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II. LEAST SQUARES PROBLEMS IN LINEAR PREDICTION

Let y = [ Yo, YI, ... ,YN _ I] T denote an N sample snapshot of
the stationary time series { y,} . From this snapshot, we would like
to identify an autoregressive or whitening model A" (z ) for the time
series { y,} . This model takes the form

1. INTRODUCTION

In this correspondence we pose a sequence of least squares proh­
lems from the theory of linear prediction. The problems are a little
different from those originally posed in the paper by Morf et al.
[6]. The solutions to these problems produce QR factorizations of
the data matrices that are usually associated with the covariance.
prewindowed, postwindowed, and correlation methods of linear
prediction. Our results apply to forward, backward, or forward­
backward linear prediction. In this paper, we treat only the forward
covariance problem. All of the others are treated in [15].

By QR factorization we mean the computation of an orthogonal
matrix Q and an upper triangular matrix R such that a data matrix
Y is written as Y = QR. The factorization may be used to solve the
overdetermined system of equations Ya = b by Rli = Q lb.

Our approach is to use the generalized Levinson recursions de­
rived by Friedlander et al. [I] to derive generalized recursions for
computing the orthogonal matrix Q in the QR factorization of any
of the Toeplitz (or concatenation of Toeplitz) matrices that can arise
in linear prediction. These recursions generalize those first discov­
ered by Cybenko [\0] for the correlation method of linear predic­
tion. We then use these recursions to derive generalized Schur re­
cursions for Cholesky factoring any of the close-to-Toeplitz
covariance matrices that can arise in linear prediction. Our proce­
dures are generalizations of those reported in [4] for solving least
squares problems in the correlation method of linear prediction.
Our results differ from the recent results of Cybenko [16], in the
sense that a direct QR factorization Y = QR is obtained here, not
an "inverse" factorization YA = Q.
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L: a;·' Y'-i = u'[:

i=O
a;; = I (2.1 )

where {u;'} is an error sequence. The model may also be written
as the predictor model

where y;' is the nth order prediction of Y,. The squared error be­
tween Y, and the one-step ahead predictor .9;'. is

u;, = ~ (U;,)2. (2.3)
ier,
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(2.2)

As the predictor order increases from p = 0 to p n, a window
of constant length (I - k + I) moves from left to right across the
data set, as illustrated in Fig. I. The indexes k and I may be chosen

A. Sliding Windows

We shall be interested in the index sets T" for which the time
index t satisfies the condition

The choice of T." the index set, determines the choice between
various methods of linear prediction. What differentiates our meth­
ods from the methods in [6] is the way the set T" varies with 11.

The procedure for identifying a model A" (z ) will be to form a
sequence of predictions of the form

t E T., .. k :5 t + (n - p) :5 I. (2.5)

(2.4 )a{] = I
p

.v~) = - L.: a~.' y, - i:
i= I

and to let the predictor order range from p = 0 to p n.

Abstract-In this correspondence we pose a sequence of linear pre­
diction problems that differ a little from those previously posed. The
solutions to these problems introduce a family of "sliding" window
techniques into the least squares theory of linear prediction. By using
these techniques we are able to QR factor the Toeplitz data matrices
that arise in linear prediction. The matrix Q is an orthogonal version
of the data matrix and the matrix R is a Cholesky factor of the exper­
imental correlation matrix. Our QR and Cholesky algorithms generate
generalized reflection coefficients that may be used in the usual ways
for analysis, synthesis, or classification.
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When this solution is written out for orders p = 0, I,
result is

Fig. 2. Prediction errors for order-increasing predictors. (a) Classical
technique for the covariance method, (b) sliding window technique for
the covariance method.

where H = (AT)-I is a lower triangular matrix and D 2 is the di­
agonal matrix containing the prediction errors D 2 = diag [a~, ai,
. .. , a~]. These are the normal equations for the least squares
theory of linear prediction when errors are defined with respect to
the sliding windows of (2.5).

D. QR Factor

Writing YA = Q and using the least squares equations for A we
have Q T Q = D 2

, an orthogonal factorization for the data matrix
Y. By solving the right sequence of least squares problems, we QR
factor a Toeplitz data matrix and produce Cholesky factors of the
experimental covariance matrix and its inverse. We can think of
QR factoring the data matrix as a "square root" method of factor­
ing the experimental correlation matrix (and its inverse). We can
also think of the inverse QR factor YA = V, the Cholesky factor
ATCA = D 2, and the Cholesky factor C = HD 2 H Tas three differ­
ent ways of characterizing the matrix A, which contains order-in­
creasing prediction filters.

C. Least Squares

The least squares solution for a in Ya "" 0, with the constraint
ao = I is

0, ... by removing some of the equations, or equivalently by re­
moving some of the prediction error values on the right-hand side
of (2.6). This is illustrated in Fig. 3. Such a matrix representation
is not possible in the covariance method of linear prediction studied
in [6], because each order p requires a different definition for the
data matrix Y.

YI-I YI
aP u'i-n+pP

YI-I
U)-n+p-I

a';
YI-n

(2.6)

0

uf-n+p+1
Yk+ 1

0 uf-n+p
Yk-I Yk

I I I I I

p=o
I

to select among the various methods of linear prediction (just as in
[6]). The data values outside the range [0, ... , N - I] are set
to zero. In the covariance method of linear prediction, k = nand
I = N - I. Fig. 2 illustrates the difference between the covariance
method of linear prediction studied in [6] and our "sliding win­
dow" technique for the covariance method, by showing for each
order the number of prediction errors used in determining the least
squares solution. Note that the prediction errors for the final order
n are the same for the two techniques, so the final answer for the
filter An(z ) will be the same.

The choice of the index set is of utmost importance, as it deter­
mines the kind of structure the final algorithm will inherit. For ex­
ample, in the covariance method of linear prediction [6], the max­
imum number of prediction errors (not using data outside the range
[0, N - I]) is used for each value of p . This leads to a decreasing
number of prediction errors as p increases (see Fig. 2). In this case
both a time and an order update are necessary in the algorithm. In
our sliding window method, the number of prediction errors is only
dependent on the maximum order n and not on the intermediate
order p. This leads to an order update algorithm, with no time up­
date. Such algorithms are sometimes called nested. There is a small
computational advantage in our technique, but more importantly
the structure of the algorithm is quite different and the algorithm
has a square root or QR version. No other algorithm does.

B. Error Equations

Let us write out the error equations, over the sliding window
just defined, for the pth order predictor:

k-n k-n-p k I-n l-n-p

Fig. I. Illustration of the sliding window for prediction orders increasing
from p = 0 to p = n.

Yk-n

YI-n

where Y is the data matrix, a" is the whitening vector of order p,
and VP contains the error sequence of order p . This scheme may
be reproduced for p = 0 to P = n to obtain the set of equations YA
= V, where Y is the Toeplitz data matrix just defined, and the
matrices A and V are given by

A = [Ao, ... ,AP, , An]

V = [Vo, '" , VP, , vn]. (2.8)

Any particular choice for k and I slices the infinite Toeplitz ma­
trix built on the infinite data sequence' . " 0, Yo, Y" ... ,YN _ I,

The compact notation is

YAP = VP

[
a
o

P
]AP =

(2.7)

III. FACTORING C- I INTO ITS CHOLESKY FACTORS

The problem of factoring C -I is the problem of finding A in the
diagonalization

ATCA = D 2 = diag [a~, ai, .,. ,a~].

This equation may be written as CA = HD 2
, with H =

and read out as follows:

c« = ano, .,. ,0, I( (3.2)

Here Ci is the (i + I) by (i + I) top left submatrix of C. When i
is incremented to i + I then, of course, a new column and a new
row are added to Ci . If the resulting matrix C, + 1 has a simple re­
cursive dependence on Ci, then there is reason to hope for a recur­
sive dependence of d + I on ai• This was the insight of Friedlander
et al. [I].

The matrix Cis yTy, lyTY1, or yTy + lyTYl depending on
the choice between forward, backward, or forward + backward
linear prediction [15]. With Y Toeplitz, this means the (n + I) by
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(3.9)

(3.8)

YN-1 0-- 0

I"""" 1

YN-n -- YN-l 0

YN-n-l--- YN-1

1 1

COY. Carr. Post.

Yo --- Yn

0 Yo -- Yn-1

I""-, 1

0-- 0 Yo

Pre.

The vector K, + I, an (a + I) x I vector which generalizes the
usual scalar reflection coefficient k, + I' may be computed by [I]

[

COO 0' J
a;K;+1 = _(ZAI)T CI.O

Er.

en 0

and Ki + I is the solution to Ai Ki + I = K, + I' The prediction error
a;, and the error matrix Ai are updated as follows:

a;+1 = a;(1 - KT+IAi-IKi+ l )

Note that, as only Ai-I is used in the equations, it might be more
numerically advantageous to use the alternate update equation

a 2

Ai-+II = .....i.¥ Ai-I + Ki+ ,KT+ I
o ;

with the initialization

Fig. 3. Slicing the Toeplitz data matrix to obtain the sliding window tech­
niques for the different methods of linear prediction.

(n + I) symmetric, positive definite matrix is close to Toeplitz.
The shifted difference matrix [I] is the n X n matrix:

(4.2)

(4.4 )

(4.3)

ooo

WA = [~]

YN-I

YN-2 YN-I

which means the orthogonal matrix V is embedded in a larger ma­
trix. Define the ith column of WA as follows:

WA
i

= l~1

0 0

W= YN-Il YN-2 YN-I 0 (4.1)

YN-f/-I YN-3 YN-2 YN-I

Yo YIl-I Yn

The data matrix Y has inverse QR factor YA = V. Therefore the
matrix W has the factor

IV. ORTHOGONALIZATION OF THE DATA MATRtX Y

Using the recursions for the columns of A, we find the corre­
sponding recursions for the columns of the orthogonal matrix V,
using the QR equation YA = V. For the correlation method of lin­
ear prediction, this procedure [4] produces the algorithm of Cy­
benko [10]. We extend this procedure to the covariance method in
this section.

Let's now extend the data matrix Y with a Toeplitz pattern to
produce the following Toeplitz matrix W:

Similarly define

WA
i

= l~1
We reproduce these equations for (i + 1) and use the generalized
Levinson recursions (3.5) for AI and AI to get coupled recursions
for computing the vectors VI and 0 1

:

(3.4 )

(3.3)

(3.5)

(3.6)

for i = 0 to n - I.

o[C],.j = Ci+J.j+1 - Ci.j·

The rank of 0 [ C] is the displacement rank a. The decomposition
of 0 [ C] may be written 0 [ C] = Er. E T, where E is an n X a
matrix and r. is an a X a diagonal signature matrix, containing + I
or - I on its diagonal. The fundamental equation used in the de­
rivation of fast algorithms is the update for the matrix Ci , using Ei ,

which consists of the first (i + I) rows of E:

[

CO.o

C
_ CJ.O

i+l - •

c.; 10

The idea is to correct a Toeplitz approximation for C, + I with a low
rank matrix Eir.ET. Note that Co = <o.o and Cli = C. When Cis
Toeplitz then Ci.j = ci i _ j I' which means that 0[C ] is zero. yT Y
has a displacement rank equal to zero in the correlation method of
linear prediction, one in the prewindowed and postwindowed meth­
ods of linear prediction, two in the covariance method of linear
prediction, and four in the forward-backward covariance method
of linear prediction.

The generalized Levinson algorithm for the columns of the up­
per triangular matrix A may be derived using the difference matrix
to get [I]:

A i+ I = Ai + ZAiKT+ I

A i + 1 = ZA i + AiKi+ ,

The matrix Z in these equations is the delay matrix:

These recursions are initialized by

AO=[I,O,"',OjT a6 = co.o

(3.7) (4.5)
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The recursions are initialized as follows:

'U0 = [YN _ I' ..• , YN-II] T

(5.3)

Note that Hi is the ith column of HD 2
, or similarly Hi ai-2 is the

ith column of H. The first i elements of Hi and the first (i + I)
rows of fj' are equal to zero. The coefficient K, + i may be read out
of the recursions as fii + i (i) = [0, ... , 0] = fji (i) + KT+ I a; ,
so that - KT+ I aT equals the first nonzero row in n'. These coupled
recursions include the update for a; = Hi (i ), the first nonzero
element in H'.

If the reflection coefficients are known, it is a challenging prob­
lem to see if and how the correlation coefficients and the matrix H
may be computed from them. In the correlation case, Robinson and
Treitel [7] solved this problem by observing that the all-pole lattice
filter has an output equal to the causal part of the correlation se­
quence when the input is zero and the state is initialized at [co.o,
0, ... , 0]. The result originates from the work of Kunetz and
d'Erceville [14] on the propagation of planar waves in a layered
system. The multichannel case was studied by Friedlander [8]. We
present the generalization of these results to the close-to Toeplitz
case.

Using the following notation for the entries of HD 2 = {Hi.)} =
H) (i) , we take advantage of the fact that almost half of the com­
puted variables in the algorithm in [8] are equal to zero, as H' (j )
and fj' (j + 1) are zero for j < i, to reduce the number of com­
putations. The algorithm to compute the matrix H from the gen­
eralized reflection coefficients is then:

Initialization: H O (0) = cO.o,
For j = I, ... , n:

fj)(j) = [0,'" ,0]
For i = j - I ... O:

fii()) = lJi+I('))'- Hi(j - I)KT+i
H O(j) = fjo (j ) [ I, 0, ... , 0] T ( = c) 0)
For i = 0, ... ,j - I:

Hi+i(j) = Hi(j - I) + fii(j)<li-IKi+I'

In this algorithm fji (j ) is the jth row of fji, or in other words
a row vector made up of (ex + I) elements. When the algorithm is
run in conjunction with the recursion for V', and 0' in (4.5), and
the computation of K, in (4.8), then we have a complete QR algo­
rithm for computing V and H in the QR factorization Y ==: VH T

•

This algorithm generates the matrix H, row by row, and H T in the
QR factor Y = VH T

, column by column. This is the opposite of
what happened in the coupled vector recursions.

VI. CONCLUSION

We have derived vector algorithms for the QR and Cholesky
factorization of Toeplitz and close-to-Toeplitz matrices in all the
cases of linear prediction. The same coupled recursions are used in
all the algorithms, namely

N i+i = N i + ZMiKT+i

M i+1 = ZM i + Ni<li-IKi+i'

so that together with (3.9), we get the recursions:

We obtain a formula for CZA' by using (3.4):

fr+ i = fji + ZHiKT+,
for i = 0, ... ,n - I. (5.4)

H i+ 1 = ZH' + fjiKi+ i

These recursions are initialized as follows:

H O = [co.o, cl.O' ... , cll,o] T -0 lO CI.O CII.oTH =
0 [E T

a6 = co.o <lo = l~ OT j
-2 [ . (5.5)

-an

(5.1)

(4.9)

(4.7)

r~OI=r'UoOOl,
Lvo J Lvo 0 oj

- ' A' II OTj 2H'=CA'- <lao
o E "

H' = CAl

where we have used (4.5) and the fact that Vi + I is orthogonal to
Vi and o: This formula is computationally more demanding, but
it improves the sensitivity to roundoff errors.

V. FACTORING C INTO ITS CHOLESKY FACTORS

The LU factorization of C may be written C = HD 2 H T
. In the

Toeplitz case, the LeRoux-Gueguen algorithm [2] may be used to
compute H directly. In all of the linear prediction cases, or in other
words when C = y T y, where Y is Toeplitz or a concatenation of
Toeplitz matrices, the recursions for the columns of H are easily
deduced from the QR recursions by simply premultiplying the re­
cursions in equation (4.5) by [0 yT] . This was first done in [4] for
the Toeplitz case and generalized in [15] for the general close-to­
Toeplitz case.

A more general approach to this derivation consists of using the
generalized Levinson recursions directly to deduce recursions for
the columns of H. Then there is no need for C to equal yTy' The
resulting algorithm is a generalization of the vector version of the
Leroux-Gueguen algorithm derived in [3], and is similar to the
algorithm presented in [17]. In order to derive this algorithm, de­
fine Hi and tt'.

a;Ki+i(l) = _[(VO)T, olt~i'(n)J

a;Ki + i(2) = V'(N - n)

aTKi+ i(3) = -'U'(n) (4.8)

which comes from the use of (3.8). Only one inner product is nec­
essary per update. Note that Vi (N - n) is the last value contained
in the vector Vi, and that 'Ui

\ n) is the last value of the vector 'Ui
.

An alternate formula for K, + I (and so for K, + I) may also be
obtained using the orthogonality property of the columns of U:

<lo=r
l

OT lLo -ao2 [ •

The three components of the reflection coefficient K, + i may be
computed using

These recursions perform the computation of the orthogonal matrix
Q column by column in the QR factorization of the Toeplitz data
matrix Y. To derive these recursions we used the fact that the last
element of A' is equal to zero for i < n . in which case ZWA i

WZA' for our definition of W.
Here the shifted difference matrix 0[C ] has rank 2, and

E = rYo '" YII-I -jT and [= [' -01 011. (4.6)
LYN-II ... YN-i_
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The vector M' contains the ith column of the matrix A, V, or HD 2
,

depending upon which factorization is being computed. The inner
products required to compute the reflection coefficients and to ini­
tialize the variables are summarized as follows:

• if M' = A', then inner products are required for computing
C;.o and K;:

• if M' = V', then inner products are required for computing
K; only;

• if M' = H', then inner products are required for computing
c;.oonly.

The Cholesky algorithms have complexity n 2 (ex + 2) if the
experimental covariance is precomputed, and complexity
(N + n) n (ex + 2) if the experimental covariance must be com­
puted from data. The fast algorithms for the orthogonal matrix V
have complexity Nncc, where N is the number of data values avail­
able.
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Time-Frequency Distributions for a Wide-Sense
Stationary Random Signal

THEODORE E. POSCH

Abstract-This correspondence considers the time-frequency distri­

bution for a wide-sense stationary random signal, and derives a simple
criterion for when a bilinear time-frequency distribution gives the
power spectrum of the signal.

INTRODUCTION

There have been many time-frequency distributions that have
been proposed for the description of a signal in time and frequency.
Among them are the Wigner [I], Page [2]. Rihaczek [3], and the
spectrogram, etc. The general theory of distributions was devel­
oped by Cohen [4], where an explicit method is given for gener­
ating distributions. Cohen introduced the concept of a kernel; by
taking specific functions for the kernel different distributions are
generated. Furthermore, by constraining the kernel in particular
ways, distributions with given properties are obtained. Desirable
properties of distributions and the corresponding constraints of the
kernel have been studied by many, for example, Claasen and
Mecklenbrauker in [5]. Recently, an important contribution has
been made by Choi and Williams [6] where they developed the
constraints to be imposed on the kernel so as to reduce the cross
terms and have used a specific kernel to generate a new distribution
with reduced interference terms.

Most of the applications of these distributions have been to de­
terministic signals, although there has been work on their appli­
cations to random signals. Indeed, some of the early papers on
deterministic signals did consider the random case. Page [21 used
his distribution to study random signals and Ackroyd [7] used the
Rihaczek distribution for the study of random signals in addition
to applying it to deterministic signals. Grace [8) considered the
random signal case for the instantaneous power spectra. Recently.
general approaches have been given by Martin [9]. Martin and
Flandrin [10], White [II], and White and Boashash [12]. White
and Boashash [12] have developed a method for obtaining the ran­
dom instantaneous frequency of a Gaussian random signal by use
of the Wigner-Ville distribution. This procedure is an extension of
the method developed by Boashash [13], for deterministic signals.

The purpose of this correspondence is to show that a wide class
of time-frequency distributions gives the power spectrum for the
case of a wide-sense stationary random signal. We will obtain a
simple criteria on the Cohen kernel for determining whether that is
the case for a particular distribution.

The Cohen class [41 is given by

C(t, w) = 2~ ))) e-j&f'JT"",O"</>(IJ, T)f(lI +~)

'f*(lI-ndIJdTdll (I)
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