
THESIS

EXTENDING AND VALIDATING THE STENCIL PROCESSING UNIT

Submitted by

Revathy Rajasree

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2016

Master’s Committee:

Advisor: Sanjay Rajopadhye

Sudeep Pasricha
Charles W. Anderson

Copyright by Revathy Rajasree 2016

All Rights Reserved

ABSTRACT

EXTENDING AND VALIDATING THE STENCIL PROCESSING UNIT

Stencils are an important class of programs that appear in the core of many scientific and

general-purpose applications. These compute-intensive kernels can benefit heavily from the

massive compute power of accelerators like the GPGPU. However, due to the absence of

any form of on-chip communication between the coarse-grain processors on a GPU, any

data transfer/synchronization between the dependent tiles in stencil computations has to

happen through the off-chip (global) memory, which is quite energy-expensive. In the road

to exascale computing, energy is becoming an important cost metric. The need for hardware

and software that can collaboratively work towards reducing energy consumption of a system

is becoming more and more important.

To make the execution of dense stencils more energy efficient, Rajopadhye et al. [10] pro-

posed the GPGPU-based accelerator called Stencil Processing Unit that introduces a simple

neighbor-to-neighbor communication between the Streaming Multiprocessors (SM) on the

GPU, thereby allowing some restricted data sharing between consecutive threadblocks. The

SPU includes special storage units, called Communication Buffers, to orchestrate this data

transfer and also provides an explicit mechanism for inter-threadblock synchronization by

way of a special instruction. It claims to achieve energy-efficiency, compared to GPUs, by

reducing the number of off-chip accesses in stencils which in turn reduces the dynamic en-

ergy overhead. Uguen [13] developed a cycle-accurate performance simulator for the SPU,

called SPU-Sim, and evaluated it using a matrix multiplication kernel which was not suitable

for this accelerator. This work focuses on extending the SPU-Sim and evaluating the SPU

architecture using a more insightful benchmark.

ii

We introduce a producer-consumer based inter-block synchronization approach on the SPU,

which is more efficient than the previous global synchronization, and an overlapped multi-

pass execution model in the SPU runtime system. These optimizations have been imple-

mented into SPU-Sim. Furthermore, the existing GPUWattch power model in the simulator

has been refined to provide better power estimates for the SPU architecture. The improved

architecture has been evaluated using a simple 2-D stencil benchmark and we observe an

average of 16% savings in dynamic energy on SPU compared to a fairly close GPU platform.

Nonetheless, the total energy consumption on SPU is still comparatively high due to the

static energy component. This high static energy on SPU is a direct impact of the increased

leakage power of the platform resulting from the inclusion of special load/store units. Our

conservative estimates indicate that replacing the current design of these L/S units with

DMA engines can bring about a 15% decrease in the current leakage power of the SPU and

this can help SPU outperform GPU in terms of energy.

iii

TABLE OF CONTENTS

Abstract . ii

List of Tables . vi

List of Figures . vii

Chapter 1. Introduction . 1

1.1 Problem with Stencils on GPGPU . 1

1.2 The SPU Approach . 3

1.3 Contributions . 3

1.4 Related Work . 4

Chapter 2. Background . 6

2.1 GPGPU Architecture and Programming Model 6

2.2 The Stencil Processing Unit . 8

Chapter 3. A Stencil Benchmark For SPU . 12

3.1 A Simple 2-D Stencil Definition .12

3.2 Analysis of 2-D Stencil on GPU .13

3.3 Analysis of 2-D Stencil on SPU .15

Chapter 4. Optimized SPU Programming Model and Runtime System 17

4.1 Problem of Useless Spill-Restore .17

4.2 Producer-Consumer Synchronization on SPU .21

4.3 Overlapped Execution of Passes .23

Chapter 5. Power Model for SPU . 26

5.1 Overview of GPUWattch .26

5.2 SPU Leakage Power Model .27

5.3 Extending the Dynamic Power Model .30

Chapter 6. Experimental Evaluation and Results . 32

6.1 Experimental Setup .32

iv

6.2 Effect of Optimizations on the SPU .34

6.3 Comparison of SPU with GPU .36

Chapter 7. Conclusion & Future Work . 43

7.1 Limitations of SPU-Sim .43

7.2 Possible Improvement in SPU Microarchitecture44

7.3 Conclusion .46

References . 48

Appendix A. Additional Results . 50

v

LIST OF TABLES

4.1 SPU-specific registers that hold the Pass and Spill/restore related information . . 25

5.1 Components of Dynamic Power in GPUWattch model 27

5.2 Comparison of SM and IU microarchitecture . 29

6.1 Configuration of test platforms on the simulators 33

6.2 List of Test Cases . 34

6.3 Number of off-chip accesses on SPU for different block synchronizations 35

6.4 Leakage Power on the two platforms . 38

7.1 Microarchitectural components within IU and DMA 45

A.1 Test Cases for the experiment with increased CB size 50

vi

LIST OF FIGURES

1.1 Dependence graph of a stencil computation and wavefront scheduling 2

2.1 GPGPU Architecture . 7

2.2 Stencil Processing Unit Architecture . 8

2.3 Data transfer between SMs by switching of CBs at blocksync 9

2.4 Virtualization supported by SPU Runtime system 10

4.1 Activity of SMs on a 4× 4 SPU grid with a single pass of threadblocks 19

4.2 Illustration of Useless Spill/Restore on SPU with global block synchronization . . 20

4.3 Point-to-point synchronization and Overlapped pass execution on SPU 23

6.1 Dynamic Power for 256 × 256 × 256 problem size with different pass execution

models . 36

6.2 Comparison of Execution time on GPU and SPU 36

6.3 Comparison of Dynamic Power consumed by 2-D stencil kernel 38

6.4 Comparison of Energy consumption on SPU and GPU 40

6.5 Division of Total Energy consumed . 41

7.1 Estimated Total Energy on SPU with DMA in place of IU 46

A.1 Speedup on SPU over GPU with Tile size 64 x 64 51

A.2 Comparison of energy consumption with Tile size 64× 64 52

vii

CHAPTER 1

INTRODUCTION

Energy efficiency has become an important metric both in High Performance Computing

as well as embedded systems. It has been identified as one of the top 10 challenges to-

wards achieving exascale computing by DoE’s Subcommitte on Exascale Computing [12].

Improving energy efficiency is critical for accomplishing the DoE mission of 1 exaflop within

a 20 MW power budget. This work focuses on exploring an energy-efficient mechanism

for executing an important class of programs called stencils. Such computations occur in

the core of numerous scientific as well as general-purpose applications which include PDE

solvers, image processing, particle simulations, etc. They have even found a place among

the Berkeley dwarfs [2]. The key characteristic of a stencil is that it involves computing

a multi-dimensional grid of data points, where each point is computed as a function of a

subset of its neighbors. This implies that there are dependences between data points which

may impose constraints on when a point can be computed. Due to the broad applicability

of stencil computations, accelerating these can be beneficial in many respects.

1.1 PROBLEM WITH STENCILS ON GPGPU

Recently, Graphics Processing Units (GPUs) have been gaining popularity as accelerators

for general-purpose applications. Their increasing use led to the invention of the CUDA

programming model (by Nvidia) that is specifically targeted at aiding general-purpose pro-

gramming on GPUs. Compute-intensive kernels like stencils can benefit heavily from the

massive compute power of these accelerators. However, the dependence between computa-

tions, that exist in stencils, introduce some problems on GPGPUs. Tiling is an important

transformation applied to stencils in order to exploit data locality and parallelism, and

1

(a)

t=0 t=1 t=3

(b)

FIGURE 1.1: (a):Dependence graph of data points in a stencil. The nodes indicate data
points and the dashed blue squares represent tiles. (b): The tiled dependence graph, with
the 45◦ wavefronts indicating the timestep at which a tile can be computed (all wavefronts
are not shown to avoid clutter).

thereby achieve better performance. Consider a stencil computation with dependences as

shown by the arrows in Figure 1.1(a). If this computation is tiled as indicated by the dashed

blue rectangles, then we can see that the dependences now transform into dependences be-

tween adjacent tiles. In order to satisfy these dependences, the tiles need to be executed

in a wavefront pattern as shown in Figure 1.1(b). Parallel implementation of most sten-

cils require wavefront scheduling of tiles. In the CUDA implementation of such stencils, a

threadblock may be responsible for computing one or more such tiles; hence, the data de-

pendence between these tiles essentially translate into dependences between threadblocks,

and these blocks will need to synchronize with each other to enforce the wavefront schedule

of tile computation. However, the GPU architecture/CUDA model considers threadblocks

as independent blocks of work executing on a single multiprocessor and does not support

any explicit mechanism to communicate between them except via global memory and in

successive kernel calls. Consequently, any data sharing/synchronization between them needs

to use off-chip resources. Although off-chip memory accesses may not have any impact on

performance for compute-bound kernels, they are very expensive in terms of energy.

2

1.2 THE SPU APPROACH

The Stencil Processing Unit (SPU) is a GPGPU-based accelerator for dense stencil compu-

tations, proposed by Rajopadhye et al. [10]. Its main goal is to execute such computations

more energy-efficiently without degrading performance. The key idea behind SPU is to

enable on-chip communication between neighboring processors on a GPU, by introducing

some simple innovations in the architecture. Since the dependences in stencils are always

between adjacent tiles, an on-chip data transfer mechanism can help reduce the number of

off-chip memory accesses in the GPU implementation of stencils and thereby, decrease the

dynamic energy overhead associated with their execution. In their proposal, the authors

show analytically that
√
P -fold reduction in off-chip accesses is possible with such on-chip

communication support, where P is the number of processors on the platform. More details

about the architecture of the Stencil Processing Unit is described in Chapter 2. This thesis

evaluates the SPU architecture using a stencil benchmark to identify different bottlenecks

and optimizes the initially proposed SPU architecture in order to accomplish its goal of

energy-efficiency.

1.3 CONTRIBUTIONS

The main contributions of this work are:

1. A comprehensive evaluation of the SPU architecture using a more insightful 2-D stencil

benchmark (prior work [13] used a matrix multiplication kernel for this purpose, which

was unrealistic).

2. An optimized inter-block synchronization mechanism that eliminates the redundant

I/O mentioned previously.

3. A load-balanced and more energy-efficient multi-pass execution model for the SPU

runtime system, implemented on the SPU simulator (SPU-Sim).

4. A refined power model for the SPU architecture incorporated into the simulator to

3

estimate both dynamic and static power consumption.

5. We also provide an analytical estimate of the energy gain if we used specialized

spill/restore DMA engines.

1.4 RELATED WORK

Many prior work propose techniques to achieve synchronization/communication between

threadblocks on the GPU. Most of them involve using the global/off-chip memory in one

way or the other. Xiao et al. [14] have proposed three techniques to achieve inter-block com-

munication, two of which use global memory atomics and the third one uses a lock-free global

memory array in order to avoid the overhead of atomic operations. Ranasinghe [11] has also

developed a producer-consumer synchronization technique between threadblocks which uses

a global memory array to record the status of every threadblock. This was inspired by the

idea in the original SPU proposal. The Peer-SM synchronization on GPUs, for wavefront

parallel programs, proposed by Belviranli et al. [4] is also similar to, but less efficient than

Ranasinghe’s technique.

Improving energy-efficiency of stencils by reducing off-chip accesses has been addressed in

various prior works. Zou and Rajopadhye [15] have developed a programming technique

for CPU platforms that employs Flattened Multi Pass strategy for energy efficient paral-

lelization of compute-bound stencils which is very similar to our overlapped pass execution

model on SPU. The aforementioned technique from Ranasinghe [11] also aims to reduce the

total number of off-chip accesses for wavefront parallel programs on GPUs and is found to

be more energy-efficient than the traditional approach, which uses multiple kernel calls to

synchronize between wavefronts. Therefore, in our evaluation, we use Ranasinghe’s method

as our baseline GPU implementation for comparison with the SPU. A survey, by Mittal and

Vetter [8], on the techniques employed for improving energy efficiency on GPU identified

that these can be broadly classified into following five categories:

4

1. DVFS-based

2. CPU-GPU workload division-based

3. Architectural based

4. Dynamic Resource Allocation-based, and

5. Application-specific and programming-level techniques

The previously noted methods used by Belviranli et al. and Ranasinghe fit into the programming-

level technique class, while the SPU approach better aligns with architectural-based class.

However, the examples listed by Mittal and Vetter, for the architecture-based category,

mainly involve modifying existing components in the GPU architecture to save energy. But,

SPU is slightly different from those methods in the sense that it introduces certain new

elements into the existing architecture rather than modifying it. Another architecture-based

approach, recently put forth by Braak and Corporaal, called the R-GPU is also a GPGPU-

based accelerator. It mainly targets programs with limited instruction-level parallelism due

to data dependences and stencils also fall under their targeted class. The R-GPU approach

involves replacing the fine-grained SIMT execution model, within the SMs of a GPU, with

a pipelined execution of dependent instructions on separate CUDA cores. However, SPU

does not make any alterations to the microarchitecture of the SMs on the GPU. Besides, R-

GPU is expected to provide gains only for memory bound kernels while SPU mainly targets

compute-bound stencil kernels.

5

CHAPTER 2

BACKGROUND

This chapter provides an overview of GPGPU architecture, the CUDA programming model

and the SPU architecture proposed in [10]. We have included only details that need to be

understood in order to follow the remaining chapters in this document. More comprehensive

explanation can be obtained by consulting the cited references.

2.1 GPGPU ARCHITECTURE AND PROGRAMMING MODEL

In this work, we will be closely following the Nvidia Fermi [9] architecture for GPU Com-

puting. This GPGPU architecture consists of a set of coarse-grain processors, known as

Streaming Multiprocessors (SM), which are arranged in a 2-D grid. Inside each SM, there

are 32 compute cores (referred to as CUDA cores) capable of integer/floating point opera-

tions, 16 load/store units, 4 special function units (SFU) and other structures for instruction

issue. The GPU follows a Single Instruction Multiple Thread (SIMT) execution model within

each SM, while at the coarse-grain level each SM works independently, executing a set of

fine-grain threads. The threads within an SM can collaborate with each other using the

shared memory (located inside an SM) or using the thread-level barrier instruction provided

by CUDA. The GPU also has a large off-chip memory, also called the global memory, which

can be used to share data between the host processor and the GPU device or between the

SMs within a GPU. The Fermi architecture also includes a last-level L2 cache shared among

all SMs and a small L1 cache which is private to each SM. Figure 2.1 shows a coarse-grained

outline of the GPU architecture. There are also other kinds of on-chip memory residing

within each SM such as the constant cache and the texture cache.

6

SM SM SM SM

SM SM SM SM

SM SM SM SM

SM SM SM SM

Shared L2 Cache

Global Memory

G
P
U

FIGURE 2.1: GPGPU Architecture

The CUDA programming model, used for Nvidia GPGPUs, employs two levels of paral-

lelism just like the architecture. Multiple threads are grouped into coarse-grain units called

threadblocks, and each threadblock runs on a single SM. There maybe multiple threadblocks

running concurrently on one SM, depending on the resource utilization of each block. The

threads within each block is grouped into units called warps. A warp consists of 32 threads

and forms the fundamental unit of dispatch within an SM. Like mentioned before, CUDA

supports two ways to communicate between threads within a threadblock. However, it con-

siders the threadblocks to be independent blocks of work so that the CUDA runtime system

can schedule any block on any SM without any ordering constraints. Consequently, it does

not provide any explicit mechanism to communicate between the threadblocks/SMs; hence,

any such communication has to go through the global memory. The availability of shared L2

cache helps reduce the latency associated with such communication (note that the L1 cache

is private and incoherent; hence, not useful for sharing data between SMs). The part of a

CUDA program which runs on the GPU is generally referred to as a kernel, and the number

of threadblocks and threads per block launched by a kernel is chosen by the programmer.

7

0, 3 1, 3 2, 3 3, 3

0, 2 1, 2 2, 2 3, 2

0, 1 1, 1 2, 1 3, 1

0, 0 1, 0 2, 0 3, 0

3 3

2 2

1 1

0 0

0

0

1

1

2

2

3

3

S
P
U

Global Memory

- SM

- CB

- IU

FIGURE 2.2: Stencil Processing Unit Architecture

2.2 THE STENCIL PROCESSING UNIT

Due to the absence of any form of on-chip communication between the coarse-grain pro-

cessors on a GPU, any data sharing/synchronization between the dependent tiles in stencil

computations has to happen through the off-chip memory or L2 cache which has been found

to be quite energy-expensive [11]. Rajopadhye et al. [10] proposed the Stencil Processing

Unit (SPU) architecture for energy-efficient execution of dense stencil computations by en-

abling a simple form of local communication support on GPGPUs.

2.2.1 Architecture

The SPU architecture introduces the following three elements to allow data transfer between

neighboring SMs:

1. it exposes the 2-D grid topology of SMs on the device and restricts the threadblock-

to-SM mapping,

2. includes a pair of small memory structures (called Communication Buffers) between

neighboring SMs to act as the medium of storage for the data to be shared, and

3. supports an explicit way to synchronize between SMs using a blocksync instruction.

8

SM 0 SM 1

CB 0

CB 1

write

read

(a) Before blocksync

SM 0 SM 1

CB 0

CB 1

write

read

(b) After blocksync

FIGURE 2.3: Data transfer between SMs by switching of CBs at blocksync

Figure 2.2 shows a high level overview of the SPU architecture. The coordinates within each

green block represent the (x, y) coordinates of the respective SM. The red blocks in this

figure represent the communication buffers (CB). The blocksync instruction inserts a global

barrier that stalls any threadblock from advancing until all other active blocks reach this

barrier. The pair of CBs together with blocksync instruction use a ping-pong technique to

transfer data between the multiprocessors, as shown in Figure 2.3. Say, before reaching a

blocksync barrier, SM 0 is writing to CB 0 while SM 1 is reading from CB 1 (as shown in

Figure 2.3(a)). When this barrier is released, the runtime system switches the CBs accessed

by each SM. That is, now SM 0 will be writing the next tile of data to CB 1 while SM 1

can consume the previously written tile in CB 0 (shown in Figure 2.3(b)). Thus, data from

SM 0 gets transferred to SM 1. To keep the programming simple, currently SPU allows

this kind of data propagation between SMs only from west to east along the horizontal axis

and north to south along the vertical axis. Besides supporting this on-chip communication

between SMs, the SPU also includes special load/store units around the SPU processor grid

in order improve the overlap of computation with communication. These units are called

the Interface Units (IU) and are represented by the blue triangles in Figure 2.2. The IUs are

responsible for loading/storing to/from the CBs along the boundary of the grid with tiles

of data from off-chip memory and they also participate in the global blocksync barrier. Due

to the restriction imposed on the direction of data propagation, the north and west IUs act

only as data loaders while the south and east IUs perform only data stores.

9

x

y

(a)

Pass (0,0) Pass (1,0)

Pass (0,1) Pass (1,1)

(b)

FIGURE 2.4: (a):4×4 grid of threadblocks launched by SPU kernel with dataflow along the
direction indicated by the arrows. (b):Division of the threadblocks into passes that fit a 2×2
SPU grid. The blue arrows indicate data propagation through CBs, red arrows represent
data that needs to be transferred across passes.

2.2.2 Programming Model & Abstraction

Basically, the SPU uses the CUDA programming model but the programmer is responsi-

ble for including the code for the IUs and SMs in the kernel to take full advantage of the

SPU architecture. Some special registers have been exposed to the programmer for this

purpose (explained in detail by Uguen [13]). Due to the dependences that exist in stencil

computations, they always require a wavefront scheduling of tiles. The tiles within a wave-

front can be executed in parallel but, in order to satisfy the dependences, there has to be

a synchronization barrier between adjacent wavefronts. On the SPU, the global blocksync

barrier can be used for this purpose. However, the programmer has to take care that all

threadblocks participate in this barrier to avoid deadlock.

Like in CUDA, a user may deploy a large number of threadblocks for a SPU kernel as well.

But, since the SPU’s underlying physical grid has a fixed size, the large grid of threadblocks

launched by the user is divided into smaller grids, called passes, that fit the actual physical

10

grid. Thus, the SPU runtime system executes the threadblocks in a pass-by-pass manner.

For instance, consider a kernel that is launched with a 4× 4 grid of threadblocks, as shown

in Figure 2.4(a), with dataflow as indicated by the arrows. Suppose the SPU has only a

2 × 2 grid of processors, the thread blocks are divided into 4 passes of size 2 × 2 as shown

in Figure 2.4(b). Thus, now we have a grid of passes and the runtime system follows a

row-wise ordering of these passes on the actual grid. The capability to launch a large grid

of threadblocks is a virtualization provided to the programmer by the SPU runtime system

and the actual pass-by-pass execution model is completely hidden from the programmer.

This makes the job of the programmer easier and also allows the SPU kernel to be portable

from one platform to another. In Figure 2.4(b), the blue arrows indicate data propagation

between threadblocks through the CBs. The red arrows indicate the data that needs to be

passed on from one pass to another. If the data produced by one pass is needed by a later

pass, it is stored to a pre-allocated region in the global memory. This process is referred

to as spilling. And, when the consumer pass is scheduled, this data is loaded into the CBs

from the global memory; this is referred to as restoring. The spilling and restoring of data

between passes is taken care of by the runtime system. In the figure, all red arrows are

satisfied using this spill/restore mechanism. In order to orchestrate spill/restore between

passes, the runtime system sets the IUs at those borders to act as what are called Virtual

IUs (VIU) and it inserts special code, for the spill/restore loads and stores by the VIUs, into

the SPU kernel at runtime. Thus, the IUs at the east and south act as spilling VIUs during

Pass (0,0) while those at the west and north act as restoring VIUs during Pass (1,0) and

Pass(0,1) respectively. The existence of VIUs are also not visible to the programmer. More

details about the management of VIUs and the VIU-specific code inserted by the runtime

are discussed in [13].

11

CHAPTER 3

A STENCIL BENCHMARK FOR SPU

In the prior work on SPU and its simulator by Uguen [13], the platform was evaluated using

a matrix multiplication (MM) benchmark. But, the MM benchmark is not a suitable appli-

cation for the SPU as it does not involve dependences and scheduling constraints existent in

real stencil computations. Therefore, the experiments with MM only served to functionally

verify the simulator, but did not help build insightful inferences about the SPU architecture.

In this thesis, we will be using a 2-D stencil benchmark to evaluate the architecture. This

chapter provides description of this benchmark and analytical prediction of the reduction in

off-chip memory footprint achievable on SPU for this stencil.

3.1 A SIMPLE 2-D STENCIL DEFINITION

Consider a Smith-Waterman like simple 2-dimensional stencil with dependences along the 3

canonic directions implying that the iteration space is 3-D. Each point in the 3-dimensional

iteration space is computed as the arithmetic mean of its three canonic neighbors. For any

point (i,j,k) in the iteration space, the computation is defined as:

H[i, j, k] = Mean(H[i− 1, j, k], H[i, j − 1, k], H[i, j, k − 1]) (3.1)

where, 0 ≤ i, j, k < N . At the boundaries of this cubic space, the dependences are on the

N ×N input matrices. That is, for k = 0: H[i, j, k − 1] = A[i, j], for j = 0: H[i, j − 1, k] =

B[i, k], and for i = 0: H[i−1, j, k] = C[j, k]. A, B and C are the input matrices. H[i, j, N−1]

is considered as the primary output matrix.

12

3.1.1 A Lower bound on Memory Accesses

This 2-D stencil has 3 input matrices and 3 output matrices. Let the problem size parameter

be N . For simplicity, lets consider square problem sizes. Then, we have three N ×N inputs

and three N × N outputs. Hence, irrespective of the target architecture, the inevitable

input/output (I/O) for this problem is 6N2. By I/O we mean the total number of load/store

instructions in the program. Hence, 6N2 is a lower bound on the total off-chip memory

accesses for this simple 2-D stencil problem.

3.2 ANALYSIS OF 2-D STENCIL ON GPU

Using standard tiling, let the N3 iteration space of our stencil be divided into cubic tiles of

size b× b× b. Consider a CUDA implementation with a 2-dimensional grid of thread blocks.

Then, each thread block is responsible for a sequence tiles (say, along the k-axis).

tiles executed by a single CTA =
N

b

Memory footprint per tile = 3b2 + 3b2 = 6b2

However, since the tiles along the k-axis are computed by the same thread block, the data

shared between these tiles can reside within the shared memory (by choosing appropriate

tile size) and hence, need not be fetched from global memory, thereby avoiding b2 reads and

b2 writes. Hence,

Total memory footprint of a single CTA = 4Nb+ 2b2 (3.2)

Total # of CTAs =
N

b
.
N

b
=

N2

b2

13

Total memory footprint on GPU =
N2

b2
.(4Nb+ 2b2)

=

(

4N3

b
+ 2N2

)

≈
4N3

b
(3.3)

This stencil involves 3N3 FLOPs. Hence,

Compute - to - communication ratio =
3b

4
(3.4)

Note that due to the kind of dependences present in this 2-D stencil, the tiles need to be

executed in a wavefront manner, which means some kind of synchronization is required be-

tween adjacent wavefronts. In CUDA, this is usually achieved by using multiple kernel calls.

That is, one kernel call per wavefront, implying that the synchronization is done explicitly

by the host CPU. Apart from the overhead of multiple kernel launches, this method does

not allow the reuse of data within the shared memory of the SMs as well.

But a more efficient way of implementing wavefront parallelization on GPU was devel-

oped by Ranasinghe [11], which involves only one CUDA kernel call per stencil and uses

a global array-based synchronization between producer-consumer CTA pairs. It also uses

global memory atomics to override the CUDA runtime system’s ordering of CTA execution.

When using this technique for implementing our 2-D stencil, the analytical value in Equa-

tion(3.3) would be an upper bound on the total memory accesses on GPU (assuming that

the arrays for synchronization stay in the last level cache). The following equation shows

the total energy consumed by this stencil on GPU.

Total energy used on GPU = Dynamic energy + Static Energy (3.5)

=
(

3N3.ecomp

)

+

(

4N3

b
.emem

)

+ Static Energy

14

where, ecomp is the energy consumed per FLOP, and

emem is the energy consumed per memory access.

Prior studies [11, 15] have shown that the second component (due to off-chip memory access)

in the above equation is the dominating part of the dynamic energy overhead. Besides, as

noted in [10], the energy due to the computation is unavoidable. Therefore, the part of

dynamic energy that can be optimized is the factor 4N3

b
.

Static energy = (Average Static power)× (Execution time)

Since static power is a constant for a certain architecture/platform, static energy can be

reduced only by decreasing the execution time.

3.3 ANALYSIS OF 2-D STENCIL ON SPU

As mentioned before, the lower bound on the memory footprint of this 2-D stencil is 6N2.

But it has an O(N3) complexity on GPU mainly due to the absence of a on-chip data sharing

mechanism between the Streaming Multiprocessors (SMs). Enabling some form of commu-

nication between these SMs can bring in some reduction in this overhead. Being able to

locally share the dependent data between thread blocks completely on-chip means the total

off-chip accesses will be reduced to the lower bound. However, since the platform can have

only a fixed number of SMs and the number of CTAs launched can be arbitrarily large, this

is not always achievable.

Let there be a p × p grid of SMs on the platform and if only one CTA is executed on

an SM at a time, the launched grid of thread blocks will have to be executed in passes that

fit the physical grid. Meaning, the N
b
× N

b
grid of CTAs launched needs to be executed

in passes of size p × p. Therefore, the tiles of data to be shared between thread blocks in

15

adjacent passes have to go through the off-chip memory.

Total # of passes =

(

N

pb

)

.

(

N

pb

)

=

(

N2

p2b2

)

(3.6)

Memory footprint of a single pass = 2.
(

2Npb+ p2b2
)

= 4Npb+ 2p2b2 (3.7)

Total off-chip accesses on SPU =
(

4Npb+ 2p2b2
)

.

(

N2

p2b2

)

=
4N3

pb
+ 2N2 ≈

4N3

pb
(3.8)

Overhead due to spill-restore between passes =

(

4N3

pb
+ 2N2

)

− 6N2

=
4N3

pb
− 4N2 (3.9)

Compute - to - communication ration on SPU =
3pb

4
(3.10)

This shows that there is a p-fold improvement in balance possible on SPU over GPU.

16

CHAPTER 4

OPTIMIZED SPU PROGRAMMING MODEL AND RUNTIME SYSTEM

In this chapter, we discuss bottlenecks that were observed while evaluating the SPU archi-

tecture and describe how we resolved them.

4.1 PROBLEM OF USELESS SPILL-RESTORE

Uguen [13] noted that there are some unwanted spills and restores to and from global memory

occurring between passes on the SPU. Let us try to understand this issue using an example.

Consider a 2-D stencil problem with a tiled iteration space of dimension 4 × 4 × 4, meaning,

there are 4 tiles along each dimension. Say, the SPU kernel is launched with a 4× 4 grid of

threadblocks such that each threadblock is responsible for computing 4 tiles. Algorithm 1

shows the pseudo-code executed by each threadblock. Here, (x, y, z) → (x, y) is the tile-to-

threadblock mapping. If the SPU on which this code executes, has a 4 × 4 grid of SMs,

then the SPU runtime will map the (x, y)th threadblock to the (x, y)th SM on the SPU

grid. Due to the dependences in this stencil, the tiles have to be executed in a wavefront

manner. Although all SMs start executing their respective threadblocks simultaneously, each

SM(x, y) has to wait idly at the syncblocks barrier for x + y iterations of the loop before it

can start computing a tile. The wavefronts in Figure 4.1(a) shows the timestep at which each

SM in this SPU starts computing its assigned tiles. Figure 4.1(b) shows the progression of

activity on each SM. Because of the diagonal wavefronts, every SM(x, y) such that x+ y = c

(where, c ≥ 0 is a constant) shows similar activity. So, we plot the SMs along the vertical

axis using x + y, and the horizontal axis represents the timesteps. For this problem, the

wavefront progresses from timesteps 0 to 9 (as indicated by the ‘for’ loop in Algorithm 1).

The syncblocks() in line 11 ensures the necessary synchronization between wavefronts and

17

Algorithm 1 Wavefront time-loop in SPU kernel for a 4×4×4 tiled iteration space

1: i← blockIdx.x
2: j← blockIdx.y
3: k← 0

4: for t from 0 to 9 do
5: if (t ≥ i+ j) AND (k < 4) then
6: Load inputs from north and west CBs
7: Compute Tile(i,j,k)
8: Store output to south and east CBs
9: k← k+ 1;
10: end if
11: syncblocks();
12: end for

allows the output of each tile to be passed on to the neighboring tile (or stored to the global

memory in case of a boundary tile) through the CBs. Note that all the iterations of this

‘for’ loop are executed by every threadblock; hence, every threadblock executes 10 block

synchronizations on the SPU in this kernel. Therefore, when a threadblock is not computing

a tile, it will be idly waiting at a barrier. The filled nodes in Figure 4.1(b) represent a tile

being computed while the unfilled nodes are when the SM/block is waiting at a blocksync.

As far as the SPU programmer is concerned, the activity of the SMs on the SPU is as shown

by this figure.

Now suppose that the SPU executing this kernel has only a 2 × 2 grid of physical processors.

This means that only 4 threadblocks can be running concurrently on the entire SPU at any

time (assuming that only one threadblock can be concurrently executed on a single SM).

So, when a large grid of threadblocks is launched, the SPU’s runtime system splits it into

4 passes of size 2 × 2 that fit the physical grid, as shown in Figure 4.2(a) (the coordinates

marked within each block in a pass indicate the SM on which it is executed). The SPU

runtime system employs a spill-restore technique between passes to ensure correctness of

results. The output produced by the tiles along the east boundary of Pass 0 are spilled

to a pre-defined location in the global memory by the Virtual IUs (VIUs) along the east

18

0,0 3,0

0,3 3,3

t=0 t=1 t=3

t=6

x

y

(a)

x+ y

t
0

6

0 9

(b)

FIGURE 4.1: (a): shows a 4x4 SPU grid with the wavefronts indicating the timestep at
which each SM starts computing a tile as per Algorithm 1. The coordinates marked in the
cells indicate (x, y) coordinates of the SM. (b): Shows the activity of each SM on the 4× 4
grid. Since every SM(x, y) such that x + y = c (where, c ≥ 0 is a constant) shows similar
activity, vertical axis plots the sum of the coordinates of an SM. The filled nodes indicate
that the SM is computing a tile and the unfilled nodes represent the timesteps when the
SMs are idly waiting at a barrier.

boundary of the grid and when Pass 1 starts executing this spilled data is restored from

global memory by the IUs acting as VIUs along the west boundary of the SPU grid. This

spilling and restoring to and from global memory is fully managed by the runtime system and

the programmer is unaware of it. The runtime system accomplishes this by inserting some

VIU-specific global/load store code into the SPU kernel and this inserted code is independent

of any program-specific parameters.

Algorithm 2 gives a pseudocode that is inserted into a SPU kernel by the runtime system to

ensure that the values produced by one pass is appropriately made available to a succeeding

consumer pass. Here, the variables preceded by a ‘$’sign indicate registers that are part

of the SPU architecture and whose values are managed by the runtime system. Lines 3

to 6 are executed on a spilling VIU that stores data to global memory. Therefore, the

number of spills will be equal to the number of syncblocks() encountered by it. However,

19

Algorithm 2 Code inserted for spill-restore between passes

1: if $regviu then
2: if $regiudir == (south OR east) then ⊲ Spilling VIU
3: while !($reglast) do
4: syncblocks();
5: Spill current tile in CB
6: end while
7: end if

8: if $regiudir == (north OR west) then ⊲ Restoring VIU
9: while !($reglast) do

10: Restore next tile to CB
11: syncblocks();
12: end while
13: end if
14: end if

Pass 0 Pass 1

Pass 2 Pass 3

S
p
il
l/
R
es
to
re

S
p
il
l/
R
es
to
re

Spill/Restore Spill/Restore

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(a)

Pass 0 Pass 1

t

x+ y

(b)

FIGURE 4.2: (a): shows the number of passes on a 2 x 2 SPU grid for a problem that
launches 4 x 4 threadblocks, each computing 4 tiles; and the coloring scheme for each pass.
(b): shows a timeline of when Pass 0 and Pass 1 are executed on the SMs. The horizontal
axis is the time-step and the vertical axis is the sum of coordinates of an SM on the grid.
The filled nodes denote that a tile is computed and unfilled nodes denote steps where an SM
has to wait at a blocksync without computing any tile.

the number of restores depends on the number of spills that took place in the producer

pass. Now coming back to Algorithm 1, though every block does 10 iterations of the loop,

it computes a tile and produces useful output only when the condition in line 5 is satisfied

(which happens only 4 out of 10 times in our example). Figure 4.2(b) shows the work done by

20

each SM on the 2×2 SPU grid during every iteration of the loop. As per our example, every

threadblock computes 4 tiles. Therefore, there are only 4 shaded circles per SM per pass.

Nonetheless, every threadblock has to go through 10 syncblocks(), irrespective of the number

of tiles computed by each threadblock. This in turn implies that every SM encounters 10

syncblocks() in each pass where it is scheduled with a threadblock. The runtime system does

not have any information on which blocksyncs are useful and which are not. Consequently,

each spilling VIU between Pass 0 and Pass 1 makes 10 spills to the global memory when

only 4 of those are useful. Since the number of restores depends on the number of spills, the

restoring VIUs also end up doing redundant loads from the global memory.

4.2 PRODUCER-CONSUMER SYNCHRONIZATION ON SPU

The major reason for these unwanted spills/restores, between passes on the SPU, is the

fact that the inter-block synchronization on the SPU is defined as a global barrier, where

all active threadblocks have to reach this barrier in order for the threadblocks to advance.

Also, the multi-pass execution is invisible to the programmer. As a result, in order to avoid

any deadlock, the programmer is forced to design the wavefront time loop in such a way

so that every spawned threadblock executes every required inter-block synchronization bar-

rier in the program. This abstraction supported by the runtime system eases the task of

programming the SPU (to some extent), but it negatively impacts the energy consumption

of the system. Apart from the useless spill/restore issue, there is one more redundancy

resulting from this abstraction. In figure 4.2(b), you can see that though the last tile in

Pass 0 is computed at t = 5, the pass does not finish executing until t = 9. From time-steps

6 to 9, no SM is doing any useful computation. Similarly, in Pass 1, there are periods of

no useful work at the beginning and end of the pass. Such redundant time-steps will ap-

pear at the start and/or end of other passes as well. This extends the overall execution time

of the kernel which in turn leads to increase in both dynamic and static energy consumption.

21

Algorithm 3 SPU kernel with decoupled synchronization for a 4×4×4 tiled iteration space

1: i← blockIdx.x
2: j← blockIdx.y

3: for k from 0 to 3 do
4: syncblocks(NORTH)
5: syncblocks(WEST)

6: Load inputs from north and west CBs
7: Compute Tile(i,j,k)
8: Store output to south and east CBs

9: syncblocks(SOUTH)
10: syncblocks(EAST)
11: end for

The fact that the inter-tile dependences in stencil programs are always between adjacent

tiles makes us question the necessity of a global barrier. An effective solution to both the

aforementioned problems is to replace the global synchronization barrier across all SMs with

a localized variant which allows to synchronize only between two neighboring processors.

This enables the runtime system to still support the programming abstraction while avoid-

ing the redundancies. Thus, we introduce a producer-consumer based synchronization on the

SPU. This is done by simply modifying the existing bar.blocksync instruction to take in an

extra argument that specifies the direction in which to synchronize. Now, every SM has to

synchronize with each of its neighbors in a decoupled fashion, meaning the kernel code needs

to include separate instructions to synchronize with each neighbor. However, this leads to

further simplification of the SPU programming model.

With this point-to-point synchronization technique, the wavefront-time loop in Algorithm 1

is no longer needed. The modified kernel loop executed by a threadblock, running on an

SM, is as shown in Algorithm 3. The k-loop just iterates over each tile that the threadblock

is responsible for computing. The decoupled blocksyncs at the beginning of the loop, along

the NORTH and WEST directions, ensure that the threadblock is stalled from advancing

22

idle
time

idle
time

Pass 0 Pass 1 Pass 2

t

x+ y

(a)

Pass 0 Pass 1 Pass 2

t

x+ y

(b)

FIGURE 4.3: (a): With point-to-point synchronization, the SMs do not have to go through
any more unwanted blocksyncs. Number of blocksync instructions per thread-block is equal
to the number of tiles computed by it. But, since the thread-blocks are scheduled on the SPU
grid in a Pass-by-Pass manner, SMs suffer an idle period between passes. (b): With over-
lapped execution of thread-blocks from different passes, the idle period in SMs is eliminated
leading to better load balance.

until the input data is ready. Likewise, after computation of a tile, the blocksyncs along the

output directions (i.e., SOUTH and EAST) stall the threadblock until its dependent blocks

are ready to use the currently produced output. Thus, now each block needs to execute only

as many iterations as the number of tiles it computes which means the redundant iterations

within each pass (seen in Figure 4.2(b)) are not present any more. Also, the number of

spills executed by each VIU is now equal to the number of blocksyncs it resolves with its

producer SM. For instance, the number of spills by an east VIU is equal to the number of

syncblocks(EAST) executed by its neighboring SM along the east boundary. Figure 4.3(a)

illustrates the work done by each SM on a 2 × 2 SPU grid, for our previous example, when

implemented using point-to-point synchronization. Here, you see that each pass finishes as

soon as its last tile is computed.

4.3 OVERLAPPED EXECUTION OF PASSES

In Figure 4.3(a) we can see that each pass now finishes as soon as its last tile is computed

(and output stored to the global memory). However, the runtime system follows a pass-

by-pass scheduling of threadblocks to SMs. Consequently, threadblocks from Pass 1 are

scheduled only after Pass 0 completely finishes execution and all its threadblocks exit. The

23

last threadblock in Pass 0 exits after t = 5; hence, Pass 1 starts only at t = 6. However,

there are other threadblocks in Pass 0 which exit before t = 5 and the corresponding SMs

stay idle until the next pass is scheduled. For example, SM(0, 0) finishes its tiles in Pass 0

by t = 3 and stays idle until t = 6. Such gaps of idle period are seen on every SM when

advancing from one pass to another. During such idle periods, though there is no dynamic

activity on the SMs they add to the static energy overhead of the SPU.

In order to enable the multi-pass execution of threadblocks on the SPU grid, some special

registers have been included in the SPU architecture [13]. These registers hold information

related to the index of the passes, spill/restore counts of VIUs, etc. This information is

necessary to aid the runtime system in scheduling the passes and also for memory address

calculation related to spills and restores between passes. However, each piece of information

is maintained at a global scope, meaning there is only one register available per datum for

the entire SPU. For example, there is only one register ’cpassx ’ which holds the x-coordinate

of the currently executing pass; hence, all SMs have to be in the same pass at any time.

Maintaining the pass and spill status information at a global level limits the runtime sys-

tem’s capability of executing threadblocks belonging to different passes simultaneously on

the SPU grid.

However, in order to eliminate the idling of SMs between passes, seen in Figure 4.3(a),

it is necessary to allow threadblocks from a subsequent pass to be scheduled on an SM as

soon as it finishes its threadblock in the current pass. We refer to such an execution model

as the ‘overlapped execution of passes’ since threadblocks from different passes may be con-

currently running on the SPU grid. In order to enable this overlapped pass execution model,

the SPU hardware registers that store the status of passes and spill/restore are now moved to

a local scope. This means that every SM and/or IU has its own register to hold these status

information thereby allowing each processor to progress its state without waiting for others.

24

TABLE 4.1: SPU-specific registers that hold the Pass and Spill/restore related information

Register Description Scope
regpassx Total number of passes along the horizontal

dimension for current kernel
Global

regcpassx x-coordinate of the currently executing pass Local
regcpassy y-coordinate of the currently executing pass Local
regspillnb total spills/restores (blocksyncs) in one pass

(used only by IUs)
Local

regcspillnb count of the completed spill/restore in cur-
rent pass

Local

Table 4.1 shows the SPU’s registers that hold status of passes and inter-pass spill/restore.

The ones with ’Local’ scope are the ones that have been modified (localized) to support the

overlapped pass execution model. With this optimized execution model, the activity of the

SMs on a 2× 2 SPU grid for our example is as shown in Figure 4.3(b).

25

CHAPTER 5

POWER MODEL FOR SPU

This chapter describes how we extended an existing GPU power model to estimate both

dynamic and static power consumption of the Stencil Processing Unit. First, we provide

an overview of the existing GPUWattch power model and then explain the modifications

included to extract a refined power estimate for the SPU architecture.

5.1 OVERVIEW OF GPUWATTCH

Leng et al. [6] has developed a power model for GPGPUs, called GPUWattch, that is capa-

ble of cycle-level power calculations. This model was incorporated into the GPGPU-Sim [3]

simulator. The total power consumption of any platform comprises two elements, namely,

dynamic power and static power. In GPUWattch, the dynamic power model is driven by

30 different performance counters whose values are updated periodically by the performance

simulator in GPGPU-Sim. These counters are associated with different microarchitectural

components of the GPU architecture and the dynamic activity collected by them are sent

to the power model at regular intervals (approximately every 500 cycles). This enables

GPUWattch to build a trace of the instantaneous dynamic power consumption for a simu-

lated kernel and thereby estimate the average dynamic power consumed by the kernel at the

end of the simulation.

At the back-end, GPUWattch uses McPAT [7] for modeling the different microarchitectural

components in the GPU architecture. Since the fundamental blocks available in McPAT

are mostly suited for general-purpose CPUs, Leng et al. adapted these to conform to the

NVIDIA GPGPU processor design and followed an iterative approach of empirical valida-

26

TABLE 5.1: Components of Dynamic Power in GPUWattch model

Component Description
IBP Instruction Buffer Power
ICP Instruction Cache Power
DCP L1 Data Cache Power
TCP Texture Cache Power
CCP Constant Cache Power
SHRDP Shared Memory Power
RFP Register File Power
SPP Streaming Processor execution unit Power
SFUP Special Function Unit Power
FPUP Floating Point Unit Power
SCHEDP Warp Scheduler Power
L2CP Shared L2 cache power
MCP Memory Controller power
NOCP Network-on-chip power
DRAMP DRAM power
PIPEP Power associated with the Pipeline
IDLE COREP Dynamic power associated with cores that

are idle due to load imbalance [6]
CONST DYNAMICP Constant component of dynamic power [6]

tion and correction to refine the GPUWattch power model. The static power of the GPU is

estimated by McPAT. It takes into consideration the different parameters, provided through

the GPUWattch configuration file, to model the different architectural blocks. For dynamic

power estimation, it uses the values collected by the performance counters from GPGPU-

Sim. The value collected within each performance counter is described in the GPUWattch

manual [1]. The total dynamic power is computed as the sum of runtime power consumed

by 18 different modeled components. These components of dynamic power are summarized

in Table 5.1.

5.2 SPU LEAKAGE POWER MODEL

The Stencil Processing Unit has been derived from the NVIDIA GPGPUs by adding a few

microarchitectural blocks to the existing architecture; but, it does not alter the design of any

of the current components. Consequently, the existing GPUWattch model can be refined

27

to estimate SPU’s power consumption by simply adding necessary parts and/or counters

to model these newly included components. The two additions, introduced by SPU, in the

architecture are: (1) Communication Buffers (CBs) and (2) Interface Units (IUs). Therefore,

we incorporated models for these two units into the existing GPUWattch.

5.2.1 Modeling Leakage Power of Communication Buffers

The Communication Buffers (CB) are the units of storage shared by a pair of neighboring

processors on the SPU included to enable on-chip data sharing between neighbors. Since

the CBs have been conceived as a simple extension to the shared memory within an SM,

they are modeled exactly like the shared memory as pure RAM with multi-banked structure.

The size of the CB is configurable through the input file to GPUWattch. Since there is a

pair of CBs between every pair of neighboring coarse-grain processors (both SMs and IUs

are considered as coarse-grain units on the SPU), we view them as four CB memory spaces

associated with each SM and 1 CB space associated with each IU, and these are included

into the respective models in GPUWattch. Thus, the total CB storage space in a SPU is

given by:

Total CB space = (4× (#SMs) + 1× (#IUs))× (Size of single CB) (5.1)

5.2.2 Modeling Leakage Power of Interface Units

The Interface Units (IU) have been added along the boundary of the SPU grid to orchestrate

overlapping of off-chip memory access with computation. Their purpose is to perform set

of load/stores between global memory and communication buffers along the border. This

being an early study on the SPU architecture, we would like to keep the conception of IU

simple and easy to understand. So, currently the IU is modeled as a truncated SM, that

is, an SM with limited capabilities. Since their primary function is to perform loads and

stores, the instructions executed by these units are likely to a subset of integer arithmetic

28

TABLE 5.2: Comparison of SM and IU microarchitecture

Component SM IU
Instruction Fetch Unit X X

Load Store Unit:
Shared Memory X ×
Constant Cache X X

Texture Cache X ×
Communication Buffer X X

Execution Unit:
Register File X X

Instruction Scheduler X X

Integer ALU X X

Floating Point Unit X ×
Special Function Unit X ×
Complex ALU (mul/div) X X

instructions for address calculation, branches and of course, load/store instructions to global

and CB memory spaces. Therefore, some of the microarchitectural blocks in an SM are not

going to be used by the IUs. Table 5.2 lists the microarchitectural components within an

SM and IU. Those marked with a ‘×’ symbol indicate the parts that are not present in the

IU. This model of IU has been incorporated into the existing GPUWattch, to get a more

realistic estimate of leakage power for the SPU.

We currently do not have a compiler for the SPU; hence, we use hand-written assem-

bly (PTX) benchmarks for the SPU. In our benchmarks, we make sure that the code for

the IU does not contain instructions that are beyond its capability. The SPU programming

model calls for the programmer (or a compiler) to include the code for the IUs in the SPU

kernel. Eventually, it would be the compiler’s responsibility to ensure that the instructions

compiled for the IU conform to its limited capability. It should also be noted that since

the Interface Units are merely specialized load/store units, they can be implemented as op-

timized DMA engines. We discuss this in the final chapter and its implementation will be

part of our future work.

29

5.3 EXTENDING THE DYNAMIC POWER MODEL

As noted before, the dynamic power estimation in GPUWattch is driven by a set of 30

performance counters which record the activity pertaining to different architectural blocks

within the GPU. These values are collected from GPGPU-Sim and passed on to GPUWattch

through a software interface. The available counters can be broadly classified into two types:

the ones that are related to resources shared by all SMs, and those collecting activity of

components private to each SM. In the case of the latter set, the activity across all SMs is

nevertheless accumulated into a single counter and sent to the power model. For instance,

the shared memory is a resource that is private to every SM on the GPU and the accesses

to this resource occur within each SM independently. However, the total number of shared

memory accesses, across all SMs, is accumulated into a single performance counter, namely

SHRD ACC. Since all the shared memory regions present in the GPU are architecturally

uniform, the power consumed per access of this region is same, irrespective of whether it

occurs in SM(0,0) or SM(2,2). Therefore, it is sufficient to track the total number of accesses

in order to compute the dynamic power spent in performing them.

Following this principle, we add an extra performance counter, called CB ACC, in the

SPUSim to record the total number of accesses to the Communication Buffers across all

coarse-grain processors (which includes both SMs and IUs). Using this counter, the new

CBP (Communication Buffer Power) component of dynamic power is calculated in the

GPUWattch. This is the extra power component added, to the existing list given in Ta-

ble 5.1, so as to adjust the estimated dynamic power for the SPU. Note that this new

performance counter was included in the SPUSim by Uguen [13], nonetheless it was not

being used in the actual power estimation due to absence of a proper model for the CBs.

With the inclusion of a shared memory-like model for the CBs into GPUWattch, a better

estimation of runtime power consumed by these storage units is now in place.

30

The other addition in SPU architecture is the IUs. In order to account for the dynamic

power consumed by these units no add-ons are necessary. As the microarchitectural blocks

in the IUs are a subset of those in the SMs, the activity within the IUs will be accumulated

into the appropriate existing counters by the original GPGPU-Sim implementation. Hence,

though we do not isolate the dynamic power used by the IUs, it is completely accounted for

in the power report generated by the extended GPUWattch model in SPU-Sim.

31

CHAPTER 6

EXPERIMENTAL EVALUATION AND RESULTS

We implemented the previously described optimizations for the SPU architecture as well as

the refined power model into the SPU-Sim. With this in place, we conducted experiments

using the 2-D stencil benchmark in order to study its benefits. We now present these results.

6.1 EXPERIMENTAL SETUP

First, let us look at the details of the platforms and test cases we use in our experiments.

6.1.1 Test Platforms & Benchmark

In this study, we compare the efficiency (in terms of different metrics) of the SPU platform

with that of an existing GPGPU platform. We use SPU-Sim to simulate the SPU architec-

ture while the chosen GPU is simulated on GPGPU-Sim [3]. The configuration of the two

simulated architectures is given in Table 6.1. Since GPGPU-Sim is capable of simulating

only the Nvidia Fermi architecture, we choose to use the GTX 480 device as our reference

GPU platform, while for the SPU we use a 4 × 4 grid on SPU-Sim. We keep the L1 and

L2 caches as it is on the original GTX 480, with L1 cache configured to be 16KB. On the

other hand, we do not want to use any data cache on the SPU. Therefore, these units are

turned off for the SPU in the performance simulator and power model configurations. All

CUDA code compilation has been done using CUDA 4 toolkit (as this is the highest version

compatible with both the simulators).

The code for real-world stencils like the Jacobi-2D that has non-canonic dependences, using

the synchronizations we have on SPU, can be quite complex. Even on CPU, the generated C

32

TABLE 6.1: Configuration of test platforms on the simulators

Target Number of SMs L1/L2 cache Core frequency Simulator
GTX 480 15 ON 700 MHz GPGPU-Sim

SPU 4 × 4 OFF 700 MHz SPU-Sim

code for multi-pass execution with similar synchronizations [15] contains more than 300 lines

and 6 nested loops. Writing such code for the SPU with the extended instruction set would

require significant effort. As no code generator tools or compilers are currently available for

the SPU, we limit our evaluation to only one benchmark. Of course, additional benchmarks

will eventually be necessary, but are beyond the scope of this thesis.

All results presented in this study use the simple 2-D stencil benchmark described in Chap-

ter 3. On GPU, we use the energy-efficient multi-pass implementation proposed by Ranas-

inghe [11] which uses a global array based synchronization between dependent blocks and

global memory atomics to ensure deadlock-free execution. The SPU kernel conforms to the

defined SPU programming model.

6.1.2 Test Cases

The results presented in the following sections use a subset of the problem sizes listed in

Table 6.2 for evaluation. In the benchmark description given in Chapter 3, we used only

one problem size parameter (N) as we were considering square input matrices; hence cubic

iteration space. In order to represent non-cubic problem shapes in our evaluation, we refer

to the third dimension of iteration space as K. The size along this dimension essentially

controls the number of tiles computed per threadblock. The size of a single CB on the SPU is

set to 4 KB for all our experiments except in Section 6.3.4. Therefore, we use a tile size of 32

with all test cases, on both SPU and GPU. This may not be the optimal tile size, but finding

and using the optimal tiles is not in the scope of this work. As the simulation time is very

high for large problem sizes, we limit our tests to deploy only up to 4 passes on the SPU grid.

33

TABLE 6.2: List of Test Cases

N × N × K
Tile
size

Subtile
size

#
thread-
blocks

#
threads
per block

Passes
on SPU
grid

CB
Size
(KB)

Passes
with
partial
grids

128 × 128 × 128 32 4 4 × 4 8 × 8 1 × 1 4 No

256 × 256 × 256 32 4 8 × 8 8 × 8 2 × 2 4 No

320 × 320 × 320 32 4 10 × 10 8 × 8 3 × 3 4 Yes

384 × 384 × 384 32 4 12 × 12 8 × 8 3 × 3 4 No

512 × 512 × 512 32 4 16 × 16 8 × 8 4 × 4 4 No

256 × 256 × 512 32 4 8 × 8 8 × 8 2 × 2 4 No

320 × 320 × 512 32 4 10 × 10 8 × 8 3 × 3 4 Yes

384 × 384 × 512 32 4 12 × 12 8 × 8 3 × 3 4 No

The case 512× 512× 512 takes about 4 hours and the case 1024× 1024× 1024 (mentioned

in Table A.1) takes upto 10 hours to complete. We also include special cases where a subset

of the passes do not completely occupy the processors on the SPU grid. For instance, when

N = 320, there are only 10 threadblocks along each dimension; hence, the passes along the

east and south boundary will occupy ≤ 3

4

th
of the processors on the SPU grid. These are

also the cases where some of the SMs will take up the role of IUs during the execution of

the partial passes.

6.2 EFFECT OF OPTIMIZATIONS ON THE SPU

In Chapter 4, we discussed some improvements beyond the originally proposed design. This

section presents the results that empirically validate their benefits.

6.2.1 Impact of producer-consumer synchronization

Ideally, the total number of off-chip accesses on SPU for the simple 2-D stencil problem is

given by Equation 3.8 in Chapter 3. The global inter-block synchronization, proposed for

the SPU in the earlier works, resulted in many useless global memory accesses. However, as

explained before, replacing this global synchronization mechanism with producer-consumer

synchronization (also referred to as localized sync) between neighboring blocks helped resolve

34

TABLE 6.3: Number of off-chip accesses on SPU for different block synchronizations

N × N × K
Number of Off-chip Accesses on SPU

with global sync with localized sync

128 × 128 × 128 98304 98304

256 × 256 × 256 1179648 655360

this problem. Table 6.3 shows the number of global accesses observed with the two inter-block

synchronization techniques. With localized sync, the values exactly match those predicted

by the analytical formula in Equation 3.8. Here, p = 4 (as our target SPU has a grid of 4 × 4

SMs) and we use tile size b = 32. Note that when N = 128, the off-chip accesses is same

for both cases because the number of threadblocks are such that only one pass needs to be

executed on the SPU. This test case essentially helps validate the functional correctness of

the SPU simulator.

6.2.2 Impact of overlapped pass execution model

The idle activity time on SMs, that was occurring between passes with the pass-by-pass

scheduling, was eliminated by allowing overlapped pass execution model. This helped reduce

the execution time of the kernel as well as the dynamic power consumption of the SMs. For

a 2-D stencil of size 256 × 256 × 256, the optimized pass execution model resulted in 31%

lower execution time and 17% lower dynamic power over the prior non-overlapped model.

Figure 6.1 shows the components of dynamic power (described in Table 5.1) measured with

the two models on SPU-Sim. Some of the components are not shown in this chart because

either the corresponding part is turned off on the SPU or their average recorded value is

less than 0.1 W. It is clearly seen that the ‘IDLE COREP’ component is high in the case of

non-overlapped model which is a direct impact of the SMs consistently staying idle between

passes.

35

0

5

10

15

20

25

30

non-overlapped

passes

overlapped

passes

A
ve

ra
g

e
 D

y
n

a
m

ic
 P

o
w

e
r

(W
)

CONST_DYNAMICP

IDLE_COREP

PIPEP

DRAMP

NOCP

MCP

SCHEDP

FPUP

SFUP

SPP

RFP

SHRDP

CCP

FIGURE 6.1: Dynamic Power for 256 × 256 × 256 problem size with different pass execution
models

0.00

0.50

1.00

1.50

2.00

2.50

128 x

128

256 x

256

320 x

320

384 x

384

512 x

512

256 x

512

320 x

512

384 x

512

N
o

rm
a

li
ze

d
 E

xe
cu

ti
o

n
 T

im
e

gpu-sim gpu-sim-1CTA/SM spu-sim

FIGURE 6.2: Comparison of Execution time on GPU and SPU. (The values are normalized
to the gpu-sim)

6.3 COMPARISON OF SPU WITH GPU

Now, let’s compare the performance of our benchmark on SPU with that on GPU. All SPU

results presented in this section use point-to-point synchronization between threadblocks and

overlapped pass execution model.

36

6.3.1 Execution Time

The number of core clock cycles, obtained from the simulator(s), is used as the measure

of execution time. Figure 6.2 shows the execution times on the two platforms for all the

test cases listed in Table 6.2. On the GPU, the runtime system is capable of scheduling

multiple threadblocks concurrently on a single SM (depending on the resource utilization

per threadblock). But, SPU-Sim currently does not support this feature. Therefore, in order

to do a fair comparison, we run the test cases on GPGPU-Sim with and without concurrent

threadblocks placed on an SM. The bars corresponding to ‘gpu-sim-1CTA/SM ’ indicate the

case where only one threadblock is scheduled on any SM at a time.

Remember that the SPU proposes to improve the energy consumption by reducing the total

off-chip accesses. This is not likely to have much effect on the execution time as our chosen

benchmark is a compute bound problem. Nonetheless, we see an average 1.31× speedup

on SPU with respect to gpu-sim-1CTA/SM. This is due to the difference in the number of

processing elements on the two platforms. GTX 480 has only 15 SMs while our simulated

SPU has 16 SMs. Apparently, we also see that with concurrent threadblock execution en-

abled on GPU, it executes much faster than the SPU. This feature is expected to have a

positive impact on the SPU performance as well, since it will result in fewer passes on the

SPU grid. However, as noted before, this is currently not supported on SPU-Sim and hence,

not explored in this paper.

6.3.2 Power Consumption

Both dynamic and static power consumption estimates are collected from GPUWattch on

GPGPU-Sim and the extended power model on SPU-Sim. The leakage power reported by the

respective tools are shown in Table 6.4. The SPU consumes nearly 70% more leakage power

than the GPU. This is mainly due to the addition of the special load/store units (namely,

IUs) around the SPU grid. Because the IU has been modeled as a truncated SM, the leakage

37

TABLE 6.4: Leakage Power on the two platforms. (Note that changing the size of the CBs
on SPU from 4 KB to 16 KB increased leakage power only by about 4%.)

Modelled
Leakage Power

GTX 480 46.4 W
SPU (16 SMs + 16 IUs

+ 4KB CB)
79.1 W

SPU (16 SMs + 16 IUs
+ 16KB CB)

82.4 W

0

5

10

15

20

25

30

35

40

45

128 x

128

256 x

256

320 x

320

384 x

384

512 x

512

256 x

512

320 x

512

384 x

512

A
v

e
ra

g
e

 D
y

n
a

m
ic

 P
o

w
e

r
(W

)

gpu-sim gpu-sim-1CTA/SM spu-sim

FIGURE 6.3: Comparison of Dynamic Power consumed by 2-D stencil kernel

power per IU is very close to that of an SM. Moreover, for the size of grid that we simulated

the number of IUs is equal to the number of SMs, whereas this is a diminishing number as

the architecture scales up.

Figure 6.3 shows the dynamic power consumed by the 2-D stencil kernel on GPU and SPU.

For all cases, except N = 128, there is more power being consumed by gpu-sim, while gpu-

sim-1CTA/SM and spu-sim consumes comparable dynamic power. The higher power on

gpu-sim is on account of multiple threadblocks being executed on each SM which results in

more dynamic power being drawn by each multiprocessor. In the case of N = 128, there is

only 1 pass being executed on both GPU and SPU. And because of the extra dynamically

active units present on the SPU, the dynamic power consumed by SPU is more in this case.

38

6.3.3 Energy Consumption

Energy is the product of power and time. Using the statistics collected from the simulator,

the total energy is computed as:

Total Energy in mJ =
(Number of core clock cycles)× (Total Power in W)

(Core clock frquency in MHz)× 1000
(6.1)

where, Total Power = Leakage Power + Average Dynamic Power.

The core clock frequency for the platforms is listed in Table 6.1. Since the static/leakage

power for a platform is constant, irrespective of the code it executes, the values listed in

Table 6.4 is used to compute the energy. Figure 6.4(a) gives a comparison of dynamic

energy consumed by the stencil kernel on both GPU and SPU. In majority of the multi-pass

test cases, the dynamic energy consumed on SPU is less than that on GPU. There is 12%

average reduction in dynamic energy on SPU. The only anomaly is in the case of N = 320

which exhibits passes with partial grids. Remember that the SPU architecture claims to

achieve energy-efficiency by reducing the dynamic energy overhead associated with stencil

computation on GPGPU. Overall, this result is an indicator that it indeed achieves this

claim.

That being said, when considering the total energy consumption (Figure 6.4(b)), SPU fares

much worse than GPU. On an average, the total energy on SPU is about 85% more than

that on GPU (excluding the cases with incomplete passes). In spite of comparatively lower

dynamic energy, the higher net energy on SPU apparently points a finger at the static energy.

From Figure 6.5(a), we can understand that static energy accounts for 70-80% of total energy

consumed on the Stencil Processing Unit. Figure 6.5(b) gives a comparison of the energy

parts on SPU and GPU for the 512 × 512 × 512 case. It is evident that dynamic energy

is lesser on SPU but the total energy is higher only because of the static energy. This is a

direct impact of the high leakage power observed on SPU.

39

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

128 x

128

256 x

256

320 x

320

384 x

384

512 x

512

256 x

512

320 x

512

384 x

512

N
o

rm
a

li
ze

d
 D

y
n

a
m

ic
 E

n
e

rg
y

gpu-sim gpu-sim-1CTA/SM spu-sim

(a) Comparison of Dynamic Energy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

128 x

128

256 x

256

320 x

320

384 x

384

512 x

512

256 x

512

320 x

512

384 x

512

N
o

rm
a

li
ze

d
 t

o
ta

l e
n

e
rg

y

gpu-sim gpu-sim-1CTA/SM spu-sim

(b) Comparison of Total Energy

FIGURE 6.4

40

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

128 x

128

256 x

256

320 x

320

384 x

384

512 x

512

256 x

512

320 x

512

384 x

512

P
e

rc
e

n
t

T
o

ta
l

E
n

e
rg

y

Static Energy Dynamic Energy

(a) Composition of Total Energy on SPU

0

500

1000

1500

2000

2500

3000

3500

4000

gpu-sim gpu-sim-1CTA/SM spu-sim

T
o

ta
l
E

n
e

rg
y

 (
m

J)

Static Energy Dynamic Energy

(b) Division of energy on different platforms for N = 512

FIGURE 6.5

41

6.3.4 Effect of changing size of CB on SPU

The tile size, for our 2-D stencil, on the SPU is limited by the size of a single CB, which

is set to 4 KB (shown in Table 6.2). This implies it can hold only up to 1K of 4-byte ints

or floats. Hence, 32 × 32 is the maximum tile size we can use for this problem. With this

tile size, the occupancy a threadblock on a single SM is low. On the GPU, however, the net

occupancy on an SM is improved by placing multiple threadblocks concurrently. Since this

feature is not available on SPU-Sim, all the test cases used so far suffers poor resource utiliza-

tion on the SPU. To improve this situation, it is necessary to increase the size of CB on SPU.

We also conducted experiments with the size of CB set to 16 KB. This allows for the tile size

to be increased to 64 which in turn increases the shared memory usage in the 2-D stencil

kernel for a single threadblock. The shared memory size required per threadblock is such

that it prevents more than 1 block being concurrently executed on an SM. This happens on

both GPU and SPU. Quadrupling the size of CBs raised the leakage power of the SPU by

only about 4% (refer to Table 6.4), indicating that the contribution of these storage units to

the net leakage of SPU is not as high as that of IUs. The observations from these experiments

are very similar to what we have already seen. Excluding the single pass test case, there

is 16% savings in dynamic energy while the total energy consumed on SPU is still 1-10%

percent more than on GPU. Details of the test cases and charts related to execution time

and energy for this experiment are presented in Appendix A.

42

CHAPTER 7

CONCLUSION & FUTURE WORK

Our experiments indicate the viability and benefits of the proposed Stencil Processing Unit.

Yet, further optimizations/extensions and more elaborate study on the architecture is nec-

essary to fully justify the gains from this platform. In this final chapter, we give an overview

of certain limitations prevailing in our tool, discuss an architectural improvement that can

help the SPU outperform GPU in terms of energy, and summarize all inferences from this

study.

7.1 LIMITATIONS OF SPU-SIM

The study on the SPU is still in an early stage and so is our simulator (SPU-Sim) for

exploring this architecture. This tool currently has the following shortcomings which will be

resolved in our future development work.

1. No Concurrent Placement of multiple threadblocks on an SM :

This point was noted in our results section. On the GPGPU, the runtime system

tries to schedule multiple threadblocks concurrently on a single SM depending on the

block’s resource utilization. This feature is currently not implemented on SPU-Sim.

The availability of multiple independent warps to a scheduler helps improve memory

latency hiding and this is important to GPGPU-like accelerators with small on-chip

caches. However, the possible gains from it for the SPU may not be same as that on

GPU. Supporting this on SPU-Sim requires careful formulation of strategies for how to

emulate the CBs shared between threadblocks executing on the same SM, how to share

the CBs (attached to the SM) between these concurrently placed blocks, and when a

43

CB has to be shared between 2 blocks on same SM, how should the point-to-point

block synchronization be handled.

2. Non-Configurable grid of processors on SPU :

Currently, the SPU-Sim can simulate an SPU with a 4 x 4 processor grid only. This

means 16 SMs and a total of 16 IUs around it. Many duties of the SPU runtime

system including the threadblock to SM mapping, dynamic assignment of values to

the iuid register in IUs/VIUs, identifying neighboring pairs of processors for block

synchronization are all dependent on the grid co-ordinates of the SMs and IUs. These

are currently not implemented using parametric functions; hence, this limitation.

3. Interface Units modeled as truncated SMs :

The Interface Units around the SPU grid are currently implemented as limited capabil-

ity SMs that execute instructions to realize their functionality. However, their primary

duty is only to perform sets of loads and stores from the off-chip memory. Therefore,

a rather better design would be to have them as specialized DMA units. In the next

section, we discuss this in more detail.

7.2 POSSIBLE IMPROVEMENT IN SPU MICROARCHITECTURE

As per our experimental results, the major roadblock in achieving SPU’s energy efficiency

goal is its high static energy consumption.

Static Energy = Execution Time× Leakage Power (7.1)

This component of energy is directly proportional to both execution time and leakage power,

and reducing it requires reducing one or both of these factors. Given that the execution time

is already well-optimized, the focus should be on how to minimize the leakage power, and

this calls for changes in the microarchitecture. As shown earlier, it is the addition of the IUs

that acutely raised the leakage power of the SPU over GPU.

44

TABLE 7.1: Microarchitectural components within IU and DMA

Component IU DMA
Instruction Fetch Unit X ×
Load Store Unit:

Constant Cache X ×
Communication Buffer X X

Execution Unit:
Register File X X

Instruction Scheduler X ×
Integer ALU X X

Complex ALU (mul/div) X ×

The way the IUs are currently implemented in SPU-Sim is like a general purpose multiproces-

sor that has to do software work (i.e., fetch, decode and execute instructions) in order to real-

ize the data transfers between off-chip and on-chip memory. A Direct Memory Access (DMA)

engine can essentially do the same work completely on hardware. Jamshidi et al. [5] pro-

posed the idea of augmenting the multiprocessors on a GPGPU with special units called

Data-Parallel DMA or D2MA to provide a direct path for data transfers between global and

shared memory. A similar design would be the right candidate for our SPU as well, except

that in addition to adding them to the SMs, we also need stand-alone units surrounding

the SPU’s processor grid allowing direct transfers between the global memory and the CBs

along the boundary.

Now, we will try to estimate the reduction in leakage power that may be obtained by re-

placing the IUs with such DMA engines. A DMA unit is like a finite state machine that

performs a set of contiguous memory transfers directly between the source and destina-

tion spaces without involving intermediate registers. Consequently, such an engine does not

require any Instruction Fetch Unit (IFU), Instruction Scheduler or even a complex ALU.

However, it will need a minimal register file and integer ALU to enable address calculation.

Table 7.1 shows the components, within the current IU design, that can be avoided when us-

45

0.0

0.5

1.0

1.5

2.0

2.5

128 x 128 256 x 256 384 x 384 512 x 512 256 x 512 384 x 512

N
o

rm
a

li
ze

d
 t

o
ta

l
e

n
e

rg
y

gpu-sim gpu-sim-1CTA/SM spu-sim spu-sim-DMA

FIGURE 7.1: Estimated Total Energy on SPU with DMA in place of IU

ing a DMA engine and the resulting leakage power for our SPU platform (with CBs of 4 KB)

will be about 66.8 W which is 15% less than that with current IU design. In Figure 7.1,

spu-sim-DMA shows an estimate of the total energy consumed by SPU, for the test cases in

Table 6.2, with this reduced leakage power value. We see that, with this improvement, the

total energy on SPU can be about 12% lesser than gpu-sim-1CTA/SM. Remember, this is a

very coarse estimate which does not take into consideration any impact of the design change

on execution time or dynamic power.

7.3 CONCLUSION

In this thesis, we introduced two important optimization to the SPU’s runtime system,

namely, (i) producer-consumer synchronization between threadblocks, and (ii) overlapped

pass execution, and also developed a power model for the architecture that provides a re-

fined estimate of the dynamic and static power consumed by a SPU kernel. This improved

architecture was evaluated using a simple 2-D stencil benchmark to empirically show the

gains from the optimizations. We also compared the execution time, energy and power con-

sumption of the SPU with that of a known GPU platform for the same benchmark. It is seen

that the SPU uses an average of 12% lower dynamic energy than GPU, which bolsters the

claim of saving energy by reducing the dynamic energy overhead. However, the inclusion of

46

the special load/store units (IUs) on the SPU increased its leakage (static) power drastically.

Therefore, the total energy consumption on SPU is observed to be higher than on GPU with

static energy accounting for more than 70% of the net energy for all test cases.

We noted the inefficiency in our current IU design and propose to replace them with DMA

engines in future. Our conservative estimates indicate a possible 15% reduction in SPU’s

leakage power with the use of DMA, and this can help the SPU outperform GPU in terms of

energy consumption. In order to fully establish the benefits of the Stencil Processing Unit,

more extensive architectural exploration is necessary, for which the inflexibilities in the ex-

isting SPU-Sim simulator need to be resolved. Further, it is also important to evaluate SPU

with more realistic stencil benchmarks to show its gains in real-world applications. The

development of benchmarks for SPU is currently a tedious task due to the lack of a compiler

or code generator for its extended ISA. Addressing these identified limitations will be part

of our future work.

47

REFERENCES

[1] GPUWattch Energy Model Manual Version 1.0.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry

Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,

Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel Comput-

ing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183, EECS

Department, University of California, Berkeley, December 2006.

[3] Ali Bakhoda, George L. Yuan, Wilson W.L. Fung, Henry Wong, and Tor M. Aamodt.

Analyzing CUDA Workloads Using a Detailed GPU Simulator. In Proceedings of the

IEEE International Symposium on Performance Analysis of Systems and Software, IS-

PASS, pages 163–174, April 2009.

[4] Mehmet E. Belviranli, Peng Deng, Laxmi N.Bhuyan, Rajiv Gupta, and Qi Zhu. Peer-

Wave: Exploiting Wavefront Parallelism on GPUs with Peer-SM Synchronization. In

Proceedings of the 29th ACM International Conference on Supercomputing, ICS ’15,

pages 25–35, 2015.

[5] D. Anoushe Jamshidi, Mehrzad Samadi, and Scott Mahlke. D2MA: Accelerating Coarse-

Grained Data Transfer for GPUs. In Proceedings of the 23rd International Conference

on Parallel Architectures and Compilation, PACT ’14, pages 431–442, 2014.

[6] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,

Tor M. Aamodt, and Vijay Janapa Reddi. GPUWattch: Enabling Energy Optimizations

in GPGPUs. In Proceedings of the 40th Annual International Symposium on Computer

Architecture, ISCA ’13, pages 487–498, 2013.

[7] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.

McPAT: An integrated power, area, and timing modeling framework for multicore and

48

manycore architectures. In Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 469–480, Dec 2009.

[8] Sparsh Mittal and Jeffrey S. Vetter. A Survey of Methods for Analyzing and Improving

GPU Energy Efficiency. ACM Computing Surveys, 47(2):19:1–19:23.

[9] Nvidia. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi (Whitepa-

per). Technical report.

[10] Sanjay Rajopadhye, Guillaume Iooss, Tomofumi Yuki, and Dan Connors. The Stencil

Processing Unit: GPGPU Done Right. Technical Report CS-13-103, Computer Science

Department, Colorado State University, Fort Collins, CO 80523-1873, March 2013.

[11] Waruna Ranasinghe. Reducing off-chip memory accesses of wavefront parallel programs

in Graphics Processing Units. Master’s thesis, Fort Collins, CO 80523-1873, 2014.

[12] DOE ASCAC Subcommittee Report. Top Ten Exascale Research Challenges. Technical

report, February 2014.

[13] Yohann Uguen. SPU-sim: A cycle accurate simulator for the stencil processing unit.

Internship Report, August 2015.

[14] Shucai Xiao and Wu chun Feng. Inter-block GPU communication via fast barrier syn-

chronization. In Proceedings of the IEEE International Symposium on Parallel Dis-

tributed Processing (IPDPS), pages 1–12, April 2010.

[15] Yun Zou and Sanjay Rajopadhye. Automatic Energy Efficient Parallelization of Uniform

Dependence Computations. In Proceedings of the 29th ACM International Conference

on Supercomputing, ICS ’15, pages 373–382, 2015.

49

APPENDIX A

ADDITIONAL RESULTS

This Appendix supplements the details of the results discussed in Section 6.3.4. The plat-

forms used in this experiment are same as that shown in Table 6.1. The only difference is

that we set the size of the CBs on the SPU to 16 KB. (All other experiments used only 4 KB

CBs). As noted earlier, this increase in size of CBs led to a 4% rise in the leakage power of

SPU. Table A.1 lists the test cases used in this experiment. The main point to note here

is that, the tile size has been increased to 64 due to which the shared memory usage per

threadblock is such that only one threadblock can be executed on an SM at a time.

TABLE A.1: Test Cases for the experiment with increased CB size

N x N x K
Tile
size

Subtile
size

#
thread-
blocks

#
threads
per
block

Passes
on SPU
grid

CB
Size
(KB)

Incomplete
passes

256 x 256 x 256 64 4 4 x 4 16 x 16 1 x 1 16 No

512 x 512 x 512 64 4 8 x 8 16 x 16 2 x 2 16 No

768 x 768 x 768 64 4 12 x 12 16 x 16 3 x 3 16 No

1024 x 1024 x 1024 64 4 16 x 16 16 x 16 4 x 4 16 No

Figure A.1 shows the speedup on the SPU with respect to the GPU device. Since there is a

mismatch in the number of processors on our two test platforms, we adjusted the observed

execution time on the GPU to get the best case time with 16 processors (by multiplying

the observed time with a factor of 15

16
). One curve in the figure shows the speedup with

the actual observed time while the other curve indicates the speedup on SPU with respect

to the aforementioned adjusted execution time. As you can see, the SPU shows 1.2× -

1.4× speedup over GPU even with the adjusted time. This could be because the GPU is

now not able to take advantage of hyperthreading, which is possible only with concurrent

50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

256 x 256 512 x 512 768 x 768 1024 x 1024

S
p

e
e

d
u

p Using observed

execution time

Execution time on

GPU adjusted for 16

SMs

FIGURE A.1: Speedup on SPU over GPU with Tile size 64 x 64

threadblocks executing on an SM. The observed dynamic energy consumption on the two

platforms is compared in Figure A.2(a). Similar to what we have seen earlier, problem sizes

which require only single pass on the SPU grid do not see any gains. The gains from SPU

manifest only with large problem sizes. For all other cases, we see about 25% reduction in

dynamic energy. Nonetheless, the total energy (shown in Figure A.2(b)) consumed on SPU

is still slightly higher than that on GPU (the difference is not as high as observed earlier in

Figure 6.4(b)). But, we can also see that SPU can be more favorable if the IUs are replaced

by DMA engines.

51

0.0

0.2

0.4

0.6

0.8

1.0

1.2

256 x 256 512 x 512 768 x 768 1024 x 1024

N
o

rm
a

li
ze

d
 D

y
n

a
m

ic
 E

n
e

rg
y

gpu-sim spu-sim

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

256 x 256 512 x 512 768 x 768 1024 x 1024

N
o

rm
a

li
ze

d
 T

o
ta

l E
n

e
rg

y

gpu-sim spu-sim spu-sim-DMA

(b)

FIGURE A.2: Comparison of energy consumption with Tile size 64 × 64. (a): Dynamic
Energy, (b): Total Energy. (All values normalized to gpu-sim)

52

	Abstract
	List of Tables
	List of Figures
	Introduction
	Problem with Stencils on GPGPU
	The SPU Approach
	Contributions
	Related Work

	Background
	GPGPU Architecture and Programming Model
	The Stencil Processing Unit

	A Stencil Benchmark For SPU
	A Simple 2-D Stencil Definition
	Analysis of 2-D Stencil on GPU
	Analysis of 2-D Stencil on SPU

	Optimized SPU Programming Model and Runtime System
	Problem of Useless Spill-Restore
	Producer-Consumer Synchronization on SPU
	Overlapped Execution of Passes

	Power Model for SPU
	Overview of GPUWattch
	SPU Leakage Power Model
	Extending the Dynamic Power Model

	Experimental Evaluation and Results
	Experimental Setup
	Effect of Optimizations on the SPU
	Comparison of SPU with GPU

	Conclusion & Future Work
	Limitations of SPU-Sim
	Possible Improvement in SPU Microarchitecture
	Conclusion

	References
	Additional Results

