earthquake-tsunami-survey-says-f8C11120007

Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. *Science of the Total Environment*, 800-817.

Terada, H., Katata, G., Chino, M., & Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: Verification of the source term and analysis of regional-scale atmospheric dispersion. *Journal of Environmental Radioactivity*, 141-154.

Thakur, P., Ballard, S., & Nelson, R. (2013). An overview of Fukushima radionuclides measured in the northern hemisphere. *Science of the Total Environment*, 577-613.

Tracy, B. L., Carini, F., Barabash, S., Berkovskyy, V., Brittain, J. E., Chouhan, S., et al. (2013). The sensitivity of different environmnets to radioactive contamination. *Journal of Environmental Radioactivity*, 122, 1-8.

VanHorne-Sealy, J., Livingston, B., & Al, L. (2012). DoD's Medical Radiobiological Advisory Team: Experts on the ground. *Health Physics Society*, 102 (5), 489-492.

Wershofen, H. (2013). Remarks on representative ground-level air monitoring. *Applied Radiation and Isotopes*, 284-289.

Winkelmann, I., Strobl, C., & Thomas, M. (2004). Aerial measurements of artificial radionuclides in Germany in case of a nuclear accident. *Journal of Environmental Radioactivity*, 225-231.

World Nuclear Association. (2014, April 22). *Fukushima Accident*. Retrieved May 17, 2014, from World Nuclear Association: http://www.world-nuclear.org/info/safety-and-security/safety-of-plants/fukushima-accident/

APPENDIX A: ARCMAP SCREEN SHOTS OF DATA POINTS FROM AMS AERIAL SURVEY FLIGHTS.

	1708			ſ			_	-
	17	708			2012			
	FID	1708			GMM_DOSE	61.91829		
Selection Geoprocessing (SMPL_IDX	1708			NTR_TOTAL	0		
Selection deoprocessing c	UTC_TIME	1300518904			ROI_1	2583.31301		
■	ALT_HAE	1115.05249			ROI_2	13.00158		
🛛 📐 🕕 🖉 💷 🛔	HEIGHT_AGL	-1000000			ROI_3	7.00085		
	GMM_TOTAL	2820.39015			ROI_4	5.00061		
	GMM_DOSE	67.52002			ROI_5	2587.3135		
tatistical Analyst 🕶 👳 💂	NTR_TOTAL	0			ROI_6	44.00533		
Р Х	ROI_1	2858.39541		STORE S	ROI_7	265.03211	- 11	
	ROI_2	13.0018		65825	ROI_8	0		
	ROI_3	13.0018			ROI_9	0	- 11	
C-12Flt5 Sol	ROI_4	4.00055		RESERV.		0502.24204		
2011-03-19 16	ROI_5	2849.39417		10000		2583.31301	- 11	
	ROI_6	50.00692		23533		0.19599		
urday_March	ROI_7	293.04054		ACCRED.		3.14233	- 11	
_final_test_lin	ROI_8	3.00031				0.9144		
	ROI_9	0		A 1000		2007.3130	- 11	
urday_March	ROI_10	0			CON_6	44.00533		
_rtb_continue	CON_1	2858.39541				205.03211	- 11	
	CON_2	-0.17111				0		
urday_March	CON_3	8.48539	≡	1	CON_9	0	- 11	
_Fukishima_5	CON_4	3.55613		1338		2		
	CON_5	2849.39417		· Marine		3	- 11	
urday_March	CON_6	50.00692			PPT PPES	0		
_sendal_to_ra	CON_7	293.04054		- Section	PPT TEMP	0	- 11	
urday March	CON_8	3.00031		1000	LISER 1	2 02088		
water line	CON_9	0		·	SCRIPT 1	-691 09252	E	1
	CON_10	0		1000	SCRIPT 2	0		
urday_March	ADC_1	3			SCRIPT 3	0	- 11	
_enroutetowa	ADC_2	0		•	SCRIPT 4	0		
State of the second second	PPT_PRES	0		•	SCRIPT 5	0	- 11	6
urday_March	PPT_TEMP	0		•	SCRIPT 6	0		
_test_line	USER_1	1.61671		°.	SCRIPT 7	0	- 11	
	SCRIPT_1	-782.10819		•	SCRIPT 8	1355 1642		1
urday_March	SCRIPT_2	0		•	SCRIPT 9	0	- 11	
_Preflight	SCRIPT_3	0		•	SCRIPT 10	0	- 11	
	SCRIPT_4	0		•	SCRIPT 11	0	- 11	
urday_March	SCRIPT_5	0		ě l	SCRIPT 12	0	- 11	
_city_of_Send	SCRIPT_6	0			SCRIPT 13	0		
urday March	SCRIPT_7	0			SCRIPT 14	0	- 11	
en route Ser	SCRIPT_8	1449.20047			SCRIPT 15	0		
	SCRIPT_9	0		0.0205	SCRIPT 16	6.14339	- 11	
RMAC Air Filt	SCRIPT_10	0		1000	SCRIPT 17	0		
	SCRIPT_11	0		10000	SCRIPT 18	0		
d_Places 👻	SCRIPT_12	0			SCRIPT 19	0		
	SCRIPT_13	0			SCRIPT 20	6.12903	-	
	SCRIPT_14	U	-		u –		_	B D
							_	_

🔉 Fukushima (4 April 14).mxd - ArcMap	1.2.1	6	
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help			
। 🗋 🚰 🖶 🕼 🐘 🗿 🛍 🗶 ୮୦ ୦୦ (🗄 🗸 1:10,000 💿 🗸 🗶 🗐 🗊 🗊 💭 🖕			
· · · · · · · · · · · · · · · · · · ·			
: 박 박 77 K 6 1 11 12 12 12 12 12 12 12 12 12 12 12 1			
Geostatistical Analyst 🕶 🛷 🖕	71	= .	
Go To XY (Degrees Minutes Seconds)	Identify	Π,	NAME OF THE OWNER
	Identify from	<top-most layer=""></top-most>	
	🖃 - 040 tub t	final	
Long: 140°18'50.479'E Lat: 37°21'54.896'N	1.95	4	
C SPAN A STAN	100000		1 and the mark
			The seal
			Station 1
01617 01666 0 0161719151847194 18471837181717484697			1 8381.8381.6161.6161.616
19011-01-968 0 01.017 01.9837183726591817191318171817			18 0 01.838 0 01.838 0
1.817 01.817 01.817 01.812 2008 1047 01			TIME
		®	
	Location:	140.313927 37.364618 Decim	
CONTRACTOR AND A SUMMER AND	Field	Value	1 and
	FID	147	1 A STEADUS
	Shane	Point	SERVER II.
	odop	1 054	
	lon	140 313735	31.021/2
	lat	37.364802	
	altm	456.167	
	lt1	995267	1 400 0 000 2 229 11
2 345 02 181 0 01 785 0 01 382 0 02 49 0 02 49 0 01 543 0 01 589 0 01 548 0 0 54 0 1 5	rd1	1239,49642	381 02292 02329 01.495
	dr1	1245.39085	
	ac1	72237,90199	
	ilow1	2801,25836	
	imid1	4419.91948	
	ihigh1	1326.27727	- Committee -
	telow1	664.14339	Print In
	temid 1	2399.35615	次书 (1)
	tehigh 1	1955.25422	
	lt2	994192	
	rd2	224.78385	
01485 01782 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dr2	226.09702	
1355 **** 2,355 * V V1,786 0 0 01,385 0 0 01,648 0 01	gc2	13801.15712	1.3551.4521.5371.4041.453
	ilow2	497.89176	1.010 * *1.462 0
	imid2	771.48076	
The a contract of the second of the	ihigh2	243.41375	
	telow2	160.93471	
	temid2	490.85086	
	tehigh2	437.54124	A Standard
	VD1VD2Rat	5.228538	- North
	<		
	Identified 1 f	esture	37.371 Decimal Degrees
	ruenuneu 1 1	COLUIC	

APPENDIX B: MCNP MODEL FOR AMS DETECTOR EFFICIENCY FOR SUBMERSION SOURCE

c Thesis detector efficiency

сC	Cell Cards	
1	2 -3.67 -3	\$NaI detector 1
2	2 -3.67 -5	\$NaI detector 2
3	2 -3.67 -7	\$NaI detector 3
4	1 -0.0012048 2 4 6 -8	\$air space
45	1 -0.0012048 9 -1	\$air space to break up cell 4
5	3 -2.7 -2 3	\$Al casing around detector 1
6	3 -2.7 -4 5	\$Al casing around detector 2
7	3 -2.7 -6 7	\$Al casing around detector 3
8	3 - 2.7 8 - 9	\$Al aircraft skin
9	0 1	\$universe

c Surface Card

1	so 2500	\$sphere about origin with 25 m radius
2	rpp -0.1 5.1 -0.1 10.1 -0.1 40.1	\$2mm thick Al casing around detector
3	rpp 0 5 0 10 0 40	NaI detector 5 cm x 10 cm x 40 cm
4	rpp 6.1 11.3 -0.1 10.1 -0.1 40.1	\$2mm thick Al casing around detector
5	rpp 6.2 11.2 0 10 0 40	NaI detector 5 cm x 10 cm x 40 cm
6	rpp 12.3 17.5 -0.1 10.1 -0.1 40.1	\$2mm thick Al casing around detector
7	rpp 12.4 17.4 0 10 0 40	NaI detector 5 cm x 10 cm x 40 cm
8	so 100	\$sphere of air around detector
9	so 100.3	\$sphere replicating aircraft

c Data Cards

c Source Homogeneous Distribution of nuclide in air

c sdef pos=0 0 0 rad=d1 erg=0.662 par=	2 \$source definition for Cs-137
c sdef pos= 0.0 rad=d1 erg=d2 par= 2	\$source definition for Cs-134
sdef pos=0 0 0 rad=d1 erg=d2 par=2	\$source definition for I-131
si1 100.3 2499	\$spherical source located outside aircraft
sp1 -21 2	*
c si2 1 0.605 0.796	\$Cs-134 energies
c sp2 0.6853 0.2333	Ŭ
si210.284 0.364 0.637	\$I-131 energies
sp2 0.0548 0.730 0.00487	
mode p	\$photons
imp:p1111111110	\$all cells with importance of 1, except universe
nps 500000000	x x
m1 007014 -0.7553	$i = 0.0012048 \text{ g/cm}^3$
008016 -0.2318	
018000 -0.01282	
006012 -0.000125	
m2 011000 -0.5	\$NaI density 3.67 g/cm^3
053000 -0.5	
m3 013000 -1	\$Al density 2.7 g/cm^3
c F8 Tally energy deposition	
F18:p 1	\$detector 1
# Ē18	
0	

0.010	
0.500	
0.700	
10	
F28:p 2	\$detector 2
# Ê28	
0	
0.010	
0.500	
0.700	
10	
F38:p 3	\$detector 3
# E38	
0	
0.010	
0.500	
0.700	
10	

APPENDIX C: MCNP MODEL FOR AMS DETECTOR EFFICIENCY OF GROUND DEPOSITION

c Thesis detector efficiency

c Cel	ll Cards	
142	2 -3.67 -142 imp:p=1	\$NaI detector 14a
144	2 -3.67 -144 imp:p=1	\$NaI detector 14b
146	2 -3.67 -146 imp:p=1	\$NaI detector 14c
112	2 -3.67 -112 imp:p=1	\$NaI detector 11a
114	2 -3.67 -114 imp:p=1	\$NaI detector 11b
116	2 -3.67 -116 imp:p=1	\$NaI detector 11c
122	2 -3.67 -122 imp:p=1	\$NaI detector 12a
124	2 - 3.67 - 124 imp:p=1	\$NaI detector 12b
126	2 - 3.67 - 146 imp:p = 1	\$Nal detector 12c
132	2 - 3.67 - 132 imp:p=1	\$Nal detector 13a
134	2 - 3.67 - 132 imp:p = 1	\$Nal detector 13b
136	2 - 3.67 - 136 imp:p = 1	\$Nal detector 13c
152	2 - 3.67 - 150 imp:p = 1	\$Nal detector 15a
154	2 -3.67 -152 imp:p = 1	\$Nal detector 15b
156	2 -3.67 -156 imp:p = 1	\$Nal detector 150
162	2 3.67 162 imp:p 1	\$Nal detector 16a
164	2 - 3.67 - 162 imp:p = 1	\$Nal detector 16b
166	2 - 3.67 - 104 imp:p = 1	\$Nal detector 16c
172	2 - 3.67 - 100 imp.p = 1	\$Nal detector 17a
174	2 - 3.67 - 172 imp.p = 1	\$Nal detector 17b
176	2 - 3.67 - 174 imp.p = 1	\$Nal detector 17c
182	2 - 3.67 - 182 imp:p = 1	\$Nal detector 18a
184	2 - 3.67 - 182 imp:p = 1	\$Nal detector 18b
186	2 - 3.67 - 104 imp:p = 1	\$Nal detector 18c
242	2 - 3.67 - 100 imp.p = 1	\$Nal detector 24a
272 244	2 - 3.67 - 242 imp:p = 1	\$Nal detector 24b
246	2 - 3.67 - 244 imp:p = 1	\$Nal detector 24c
212	2 - 3.67 - 240 imp:p = 1	\$Nal detector 21a
212	2 - 3.67 - 212 imp.p = 1	\$Nal detector 21b
214	2 - 3.67 - 214 imp.p = 1	\$Nal detector 21c
210	2 - 3.07 - 210 imp.p = 1	\$Nal detector 22a
224	2 - 3.07 - 222 imp.p = 1	\$Nal detector 22a
224	2 - 3.07 - 224 imp.p = 1	\$Nal detector 220
220	2 - 3.07 - 220 imp.p = 1	\$Nal detector 23a
234	2 - 3.07 - 2.32 imp.p = 1	\$Nal detector 23a
234	2 - 3.07 - 234 imp.p = 1	\$Nal detector 230
250	2 - 3.07 - 230 imp:p-1	\$Nal detector 250
252	2 - 3.07 - 232 imp.p = 1	\$Nal detector 25h
254	2 - 3.07 - 234 imp:p-1	\$Nal detector 250
200	2 - 3.07 - 230 imp:p-1	\$Nal detector 250
262	2 - 3.67 - 262 imp:p-1	\$Nal detector 20a
204	2 - 3.67 - 204 imp:p - 1	\$Nal detector 200
200	2 - 3.67 - 200 imp:p - 1	\$Nal detector 20c
274	2 - 3.07 - 272 imp:p=1	p_{1Na1} detector $2/a$
2/4	2 - 3.67 - 274 imp:p=1	\$INAL detector 2/b
2/6	2 - 3.67 - 276 imp:p=1	\$INAL detector 2/c
282	2 - 3.67 - 282 imp:p=1	\$INAL detector 28a
284	∠ -3.07 -284 imp:p=1	\$INAL detector 28b

286	2 -3.67 -286 imp:p=1	\$NaI detector 28c
342	2 -3.67 -342 imp:p=1	\$NaI detector 34a
344	2 -3.67 -344 imp:p=1	\$NaI detector 34b
346	2 -3.67 -346 imp:p=1	\$NaI detector 34c
312	2 -3.67 -312 imp:p=1	\$NaI detector 31a
314	2 - 3.67 - 314 imp:p=1	\$NaI detector 31b
316	2 - 3.67 - 316 imp:p = 1	\$Nal detector 31c
322	2 -3.67 -322 imp:p=1	\$Nal detector 32a
324	2 -3.67 -324 imp:p=1	\$Nal detector 32b
324	2 - 3.67 - 324 imp.p = 1	\$Nal detector 32c
320	2 - 3.67 - 320 imp.p - 1	\$Nal detector 32c
224	2 - 3.67 - 332 imp.p = 1	\$Nal detector 55a
224	2 - 3.67 - 334 imp:p-1	\$INAL detector 55D
336	2 - 5.67 - 556 imp:p=1	\$INAL detector 55C
352	2 - 3.67 - 352 imp:p=1	\$Nal detector 35a
354	2 -3.67 -354 imp:p=1	\$Nal detector 35b
356	2 -3.67 -356 imp:p=1	\$Nal detector 35c
362	2 -3.67 -362 imp:p=1	\$NaI detector 36a
364	2 -3.67 -364 imp:p=1	\$NaI detector 36b
366	2 -3.67 -366 imp:p=1	\$NaI detector 36c
372	2 -3.67 -372 imp:p=1	\$NaI detector 37a
374	2 -3.67 -374 imp:p=1	\$NaI detector 37b
376	2 -3.67 -376 imp:p=1	\$NaI detector 37c
382	2 -3.67 -382 imp:p=1	\$NaI detector 38a
384	2 -3.67 -384 imp:p=1	\$NaI detector 38b
386	2 -3.67 -386 imp:p=1	\$NaI detector 38c
442	2 -3.67 -442 imp:p=1	\$NaI detector 44a
444	2 -3.67 -444 imp:p=1	\$NaI detector 44b
446	2 -3.67 -446 imp:p=1	\$NaI detector 44c
412	2 -3.67 -412 imp:p=1	\$NaI detector 41a
414	2 -3.67 -414 imp:p=1	\$NaI detector 41b
416	2 -3.67 -416 imp:p=1	\$NaI detector 41c
422	2 -3.67 -422 imp:p=1	\$NaI detector 42a
424	2 -3.67 -424 imp:p=1	\$NaI detector 42b
426	2 -3.67 -426 imp:p=1	\$NaI detector 42c
432	2 -3.67 -432 imp:p=1	\$NaI detector 43a
434	2 -3.67 -434 imp:p=1	\$NaI detector 43b
436	2 -3.67 -436 imp:p=1	\$NaI detector 43c
452	2 - 3.67 - 452 imp:p=1	\$NaI detector 45a
454	2 - 3.67 - 454 imp:p=1	\$Nal detector 45b
456	2 - 3.67 - 456 imp:p = 1	\$Nal detector 45c
462	2 - 3.67 - 462 imp:p = 1	\$Nal detector 46a
464	2 - 3.67 - 464 imp:p = 1	\$Nal detector 46b
466	2 - 3.67 - 466 imp:p = 1	\$Nal detector 46c
472	2 - 3.67 - 472 imp:p=1	\$Nal detector 47a
474	2 - 3.67 - 474 imp:p=1	\$Nal detector 47b
476	2 - 3.67 - 476 imp:p=1	\$Nal detector 47c
482	2 - 3.67 - 470 imp:p = 1	\$Nal detector 48a
484	2 - 3.67 - 482 imp:p = 1	\$Nal detector 48b
704 186	2 - 3.67 - 486 imp.p - 1	\$Nal detector 140
1/1	2 = 3.07 = 400 mp.p = 1 3 $= 2.7 = 1.41 = 1.42 \text{ imp.p} = 1$	\$Al casing around detector
1/12	3 - 2.7 - 1 + 1 + 2 imp.p - 1 3 27 1/3 1// imp.p - 1	\$ Al casing around detector
143	2 27 145 144 imp.p-1	\$ Al casing around detector
145	3 -2.7 -145 140 imp:p=1	prin casing around detector

14a 14b 14c

111	3 -2.7 -111 112 imp:p=1	\$Al casing around detector	11a
113	3 -2.7 -113 114 imp:p=1	\$Al casing around detector	11b
115	3 -2.7 -115 116 imp:p=1	\$Al casing around detector	11c
121	3 -2.7 -121 122 imp:p=1	\$Al casing around detector	12a
123	3 -2.7 -123 124 imp:p=1	\$Al casing around detector	12b
125	3 -2.7 -125 146 imp:p=1	\$Al casing around detector	12c
131	3 -2.7 -131 132 imp:p=1	\$Al casing around detector	13a
133	3 -2.7 -133 134 imp:p=1	\$Al casing around detector	13b
135	3 -2.7 -135 136 imp:p=1	\$Al casing around detector	13c
151	3 -2.7 -151 152 imp:p=1	\$Al casing around detector	15a
153	3 -2.7 -153 154 imp:p=1	\$Al casing around detector	15b
155	3 -2.7 -155 156 imp:p=1	\$Al casing around detector	15c
161	3 -2.7 -161 162 imp:p=1	\$Al casing around detector	16a
163	3 -2.7 -163 164 imp:p=1	\$Al casing around detector	16b
165	3 -2.7 -165 166 imp:p=1	\$Al casing around detector	16c
171	3 -2.7 -171 172 imp:p=1	\$Al casing around detector	17a
173	3 -2.7 -173 174 imp:p=1	\$Al casing around detector	17b
175	3 -2.7 -175 176 imp:p=1	\$Al casing around detector	17c
181	3 -2.7 -181 182 imp:p=1	\$Al casing around detector	18a
183	3 -2.7 -183 184 imp:p=1	\$Al casing around detector	18b
185	3 -2.7 -185 186 imp:p=1	\$Al casing around detector	18c
241	3 -2.7 -241 242 imp:p=1	\$Al casing around detector	24a
243	3 -2.7 -243 244 imp:p=1	\$Al casing around detector	24b
245	3 -2.7 -245 246 imp:p=1	\$Al casing around detector	24c
211	3 -2.7 -211 212 imp:p=1	\$Al casing around detector	21a
213	3 -2.7 -213 214 imp:p=1	\$Al casing around detector	21b
215	3 -2.7 -215 216 imp:p=1	\$Al casing around detector	21c
221	3 -2.7 -221 222 imp:p=1	\$Al casing around detector	22a
223	3 -2.7 -223 224 imp:p=1	\$Al casing around detector	22b
225	3 -2.7 -225 226 imp:p=1	\$Al casing around detector	22c
231	3 -2.7 -231 232 imp:p=1	\$Al casing around detector	23a
233	3 -2.7 -233 234 imp:p=1	\$Al casing around detector	23b
235	3 -2.7 -235 236 imp:p=1	\$Al casing around detector	23c
251	3 - 2.7 - 251 252 imp:p = 1	\$Al casing around detector	25a
253	3 - 2.7 - 253 254 imp:p = 1	\$Al casing around detector	25h
255	3 - 2.7 - 255 256 imp:p = 1	\$Al casing around detector	25c
261	3 -2 7 -261 262 imp:p=1	\$Al casing around detector	262
263	3 - 2.7 - 263 264 imp:p = 1	\$Al casing around detector	26b
265	3 - 2.7 - 265 266 imp:p = 1	\$Al casing around detector	26c
271	3 -2 7 -271 272 imp:p=1	\$Al casing around detector	27a
273	3 -2 7 -273 274 imp:p=1	\$Al casing around detector	27h
275	3 -2 7 -275 276 imp:p=1	\$Al casing around detector	27c
281	3 -2 7 -281 282 imp:p=1	\$Al casing around detector	282
283	3 - 2.7 - 283 284 imp:p = 1	\$Al casing around detector	28h
285	3 - 2.7 - 205 - 207 - 100; p = 1	\$Al casing around detector	200 28c
341	3 - 2.7 - 205 200 imp:p = 1	\$Al casing around detector	342
343	$3_{-2}7_{-343}344$ imp.p=1	\$Al casing around detector	5та 34h
345	$3_{-2.7} - 345_{-346} \text{ imp: }p=1$	\$Al casing around detector	34c
311	3 - 27 - 311 - 312 imp = 1	\$Al casing around detector	310
313	3 - 27 - 313 314 imp:p = 1	\$Al casing around detector	31h
315	3 - 27 - 315 - 316 imp:p = 1	\$Al casing around detector	310
321	3 - 27 - 321 - 322 imp:p = 1	\$Al casing around detector	320
<u></u> 1		The second around accelor	Jua

323	3 -2.7 -323 324 imp:p=1	\$Al casing arou	nd detector 32b
325	3 -2.7 -325 326 imp:p=1	\$Al casing arou	nd detector 32c
331	3 -2.7 -331 332 imp:p=1	\$Al casing arou	nd detector 33a
333	3 -2.7 -333 334 imp:p=1	\$Al casing arou	nd detector 33b
335	3 -2.7 -335 336 imp:p=1	\$Al casing arou	nd detector 33c
351	3 - 27 - 351 352 imp:p=1	\$Al casing arou	nd detector 35a
353	3 - 2.7 - 353 - 354 imp:p = 1	\$Al casing arou	and detector 35b
355	$3 2.7 355 356 \text{ imp:p}^{-1}$	\$Al casing arou	ind detector 350
361	3 2.7 361 362 imp:p=1	\$ Al casing arou	and detector 36a
262	3 - 2.7 - 301 - 302 imp.p = 1		and detector 30a
205 275	2 27 265 266 imp:p=1	\$AI casing arou	ind detector 300
305	3 -2.7 -365 366 imp:p-1	\$AI casing arou	ind detector 36c
3/1	3 - 2.7 - 3/1 - 3/2 imp:p=1	\$AI casing arou	nd detector 3/a
373	3 -2.7 -373 374 imp:p=1	\$Al casing arou	nd detector 37b
375	3 -2.7 -375 376 imp:p=1	\$Al casing arou	nd detector 37c
381	3 -2.7 -381 382 imp:p=1	\$Al casing arou	nd detector 38a
383	3 -2.7 -383 384 imp:p=1	\$Al casing arou	nd detector 38b
385	3 -2.7 -385 386 imp:p=1	\$Al casing arou	nd detector 38c
441	3 -2.7 -441 442 imp:p=1	\$Al casing arou	nd detector 44a
443	3 -2.7 -443 444 imp:p=1	\$Al casing arou	nd detector 44b
445	3 -2.7 -445 446 imp:p=1	\$Al casing arou	nd detector 44c
411	3 - 27 - 411 412 imp:p=1	\$Al casing arou	nd detector 41a
413	3 -2 7 -413 414 imp:p=1	\$Al casing arou	nd detector 41b
415	3 - 2.7 - 415 416 imp:p = 1	\$Al casing arou	nd detector 41c
421	3 27 421422 imp:p=1	\$Al casing arou	nd detector 42a
421	3 - 2.7 - 421 + 422 imp.p = 1		and detector 42a
425	3 - 2.7 - 425 + 424 mp.p = 1	\$Al easing arou	and detector 420
423	3 - 2.7 - 425 420 imp:p - 1	PAI casing arou	nd detector 42c
431	3 - 2.7 - 431 432 imp:p-1	\$AI casing arou	nd detector 43a
433	3 -2.7 -433 434 imp:p=1	\$AI casing arou	nd detector 43b
435	3 -2.7 -435 436 imp:p=1	\$AI casing arou	nd detector 43c
451	3 -2.7 -451 452 imp:p=1	\$Al casing arou	nd detector 45a
453	3 -2.7 -453 454 imp:p=1	\$Al casing arou	nd detector 45b
455	3 -2.7 -455 456 imp:p=1	\$Al casing arou	nd detector 45c
461	3 -2.7 -461 462 imp:p=1	\$Al casing arou	nd detector 46a
463	3 -2.7 -463 464 imp:p=1	\$Al casing arou	nd detector 46b
465	3 -2.7 -465 466 imp:p=1	\$Al casing arou	nd detector 46c
471	3 -2.7 -471 472 imp:p=1	\$Al casing arou	nd detector 47a
473	3 -2.7 -473 474 imp:p=1	\$Al casing arou	nd detector 47b
475	3 -2.7 -475 476 imp:p=1	\$Al casing arou	nd detector 47c
481	3 -2 7 -481 482 imp:p=1	\$Al casing arou	nd detector 48a
483	3 -2 7 -483 484 imp:p=1	\$Al casing arou	nd detector 48b
485	3 - 2.7 - 485 - 486 imp:p = 1	\$Al casing arou	nd detector 44c
140	1 0 0012048 140 141 143 14	φ_{11} casing alou	air around detector 14
140	1 0.0012048 -140 141 143 14	5 imp.p=1	air around detector 14
120	1 -0.0012048 -110 111 113 11	5 mp:p-1	
120	1 -0.0012048 -120 121 123 12	25 imp:p=1 3	air around detector 12
130	1 -0.0012048 -130 131 143 14	l5 imp:p=1 \$	air around detector 13
150	1 -0.0012048 -150 151 153 15	os imp:p=1	air around detector 15
160	1 -0.0012048 -160 161 163 16	5 imp:p=1	air around detector 16
170	1 -0.0012048 -170 171 173 17	′5 imp:p=1 \$	air around detector 17
180	1 -0.0012048 -180 181 183 18	35 imp:p=1 \$	air around detector 18
240	1 -0.0012048 -240 241 243 24	5 imp:p=1 \$	air around detector 24
210	1 -0.0012048 -210 211 213 21	.5 imp:p=1 \$	air around detector 21
220	1 -0.0012048 -220 221 223 22	25 imp:p=1 \$	bair around detector 22

```
230 1 -0.0012048 -230 231 243 245 imp:p=1
                                                $air around detector 23
250 1 -0.0012048 -250 251 253 255 imp:p=1
                                                $air around detector 25
260 1 -0.0012048 -260 261 263 265 imp:p=1
                                                $air around detector 26
270 1 -0.0012048 -270 271 273 275 imp:p=1
                                                $air around detector 27
280 1 -0.0012048 -280 281 283 285 imp:p=1
                                                $air around detector 28
340 1 -0.0012048 -340 341 343 345 imp:p=1
                                                $air around detector 34
310 1-0.0012048-310 311 313 315 imp:p=1
                                                $air around detector 31
320 1 -0.0012048 -320 321 323 325 imp:p=1
                                                $air around detector 32
330 1 -0.0012048 -330 331 343 345 imp:p=1
                                                $air around detector 33
350 1 -0.0012048 -350 351 353 355 imp:p=1
                                                $air around detector 35
360 1 -0.0012048 -360 361 363 365 imp:p=1
                                                $air around detector 36
370 1 -0.0012048 -370 371 373 375 imp:p=1
                                                $air around detector 37
380 1 -0.0012048 -380 381 383 385 imp:p=1
                                                $air around detector 38
440 1 -0.0012048 -440 441 443 445 imp:p=1
                                                $air around detector 44
410 1 -0.0012048 -410 411 413 415 imp:p=1
                                                $air around detector 41
420 1 -0.0012048 -420 421 423 425 imp:p=1
                                                $air around detector 42
430 1 -0.0012048 -430 431 443 445 imp:p=1
                                                $air around detector 43
450 1 -0.0012048 -450 451 453 455 imp:p=1
                                                $air around detector 45
460 1 -0.0012048 -460 461 463 465 imp:p=1
                                                $air around detector 46
470 1 -0.0012048 -470 471 473 475 imp:p=1
                                                $air around detector 47
                                                $air around detector 48
480 1 -0.0012048 -480 481 483 485 imp:p=1
   1 -0.0012048 -11 #110 #120 #130 #140 #150 #160 #170 #180 &
4
   #210 #220 #230 #240 #250 #260 #270 #280 #310 #320 #330 #340 #350 #360 &
   #370 #380 #410 #420 #430 #440 #450 #460 #470 #480 imp:p=1 $air space
45 1 -0.0012048 -1 2 -3 12 imp:p=1
                                                $air space to break up cell 4
                                                $Al aircraft skin
   3 -2.7 11 -12 imp:p=1
8
    4 -2.3 -2 -3 4 imp:p=1
                                                $source with concrete
9
10 01 imp:p=0
                                                $void around cylinder
    0 - 4 \text{ imp:p=}0
11
                                                $universe
    0 - 134 \text{ imp:p} = 0
12
                                                $universe
c Surface Card
   pz 300
                                                $plane at 3m above origin
1
2
   pz -20000
                                                $ground surface at 200m below detector
                                                $vertical cylinder with 200m radius
3
   cz 20000
                                                $bottom of ground surface with 5cm depth
4
   pz -20005
                                                $rectangle replicating aircraft
11 rpp -579.8 765.8 -75.2 686.4 -75.2 85.2
12 rpp -580.1 766.1 -75.5 686.7 -75.5 85.5
                                                $rectangle for aircraft skin
140 rpp -75.2 93 -75.2 115.2 -75.2 85.2
                                                $box around detector 14
                                                $2mm thick Al casing for detector 14a
141 rpp -0.2 5.2 -0.2 40.2 -0.2 10.2
142 rpp 0 5 0 40 0 10
                                                $NaI detector 5 cm x 40 cm x 10 cm 14a
143 rpp 6.2 11.6 -0.2 40.2 -0.2 10.2
                                                $2mm thick Al casing for detector 14b
                                                $NaI detector 5 cm x 40 cm x 10 cm 14b
144 rpp 6.4 11.4 0 40 0 10
145 rpp 12.6 18 -0.2 40.2 -0.2 10.2
                                                $2mm thick Al casing for detector 14c
146 rpp 12.8 17.8 0 40 0 10
                                                $NaI detector 5 cm x 40 cm x 10 cm 14c
110 rpp -579.8 -411.6 -75.2 115.2 -75.2 85.2
                                                $box around detector 11
                                                $2mm thick Al casing detector 11a
111 rpp -504.8 -499.4 -0.2 40.2 -0.2 10.2
112 rpp -504.6 -499.6 0 40 0 10
                                                $NaI detector 5 cm x 40 cm x 10 cm 11a
113 rpp -498.4 -493 -0.2 40.2 -0.2 10.2
                                                $2mm thick Al casing detector 11b
                                                $NaI detector 5 cm x 40 cm x 10 cm 11b
114 rpp -498.2 -493.2 0 40 0 10
115 rpp -498.6 -492 -0.2 40.2 -0.2 10.2
                                                $2mm thick Al casing detector 11c
                                                $NaI detector 5 cm x 40 cm x 10 cm 11c
```

```
116 rpp -491.8 -486.8 0 40 0 10
```

```
120 rpp -411.6 -243.4 -75.2 115.2 -75.2 85.2
121 rpp -336.6 -331.2 -0.2 40.2 -0.2 10.2
122 rpp -336.4 -331.4 0 40 0 10
123 rpp -330.2 -324.8 -0.2 40.2 -0.2 10.2
124 rpp -330 -325 0 40 0 10
125 rpp -323.8 -318.4 -0.2 40.2 -0.2 10.2
126 rpp -323.6 -318.6 0 40 0 10
130 rpp -243.4 -75.2 -75.2 115.2 -75.2 85.2
131 rpp -168.4 -163 -0.2 40.2 -0.2 10.2
132 rpp -168.2 -163.2 0 40 0 10
133 rpp -162 -156.6 -0.2 40.2 -0.2 10.2
134 rpp -161.8 -156.8 0 40 0 10
135 rpp -155.6 -150.2 -0.2 40.2 -0.2 10.2
136 rpp -155.4 -150.4 0 40 0 10
150 rpp 93 261.2 -75.2 115.2 -75.2 85.2
151 rpp 168 173.4 -0.2 40.2 -0.2 10.2
152 rpp 168.2 173.2 0 40 0 10
153 rpp 174.4 179.8 -0.2 40.2 -0.2 10.2
154 rpp 174.6 179.6 0 40 0 10
155 rpp 180.8 186.2 -0.2 40.2 -0.2 10.2
156 rpp 181 186 0 40 0 10
160 rpp 261.2 429.4 -75.2 115.2 -75.2 85.2
161 rpp 336.2 341.6 -0.2 40.2 -0.2 10.2
162 rpp 336.4 341.4 0 40 0 10
163 rpp 342.6 348 -0.2 40.2 -0.2 10.2
164 rpp 342.8 347.8 0 40 0 10
165 rpp 349 354.4 -0.2 40.2 -0.2 10.2
166 rpp 349.2 354.2 0 40 0 10
170 rpp 429.4 597.6 -75.2 115.2 -75.2 85.2
171 rpp 504.4 509.8 -0.2 40.2 -0.2 10.2
172 rpp 504.6 509.6 0 40 0 10
173 rpp 510.8 516.2 -0.2 40.2 -0.2 10.2
174 rpp 511 516 0 40 0 10
175 rpp 517.2 522.6 -0.2 40.2 -0.2 10.2
176 rpp 517.4 522.4 0 40 0 10
180 rpp 597.6 765.8 -75.2 115.2 -75.2 85.2
181 rpp 672.6 678 -0.2 40.2 -0.2 10.2
182 rpp 672.8 677.8 0 40 0 10
183 rpp 679 684.4 -0.2 40.2 -0.2 10.2
184 rpp 679.2 684.2 0 40 0 10
185 rpp 685.4 690.8 -0.2 40.2 -0.2 10.2
186 rpp 685.6 690.6 0 40 0 10
240 rpp -75.2 93 115.2 305.6 -75.2 85.2
241 rpp -0.2 5.2 190.2 230.6 -0.2 10.2
242 rpp 0 5 190.4 230.4 0 10
243 rpp 6.2 11.6 190.2 230.6 -0.2 10.2
244 rpp 6.4 11.4 190.4 230.4 0 10
245 rpp 12.6 18 190.2 230.6 -0.2 10.2
246 rpp 12.8 17.8 190.4 230.4 0 10
210 rpp -579.8 -411.6 115.2 305.6 -75.2 85.2
211 rpp -504.8 -499.4 190.2 230.6 -0.2 10.2
212 rpp -504.6 -499.6 190.4 230.4 0 10
```

\$box around detector 12 \$2mm thick Al casing detector 12a \$NaI detector 5 cm x 40 cm x 10 cm 12a \$2mm thick Al casing detector 12b \$NaI detector 5 cm x 40 cm x 10 cm 12b \$2mm thick Al casing detector 12c \$NaI detector 5 cm x 40 cm x 10 cm 12c \$box around detector 13 \$2mm thick Al casing detector 13a \$NaI detector 5 cm x 40 cm x 10 cm 13a \$2mm thick Al casing detector 13b \$NaI detector 5 cm x 40 cm x 10 cm 13b \$2mm thick Al casing detector 13c \$NaI detector 5 cm x 40 cm x 10 cm 13c \$box around detector 15 \$2mm thick Al casing detector 15a \$NaI detector 5 cm x 40 cm x 10 cm 15a \$2mm thick Al casing detector 15b \$NaI detector 5 cm x 40 cm x 10 cm 15b \$2mm thick Al casing detector 15c \$NaI detector 5 cm x 40 cm x 10 cm 15c \$box around detector 16 \$2mm thick Al casing detector 16a \$NaI detector 5 cm x 40 cm x 10 cm 16a \$2mm thick Al casing detector 16b \$NaI detector 5 cm x 40 cm x 10 cm 16b \$2mm thick Al casing detector 16c \$NaI detector 5 cm x 40 cm x 10 cm 16c \$box around detector 17 \$2mm thick Al casing detector 17a \$NaI detector 5 cm x 40 cm x 10 cm 17a \$2mm thick Al casing detector 17b \$NaI detector 5 cm x 40 cm x 10 cm 17b \$2mm thick Al casing detector 17c \$NaI detector 5 cm x 40 cm x 10 cm 17c \$box around detector 18 \$2mm thick Al casing detector 18a \$NaI detector 5 cm x 40 cm x 10 cm 18a \$2mm thick Al casing detector 18b \$NaI detector 5 cm x 40 cm x 10 cm 18b \$2mm thick Al casing detector 18c \$NaI detector 5 cm x 40 cm x 10 cm 18c \$box around detector 24 \$2mm thick Al casing detector 24a \$NaI detector 5 cm x 40 cm x 10 cm 24a \$2mm thick Al casing detector 24b \$NaI detector 5 cm x 40 cm x 10 cm 24b \$2mm thick Al casing detector 24c \$NaI detector 5 cm x 40 cm x 10 cm 24c \$box around detector 21 \$2mm thick Al casing detector 21a \$NaI detector 5 cm x 40 cm x 10 cm 21a

```
213 rpp -498.4 -493 190.2 230.6 -0.2 10.2
214 rpp -498.2 -493.2 190.4 230.4 0 10
215 rpp -492 -486.6 190.2 230.6 -0.2 10.2
216 rpp -491.8 -486.8 190.4 230.4 0 10
220 rpp -411.6 -243.4 115.2 305.6 -75.2 85.2
221 rpp -336.6 -331.2 190.2 230.6 -0.2 10.2
222 rpp -336.4 -331.4 190.4 230.4 0 10
223 rpp -330.2 -324.8 190.2 230.6 -0.2 10.2
224 rpp -330 -325 190.4 230.4 0 10
225 rpp -323.8 -318.4 190.2 230.6 -0.2 10.2
226 rpp -323.6 -318.6 190.4 230.4 0 10
230 rpp -243.4 -75.2 115.2 305.6 -75.2 85.2
231 rpp -168.4 -163 190.2 230.6 -0.2 10.2
232 rpp -168.2 -163.2 190.4 230.4 0 10
233 rpp -162 -156.6 190.2 230.6 -0.2 10.2
234 rpp -161.8 -156.8 190.4 230.4 0 10
235 rpp -155.6 -150.2 190.2 230.6 -0.2 10.2
236 rpp -155.4 -150.4 190.4 230.4 0 10
250 rpp 93 261.2 115.2 305.6 -75.2 85.2
251 rpp 168 173.4 190.2 230.6 -0.2 10.2
252 rpp 168.2 173.2 190.4 230.4 0 10
253 rpp 174.4 179.8 190.2 230.6 -0.2 10.2
254 rpp 174.6 179.6 190.4 230.4 0 10
255 rpp 180.8 186.2 190.2 230.6 -0.2 10.2
256 rpp 181 186 190.4 230.4 0 10
260 rpp 261.2 429.4 115.2 305.6 -75.2 85.2
261 rpp 336.2 341.6 190.2 230.6 -0.2 10.2
262 rpp 336.4 341.4 190.4 230.4 0 10
263 rpp 342.6 348 190.2 230.6 -0.2 10.2
264 rpp 342.8 347.8 190.4 230.4 0 10
265 rpp 349 354.4 190.2 230.6 -0.2 10.2
266 rpp 349.2 354.2 190.4 230.4 0 10
270 rpp 429.4 597.6 115.2 305.6 -75.2 85.2
271 rpp 504.4 509.8 190.2 230.6 -0.2 10.2
272 rpp 504.6 509.6 190.4 230.4 0 10
273 rpp 510.8 516.2 190.2 230.6 -0.2 10.2
274 rpp 511 516 190.4 230.4 0 10
275 rpp 517.2 522.6 190.2 230.6 -0.2 10.2
276 rpp 517.4 522.4 190.4 230.4 0 10
280 rpp 597.6 765.8 115.2 305.6 -75.2 85.2
281 rpp 672.6 678 190.2 230.6 -0.2 10.2
282 rpp 672.8 677.8 190.4 230.4 0 10
283 rpp 679 684.4 190.2 230.6 -0.2 10.2
284 rpp 679.2 684.2 190.4 230.4 0 10
285 rpp 685.4 690.8 190.2 230.6 -0.2 10.2
286 rpp 685.6 690.6 190.4 230.4 0 10
340 rpp -75.2 93 305.6 496 -75.2 85.2
341 rpp -0.2 5.2 380.6 421 -0.2 10.2
342 rpp 0 5 380.8 420.8 0 10
343 rpp 6.2 11.6 380.6 421 -0.2 10.2
344 rpp 6.4 11.4 380.8 420.8 0 10
345 rpp 12.6 18 380.6 421 -0.2 10.2
```

\$2mm thick Al casing detector 21b \$NaI detector 5 cm x 40 cm x 10 cm 21b \$2mm thick Al casing detector 21c \$NaI detector 5 cm x 40 cm x 10 cm 21c \$box around detector 22 \$2mm thick Al casing detector 22a \$NaI detector 5 cm x 40 cm x 10 cm 22a \$2mm thick Al casing detector 22b \$NaI detector 5 cm x 40 cm x 10 cm 22b \$2mm thick Al casing detector 22c \$NaI detector 5 cm x 40 cm x 10 cm 22c \$box around detector 23 \$2mm thick Al casing detector 23a \$NaI detector 5 cm x 40 cm x 10 cm 23a \$2mm thick Al casing detector 23b \$NaI detector 5 cm x 40 cm x 10 cm 23b \$2mm thick Al casing detector 23c \$NaI detector 5 cm x 40 cm x 10 cm 23c \$box around detector 25 \$2mm thick Al casing detector 25a \$NaI detector 5 cm x 40 cm x 10 cm 25a \$2mm thick Al casing detector 25b \$NaI detector 5 cm x 40 cm x 10 cm 25b \$2mm thick Al casing detector 25c \$NaI detector 5 cm x 40 cm x 10 cm 25c \$box around detector 26 \$2mm thick Al casing detector 26a \$NaI detector 5 cm x 40 cm x 10 cm 26a \$2mm thick Al casing detector 26b \$NaI detector 5 cm x 40 cm x 10 cm 26b \$2mm thick Al casing detector 26c \$NaI detector 5 cm x 40 cm x 10 cm 26c \$box around detector 27 \$2mm thick Al casing detector 27a \$NaI detector 5 cm x 40 cm x 10 cm 27a \$2mm thick Al casing detector 27b \$NaI detector 5 cm x 40 cm x 10 cm 27b \$2mm thick Al casing detector 27c \$NaI detector 5 cm x 40 cm x 10 cm 27c \$box around detector 28 \$2mm thick Al casing detector 28a \$NaI detector 5 cm x 40 cm x 10 cm 28a \$2mm thick Al casing detector 28b \$NaI detector 5 cm x 40 cm x 10 cm 28b \$2mm thick Al casing detector 28c \$NaI detector 5 cm x 40 cm x 10 cm 28c \$box around detector 34 \$2mm thick Al casing detector 34a \$NaI detector 5 cm x 40 cm x 10 cm 34a \$2mm thick Al casing detector 34b \$NaI detector 5 cm x 40 cm x 10 cm 34b \$2mm thick Al casing detector 34c

346 rpp 12.8 17.8 380.8 420.8 0 10 310 rpp -579.8 -411.6 305.6 496 -75.2 85.2 311 rpp -504.8 -499.4 380.6 421 -0.2 10.2 312 rpp -504.6 -499.6 380.8 420.8 0 10 313 rpp -498.4 -493 380.6 421 -0.2 10.2 314 rpp -498.2 -493.2 380.8 420.8 0 10 315 rpp -492 -486.6 380.6 421 -0.2 10.2 316 rpp -491.8 -486.8 380.8 420.8 0 10 320 rpp -411.6 -243.4 305.6 496 -75.2 85.2 321 rpp -336.6 -331.2 380.6 421 -0.2 10.2 322 rpp -336.4 -331.4 380.8 420.8 0 10 323 rpp -330.2 -324.8 380.6 421 -0.2 10.2 324 rpp -330 -325 380.8 420.8 0 10 325 rpp -323.8 -318.4 380.6 421 -0.2 10.2 326 rpp -323.6 -318.6 380.8 420.8 0 10 330 rpp -243.4 -75.2 305.6 496 -75.2 85.2 331 rpp -168.4 -163 380.6 421 -0.2 10.2 332 rpp -168.2 -163.2 380.8 420.8 0 10 333 rpp -162 -156.6 380.6 421 -0.2 10.2 334 rpp -161.8 -156.8 380.8 420.8 0 10 335 rpp -155.6 -150.2 380.6 421 -0.2 10.2 336 rpp -155.4 -150.4 380.8 420.8 0 10 350 rpp 93 261.2 305.6 496 -75.2 85.2 351 rpp 168 173.4 380.6 421 -0.2 10.2 352 rpp 168.2 173.2 380.8 420.8 0 10 353 rpp 174.4 179.8 380.6 421 -0.2 10.2 354 rpp 174.6 179.6 380.8 420.8 0 10 355 rpp 180.8 186.2 380.6 421 -0.2 10.2 356 rpp 181 186 380.8 420.8 0 10 360 rpp 261.2 429.4 305.6 496 -75.2 85.2 361 rpp 336.2 341.6 380.6 421 -0.2 10.2 362 rpp 336.4 341.4 380.8 420.8 0 10 363 rpp 342.6 348 380.6 421 -0.2 10.2 364 rpp 342.8 347.8 380.8 420.8 0 10 365 rpp 349 354.4 380.6 421 -0.2 10.2 366 rpp 349.2 354.2 380.8 420.8 0 10 370 rpp 429.4 597.6 305.6 496 -75.2 85.2 371 rpp 504.4 509.8 380.6 421 -0.2 10.2 372 rpp 504.6 509.6 380.8 420.8 0 10 373 rpp 510.8 516.2 380.6 421 -0.2 10.2 374 rpp 511 516 380.8 420.8 0 10 375 rpp 517.2 522.6 380.6 421 -0.2 10.2 376 rpp 517.4 522.4 380.8 420.8 0 10 380 rpp 597.6 765.8 305.6 496 -75.2 85.2 381 rpp 672.6 678 380.6 421 -0.2 10.2 382 rpp 672.8 677.8 380.8 420.8 0 10 383 rpp 679 684.4 380.6 421 -0.2 10.2 384 rpp 679.2 684.2 380.8 420.8 0 10 385 rpp 685.4 690.8 380.6 421 -0.2 10.2 386 rpp 685.6 690.6 380.8 420.8 0 10 440 rpp -75.2 93 496 686.4 -75.2 85.2 441 rpp -0.2 5.2 571 611.4 -0.2 10.2

\$2mm thick Al casing detector 44a

\$box around detector 31 \$2mm thick Al casing detector 31a \$NaI detector 5 cm x 40 cm x 10 cm 31a \$2mm thick Al casing detector 31b \$NaI detector 5 cm x 40 cm x 10 cm 31b \$2mm thick Al casing detector 31c \$NaI detector 5 cm x 40 cm x 10 cm 31c \$box around detector 32 \$2mm thick Al casing detector 32a \$NaI detector 5 cm x 40 cm x 10 cm 32a \$2mm thick Al casing detector 32b \$NaI detector 5 cm x 40 cm x 10 cm 32b \$2mm thick Al casing detector 32c \$NaI detector 5 cm x 40 cm x 10 cm 32c \$box around detector 33 \$2mm thick Al casing detector 33a \$NaI detector 5 cm x 40 cm x 10 cm 33a \$2mm thick Al casing detector 33b \$NaI detector 5 cm x 40 cm x 10 cm 33b \$2mm thick Al casing detector 33c \$NaI detector 5 cm x 40 cm x 10 cm 33c \$box around detector 35 \$2mm thick Al casing detector 35a \$NaI detector 5 cm x 40 cm x 10 cm 35a \$2mm thick Al casing detector 35b \$NaI detector 5 cm x 40 cm x 10 cm 35b \$2mm thick Al casing detector 35c \$NaI detector 5 cm x 40 cm x 10 cm 35c \$box around detector 36 \$2mm thick Al casing detector 36a \$NaI detector 5 cm x 40 cm x 10 cm 36a \$2mm thick Al casing detector 36b \$NaI detector 5 cm x 40 cm x 10 cm 36b \$2mm thick Al casing detector 36c \$NaI detector 5 cm x 40 cm x 10 cm 36c \$box around detector 37 \$2mm thick Al casing detector 37a \$NaI detector 5 cm x 40 cm x 10 cm 37a \$2mm thick Al casing detector 37b \$NaI detector 5 cm x 40 cm x 10 cm 37b \$2mm thick Al casing detector 37c \$NaI detector 5 cm x 40 cm x 10 cm 37c \$box around detector 38 \$2mm thick Al casing detector 38a \$NaI detector 5 cm x 40 cm x 10 cm 38a \$2mm thick Al casing detector 38b \$NaI detector 5 cm x 40 cm x 10 cm 38b \$2mm thick Al casing detector 38c \$NaI detector 5 cm x 40 cm x 10 cm 38c \$box around detector 44

\$NaI detector 5 cm x 40 cm x 10 cm 34c

```
442 rpp 0 5 571.2 611.2 0 10
443 rpp 6.2 11.6 571 611.4 -0.2 10.2
444 rpp 6.4 11.4 571.2 611.2 0 10
445 rpp 12.6 18 571 611.4 -0.2 10.2
446 rpp 12.8 17.8 571.2 611.2 0 10
410 rpp -579.8 -411.6 496 686.4 -75.2 85.2
411 rpp -504.8 -499.4 571 611.4 -0.2 10.2
412 rpp -504.6 -499.6 571.2 611.2 0 10
413 rpp -498.4 -493 571 611.4 -0.2 10.2
414 rpp -498.2 -493.2 571.2 611.2 0 10
415 rpp -492 -486.6 571 611.4 -0.2 10.2
416 rpp -491.8 -486.8 571.2 611.2 0 10
420 rpp -411.6 -243.4 496 686.4 -75.2 85.2
421 rpp -336.6 -331.2 571 611.4 -0.2 10.2
422 rpp -336.4 -331.4 571.2 611.2 0 10
423 rpp -330.2 -324.8 571 611.4 -0.2 10.2
424 rpp -330 -325 571.2 611.2 0 10
425 rpp -323.8 -318.4 571 611.4 -0.2 10.2
426 rpp -323.6 -318.6 571.2 611.2 0 10
430 rpp -243.4 -75.2 496 686.4 -75.2 85.2
431 rpp -168.4 -163 571 611.4 -0.2 10.2
432 rpp -168.2 -163.2 571.2 611.2 0 10
433 rpp -162 -156.6 571 611.4 -0.2 10.2
434 rpp -161.8 -156.8 571.2 611.2 0 10
435 rpp -155.6 -150.2 571 611.4 -0.2 10.2
436 rpp -155.4 -150.4 571.2 611.2 0 10
450 rpp 93 261.2 496 686.4 -75.2 85.2
451 rpp 168 173.4 571 611.4 -0.2 10.2
452 rpp 168.2 173.2 571.2 611.2 0 10
453 rpp 174.4 179.8 571 611.4 -0.2 10.2
454 rpp 174.6 179.6 571.2 611.2 0 10
455 rpp 180.8 186.2 571 611.4 -0.2 10.2
456 rpp 181 186 571.2 611.2 0 10
460 rpp 261.2 429.4 496 686.4 -75.2 85.2
461 rpp 336.2 341.6 571 611.4 -0.2 10.2
462 rpp 336.4 341.4 571.2 611.2 0 10
463 rpp 342.6 348 571 611.4 -0.2 10.2
464 rpp 342.8 347.8 571.2 611.2 0 10
465 rpp 349 354.4 571 611.4 -0.2 10.2
466 rpp 349.2 354.2 571.2 611.2 0 10
470 rpp 429.4 597.6 496 686.4 -75.2 85.2
471 rpp 504.4 509.8 571 611.4 -0.2 10.2
472 rpp 504.6 509.6 571.2 611.2 0 10
473 rpp 510.8 516.2 571 611.4 -0.2 10.2
474 rpp 511 516 571.2 611.2 0 10
475 rpp 517.2 522.6 571 611.4 -0.2 10.2
476 rpp 517.4 522.4 571.2 611.2 0 10
480 rpp 597.6 765.8 496 686.4 -75.2 85.2
481 rpp 672.6 678 571 611.4 -0.2 10.2
482 rpp 672.8 677.8 571.2 611.2 0 10
483 rpp 679 684.4 571 611.4 -0.2 10.2
484 rpp 679.2 684.2 571.2 611.2 0 10
```

\$NaI detector 5 cm x 40 cm x 10 cm 44a \$2mm thick Al casing detector 44b \$NaI detector 5 cm x 40 cm x 10 cm 44b \$2mm thick Al casing detector 44c \$NaI detector 5 cm x 40 cm x 10 cm 44c \$box around detector 41 \$2mm thick Al casing detector 41a \$NaI detector 5 cm x 40 cm x 10 cm 41a \$2mm thick Al casing detector 41b \$NaI detector 5 cm x 40 cm x 10 cm 41b \$2mm thick Al casing detector 41c \$NaI detector 5 cm x 40 cm x 10 cm 41c \$box around detector 42 \$2mm thick Al casing detector 42a \$NaI detector 5 cm x 40 cm x 10 cm 42a \$2mm thick Al casing detector 42b \$NaI detector 5 cm x 40 cm x 10 cm 42b \$2mm thick Al casing detector 42c \$NaI detector 5 cm x 40 cm x 10 cm 42c \$box around detector 43 \$2mm thick Al casing detector 43a \$NaI detector 5 cm x 40 cm x 10 cm 43a \$2mm thick Al casing detector 43b \$NaI detector 5 cm x 40 cm x 10 cm 43b \$2mm thick Al casing detector 43c \$NaI detector 5 cm x 40 cm x 10 cm 43c \$box around detector 45 \$2mm thick Al casing detector 45a \$NaI detector 5 cm x 40 cm x 10 cm 45a \$2mm thick Al casing detector 45b \$NaI detector 5 cm x 40 cm x 10 cm 45b \$2mm thick Al casing detector 45c \$NaI detector 5 cm x 40 cm x 10 cm 45c \$box around detector 46 \$2mm thick Al casing detector 46a \$NaI detector 5 cm x 40 cm x 10 cm 46a \$2mm thick Al casing detector 46b \$NaI detector 5 cm x 40 cm x 10 cm 46b \$2mm thick Al casing detector 46c \$NaI detector 5 cm x 40 cm x 10 cm 46c \$box around detector 47 \$2mm thick Al casing detector 47a \$NaI detector 5 cm x 40 cm x 10 cm 47a \$2mm thick Al casing detector 47b \$NaI detector 5 cm x 40 cm x 10 cm 47b \$2mm thick Al casing detector 47c \$NaI detector 5 cm x 40 cm x 10 cm 47c \$box around detector 48 \$2mm thick Al casing detector 48a \$NaI detector 5 cm x 40 cm x 10 cm 48a \$2mm thick Al casing detector 48b \$NaI detector 5 cm x 40 cm x 10 cm 48b 485 rpp 685.4 690.8 571 611.4 -0.2 10.2 486 rpp 685.6 690.6 571.2 611.2 0 10 \$2mm thick Al casing detector 48c\$NaI detector 5 cm x 40 cm x 10 cm 48c

c Data Cards c Source Homogeneous Distribution of nuclide in air for 200m sdef sur=4 pos=0 0 -20000 rad=d1 erg=0.662 par=2 \$source definition for Cs-137 c sdef sur=4 pos=0 0 -20000 rad=d1 erg=d2 par=2 \$source definition for Cs-134 c sdef sur=4 pos=0 0 -20000 rad=d1 erg=d2 par=2 \$source definition for I-131 \$spherical source located outside aircraft si1 h 0 19999 sp1 -21 1 c si210.605 0.796 \$Cs-134 energies c sp2 0.6853 0.2333 c si210.284 0.364 0.637 \$I-131 energies c sp2 0.0548 0.730 0.00487 mode p \$photons nps 100000000 \$1 billion particles $air density = 0.0012048 \text{ g/cm}^3$ m1 007014 -0.7553 008016 -0.2318 018000 -0.01282 006012 -0.000125 m2 011000 -0.5 \$NaI density 3.67 g/cm^3 053000 -0.5 \$Al density 2.7 g/cm^3 m3 013000 -1 m4 001000 0.1170 \$concrete "standard" 2.3 g/cm^3 008016 0.6082 014000 0.2748 c F8 Tally energy deposition F18:p 142 \$detector 14a # E18 0 0.010 0.500 0.700 10 F28:p 144 \$detector 14b # Ē28 0 0.010 0.500 0.700 10 F38:p 146 \$detector 14c # E38 0 0.010 0.500 0.700 10 F48:p 112 \$detector 11a # E48 0 0.010

0.500	
0.700	
10	
F58:p 114	\$detector 11b
# E58	11
0	
0	
0.010	
0.500	
0.700	
10	
F68:p 116	\$detector 11c
# Ē68	
0	
0.010	
0.500	
0.300	
0.700	
10	* 1
F/8:p 122	\$detector 12a
# E78	
0	
0.010	
0.500	
0 700	
10	
E99:n 124	Educator 12h
H E00	puelector 120
# E88	
0	
0.010	
0.500	
0.700	
10	
F98:p 126	\$detector 12c
# E98	п
0	
0.010	
0.010	
0.500	
0.700	
10	
F108:p 132	\$detector 13a
# E108	
0	
0.010	
0.500	
0.700	
10	
F118-p 134	\$datactor 13b
ттю.р 19 4 # Б110	guenetion 150
# E116	
0	
0.010	
0.500	
0.700	
10	

F128:p 136 # E128	\$detector 13c
0	
0.010	
0.500	
0.700	
10	* 1
F138:p 152	\$detector 15a
# E138	
0.010	
0.500	
0.700	
10	
F148:p 154	\$detector 15b
# E148	
0	
0.010	
0.500	
0.700	
10 E150 157	¢ J 1 E
F158:p 150 # E158	pdetector 15c
0	
0.010	
0.500	
0.700	
10	
F168:p 162	\$detector 16a
# E168	
0	
0.010	
0.500	
10	
F178 th 164	\$detector 16b
# E178	queteetor 105
0	
0.010	
0.500	
0.700	
10	* • • • •
F188:p 166	\$detector 16c
# E188	
0	
0.500	
0.700	
10	
F198:p 172	\$detector 17a
# E198	
0	

0.010	
0.500	
0.700	
10	
F208:p 174	\$detector 17b
# E208	accessor 145
0	
0	
0.010	
0.300	
0.700	
10	* •
F218:p 176	\$detector 17c
# E218	
0	
0.010	
0.500	
0.700	
10	
F228 n 182	\$detector 18a
# F228	<i>queteetor</i> rou
0	
0	
0.010	
0.500	
0.700	
10	
F238:p 184	\$detector 18b
# E238	
0	
0.010	
0.500	
0.700	
10	
F248:p 186	\$detector 18c
# E248	acceller 100
0	
0	
0.010	
0.300	
0.700	
10	* 1 • • •
F258:p 242	\$detector 24a
# E258	
0	
0.010	
0.500	
0.700	
10	
F268:p 244	\$detector 24b
# E268	
0	
0.010	
0.500	
0.300	
0.700	

10 F278:p 246 \$detector 24c # E278 0 0.010 0.500 0.700 10 F288:p 212 \$detector 21a # E288 0 0.010 0.500 0.700 10 F298:p 214 \$detector 21b # E298 0 0.010 0.500 0.700 10 F308:p 216 \$detector 21c # E308 0 0.010 0.500 0.700 10 F318:p 222 \$detector 22a # E318 0 0.010 0.500 0.700 10 F328:p 224 \$detector 22b # E328 0 0.010 0.500 0.700 10 F338:p 226 \$detector 22c # E338 0 0.010 0.500 0.700 10 F348:p 232 \$detector 23a # E348

0 0.010 0.500 0.700 10 F358:p 234 \$detector 23b # E358 0 0.010 0.500 0.700 10 F368:p 236 \$detector 23c # E368 0 0.010 0.500 0.700 10 F378:p 252 \$detector 25a # E378 0 0.010 0.500 0.700 10 F388:p 254 \$detector 25b # E388 0 0.010 0.500 0.700 10 F398:p 256 \$detector 25c # E398 0 0.010 0.500 0.700 10 F408:p 262 \$detector 26a # E408 0 0.010 0.500 0.700 10 F418:p 264 \$detector 26b # E418 0 0.010 0.500

0.700 10 F428:p 266 \$detector 26c # E428 0 0.010 0.500 0.700 10 F438:p 272 \$detector 27a # E438 0 0.010 0.500 0.700 10 F448:p 274 \$detector 27b # E448 0 0.010 0.500 0.700 10 F458:p 276 \$detector 27c # E458 0 0.010 0.500 0.700 10 F468:p 282 \$detector 28a # E468 0 0.010 0.500 0.700 10 F478:p 284 \$detector 28b # E478 0 0.010 0.500 0.700 10 F488:p 286 \$detector 28c # E488 0 0.010 0.500 0.700 10 F498:p 342 \$detector 34a

# E498	
0	
0.010	
0.500	
0.700	
10	
E509.m 244	Edotoston 21h
F508:p 544	adetector 34b
# E508	
0	
0.010	
0.500	
0.700	
10	
F518:p 346	\$detector 34c
# E518	11
0	
0.010	
0.010	
0.300	
0.700	
10	* *
F528:p 312	\$detector 31a
# E528	
0	
0.010	
0.500	
0.700	
10	
F538:p 314	\$detector 31b
# E538	
0	
0.010	
0.500	
0.300	
0.700	
10	¢1, , 21
F548:p 516	\$detector 51c
# E548	
0	
0.010	
0.500	
0.700	
10	
F558:p 322	\$detector 32a
# E558	
0	
0.010	
0.500	
0.700	
10	
F568 n 324	\$detector 32b
# E568	fuctorior 520
0	
0.010	
0.010	

0.500	
0.700	
10	
E578:n 326	\$detector 32c
H = 1570.020	fuercetor 52e
# E376	
0	
0.010	
0.500	
0.700	
10	
E509:n 222	\$ datastar 22a
F366:p 352	succeed 55a
# E588	
0	
0.010	
0.500	
0.700	
10	
10	¢ 1
F598:p 334	\$detector 33b
# E598	
0	
0.010	
0.500	
0.200	
10	
10	* 1
F608:p 336	\$detector 33c
# E608	
0	
0.010	
0.500	
0.700	
10	
E(19 252	¢ J 2 E
F018:p 352	pdetector 55a
# E618	
0	
0.010	
0.500	
0.700	
10	
F628:n 354	\$detector 35b
# E(20	addiction 350
# E020	
0	
0.010	
0.500	
0.700	
10	
F638m 356	\$detector 35c
# E638	" "
0	
0.010	
0.010	
0.500	
0.700	
10	

F648:p 362 # E648	\$detector 36a
0	
0.010	
0.500	
0.700	
10	
F658 n 364	\$detector 36b
# F658	vacate of 500
0	
0.010	
0.500	
0.300	
0.700	
10 E669:n 266	Edatasta # 26 a
+ E(0)	successfor 500
# E008	
0	
0.010	
0.500	
0.700	
10	* 1 • • •
F6/8:p 3/2	\$detector 3/a
# E6/8	
0	
0.010	
0.500	
0.700	
10	
F688:p 374	\$detector 37b
# E688	
0	
0.010	
0.500	
0.700	
10	
F698:p 376	\$detector 37c
# E698	
0	
0.010	
0.500	
0.700	
10	
F708:p 382	\$detector 38a
# E708	
0	
0.010	
0.500	
0.700	
10	
F718:p 384	\$detector 38b
# E718	
0	

0.010 0.500 0.700 10 F728:p 386 \$detector 38c # E728 0 0.010 0.500 0.700 10 F738:p 442 \$detector 44a # E738 0 0.010 0.500 0.700 10 F748:p 444 \$detector 44b # E748 0 0.010 0.500 0.700 10 F758:p 446 \$detector 44c # E758 0 0.010 0.500 0.700 10 F768:p 412 \$detector 41a # E768 0 0.010 0.500 0.700 10 F778:p 414 \$detector 41b # E778 0 0.010 0.500 0.700 10 F788:p 416 \$detector 41c # E788 0 0.010 0.500 0.700

10 F798:p 422 \$detector 42a # E798 0 0.010 0.500 0.700 10 F808:p 424 \$detector 42b # E808 0 0.010 0.500 0.700 10 F818:p 426 \$detector 42c # E818 0 0.010 0.500 0.700 10 F828:p 432 \$detector 43a # E828 0 0.010 0.500 0.700 10 F838:p 434 \$detector 43b # E838 0 0.010 0.500 0.700 10 F848:p 436 \$detector 43c # E848 0 0.010 0.500 0.700 10 F858:p 452 \$detector 45a # E858 0 0.010 0.500 0.700 10 F868:p 454 \$detector 45b # E868

0 0.010 0.500 0.700 10 F878:p 456 \$detector 45c # E878 0 0.010 0.500 0.700 10 F888:p 462 \$detector 46a # E888 0 0.010 0.500 0.700 10 F898:p 464 \$detector 46b # E898 0 0.010 0.500 0.700 10 F908:p 466 \$detector 46c # E908 0 0.010 0.500 0.700 10 F918:p 472 \$detector 47a # E918 0 0.010 0.500 0.700 10 F928:p 474 \$detector 47b # E928 0 0.010 0.500 0.700 10 F938:p 476 \$detector 47c # E938 0 0.010 0.500

0.700	
10	
F948:p 482	\$detector 48a
# E948	
0	
0.010	
0.500	
0.700	
10	
F958:p 484	\$detector 48b
# E958	
0	
0.010	
0.500	
0.700	
10	
F968:p 486	\$detector 48c
# E968	
0	
0.010	
0.500	
0.700	
10	

APPENDIX D: GROUND VS. AERIAL ACTIVITY CONCENTRATIONS

The measured activity concentrations in units of Bq/m³ from the ground air samples were compared to the expected activity concentration, also given in units of Bq/m³. Comparison of decay-corrected ground air samples with representative results for the stated nuclides, exclusive of those depicted in Table 5, compared to calculated activity concentrations of net aerial gamma count rates is depicted in Table 8. Note that the dashed lines in the table represent non-detectable results and that the calculated averages omit this number from consideration.

Table 8: Comparison of decay-corrected ground air samples without representative results for all three nuclides of interest (¹³⁴Cs, ¹³⁷Cs, and ¹³¹I), compared to calculated activity concentrations of net aerial gamma count rates. Note that the dashed lines in the table represent non-detectable results and that the calculated averages omit this number from consideration.

Ground Sample	Nuclide(s)	Decay-corrected	Calculated Aerial	Comparison of
ID	Represented	Measured Ground	Activity	Ground vs. Aerial
	in Ground	Air Activity	Concentration	Activity
	Sample	Concentration	(Bq/m ³)	Concentrations
		(Bq/m ³)		
SCF-00068	¹³⁷ Cs and ¹³¹ I	3.107	5825.018	0.053%
SCF-00095	¹³⁷ Cs and ¹³¹ I	175.234	77026.179	0.227%
SCF-00143	¹³⁷ Cs and ¹³¹ I	15.154	51377.109	0.029%
SCF-07627	¹³⁷ Cs and ¹³¹ I	0.295	28255.276	0.001%
SCF-07635	¹³⁷ Cs and ¹³¹ I	1.234	28255.276	0.004%
SCF-00001	¹³¹ I only	1.043	11321.365	0.009%
SCF-00029	¹³¹ I only	0.615	61514.277	0.001%
SCF-00049	¹³¹ I only	0.248	31946.491	0.001%
SCF-00060	¹³¹ I only	1.688	1390.202	0.121%
SCF-00062	¹³¹ I only	1.698	297.234	0.571%
SCF-00066	¹³¹ I only	1.886	-	-
SCF-00067	¹³¹ I only	2.990	5827.369	0.051%
SCF-00071	¹³¹ I only	1.744	13074.440	0.013%
SCF-00072	¹³¹ I only	1.743	13074.440	0.013%
SCF-00097	¹³¹ I only	63.354	40207.448	0.158%
SCF-00206	¹³¹ I only	0.211	297.234	0.071%
SCF-00207	¹³¹ I only	0.425	297.234	0.143%
SCF-07628	¹³¹ I only	0.238	11321.365	0.002%
SCF-07668	¹³¹ I only	0.204	61514.277	0.000%
SCF-07670	¹³¹ I only	1.685	61514.277	0.003%
SCF-08221	¹³¹ I only	0.166	40030.728	0.000%
SCF-08644	¹³¹ I only	0.070	3061.025	0.002%
SCF-08802	¹³⁷ Cs only	0.070	10873.302	0.001%
Average:		11.961	25377.344	0.067%

APPENDIX E: ESTIMATED GROUND DEPOSITION

Estimated ground deposition calculated from measured aerial net gamma count rate minus the expected net count rate based upon the measured ground air samples, adjusted to ground level, inclusive of the ground air samples with representative results for ¹³⁴Cs, ¹³⁷Cs, and ¹³¹I, exclusive of those depicted in Table 6 is depicted in Table 9. Note that the dashed lines in the table represent non-detectable results and that the calculated averages omit this number from consideration.

Table 9: Estimated ground deposition calculated from measured aerial net gamma count rate minus the expected net count rate based upon the measured ground air samples, inclusive of the ground air samples without representative results for all three nuclides of interest (¹³⁴Cs, ¹³⁷Cs, and ¹³¹I). Note that the dashed lines in the table represent non-detectable results and the calculated averages omit this number from consideration.

Ground	Nuclide(s)	Expected Net	Actual Net	Net Counts	Estimated
Sample ID	Represented	Count Rate	Count Rate	Divided by	Ground
	in Ground	Based on	Minus	Area	deposition
	Sample	Ground Air	Expected Net	Covered by	(Bq/m^2)
		Sample (sec ⁻¹)	Count Rate	Aircraft	
			(sec-1)	(cps/m^2)	
SCF-00068	¹³⁷ Cs and ¹³¹ I	3.797	7113.846	3.069E-03	3.754E+07
SCF-00095	¹³⁷ Cs and ¹³¹ I	214.038	93904.950	2.534E-01	6.839E+05
SCF-00143	¹³⁷ Cs and ¹³¹ I	18.511	62759.644	2.534E-01	8.588E+06
SCF-07627	¹³⁷ Cs and ¹³¹ I	0.362	34525.016	1.022E-01	9.064E+05
SCF-07635	¹³⁷ Cs and ¹³¹ I	1.510	34523.869	1.022E-01	9.064E+05
SCF-00001	¹³¹ I only	1.274	13826.826	4.669E-04	8.055E+08
SCF-00029	¹³¹ I only	0.751	75133.787	1.307E-01	8.681E+05
SCF-00049	¹³¹ I only	0.303	39019.661	2.538E-01	2.677E+05
SCF-00060	¹³¹ I only	2.061	1695.955	7.889E-04	2.532E+07
SCF-00062	¹³¹ I only	2.073	360.973	3.012E+02	3.035E+06
SCF-00066	¹³¹ I only	2.304	-	-	-
SCF-00067	¹³¹ I only	3.652	7113.991	3.070E-03	3.789E+07
SCF-00071	¹³¹ I only	2.131	15967.203	1.266E-02	1.130E+07
SCF-00072	¹³¹ I only	2.129	15967.205	1.266E-02	1.130E+07
SCF-00097	¹³¹ I only	77.382	49032.648	2.292E-01	4.125E+05
SCF-00206	¹³¹ I only	0.258	362.788	3.086E-04	3.050E+06
SCF-00207	¹³¹ I only	0.519	362.527	3.084E-04	3.048E+06
SCF-07628	¹³¹ I only	0.290	13827.809	4.670E-04	8.056E+08
SCF-07668	¹³¹ I only	0.249	75134.290	1.307E-01	8.681E+05
SCF-07670	¹³¹ I only	2.058	75132.480	1.307E-01	8.681E+05
SCF-08221	¹³¹ I only	0.203	48893.980	2.239E-01	4.707E+05
SCF-08644	¹³¹ I only	0.085	3738.701	1.780E-03	2.871E+07
SCF-08802	¹³⁷ Cs only	0.087	13844.702	4.674E-04	1.868E+07
Average:		14.61	31011.039	13.775	8.21E+07