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ABSTRACT 

 

 

 

RELATING SEVERITY OF A MOUNTAIN PINE BEETLE OUTBREAK TO FOREST 

MANAGEMENT HISTORY 

 

 

The availability of remote sensing imagery before, during, and after the recent mountain 

pine beetle (Dendroctonus ponderosae Hopkins) epidemic in the southern Rocky Mountains 

presents exciting opportunities for assessing the current state of forests and how forest 

management in previous decades influenced outbreak severity across the landscape. I mapped 

outbreak severity at a 30-m resolution using integrative spatial modeling. I predicted that: 1) 

outbreak severity can be accurately predicted and mapped at Fraser Experimental Forest, 

Colorado using stand characteristics with a boosted regression trees model, Landsat imagery, 

geographic information system (GIS) data, and field data; and 2) forest stands that were 

unmanaged since the 1950s will have higher outbreak severity compared to stands that were 

treated since the 1950s. Outbreak severity, measured by the ratio of dead lodgepole pine (Pinus 

contorta) basal area to the basal area of all trees, was mapped across Fraser Experimental Forest 

with a cross-validation correlation of 0.86 and a Spearman correlation with independently 

observed values of 0.64. The outbreak severity at stands harvested between 1954 and 1985 was 

lower than comparable uncut stands. Lessons learned about past treatments will inform forest 

management for future mountain pine beetle outbreaks. 
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1. INTRODUCTION 

 

 

 

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a bark beetle native to 

western North America that feeds on and reproduces inside of its pine tree hosts. Lodgepole pine 

(Pinus contorta) serves as the primary host (Wulder et al., 2006a). Mountain pine beetles bore 

into a host tree and emit an aggregation pheromone that attracts other beetles in the area (Six et 

al., 2014). Trees employ a range of defenses against the beetles. However, when trees are 

vulnerable or there is a high population density of mountain pine beetles, beetles can overcome a 

tree’s defenses (Raffa et al., 2008). They initially attack in August and lay eggs soon after. 

Larvae hatch and develop in the host tree and emerge the following summer. Host tree coloration 

indicates the time since attack. Trees do not show signs of attack initially during the period 

known as the green phase. Pine needles of infected trees gradually change from green to yellow 

to red for the year following the attack. The red phase is marked by the needles on the host tree 

turning red, typically one year after attack. Trees enter the gray phase as the red needles drop 

from the tree, exposing the bare branches (Wulder et al., 2006a). Mountain pine beetle behavior 

is directly related to its population size which is mediated by a series of climatic and biotic 

thresholds (Raffa et al., 2008). Mountain pine beetles at an endemic population size select 

weakened trees as hosts. Warm and dry weather along with mild winters provide favorable 

conditions for increased beetle population size (Safranyik, 2003). Increased population sizes 

allow for the beetles to overwhelm the defenses of even healthy trees. Outbreaks can be slowed 

by cold weather in the late fall to early spring or depletion of suitable host trees (Safranyik, 

2003).  
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The recent mountain pine beetle outbreak has impacted approximately 1.4 million 

hectares of forests in Colorado since it began in 1996, but is now on the decline (Colorado State 

Forest Service, 2013). The outbreak of mountain pine beetle in western North America was 

estimated to be larger and more severe than historical outbreaks (Six et al., 2014). Anthropogenic 

factors such as increased forest homogeneity and changing climate have likely contributed to the 

increased magnitude (Raffa et al., 2008).  

Forest managers have attempted to control the spread of the recent mountain pine beetle 

outbreak through a variety of methods. Direct control treatments aim to reduce or eradicate 

mountain pine beetle populations, while indirect control methods attempt to reduce beetle 

populations by promoting improved tree vigor and stand conditions unfavorable for beetle 

populations (Six et al., 2014). Once mountain pine beetles reach epidemic-level population sizes, 

these control methods are generally ineffective at the scales and intensity they are currently 

implemented (Six et al., 2014). Safranyik (2003) recommended that management efforts should 

focus on lodgepole pine rather than on mountain pine beetle. Harvesting of lodgepole pine stands 

is one strategy that has been implemented to indirectly manage mountain pine beetles 

(Whitehead et al., 2003). I created a map of outbreak severity at Fraser Experimental Forest, 

Colorado, and analyzed the outbreak intensity in relation to characteristics of forest stands that 

were harvested in the past. Understanding the fate of historically managed stands informs current 

management. The management decisions of today will shape susceptibility of our forests to 

future outbreaks.  

The severity of the mountain pine beetle outbreak at a given location has implications for 

forest regeneration (Diskin et al., 2011), hydrology (Raffa et al., 2008), fire (Simard et al., 2011), 

timber harvest (White et al., 2005), and carbon accounting (Pfeifer et al., 2011). The United 
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States Department of Agriculture (USDA) Forest Service Aerial Detection Surveys show where 

and when mountain pine beetle outbreaks occurred (USDA Forest Service 2013). These surveys 

are useful at coarse management and study scales; however, finer resolution maps showing the 

gradient of severity across the landscape are needed to set management priorities for post-

infestation Rocky Mountain forests (Pfeifer et al., 2011). My first objective was to map mountain 

pine beetle outbreak severity as measured by the ratio of dead lodgepole pine basal area to basal 

area of all trees in a 30 x 30 m pixel. A model that achieved a cross-validation correlation of 0.70 

and a correlation of 0.70 with observed values from independent field data would be considered 

accurate. Such a map would have many potential applications; I specifically used this map to 

analyze how characteristics of previously harvested stands correlated to outbreak severity. 

Remote sensing has been frequently used to study the recent mountain pine beetle 

outbreak (Wulder et al., 2006a). Previous work at the landscape scale has mapped extent and 

timing of the outbreak (Goodwin et al., 2008; Coops et al., 2010; Walter and Platt, 2013), 

probability of red attack (Wulder et al., 2006b), and red attack damage categories (Skakun et al., 

2003). Landsat TM and ETM+ have been employed to consistently map red attack with 70-75% 

accuracy (Wulder et al., 2006a). It is suggested that the goal of landscape scale mountain pine 

beetle mapping efforts should be a low-cost option to mapping severity of mortality (Wulder et 

al., 2006a). Outbreak severity has been mapped with high-resolution imagery that may not 

necessarily be practical at landscape scales (Dennison et al., 2010). Recent work used a time 

series of Landsat imageries to map outbreak severity and study outbreak dynamics (Meddens and 

Hicke, 2014). My work continues this effort to map outbreak severity using Landsat ETM+ 

imagery. It is novel in its mapping of a continuous spectrum of mountain pine beetle outbreak 

severity for each pixel using Landsat ETM+ imagery to detect changing forest conditions, not 
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red phase trees. My work uses freely-available satellite imagery, geospatial data, and geographic 

information system (GIS) software. Anyone with access to field data and geospatial training can 

reproduce these methods to determine outbreak severity in their area of interest. Integrative 

spatial models use a variety of data types to create powerful, inexpensive, and spatially explicit 

results.  

Silviculture prescriptions can reduce the chances of tree mortality during a mountain pine 

beetle epidemic (Whitehead et al., 2003). Stand conditions associated with high mountain pine 

beetle induced mortality are those that attract mountain pine beetles and reduce tree vigor (Hicke 

and Jenkins, 2008). In general, susceptible stands have large lodgepole pine trees and/or are 

dense. Harvests can reduce both the average size and density of host trees. The literature 

suggested that lodgepole pine stands <60 years old are not impacted by outbreaks, stands 

between 60-80 years old are rarely infested, and stands >80 years old are commonly highly 

susceptible to mountain pine beetle attack (Shore and Safranyik, 1992). Following this logic, my 

second objective was to investigate if forest stands that were actively managed in the decades 

leading up to the recent mountain pine beetle epidemic had lower mortality than unmanaged, 

older areas. Additionally, I asked what characteristics of harvested stands influenced the levels of 

outbreak severity. I hypothesized that: 

1) Outbreak severity can be accurately predicted at Fraser Experimental Forest using pre, 

mid, and post-outbreak stand characteristics with a boosted regression trees (BRT) 

model, Landsat imagery, GIS data, and field data. 

2) Forests managed since the 1950s will have lower levels of mortality than stands in 

neighboring watersheds. 

3) The more recently harvested the forest, the lower the mortality level. 
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4) Time since harvest will be the most important variable in explaining outbreak severity in 

cut stands. 
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2. MATERIALS AND METHODS 

 

 

 

2.1. Study Area 

Fraser Experimental Forest, Colorado is managed by the USDA Forest Service and has 

an active research history. Elevation ranges from 2,650 m to 3,900 m and temperature varies 

along the elevation gradient from -40°C to 32°C (Collins et al., 2011). The average precipitation 

at Fraser Experimental Forest is 71-76 cm; two thirds of this precipitation falls as snow between 

October and May. The vegetation is typical of the central Rocky Mountains. Lower elevations 

and southern aspects are dominated by lodgepole pine forests. Mixed forests of Engelmann 

spruce (Picea engelmannii), sub-alpine fir (Abies lasiocarpa), and lodgepole pine are found 

along the valley bottom and north-facing slopes up to treeline (3300-3500 m; Collins et al., 

2011).  Small stands of quaking aspen (Populus tremuloides) are interspersed throughout lower 

elevations. Mountain pine beetles started to cause widespread lodgepole pine mortality in 2002 

in Fraser Experimental Forest (Collins et al., 2011).  

 

2.2 Delineation of Past Harvests 

The timber harvests used in my work were experimental harvests cut for various studies 

between 1954 and 1985 (Alexander et al., 1985; Troendle and King, 1985). This range of harvest 

years was selected because of the availability of information and because stands cut between 30 

and 60 years ago are the stands that would not be expected to be impacted by mountain pine 

beetle (Shore and Safranyik, 1992). Two areas with high concentrations of cuts are part of paired 

watershed studies. The cuts in Fool Creek watershed were a series of clearcuts of varying widths 

covering 113 hectares cut between 1954 and 1956. Circular clearcuts on the Deadhorse Creek 
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watershed were cut between 1977 and 1978. Additional irregular-shaped clearcuts were 

completed on the Deadhorse Creek watershed between 1982 and 1984 (Alexander et al., 1985).  

Details about past harvests were pieced together from a technical report (Alexander et al., 

1985), aerial photos shared by the USDA Forest Service Rocky Mountain Research Station, 

United States Geological Survey (USGS) National Aerial Photography Program (NAPP) photos, 

USDA Farm Service Agency National Agriculture Imagery Program (NAIP) photos, and 

personal communication with Dr. Wayne Shepperd (personal communication, May 15, 2014). 

These sources informed the delineation of past harvests in ENVI (Exelis Visual Information 

Solutions, 2014) image analysis software. ArcGIS (version 10.1; ESRI, 2012) software and the 

sources mentioned above were then utilized to compile information about the age, size, slope, 

aspect, and elevation of each harvest. Three harvests just outside of Fraser Experimental Forest 

were within the extent of the imagery clipped to the rectangular extent of Fraser Experimental 

Forest and were included because they provided data for cuts larger than most cuts at Fraser 

Experimental Forest. Estimates of the age of each cut were as accurate as possible given the 

available information. The age of most cuts was accurate within one or two years, but there are a 

few harvested stands where the age is accurate to seven years. Treatments that were only 20 m 

wide in Fool Creek watershed and other small treatments in other watersheds were not delineated 

because geometric registration and resolution of Landsat combined with potential harvest 

delineation errors would compromise the accuracy of analysis. The harvest polygons I created 

represent the majority of cuts completed between 1954 and 1985, but do not include every cut 

completed during this timeframe.  
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2.3 Field Data 

The USDA Forest Service surveyed 74 17.9 m fixed-radius plots in the summer of 2008. 

Plot locations were generated randomly in the forested areas of Fraser Experimental Forest. 

Species, diameter at breast height (dbh), status (canopy class or dead), and evidence of mountain 

pine beetle were recorded for each tree >5 cm dbh. Of the 73 plots, 48 of them located in 

lodgepole pine forests were revisited in the summers of 2012 and 2013. The 48 plots sampled in 

2012 and 2013 were used with 25 plots from 2008 to train the outbreak severity BRT model. 

These data will be referred to as the training data. Although the outbreak was still active between 

2008 and 2012 (USDA Forest Service, 2013), the 25 plots from 2008 were included because they 

were either located in subalpine fir and Engelmann spruce stands that are not susceptible to 

mountain pine beetle or already had very high levels of lodgepole pine mortality by 2008. 

A second field dataset was used as independent test data to validate the outbreak severity 

BRT model. Snow courses were established in four watersheds at Fraser Experimental Forest as 

part of a paired watershed study to examine the influence of timber harvest on snow 

accumulation, sediment production, and yield and timing of streamflow (Troendle and King, 

1985). A total of 133 plots across the four watersheds were surveyed in 2007 to record species, 

dbh, status (crown class or dead), and year of mountain pine beetle caused mortality for each tree 

in 10 m fixed-radius plots. These plots were revisited in 2011 to record any changes in tree 

status. There are an average of 33 plots organized in a looping pattern across all aspects, 

elevations, and stand conditions in each watershed (Troendle and King, 1985). The plots are 

roughly evenly spaced an average of 141 m apart in Deadhorse Creek, 159 m apart in East Saint 

Louis Creek, 162 m apart in Fool Creek, and 83 m apart in Lexen Creek. 
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The ratio of dead lodgepole pine basal area to the basal area of all trees, alive and dead, 

was calculated at each training and test plot as a measurement of mountain pine beetle outbreak 

severity. Basal area was calculated for each tree using Equation 1 and then the basal area of dead 

lodgepole pine and of all trees was summed by plot. 

BA=0.00007854*dbh
2 

                                        (1) (Walker et al., 2007) 

Where: 

 BA= basal area in square meters 

 dbh= diameter at breast height in centimeters 

The difference in plot area between the training (17.9-m radius) and test (10-m radius) was 

accounted for because the response variable was a ratio and the plot area cancelled out of the 

numerator and denominator of the ratio. Using the ratio of dead lodgepole pine basal area to the 

basal area of all trees as a measurement of mountain pine beetle outbreak severity assumes that 

all dead lodgepole pine was a result of mountain pine beetles. Observations from the field 

indicate that the majority of dead lodgepole pine in these plots is a result of the mountain pine 

beetle attack. 

 

2.4 GIS and Remote Sensing Data 

GIS and remote sensing data were used as predictor variables for the mountain pine 

beetle outbreak severity BRT model. Specifically, elevation, slope, and aspect were created from 

a 10-m resolution digital elevation model (DEM) from the USGS National Elevation Dataset 

(Gesch et al., 2002; Gesch, 2007). I converted aspect from a circular scale (degrees) to a linear 

north-south (northness) and east-west (eastness) gradient (Kumar et al., 2006). This was done 

using a cosine and sine transformation for northness and eastness, respectively (Morrison et al., 



10 

 

2003). Once converted, aspect was defined by two values ranging from -1 (south or west) to 1 

(north or east). Topographic variables are important predictors when detecting mountain pine 

beetle-induced mortality because topography represents climatic conditions, such as moisture 

and temperature, which influence beetle outbreaks (Nelson et al., 2013).  

Landsat imagery is frequently used to map mountain pine beetle activity because of its 

moderate 30-m spatial resolution, spectral resolution, and the ability to use historic Landsat 

images to document past vegetation conditions (Goodwin et al., 2008). The 30-m resolution of 

Landsat Enhanced Thematic Mapper Plus (ETM+) and the spectral resolution are suitable for 

detecting patterns from mountain pine beetle at the epidemic phase (Bentz and Endreson, 2003). 

Landsat ETM+ images from September were collected because cloud-free images were available 

before (2001), during (2010), and after (2012) the height of the outbreak. All images were 

collected from the same month so the phenology of the landscape was about the same (Lu et al., 

2004). Scenes collected from different months may lead to misclassification of areas that are 

changing due to seasonality rather than lodgepole pine mortality. Additionally, September was 

chosen because it allows time for the mountain pine beetle host trees to show up as dead from the 

previous year’s attack (Goodwin et al., 2008). Landsat 7 ETM+ images were downloaded from 

the USGS Earth Explorer website for September 24, 2001, September 17, 2010, and September 

22, 2012. A mask was created to remove a small area in the 2012 image that is blocked by cloud 

cover. Fraser Experimental Forest lies within the unaffected portion of the Landsat 7 ETM+ 

images after the Scan Line Corrector (SLC) failed in May 2003.  

Certain steps should be taken before change detection analysis can be implemented to 

ensure changes observed in the imagery truly reflect changes in the landscape: geometric 

registration, radiometric and atmospheric calibration, and topographic correction if working in 
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mountainous areas (Lu et al., 2004). Level 1T processed Landsat images have already undergone 

geometric registration and topographic correction. Radiometric calibration was performed in 

ENVI to convert digital numbers to radiance. Atmospheric scattering was then accounted for 

using dark object subtraction (Song et al., 2001). Images were clipped to the extent of Fraser 

Experimental Forest. 

The processed Landsat ETM+ images were used to generate continuous surfaces of 

predictor variables for the BRT model. I created the predictor variables used in both the BRT 

model predicting outbreak severity and the regression tree model exploring the relationship 

between harvested stand characteristics and outbreak severity (Table 1). All image processing, 

calculation of indices and textures, and image differencing was done in ENVI. 

Table 1. Summary of response variables, predictor variables, and models used. 

Objective Response Variable Source of 

Response 

Predictor Variables Model 

 

 

Map 

Outbreak 

Severity 

 

 

Dead Lodgepole Pine 

Basal Area/Total Basal 

Area 

 

 

 

Training Plots 

Aspect 

Elevation 

Landsat Bands 

NDMI Difference 

Tasseled Cap Difference 

Texture Difference 

Slope 

 

 

Boosted 

Regression 

Trees 

(BRT) 

 

Historical 

Management 

Analysis 

 

Average Dead Lodgepole 

Pine Basal Area/Total 

Basal Area of Pixels 

Within Harvest Polygon 

Outbreak 

Severity Map 

Produced by 

BRT 

Aspect 

Elevation 

Slope 

Size of Treatment 

Years Since Cut 

 

 

Regression 

Tree 

 

 The Normalized Difference Moisture Index (NDMI) and its difference over time was 

selected as a predictor variable because it has been used to effectively identify mountain pine 

beetle-killed stands (Goodwin et al., 2008; Coops et al., 2010; Walter and Platt, 2013). NDMI 

was calculated using the following equation: 

NDMI=(NIR-MIR)/(NIR+MIR)            (2) (Goodwin et al., 2008)  

Where: 
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 NDMI= Normalized Difference Moisture Index 

 NIR= Near-Infrared, ETM+ Band 4 

 MIR= Mid-Infrared, ETM+ Band 5 

 The Tasseled Cap Transformation has been used to map forest attributes and the change 

in Tasseled Cap values has been used to map mountain pine beetle outbreaks (Skakun et al., 

2003; Wulder et al., 2006b). Three Tasseled Cap bands were calculated: brightness, greenness, 

and wetness (Crist and Cicone, 1984; Huang et al., 2002) using the following equations: 

 Brightness=0.3651(ETM+1)+0.3972(ETM+2)+                             (3) (Huang et al., 2002) 

0.3904(ETM+3)+0.6966(ETM+4)+0.2286(ETM+5)+0.1596(ETM+7) 

Greenness=(-0.3344)(ETM+1)+(-0.3544)(ETM+2)+                      (4) (Huang et al., 2002) 

(-0.4556)(ETM+3)+0.6966(ETM+4)+(-0.0242)(ETM+5)+(-0.2630)(ETM+7) 

Wetness=0.2626(ETM+1)+0.2141(ETM+2)+                                 (5) (Huang et al., 2002) 

0.0926(ETM+3)+0.0656(ETM+4)+(-0.7629)(ETM+5)+(-0.5388)(ETM+7) 

Where: 

 ETM+=Enhanced Thematic Mapper Plus and the number indicates the band number 

 Image texture for ETM+ bands 3, 5, and 7 can provide information about forest stands 

and biomass (Lu and Batistella, 2005; Singh et al., 2014). Texture was calculated using the Co-

occurrence Measures Tool in ENVI. I calculated texture for bands 3, 4, and 5 since these bands 

were likely to contain information about vegetation and moisture that could reveal patterns in 

mountain pine beetle outbreak severity. Mean and homogeneity textures for bands 3, 4, and 5 

were calculated using three window sizes: 3x3, 5x5, and 7x7.  

 Stands that experienced high levels of mortality during the mountain pine beetle outbreak 

are expected to change more than stands with low levels of lodgepole pine mortality. Image 
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differencing was used to highlight these areas of change. All Landsat ETM+ bands, NDMI, 

Tasseled Cap Bands, and textures were differenced from 2001 to 2010, 2001 to 2012, and 2010 

to 2012. These time steps were used in attempt to capture changes in stand conditions across the 

time frame of interest and also in smaller increments throughout the outbreak.  

Values from each predictor variable raster image were extracted at each training and test 

plot location using the USGS VisTrails Software for Assisted Habitat Modeling (SAHM; 

Morisette et al., 2013). SAHM was then used to test correlations between predictor variables. 

The large number of predictor variables was narrowed down using an iterative process of testing 

various combinations of predictor variables in the BRT model, ecological interpretation and 

checking model performance, variable importance, and predictor variable correlations. If 

predictor variables were correlated by 0.70 or more, the variable with the most predictive power 

and that made the most ecological sense was kept and the other predictor was discarded. I used 

no more than seven predictor variables so the number of predictor variables did not exceed one 

tenth the number of training plots (Harrell et al., 1996).   

 

2.5 Forest Mask 

Model predictions of mountain pine beetle outbreak severity are only valid across the 

forested areas of Fraser Experimental Forest. I created a mask of forested areas using a 

Maximum Likelihood supervised classification in ENVI. The classification was trained with 

polygons derived from visual inspection of NAIP imagery.   
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2.6 Statistical Analyses 

For my first objective, I used a combination of field data, remote sensing, and GIS data to 

model mountain pine beetle outbreak severity. A BRT model was used to find the correlation 

between the response variable, the ratio of dead lodgepole pine basal area to basal area of all 

trees, and the predictor variables (Table 1). BRT use regression trees and boosting to create a 

model that uses different types of predictor variables, handles complex interactions, and predicts 

well (Elith et al., 2008). Regression trees model relationships between response and predictor 

variables using repeated binary splits in the data that reduce the amount of variation in each 

group. Boosting builds many regression trees in an ordered fashion that increases emphasis on 

poorly modeled observations (Elith et al., 2008). Code was modified from Elith et al. (2008) to 

implement the BRT in R statistical software using the Generalized Boosted Regression Models 

(GBM) package (Appendix; R Development Core Team, 2013). A learning rate of 0.0025, tree 

complexity of 3, and a bag fraction of 0.5 yielded a model of 1,150 trees. These parameter values 

were selected because they maximized model performance and were within the suggested range 

(Elith et al., 2008). 

The predictions from the BRT were applied to the predictor variable rasters to create a 

continuous map of predicted outbreak severity which informed the analysis in my second 

objective. The value in each pixel represents the ratio of dead lodgepole pine basal area to the 

total basal area. The values of each pixel in a cut were averaged to get the average outbreak 

severity in each cut. The relationship between outbreak severity and characteristics of past 

treatments and topography were analyzed using a regression tree (Table 1). Regression trees 

were chosen for their ease of use and interpretation and their ability to handle a variety of data 
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types (De’ath and Fabricius, 2000). The regression tree was implemented in R statistical 

software using the Classification and Regression Trees (Tree) package. 
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3. RESULTS 

 

 

 

3.1 Objective 1: Model Outbreak Severity at Fraser Experimental Forest 

 Models of outbreak severity performed well when tested with a cross-validation 

correlation, but did not perform as well when tested with the independent test data. The BRT 

model had a cross-validation correlation of 0.86. The predicted outbreak severity and observed 

outbreak severity at the test plots had a Spearman’s correlation of 0.64 and an adjusted R
2 

value 

of 0.43, indicating that 43 percent of the outbreak severity variation at the test plots can be 

explained by the BRT model.  

The top two predictor variables of outbreak severity contained far more predictive power 

than the other predictors (Table 2). The model was simplified to five predictor variables because 

increasing the number of predictor variables complicated the model without increasing predictive 

power. The best predictors of outbreak severity involved image differencing between 2001 and 

2010 and conditions in 2010, but no images from 2012 were used. 

Table 2. The relative percent contribution of each predictor variable to the BRT model of 

outbreak severity. 

Variable Percent Contribution 

ETM +Band 5 Mean Texture 

Difference (2001-2010) 

3 by 3 Window 

46 

NDMI Difference (2001-2010) 36 

ETM+ Band 5 (2010) 8 

Tasseled Cap Brightness 

Difference (2001-2010) 

5 

Elevation 5 
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The resulting map of outbreak severity shows a range in the ratio of dead lodgepole pine 

basal area to total basal area at Fraser Experimental Forest from 0 (lowest) to 0.65 (highest) 

(Figure 1). The maximum predicted value of 0.65 is lower than the outbreak severity calculated 

at eight of the training data plots and 30 test data plots. The BRT model underestimated outbreak 

severity. A few trends stand out upon visual examination of the map. The yellow, orange, and 

red areas indicating higher levels of outbreak severity are concentrated at the lower elevations of 

Fraser Experimental Forest. A zone of green buffers the alpine zone and areas of high mortality 

indicating the presence of higher-elevation forests that had lower levels of outbreak severity. 

These patterns correspond to the lower elevation lodgepole pine forests and the higher elevation 

spruce and fir forests. Classification of the continuous outbreak severity map into bins of low, 

moderate and high mortality allows for quantification of forested area impacted by different 

levels of outbreak severity (Table 3).  The majority of the forest experienced low or high levels 

of mortality, with only 12 percent of the forest experiencing moderate levels of lodgepole pine 

mortality (Table 3).   



18 

 

 

Figure 1. Predicted outbreak severity by the BRT model across Fraser Experimental Forest. The 

grey areas on the map were masked from the results because they are not forested. The map 

subset on the right shows the cuts in and around the Fool Creek Watershed. Notice that the 

boundaries of some of the cuts are clearly visible because they are pockets of low mortality 

surrounded by areas of high lodgepole pine mortality. 
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Table 3. Predicted area in different outbreak severity categories in Fraser Experimental Forest.  

Classification Dead Lodgepole Pine Basal 

Area/ Total Basal Area 

Area 

(hectares) 

Percent of Forested 

Area 

Low Severity 0-0.20 3,966 57 

Moderate Severity 0.21-0.40 846 12 

High Severity 0.41-0.65 2,096 30 

 

3.2 Objective 2: Analyze Relationship between Outbreak Severity and Historical Management 

 A comparison of outbreak severity between harvests in the Fool Creek and Deadhorse 

Creek watersheds and the entire drainages and control watersheds showed that harvested areas 

consistently had lower levels of outbreak severity (Table 4). Note that one explanation for Fool 

Creek Watershed having relatively low levels of outbreak severity was that 50% of the forested 

area in the Fool Creek Watershed were harvested between 1954 and 1956 (Troendle and King, 

1985). This trend of lower levels of mortality in the cuts was further supported by the fact that 

most cuts were visible on the map as a very low level of outbreak severity surrounded by higher 

levels of outbreak severity (Figure 1). 

Table 4. A comparison of outbreak severity between watersheds and comparable harvested areas. 

The East Saint Louis Creek watershed and Lexen Creek watershed serve as controls for the Fool 

Creek watershed and Deadhorse Creek watershed, respectively. Outbreak severity is measured as 

a ratio of dead lodgepole pine basal area to total basal area. 

Watershed Mean Outbreak Severity of 

Watershed 

Mean Outbreak Severity of 

Cuts in Watershed 

Fool Creek Watershed 0.10 0.09 

East Saint Louis Creek 

Watershed 

0.20 No cuts 

Deadhorse Creek 

Watershed 

0.26 0.15 

Lexen Creek Watershed 0.25 No Cuts 

 

 Elevation explained the most variation in the outbreak severity at each cut (Figure 2).  I 

predicted that “time since cut” would be the most important predictor variable, but that does not 



20 

 

seem to be the case. The regression tree as a whole has a pseudo-R
2 

of 0.70. The first split slices 

harvests into lower elevation and higher elevation cuts. The cuts located at lower elevation 

experienced higher levels of mortality compared to higher elevation cuts. There is a range of 

elevation from 2,940 m and 3,012 m where past harvests experienced the highest levels of 

mortality. Time-since-cut formed the split at the node containing higher elevation cuts. 

Interestingly, young cuts had a higher mortality (0.15) than older cuts (0.05). 

 

Figure 2. Regression tree showing the relationships between outbreak severity in past harvests 

relative to topographic attributes and cut stand characteristics. The text at each node tells the 

average outbreak severity of the cuts at each node, the number (n) of cuts at each node, and the 

predictor variable split separating the next lower pair of nodes. The height of a branch is 

proportional to the strength of each split. 
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4. DISCUSSION 

 

 

 

4.1 This Methodology is Effective 

I hypothesized that outbreak severity could be accurately modeled at Fraser Experimental 

Forest with a cross-validation correlation of at least 0.70 and a correlation between predicted and 

observed outbreak severities at test plots of 0.70 or greater. I found support for my hypothesis 

when the same data used to train the model were also used to test it using a cross-validation 

correlation, but I rejected my hypothesis based on the models performance with independent test 

data. The model performed respectably well and this methodology should be pursued to further 

improve predictive power. Another attempt to use Landsat TM and ETM+ imagery to map 

outbreak severity in the same region as Fraser Experimental Forest achieved an R
2 

of 0.77 

(Meddens and Hicke, 2014). Their methodology used similar predictor variables to those used in 

my model, but they used a Landsat scene from every year. My methodology is not as accurate as 

their model, but uses fewer images and may be a less time-intensive option and a better choice in 

areas where availability of satellite imagery is limited by cloud cover.  

The mean texture of ETM+ band 5 calculated on a 3x3 moving window differenced 

between 2001 and 2010 and the NDMI difference between 2001 and 2010 were the most 

influential predictor variables (Table 2). While NDMI has been used extensively in mapping 

forest disturbance from insects (Goodwin et al., 2008; Coops et al., 2010), texture has not been 

used to map mountain pine beetle outbreaks, so future modeling efforts should consider 

including image texture to improve model performance. Mean texture may have performed 

strongly because of the spatially autocorrelated nature of a mountain pine beetle outbreak. If an 

outbreak is occurring nearby, a pixel is more likely to also experience mortality. Most of the 
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variability in outbreak severity could be explained by the mean texture difference and NDMI 

difference, and the addition of more predictor variable only improved predictive power 

marginally. A quick model of outbreak severity could potentially only include these two 

predictor variables. However, when the analysis is scaled-up to a larger scale, such as an entire 

Landsat scene, other predictor variables may become more important.  

 The best model utilized image differences between 2001 and 2010, ETM+ band 5 from 

2010, and elevation. Not one of the image differences or spectral bands from 2012 were used in 

the final model. This was surprising considering that the plot data were representative of forest 

conditions in 2012 and 2013. The 2010 imagery may perform better because it was near the tail 

end of the peak of the outbreak. So, damage from the previous peak years was still fresh. By 

2012, the forest response may have obscured outbreak damage. Efforts to map multi-year 

disturbances, such as insect outbreaks, should consider using imagery from the tail-end of the 

disturbance to capture the most accurate extent and severity of forest damage. The gain from 

detecting damage during the waning years of the disturbance may be outweighed by the forest 

recovery beginning to mask damage from the peak years. 

 

4.2 Harvested Stands were Less Susceptible to Outbreaks 

 My results supported my hypothesis that forests managed since the 1950s had lower 

levels of mortality than stands in neighboring watersheds (Table 4). This pattern was also clear 

from a visual inspection of the mortality map (Figure 1). This conclusion supports the commonly 

held belief that harvesting can reduce a stand’s vulnerability to mountain pine beetle outbreaks 

by creating stand conditions less favorable for mountain pine beetles (Whitehead et al., 2003).  
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Studies such as this recording how previously harvested stands faired through the recent 

outbreak are valuable for policy making and management actions (Six et al., 2014). 

 Just because harvested areas have lower levels of lodgepole pine mortality, it does not 

mean that these stands are necessarily “healthier.” For example, one of the Deadhorse Creek 

watershed cuts does not show lodgepole pine mortality, but the plot converted to a bog after 

being harvested and the forest has not recovered. These sorts of impacts of harvesting are not 

always evident in a remote sensing analysis such as this one. The long-term condition of these 

harvested stands should be tracked. Will the stands in Fraser Experimental Forest that 

experienced higher levels of lodgepole pine mortality be better adapted to future insect outbreaks 

and climate change due to the strong selective pressure exerted by the beetles (Six et al., 2014)?  

 Harvested stands are more likely to remain dominated by lodgepole pine, while 

unharvested areas that were hit by the mountain pine beetle are more likely to have a higher 

density of subalpine fir and Engelmann spruce advanced regeneration that are released to 

become the dominant species (Collins et al., 2011). These uncut stands may be more resistant to 

future mountain pine beetle outbreaks by creating heterogeneous forests. If we do not actively 

manage previously harvested areas, we may be setting the stage for another large outbreak by 

perpetuating the presence of even-aged lodgepole pine forests (Whitehead et al., 2003).  

 

4.3 Outbreak Severity Trends 

I hypothesized that time since harvest would be the most important variable in explaining 

outbreak severity and that the more recently harvested the forest, the lower the lodgepole pine 

mortality would be. I rejected both of these hypotheses. Elevation was the most important 
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predictor variable (Figure 2) and there is a significant negative Spearman correlation of -0.45 

(p<0.001) between time since harvest and outbreak severity.  

There are a few potential explanations for these trends. The recent outbreak was an order 

of magnitude larger than previous outbreaks (Six et al., 2014). This intense pressure from such a 

large beetle population and changing climate lead to previously unexpected mountain pine beetle 

behavior. Lodgepole pine stands <60 years old were not expected to be infested prior to this 

outbreak (Shore and Safranyik, 1992). This rule of thumb was refuted by the observation that 

some of the harvested stands experienced high levels of mortality during this outbreak. The fact 

that elevation is the primary driver of the regression tree model could mean that temperature, 

precipitation, and species composition drove the mountain pine beetle population, regardless of 

tree size. Basically, if there was lodgepole pine present, the beetles infested them. Other studies 

have found that mortality rates early in the infestation were predictable based on the location of 

warm, dry sites, and abundant large trees. But, as the outbreak intensified, mortality was 

associated with species composition (Nelson et al., 2013). Elevation could be acting as a proxy 

for temperature, precipitation, and species composition in the regression tree (Figure 2). If 

harvesting is to be used as a mechanism to limit mountain pine beetle outbreak mortality, 

harvesting should be concentrated on elevations that are most susceptible to mountain pine beetle 

outbreaks.  

It was surprising that of the higher elevation cuts after the first split, the younger cuts 

experienced higher levels of outbreak severity (Figure 2). This could possibly be explained by a 

higher density of lodgepole pine in young stands. But, as these higher elevation stands age they 

could be transitioning to spruce and fir forests that are not vulnerable to mountain pine beetle 

outbreaks. The split in the lowest left corner of the regression tree is based on the size of the cut. 
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Smaller stands experienced higher levels of mortality (0.23) compared to larger stands (0.07). 

This can be explained by the fact that smaller stands can be easily penetrated by beetles from 

neighboring unharvested stands.  

 

4.4 Caveats 

 Results from my work should be interpreted with the following caveats in mind. The 

delineation of past harvests was based on a variety of imperfect sources, so errors in the 

previously harvested polygons are possible. The type of cut was not considered in the regression 

tree analysis because this information was not known for many harvests. It would be helpful to 

know if each harvest was a clearcut or a thinning and if seeding or replanting was done after 

harvest.  

 The quality of inference would benefit from field data from the harvested stands to 

determine species composition, other stand characteristics, and to validate mortality levels. The 

analysis of outbreak severity in previously cut stands was based on the outbreak severity map 

which has inaccuracies of its own, so it is possible errors propagated through both analyses. The 

field data used to test the model were spatially clustered in four watersheds. So, these plots are 

testing the performance of the outbreak severity model in these watersheds, not across the entire 

forest. 
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5. CONCLUSION 

 

 

 

 Outbreak severity from the recent mountain pine beetle epidemic was modeled at Fraser 

Experimental Forest using a BRT model with field, GIS, and Landsat 7 ETM+ data. The change 

in mean texture of ETM+ band 5 and NDMI between 2001 and 2010 proved to be the best 

predictors of outbreak severity. This work is novel in that it captured outbreak severity for each 

pixel of a Landsat scene using only two images: one from before the outbreak and one from the 

declining years of the outbreak.  

This map was then used to calculate outbreak severity within cut stands harvested 

between 1954 and 1985. Stands harvested during this time experienced lower levels of mortality 

than comparable stands in Fraser Experimental Forest, although there was a large range in 

outbreak severities between cuts. Elevation of each harvest was an important factor in 

determining the severity of the outbreak at that stand.  

The analysis of outbreak severity in past harvests is just one example of an analysis that 

is possible with a map of cumulative outbreak severity. Other applications include the study of 

forest regeneration (Diskin et al., 2011), hydrology (Raffa et al., 2008), fire (Simard et al., 2011), 

timber harvest (White et al., 2005), and carbon accounting (Pfeifer et al., 2011). This map has the 

potential to support long-standing research at Fraser Experimental Forest about the impacts of 

forest disturbances on streamflow. More information about the harvesting methods and stand 

conditions in the cut stands is necessary before management decisions should be based on this 

work.  
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APPENDIX 

 

 

 

R Code 

# Boosted Regression Trees in R 

################ Note to reader ##################### 

# Modified by Nick Young 09/14/2011  

# Customized by Tony Vorster 06/20/2014 

# This is a cut-down version of a tutorial prepared by Jane Elith and John Leathwick,  

# to show how to use it to fit boosted regression tree models.  

# There is a word document provided by Jane Elith and John Leathwick that may provide more  

# explanation  

################Load and check data############### 

# Clear memory from R 

rm(list=ls()) 

# Get Source code 

source("I:\\Thesis\\Model\\BRT\\brt.functions.R") 

# Data contain the response of all the species collected and the predictor variables 

BRT.data=read.csv("I:\\Thesis\\Model\\BRT\\BRT_BA_Jun19.csv") 

#Data check command to see if data appear correct 

head(BRT.data) #This gives the first 6 rows of the data 

names(BRT.data) #This lists all the column names of the data 

################Organize data################### 

# Look at the environmental variables we are going to use for the model 
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predictor_col<-c(10,12,14,15,18,20) 

names(BRT.data[predictor_col]) 

var.bind<-BRT.data[predictor_col]  

# Create a list of all variable names to be used later 

var.names<-names(var.bind) 

# Set response to model  

response<-3 

Y=BRT.data[,response]   

# Combine response with predictors to go into gbm 

# The numbers index which columns to include 

data.gbm<-cbind(Y,var.bind) 

################Find Model Settings###################### 

# Run gmb.step to identify what learning rate and how many trees to use 

# The output will identify how many trees to include in the model or if you need to change 

# the learning rate or number of trees for a better model 

# Call to load the gbm package 

library(gbm) 

# You made need to change the learning.rate and tree.complexity if the results say you should 

fit.step<- gbm.step( 

  data=data.gbm,  

  gbm.x = 2:7, #these are the columns that contatin the predictors 

  gbm.y = 1,  #your response 

  family = "gaussian", 
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  tree.complexity = 3, 

  learning.rate = 0.0025,  

  bag.fraction = 0.5   

) 

############Finalize the model################# 

# This function identifys how many and which vairables to remove from the model 

fit.simp <- gbm.simplify(fit.step) 

# This creates the final model. Notice that you can set how many variables to  

# drop from the gbm.simplify function to specificy what variables to include 

fit.step.simp <- gbm.step(data.gbm, gbm.x = fit.simp$pred.list[[1]], gbm.y = 1, family = 

"gaussian", tree.complexity = 3, learning.rate = 0.0025, bag.fraction=0.5) 

###########Examine the Output################# 

# Graph the response variables 

par(mfrow=c(3,4)) 

gbm.plot(fit.step.simp, n.plots=12, write.title = F)  

gbm.plot.fits(fit.step.simp) 

find.int <- gbm.interactions(fit.step.simp) 

# Calculate relative influence 

summary(fit.step.simp) 

########################TEST DATA############################## 

#This is where you need to bring in your test data 

data.test<-read.csv("I:\\Thesis\\Model\\BRT\\BRT_SnowCourse_Jun19.csv") 

Y.test<-data.test[,response] 
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head(Y.test) 

# Make predictions for the test data 

pred.test <- predict.gbm(fit.step.simp, data.test, fit.step.simp$n.trees) 

pred.observ <-cbind(Y.test,pred.test) 

# Calculate correlation between observed vs. predicted values from BRT 

# Pearson correlation 

correlation.p<-cor(Y.test,pred.test)  

# Spearman correlation 

correlation.s<-cor(Y.test,pred.test,method="spearman")  

correlation.p 

correlation.s 

# Run linear regression between observed and predicted to calculate R
2
 

reg.predct.observe<-lm(Y.test~pred.test)  

summary(reg.predct.observe) 

# Plot observations and model predictions 

Xval<-Y.test 

Yval<-pred.test 

plot(Xval,Yval, xlab="Observered abundance",ylab="Predicted abundance") 

#####Create model prediction ASCII#### 

# Open Source R code for processing ascii by line 

source("I:\\Thesis\\Model\\BRT\\process_asc_by_line_v3.r") 

myfun<-function(x)round(unlist(predict.gbm(fit.step.simp, x, fit.step.simp$n.tree)),4) 

# Predictor and ASC names (the ASCIIs and predictor names must match) 
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# Check names 

row.names(fit.step.simp$contributions)<-fit.step.simp$contributions[,1] 

Thenamestable<-fit.step.simp$contributions 

var.names<-row.names(Thenamestable) 

var.names 

# Path to a folder containing the ASCII predictor files 

fpath <-"I:\\Thesis\\Model\\SAHM\\Output\\June17\\ascii\\" 

# Spatial prediction function. Change output name each run.  

proc.asc.byline(var.names,fpath,myfun,n=100,outfile="BRT_Jun20.asc")  

################Regression Tree in R################### 

CART.data=read.csv("I:\\Thesis\\Model\\CART\\Cut_Attributes.csv") 

attach(CART.data) 

library(tree) 

covariates <- CART.data[c(4,6,19,20,22,23)] 

cor(covariates) 

# Regression tree model 

rtree1 <- tree(MEAN_Severity~YearsSinceCut+Cut_Area + Mean_Elev + Mean_Slope + 

Northness + Eastness,data=CART.data) 

summary(rtree1) 

plot(rtree1) 

# Run cross-validation to select best tree size, i.e. prune the tree 

# 10 k-fold cross validations 

rtree1.cv <- cv.tree(rtree1, K=10)       
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plot(rtree1.cv) 

snip.tree(rtree1) 

# You can visually inspect plot and select size based on min deviance or use code below 

opt.trees = which(rtree1.cv$dev == min(rtree1.cv$dev)) 

best.leaves = min(rtree1.cv$size[opt.trees]) 

rtree1.p <- prune.tree(rtree1,best=best.leaves) 

plot(rtree1.p) 

text(rtree1.p,splits=TRUE, label="yval", all=FALSE) 

summary(rtree1.p) 


