THESIS

GEOMORPHIC ANALYSIS OF THE MIDDLE RIO GRANDE -

ELEPHANT BUTTE REACH, NEW MEXICO

Submitted by
Tracy Elizabeth Owen

Department of Civil and Environmental Engineering

In partial fulfillment of the requirements
For the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Spring 2012

Master’s Committee:
Advisor: Pierre Julien

Christopher Thornton
Sara Rathburn



Copyright by Tracy Elizabeth Owen 2012

All Rights Reserved



ABSTRACT

GEOMORPHIC ANALYSIS OF THE MIDDLE RIO GRANDE -

ELEPHANT BUTTE REACH, NEW MEXICO

The Elephant Butte Reach spans about 30 miles, beginning from the South Boundary
of the Bosque del Apache National Wildlife Refuge (River Mile 73.9) to the “narrows” of
the Elephant Butte Reservoir (River Mile 44.65), in central New Mexico. Sediment plugs
occasionally form along the Middle Rio Grande, completely blocking the main channel
of the river. In 1991, 1995, and 2005, the Tiffany Plug was initiated at the upstream end
of the Elephant Butte Reach. In 2008, the Bosque del Apache Plug formed just upstream
of the Elephant Butte Reach. Sediment plugs occur at the location of a constriction or
channel aggradation (Burroughs 2011). As aggradation within the Elephant Butte Reach
is known to contribute to a decrease in channel capacity (Reclamation 2007), it is
important to understand the influences of Elephant Butte Reservoir levels on channel
aggradation/degradation in order to decrease the potential for future sediment plug
formation. Further understanding of the historical and spatial changes within Elephant
Butte Reach, along with a better understanding of the influences of Elephant Butte
Reservoir levels on channel aggradation/degradation, are essential for improvement in
future river management practices along the Middle Rio Grande. Using aerial
photographs, survey data, reservoir water surface elevation data, and bed material data,
the following objectives are addressed in this study:

1. Quantify temporal changes in channel widths and sinuosity from 1935 to 2010.



2. Quantify change in channel slope temporally.
3. Quantify rate of aggradation/degradation in response to a change in base-level

(i.e., change in reservoir water surface elevation).

4. Quantify aggradation/degradation wave propagation upstream.
5. Quantify spatial and temporal trends in bed material grain size.

From 1935 to 2010, channel widths and sinuosity decrease over time. The
majority of the Reach’s channel slope decreases from 1935 to 2010; the downstream-
most stretch of the channel, closest to Elephant Butte Reservoir, alternates between
increasing and decreasing channel slopes.

As the Elephant Butte Reservoir level (base-level) increases, the channel aggrades
in response. As the base-level decreases, the channel degrades. The rates of aggradation
and degradation vary between different periods of base-level changes, and are quantified
within the report. When the base-level changes a wave of aggradation/degradation
travels upstream. The rate of wave propagation upstream varies relative to the rate of
base-level change, and is quantified within the report for four sets of
aggradation/degradation waves.

Bed material samples obtained from cross-section surveys and at the San Acacia
and San Marcial gauges showed a coarsening at a rate of about 0.03 mm/year. In the
downstream direction, bed material became slightly finer. The median bed material grain

size ranged from 0.11 mm to 0.26 mm.
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SECTION 1: INTRODUCTION

The Rio Grande is about 1890 miles long (3040 kilometers), making it one of the
longest rivers in the United States (Kammerer 1990). The headwaters of the Rio Grande
begin in southern Colorado near Camby Mountain. The river then flows south through
New Mexico, and then becomes a dividing border between Texas and Mexico. For
purposes of this report, the Middle Rio Grande is defined as the 180 mile stretch of the
Rio Grande River that extends from Cochiti Dam to the narrows of Elephant Butte

Reservoir. Figure 1.1 provides a map of the Rio Grande.
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Figure 1.1 Map of the Rio Grande Watershed (MRGBI 2009)
Human activities have had an impact on the river for thousands of years. However,
it was not until the late 14" century when the Spanish settled near the Rio Grande that

humans began to dramatically influence the river (Finch 2004). Since then, the water



discharge, sediment discharge, and cross sectional geometry have changed as a result of
human colonization. Devastating floods were very common on the Rio Grande up until
the early 1900’s when large dams and reservoirs were constructed. In addition, large
stretches of the river were channelized. These projects helped regulate the water and
prevent extensive flooding. Mining, logging and grazing in the beginning of the 20"
century destroyed much of the vegetation, resulting in dramatic erosion and a subsequent
increase in the sediment load in the river (Scurlock 1998). The increased erosion and
sediment load caused a 13% loss of capacity within Elephant Butte Reservoir by the mid
1930’s (Clark 1987). The increased sediment and decreased flow also lead to severe
aggradation along the river. Between 1880 and 1924, the bed of the river rose 9 feet at

the San Marcial gauging station (Scurlock 1998).

1.1 Habitat and Endangered Species

Exotic plants like the Russian olive, Russian thistle, Siberian elm, tree-of-heaven,
and tamarisk, whose roots added extra shear strength to the sand near the river, were
introduced to try to keep the river more stable (Mussetter Engineering 2001). However,
due to the addition of these foreign plants, riparian vegetation, such as native cottonwood
trees and willow trees, have declined (Finch 2004, Earick 1999). New animals such as
the barbary sheep, ibex, and oryx were also introduced to the area (Finch 2004). Human
influences have caused several native species of animals that use the Rio Grande as their
habitat, such as the Rio Grande silvery minnow, Rio Grande cutthroat trout, southwestern
willow flycatcher, and whooping crane, to teeter on the brink of extinction. Human
impacts, coupled with natural events such as droughts, have also led to increased soil

erosion along much of the Middle Rio Grande (Scurlock 1998).



In order to resolve many problems regarding the Rio Grande, the Middle Rio
Grande Conservancy District (MRGCD) was formed in 1923. The purpose of the
MRGCD was to “provide flood protection from the Rio Grande, and make the
surrounding area hospitable for urbanization and agriculture” (MRGCD 2006). Between
1923 and 1935, one storage dam, four diversion dams, and 817 miles of drainage and
irrigation channels had been constructed by the MRGCD (MRGCD 2006). The work
completed by the MRGCD was successful in controlling the river’s floods, and the
Bureau of Reclamation and the Army Corps of Engineers continued to repair and update
the structures established by the MRGCD. Several new levees and Cochiti dam have
been constructed to combat flooding and sedimentation problems along the river
(MRGCD 2006). A historical timeline of the Middle Rio Grande is shown in Figure 1.2.

These dams and levees were able to control the flow of the river and altered the
seasonal flooding patterns that used to exist. The magnitude of the floods within the Rio
Grande was greatly reduced due to the construction of these structures. These floods
were essential for several species’ reproduction habitats. The Rio Grande silvery
minnow, shown in Figure 1.3, used the swampy flooded terrain as the ideal reproduction
habitat (Earick 1999; Borgan 2006). The Rio Grande silvery minnow used to flourish
within the river from Espanola, NM to the Gulf of Mexico, however, now it is present in
only 5% of its former range (Earick 1999; MRGESA 2006a). Today, about 95% of the
Rio Grande silvery minnow population is concentrated below the San Acacia diversion
dam in the San Acacia Reach of the Middle Rio Grande. It no longer exists below the
Elephant Butte Reservoir, and was placed on the endangered species list in 1994

(MRGCD 2002).
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Figure 1.3: Rio Grande Silvery Minnow and Southwestern Flycatcher

The southwestern willow flycatcher (Figure 1.3) also uses the Rio Grande’s
riparian vegetation and wetlands to raise their young chicks. The altered flooding patterns
and reduced reproduction habitat have negatively impacted their population as well. In
1995 the southwestern willow flycatcher was placed on the endangered species list as a

response to their declining population (MRGCD 2002; MRGESA 2006b).

1.2 Sediment Plugs

Historically, sediment plugs have formed along the Middle Rio Grande,
completely blocking the main channel of the river. In 1991, 1995, and 2005, the Tiffany
Plug formed in the upstream end of the Elephant Butte Reach at Agg/Deg 1683 (River
Mile 70.23), as seen in Figure 1.4. In 2008, the Bosque del Apache Plug formed between
Agg/Deg 1531 and 1550 (River Mile 82.5 — 80.81), about 7 miles upstream of the
Elephant Butte Reach. Little is known about the formation of sediment plugs; why they
form, where they form, and how best to manage river flows to prevent the formation of
sediment plugs. The consequences of sediment plugs in the Middle Rio Grande are

significant. The presence of sediment plugs blocks the main channel of the Rio Grande



and prevents water from reaching Elephant Butte Reservoir due to increased infiltration
and evapotranspiration induced by the plugs. The current practice with sediment plugs
by the United States Bureau of Reclamation (Reclamation) is to excavate a pilot channel
through the plug to encourage water to flow again and re-channelize; this method is
expensive and time consuming. Sediment plugs occur at the location of a constriction or
channel aggradation (Burroughs 2011). As aggradation within the Elephant Butte Reach
is known to contribute to a decrease in channel capacity (Reclamation 2007), it is
important to understand the influences of Elephant Butte Reservoir levels on channel
aggradation/degradation in order to decrease the potential for future sediment plug

formation.

Figure 1.4 Aerial View of Tiffany Plug in 2005



SECTION 2: SITE DESCRIPTION AND BACKGROUND

2.1 Elephant Butte Reach

The section of the Middle Rio Grande examined in detail in this report will be
referred to as the Elephant Butte Reach. This reach spans about 30 miles, beginning from
the South Boundary of the Bosque del Apache National Wildlife Refuge (River Mile
73.9) to the “narrows” of the Elephant Butte Reservoir (River Mile 44.65). Figure 2.1

shows the location of the project area in New Mexico.

Legend:
) Study Reach
L . “ Bosque del Apache NWR

Figure 2.1: Location of the Elephant Butte Reach from Google Maps
Sediment plugs occasionally form along the Middle Rio Grande, completely
blocking the main channel of the river. In 1991, 1995, and 2005, the Tiffany Plug was

initiated at the upstream end of the Elephant Butte Reach. In 2008, the Bosque del



Apache Plug formed just upstream of the Elephant Butte Reach. Further understanding
of the influences of Elephant Butte Reservoir levels on channel aggradation/degradation
will provide insight into proper river management practices in order to decrease the
potential for sediment plug formation.
The objectives of this study include the following:

1. Quantify temporal changes in channel widths and sinuosity from 1935 to 2010.

2. Quantify change in channel slope temporally.

3. Quantify rate of aggradation/degradation in response to a change in base-level

(i.e., change in reservoir water surface elevation).
4. Quantify aggradation/degradation wave propagation upstream.

5. Quantify spatial and temporal trends in bed material grain size.

2.2 Subreach Definition

To thoroughly evaluate the significant changes in the study area, the reach was
divided into six subreaches. The subreach definitions were determined by initial
assessments of the channel widths and planforms from aerial photos and channel slope.

To determine the subreach divisions, the active channel widths, as measured from
edge of vegetation to edge of vegetation, were plotted for the entire Elephant Butte Reach
for years 1962, 1972, 1992, and 2002. The thalweg at each Agg/Deg-line was also
plotted for each set of years, as shown on Figure 2.2. The subreaches were chosen based
on the 2002 dataset because of the abundance of both GIS and Agg/Deg Cross-section
data during this year, but subreaches were confirmed using the 1962, 1972, and 1992

datasets.
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There are no major slope distinctions along the Elephant Butte Reach in 2002;
therefore, subreaches were primarily selected based on width trends. Subreaches 1, 3,
and 5 tend to be wider than Subreaches 2, and 4 (based on 2002 data). Subreach 6 is a
transitional subreach, which is sometimes river, and sometimes reservoir, depending on
the level of Elephant Butte Reservoir. The first subreach begins at the south boundary of
the Bosque del Apache NWR, Agg/Deg 1637, and extends to Agg/Deg 1672. The
second subreach begins at Agg/Deg 1672 and ends at Agg/Deg 1696. The third subreach
begins at Agg/Deg 1696 and ends at Agg/Deg 1728. The fourth subreach begins at
Agg/Deg 1728 and ends at Agg/Deg 1751. The fifth subreach begins at Agg/Deg 1751
and ends at Agg/Deg 1794. The sixth, and last, subreach begins at Agg/Deg 1794 and
extends to Elephant Butte Reservoir.

Figure 2.3 through Figure 2.9 show the 2008 aerial photographs of the study area
and its subreaches. Notice the low-flow conveyance channel located on the west bank of
the river. The previous temporary outfall of the low-flow conveyance channel was at
Agg/Deg 1794, which marks the end of Subreach 5 and the beginning of Subreach 6.
The Black Mesa geologic feature is located east of Subreach 3. Levee construction along
the West side of the river has prevented the river from excessive meandering. The
Tiffany Plug location is shown on Figure 2.4; the Bosque del Apache Plug is located

about 7 miles upstream of the study reach and is, therefore, not shown.
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2.3 Available Data

The data used in this study was received from a number of different agencies:
United States Bureau of Reclamation (Reclamation), National Oceanic and Atmospheric
Administration (NOAA), the United States Geological Survey (USGS), and the Middle

Rio Grande database compiled at Colorado State University for Reclamation.

2.3.1 Survey Lines and Dates

Cross-sectional survey data was collected by Reclamation using both
Aggradation/Degradation line (Agg/Deg-line) surveys; Socorro range line (SO-line), and
Elephant Butte range line (EB-line) surveys. Agg/Deg-line elevations were derived using
photogrammetry. The Agg/Deg-lines are spaced about 500 feet apart and were surveyed
in 1962, 1972, 1992, and 2002. This information was used for the hydraulic and GIS
analyses to follow. Figure 2.10 shows the entire Elephant Butte Reach with each of the
six defined subreaches, and the Agg/Deg-lines with the 2008 GIS Elephant Butte Reach
delineation.

The range lines (SO-lines and EB-lines) were field surveyed by Reclamation
beginning in 1980. These surveys are more detailed than the channel cross-sections that
were developed from the aerial photographs (i.e., Agg/Deg lines). The spacing of these
surveys is greater than that of the Agg/Deg lines, but the field surveyed cross section
locations typically coincide with Agg/Deg line locations. Range line survey data was
available from 1980 to 2010 from Reclamation. 18 SO-lines and 102 EB-lines are
located within the reach. Figure 2.11 shows the location of the SO- and EB-lines and

Appendix A provides the dates of available survey data at each SO- and EB-line.
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2.3.2 Discharge Data

Mean daily discharge data was primarily used from two USGS gauges: the San
Marcial gauge (08358400, primary gauge), located in the upstream end of the study
reach, and the San Acacia gauge (08354900, secondary gauge), located approximately 44
miles upstream of the study reach. The gauge numbers and their dates of available
discharge data are shown in Table 2-1.

Table 2-1: Available Daily Discharge Data
USGS Gauging Station | USGS Gauge Number | Dates Available
RG at San Marcial 8358400 1949- current
RG at San Acacia 8354900 1958-current

The Elephant Butte Dam gauge (8361000), located approximately 34 miles
downstream of the Elephant Butte Reach, measures regulated reservoir releases, and was
therefore not useful in this study. The San Antonio gauge (8355490), located
approximately 25 miles upstream of the Elephant Butte reach, only contains discharge
data for recent years (2005 — Sep 2008), and therefore was not considered. An additional
gauge is located at the Escondida Bridge, approximately 16 miles upstream of the
Elephant Butte reach. However, this gauge only records real-time discharge and not the
historical data needed for this study. Figure 2.12 shows the locations of the nearby

gauges.
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An example hydrograph for the San Acacia and San Marcial gauges for the year
1999 is shown in Figure 2.13. The hydrograph demonstrates that there are typically two
distinct peaks on the Middle Rio Grande. The first peak occurs between mid-May until

the end of June and the second peak occurs in August. As demonstrated in Figure 2.13,
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significant evapotranspiration losses from the river largely contribute to the typically
lower discharge measurements at the San Marcial Gauge, compared to the San Acacia

Gauge (Baird, D., Pers. Comm.). Additional daily discharge graphs from the years 1990-

2010 are available in Appendix B.
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Figure 2.13: Daily Discharge of the Rio Grande in 1999
The annual peak flow information for the San Acacia and San Marcial gauges was
obtained from the USGS website. Figure 2.14 displays a comparison of the peak flows at

the San Acacia Gauge and the San Marcial Gauge.
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Figure 2.14 Comparison of Annual Peak Flows at San Acacia and San Marcial Gauges

2.3.3 Bed Material

Bed material data was collected by Reclamation from 1986-2007 at SO- and EB-
range lines. The dates and locations of the collected bed material data are provided in
Appendix C. Additional bed material data was also obtained from the USGS gauging
stations at San Acacia, located approximately 44 miles upstream of Elephant Butte
Reach, and San Marcial, located within the Elephant Butte Reach
(http://nwis.waterdata.usgs.gov). The dates and locations of the data recorded are

provided in Appendix D.

2.3.4 Suspended Sediment Data

As part of this study, the suspended sediment data was used from the Escondida
Reach Report (Larsen et al. 2007). This was used since no new sediment data is available

on the USGS website for the San Acacia and San Marcial guages. Daily suspended

24



sediment data was used for this analysis. Figure 2.15 shows the annual suspended
sediment load at each gauge. Continuous suspended sediment data was not always
available for all parameters at each gauge. A blank year indicates that complete sediment

data was not available for that year.
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Figure 2.15: Annual Suspended Sediment Yield at San Acacia and San Marcial Gauges
Table 2-2 gives the dates of continuous, available data at each gauge.

Table 2-2: Available Suspended Sediment Data
USGS GAUGING STATION DATES

Oct. 1956 - July 1962
Sep. 1962 - Aug. 1966
Oct. 1966 - Sep. 1989
Oct. 1991 - Sep. 1995
Jan 1959 - Sep. 1959
Jan 1960 - Sep. 1961
July 1961
April 1962 - July 1962
Aug 1962 - Sep. 1962
March 1963 - Sep. 1996

RG at San Marcial

RG at San Acacia
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SECTION 3: RESERVOIR LEVEL ANALYSIS

3.1.1 Reservoir Level Analysis

A reservoir level analysis was performed for the Elephant Butte Reservoir,
located at the downstream end of the Elephant Butte Reach. Figure 3.1 shows the
Elephant Butte Reservoir level time series. Elephant Butte Dam construction began in
1908 and was completed in 1916, with water storage operations beginning in January of
1915 (Reclamation, 2008). The maximum water surface elevation (WSE) of Elephant
Butte Reservoir is 4407.0 ft. Since its inception, the WSE behind Elephant Butte Dam
has varied more than 150 ft in elevation. The reservoir was not completely filled until
1942, at which point the reservoir level dropped about 150 ft between 1942 and 1954,
due to a drought which lasted from about 1942 to about 1974 (Figure 1.2). The low flow
conveyance channel (LFCC), which was built to hydraulically efficiently transport water
to Elephant Butte Reservoir and runs the entire length of Elephant Butte Reach, was in
operation by 1955 and operated until 1986. With the operation of the LFCC during the
drought, the reservoir WSE averaged between EI 4331 and El 4404. By about 1977 the
reservoir began to fill again until it was full, or essentially full, from 1985 to 1999, at
which point another drought impacted the reservoir level, which decreased to an average

WSE of about 4340 ft in 2010.
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Figure 3.2 shows the historical sediment survey longitudinal profile with reservoir
sediment surveys completed in 1915, 1988, 1999, and 2007. Comparing the survey
between 1915 and 1988, up to 50 ft of aggradation has occurred within Elephant Butte
Reservoir. The decrease in longitudinal profile elevation from 1999 to 2007 can be
attributed to the consolidation of the deposited sediment during the low reservoir levels in
response to a second drought from 1999 to 2005.

In 1915, when the reservoir had just begun to fill, had the reservoir been at its
maximum WSE, then the upstream extent of the reservoir would have reached RL 10 (or
the upstream end of Subreach 3). By 2007, the upstream extent of the reservoir at its
maximum WSE would have been about RL 20 (or the upstream end of Subreach 6). This
means the maximum upstream extent of the reservoir would have shifted downstream
approximately 6 miles. The level of the reservoir impacts Elephant Butte Reach, due to
sediment deposition as a result of an increased base-level. The longitudinal profile of
Elephant Butte Reach is base-level controlled; with an increase in base-level, the channel

adjusts vertically by way of sediment deposition, resulting in channel aggradation.
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Figure 3.2 Elephant Butte Reservoir Historical Sediment Survey Longitudinal Profile (Reclamation, 2008)
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SECTION 4: CHANNEL ANALYSIS

4.1 Channel Planform Analysis from Aerial Photographs

Using ArcGIS and aerial photographs supplied by Reclamation, the study reach’s
active channel was delineated for 1918, 1935, 1949, 1962, 1972, 1985, 1992, 2001, 2002,
2003, 2004, 2005, 2006, 2008 and 2010. These active channel delineations will be
referred to as planforms for purposes of this report; the active channel corresponds to the
area bounded by established vegetation. Aerial photographs were not available during
1985, and a delineation provided by Reclamation was used; the 2010 active channel was
delineated using a Digital Elevation Model (DEM). See Appendix E for survey dates and
additional information about the aerial photographs.

The active channel width was measured at each Agg/Deg line using the delineated
planforms. A mean width value was then obtained for each subreach and for the overall

reach using a weighted average method. Finally, the sinuosity was computed.

4.1.1 Channel Delineation

Figure 4.1 shows the channel planforms that were delineated in ArcGIS. Figure 4.2
through Figure 4.7 show magnified versions of Figure 4.1. Based on visual observations,
the overall channel has narrowed and changed from a multithread channel to a primarily
single-thread channel. Subreaches 1, 2, 5, and 6 have straightened and narrowed
primarily between 1918 and 1962, and have remained relatively unchanged since then.
The multithread characteristics of the river observed from 1928 to 1949 are not repeated
after the recession of the reservoir from 2001 to 2003, because Reclamation regularly

excavated pilot channels within Subreach 6 (Baird, D., Pers. Comm.).
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Figure 4.1 Channel Planforms from Aerial Photography
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Figure 4.6 Subreach 5 Channel Planforms from Aerial Photography
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Figure 4.7 Subreach 6 Channel Planforms from Aerial Photography
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Note that the difference between the first set of delineations, 1918-1949, is 31
years, the second set of delineations, 1962-1985, is 23 years, the third set of delineations,
1992-2002 is 10 years, and the fourth set of delineations, 2003-2010 is only 7 years.
Based on a qualitative visual analysis, the first delineation comparison covers the longest
time period and shows the most change and the last delineation comparison shows the
shortest time period with the least change. Nevertheless, narrowing and straightening of

the reach is observed over time.

4.1.2 Channel Widths from GIS

The active channel width corresponds to the non-vegetated channel. The active
channel planforms were delineated from aerial photographs using this criterion, and
widths were measured at every Agg/Deg line and/or Range line for which the river
intersected. A distance-dependent, weighted average method was used to calculate the
average width at each subreach and for the total reach.

In general, Figure 4.8 illustrates a decreasing trend in the width over time for all
of the subreaches from 1935 to 1972. Subreaches 1 and 2 experienced an increase in
average width in 1949 due to the existence of a multithread channel; Subreach 1
increased from about 940 ft to about 1100 ft, and Subreach 2 increased from about 700 ft
to about 1700 ft. The decrease in channel width from 1935 to 1972 (on average, about
275 ft) may be attributed to lower than average discharges, a decrease in base-level, or a
combination of the two. The lower than average discharges and decrease in base-level
are both results of the drought, which lasted from 1942 to 1979. From 1935 to 2010, the
channel width decreased according to the following second order polynomial equation:

y = 0.2353x? - 936.54x + 931904
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Where, X is the year, and y is the average channel width (ft).
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Figure 4.8 Channel Widths from GIS (1918 - 2010)

As seen in Figure 4.9, between 1972 and 1985, the average channel width
increased, on average, about 60 ft and the base-level increased by up to 125 ft. Between
1985 and 2000, the base-level remained relatively unchanged, changing no more than 27
ft, and the average channel width, on average, changed no more than 30 ft. Between
2000 and 2004, the base-level decreased by up to 100 ft, and the average channel width
increased 26 ft from 2001 to 2003 and decreased 45 ft from 2003 to 2004. The large
decrease in channel width between 2003 and 2004 was due to mechanical excavation of
narrow pilot channels by Reclamation (Baird, D. Pers. Comm.). The base-level increased
by about 50 ft between 2004 and 2010, and the average channel width increased about 55

ft between 2004 and 2006, and decreased about 55 ft between 2006 and 2010. In general,
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based on this dataset, the channel width tends to increase with a rise in base-level, and

decrease with a drop in base-level.
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Figure 4.9 Channel Widths from GIS (1962 - 2010)

4.1.3 Sinuosity

Sinuosity of the entire Elephant Butte Reach, as well as the six subreaches, was
computed using aerial photographs in ArcGIS. The sinuosity was determined by using

the following equation:

_Lc

S=—
Lv

Where S is the sinuosity, Lc is the length of the channel, and Lv is the length of the

valley.

The length of the channel, and each of the six subreaches, was measured along the
river thalweg, an estimated delineation from aerial photographs and channel delineations.

The thalweg delineation was approximate and accuracy was, in some cases, further
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limited by the clarity and quality of the aerial photographs. The 1985 and 1918
planforms delineated by Reclamation were used to estimate the length of the channel and
the length of the valley. For each year, the length of the valley was measured as the
straight-line distance between the upstream and downstream extents of the reach and
subreaches, as dictated by major geologic features, such as the Black Mesa. The channel
length measurements are plotted in Figure 4.10 and presented in Table 4-1. The channel

length decreased about 0.0126 miles/year between 1935 and 2010.
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Figure 4.10 Subreach Lengths and Total Lengths as Measured From GIS Data
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Table 4-1 Subreach Length and Total Length Values as Measured From GIS Data

Measured Lengths (mi)

Reach 1918 | 1935 | 1949 | 1962 | 1972 | 1985 | 1992 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2008 | 2010
Subreach1 | 3.46 | 3.92 | 4.07 | 3.52 | 356 | 3.30 | 3.38 | 334 | 3.34 3.42 | 334 | 330 | 3.27 | 3.32
Subreach2 | 1.51 | 1.54 | 159 | 239 | 221 | 225 | 227 | 2.26 | 2.28 231 | 2.28 | 2.27 | 231 | 2.27
Subreach3 | 1.56 | 3.87 | 3.54 | 325 | 3.24 | 3.10 | 3.18 | 3.18 | 3.21 | 3.17 | 3.19 | 3.17 | 3.14 | 3.26 | 3.20
Subreach 4 204 | 212 | 214 | 213 | 213 | 213 | 2.13 | 213 | 213 | 215 | 215 | 213 | 2.14 | 211
Subreach 5 474 | 497 | 421 | 426 | 413 | 436 | 424 | 430 | 427 | 438 | 432 | 423 | 436 | 4.26
Subreach 6 1739 | 16.11 | 1812 | 16.14 | 556 | 2.04 | 203 | 7.67 | 16.73 | 16.93 | 16.48 | 16.48 | 17.11 | 0.79

Total Reach SR (1-5) | 6.52 | 16.10 | 16.29 | 15.52 | 15.41 | 14.92 | 15.33 | 15.15 | 15.26 | 9.57 | 15.45 | 15.25 | 15.07 | 15.35 | 15.16
Total Reach SR (1-6) | 6.52 | 33.48 | 32.40 | 33.64 | 31.55 | 20.48 | 17.37 | 17.18 | 22.93 | 26.31 | 32.38 | 31.73 | 31.55 | 32.46 | 15.96
Agg/Deg Start | 1637 | 1637 | 1637 | 1637 | 1637 | 1637 | 1637 | 1637 | 1637 | 1692 | 1637 | 1637 | 1637 | 1637 | 1637

Agg/Deg End | 1708 | 1962 | 1948 | 1962 | 1958 | 1849 | 1811 | 1811 | 1875 | 1962 | 1962 | 1960 | 1960 | 1962 | 1962
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Figure 4.11 shows the sinuosity for the Elephant Butte Reach and each of the
subreaches, values are presented in Table 4-2. From 1918 to 1935 sinuosity increased for
the entire channel; though the overall sinuosity remains low, less than 1.3, Subreach 1 is
more sinuous than Subreach 2 by about 15 percent. There is not enough planform
delineated in Subreach 3 in 1918 to be considered representative of the entire subreach,
so this portion was disregarded. No planform data exists below Subreach 3 in 1918, so
sinuosity data is unavailable. From 1935 to 1949, the sinuosity for the entire channel,
and for each subreach, decreased by less than 6 percent, except Subreach 5, which
increased about by about 4 percent. Subreach 2 remained less sinuous, by about 15
percent on average and up to 20 percent, than the remaining Subreaches, which ranged in
sinuosity from 1.18 to 1.29. From 1949 to 1962, the sinuosity of Subreaches 1, 3, 4, and
5 decreased between 10 and 20 percent, while Subreaches 2 and 6 increased between 5
and 10 percent. From 1962 to 2010 sinuosity tends to increase and decrease repetitively
between a range of 1.0 and 1.15 for Subreaches 1 through 5, while Subreach 6 tends to
have a higher sinuosity than the other subreaches from 1962 to 2010 and ranges from
1.12 to 1.24. The higher sinuosities observed in Subreach 6 in the mid-2000s is because
Reclamation mechanically introduced a sinuous channel to Subreach 6 by excavating a
pilot channel after the lowering of Elephant Butte Reservoir (Baird, D., Pers. Comm.). In
general, it can be said that this channel has experienced relatively low sinuosity (less than
1.25) since 1962. From 1935 to 2010, the channel sinuosity can be described using the
following second order polynomial:

y = 6E-05x% - 0.2196x + 219.57

Where, X is year, and y is channel sinuosity (ft/ft).
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Table 4-2 Sinuosity Values

Year

Reach 1918 | 1935 | 1949 | 1962 | 1972 | 1985 | 1992 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2008 | 2010
Subreach 1]1.118 | 1.222 | 1.180 | 1.039 | 1.110 | 1.027 | 1.052 | 1.017 | 1.037 1.062 | 1.039 | 1.003 | 1.050 | 1.067
Subreach 2| 1.032 | 1.054 | 1.014 | 1.106 | 1.013 | 1.013 | 1.075 | 1.024 | 1.010 1.002 | 1.025 | 1.055 | 1.091 | 1.073
Subreach 3] 1.049 | 1.259 | 1.182 | 1.054 | 1.004 | 1.016 | 1.052 | 1.017 | 1.134 | 1.035 | 1.008 | 1.061 | 1.013 | 1.086 | 1.066
Subreach 4 -- 1.293 | 1.280 | 1.026 | 1.034 | 1.033 | 1.031 | 1.010 | 1.047 | 1.018 | 1.012 | 1.057 | 1.019 | 1.100 | 1.084
Subreach 5 -- 1.233|1.280 | 1.062 | 1.069 | 1.028 | 1.124 | 1.087 | 1.113 | 1.104 | 1.145 | 1.109 | 1.076 | 1.128 | 1.101

Subreach 6 -- 1.194 | 1.181 | 1.246 | 1.137 | 1.225 | 1.158 | 1.182 | 1.121 | 1.149 | 1.162 | 1.145 | 1.145 | 1.176
Total Reach (SR 1-5) -- 1.213 | 1.200 | 1.078 | 1.081 | 1.037 | 1.079 | 1.063 | 1.080 1.095 | 1.068 | 1.083 | 1.077 | 1.064
Total Reach (SR 1-6) | 1.108 | 1.210 | 1.202 | 1.176 | 1.121 | 1.098 | 1.093 | 1.089 | 1.098 | 1.140 | 1.135 | 1.119 | 1.117 | 1.146 | 1.064
Agg/Deg Start | 1637 | 1637 | 1637 | 1637 | 1637 | 1637 | 1637 | 1637 | 1637 | 1692 | 1637 | 1637 | 1637 | 1637 | 1637
Agg/Deg End | 1708 | 1962 | 1948 | 1962 | 1958 | 1849 | 1811 | 1811 | 1875 | 1962 | 1962 | 1960 | 1960 | 1962 | 1794
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4.2 Aggradation and Degradation from Agg/Deg Surveys
4.2.1 Channel Thalweg Profile from Agg/Deg Surveys

The channel thalweg profile from the Agg/Deg survey data was utilized to
demonstrate how the minimum elevation and slope of the reach has changed over time, as
shown in Figure 4.12. The average bed slope for each subreach and for the entire reach
was determined by first plotting the thalweg profile versus downstream distance, as
measured along the estimated thalweg in GIS, and fitting a linear regression trendline to
each subreach. The slope of the linear regression line was considered the average bed
slope of the respective subreach. A linear regression trendline was also fit to the total
reach thalweg profile, from which the slope of the regression trendline was considered
the average bed slope of the total reach. This method was used for 1962, 1972, 1992, and
2002. The average bed slope for each subreach and for the entire reach is shown in

Figure 4.13.
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Between the years 1962 and 1972, the bed slope increased between 15 and 30
percent for Subreaches 1, 2, and 3; bed slope decreased 40 and 20 percent for Subreaches
4 and 5, respectively. From 1972 to 1992, bed slope decreased between 10 and 45
percent for all subreaches. From 1992 to 2002, Subreach 2 increased 10 percent and
Subreach 6 increased fourfold; all other subreaches decrease between 3 and 15 percent.
The overall decrease in bed slope along the entire reach suggests aggradation has
occurred between 1962 and 2002. The decrease in bed slope from 1972 to 1992 in
Subreach 6 could be caused by the increased Elephant Butte Reservoir level (base-level),
which increased by about 130 ft. The fourfold increase in bed slope from 1992 to 2002 in
Subreach 6 could be due to the drop base-level, which dropped about 85 feet between
1992 and 2002. The longitudinal profile of Elephant Butte Reach is base-level
controlled; with an increase in base-level, the channel adjusts vertically by way of
sediment deposition, resulting in channel aggradation and a decrease in channel slope. It
is important to note, however, that these trends could also be due to the lack of data in

Subreach 6, especially in 1972 and 1992, which could skew the calculated bed slope
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value to be inaccurate. Table 4-3 shows the average values of the channel slope for each
subreach and the overall reach.

Table 4-3 Average Bed Slope from Agg/Deg Surveys

Subreach Agg/Deg Lines 1962 1972 1992 2002
1 1637 - 1672 0.000509 | 0.000675 | 0.000523 | 0.000441
2 1672 - 1696 0.000823 | 0.000830 | 0.000480 | 0.000532
3 1696 - 1728 0.000699 | 0.000797 | 0.000564 | 0.000538
4 1728 - 1751 0.000855 | 0.000537 | 0.000498 | 0.000417
5 1751-1794 0.000730 | 0.000600 | 0.000550 | 0.000532
6 1794 - 1875 0.000370 | 0.000370 | 0.000205 | 0.000819

Total (1-6) 1637 - 1875 0.000594 | 0.000684 | 0.000535 | 0.000495

Total (1-5) 1637 - 1794 0.000710 | 0.000720 | 0.000562 | 0.000481

4.2.2 Change in Channel Thalweg Elevation from Agg/Deg Surveys

A weighted average of the change in thalweg elevation was computed for the
entire reach, as well as each subreach, for each year of available Agg/Deg survey data.
The average change in thalweg elevation was then compared between years to determine
the change in elevation over time. Figure 4.14 shows the average change in thalweg
elevation for each subreach, and the overall reach over time; the tabulated values are
displayed in Table 4-4. The results show that the average change in the channel thalweg
elevation decreased between 0.7 and 3.5 ft from 1962 to 1972 for all subreaches except
Subreaches 5 and 6; Subreaches 5 and 6 increased in elevation by about 0.2 to 0.4 ft. The
average change in channel thalweg elevation has been increasing since 1972. An
increase in channel thalweg elevation indicates aggradation, whereas a decrease indicates

degradation. The entire reach has been aggrading since 1972.
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Table 4-4 Change in Channel Thalweg Elevation Values from Agg/Deg Surveys

A Channel Thalweg Elevation (ft)

Weighted

Average 1962 -1972 | 1972-1992 | 1992-2002 | 1962 - 2002
U/S OF EB REACH 0.79 3.36 1.76 5.91
SUBREACH 1 -0.67 5.73 1.85 6.93
SUBREACH 2 -2.65 8.33 3.67 9.39
SUBREACH 3 -3.45 11.57 4.20 12.31
SUBREACH 4 -3.53 14.07 5.88 16.39
SUBREACH 5 0.43 15.06 7.21 22.50
SUBREACH 6 0.26 17.68 6.53 20.01
TOTAL REACH -1.33 11.42 4.79 15.95

Analyses were done using the Agg/Deg data to show the change in thalweg
elevation at each Agg/Deg line (see Figure 4.15 to view the changes from 1962-1972,
Figure 4.16 for 1972-1992, Figure 4.17 for 1992-2002, and Figure 4.18 for 1962-2002).
Recall that Agg/Deg data does not have surveys available at every Agg/Deg line during

the years 1962, 1972, and 1992, therefore the plots only show the Agg/Deg lines for
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which data exists. Table 4-5 shows the average, maximum and minimum changes in

channel thalweg elevation with their respective Agg/Deg line for each group of years.
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Table 4-5 Average, Maximum and Minimum Change in Channel Thalweg Elevation Based on Agg/Deg Surveys

Year: 1962 - 1972 1972 - 1992 1992 - 2002 1962 - 2002
A A A A
Thalweg Agg/#Deg Thalweg Agg/#Deg Thalweg Agg/#Deg Thalweg Agg/#Deg
El (ft) El (ft) El (ft) El (ft)

Max 1.30 1641 7.70 1652 3.14 1673.0 8.34 1662

Subreach 1 Min -3.10 1670 3.50 1645 0.84 1652.0 4.95 1645
Average -0.67 5.73 1.85 6.93

Max -1.30 1692 10.60 1695 4.35 1683.0 11.28 1692

Subreach 2 Min -4.30 1678 7.10 1678 2.58 1695.0 7.00 1678
Average -2.65 8.33 3.67 9.39

Max -2.40 1707 13.90 1731 4.99 1731.0 14.19 1731

Subreach 3 Min -4.70 1731 10.20 1707 3.68 1707.0 11.47 1707
Average -3.45 11.57 4.20 12.31

Max -1.70 1747 14.60 1751 6.36 1747.0 18.66 1747

Subreach 4 Min -5.50 1733 14.00 1747 5.53 1733.0 14.13 1733
Average -3.53 14.07 5.88 16.39

Max 2.60 1762 16.30 1777 7.92 1777.0 23.78 1762

Subreach 5 Min -1.20 1777 14.50 1762 6.68 1762.0 23.02 1777
Average 0.43 15.06 7.21 22.50

Max 1.40 1820 19.80 1798.00 7.80 1804.0 24.30 1809

Subreach 6 Min -0.90 1798 16.70 1804 5.20 1798.0 11.50 1875
Average 0.26 17.68 6.53 20.01

Max 2.60 1762 19.80 1798 7.92 1777.0 24.30 1809

;:::IL Min -5.50 1733 3.50 1645 0.84 1652.0 4.95 1645
Average -1.33 11.42 4.79 15.95
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From 1962 to 1972 degradation occurred in all subreaches. The upstream half of
Subreach 1 aggraded from 1962 to 1972, along with five sections in Subreach 5 and
Subreach 6. Since 1972, the channel has been aggrading along all subreaches. From
1962 to 2002, a maximum aggradation of 24.30 feet has occurred at Agg/Deg 1809, at the
downstream end of the reach, with a minimum aggradation of 4.95 ft at Agg/Deg 1645, at
the upstream end of the reach. From Figure 4.18, it is clear that aggradation increases in
the downstream direction. Within Subreach 6, however, there tends to be a decrease in
aggradation in the downstream direction. The overall aggradation of the reach is due to
the increase in base-level between 1972 and 1985, at which point the base-level changed
less than 30 ft between 1985 and 2000. Between 1992 and 2002, aggradation continued
in the upstream portions of the reach, still in response to the increase in base-level
between 1972 and 1985. However, the downstream portion of Subreach 6 (Agg/Deg
1827 to Agg/Deg 1875) did not aggrade as much as the upstream portion of Subreach 6,
because of the drop in base-level of about 80 ft between 2000 and 2002.

Figure 4.19 shows the change in the thalweg elevation at selected Agg/Deg lines
from 1962 — 1992. Only Agg/Deg lines with sufficient years of sample data were plotted.
It can be inferred from this plot that as the reservoir level increases, the channel thalweg
elevation increases at each Agg/Deg line, and that the increase in channel thalweg

elevation is more pronounced in the downstream direction, closer to the reservoir.
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Figure 4.20 shows the rate of aggradation between 1972 and 1992 at each
Agg/Deg line for which there is data. A second order polynomial trendline was fit to the
data. For an increase in base-level (Reservoir WSE) of up to 13.4 ft/yr, the following
second order polynomial describes the rate of aggradation from 1972 to 1992 for the
Elephant Butte Reach:

Rate of Aggradation = -0.0014x? + 0.0649x + 0.1832
Where, x is the distance in miles downstream of Agg/Deg 1637 (or the upstream end of

Elephant Butte Reach).

1.2 |
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Figure 4.20 Rate of Channel Aggradation between 1972 and 1992

4.3 Aggradation and Degradation from Range Line Surveys
4.3.1 Channel Thalweg Profile from Range Line Surveys

Figure 4.21 shows the thalweg elevation profile of the entire reach. Only years
with enough range line survey data were plotted. Not all years are presented, because the
lines on the plot would be too dense to see trends if all the years were plotted, so certain

years were chosen to represent changes. The thalweg elevation profile shows a general
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trend of varying aggradation and degradation over time. One of the most notable trends
from this plot is the flattening of the channel slope from 2004 to 2009 in the downstream
half of the reach, which is due to the aggradation induced by a rise in base-level from
2004 to 2009. Also noteworthy is the significant aggradation in 2005 upstream of EB-10
(Agg/Deg 1707). The Tiffany Plug formed in 2005 at SO-1683 (Agg/Deg 1683), just
upstream of EB-10, which can be seen in the profile. In 1995, severe degradation can be
seen downstream of SO-1683 (Agg/Deg 1683), and virtually no change at SO-1683, even
though a sediment plug had formed upstream of SO-1683 in 1995. This is likely
explained by the timing of the survey, which seems to have occurred after the sediment

plug was mechanically removed by Reclamation.
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The channel thalweg profile from the range line survey data was utilized to
demonstrate how the minimum elevation and slope of the reach has changed over time.
The average bed slope for each subreach was determined by first plotting the thalweg
profile versus river mile, and then fitting a linear regression trendline to each subreach.
The slope of the linear regression line was considered the average bed slope of the
respective subreach. This method was used for all years for which range line survey data
was available. The average channel thalweg slopes for each Subreach 1 through
Subreach 6 are presented in Figure 4.22 through Figure 4.27, respectively. Table 4-6

presents the values of the average channel thalweg slopes for each subreach.
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Figure 4.22 Subreach 1 Average Channel Thalweg Slope: Temporal Trend

Avg Thalweg Slope (ft/mi)
ORr NWMAMUON®
[ |
L

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Year

Figure 4.23 Subreach 2 Average Channel Thalweg Slope: Temporal Trend

58



Avg Thalweg Slope (ft/mi)

1985 1990 1995 2000 2005 2010
Year
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Figure 4.25 Subreach 4 Average Channel Thalweg Slope: Temporal Trend
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Figure 4.26 Subreach 5 Average Channel Thalweg Slope: Temporal Trend
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Figure 4.27 Subreach 6 Average Channel Thalweg Slope: Temporal Trend

Table 4-6 Average Channel Thalweg Slopes for Subreaches 1 through 6

Channel Thalweg Slope (ft/mi)

Year SR1 SR 2 SR3 SR4 SR5 SR 6

2010 -—-- -—-- -—-- 3.3058 3.9285 2.7865
2009 3.819 2.5421 14.345 3.191 47156 2.8378
2008 2.3551 3.2975 2.1491 3.6395 4.2458 29771
2007 1.5905 3.215 3.4676 3.6845 4.1554 3.1211
2006 3.3542 3.0568 - - - 3.4361
2005 0.1714 5.4088 0.2545 3.7804 4.8768 3.4627
2004 2.1619 3.6974 4.9293 3.7213 3.1183 4.1643
2003 0.7829 3.3695 2.9158 3.6717 2.9102 4.2159
2002 2.7047 2.8284 1.9506 3.99 2.5376 4.2891
2001 - - - - - 2.3077
2000 ---- -—-- -—-- 5.0078 2.9984 2.7499
1999 3.3741 2.7141 1.147 5.0078 2.9984 3.2324
1998 4.1195 2.5813 4.1364 3.7546 3.2622 3.567
1997 2.3206 4.9367 4.3273 42125 1.6368 3.4796
1996 - - - 2.5278 2.1193 4.2534
1995 6.8687 7.3103 -6 4.3334 1.949 4.2116
1994 43434 2.2019 3.0909 43229 3.9316 3.5435
1993 2.303 - 4.7273 4.0989 2.6817 3.6434
1992 4.1414 — 3.6364 3.053 2.5 4.6557
1991 6.4848 -—-- 2.5273 4.4329 5.5 ----

1990 3.6869 ---- 2.9455 3.3211 2.8516 4.1049
1989 - - - - - 3.9154
1988 ---- ---- -—-- 4.4677 3.0734 1.7771
1987 -—-- -—-- - 5.1043 -—-- -

1986 - - - 5.1482 - -

1980 ---- ---- -—-- 3.8767 -—-- -—--
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Subreaches 1 through 5 don’t appear to have a trend relating average channel
thalweg slope to time. Subreach 6, however, has a decreasing trend from 1995 to 2001
and again from 2002 to 2010. From 1995 to 2001, the channel slope decreases at a rate
of 0.32 ft/mi/yr; from 2002 to 2010, the channel slope decreases at a rate of 0.21 ft/mi/yr.
From 1995 to 2001, the base-level drops about 35 ft, while Subreach 6’s slope decreases.
From 2001-2004, the base-level drops another 60 ft, and from 2004 to 2009, the base-
level increases about 35 ft, all while the channel slope decreases. Therefore, the channel
slope is not dependent on the base-level changes within the same time-frame. Rather, the
channel slope decrease from 1995 to 2001 is due to the increase in base-level from 1982
to 1986, or from the increase in base-level from 1990 to 1995. And, the channel slope
decrease from 2001 to 2010 is due to the increase in base-level from 2004 to 2009. The
sudden jump in channel slope from 2.3 ft/mile, in 2001, to 4.3 ft/mile, in 2002, is likely a
result of the decrease in base-level between 1995 and 2004, during which the base-level
dropped by about 100 ft.

Cross-sections were plotted at select range lines for all years of available data and
are presented in Appendix F. Figure 4.28 through Figure 4.36 show representative cross-
sections of Elephant Butte Reach. SO-1683, Figure 4.29, is located in Subreach 2. From
2004 to 2005 the channel aggraded by about 8 ft and then degraded by about 8 ft from
2005 to 2006. This is the location of the Tiffany Sediment Plug in 2005. The sediment
plug was removed by excavating a pilot channel, which accounts for the decrease in bed
elevation from 2005 to 2006. EB-41, Figure 4.36, is located in Subreach 6. When the
reservoir was full from 1985 to 2000, this range line was inundated by the reservoir,

which is why there is only data available beginning in 2004.

61



4500

4498

4496

4494

4492

Elevation (ft)

4490

4488

4486

4492

4490

4488

4486

o
N
o)
o

o
S
[ole)
N

Elevation (ft)

4480

4478

4476

4474

150

Station (ft)
Figure 4.28 Subreach 1: SO-1641 Surveyed Cross-Sections

100
Station (ft)

Figure 4.29 Subreach 2: SO-1683 Surveyed Cross-Sections

62

200



4482

4480

4478

4476

I
I
J
S

4472

Elevation (ft)

4470

4468

4466

4464

4462

500 600 700 800 900 1000 ‘et 1986
TS TEPE PP 1980
Station (ft)

Figure 4.30 Subreach 3: EB-10 Surveyed Cross-Sections

4490

. ——2009
4 Active Channel
4485

4480

S8

S

\

3

Elevation (ft)
S
S
~
o
e acsca. 1 Y
'-\b

N IN

- s

= Ny

v [
______"_____-__"___

4460

4455

e wo
lacs oo o=0 @=o oo
P
.
- o
e Sl L T P

-

%

4450

0 500 1000 1500 2000 2500 e 1986
Station (ft) ......... 1980

Figure 4.31 Subreach 3: EB-10 (w/Floodplain) Surveyed Cross-Sections

63



4476

—— 2009
4474 N || % — 2008
4472 -t — - ——— 2007

? SReiiTos W ——— 2005

T 4470 T T — - —— 2004

c S~ - e e TP
2 4468 - : ——2002
[¢] ]
3 - ‘. eesy o e 2000
i Tt — v, ;s ee--- 1998
\\ \ o I'
4464 oS ey 1992
S .| [ (s 1988
4462 -
----- 1987
4 -——r-—-— 1986
1950 2000 2050 2100 2150 2200 2250 2300
Station (ft)
Figure 4.32 Subreach 4: EB-13 Surveyed Cross-Sections
4465 2009
—— 2008
——— 2007
4460 2005
——— 2004
—— 2002
4455 ———————————— W e s o | —=---- 2000
o i St | (N IEE LD 1999
T s i - e SR 1998
2450 — — = ____. 1997
[

a | N ) | ==-- 1995

W N N e 1994
4445 — 1993

1992
4440 1991
1990
1988
4435 1980
150 200 250 300 350 400 450
Station (ft)

Figure 4.33 Subreach 5: EB-20 Surveyed Cross-Sections

64



4450

Elevation (ft)

——2009
——2008
4445 e 2007
—— 2005
£ 4440 ———2004
c
2 2002
3
24435 o ===-- 2000
w
----- 1999
430 —-— - T 1997
----- 1995
445 - — ) T 1933
5000 5100 5200 5300 5400 5500 5600 - ---- 1989
Station (ft)
Figure 4.34 Subreach 6: EB-29 Surveyed Cross-Sections
——2009
4455 2008
‘ / Active Channel
4450 A
\
\
4445
4440
4435
4430
4425
3750 4250 4750 5250 5750 6250 6750

Station (ft)

Figure 4.35 Subreach 6: EB-29 (w/Floodplain) Surveyed Cross-Sections

65



4416

4414 =

4412 \ /\/r

4410 \ / p ——2009
3 ‘-\ . ——2008
s \ \—74—\_/\’ ‘~7\/ 2007
S 4406 R — ——2004
e

4404 ™~

o |\ /
4400 w

4398

0 50 100 150 200 250 300
Station (ft)

Figure 4.36 Subreach 6: EB-41 Surveyed Cross-Sections

4.3.2 Change in Thalweg and Average Bed Elevation from Range Line Surveys

As seen in Figure 4.28 through Figure 4.36 aggradation and degradation occur
across the entire channel bed, not just the thalweg. Therefore, the following analyses
focus on the change in thalweg elevation temporally and spatially. Figure 4.37 shows the
change in the thalweg elevation at selected range lines from 1980-2010. Only range lines

with sufficient years of sample data were plotted.
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From 1980 to 1988, aggradation occurred at all range lines for which there is data.
From 1988 to 1994, the thalweg elevation alternated between increasing and decreasing
elevation, typically changing no more than 3 ft in either direction. From 1994 to 1995,
mostly aggradation occurs, up to 6.2 ft, near the upstream reservoir extent; degradation
occurs just downstream of the 1995 Tiffany Sediment Plug at SO-1692 and SO-1701.3,
7.6 ft and 3.6 ft, respectively. From 1995 to 2002, the change in channel thalweg
elevation varies between aggradation and degradation. From 2002 to 2003, aggradation
occurs from SO-1641 to EB-29, ranging between 1 ft and 4 ft; degradation occurs
downstream of EB-29, up to 3.5 ft. From 2003 to 2004, the channel degraded from SO-
1641 to SO-1692, and from EB-20 to EB-50 by up to 10.7 ft; the channel aggraded from
S0O-1701.3 to EB-18 by up to 1 ft. From 2004 to 2007, aggradation occurred from SO-
1641 to SO-1692, up to 2.3 ft, and from EB-40 to EB-50, up to 7.6 ft; degradation
occurred from SO-1701.3 to EB-39, up to 11 ft. From 2007 to 2008, degradation
occurred from SO-1641 to EB-37.5, up to 2.7 ft; aggradation occurred from EB-38 to
EB-50, up to 1.4 ft. From 2008 to 2009, the channel degraded from SO-1641 to EB-37,
up to 2.6 ft; the channel aggraded from EB-37.5 to EB-50, up to 4.2 ft. From 2009 to
2010, the channel varied between aggradation and degradation, ranging between -1.8 ft
and 2.2 ft in elevation change.

A few notable changes occurred at EB-24. From 1990 to 1992 the thalweg
elevation decreased by about 12 ft, from 1992 to 1993 the thalweg elevation increased by
about 7.8 ft, and from 1994 to 1995, the thalweg elevation increased another 6.2 ft.

These changes are in direct response to the change in reservoir WSE, as the shape of the
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thalweg elevation over time mimics the shape of the change in WSE over time, as seen in
Figure 4.37.

Table 4-7 shows the calculated values of change in thalweg elevation between
selected year sets at each range line for which there is data. The table is color-coded such
that cells highlighted with light red fill indicate degradation between the year set, while
cells highlighted with light green fill indicate aggradation, or in the case of the reservoir
level change, the colors indicate a drop in level and rise in level, respectively. A Cell
highlighted with blue fill and white text, or a cell under the area of the pink outline,
indicates the cross-section was inundated by the reservoir during the latter of the two
years associated with the year set. If the text within a cell reads “----”, then data was not
available at that range line during at least one of the two years associated with the year
set. A cell within the area of a red outline indicates the cell is associated with a “wave”
of degradation, while a cell within the area of a green outline indicates the cell is
associated with a “wave” of aggradation. If a cell is between the area of a red and green
outline, then the cell is considered a transitional area.

Four “waves” were analyzed from this dataset. The first wave is a wave of
degradation and is the result of a decrease in average reservoir level (base-level) from
2009 to 2010 of about 7 ft. The second wave is a wave of aggradation and is the result of
an increase in average base-level from 2004 to 2009 of about 35 ft. The third wave is a
wave of degradation and is the result of a decrease in average base-level from 1995 to
2004 of about 105 ft. The fourth and final wave analyzed, is a wave of aggradation and is
the result of an increase in average base-level from 1990 to 1995. No other waves were

analyzed in detail, due to the lack of available data between 1980 and 1990.
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Table 4-7 Change in Thalweg Elevation Between Select Year Sets

2009- 2008- 2007- 2004- 2003- 2002- 1999- 1998- 1997- 1995- 1994- 1993- 1992- 1991- 1990- 1990- 1988- 1980-
2010 2009 2008 2007 2004 2003 2002 1999 1998 1997 1995 1994 1993 1992 1991 1992 1990 1988
o1 073  -135 165  -017 126  -152 012 181
wos | — 08 215 225 a6 192 030 057 133 030 210 100 060 162 177 015
oo — 016 143  -184 140  -040 -102 122 070  -100  -030
o 055  -122 026  -132 202 015 137 222 370 050
s 051  -052 -104 221 261 136 067 -173 000 180 020
o 066  -135 102  -184 116  -003 116 -7.60
o | — 015 472 274 122 238 033 058 180 350 360 140 060 137 000 137  —
810 | 127  -156 -099 -194 o012 18  -077 106 191  -218 140 230  -120 -198 023  -175 125 810
813 | 018 078 070 492 020 209 146  -0.61  -187 243 090 120 040 219 018  -237 147  12.10
14 | 268 454 — 1280
816 | 075 039 076 589 049 217 034 040 228  -228 200 020 070 — 18 318  11.00
817 | 015 006  -056 433 006 279 196  -1.90 101 149 030 120  -220 -022  -178  -200 270  11.90
818 | 079 025 239 627 002 335  -115  -0.67 437  -170  -180  3.40 — 027 - 036 280
820 | 135 258 177 737 052 265 071 290 -163 043 090 160 060 08 291 205
834 | 080 053 -266 856 040 256  -013 045 126  -121 250 070  0.90 — 250 020
824 | - . 862 211 238 223 230 284 274 620 080 7.80  -636  -5.68 -12.04 -156  20.40
825 | 005 08  -120 -1040 -0.62 226  -076 040 030  -010 060  -0.80  2.40
826 | 047 029 -148 -1113 044 101 045  -140 170  -3.80 120 017 187
EB-27 | - 08  -130 _ 110 230  -2.10
828 | 006 027 -107 18 815 272  -151 026 005 075 150 070 330
829 | 083 043 215 106 -10.69 412  -060 247 304 080 030 050 120
830 | 032 066 08  -075 424  -103  -453 247 103 200 090 070 0.0
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Table 4-7 Change in Thalweg Elevation Between Select Years (Part 2)

2009- 2008- 2007- 2004- 2003- 2002- 1999- 1998- 1997- 1995- 1994- 1993-
2010 2009 2008 2007 2004 2003 2002 1999 1998 1997 1995 1994

g32 | 002 053 162 006 | 017 349 274 | 060 | 130 010 | 030 | 060

€833 | -046 121 107  -165 | 169 227  —

g3 | 036 08 191 009 | 060 171

836 | -0.10 026 103 015 | 228

37 | 18 | -028 071 003 | -18 = —

o | 222 053 | 049 080 | -089

E838 | 154 127 020 | -030 | 0.5

839 | 000 074 052 | -036 | -136

gB40 | 098 231 025 232 | 085

ws | 18 198 017 275 | -030

g841 | 105 1.8 140 370 | -129 =

EB42 | 142 005 032 406 | 08

EB43 | 104 206 060 524 | -2.68

EB44 | 154 422 086 441 | 079

EB45 | 048 175 118 620 | 202

EB46 | 013 293 046 683 | 428

847 | -1.02 223 006 701 | 380

EB48 | 379 225 019 759 | 362

849 | 082 012 082 674 | 217 = —

EBS0 | -021 | 011 074 565 | 355 -

Res | -691 | 173 585 2875 | 907 -2443 5195 -451 133 717 | 012  3.23

1992-
1993

1.41

1991-
1992

10.64

1990-
1991

1.29

1990-
1992

11.94

1988-
1990

-16.20

1980-
1988

32.49
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The change in thalweg and mean channel bed elevation were evaluated using the
range line survey data. First, the minimum channel elevation (thalweg) was calculated
for each range line at different surveyed years. Then, the change in Thalweg elevation
was compared between years at each range line where data was available. A second,
similar analysis was done by calculating the change in the average channel bed elevations
for which a weighted average was used to calculate the mean bed elevation for each
range line at different surveyed years.

Because data was not available each year for every range line, different ranges of
years had to be used to calculate the change in elevation. This is indicated by the
different colors of bars in Figure 4.38 for the change in average bed elevation analysis,
and Figure 4.39 for the change in thalweg elevation analysis. The orange bars show a
change in elevation for range lines between 1988 and 1990; the turquoise bars show a
change in elevation between 1990 and 1995; the purple bars show a change in elevation
from 1995 to 2003; the green bars show a change in elevation between 2003 and 2004;
and the red bars show a change in elevation from 2004 to 2009; and blue bars show a
change in elevation from 2009 to 2010. Note that each set of bars has a different time
increment; this is because the selected years contain data for most of the range lines, and

the year sets represent an overall aggrading or degrading trend.
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The following observations are based specifically on the change in thalweg
elevation; however, the general trends observed are similar for the change in average bed
elevation. From 1988 to 1990, primarily aggradation occurred, up to 3.2 ft. From 1990
to 1995, which includes the first instances in which the Tiffany Plug formed, there is
aggradation and degradation observed, depending on the range line; there does not appear
to be a hinge point spatially separating aggradation and degradation. From 1995 to 2003,
after the second Tiffany Plug, there is mostly aggradation between SO-1673 and EB-29,
up to 11.3 ft. From 2003 to 2004, there is degradation the majority of the reach, up to
10.7 ft. From 2004 to 2009, degradation is observed from SO-1652.7 to EB-37.5, at
which point aggradation is observed from EB-38 to EB-50. From 2009 to 2010, the
channel alternates between aggradation and degradation along the reach profile, with the

greatest magnitude of aggradation, 3.8 ft, occurring at EB-48.

4.3.3 Rate of Aggradation/Degradation from Range Line Surveys

From 2003 to 2004, shown in Figure 4.40 and Figure 4.41, degradation is
observed along the entire reach, except for at five range lines. The wave of degradation
between EB-13 and EB-50 (Wave 3) is in response to the drop in base-level (Reservoir
WSE) by about 100 ft between 1995 and 2004. Figure 4.41 shows the magnitude of
degradation from 2003 to 2004 at River Miles, which is represented by the following
second order polynomial equation:

y =-0.1601x? + 16.209x - 410.5
Where, y is the magnitude of degradation and x is the longitudinal location along the

reach in River Miles (RM, as defined by Reclamation, where measurements begin at the
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downstream end of the Middle Rio Grande River); this equation is appropriate for RM

45.21 to RM 57.75.
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Figure 4.40 Magnitude of Aggradation and Degradation at Range Lines (2003-2004)
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Figure 4.41 Magnitude of Aggradation and Degradation at River Miles (2003-2004)
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From 2004 to 2005, all of the thalweg elevations decreased between SO-line 1683
and EB-26; the decrease becomes more pronounced in the downstream direction between
these range lines, as seen in Figure 4.42 and Figure 4.43. From 2004 to 2005, SO-lines
1641, 1652.7, and 1683 increased. The wave of degradation between SO-1683 and EB-
26 (Wave 3) is in response to the drop in base-level (Reservoir WSE) by about 100 ft
between 1995 and 2004. Figure 4.42 shows the magnitude of degradation from 2004 to
2005 at River Miles, which is represented by the following linear equation:

y =0.8233x — 58.29
Where, y is the magnitude of degradation and x is the longitudinal location along the

reach in River Miles; this equation is appropriate for RM 59.34 to RM 73.59.
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Figure 4.42 Magnitude of Aggradation and Degradation at Range Lines (2004-2005)
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Figure 4.43 Magnitude of Aggradation and Degradation at River Miles (2004 to 2005)

From 2004 to 2009, shown in Figure 4.44, degradation is observed from SO-
1652.7 to EB-37.5, at which point aggradation is observed from EB-38 to EB-50. These
two trends represent two distinct waves of thalweg elevation changes in response to base-

level changes, Wave 3 and Wave 2, respectively.
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Figure 4.44 Change in Thalweg Elevation from 2004 to 2009

The wave of degradation between SO-1701.3 and EB-26 (Wave 3) is in response

to the decrease in base-level by about 100 ft between 1995 and 2004. Figure 4.45 shows
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the magnitude of degradation from 2004 to 2009, which is represented by the following
second order polynomial equation:

y =-0.0226x% + 4.0x — 171.53
Where, y is the magnitude of degradation and x is the longitudinal location along the
reach in River Miles; this equation is appropriate for RM 45.21 to RM 52.03.

The wave of aggradation between EB-38 and EB-50 (Wave 2) is in response to
the reservoir WSE increase of about 35 ft between 2004 and 2009. Figure 4.46 shows the
magnitude of aggradation from 2004 to 2009, which is represented by the following
second order polynomial equation between RM 59.34 and RM 73.59:

y = -0.4355x% + 41.11x — 962.27
Where, y is the magnitude of degradation and x is the longitudinal location along the

reach in River Miles.
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Figure 4.45 Magnitude of Degradation from 2004 to 2009
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Figure 4.46 Magnitude of Aggradation from 2004-2009

Appendix G presents plots of the change in thalweg elevation between selected
year sets versus river mile, along with trendlines associated with “waves” of aggradation

and “waves” of degradation.

4.3.4 Rate of Wave Propagation Upstream from Range Line Surveys

Wave 1, resulting from the decrease in base-level from 2009 to 2010, is
represented by range line EB-50. EB-50 decreased approximately 0.2 ft between 2009
and 2010. The rate of wave propagation upstream was determined by first plotting the
river mile of the upstream extent of the reservoir during the first year of the wave. Then,
the river mile of the upstream-most affected range line cross-section was determined and
plotted versus the latter year of the year set. If a wave continued beyond one year set,
then this step was repeated for each year set that the wave propagated and for which data
existed. The upstream extent of the reservoir was determined by interpolating (or
extrapolating) the average channel thalweg slope during the first year of the wave to the
average elevation of the reservoir; where the channel slope and reservoir elevation

intersected, the river mile was calculated. Figure 4.47 shows the reservoir water surface
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elevation change from 2009 to 2010, which induces Wave 1 degradation. Figure 4.48
shows the rate of Wave 1 propagation upstream as a result of the decrease in WSE (base-
level) from 2009 to 2010. The wave propagated upstream at a rate of 1.46 miles/year
with a decrease in base-level of 6.9 ft/year, and the upstream extent of the reservoir

receded 2.71 miles/year.
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Figure 4.47 Reservoir Water Surface Elevation Change from 2009-2010 Resulting in
Wave 1 Channel Degradation
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Figure 4.48 Rate of Wave 1 Propagation Upstream
Wave 2 resulted from an increase in base-level from 2004 to 2009. Figure 4.49

shows the reservoir water surface elevation change from 2004 to 2009, which induced
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Wave 2 aggradation. Figure 4.50 shows the rate of Wave 2 propagation upstream as a
result of the increase in WSE (base-level) from 2004 to 2009. With an increase in base-
level of 6.8 ft/year, Wave 2 propagated upstream according to the following second order
polynomial:
y = -0.5522x2 + 2219.1x - 2E+06

Where, vy is the upstream-most River Mile at which aggradation occurs as a result of an
increase in base-level of 6.8 ft/year, and x is the year at which River Mile y begins to
aggrade. The upstream extent of the reservoir progressed upstream at a rate of 1.36

miles/year.
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Figure 4.49 Reservoir Water Surface Elevation Change from 2004-2009 Resulting in
Wave 2 Channel Aggradation
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Figure 4.50 Rate of Wave 2 Propagation Upstream

Wave 3 resulted from a decrease in base-level from 1997 to 2004. Figure 4.51
shows the reservoir water surface elevation change from 1997 to 2004, which induced
Wave 3 degradation. Figure 4.52 shows the rate of Wave 3 propagation upstream as a
result of the decrease in WSE (base-level) from 1997 to 2004. With a decrease in base-
level of 14.2 ft/year, Wave 3 propagated upstream according to the following second
order polynomial:

y = 0.0692x° - 276.2x + 275686
Where, y is the upstream-most River Mile at which degradation occurs as a result of a
decrease in base-level of 14.2 ft/year, and x is the year at which River Mile y begins to

degrade. The upstream extent of the reservoir receded at a rate of 2.9 miles/year.
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Figure 4.51 Reservoir Water Surface Elevation Change from 1997-2004 Resulting in
Wave 3 Channel Degradation
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Figure 4.52 Rate of Wave 3 Propagation Upstream

Wave 4 resulted from an increase in base-level from 1990 to 1995. Figure 4.53
shows the reservoir water surface elevation change from 1990 to 1995, which induced

Wave 4 aggradation. Figure 4.54 shows the rate of Wave 4 propagation upstream as a
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result of the increase in WSE (base-level) from 1990 to 1995. With an increase in base-

level of 3.7 ft/year, Wave 4 propagated upstream according to the following second order

polynomial:

y = -0.1222x? + 489.03x — 489299
Where, vy is the upstream-most River Mile at which aggradation occurs as a result of an
increase in base-level of 3.7 ft/year, and x is the year at which River Mile y begins to

aggrade. The upstream extent of the reservoir progressed upstream at a rate of 1.07

miles/year.
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Figure 4.53 Reservoir Water Surface Elevation Change from 1990-1995 Resulting in
Wave 4 Channel Aggradation
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Figure 4.54 Rate of Wave 4 Propagation Upstream

4.4 Bed Material Analysis
4.4.1 Grain Size Distributions

Bed material surveys taken at SO- and EB- range lines by Reclamation were used
to create grain size distribution curves for each subreach. Also, San Acacia and San
Marcial gauges’ bed material grain size distributions were plotted to study the trend of
the bed material grain size about 44 miles upstream of the study reach and within the
study reach.

Since complete temporal sequences of data related to each range line were not
available, those with the most complete set of data were chosen to represent each

subreach (see Table 4-8).
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Table 4-8 Representative Range Lines for Each Subreach

Subreach Range Line
1 SO-1641
2 SO-1683
3 EB-10
4 EB-13
5 EB-18
6 EB-24

Multiple samples were collected at a given range line and for a given year. In
many cases, stations along the range line cross-section at which samples were collected
were provided. Where stations were provided, the sample locations were compared to
the surveyed range line cross-sections, which were presented in Section 4.3. If the
samples collected were from the floodplain within the cross-section, then the sample was
not included in this analysis, as bed material only is of interest. If sample locations were
not provided, then it was assumed that the sample was a bed material sample, because the
data provided was defined by Reclamation as bed material sample data. The grain size
distributions of all the collected bed material samples at a given station and in a given
year were plotted. A representative grain size distribution was selected for each range
line and for each year, from which the average mean grain size was computed. This same
procedure was applied to the San Acacia and San Marcial gauge data. For example,
Figure 4.55 shows different grain size distributions for range line EB-10 in 1992. The

most representative distribution chosen for that year is highlighted in yellow.
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Figure 4.55 EB-10 1992 Bed Material Grain Size Distributions
Figure 4.56 through Figure 4.63 show the compilation of representative grain size
distributions for each year at the San Acacia gauge, at the San Marcial gauge, and at each

subreach. Select bed material grain size distribution plots are provided in Appendix H.
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Figure 4.56 San Acacia Gauge: Annual Bed Material Grain Size Distributions
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Figure 4.57 San Marcial Gauge: Annual Bed Material Grain Size Distributions
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Figure 4.58 Subreach 1 (SO-1641): Annual Bed Material Grain Size Distributions
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Figure 4.59 Subreach 2 (SO-1683): Annual Bed Material Grain Size Distributions
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Figure 4.60 Subreach 3 (EB-10): Annual Bed Material Grain Size Distributions
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Figure 4.61 Subreach 4 (EB-13): Annual Bed Material Grain Size Distributions
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Figure 4.62 Subreach 5 (EB-18): Annual Bed Material Grain Size Distributions
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Figure 4.63 Subreach 6 (EB-24): Annual Bed Material Grain Size Distributions
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The San Acacia and San Marcial grain size distribution plots show that the bed
material has become slightly coarser over time as indicated by the grain size distribution
curves moving to the right with time. Note that the San Acacia gauge is 44 miles
upstream of this study reach and is not representative of this study reach, while the San
Marcial gauge is located at the upstream end of this study reach, and therefore represents
this study reach very well. The grain size distributions of each subreach have
experienced minimal changes throughout the years. It should be noted that in the case of
San Acacia and San Marcial gauges, the sequences of data ranges from 1967 to 2008,
while Subreaches 3, 4, 5, and 6 data range from 1986 to 2002; Subreach 1 only ranges

from 2001 to 2005; and Subreach 2 only has data from 1999.

4.4.2 Median Grain Size

Figure 4.64 shows the change over time of the average median bed material grain
size in each subreach and at the San Acacia and San Marcial gauges, located 44 miles
upstream of the study reach and within the study reach, respectively. Figure 4.65 shows

the average median bed material grain size trends for each subreach from 1986 to 2005.
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Figure 4.65 Average Median Bed Material Grain Size: Subreach Temporal Trends
Overall, mean grain sizes of the study reach range between 0.11 and 0.26 mm,

corresponding to very fine to medium sand (Julien 2002). In general, the bed material at
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the San Marcial gauge has become coarser since the 1960s by about 0.002 mm/year
(from a minimum of 0.08 mm in 1991 to a maximum of 0.24 mm in 2004). The bed
material at the San Acacia gauge has become coarser by about 0.009 mm/year (from a
minimum of 0.04 mm in 1980 to a maximum of 0.85 mm in 2009), which is about five
times faster than the bed material coarsening rate at the San Marcial gauge. Note that the
rates of bed material coarsening were determined using the entire datasets for each
respective gauge that are presented in Figure 4.64.

Figure 4.65 shows that the average median grain size in Subreach 1 has become
finer at a rate of 0.0046 mm/year between 2001 and 2005; Subreach 2 has no temporal
trend, because the only data available for Subreach 2 is from 1999; the average median
grain size within Subreach 3 coarsened at a rate of 0.0027 mm/year between 1986 and
2002; the average median grain size within Subreach 4 coarsened at a rate of 0.0031
mm/year between 1986 and 2002; the average median grain size within Subreach 5
coarsened at a rate of 0.0031 mm/year between 1986 and 2002; the average median grain
size within Subreach 6 became finer at a rate of 0.0005 mm/year between 1986 and 2002.

All average median grain sizes are within the very fine to fine sand range, except
for the averages in Subreach 1 in 2001 and in Subreach 3 in 1994, which are in the low
end of the medium sand classification (0.26 mm). So, though there has been overall
coarsening of the bed material within this study reach, it is less than 0.003 mm/year, and
is still generally classified as very fine to fine sand. Figure 4.65 also shows that while the
median bed material size has coarsened with time, it tends to get finer in the downstream

direction.

95



4.5 Suspended Sediment Data

Suspended sediment data was used from the Escondida Reach Report (Larsen et
al. 2007). Single and double mass curves developed in the Escondida Reach Report
(Larsen et al. 2007) are presented below. Trends in water discharge, suspended sediment
discharge, and suspended sediment concentration are shown in Figure 4.66, Figure 4.67,
and Figure 4.68, respectively.

The single mass curve for water discharge, Figure 4.66, shows similar trends at
the San Marcial and San Acacia gauges. Both curves show breaks around 1979 and
2000. In about 1979, the discharge increased from about 600 cfs to over 2000 cfs. Table
4-9, also from the Escondida Reach Report (Larsen et al. 2007), is presented below and

shows the average discharge for each period displayed on the graph.
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Figure 4.66 Water Discharge Single Mass Curve (Larsen et al. 2007)
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Table 4-9 Water Discharge (Larsen et al. 2007)

Gauge Years acre-ft/day R’ value
San Acacia | 1958-1979 522 0.98
1980-1999 2856 0.99
2000-2005 1055 0.93
San Marcial |_1949-1978 621 0.94
1979-2000 2263 0.99
2001-2005 740 0.84

Figure 4.67 shows the single mass curve for suspended sediment discharge at the
San Acacia and San Marcial Gauges. The San Marcial gauge has a much higher
suspended sediment discharge than the San Acacia gauge from 1956 until about 1968.
From 1968 to 1991, the two gauges both have a suspended sediment discharge of about
10,000 tons/day. From 1991 to 1996, the San Marcial gauge again shows a much higher

suspended sediment discharge. Table 4-10 shows the average suspended sediment

discharge for the periods shown on the graph.
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Figure 4.67 Suspended Sediment Discharge Single Mass Curve (Larsen et al. 2007)
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Table 4-10 Suspended Sediment Discharge (Larsen et al. 2007)

Gauge Years tons/day | R’ value
San Acacia |_1959-1967 | 6062 | 0.94
1968-1975 9172 0.92

1976-1996 10066 0.99
1956-1959 35276 0.88
1960-1989 10232 0.98
1991-1995 16707 0.98

San Marcial

Double mass curves were developed at each gauge to show the changes in

suspended sediment concentration over time, as seen in Figure 4.68.
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Figure 4.68 Suspended Sediment Concentration Double Mass Curves (Larsen et al.
2007)

From 1959 to 1978, the two curves are very similar, with an average suspended

sediment concentration of about 13,000 mg/L. Around 1978, both curves break, and the
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suspended sediment concentration drops to about 3,000 mg/L. The concentration at the
San Acacia gauge remains at about 3,000 mg/L through the end of the available data.
The San Marcial gauge, however, shows an increase in suspended sediment concentration
from 3,000 mg/L to 4,500 mg/L around 1990. Table 4-11 shows the average

concentration as well as the R? values for each segment of the graph.

Table 4-11 Suspended Sediment Concentration (Larsen et al. 2007)

Gauge Years tons/acre-ft mg/L R? value
San Acacia 1959-1978 17.9 13165 0.97
1979-1996 3.58 2633 0.98
San Marcial 1956-1977 17.21 12657 0.97
1978-1989 4.16 3060 0.92
1990-1995 6.2 4560 0.98

From 1960 to 1989 at the San Marcial gauge, and from 1959 to 1996 at the San
Acacia gauge, the suspended sediment discharge consistently averaged between about
9,000 and 10,000 tons/day, as seen in Figure 4.67. Around 1980, the water discharge at
the San Acacia and San Marcial gauges increased four to five times the average water
discharge from 1949 to 1980. From 1942 to 1979, New Mexico experienced a state-wide
drought (Paulson et al 1988). The decrease in suspended sediment concentration in 1979
was due to the increase in water discharge following the nearly 40 year drought, and was

not due to a change in suspended sediment discharge.
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SECTION 5: SUMMARY AND CONCLUSIONS

The Elephant Butte Reach spans about 30 miles, beginning from the South Boundary
of the Bosque del Apache National Wildlife Refuge (River Mile 73.9) to the “narrows” of
the Elephant Butte Reservoir (River Mile 44.65), in central New Mexico. Further
understanding of the historical and spatial changes within Elephant Butte Reach, along
with a better understanding of the influences of Elephant Butte Reservoir levels on
channel aggradation/degradation is essential for improvement in future river management
practices along the Middle Rio Grande. The objectives addressed in this study included
the following:

6. Quantified temporal changes in channel widths and sinuosity from 1935 to 2010.

7. Quantified change in channel slope temporally.

8. Quantified rate of aggradation/degradation in response to a change in base-level

(i.e., change in reservoir water surface elevation).

9. Quantified aggradation/degradation wave propagation upstream.

10. Quantified spatial and temporal trends in bed material grain size.

The average channel width and channel sinuosity for Elephant Butte Reach have
decreased since 1918. From 1935 to 2010, the average channel width decreased
according to the following equation:

Avg. Chnl Width = 0.2353x* — 936.54x + 931904
Where, x is the year. Since 1962, the average channel width has ranged between 50 ft
and 300 ft. From 1935 to 2010, channel sinuosity has decreased according to the
following equation:

Channel Sinuosity = 6E-05x? — 0.2196x + 219.57
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Where, x is the year. Since 1962, channel sinuosity has remained lower than 1.25.

The channel slope since 1962 has primarily decreased. From 1962 to 2002, based
on Agg/Deg-line survey data, the average channel slope (Subreaches 1 through 5)
decreased about 0.03 ft/mile/year. Within Subreach 6, based on range line survey data,
the channel slope decreased 0.32 ft/mile/year from 1995 to 2001 as a result of an increase
in base-level of about 20 ft from 1990 to 1995; from 2002 to 2010, the channel slope
decreased 0.21 ft/mile/year as a result of an increase in base-level of about 35 ft from
2004 to 2009; from 2001 to 2002, the channel slope increased from 2.3 ft/ft to 4.3 ft/ft in
one year as a result of a decrease in base-level of about 100 ft from 1995 to 2004.

The rate of aggradation/degradation along the reach varied between different year
sets. Based on Agg/Deg-line survey data, from 1972 to 1992, the base-level increased
13.4 ft/year, and the channel aggraded in response as described by the following
equation:

Rate of Aggradation = -0.0014x? + 0.0649x + 0.1832

Where, X is the distance (in miles) downstream of Agg/Deg 1637 (or the upstream end of
Elephant Butte Reach).
Between 1995 and 2004, the base-level dropped 100 ft (11.1 ft/year). The following
equations describe the rate of degradation for year sets 2003-2004, 2004-2005, and 2004-
2009, respectively:

(2003-2004) Rate of Degradation = -0.1601x°+16.209x — 410.5

(2004-2005) Rate of Degradation = 0.8233x — 58.29

(2004-2009) Rate of Degradation = -0.0226x° + 4.0x — 171.53
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Where, x is the River Mile (as defined by Reclamation). From 2004 to 2009, the channel
aggraded in response to an increase in base-level of about 35 ft between 2004 and 2009
(7 ft/yr), as follows (where x is the River Mile):

(2004-2009) Rate of Aggradation = -0.4355x% + 41.11x — 962.27

Wave 1 propagated upstream at a rate of 1.46 miles/year with a decrease in base-
level of 6.9 ft/year. Wave 2 propagated upstream following a rise in base-level of 6.8
ft/year between 2004 and 2009, as follows:

y =-0.5522x% + 2219.1x — 2*10°
Wave 3 propagated upstream following a drop in base-level of 14.2 ft/year between 1997
and 2004, as follows:

y = 0.0692x% — 276.2x + 275686
Wave 4 propagated upstream following a rise in base-level of 3.7 ft/year between 1990
and 1995, as follows:

y= -0.1222x° + 489.03x — 489299
Where, X is year and y is river mile.

The average median grain size in Subreach 1 has become finer at a rate of 0.0046
mm/year between 2001 and 2005; Subreach 2 only has data available in 1999; between
1986 and 2002, the average median grain size within Subreach 3, 4, and 5 coarsened at a
rate of 0.0027 mm/year, 0.0031 mm/year, and 0.0031 mm/year respectively; the average
median grain size within Subreach 6 became finer at a rate of 0.0005 mm/year between
1986 and 2002. There has been overall coarsening of the bed material within this study
reach at a rate of less than 0.003 mm/year. Lastly, the median bed material size gets finer

in the downstream direction, and is generally classified as very fine to fine sand.
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APPENDIX A: RANGE LINE SURVEY DATES
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Table A.1 Range Line Survey Dates

Range
Line

Year

80

86

87

88
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90
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00

01
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Range Line Survey Dates (Continued)
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Range Line Survey Dates (Continued)
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Range Line Survey Dates (Continued)
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Range Line Survey Dates (Continued)
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Range Line Survey Dates (Continued)
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Range Line Survey Dates (Continued)
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Range Line Survey Dates (Continued)
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Range Line Survey Dates (Continued)
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Range Line Survey Dates (Continued)
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APPENDIX B: DAILY DISCHARGE HYDROGRAPHS
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APPENDIX C: DATES AND LOCATIONS OF BED MATERIAL SAMPLES
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Table C.1 Available Bed Material Data at Range Lines
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X| X[ X| X| X
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X| X| X| X| X| X

FC-1754

EB-18

b
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x| X| X| X
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EB-26.6
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X | X| X| X| X| X]| X| X

EB-29.5

EB-30

EB-36
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APPENDIX D: DATES AND LOCATIONS OF USGS GAUGE BED MATERIAL SAMPLES
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Table D.1: Available Bed Material Data at USGS gauging stations: San Acacia and San

Marcial
Gauging station Gauging station
Year San San Year San San
Acacia Marcial Acacia Marcial
1966 X 1988 X X
1967 1989 X X
1968 X X 1990 X X
1969 X X 1991 X X
1970 1992 X X
1971 1993 X X
1972 X 1994 X X
1973 X X 1995 X X
1974 X 1996 X X
1975 X 1997 X X
1976 X X 1998 X X
1977 X 1999 X X
1978 X X 2001 X X
1979 X X 2002 X X
1980 X X 2003 X X
1981 X X 2004 X X
1982 X X 2005 X X
1983 X X 2006 X X
1984 X X 2007 X X
1985 X X 2008 X X
1986 X X 2009 X X
1987 X X 2010 X X
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APPENDIX E: AERIAL PHOTOGRAPH SURVEY DATES AND INFORMATION
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Table E.1 Aerial Photo Survey Dates and Information

Mean Daily Discharge

Notes
Date San Acacia | San Marcial Scale (1918-2002:from Novak 2006
2005: from ArcGIS metadata)
Hand-drafted linens (39 sheets).
1918 No Data No Data 1:12,000 USBR Albuquerque Area Office.
Surveyed in 1918. Published in 1922.
Black and white photography. USBR
1935 No Data No Data 1:8,00 Albuquerque Area Office. Flown in
1935. Published in 1936.
Photo-mosaic. J-Ammann
. Photogrammetric Engineers, San
TR No Data NoData | 135,000 | anionio, TX. USBR Albuguerque
Area Office.
March Photo-mosaic. Abram Aerial Survey
1962 25 cfs 0 cfs 1:4,800 Corp, Lansing, MI. USBR
Albuguerque Area Office.
Photo-mosaic. Limbaugh Engineers,
April 1972 4 cfs 0 cfs 1:4,800 Inc., Albuquerque, NM. USBR
Albuquerque Area Office.
Orthophoto. M&l Consulting
March . Engineers, Fort Collins, CO. Aero-
1985 1900 cfs 1320 cfs 1:4,800 Metric Engineering, Sheboygan, MN.
USBR Albuquerque Area Office.
Ratio-rectified photo-mosaic. Koogle
February . and Poules Engineering,
1992 1020 cfs 630 cfs 1:4,800 Albuquerque, NM. USBR
Albuguergue Area Office.
Ratio-rectified photo-mosaic. Pacific
February . Western Technologies, Ltd.,
2001 770 cfs 560 cfs 1:4,800 Albuquerque, NM. USBR
Albuquerque Area Office.
Digital ortho-imagery. Pacific
March . Western Technologies, Ltd.,
2002 310cfs 150 cfs 1:4,800 Albuquerque, NM. USBR
Albuquerque Area Office.
December ) Digital ortho-imagery. USBR
2003 628 cfs 439 cfs 1:28,800 Albuquerque Area Office.
Winter Date Date 1:4.800 Digital ortho-rectified imagery. USBR
2004 Unknown Unknown o Albuquerque Area Office.
Digital ortho-rectified imagery. Aero-
April 2005 2270 cfs 1680 cfs 1:4,800 Metric, Inc., Fort Collins, CO. USBR
Albuguerque Area Office.
Digital ortho-rectified imagery. Aero-
daany | pae Date 1:4,800 | Metric, Inc., Fort Collins, CO. USBR
nknown Unknown :
Albuguergue Area Office.
June ) Digital ortho-rectified imagery. USBR
2008 3990 ofs 3460 1:45,720 Albuquerque Area Office.
Date Date LiDAR Optec 3100 EA LiDAR 3m.
2010 Aero-Metric, Inc., Fort Collins, CO.
Unknown Unknown

USBR Albuquerque Area Office.
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APPENDIX F: RANGE LINE CROSS-SECTION PLOTS
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APPENDIX G: CHANGE IN THALWEG ELEVATION VS. RIVER MILE PLOTS
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APPENDIX H: BED MATERIAL GRAIN SIZE DISTRIBUTION PLOTS
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Figure H.2 SO-1641 2002 Grain Size Distribution
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Figure H.22 EB-13 2002 Grain Size Distribution

179

100

1000



% Finer by Weight

% Finer by Weight

100

90

80

70

60

50

40

30

20

10

0.01

100

Grain Size (mm)

Figure H.23 EB-18 1986 Grain Size Distribution

90

10

80

70

60

50

40

30

20

10

0.01

0.1 1
Grain Size (mm)

Figure H.24 EB-18 1987 Grain Size Distribution

180

10



% Finer by Weight

% Finer by Weight

100

90

80

70

60

50

40

30 —

0 |

10 /

0.01 0.1 1

Grain Size (mm)

Figure H.25 EB-18 1988 Grain Size Distribution

100

90

80

70

60 I

50

40

0 /i

. el

1
10 —1 /

7 g
- /|

0.001 0.01 0.1 1
Grain Size (mm)

Figure H.26 EB-18 1990 Grain Size Distribution

181



% Finer by Weight

% Finer by Weight

100

90

80

70

60

50

40

30

20

10

0.01

100

1 10
Grain Size (mm)

Figure H.27 EB-18 1993 Grain Size Distribution

90

100

1000

80

70

60

50

40

30

20

10

0.01

0.1 1 10
Grain Size (mm)

Figure H.28 EB-18 1994 Grain Size Distribution

182

100

1000



% Finer by Weight

% Finer by Weight

100

90

80

70

N

60

50

40

30

 y

20

10

A TSN\

0.001

100

0.01 0.1 1 10

Grain Size (mm)

Figure H.29 EB-18 1997 Grain Size Distribution

100

1000

90

80

70

60

50

40

30

20

10

‘\

0.001

0.01 0.1 1 10
Grain Size (mm)

Figure H.30 EB-18 1999 Grain Size Distribution
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Figure H.31 EB-18 2002 Grain Size Distribution
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Figure H.32 EB-24 1986 Grain Size Distribution
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Figure H.33 EB-24 1992 Grain Size Distribution
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Figure H.34 EB-24 1999 Grain Size Distribution
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Figure H.35 EB-24 2002 Grain Size Distribution
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