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ABSTRACT 
 
 
 

THE EFFECT OF TIMING OF GROWING SEASON DROUGHT ON FLOWEIRNG OF 

ANDROPOGON GERARDII 

 
 
 

Timing of precipitation is equally important as amount for determining ecosystem 

function, especially aboveground net primary productivity (ANPP), in a variety of ecosystems.  

The particular precipitation period(s) of greatest importance varies between ecosystems.  In 

tallgrass prairie of the central US, the relative importance of different precipitation periods is 

dictated by the phenology of the dominant C4 grasses, in particular Andropogon gerardii which 

can contribute >80% to ANPP in this ecosystem.  It is predicted that precipitation periods with 

the greatest impact on the highly variable flowering rates of A. gerardii are likely to be 

particularly important for determining ANPP, as flowering individuals are much larger (>2-fold) 

than non-flowering individuals.  The potential for flowering may be affected by precipitation at 

different times via different mechanisms (e.g. carbon gain via rapid growth early in the growing 

season vs. direct effects on stalk elongation later in the growing season).  In order to test the 

differential effects of precipitation timing, rainfall deficits (100% exclusion) at different periods 

of the growing season were imposed on native tallgrass prairie in Kansas, USA.  Contrary to 

expectations, the most sensitive period in terms of flowering for A. gerardii did not coincide with 

the highest potential photosynthetic rates early in the growing season. Rather the most sensitive 

period was mid to late summer immediately preceding, and concurrent with, the initiation of 

flowering stalks.  Growth rate, leaf water potential and carbon assimilation of A. gerardii were 

all most sensitive to drought late in the growing season, suggesting that growth regulation in 
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response to plant water status, not current year’s carbon accumulation is the critical factor 

determining flowering responses to precipitation or lack thereof.  Flowering, in addition to 

influencing ANPP, controls rates of sexual reproduction which in turn limit adaptation and 

migration, and thus understanding how flowering will be influenced by a changing climate is 

critical for predicting plant community and ecosystem responses in tallgrass prairie. My study 

suggests that increased frequency of growing season droughts forecast with climate change could 

result in reduced ANPP and reproductive success of the dominant grasses in the tallgrass prairie 

ecosystem. 
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CHAPTER 1- THE EFFECT OF TIMING OF GROWING SEASON DROUGHT ON 
FLOWERING OF ANDROPOGON GERARDII 

Introduction 

It is becoming increasingly apparent that in addition to precipitation quantity, timing of 

rainfall is important for determining aboveground net primary productivity (ANPP) in a variety 

of ecosystems (Robinson et al. 2013), including the tallgrass prairie ecosystem of the US Central 

Plains (Knapp et al. 2002, La Pierre et al. 2011, Craine et al. 2012, Craine 2013). For example, 

La Pierre and colleagues (2011) showed that the two most important precipitation periods for 

describing inter-annual variation in ANPP were  the “vegetative growth” period (April 15 to July 

14), and to a lesser extent the “flowering stem elongation” period (July 15 to August 15).  This 

precipitation timing effect may in large part be determined by the phenology of the dominant 

plants in tallgrass prairie - perennial C4 grasses - which are responsible for the majority of energy 

flow in the system, often contributing more than 80% of ANPP (Smith and Knapp 2003).  

Tallgrass prairie in the Central US is dominated primarily by the C4 grass, Andropogon gerardii 

(big bluestem). Flowering rates of this grass are highly variable (La Pierre et al. 2011), with 

flowering typically quite low (La Pierre et al. 2011).  In peak flowering years biomass of 

flowering stalks can increase as much as 10-fold, and during these high flowering years, 

flowering stalks can contribute >70% to ANPP (Knapp and Hulbert 1986). Thus, understanding 

what controls flowering in A. gerardii is important for predicting inter-annual variation in ANPP 

of tallgrass prairie.   

Multiple resources including light, nitrogen, and water may contribute to inter-annual 

variability in both ANPP and flowering of A. gerardii (Owensby et al. 1970, Knapp and Seastedt 

1986, Hulbert 1988, Knapp et al. 2001).  Periodic release from limitations of light and N, as a 

result of infrequent fires (e.g., every 4 years), has been shown to result in a transient pulse in 
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ANPP (Seastedt and Knapp 1993) and in flowering (LaPierre et al. 2011; Supplementary Fig. 1). 

In the absence of fire, a thick layer of detritus accumulates resulting in light limitation, as well as 

increased soil nitrogen availability (Knapp and Seastedt 1986). Both resources are then more 

abundant when a fire removes the thick detritus layer.  With increased soil nitrogen and light 

availability, the stage is set for a productive year.  Productivity peaks observed following 

infrequent fire are not just a result of high vegetative production, but also high flowering events 

(Knapp and Hulbert 1986), and it has long been noted that high flowering years tend to follow 

infrequent fires (Curtis and Partch 1950, Kucera and Ehrenreich 1962). However, potential 

evaporation is also increased post-fire, as the detritus provides insulation against soil water loss 

(Knapp and Seastedt 1986). Thus, post-fire years also can result in higher water stress and 

reduced ANPP, both due to decreased vegetative growth and decreased flowering of A. gerardii 

and other C4 grasses.  Sufficient precipitation is needed during the growing season to ensure both 

increased production and flowering post-fire (Briggs and Knapp 1995).  

While precipitation amount during periods broadly encompassing vegetative growth and 

flowering stalk elongation has been shown to be important for determining ANPP and flowering 

of A. gerardii in tallgrass prairie (La Pierre et al. 2011, Craine et al. 2012, Craine 2013), even 

shorter periods during the growing season are likely to have impacts disproportionate to their 

length, especially if they affect A. gerardii flowering stalk initiation, elongation, and/or density 

and biomass. However, experiments imposing precipitation deficits at these critical times during 

the growing season are lacking. Yet, this understanding is particularly important with future 

climate change, as precipitation is expected to become more variable and drought periods more 

extensive during the growing season in the Central Plains region of the US (Sheffield and Wood 

2008). 
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In order to experimentally assess the effect of timing of precipitation deficits on 

flowering of A. gerardii, droughts of equal magnitude were imposed for relatively short periods 

of time during the growing season. These periods included late spring (LS = April to May), early 

summer (ES = May to June) and mid-summer (MS = June to July), with the three representing 

critical periods of rapid early season growth, carbon accumulation, and flowering stalk initiation 

and elongation, respectively (Selbo and Snow 2005, Sherry et al. 2007).  Flowering stalks of A. 

gerardii are large in comparison to their vegetative organs (>2-fold difference in mass (J. 

Dietrich, pers.obs.), and thus flowering stalk production is likely to be sensitive to stored carbon 

and/or carbon gain during the growing season. Indeed, given that flowering is highest when light 

and nitrogen limitations are most reduced due to infrequent fire, the expectation is that carbon 

gain during the growing season may be most important for determining flowering post-fire.  As 

carbon assimilation rates are highest early in the growing season (Knapp 1985), it was predicted 

that LS or ES drought would have the largest effect on flowering of A. gerardii. However, given 

the evidence that precipitation during the period of flowering stalk elongation can be important 

for flowering (La Pierre et al. 2011), MS drought also could influence density of flowering 

stalks, but this effect is likely of lesser importance than a drought during rapid carbon gain and 

accumulation. To test these hypotheses, we conducted a drought timing experiment over a two-

year period on adjacent sites that had not been burned for three years prior to the experiment, but 

that were burned early in the growing season prior to initiation of the drought treatments. 

Selection of these sites was strategic in that we hoped to capture a potentially high flowering 

event by minimizing limitations by all other resources except for water. 
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Methods 

Study Site 

The study was conducted during the 2013 and 2014 growing seasons at the Konza Prairie 

Biological Station (KBPS), which is a NSF Long-term Ecological Research (LTER) site. The 

Konza Prairie is a 3,487 ha native, unplowed tallgrass prairie located in the Flint Hills region of 

northeastern KS.  Two sites were selected in ungrazed, upland areas of two adjacent watersheds 

(<200 m apart) that were burned in the spring of the experimental year, but which had not been 

burned during the three preceding years (an approximate 4-year burn interval has been imposed 

in these watersheds for the last 30 years).  Both sites are dominated by A. gerardii with a few 

other subdominant C4 grasses and many minor graminoid and forb species.  Both sites have soils 

of the Benfield-Florence complex, consisting of gravelly silt loam in the upper 15 cm, with 

increasing gravel and cobbles until bedrock is encountered generally within 140 cm of the 

surface (NRCS 2014). As a consequence of the shallow soils, drought during different periods of 

the growing season was expected to have a significant effect on growth and flowering of A. 

gerardii (Briggs and Knapp 1995). 

Drought treatments 

To assess the impacts of timing of growing season drought on flowering of A. gerardii, 

we conducted a two-year experiment consisting of a control treatment (CON, average growing 

season precipitation) and three drought timing treatments: late spring drought (LS, starting mid-

April), early summer drought (ES, starting mid-May), and mid-summer drought (MS, starting 

mid-June).  For each year of the experiment, the control and drought treatments were arranged in 

a randomized block design (n = 10 blocks), with 10 replicates per treatment. Drought treatments 

were imposed by excluding rainfall with 2.4 x 2.4 m clear polycarbonate roofs mounted on fence 

t-posts at heights ranging from approximately 60 cm to 130 cm above the ground (shelter height 
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increased with increasing canopy height during the growing season).   The roof size provided a 

substantial buffer (~0.7 m) around each 1 x 1 m sampling plot. Control plots were not covered.  

In 2013, each drought treatment was designed to exclude a target of ~150 mm or 

approximately 25% of the average growing season precipitation.  For each year of the study, the 

first exclusion period began shortly after the prairie was burned, the second a month after that, 

and the third a month after that, and each continued until the target was reached (Table 1).  

Control plots (CON) without exclusion had water added by hand during dry periods to match the 

long term average precipitation. Additions occurred weekly (as required) from June 1 through 

July 16 and totaled 76 mm.  

For 2014, exclusions began at approximately the same dates as in 2013 (Table 1). As 

more rain fell in May 2014 than in May 2013, the exclusion target was increased to ~170 mm, 

and this target was easily met with the LS and ES drought treatments.  However, little rain fell 

during the MS exclusion period; rather than extend this exclusion to the end of August, four 

artificial rain events (each 21-24 mm in size) were simulated by adding a total of 93 mm to the 

LS, ES, and CON treatments in July and August. Aided by these events, the mid-summer 

exclusion target was met by mid-August. 

Soil moisture of the top 20 cm was measured with (ECH2O probes, Decagon Devices 

Inc., Pullman, WA, USA) in half of the plots (n = 5 per treatment).  Soil moisture was measured 

every hour, and the probes were calibrated with soil samples collected throughout the summer 

for laboratory soil moisture analysis following  Wilcox et al. (2015).   

Flowering measurements 

At the end of each growing season, A. gerardii flowering stem density (stems m-2) and 

dry mass of both reproductive and vegetative tissues (g m-2) were assessed.  All flowering stems 
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were counted in each 1 x 1 m plot, including stems that elongated, but did not produce flowers.  

All A. gerardii plant material was harvested from two randomly selected 0.1 m2 (20 x 50 cm) 

subplots in each plot.  Flowering stems, inflorescences, and cauline leaves were considered 

“reproductive” tissues; basal leaves of flowering individuals and all parts of non-flowering 

individuals were considered “vegetative”. Biomass was dried for 48 hrs at 60 °C and weighed. 

From this data, the ratio of reproductive to vegetative (R/V) biomass was calculated.   

Individual growth measurements 

In 2013, ten individual A. gerardii tillers were tagged in each experimental plot at the 

beginning of the growing season and monitored from May 11 to Sept 7. Developmental stage 

(i.e., vegetative, elongating, flowering, seed set) and height (from base of plant to tip of longest 

leaf or flowering stalk) were assessed on an approximately biweekly basis for a total of eight 

measurements.  Relative growth rate (RGR) was calculated for individuals in each of the 

treatments as fallows.  

RGR= 
ln(height2-height1)

ln(t2-t1)
 

Where t1 is the day of the earliest assessment point within a given exclusion period, t2 is the day 

of the latest assessment point within that exclusion period, and height1 and height2 are the heights 

measured at those times. 

Ecophysiological measurements 

During the 2014 growing season, plant water status and CO2 assimilation were assessed 

for selected individuals of A. gerardii on a biweekly basis (starting May 27 and ending Aug 23) 

for all treatments in six of ten blocks.  Leaf water potential (ψleaf) at pre-dawn and mid-day was 

measured with a pressure bomb (PMS model 1000).  The youngest fully emerged leaf was 

collected from 2 or 3 canopy individuals (different plants each sampling period) before dawn and 
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again in the middle of the day (between 11:00 am and 3:00 pm).  Net CO2 assimilation (Anet) was 

also measured at mid-day using a LI-COR 6400 infra-red gas analyzer (IRGA) equipped with a 

fluorometer.  Anet measurements were taken on the youngest fully emerged leaf of the same 

marked individuals each sampling period.  Leaves were provided with full light (2000 µmol m-2 

s-1) and 400 ppm CO2 and the assimilation rate was allowed to stabilize before being recorded.  

Time constraints required that both mid-day (ψleaf) and Anet measurements be split into two, 

generally consecutive days (unless there were suboptimal conditions) for sampling.   

Statistical Analyses 

Mixed model ANOVA was used to assess the effects of the drought treatments on soil 

moisture, flowering stem densities and R/V biomass. Drought treatments were treated as fixed 

effects and block as a random effect. Each year of the experiment was analyzed separately. Soil 

moisture for each treatment plot was averaged over each of the three exclusion periods and 

ANOVA was performed on the period means.  A large number of plots without any flowering 

stalks resulted in a non-normal distribution for both flowering stem density and R/V biomass, 

and therefore these data were transformed before they were analyzed.  The flowering stem 

densities were transformed with a natural log transformation and R/V biomass was transformed 

with a modified arcsin transformation following (McCune and Grace 2002) prior to analysis.  

Repeated measures ANOVA was performed on the growth, water potential and CO2 assimilation 

data, with drought treatment as the fixed effect, block as the random effect, and date as the 

repeated measure.   Several common covariance structures were used, and results from the 

analysis with the lowest AIC were selected.  Additionally mean growth rates for each period 

were compared with ANOVA using R statistical software. All other analyses were performed 
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with SAS 9.3 (SAS Institute Inc., Cary, NC, USA). Significance was set at  = 0.05 for all 

analyses. 

Results 

Drought timing effects on soil moisture 

Total growing season precipitation was similar in both years of the study, but timing of 

rainfall events was different, with more rain falling early in the growing season in 2014 

compared to 2013 (Table 1, Supplementary Fig. 2). This produced exclusion periods of different 

lengths and amount of overlap each year, and different reductions in total growing season 

precipitation (Table 1). Overall, each drought treatment excluded approximately 24% of the total 

growing season precipitation in 2013, while in 2014 each drought treatment excluded 

approximately 30% of the total growing season precipitation. 

There were significant effects of drought on soil moisture in both 2013 and 2014 

(Supplementary Table 1, Fig. 1).  As expected, each drought timing treatment had lower soil 

moisture values during its focal period, although the difference between the drought and control 

treatments was not always significant. For the 2013 LS exclusion period, soil moisture for the LS 

treatment was significantly less than that of the ES and MS treatments, but not the CON 

treatment.  For the ES exclusion period, which overlapped with both the LS exclusion period and 

the MS exclusion period, all three drought treatments LS, ES and MS had significantly lower soil 

moisture than the CON treatment.  For the MS exclusion period, soil moisture of the MS 

treatment was significantly below the CON and LS treatments, but not the ES treatment which 

also had depressed soil moisture during this period due to overlap between the ES and MS 

exclusion periods.  The magnitude of soil drying relative to the CON treatment was similar for 

each of the drought treatments, with reductions of 29% for the LS treatment during the late 
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spring drought, 25% for the ES treatment during the ES drought, and 35% for the MS treatment 

during the MS drought. 

Soil moisture differences between treatments were generally less pronounced in 2014 

(Fig. 1b).  For the LS exclusion period, soil moisture was lowest for the LS and ES treatments. 

However, the difference in soil moisture between the LS treatment and, the thus far 

“undroughted”, MS and CON treatments was not significant.  For the ES exclusion period, soil 

moisture was significantly different between the ES and both the MS and CON treatments. For 

the MS exclusion period, soil moisture was lowest for the MS treatment, but the soil moisture 

difference between the MS and CON treatments was not significant, although it was marginally 

significant between the MS and ES treatments (Supplementary Table 1).      

Effects of drought timing on flowering 

In 2013, the ambient level of flowering was as great as any year in the past 30 years for 

the study site (Supplementary Fig. 1a). While more modest in 2014, ambient flowering for that 

study site was still above-average (Supplementary Fig. 1b).  Control plots with modest water 

additions had even higher levels of flowering both years of the experiment when compared to 

long-term data for the study sites.  In 2013, CON treatment flowering stalk densities averaged 

26.6 (21.1 SD) vs the long term mean  of 5.1 ± (8.2 SD) stems m-2 for the study site, and 

flowering stalk biomass was on average 65.7 ± (60.7 SD) vs the long term site mean of 10.5 ± 

(14.5 SD) g m-2.  In 2014, flowering stalk density for the CON treatment was on average 17.3 ± 

(11.5 SD) vs the long term mean of 6.1 ± (13.0 SD) stems m-2, and flowering stalk biomass was 

26.4 ± (26.8 SD) vs the long-term site mean of 12.0 ± (30.7 SD) g m-2. 

There were significant effects of growing season drought timing on flowering stalk 

density and R/V biomass (Supplementary Table 2, Fig. 2).  In 2013, flowering stalk densities 
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were lowest for the ES and MS treatments, with the LS treatment intermediate in number of 

flowering stalks and the CON treatment with the highest flowering stalk density (Fig. 2a). Both 

the ES and MS treatments showed significant reductions in R/V biomass relative to the CON 

treatment, with the LS treatment intermediate (Figs. 2c). In 2014, flowering stalk densities were 

lowest for the MS treatment which was significantly below all other treatments (Fig. 2b). A 

similar pattern was observed for R/V biomass, the MS treatment had the lowest R/V biomass 

which was significantly less that of the LS treatment, while the ES treatment was not 

significantly different from the LS or CON treatments (Fig. 2d). 

Effect of drought timing on growth and ecophysiology 

There was a significant effect of treatment, date and the interaction of treatment by date 

on mean tiller height (Supplementary Table 4).  Early in the growing season of 2013 all 

treatments had a similar growth trajectory based on height (Fig. 3a), but later in the year the 

CON and then LS treatments increased in height much more rapidly than the ES and MS 

treatments.  There was a significant treatment effect on growth rates for each of the three 

exclusion periods (Supplementary Table 3). During the LS exclusion period, the LS and ES 

treatments grew significantly slower than the CON and MS treatments (Fig. 3b). During the ES 

exclusion period, the growth rate for the ES treatment was significantly lower than the LS or MS 

drought treatments, which had intermediate growth rates when compared to the CON treatment 

(Supplementary Table 3, Fig. 3c).  During the MS exclusion period, the growth rate for the MS 

and ES treatments was much less than for the LS or CON treatments (Supplementary Table 3, 

Fig. 3d).  A pulse in precipitation following the end of the MS exclusion (Supplementary Fig. 2) 

provided an opportunity for recovery and all treatments showed increased growth.  As a 

consequence, the mean height for the LS treatment caught up to the CON treatment by the end 
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the growing season, at which time individuals of both the LS and CON treatments were 

significantly taller than those of the ES and MS treatments (Fig. 3a). 

There were significant effects of treatment, date and the interaction of treatment by date 

for all ecophysiological variables (Supplementary Table 5). Pre-dawn and midday leaf water 

potential (ψleaf) remained relatively constant throughout the growing season for the LS, ES, and 

CON treatments (Fig. 4a,b).  The MS drought treatment on the other hand, showed significant 

reductions in pre-dawn and midday ψleaf relative to all other treatments by the second half of the 

MS exclusion (Fig 4a,b).  All treatments had large reductions in Anet with time over the course of 

the growing season (Fig. 4c).  Similar to ψleaf, the only significant differences between treatments 

occurred after mid-July.  By July 29th, MS treatment had the lowest Anet and it remained 

significantly lower than the other treatments through August 23 (Fig. 4c). 

Flowering Phenology 

The first individuals to commit to flowering were first observed to elongate in early July. 

Out of approximately 600 individuals monitored, two were committed to flowering on July 5 

with this number increasing to a total of 130 by Sept 7 (Supplementary Fig. 3). 

Discussion 

In each of the two years of the experiment, a similar pattern of drought timing effects on 

flowering of the dominant C4 grass, A. gerardii, was observed even though the overall rate of 

flowering, timing of precipitation, and the length of the exclusion periods differed.  Contrary to 

expectations, the effect of drought timing on flowering (both number of flowering stalks and the 

ratio of reproductive to vegetative biomass) of A. gerardii was greater for drought occurring 

mid-summer (MS treatment = ~June 21-July/Aug) than the drought in late spring (LS treatment 

= Apr 20- early/mid-June). Likewise the MS treatment had the greatest ecophysiological 
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responses (reductions in leaf water potential and photosynthetic rates) and, along with the ES 

treatment, the greatest reductions in growth.  However, in 2013 the drought during early summer 

(ES treatment -= May 21-July 2) also significantly reduced individual growth, flowering stalk 

densities and R/V biomass of A. gerardii when compared to the LS or CON treatments (no 

ecophysiological measurements were collected this year).  On the other hand, in 2014 no ES 

treatment effects on flowering or ecophysiology were observed (no growth measurements were 

collected this year).  This variation in the impact of drought in early summer, which began on 

approximately the same date each year of the study, was likely related to differences in its 

duration in 2013 vs. 2014. The ES treatment exclusion ended mid-June in 2014, with 29 mm of 

rain the next day. In contrast, the ES treatment exclusion ended in early July in 2013, with no 

rain events > 13mm until July 23 (Suppl. Figure 2). 

These findings suggest that plant water stress, which typically peaks in July or August 

(Knapp 1984, Owensby et al. 1993), drove the decrease in photosynthetic rates, growth, and 

flowering observed with both the ES and MS droughts in 2013 and the MS drought in 2014.   

Collectively, the large impact on flowering for the ES drought in 2013, which effectively 

extended to late July, the lack of effect for the ES drought in 2014, which ended in mid-June, and 

the large effects of the MS drought in both years indicate that the most sensitive time for water 

stress effects on flowering is mid to late July.  This timing also coincides with flowering stalk 

initiation, which began in early July and continued through August, with a in peak flowering 

occurring in late July to early August in 2013 (with similar timing of both observed in 2014; J. 

Dietrich, pers. Obs.).  Sixty percent of individuals that would eventually produce flowering 

stalks were first observed to elongate between July 25 and August 8 (Supplementary Fig. 3).   
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This timing coincides with large reductions in water potential observed with the MS drought 

treatment. 

Contrary to expectations, drought timing effects on flowering of A. gerardii did not 

appear to be due to impacts on accumulation of carbon stores during the growing season. Indeed, 

the LS treatment did not reduce photosynthesis in the late spring drought nor did the ES 

treatment reduce photosynthesis during the early summer drought.  Moreover, individuals were 

already beginning to elongate flowering stalks by the time differences in photosynthesis between 

the MS treatment and other drought treatments emerged.  On the other hand, if carbon utilized 

for flowering stalk initiation and growth is derived from assimilation during the MS drought 

timing period, depression of photosynthesis at this time could be important. However, relatively 

low assimilation rates for the CON treatment during the mid-summer exclusion period (Fig. 4) 

suggest that reserves likely provide at least a portion of flowering stalk carbon.   

Without large negative effects on growing season carbon gain, it is likely that the 

differences in the impacts of the drought timing on flowering were due to the degree of water 

stress experienced by individuals.  Although there was no difference in degree of drying for the 

top 20cm of soil between the drought treatments, the MS treatment experienced large reductions 

in leaf water potential that the other treatments did not. This was likely related to drying of soils 

to a greater depth (as supported by lower pre-dawn water potentials for the MS treatment) and/or, 

higher temperatures and greater leaf area later in the growing season.  It is unclear to what extent 

MS treatment effects reflect seasonal variation in the sensitivity of A. gerardii flowering to water 

stress and to what extent they reflect seasonal variation in potential water stress. In other words, 

do the MS treatment effects occur because the MS treatment produces stress during a critical 

developmental stage, or do they occur because mid-summer is the only time when drought will 
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produce sufficient water stress?  Regardless of the relative importance of these two aspects of 

timing it appears that only drought later in the summer is likely to have a large impact on 

flowering.  Some combination of cooler temperatures/lower leaf area and higher availability of 

deep soil moisture prevent severe water stress early in the growing season, as indicated by the 

lack of significant difference between LS and CON treatment water potential at the end of the 

late spring drought, despite 100% exclusion for 45 days. On the other hand, the observed stress 

levels in the MS treatment, mid-day ψleaf around -3 or -4 MPa, are not unusual for A. gerardii in 

the middle of summer. Other studies on A. gerardii at Konza have shown comparable values for 

mid-day ψleaf in July, without artificial rain exclusion.   

The production of a flowering stalk involves both a transition to production of 

reproductive tissues, and a dramatic increase in individual production (growth).  Thus there are 

two potential avenues for stress effects on flowering; a generalized growth response, and the 

transition in the nature of a meristem from vegetative to reproductive.  The effect of water stress 

leads to reduced growth even before reduced photosynthesis, and thus it is usually not carbon 

starvation that limits growth (Muller et al. 2011).   It has been suggested that, in a region prone to 

summer drought, reduced flowering in response to water stress is a stress avoidance mechanism 

for A. gerardii,  and that this response gives it a competitive advantage over similar, but less 

abundant tallgrass species (Swemmer et al. 2006).  On the other hand the hormonal response to 

water stress may influence floral induction directly (Wang et al. 2013). 

Craine et al. (2010) evaluated the long term flowering record at Konza and selected the 

precipitation period from May 25 to August 8 as being the most predictive of flowering of A. 

gerardii.  This is generally consistent with our results.  This period lines up well with the 2013 

ES treatment exclusion which had a large effect on flowering and began on May 21 and 
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effectively continued until July 23, though the MS treatments had effects of similar magnitude 

while beginning a month later and of shorter duration. It is likely that a complete rainfall 

exclusion produces a strong effect over a shorter time interval than most natural droughts, but if 

the end result of a longer drought is water stress in mid to late-July it is likely to have a strong 

impact on flowering.  Craine et al. (2010) also found that deep soil moisture was predictive of 

flowering, which suggests that the effects of the later exclusions we observed may have been 

caused by drying below the depth of our probes which did not show significant soil moisture 

effects between the drought timing treatments. 

The impact of mid-summer drought on flowering of A. gerardii helps to explain why this 

period is important for ANPP in tallgrass prairie (La Pierre et al. 2011, Craine 2013).  Drought 

related reductions in flowering are likely to be more common in the future as extended periods of 

anomalously low soil moisture during the growing season are predicted to increase in frequency 

central North America (Sheffield and Wood 2008).  Specifically, decreased frequency or 

magnitude of high flowering years could have large ramifications for the reproductive success of 

this important species which already has low rates of sexual reproduction (Benson and Hartnett 

2006).  It is likely that fertilization rates increase with increasing flowering stalk density (Smith 

et al. 1990, Kelly 2001) and that large flowering years contribute disproportionately to seed 

production.  Sexual reproduction is important for determining the response of this important 

species to changing climate; it results in genetic recombination, promoting adaptation, and the 

resulting seeds are potentially dispersed large distances increasing migration rates.  Ultimately, 

drought effects on flowering have implications for, carbon sequestration and biofuel production. 

 



16 
 

Table 1. Rainfall exclusion periods in 2013 and 2014 for the late spring (LS), early summer 
(ES), and mid-summer (MS) drought timing treatments. Included are the duration of exclusion, 
amount of excluded rainfall, and amount of precipitation received for each treatment.  Note that 
total precipitation includes watering events in addition to ambient precipitation (2013: 568 mm, 
2014: 474 mm). In 2013, 76 mm was added to the CON treatment plots. In 2014, 93 mm of 
water was added to the LS, ES, and CON treatment plots, but not the MS treatment. 

Year Treatment Exclusion 

period 

Exclusion 

duration 

(days) 

Excluded 

rainfall 

(mm) 

Total 

precipitation 

(mm) 

Mean period 

temperature 

(°C) 

20
13

 

LS Apr 20- Jun 22 63 151 416 18.4 

ES May 22- Jul 2 41 159 409 22.6 

MS Jun 22- Jul 26 34 154 413 25.4 

CON - - 0 644  

20
14

 

LS Apr 20- Jun 4 45 166 401 18.8 

ES May 21- Jun 14 24 171 396 21.9 

MS Jun 19- Aug 12 54 175 391 24.7 

CON - - 0 568  
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Figure 1. Soil moisture (%) for the control (CON) and drought timing treatments (LS = late 
spring drought, ES = early summer drought, and MS = mid-summer drought) averaged over the 
three exclusion periods in a) 2013 and b) 2014 (see text for details).  Different letters indicate 
significant differences (P  0.05) between treatments; n.s. indicates that there were no significant 
differences between treatments. 
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Figure 2.  Effects of drought timing treatments (CON = control, LS = late spring drought, ES = 
early summer drought, MS = mid-summer drought; see text for details) on (a, b) Flowering stalk 
densities (m-2) , and (c, d) the ratio of reproductive to vegetative biomass (R/V) in 2013 (left) and 
2014 (right).  Different letters indicate significant differences (P  0.05) between treatments. 
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Figure 3. (a) Mean tiller height of A. gerardii over time during the 2013 growing season in 
response to the drought timing treatments (CON = control, LS = late spring drought, ES = early 
summer drought, MS = mid-summer drought; see text for details).  Relative growth rates for 
drought timing treatments during the (b) late spring exclusion period, (c) the early summer 
exclusion period, and (d) the mid-summer exclusion period. Rainfall exclusion periods are 
indicated by background color. Asterisk indicates at least one significant difference in pairwise 
comparisons between treatments. 
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Figure 4: Ecophysiology of A. gerardii over time during the 2014 growing season in response to 
the drought timing treatments (CON = control, LS = late spring drought, ES = early summer 
drought, MS = mid-summer drought; see text for details). Ecophysiological measurements 
include (a) mean predawn water leaf water potential (ψleaf), (b) mean midday leaf water potential 
(ψleaf), and (c) mean net CO2 assimilation rate (Anet).  Rainfall exclusion periods are indicated by 
background color. Asterisk indicates at least one significant difference in pairwise comparisons 
between treatments. 
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CHAPTER 2- FUTURE RESEARCH ON CAUSES AND CONSEQUENCES OF DROUGHT 
EFFECTS ON FLOWERING OF ANDROPOGON GERARDII 

 

Mechanisms 

Drought occurring in mid-summer (late June through July) strongly reduces the rate of 

flowering of Andropogon gerardii, yet drought of similar duration occurring earlier does not 

affect flowering despite equal reductions in total precipitation (Chapter 1).  The timing of 

impactful drought is coincident with both high temperatures, and the initiation of flowering 

stalks.  So it is not clear whether this time is critical because of the intrinsic phenology of A. 

gerardii or because drought during this time tends to produce severe water stress.  Would severe 

water stress earlier in the year effect flowering similarly?  It is much less likely that severe stress 

would occur in May/June, but it may be possible with winter/spring drought and unusually warm 

temperatures in early summer.  In such a circumstance June conditions may come to approximate 

those more expected with drought later in the year.  For example in 1988 only 223 mm of 

precipitation fell between December 1 and June 30mm about half of the average 437mm for this 

period; this was combined with especially high temperatures in May (6 days with highs above 30 

°C) and June (8 days with highs above 38 °C) (Konza data set AWE012).  The cumulative pan 

water evaporation potential for April through June 1988 was 686mm which is nearly equal to the 

average for April through July— 736 mm (Konza data set APT025).  Perhaps water stress in late 

June 1988 approached levels equal to those achieved with experimental exclusion in late July 

(Chapter 1).  Unfortunately, we lack physiological data for that time, and no 4-year burn 

occurred in a watershed with flowering data, so it is hard to assess effects on flowering.  In order 

to evaluate the effect of drought/water stress timing independently of magnitude a greenhouse 

experiment would be very useful. 
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An alternative approach to understanding the mechanism of drought effects on A. 

gerardii would be to perform hormone or RNA assays during the time of flowering stalk 

initiation. Within a drought timing experiment this data could be used to evaluate treatment 

effects on the signal to flower.  Outside the context of such an experiment, one could look in a 

watershed likely to have high flowering, assay tagged individuals, and perhaps find differences 

between individuals that eventually flower and those that do not. 

Reproduction 

The density of A. gerardii flowering stalks varies dramatically from year to year; for 

example in the 4B watershed, the standard deviation, 11.5, is greater than the mean, 7.2 stalks m-

2 (Konza data set PRE022).  Seed production may be even more variable if fertilization rates 

increase with flowering stalk density, as one might expect (Smith et al. 1990, Kelly 2001, 

Bjornstad et al. 2002) (Smith et al. 1990, Kelly 2001, Bjornstad et al. 2002).  In 2013 there was a 

higher rate of flowering across the 4B watershed than there had been in ten years— mean 22 

stems m-2 (Konza data set PRE011).  Yet even in this “peak” year only about half of sessile 

florets contained seeds (Dietrich, unpublished data) suggesting that pollen abundance may limit 

seed production even in a “peak” flowering year.  In 1981 flowering stalk densities of A. gerardii 

were as high as 68 stalks m-2; this is nearly triple the flowering rate of a normal “peak” year. 

These super peak years may have disproportionate importance for sexual reproduction and 

population dynamics of A. gerardii especially if they are associated with increased fertilization 

rates.   

Understanding the relationship between flowering stalk density and seed production is 

critical; for explaining the population dynamics of this important species.  This relationship 

could be evaluated by looking at rates of fertilization or seed filling along a gradient of flowering 



23 
 

stalk densities that often exists within Konza related to different burning treatments.  In addition 

to comparing fertilization/seed filling rates between watersheds with high and low flowering, the 

spatial pattern of pollen movement could be evaluated by looking at fertilization/seed filling 

rates across a single watershed, comparing plants from peripheral and central parts of a single 

high flowering watershed, as well as those with different orientations to the prevailing wind.  

Seed longevity is a potentially important factor as well; if seeds are only produced in significant 

number once or twice a decade there ability to survive several years until favorable conditions 

arrive could play a major role in reproductive success.  Perhaps seed longevity could be 

evaluated in the lab or the soil seed bank could be compared between watersheds with different 

time intervals since the last big flowering year. 
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SUPPLEMENTARY TABLES 

Supplementary Table 1. ANOVA results describing the effect of the drought timing treatments 
on soil moisture of the top 20cm for 2013 and 2014.  Each exclusion period analyzed separately.   
d.f. = numerator degrees of freedom, denominator degrees of freedom. 

Soil moisture 

 Exclusion period d.f. F-

value 

P-value 

2013 LS 3, 14 4.72 0.018 

ES 3, 9.81 9.16 0.003 

MS  3, 14 19.28 <.001 

2014 LS 3, 13 5.61 0.011 

ES 3, 15 19.22 <.001 

MS 3, 16 3.19 0.052 

 

Supplementary Table 2. ANOVA results describing the effects of the drought timing treatments 
on the density of flowering stems and the ratio of reproductive to vegetative biomass in 2013 and 
2014. d.f. =numerator degrees of freedom, denominator degrees of freedom. 

 

 

 

 

 

 

Flowering 

 Effect d.f. F-value P-value 

2013 Stem Densities 3, 24.1 6.94 0.002 

 R/V Biomass 3, 34 5.36 0.004 

2014  Stem Densities 3, 22.4 16.65 <.001 

R/V Biomass 3, 27 4.47 0.011 
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Supplementary Table 3. ANOVA results describing the effects of the drought timing treatments 
on relative growth rate with each exclusion period analyzed separately. d.f. = numerator degrees 
of freedom, denominator degrees of freedom. 

Relative growth rate 

Exclusion period d.f. F-value P-value 

LS 3, 16 5.417 0.009 

ES 3, 36 10.7 <0.001 

MS 3, 36 50.65 <0.001 

 

Supplementary Table 4. Repeated measures ANOVA results describing the effects the drought 
timing treatments and date on mean tiller height.  Analysis with drought timing treatment (Trt) as 
the fixed effect and Date as the repeated effect.  df. =numerator degrees of freedom, denominator 
degrees of freedom. 

Tiller height 

Effect d.f. F-value P-value 

Trt 3, 259 3.92 0.009 

Date 7, 259 316.16 <.001 

Trt*Date 21, 259 7.66 <.001 
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Supplementary Table 5. Repeated measures ANOVA describing the effect of drought timing 
treatment and date on ecophysiological parameters -- leaf water potential measured before dawn 
(Pre-dawn ψleaf), leaf water potential measured between 11:00am and 3:00pm (Mid-day ψleaf), 
and net CO2 assimilation rate (Anet).  Drought timing treatment (Trt) was the fixed effect, and 
Date was the repeated effect.  d.f. = numerator degrees of freedom, denominator degrees of 
freedom. 

Effect Pre-dawn ψleaf Mid-day ψleaf Anet 

 d.f. F-value P-value d.f. F-value P-value d.f. F-value P-value 

Trt 3, 

112 24.76 <.0001 

3, 

161 22.44 <.0001 

3, 

131 2.74 0.046 

Date 5, 

112 4.96 0.0004 

7, 

161 31.57 <.0001 

7, 

131 63.94 <.0001 

Trt*Date 15, 

112 7.33 <.0001 

21, 

161 5.86 <.0001 

21, 

131 2.89 0.0001 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Long term flowering record for A. gerardii at the Konza Prairie 
Biological Station for the a) 2013 and b) 2014 study sites (4b and 4a watersheds, respectively). 
Data collection began in 1982 for the 4b watershed, while it did not begin until 1994 for the 4a 
watershed (see Konza Prairie Long-term Ecological Research website for details on 
methodology of data collection; dataset: PRE022).  Red diamonds indicate years in which the 
watershed was burned in the spring (~mid-April). Inset: overall means of flowering stalk 
biomass for burn years and non-burn years. 
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Supplementary Figure 2. Rain events over the course of two growing seasons 2013 and 2014.  
Rainfall exclusion periods are indicated by different background colors. Red bars indicate 
supplementary watering applied during the 2014 growing season to the control and all drought 
treatments, excluding the mid-summer drought treatment.  
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Supplementary Figure 3. Number of individuals of A. gerardii committed to flowering during 
the 2013 growing season.  Rainfall exclusion periods are indicated by the different background 
colors. 

 


