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ABSTRACT OF DISSERTATION
SAND DISPERSION IN A LABORATORY FLUME

This study is concerned mainly with the longitudinal dispersion
of sand particles along the bed of an alluvial channel under conditions
of steady, uniform flow. Attention is focussed on developing a general
one-dimensional stochastic model to describe and predict the longi-
tudinal dispersion process. The method of approach used by Sayre and
Conover (1967) for a two-dimensional stochastic model, which described
the movement of sand particles along an alluvial bed, is adapted here
for the development of a general one-dimensional stochastic model. The
parameters used in this general one-dimensional stochastic model can be
obtained either from longitudinal dispersion and transport data, or
from bed configuration data, or from a combination of both. The
statistical analysis of ripple bed configurations indicates that
the distribution of bed elevation closely follows a normal distribution,
and may possess the ergodic property.

The Aris moment equations are used to solve the problem of sand
dispersion along an alluvial bed as a special case of the problem of
dispersion of suspended sand particles near the bed. The Aris moment
equations used in this study are modified forms of the conservation of
mass equations for the transport, deposition, and re-entrainment of
suspended sediment. When appropriate initial and boundary conditions
are used, there is excellent agreement between solutions of the Aris
moment equation and results given by-the general one-dimensional

stochastic model.
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Fine, medium, and coarse sized radicactive sand grains were used
as tracer particles in experiments at two different flow conditions,
namely, ripple and dune conditions. In spite of the irregularities
of the experimental longitudinal dispersion curves caused by the
irregularities of the bed configurations, the mean longitudinal dis-
placement and the variance of the longitudinal distribution of the
tracer particles were found to increase linearly with time, as required
by the stochastic model. The shape of the experimental longitudinal

dispersion curves could also be fairly well represented by the general

one-dimensional stochastic model.
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Chapter I

INTRODUCTION

The behavior of sediment in an alluvial channel has long been
a research subject for both engineers and geologists. The movement
of sediment combines the action of rolling, sliding, jumping and
sometimes even suspension. Regardless of the mode of movement, when
a sediment particle is deposited and stays on the bed surface, it will
usually be covered by other sediment particles that are deposited later.
This buried particle will be re-exposed and move again only after all
the particles covering it have been scoured away. Since each particle
deposits at a different location on the bed, the time duration that
particles remain buried will differ. As a result of this phenomenon,
and since the particles do not all move the same distance when they
move, the particles move at different average rates. This is the main
mechanism which causes sediment particles to disperse. The application
of sedimentation theories can be found in various areas, such as in the
determination of geometrical shape of a channel cross section, in the
determination of river meandering, and in the effects of sediment
transportation on hydraulic structures.

A recent application of the theories of movement and dispersion
of sediment is in the water pollution problem. Together with the in-

crease in population and industrial prosperity, the demand of usable



water increases rapidly. It is an engineer's responsibility to use
every practical method to satisfy these growing demands on the water
supply. However, if pollution is not controlled, the availability of
usable water may be sharply curtailed. The permissible limit of the
concentration of contaminants in a river depends on its ability to
transport and disperse these contaminants. Most of the dispersion
studies so far have been concerned with those contaminants which can
be dissolved or suspended in water and move at the same velocity as
the water. Less work has been done with those contaminants which can
be absorbed by bed material and move with the bed material.

Due to the complex nature of the movement of sediment in
alluvial channel flow, different investigators tackle this problem
from different angles. Some start from the mechanics point of view
to explain the movement of sediment, some classify this movement
according to the bed configurations, and some make judgments from
experience alone. No satisfactory agreement among these methods of
investigation has ever been achieved. Since the movement of sediment
in an alluvial channel is so irregular and random, the stochastic
approach has recently been adopted by a few mathematicians and
engineers to give a more realistic description of this movement.

In order to understand the movement and dispersion process of
those contaminantﬁ which move with the bed material, the movement and
dispersion process of the sand along an alluvial channel should be

studied first. This report starts with a review of the theories



S N —

i

o —

related to the movement and dispersion of sand along the bed of an
alluvial channel. A general one-dimensional stochastic model is
developed to simulate this process. For the purpose of testing the
assumptions made in this stochastic model and comparing this stochas-
tic model to actually measured longitudinal concentration distribu-
tions, some supplementary investigations were also made. These
supplementary investigations include some preliminary studies of the
step length and rest period of a single plastic particle, the bed
configurations, the vertical concentration distribution of tracer
particles in the sand bed along the flume, and the total sediment
discharge. A numerical solution of Aris' moment equations, which

is used in this study as a modified form of the conservation of mass
equations for the transport, deposition, and re-entrainment of
suspended sediment, is also compared with the stochastic model.

This investigation is restricted to a consideration of the
dispersion of sand in an alluvial channel with a uniform, two-
dimensional, turbulent shear flow. The initial condition is a line
source of radioactive sand tracer particles distributed on the bed
across the flume. Fine, medium, and ccarse size sand tracer particles
are used for ripple bed conditions. Only the results for the medium
and coarse size sand tracer particles are reported for dune bed
conditions to avoid the problem of significant quantities of tracer
particles being transported in suspension. This study was supportéd
by the Water Resources Division of the U.S. Geological Survey in

Fort Collins, Colorado.



Chapter 1II

REVIEW OF LITERATURE

A. The Movement of Sand Along an Alluvial Bed

The behavior of sediment moving along an alluvial bed is very
complicated. It combines the action of rolling, sliding, jumping and
sometimes even suspension. The basic requifement to start a sediment
particle moving is that the drag force and the intensity of turbulence
in the vicinity of that particle must be sufficient to overcome the
inertial and frictional forces acting on that particle.

In order to have a better understanding of this kind of movement,
it is necessary to study the bed configurations, because they are
closely related to the movement of sediment. Simons and Richardson
(1960) classified the bed forms of alluvial channels into ripples,
dunes, plane bed, standing waves and antidunes.

For the ripple case, the suspended load is small, and the
velocity of water is low. Most of the grains on the bed surface roll
and slide; a few grains make short jumps.

For the dune bed, more grains make jumps which are ldnger than
in a ripple bed, and the suspended load is increased. If the velocity
is increased, a plane bed may develop.

In the plane bed condition, the grains in the upper layer of the
bed are in almost continuous movement. In the standing waves or anti-

dune case, intense turbulence is created, so that the concentration of




the suspended load is very high. This kind of classification gives
only a qualitative description of the movement of sand along an allu-

vial bed. This is usually not sufficient for engineering purposes.

B. The Concept of Entrainment and Deposition

Regardless of the kind of bed form, the movement of grains
starts with entrainment into the flow and stops with deposition on
the bed. Thus, entrainment includes all kinds of movement of sand
along and above the bed surface, such as rolling, sliding, jumping
and suspension. The concept of entrainment has been discussed by
Lane and Kalinske (1939) among others. They hypothesized that grains
are picked up from the bed surface and kept in suspension by turbulent
eddies. The rate of pickup (entrainment) is proportional to the
intensity of the vertical velocity components due to the turbulent
eddies. For an equilibrium condition, the rate of entrainment of
sediment must be equal to the rate of deposition on the bed surface.

O'Brien (1933) assumed that the rate of pickup of a given type of sedi-

‘ment depends only upon the characteristics of the flow, and so for

steady uniform flow under equilibrium condition, the rate of pickup
equals the rate of déposit and is a constant expressed mathematically

as
e, (-g%) = -v_C (2-1)

where Ey is the exchange coefficient or the coefficient of eddy dif-

fusivity -in y direction, C = C(y) is the concentration of sediment



in suspension, and VS is the fall velocity of sediment in water. The
minus sign indicates that. the net transport by diffusion is in the
direction of decreasing sediment concentration.

Hubbell and Sayre (1964) described the movement of bed material
particles as consisting of an alternating sequence of steps and rest
periods, where both the step lengths and rest periods are random varia-
bles. Physically, a particle may roll along the bed or be entrained
temporarily in the flow and then rest on the bed where it will remain,
usually beceming covered by other particles until it is re-exposed and
takes another step. Thus, the motion of a grain can be described in
terms of step lengths and rest periods provided that the aggregate

resting time is large in comparison to the aggregate time spent in

motion.

C. One-Dimensional Stochastic Model

After realizing the complexity of the movement of sediment and
introducing the concept of step lengths and rest periods, the develop-
ment of a statistical model to describe the displacement, x, of sedi-
ment along an alluvial bed at a particular time, t, is needed. Hubbell
and Sayre (1964) presented a one-dimensional stochastic model for the
transport of bed-material sediment particles in an alluvial channel
wherein the transport of a particle is described as an alternating
sequence of step lengths and rest periods. The assumptions are:

1. The flow condition is steady and uniform.

2. Both the step lengths and rest periods are exponentially

and independently distributed with mean step length 1/k;

and mean rest period 1/k,.



3. The time spent in moving is so short in comparison to the
rest period that it can be neglected.
Under these assumptions and using the concepts of joint and
conditional probability, the density function for the probability that

a particle has traveled a distance x in time t was found to be

n-1 n
k
e_(klx + kzt) (klx) ( Zt) , x> 0(2-2]

ft(x) = k;
r'(n) n!

n=1
Equation (2-2) applies only to particles that have taken at
least one step. This result was identical to one obtained by Einstein
(1937) by a different method.
Todorovi¢ (1967) started with a more general proposition where
the time a particle spent in traveling is not neglected, and he obtained
Eq. (2-2) as the upper boundary, i.e., a special case where the time

spent in traveling can be neglected.

D. Total Sediment Discharge Equation

When the flow condition is in equilibrium and the tracer particles
héve the same properties as sand of the same size, a continuity
equation based on the tracer study can be used to calculate the total
sediment discharge. Hubbell and Sayre (1964) used a continuity
equation

s°C
t

Q) = i, (rg), (1-1) Bd("—) (2-3)
c



to calculate the total sediment discharge of a certain characteristic.
In Eq. (2-3), QS is the total sediment discharge, ic is the ratio of
the volume of particles possessing the characteristic to the volume

of bed material particles in the zone of particle movement, Ys is the
specific weight of the bed material, A is the porosity, B is the width
of the channel, d is the average depth of zone in which particle move-
ment occurs, x/t is the average rate of movement during a total
elapsed time and ¢ is a subscript that denotes terms associated with
the particles possessing the characteristics. Combining Eq. (2-3)
with the result from the Hubbell-Sayre one-dimensional stochastic
model gives the total amount of sediment discharge for all the sizes

in the channel as

ks
Q = > i (vg) -2) Bd(k—l-)c " (2-4)

Cc
Cc

E. The Dispersion of Suspended Particles

The general equation for dispersion in open-channel flow is

€,y _ 3 (€Y, 2 ¢ 3Cy, 3 3C  (2-5)
¥ U ( - ) Y 3y (Ey dy ) Y 3z (sz 52')
where €y’ Ey and e, are the coefficients of eddy diffusivity in the
X, y and z direction, respectively, and U = U(y,z) is the velocity
of flow. Equation (2-5) is valid when the foreign particles used in

the dispersion study have the same density as the fluid and are
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completely responsive to the turbulent motion of the fluid. When the

particles are dense and large enough to have a terminal settling velo-

city VS, which cannot be neglected in comparison with the eddy velo-
cities, the plume of particles as a whole tends to settle toward the
bottom of the channel. In the study of the movement and dispersion of
sand along an alluvial channel, the fall velocities of sediment parti-
cles are large enough so that most of the sediment particles are
moving along the bed. If the sediment particles are suspended at all,
they are suspended only very near the bed surface. In this limiting
case the study of dispersion of suspended particles relates to the
study of dispersion of sand along an alluvial bed.

The effect of fall velocity can be accounted for in the diffu-

sion equation by introducing a convective term VSC. For a uniform two-

dimensional flow in the x direction with %%~= 0 and %% = 0. Eq. (2=5)
becomes, for suspended sediment,
aC o . @ Ei(ia_(e E) o€ 2-6
T Us 3x = S BX24‘ay Sy 3y * Y 2y (2:6)

Here, the subscript s refers to sediment particles, and US = Us(y).
Brush (1962) and Sayre (1968) concluded that the reduction in response
of a sediment particle to eddy motion due to its inertia decreases with
decreasing particle size, and may be neglected when the diameter of

sediment particles is less than about 0.2 mm. Thus, for such particles

at any particular point in the fluid, it may be assumed that fs =

X

€y = Ey and U5 = U. However, the average velocity of all the

¥
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suspended sediment is not the same as that of the fluid. The average

velocity of sediment over the depth of flow is

/o
0 UC dy

g = o o
0 C dy

where Wis is the normal depth of the flow. Whenever there is entrainment
and/or deposition, there must be an eichange existing between the
boundary of flow and the alluvial bed. Equation (2-6) is valid only

for the sediment particles that are entrained in the flow.

F. De Vries' Diffusion Theory

In 1966, De Vries developed a diffusion model for the dispersion

of bed material particles with the following assumptions:

1. The transport condition is homogeneous in time and space.

2. Variations perpendicular to the main current will be
neglected.

3. The bed material is uniform.

4. The tracer material has the same transport characteristics
as the bed material.

5. The amount of input of tracer material is small, and the
tracer concentrations are small compared to unity, so they
do not influence the transport phenomenon.

De Vries started with the equation of continuity and the

equation of motion to get

3C 92C, 3C
ﬁ - D -a—xz- + w H = 0 (2—8)
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where C is the average concentration over a cross section

D is the coefficient of diffusion in L2/T

w is the horizontal sand velocity in L/T .
The initial condition is

Cx, 0 =0 (2-9)
and the two boundary conditions are: (1) the concentrations are
finite for every x and t , and (2) there is an instantaneous
source, namely,

C (», t) =0 (2-10)

and
w*

- aC(0,t) _
wC (0, t) - D =5 = 6() 33

(2-11)

where W, is the total weight of tracer particles released from the
source, B is the width of the channel and d 1is the average depth
beneath the bed surface to which the tracer particles are distributed,
6(t) is a Dirac delta function in T -1.

The solution of Eq. (2-8) with these initial and boundary

conditions 1is

W 2 )
C(x,t) = E% ke exp| - Sl - gﬁ-exp (%?gerfc Sl
VT 2./t 2/t

(2-12)
which is De Vries' one-dimensional diffusion model.

G. The Comparison Between Stochastic Model and Diffusion Model

Having reviewed Hubbell and Sayre's one-dimensional stochastic
model and De Vries' one-dimensional diffusion model, it is interesting

to consider the similarities and differences of these two approaches.



From Eq.

12

(2-2), the concentration of tracer particles, defined as the

weight of tracer particles per unit volume of bed material, is

C (x,t)

W

*

g fr ()

n-1 n
) © (k1x) (kat)

r'(n) n!
Bd =1

, x>0

(2-13)

De Vries (1965) found the following asymptotic relationships between

Eq.

and

(2-12) and (2-13):

& Eg for every x and t (2-14)
k)
ky

- Y (2-15)
ky

The similarities between these two models are:

1.

The location of the mode of the concentration curve
described by both models is similar for k,t > 200.

The decay of the relative peak concentration for both
models is almost the same when kpt > 5.

Neither model can be expected to apply near the source.
differences between these two models are:

The difference in the decay of the relative peak concent-
ration between two models increases with decreasing kot
value when kt <5. At kpt = 2, Fhe relative peak
concentration obtained from the stochastic model equals

1.15 times the value obtained from the diffusion model.
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2. The mode of the concentration curve described by the
diffusion model moves faster than the stochastic model at
small values of kjt.

3. For the diffusion model, an artifical boundary condition,
Eq. (2-11), was applied which acted as a reflecting barrier
at the source that did not permit particles diffusing in
the upstream direction to pass the source but reflects them
back in the downstream direction. For the stochastic
model, no such assumption was made.

The method of approach in both models is good. The diffusion
model is more familiar to most engineers, but the boundary condition,
Eq. (2-11), is not true in actuality. The stochastic model is more
realistic, but the assumption that the step length and rest period

both follow the exponential function is open to question.
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Chapter III

ANALYTICAL INVESTIGATIONS

A. General One-Dimensional Stochastic Model for the Transpoft and

Dispersion of Bed-Material Sediment Particles

As mentioned at the end of the preceding chapter, Hubbell and
Sayre's (1964) assumption of exponentially distributed step lengths
and rest periods is open to question. Becausé of this, a set of
preliminary experiments for the step length and rest period was made
with colored lightweight plastic particles in the summer of 1966
(unpublished) at the Engineering Research Center, Colorado State
University. Attention was focused on individual particles, and
step lengths and rest periods were actually measured. The results
of these experiments indicated that the distribution of rest periods
folliowed the exponential function, but the step lengths can be
represented better by the gamma distribution than by the exponential
function. Therefore, a modified stochastic model is developed here.

In order to make the model more general to fit any distribution
function, the method of approach used by Sayre and Conover (1967) for a
two-dimensional model is adopted here for our one-dimensional model.
As mentioned before, a sediment particle moves along an alluvial bed

in an alternating sequence of steps and rest periods. Let us define
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{X;: i=1,2,3, ...} as a set of random variables describing step
lengths which are independently and identically distributed according
to the probability density function fx(x), and {Ti: i=1,2,3 ..l @5 &
set of random variables describing rest period durations which are
independently and identically distributed according to the probability
density function fT(t). If the initial condition is that the process

starts with a rest period, then the total displacement for a particle

after n steps from the origin is
n n
x(m) = 9 X. = 2 X. . (3-1)

The probability that the particle has traveled a distance equal to or

less than x at time t is

oo N(t)
Ft(x) = Z P [ z Xi < Xy N{E) = n] (3-2)
n=0 i=0

where P[ ] denotes probability, and N(t) is the number of steps taken
by the particle in time t.
By using the definition of conditional probability, Eq. (3-2)

becomes

m N(t)

Fo(x) = >op [ Y Xiix[ N(t) =n] P [N(t) =n](3—3)
n=0 i=0
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which is equivalent to
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?[xgix] P[N(t)=0]._ (3-4)

Since the step lengths are independently and identically distributed,
by the addition theorem for independent, identically distributed

random variables ,

d
n*

where {fx(x')} is the n-fold convolution of the probability density

X

X, < x] = { Fx(x)} " =f {fx(x')} n*dx' ;  (3-5)

i=1 0

™ =

function for the length of a single step length., This is equal to
the probability density function for the distance traveled by the
particle in n steps. Similarly, because the rest periods are also

independently and identically distributed,

P[N(t)=n] =P[N(t)in] - P[N(t)in+1]
n n+1
=P[ ZTlit] —P[Z T1<t]
i=1 i=1

=It[{f.r(t')}n* ~{£,0} “"1*]41;' . 68
0
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*
where {fT(t')}n is the n-fold convolution of the probability density
function for the duration of a single rest period which is equal to

the probébility density function for the duration of n successive

rest periods. Since x > 0 and Xg = 0, so P [Xg < x] = 1, combining

Eqs. (3-4) and (3-5) gives

i
=
(TR
+
2~}
e
=
~
+
L
]
o
—

Ft(x) = ;: fx {fx(x')}n* dx!' P[N(t)
0

n=1

where P [N(t) = n] is as defined in Eq. (3-6). The desired density
function can be obtained by differentiating Eq. (3-7) with respect to

X, foe:,

Fo(x)

e

£ (x)

8

=2 {fx(xj} " P[ N(t]=n] . (3-8)

n=1
Equation (3-8) is the general density function for a particle
that has moved a distance x from the origin in time t. It should be

noted that ft(x) is not a true probability density function because

oo

j. ft(x)dx =1-P [N(t] = 0] < L (3-9)
0
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where P [N(t) = 0] is the probability that the particle has not moved
from its initial position. Thus, Eq. (3-8) is valid only after the
particle has moved from its initial position.

If the step lengths are gamma distributed, then

ky

£,(x) = kyx)T-1 e kix (3-10)

r(r)

where r is a parameter, I'(r) is a gamma function and the mean step

length is

n
— 1 T
== e -1
K= ¥ K a (§ 1)
i=1
If the rest periods follow the exponential distribution
£.(t) = k; o kat (3-12)
then the mean rest period is
T = :1/%ks (3-13)

The n-fold convolution of a gamma probability function with parameters
r and k; is also a gamma probability function with parameters nr and k,

(Parzen, 1962). Thus,

nx k, nr-1  -kjx
{fx(x)} = (k1x) e % (3-14)
['(nr)
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The n-fold convolution of the exponential probability function is a

special case of the n-fold convolution of the gamma probability

function with r = 1. Thus,

n* ky ) i
{fT(t)} = @ Kot Bl ket |

(3-15)
Putting Eqs. (3-14) and (3-15) into (3-8), we have
f.(x) = ; k1 nr-1 kxft ks n=1 _k ¢*
- B it =2
t = e (ky1x) e [F(n) (kpt') e
n=1
k, n :
E (kot') e kzt'} dt (3-16)
I'(n+1)
Integrating by parts, we have
t n-1 i
ko a E (kot)
f [ (kgt'}n 1 i kot ]dt’ 1 - kst z
LT P
g i=0 :
(3-17)
and
t n i
J (k')t)___
[.__L (k;_t')n e kot ]dt' S R kot Z "_'l
0 “T(n+1) : H

(3-18)
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By substituting Eqs. (3-17) and (3-18) into (3-16), the probability

density function for x at time t can be written as

(klx)nr—l (kzt}n

I'(nr) n!

Cokpae gt %70 (3-19)

ft{x) =k; e
n=1

The k;, k; and r values may be cobtained from a set of experi-
mental ceoncentration-distribution curves with respect to x for
various values of t. If r = 1, then Eq. (3-19) becomes Eq. (2-2)
which was cbtained by Einstein (1937), Hubbell and Sayre (1964) and
Todorovié (1967) under the assumption that both the step lengths and
rest periods are exponentially distributed. Some of the significant
statistical parameters of the density function described by Eq. (3-19)
are given as follows:

1. Area under curve:

fft(x) dx = 1 -8 N2k (3-20)
0
2. Mean:
. fm kotr
X = i %ft(xJ dx = 5 (3-21)

3. Mean rate of movement of tracer particles:

o (3-22)
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4. Variance:
ci = E(x2) - E?(x)

where E( ) is the expected value defined as

oo

E(x?) = f x:’-ft(x) dx
0

kotr

5 (kotr + T + 1)
ky

kotr 2
EZ(X) = KQ = k
1

Thus, the variance is

kztr

Ux = —Eg— (r+1}

]

5. Skew coefficient

j; x3 £, (x)dx - 3I.£ x2£, (x)dx + 2(x)3

S = -
(62)3/2

T+2

) A (r+1) rkot

(3-23)

(3-24)
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B, The S?&tistical Characteristics of the Bed Form

Since the movement of sand particles along an alluvial bed is
closely related to the bed configurations which are very irregular and
vary rvandemly, a study of the statistical characteristics of the bed
formm is necessary. Figure 3-1 is a definition sketch of the. bed form.
Crickmore and Lean (1962) found that the distribution of surface area
with depth is approximately Gaussian. Similar results have been
observed (1967) in the two-foot flume in the Engineering Research
Center of Colorado State University. Most studies of the statistical
properties of bed forms have emphasized the variation in elevation but
neglected the variation along the direction of flow. Usually, a sand
particle starts a step length on a positive slope, such as AB or CD
in Fig. 3-1; the distance it travels depends on the local, instantane-
ous flow condition, but when it is deposited and buried by other parti-
cles, this sand particle is usually deposited on a negative slope,
such as BC or DE on Fig. 3-1. It is, therefore, logical to assume
that the step length of a moving particle is closely related to the
distance between peaks of ripples or dunes, or the distance between zero
crossings. If the step lengths of a single particle follow the gamma
distribution, it is reasonable to assume that the zero-crossings of

the bed form may also follow a gamma distribution or vice versa.

C. The Mean Rest Period and the Mean Step Length

Since the rest periods are closely related to the level

where particles are deposited on the bed, and hence the variation of
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bed elevation, it should be possible to find the mean rest period

from the bed form data without measuring the longitudinal concentra-
tion distribution. When the bed elevation is statistically stationary
in time, Hubbell and Sayre (1965) suggested that the unconditional

probability density function for the duration of a rest period,

w

= 3-25
) = [ gy Gl £0) 9, (3-25)
could be obtained from sufficiently long continuous records of bed
elevation in the time domain measured from a stationary reference
point, and along the direction of flow at an instant. The function
fT(t} corresponds to the assumed exponential distribution for rest

periods as stated in Eq. (3-12). (t]y) is the conditional proba-

leY
bility density function for the rest period duration, T, of a particle
given the elevation, Y, at which it was deposited. leY(tlyi relates
to the variation of bed elevation measured from a stationary reference
point. fY(y) is the-probability density function that a particle is
deposited on the bed at elevation Y. fY(y) relates to the variation
of bed elevation with respect to distance x along the direction of
flow. If it is assumed that the sand particles are equally likely to
deposit anywhere on the negative slope of the bed surface, fY(y) is
equal to the probability density function of bed elevation of negative

slope obtained from a record of variation of y with respect to distance

x along the direction of flow., If there is no significant difference

-
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between the probability density function of bed elevation along the
direction of flow by considering either both positive and negative
slopes or just the negative slopes, fY(y) is equal to the probability
density function of the bed elevation obtained from a record of y with
respect to x. Although there are grounds for supposing that fT(t)
and fY(y) are respectively exponential and normal probability density
functions, the nature of the conditional probability density function
£TIY(tIy) has not yet been determined.

The mean value of the rest period or the unconditional expected
value of rest periods can be obtained from

4+ o

E[T] =j E[T|Y=h] f£,(h) dh . (3-26)

-0

Nordin (1968), in his study of statistical properties of the bed form,
has assumed that the elevation h was measured in terms of the standard
deviation of bed elevation Gy . Thus, it was found that the ratio of
the expected value of rest period of a particle, which was deposited
at elevation h, to the expected value of rest period of a particle

deposited at zero elevaticn, i.e. mean bed elevation, is

2

E[T|Y=h] _

h
== 2
EfTiv=0] - 2(P[¥(0) > hl }e( °Y)/ (3-27)

where P[Y(0) > h] is the probability that the elevation Y at t=0, i.e.
at the beginning of the rest period, is greater than h. The value of
P[Y(0) > h] can easily be found from bed form data along the direction

of flow. The expected value of a rest period of a particle which was
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deposited at zero elevation should be a constant, To’ for a given flow
and sediment condition, When all the particles are equally likely

to deposit anywhere on the negative slope of the bed surface, T, is
equal to the mean value of the duration of burials (rest period) at
zero elevation obtained from a sufficiently long continuous record

of bed elevation measured from a stationary reference point.

Combining Eq. (3-26) and Eq. (3-27), the mean rest period is

(-

T =2 Tof e 7 f,(h) P[Y(0) > h] dh . (3-28)

Because P[Y(0) > h] and fY(h) are related by the quality

h
VY 2k 21 s [ &) & | (3-29)

o

Eq. (3-28) can be simplified still further to

+o (11__)2/ 2 h
T'a 37 f e % £, (h) [1 f £,(r)dy] dh (3-30)

Equations (3-28) and (3-30) can be integrated either analytically or
graphically using information based on the actual bed form data.

The most direct way of finding the step lengths of a particle
is to actually follow that particle and measure its step lengths. If
this method is not possible, then an indirect method can be applied
to find the mean step length. This method is based on the mean rest

period. In a dispersion study, in which n tracer particles are used,
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g 1,238 o0y 1) Yequires Nj steps to

suppose that the j'th particle (j

travel a distance x in time t. If the time spent in motion can be

neglected, then the time, t, required for all the tracer particles

to travel an average distance, x, from the origin is

n
= i
i & =5 % L2 (3-31)

where the subscript i, i=1,2,3, , N. is the number of steps taken

by the j'th particle during the process. Since the steps and rest
periods follow each other in successive cycles, the total number of
steps should be equal to the total number of rest periods in a finite

traveling distance. The average distance, X, traveled by all the

tracer particles from the origin in time t is

N.

noj
- = 1
Xx=NX== % % X5 - (3-32)
j=1 i=1

When the number of tracer particles, n, is large, the average velocity

of tracer particles should be

- N.X. - =
U, =5k <122 (3-53)
N.T. NT 1T
11

where N is the average number of steps required by all the tracer
particles to travel a mean distance, x, from the origin in time t.

When the average depth of the zone in which particle movement occurs
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can be determined from bed configuration data, U; can also be obtained
from Eq. (2-3), either by actual measurement of the sediment discharge
or calculation of-thc sediment discharge by some known formulas.

Thus, the mean step length should be

X=0UT . (3-34)

D. Aris' Moment Equation

For sand particles that have been entrained into the flow,
the theory of dispersion of suspended particles can be applied. Sayre
(1968) suggested the possibility that the probability density function
for the longitudinal distribution of deposited tracers for the initial
condition that all particles are concentrated near the bed might turn
out to be closely related to the step length distribution function.
Sayre further stated that if for this initial condition, the probability
density function for the deposited tracer with respect to the dimen-
sionless longitudinal distance is an exponential function, it is more
than likely that the Hubbell-Sayre stochastic model can be obtained
as a particular solution of an appropriate system of dispersion equa-
tions and boundary conditions for suspended particles. The methods
used in this and the next two sections will provide us with some
theoretical background in comparing the gamma distributed step lengths
to the distribution function of step length obtained from solving the
Aris moment equations for the initial condition that all the particles

are concentrated near the bed. This also makes it possible to compare
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the general one-dimensional stochastic model with the solution of the
Aris moment equations to see if it is a particular solution of the dis-
persion equation for suspended particles with the initial condition
that all the tracer particles are in the bed at the beginning of the
process, but where entrainment into the flow is permitted.

Following Aris (1956), let us define the velocity of flow in

the x direction as a function of y by

Uly) = T[1+x(y)] | (3-35)

where yx(y) defines the variation of velocity relative to the mean
velocity in the vertical U, and let the local diffusion coefficient

be

g, =g, & Dy (y) (3-36)

where D is the mean value of the diffusion coefficient in the vertical,
and Y(y) defines the variation of the diffusion coefficient. Combining

Eqs. (2-6), (3-35) and (3-36) gives us

3C . = 3C - 3%C 3 3C aC
3t * Uxy) 5=+ Dy ;;; +D 3;‘(¢ 3y ) ¥, 3y

(3-37)
which is the basic two-dimensional dispersion equation for sedimenta-
tion in open channel flow.

Sayre (1968) used Aris' moment equation to solve the longi-

tudinal dispersion problem in open channel flow. Sayre's initial
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condition was an instantaneous uniformly-distributed plane source over
the depth of flow at the origin. A coordinate system moving at the
mean velocity of flow was adopted by Sayre. In this study, Sayre's
notation is adopted. To simulate the problem in which we- are interested,
the initial condition is a line source of marked sand particles on

the bed across the flume at the origin. Since the average rate of
movement of the sediment is much slower than the mean velocity of the
.flow, a fixed.coordinate system at the origin is used. To solve the
problem, it is necessary to consider the total amount of tracer
particles as made up of two separate parts. fhe concentration of

the entrained part is denoted by C, and W is used for the deposited
part. The exchange between C and W occurs at the interface betweén
the bed surface and flow by the processes of entrainment and deposi-
tion. Once the particles are entrained into the flow, the dispersion
theory of suspended particles can be applied. Introducing the

dimensionless parameters

£ = x/yn

N = Y

T = Dt/y2n » (3-38)
p="Uy/D

Ve = Vs yn/D ‘

Equation (3-37) becomes

3C 3C _ 9 aC 32
¥+(U+JX)3€_§?{¢E+\’SC)+¢W 5 (3-39)
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The equation of conservation of mass for the deposited particles is

gg-= avSC(€,0+,T) - W (3-40)

where
a = bed absorbency coefficient, which represents the
probability that a tracer particle settling to the bed
is deposited,

W

W(£,1) which represents the amount of tracer particles
stored per unit area of bed surface, and
Y = entrainment-rate coefficient such that yW represents
the average rate of entrainment.
The boundary condition existing between the flow and the bed is

aC : N
¥ 3?'* (1-a) USC + yW=20. (3-41)

=
]
[==]

Equation (3-41) allows the bed to behave either as an absorbing or
reflecting barrier and also permits temporary storage of the tracers
on the bed. Since there can be no transport of tracers across the
water surface, the relation

aC

n=1l : yg+vC=0 (3-42)

must exist at the upper boundary.
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By using the Aris' moment transformations

® ]

C = j' P'¢ d
1 £ £

-0

and 1 (3-43)

o

W =f. Pyyg
p 3 g€

-0

o

where Cp and Wp are the p'th moments about £ = 0 of the longitudinal
distribution of C and W, respectively. These moment transformations
eliminate one variable in the longitudinal direction, i.e. &. Thus,
Eq. (3-39) becomes

aC oC

3
5}‘2 s (v gﬁP- * vSCp) * p(u+ux)Cp_1 + p(p-l)n{a{:p_2 (3-44)

and Eq. (3-40) becomes

dw

E?E'= avg C(0%,1) - YW . (3-45)

The boundary conditions are

o
Ll

I i 0P sne w0 (3-46)
an 5 p

aC

= 4 —E - = -
n 0 & 3 + (1-a) Vscp + pr [ H- (3-47)
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Although the number of variables has been reduced by Aris'
moment transformation, no analytical solutions have been obtained

except for a few special cases as summarized in Table 3-1.

E. Finite Difference Equation and Computer Program

In order to solve the dispersion equation giveﬁ in the previous
section, a finite difference equation and computer program were
developed by Sayre (1968) in his Ph.D. dissertation. Following
Sayre's notation and method of approach, a similar set of finite
difference equations and computer programs can be obtained. Sayre
gave the definition sketch of the variables in the finite difference
equations as shown in Fig. 3-2. The depth of flow is divided into
N equal increments of thickness DY = An. The number of time intervals
of duration, DT = At, counted from the beginning of the dispersion
process, is indicated by J, starting with J = 1 at t = 0 so that
T = (J-1)DT. The average value of Cp(n,r) in the increment between I

and I+1 after J-1 time intervals is defined as CP(I,J)

TABLE 3-1. KEY TO ANALYTICAL SOLUTIONS OF ARIS EQUATIONS

Variables for

Case which solution Velocity :
obtained distribution B a y | Range of 1
Ci(n,t) parabolic 0 all
2 Ci(n,=) logarithmic | 0 T

Co(n,T) parabolic all 1 0 all
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a. pth moment
of C(I,J)

=
—

- values of

B E(I)
15 values of
e EA(I)

RS

b. velocity ¢. turbulent mass
transfer coef-

ficient

O ~®Wo

— N WA, N DO

-
Oy

m

—

0 u (1)

Figure 3-2. Definition sketch of variables in
finite difference equations.
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The von Karman-Prandtl logarithmic velocity distribution

function

<l

U-u
U
 #

=1 (m+ 1) (3-48)
is employed in this study, where x is the so-called von Karman turbu-
lence coefficient and UT is the shear velocity. However, in alluvial
channels, « has been found to vary with the flow condition, the con-
centration of sediment and the bed form. By applying Reynold's

analogy for the equivalence of momentum and mass transfer, the vertical
turbulent mass transfer coefficient (verticalldiffusion coefficient)

is

U2 y_(1-n)
Ey = au (3-49)
dn
From Eq. (3-48)
u
du _ 1
-2 (3-50)
then Eq. (3-49) becomes
Ey = By UT n(l-n) (3-51)
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which Is distributed parabolically with respect to n, and
1

= = e 25 _
D ~_{ K Yy UT n(l-n)dn = UT . (3-52)

Combining Eqs. (3-35), (3-38), (3-48) and (3-52), we have

K2
and
£
p = —% = 6n(1-n) . (3-54)

With z2I1 these dimensionless parameters obtained, we can further define

the velocity, é? [U(I) + «UA], and the diffusion coefficient, EA(I),
K

as the zverage values of u + px and ¢ in the increment between I and

I + 1 =0 that

(1)DY
Swm el =i [ w0 an (3-55)
K (I-1)DY
and
(1)DY
BACL) = é—Yf o dr . (3-56)
(I-1)DY

The vertical component of the eddy diffusivity, E(I), is defined as
the valus of y at the boundary between the increments in question so

that E(I° = y(n), where n = (I-1)DY.
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With the above definitions, the finite difference equation

corresponding to Eq. (3-44) can be written as

¢, + THECD. oy e asa - ¢ a.9)

C_(I,J+1
p( )

EX) (e, - -1} + e + WAL, (1,9)

K

+

p(p-1)DT EA(I) Cp_z(I,J) . (3-57)

The difference equation corresponding to Eq. (3-45) is
W (J+1) = W _(J) + DT C (1,J) - DTyw_(J A 3-58
p( ) p( ) av p( ) Y p( ) ( )

The boundary conditions corresponding to Eqs. (3-46) and (3-47) are:

I=N :[ Eﬁ%%&) . vs] [C,(1+1,) - C,(LD] = - vy € (1,9)
and _ (3-59)

o [CP(I,J) - €, (-1, J) = - vs(l—a}Cp(I,J) . pr(J}

(3-60)

The basic boundary conditions, Eqs. (3-59) and (3-60), are the
same as in Sayre's (1968) program. Only the initial conditions and
the values of o and y in Eq. (3-60) are changed so as to simulate

the two different situations described in the following pages.
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Case 1 - The initial condition is that all the tracers ‘are
concentrated at the origin in the bottom layer of flow with the layer
thickness equal to A&n. fter the process has started, no re-
entrainment of the tracer particles into the flow is allowed, Unce the
particles are deposited, the bed surface behaves as an absorbing
‘barrier, so each tracer particle is absorbed by the bed after completing
a step. This case simulates the condition that each tracer particle
is ready to take a step and be absorbed by the bed after completing
that step. The main purpose of this program is to find the distribu-
tions and mean values of step length for a given flow condition, An
value, and different fall velocities of sand which correspond to differ-
ent sand particle sizes.

The initial conditions are

1 ~
G T = — = =
Cp(I,l} =0 1#1, p=0
wp(l) =4 p=0 } (3-61)
GAT, L) =0 >0
p( _) p
W (1) =0 ' 0 1.
P() p>0

For the case of no entrainment from the bed and the bed surface

behaving as an absorbing barrier, we should have y = 0 and o = 1.
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The boundary condition, Eq. {3-59), remains the same, but Eq. (3-60)

becomes

= . E(I) =
I=1 : S (6D - € (-1,0)] =0 (3-62)

An important dimensionless fall velocity parameter, B, defined as
vs/xUT, is used in this computer program. The shear velocity,

U.r = J~§§;§;_-, is obtained from the actual flow condition with the
known normal depth, ¥ois and the water‘surface slope Se' The x value
is determined from the slope of a dimensionless plot of log y/yn

Vs U/UT obtained from velocity distribution measurements., Different 2
values were tried in order to simulate sediment particles of different
fall velocities. The grid size chosen for this case was DT = 0.00001
and DY = 0.1. The data corresponding to the flow condition in Run 1C,
which was a ripple case using the coarse tracer particles, were used
in this prﬁgram, with « = 0.287, 8 = 1.20 and U/UT = 9.6.

Case 2 - All the tracer particles are initially in the bed at
the origin, but entrainment into the bottom layer of the flow is
permitted. Once a tracer particle is entrained into the bottom layer,
it takes a step after which it is absorbed by the bed where it remains
until it is re-entrained and takes another step. The main purpose of
this program is to find out if the general one-dimensional stochastic
model can be obtained as a special case of the dispersion problem for

suspended sediment.
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When there is no deposition, Eq. (3-40) reduces to

-3-‘:'5'- — (3-63)

which defines the dimensionless entrainment-rate coefficient y. If
the probability of entrainment is the same for all particles, and is
independent of the length of time that a particular particle has
remained at rest, then the solution of Eq. (3-63) is

W(t)

_ YT
woy ~ °©

The probability that the particle will be entrained after a duration
of resting time 1, is equal to the probability that the time which

the particle remains at rest is equal or less than t

T
{ - 2 e 123
{ fT(T')dT = 1l-e -

The probability density function fT(r') can be obtained by differenti-

ating the above equation with respect to time, i.e.,

EG) =ve™ , (3-64)

which is the same as the probability density function for rest period
durations given in Eq. (3-12). The only difference between Eq. (3-12)
and Eq. (3-64) is that Eq. (3—64) is expressed in a dimensionless unit
while Eq. (3-12) is expressed in a dimensional unit. Thus, y should

be equal to k,; in dimensionless unit. Or,

Y=¢k2 -

— e —
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where ¢ is a conversion factor which converts dimensional time units to
dimensionless time units. The conversion factor ¢ can be obtained

from Eqs. (3-38) and (3-52) as

6= 0 . (3-65)

Ky . (3-66)

The a, B, k and ﬁyUT values should be the same in Case 2 as
in Case 1. The initial conditions are changed to simulate the condi-
tion that all the tracer particles are concentrated at the origin in

the sand bed at the beginning of the process so that

C (I,1) =0 =0
p( ) P
Wo(1) = 1 = 0
P() P
s ' (3-67)
C (I,1) =0 p>0 '
p
W (1) = 0 >0
pH) | P )

With o = 1 and y defined as in Eq. (3-66), the upper boundary condi-
tion still remains the same as in Eq. (3-59), and the lower boundary
condition becomes

E(I)

I=1 —-f}—\? [CP(I,J) = Cp(I—l,J)]

6yn
=0 E-U:- kz WP(J) . (3-68)
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rid size of DT=0.002 and DY=0.1 was chosen for this case. The
flow conditions corresponding to Run 1C were also adopted in this
case with ¥=0.287, 8=1.20, y=0.0131 and ﬁyUT=9.6.

In both Case 1 and Case 2, the total amount, the average velo-
city, the mean displacement, the variance, and the skew coefficient
for both the C and W components were calculated. Different DT values
were tried in order to determine the most economical DT value with-
out losing the accuracy and the stability of the result. The defini-
tions used in these programs and the programs themselves can be found
in Appendix A, For a more detailed development, the reader should

refer to Sayre (1968).

-

Comparison Between the General One-Dimensional Stochastic Model
and Aris' Moment Equation

Aris' moment equations are a good analytical approach for solving
longitudinal dispersion problems in turbulent open-channel flow. With-
ocut any further restriction on the dispersion equation, Aris' moment
transformation simplifies the dispersion equation by reducing the
number of variables in it. The physical meaning of Aris' moment equa-
tion is very easy to accept, because the dispersion equation was
derived from the continuity equation. Since, basically, Aris' moment
equation is a dispersion equation, it can be used to describe the
process of dispersion. When a, f and vy are given for a certain flow
condition, Aris' moment equation can also be used to predict the
dispersion process. However, from the Aris moment equation itself,

the o« and v values cannot be determined. The finite difference

o

TN ¢ A T —
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equations and the computer program originally established by Sayre
give numerical solutions which provide information about the actual
dispersion pfocess. In general, éhanging the grid size, i.e. At and
An values, may affect the accuracy and stability of the computer results.
If the grid size is small enough so that the problem of accuracy and
stability is eliminated, the change of grid size should not have any
effect on the computer results in most cases. However, this is not
true for our problem because a change of An means a change of the ini-
tial condition in Eq. (3-61). Therefore, different An values will
give different answers for the step length. The biggest problem in
applying the Aris' moment equation for predicting the dispersion
process in this study is how to choose the right combination of 8 and
An to give the proper distribution of step lengths.

The method of deriving the general one-dimensional stochastic
model in this chapter is better than that presented by Hubbell and
Sayre (1964). The general one-dimensional stochastic model was
derived in this chapter without having to specify the probability
density functions for the step lengths and rest periods. So this
method of approach can be applied to any kind of distribution func-
tion of step lengths and rest periods.

Three different methods can be applied to find all the parameters
in this general one-dimensional stochastic model. The first method
is based on the dispersion experiments to find k;, k; and r from the

mean rate of displacement, mean rate of spreading and the skew
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parameters of the longitudinal dispersion curves. Because the
skew parameters arc obtained from the third moment of the longitudinal
dispersion curves, they are not apt to be very reliable. Thus, if one
can assume a proper value of r, then k; and k, can be obtained from
the mean rate of displacement and spreading of the longitudinal dis-
ﬁersion curves. As long as the parameters are obtained from dispersion
data, this general one-dimensional stochastic model can be used only
for the purpose of describing the dispersion process; it cannot be

used to predict the dispersion process.

The second method of obtaining k;, k; and r is based on the bed

configuration data. With the records of the variation of bed elevation

in space and time domains, the mean rest period should be predictable.
From the bed configuration, the mean depth of movement of sediment can
also be determined. The actual total discharge of sediment can either
be determined by actual measurement or estimated by using a total
discharge equation such as Einstein's (1950) equation. With the total
discharge of sediment and the mean depth of movement known, the mean
velocity of tracer particles can be found from Eq. (2-3), and the

mean step length can be found from Eq. (3-34). Solving Egs. (3-11),
(3-13) together with the assumed r value, the values of k; and k, for
the general one-dimensional stochastic model can be determined.

The third method is a combination of the first two methods.
Determine the mean rest period from bed configuration data, and mean
step length from mean rest period, total sediment discharge and bed
configuration data; then, determine the mean rate of spreading of lon-
gitudinal dispersion curves. By shlving Eqs. (3-11), (3-13) and

Eq. (3-23) simultancously, k;, k; and r can be determined.

e s T ——
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Both the Aris moment equations and the general one-dimensional
stochastic model should be able to provide good descriptions about the
mean rate of displacement and spreading, and the skewness of the dis-
persion process. Both models indica e that the rest periods are
exponentially distributed. The general one-dimensional stochastic
model can provide the actual dispersion curves at any dispersion time,
and can be applied to aﬁy probability density function of step length
and rest period, whereas the Aris moment equation method gives only the
moments, and is restricted to particular step-length and rest-period
distribution functions. With k;, k; and r given, this general one-
dimensional stochastic model provides a more complete description of

the dispersion process of sand along an alluvial bed than the Aris

.

moment equations. When the r value is properly assumed, and K and
%— can be obtained from bed configuration and total sediment discharge
2

data, this general one-dimensional stochastic model may also be used to
predict the dispersion process according to the measured or calculated

total sediment discharge and bed configuration data.

G. Total Sediment Discharge Equation

If we combine Eqs. (2-3) and (3-22), the total discharge of

sediment having a certain characteristic ¢ is

S

. kzI‘
(Q )c = lC(Ys)c (1-2) Bd(Tl) ; (3-69)

C
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Then, the total sediment discharge for all the sizes is

S

kzr
Q. = ic(Ys)c (1-2) Bd('—g) (3-70)
c

Cc

where the d value can be found either from core sample data or from

bed form data.
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Chapter IV

EXPERIMENTAL EQUIPMENT AND PROCEDURES

A. Flume

The flume used in the experiment was a recirculating flume
60 feet long, 2 feet wide and 2 1/2 feet deep. The side walls were
made of 1/2-inch plexiglass, and the floor was made of 1/4-inch
stainless steel plate. The discharge could be adjusted from 0 to 8
cfs, and the slope from horizontal to 10 pcrcént. A schematic dia-
gram of this flume is shown in Fig. 4-1.

Figure 4-1, showing the parts of the flume, is self-explanatory
except for the instrument carriage and the manometer board for mea-
suring the water surface slope. The motor-driven instrument carriage,
as shown in Fig. 4-2a, carried the transducer for the stream monitor,
the point gage and the scintillation detector. The speed of this
carriage was controlled by the control box as shown in Fig. 4-2b. The
support bolts for the rail were equally spaced at an interval of 1 foot
along the flume. An event marking mechanism on the carriage, which
was activated by a microswitch brushing against the support bolts,
marked the position of the carriage on a recorder. The speed of the
carriage was maintained at 4 feet per minute.

In order to check the water surface slope, a manometer board,
similar to the one used by J. F. Kennedy (1961), was designed for this
purpose. The manometer board consisted of 11 plastic tubes, each

4 feet long and with an inner diameter of 3/8 inch as shown in Fig. 4-3.



T a 40 0o 0O o o,

Pumping Unit
Motor

Center Support
Orifice

Flexible Connection
Jacks

Manifold Diffuser
readbox

Figure 4-1.

i Baffles and Screehs
Rails
Instrument Carriage

T PR e

Flume

Tailgate

Total Load Sampler
Tailbox

Manometer Board

2 3

© O

Schematic diagram of the 2-foot flume

8




e

=

[}

)m
(4]

~—

vl

=

—

carriage

e~
JELESE, ‘«w..! P O——

Control
box

e ——

Instrument carriage and its control box

Figure 4-2.




50

s e
T
i/

! i

\ -
e P
Tl 3
il e

Manometer board.

Figure 4-3.



51

B. The Method of Obtaining Equilibrium Condition

A complete equilibrium condition is obtained when the following
parameters are constant or at least statistically constant with
respect to time:

1. Discharge - The discharge of water could be determined by
reading the manometer board connected to a side-contracted orifice
meter. The discharge could be regulated by a valve.

2. Temperature - The average room temperature in the hydraulic
laboratory was about 24° C. In order to keep a constant water tempera-
ture of 20° C, cold water was supplied to the tail box to bring the
water temperature down to 20° C. The temperature was measured by an
ordinary laboratory mercury thermometer near the entrance of the flume.

3. Water-Surface Slope - The slope of the flume was set to the

right slope by using a surveying level and a rod. When equilibrium
conditions are reached, the water-surface slope should be parallels fa
the bed sloﬁe. The slope of water could be adjusted by the tail gate.
The water-surface slope was checked several times during each run by
using the point gage on the carriage and also by the manometer board.
‘ 4. Bed Forms - When equilibrium conditions are reached, the
average bed slope should be parallel to the water-surface slope and th
same kind of bed forms (statistically speaking) should be observed
along the flume as shown in Fig. 4-4a and Fig. 4-4b. The bed eleva-
tion was obtained by the point gage on the carriage. The actual bed

form was obtained by the dual channel stream monitor, Automation
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Figure 4-4.
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Instruments, Model 1042, together with a transducer and a strip-chart
recorder. With this combination of equipment and the event marker,
which provided the position of the carriage, a bed surface profile

¢ould be obtained.

5. Depth of Flow - The depth of flow can be obtained from the

difference of point gage reading on the carriage between the water sur-
face and the corresponding bed surface. The average distance between
the water surface and bed surface was the depth of flow. The depth of

flow was measured several times during each run.

C. Sanid and Tracer

The sand used in this experiment was plaster sand obtained from
the Sterling Sand and Gravel Company, Fort Collins, Colorado. Afer
sieving; a fairly uniform sand, ranging from 0.1 mm to 0.7 mm in &ias-
eter with a median diameter of 0.34 mm, was obtained. Figure 4-5 shows
the sand size distribution. The shaded regions are the fine, medium
and coarse sizes used as tracer particles in the experiment. The total
amount of sand in the flume was about two tons.

The amount, size and activity of tracer particles used In e:ch

run are listed in Table 4-1. These tracer particles were obtaine rem

the sand in the two-foot flume. After drying and weighing, they w
sent to Hastings Radiochemical Works, Hous£on, Texas, for radioact :
labeling. In the determination of the required amount of radioac: ‘ty,
a uniformly distributed source was assumed. The amount of radio-

activity required for each run was determined based on the assump

that after the tracer particles were very well distributed, the a: ¥
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TABLE 4-1, EXPERIMENTAL VARIABLES AND PARAMETERS FOR THE 2-FOOT-WIDE FLUME

Run No. 1C M 1F M 2C M
Water surface
slope x 102 0.088 0.088 0.088 0.212 0.204 0.37
Normal depth (ft) 0.499 0.518 0,522 0.521 0.555 0.517
Water discharge
(cfs) 1.14 1.14 1.14 1.69 1.70 4,00
Velocity of water
(ft/sec) 1.14 1.10 1.07 1.625 1553 3.88
Water temperature
(°C) 20.0 20.0 20.0 20.0 20.3 20.0
Bed form ripple ripple ripple dune dune plane bed
Total sediment
concentration (ppm) 88.00 60.21 82.21 871.55 614.84 4884.61
Total sediment
discharge (lb/sec) 0.00626 0.00429 0.00585 0.0918 0.065 0.1218
Percentage of total
load in the tracer
size range 3.0 4.0 6.0 11.0 4.0
Size of tracer
(mm) 0.50-0.59 0.30-0.35 0.177-0.210 0.30-0.35 0.50-0.59 0.30-0.35
Calculated amount
of tracer (gm) 10900 2350 450 2350 10900 500
Actual amount of
tracer (gm) 2100 1600 600 1600 2100 300
Actual tracer
activity (upc) 260 260 300 320 450 750
Initial station of
tracer 15.0 15.0 15.0 10.0 11.5 12.0
Velocity of tracer
(ft/hr) 0.848 0.585 1,131 4.7 4.1
Rate of spreading
of tracer (ft?/hr) 2.68 1.724 .48 20.2 16,6

Period of
experiment

1/21/67 15:12
-1/22/67 16:29

2/22/67 14:45
2/23/67 14:30

3/22/87 15138

-4/12/67 15:45

-3/28/ut 1o

T712/67 0975%

-6/13/67 19:09

6/13/67 12:25

7/11/67 12:30

=7/11/67 12:40

SS
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of the tracer at any point along the flume should be twice the back-
ground. The design criterion for the amount of tracer particle used
in each run was to get a statistically significant number of tracer
particles in each core sample segment. Assume that the variation in
the number of tracer particles in each core sample segment (1/4 inch
to 1/2 inch thick) follows the Poisson distribution, so the coefficient

of variation C_ = £ = e 1 where N is the average number of tracer

N YN

particles per sample segment. If we set N = 100, then Cv = 10%. Based
on the above criterion, the total amount of tracer particles required
can be estimated. The lower limit, where the tracer particles will
penetrate into the bed, was assumed to be the lower limit of the
deepest “sand trough existing in the flume. Following this reasoning,

ags: »3xample for the medium sized tracer particles is given as follows.
For a sample of 3/4 inch diameter and 1/4 inch thick and tracers of
0.33 mm diameter with a specific gravity of 2.65,

‘weight per particle

% (0.033)3 x 2.65 = 50 x 10-5 gm

o _ w52 ] 3 100 _
weight per sample = z—[zj (EJ (2.54)° x 6.7 2.90 gm

T1f we assume the thickness of movement of the sand is 0.25 foot and the
dry bulk density of sand is 100 1b/ft3, then the weight of sediment in
movement = 60 x 2 x 0.25 x 100 x 454 = 1.36 x 10° gm. The total number

6
©f tracer particles = Wz ;'gg 107 - 4.7 x 107, and the total

weight of tracer particles = 4.7 x 107 x 50 x 10-® = 2,350 gm. One
condition that must be satisfied in using trz2cc. rarticle: ir a dis-

persion experiment is that the amount of tracer introduced in the
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channel is small enough so that the composition of the bed material near
the source will not be changed too greatly. So the above calculation
only served as a guide. Actually the amount of tracer particles used

in each run is different from the calculated value and is listed in

Table 4-1.

D. Introduction of the Tracer Particles

The flume was run until the right equilibrium condition was
obtained. By inserting a board slowly at the tail gate and turning
down the water discharge simultaneously, the bed configurations could
be kept after the water was drained out. The methods of introducimg
the tracer particles were different for the ripple, dune and
plane bed conditions.

For the ripple case, a trench was dug at the initial station
across the flume. The depth of this trench equaled one standard devia-
tion of the vertical variation of the bed configuration below the
mean bed levél. The width of the trench depended on the amount of
tracer particles used. After the tracer particles were evenly distri-
buted along the trench, they were covered by ordinary sand from the
flume. The buried tracer particles were then covered by cloth
anchored by sheet piling to protect them from being washed out before
the right flow conditions were re-established. By removing the board
at the tail gate slowly and increasing the discharge of water to the
right discharge simultaneously, the right flow condition could be
easily re-established. After the equilibrium condition was re-
established, the cloth cover was removed, and the flow was allowed to

scour out the buried tracer particles.
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For the dune and plane bed cases, a steel plate was put under
the tracer particles as shown in Fig. 4-6. Instead of allowing the
tracer particles to be released slowly by the natural scouring action
of the flow, they were released by lifting the steel plate to give
an approximately instantaneous in-put into the flow. The main
reason for this kind of artificial in-put is that it took too long
for all the tracer particles to be scoured by the flow itself; while
some particles were spread all along the flume, others remained buried
at the source. The only difference of introducing the tracer particles
between the dune condition and the plane bed condition was that the

\

cloth caovers were not used for plane bed conditions since only a thin

layer of sediment was moving during the plane bed runs.

E. Determination of the Concentration Distribution Curves

The instruments used in obtaining the longitudinal concentration
di istribution curves were a scintillation detector (Nuclear-Chicago
Corporation Model DS5), an analytical count ratemeter (Nuclear-Chicago
Corporation Model 1620B), a radiation analyzer (Nuclear-Chicago Corpora-
tion Model 1810) together with a voltage regulator and a strip-chart
recorder as shown in Fig. 4-2a and Fig. 4-7. A water-tight casing was
pput on the scintillation detector, which was carried by the instrument
carriage on the flume. In order to improve the spatial resolution of
the detection system, a collimator, consisting of two half annular
lead shields that were one inch thick and three and one half inches

high, was put on the bottom of the detector with a spacing of 3/4 inch

Tt e
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in between the two half annular lead shields. Fig. C-1 in

Appendix C shows an example of how effective this collimator can
improve the spatial resolution og the detector system when all the
tracer particles are concentrated at the initial station as an
approximate line source. This detector was connected with the radia-
tion analyzer, and the radiation analyzer was connected to the
analytical count ratemeter and strip-chart recorder. The voltage
regulator was used to provide a constant power supply. The integral
setting for the radiation analyzer was used. This set of instru-
ments was calibrated before each run by using a 10 pc cesium-137
source as a standard. After the tracer particles were released, six
to eight passes were made in each run. The detector was located at
1/2 foot to the left side of the center line of the flume, then at
1/2 foot to the right side of the center line for each pass. With
the event-marker, a longitudinal radioactivity distribution curve

with the stations was plotted on the strip-chart recorder.

F. Determination of the Tracer Distribution in the Bed by Using

Core Sampler

In order to determine the vertical distribution of tracer
particles in the bed, a core sampler was used. It is a 19-inch
long, 3/4 inch, I.D. plastic tube as shown in Fig. 4-8. The section
stop on the piston rod can provide a precise control for the thickness

of the core sample segments. Core samples were taken only after
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the tracer particles were spread out along several feet of the flume.
The locations from which the core samples were taken were determined

by inspecting the longitudinal concentration distribution data on the
strip-chart, so that representative points were chosen. A pair of

core samples at 1/2 foot on both sides from the center line of the

flume were taken for each core sample location along the flume. The
depth of core sample corresponded to the maximum trough of the samd

bed during the experiment. After the core samples were taken, they were
cut into slices of 1/4 inch to 1/2 inch and placed in paper cups. Then,
the activity in each cup was counted by a scintillation detector

together with a decade scaler and a timer as shown in Fig. 4-8.

G. Determination of the Total Load by Total Sediment Transport Samwer

The total sediment transport sampler was a width-depth
integrating sampler which sampled a 1/2 inch wide section of the pe
and could be moved back and forth across the end of the flume as
shown in Fig. 4-9. The outlet of this sampler is a triangular t -ugp
which conveyed the water-sediment mixture to a circular tank. A
point gage was mounted on the circular tank to measure the volwsme
water-sediment mixture. The sediment in the circular tank was .
removed, dried and weighed. About ten sample§ were taken in each .

and the average total sediment discharge was obtained.

H. Special Methods Used for Plane Bed Condition

For the plane bed case, since the bed is a flat plane, no be

configuration information was necessary. Because the tracer parti
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Figure 4-9. Total sediment transport sampler
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moved much faster in this case than in ripple or dune conditions, where
the movement of tracer particles is relatively slow as compared with
the speed of the carriage, the method of obtaining longitudinal cen-
centration distribution data used for the ripple and dune cases was
not valid. Two scintillation detectors were used for the plane bsd
condition. These were located at stations 35 and 55, respectively,.

to observe the tracer particles passing by the detectors. A portigle
scintillation detector was located at the entrance to see when thg
tracer particles would appear again through recirculation. Once tis
tracer particles reappeared through recirculation, the experiment wis

completed.

I. Preliminary Experiments for the Determination of the Step lLength

and Rest Period of a Single Particle

These experiments were done during the summer of 1966. &> 2Pcr
wide, 20 cm deep and 10 m long recirculating plastic fluwe was us
for these experiments. White plastic particles with dsp = 2.2 mm ¢
specific gravity 1.1 served as bed material. Black plastie partic
with the same properties as the white plastic particles were used
tracers. The experiments were done under the following conditions

water discharge = 0.1065 cfs to 0.1547 c¢fs

water-surface slope = 0.0006

)

water temperature = 24" C

average water depth = 0.25 ft to 0.41 ft

average height of dune = 0.08 ft to N.15 fr

average length of dune = 2.2 ft to 3.5 ft.
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Since the white plastic particles were transparent, the black

tracing particles could be seen even if they were buried. The step
lengths of each tracer particle were actually measured by using a

measuring tape, and the rest periods were measured by using a stop
watch. The purpose of these experiments was to determine the probabil-

ity distribution functions for step lengths and rest periods.

"

s B 3 e i i A i . e e
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Chapter V

ANALYSIS AND DISCUSSION OF RESULTS

A. Distribution of Step Lengths and Rest Periods of a Single Plastic

Tracer Particle

The distribution of step lengths of a single plastic tracer
particle obtained in a 20-cm-wide plastic flume for two different flow
conditions is shown in Fig. 5-1. With the mean and variance obtaiined

from the actual step length data, k; and r can be found by solving

"Eq. (3-11) together with

4
S

ol = o (5-1)
1s

where cg is the variance of the step length distribution which
follows the gamma distribution function equation (3-10),.the subscript
s denoting step length. The curves in Fig. 5-1 are the theoretical
gamma distribution function as described by equation (3=10). We can
see that the distribution of step lengths of this particle is ade-
quately represented by the gamma distribution function. The scatteri;
of the actual data about the theoretical curve is due to the fact tha:
less than 100 step lengths were measured in each flow condition, whic
is not sufficient to give a smooth curve.

The rest periods of the same particle for the same two flow

conditions were also measured. The results are plotted on exponenti=
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probability paper. The actual mean rest periods were substituted
into Eq. (3-13) to get the k; values. The straight lines in Fig. 5-2
follow the integral of Eq. (3-12) for exponentially dis;ributed rest
periods. From Fig. 5-2 we can see that the rest periods follow the
exponential probability distribution function quite closely. These
conclusions about the distribution of step lengths and rest periods
for light-weight plastic particles may or may not be applied to the

distribution of step lengths and rest periods of sand particles.

B. Longitudinal Concentration Distribution

In order to get a general idea of how the dispersion process
goes, a set of longitudinal concentration distribution curves would be
helpful in showing how the process develops over a period of time.
However, the same kinds of curves are also needed for later comparison
with the stochastic model and the core sample results. For the sake
of avoiding duplication, presentation of these data will be postponed
until Figs. 5-14, 4-15 and Appendix C, where the comparison of the
experimental longitudinal dispersion curves with the stochastic model
and the core sample results is discussed.

According to Eq. (3-22), the mean rate of movement of tracer
particles should be a constant for a certain flow condition and par-
ticle size. If the mean distance traveled by tracer particles is
plotted as a function of dispersion time, the result should be a
straight line passing through thehorigin. This relationship can be

seen from Fig. 5-3 for the ripple conditions, and from Fig. 5-4 for
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the dune conditions. In each case the data were obtained 1/2 foot

curved portion near the origin in some of the relationships is that

-

the tracer particles werc not mixed uniformly over the entire depth
of layer of moving particles at the beginning of the experiment. For
the same flow condition and bed configuration, finer particles should
move faster than coarser particles. This is true for both the ripple
and the dune cases with the exception being Run 1C, which has a
higher mean rate of movement of tracer particles than Run IM. This

can be explained by the fact that the flow condition for Run 1C was

T gl o el = i |
SHC Titdr The measured

total sediment discharge for Run 1C was higher

thun that for Run 1M. Since both the water velocity and the total dis-

charge of sedipent are higher for dune conditions than for ripple
coaditisng, tho me

mean rate of movement of tracer particles is also

hicher ihe tochnique of raising the tracer particles toward the

fac. of the bed by mzaus of a steel plate at the beginning of
the experimint s apparently very effective as can be seen from the

e

results for Run 2 and Run 2C where the X vs t relationships are
straight lines coing through the origins.
wccording te Eq. (3-23) the relationship between the variance
ngitudinnl distribution and the dispersion time is also
v, Tigur: 3-5 and Fig. 5-6 show the relationships between the
raviancs, -; , and *he dispersion time, t, for ripple and dune condi-

Similar effects on the results due to the
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method of releasing the tracer, the size of tracer particles, the bed
form and flow condition can be found from Fig. 5-5 and Fig. 5-6 as
discussed for Fig. 5-3 and Fig. 5-4.

For Hubbell and Sayre's stochastic model, Eq. (2-2), only two

parameters are needed. When r = 1, Eq. (3-22) becomes
® e (5-2)
After taking the derivative of ci with respect to t and substituting

Eq. (5-2) and r = 1 into Eq. (3-23), the rate of change of variance is

_ _ 2 dx/dt i
= = g _ (5-3)

The two parameters, k; and k;, can be obtained by solving Eq. (5-2)
and Eq. (5-3) simultaneously with the dx/dt and dci/dt values ob-
tained from the experimental results. In cases where there is
curvature near the origin in Fig. 5-3 and Fig. 5-5, a correction is
necessary. This correction can be done by drawing a dashed straight
line through the origin parallel to the experimental results at

larger dispersion time. The correction factors X5 and t, are the dis-
tance difference and time difference between the solid and dashed
straight lines, respectively. The corrected distance and time coordin-
ate system should be t' = t - to and x' = x - X, respectively. In
the new coordinate system the dashed straight lines pass through the

origin. The direction of the time correction based on the mean is,
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in some cases, contrary to that based on variance.

beginning stage the tracer is traveling faster but spreading slower.

This means at the

This may be caused by releasing the tracer particles within a short time
period which is not the natural condition of movement. The slopes in
Fig. 5-3 through Fig. 5-6 and the values of k; and k, for the Hubbell-

Sayre model that were obtained in the different runs are listed in

Table 5-1.

For the general one-dimensional stochastic model, three parameters
ki, ko and r, are needed. It would seem that these three parameters
could be obtained by simultaneously solving Eq. (3-22) together with

the derivative of Eq. (3-23) with respect to t

d02 k2r
.._._x B e (rq.]_
1
TABLE 5-1. PARAMETERS USED IN HUBBELL AND SAYRE'S
ONE-DIMENSIONAL STOCHASTIC MODEL
Parameter - doi ;. (ft‘l) Y (hr'lj
Ruﬁ No. EE'(ft/hr) T (ft2/hr) 1 J

Run 1C 0.848 2.68 0.633 0.537
Run 1M 0.585 1.724 0.679 0.397
Run 1F 1131 6.48 0.349 0.392
Run 2M 4,7 20.2 0.465 2.18
Run 2C 4.1 16.6 0.494 2.025
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and the skew parameter, S/t , from Eq. (3-24), i.e.,

BT = =D
vkor(r+1)

(5-5)
If the rate of change of mean displacement is equal to a constant Y,

anq the rate of change of variance equals another constant y, ,

then the skew parameter, SVt , should be

+ ¢2 +
TAEE L.m 56
Figure 5-7 shows the relation between L SYt and r. The variation
of g, SY't is limited between 1.0 and 2.0. The actual experimental
relationships between the skew parameter, SV t, and the dispersion
time, t, are shown in Fig. 5-8 and Fig. 5-9. All the curves drawn
through the data were made to approach constants as required by
Eq. (5-6). These constant values are shown by the heavy lines at
large dispersion time. The result for Run 1C is not shown here
because the results scatter too much. However, because the skew
parameter is based on the third moment of the longitudinal concen-
tration distribution data, a little difference near the tail of the
concentration distribution curve will make a big difference in the
result of the skew parameter. The negative skew parameters are
probably caused by pockets of tracer particles which were buried
near the initial station and released much later. The parameters
of the general one-dimensional stochastic model obtained by this

method for Run 1F are k; = 0.434 1/ft, ko = 0.33 1/hr and r = 1.49.

A

IR —————

i ey . b e e T 7



05

Figure 5-7. The relationship between Vg SYt and r .
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The r values for some other runs turned out to be negative, which is
impossible for a gamma distribution function. These results may be
caused by the fact that the flume is too short for this kind of
dispersion study so that data were taken before the dispersion process
became fully developed. In Fig. 5-7 the change of skew parameter
value is small compared with the change of r values, esSpecially at
large r values. As a consequence of this result, a particular set of
ft(x) curves can apparently be closely approximated by using many
different combinations of k;, k; and r values. So this method,
although it is one way of getting the parameters for the general
one-dimensional stochastic model, may not be the best way.

Following the initial release of the tracer particles, a certain
length of time, which may be called an initial mixing period, is re-
quired for establishing an overall vertical distribution pattern in
the bed that depends on the bed configuration. In general, at the
beginning of the dispersion process, these tracer particles will
penetrate deeper and deeper into the alluvial bed. The depth of
penetration of tracer particles is eventually limited by the deepest
troughs of the ripples or dunes. The radioactivity measured by a
scintillation detector from a tracer particle depends not only on
the strength of the activity of that particle, but also on the
medium and the distance between the particle and the detector. As a
result of these phenomena and the possibility of loss of some of the
radioactive label, the total activity recorded along the flume or the
area under the longitudinal concentration curve decreases and approaches
a constant as the dispersion time increases as shown in Fig. 5-10 and

Fig. 5-11.
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A computer program in Appendix B serves the purpose of
calculating the function ft(x) i; Eq. (3-19) for all possible
combinations of the parameters in that equation. Different num-
bers of steps, i.e. N values, were tried in the computer program.

The results indicate the rate that ft(x) approaches its theore-

tical value, i.e. when N=», decreases with increasing N values. In

olir experiments, when N is greater than 100, it adds no practical
¢ontribution to the values of ft(x). Figure 5-12 gives an example

of the computer result which shows the variation of ft(x) as a

function of dispersion time. According to Eq. (3-24) the skew
coefficient decreases when the dispersion time increases. So,

at large dispersion time, ft[x} tends to become more symmetrical

as shown in Fig. 5-12. From Eq. (3-10) and Eq. (3-12), the dis-
tribution of step lengths is related to r, but the distribution

of rest periods is independent from r. So, the effect of r on ft[x]

is completely due to the effect of r on the distribution of step
lengths. Comparing Eq. (5-6) with Eq. (5-9) in the next section, the
change of skewness in the step-length distribution function is more
sensitive to a change in r than is the change of skewness of ft(x].
From Eq. (3-24), when k; and k; are held constants at a particular
dispersion time, the skew coefficient decreases with increasing r
values, and ft[x) should approach symmetry with increasing r values as
shown in Fig. 5-13. When the mean step length and mean rest period are
held constant at a particular dispersion time, the effect of different v
values on the shape of ft(x) can be seen from Fig. 5-14, It is clearly

shown in Fig. 5-14, that when the mean step length and mean rest
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period are held constant, the skewness ot the ft(x) curves decreases
with increasing r values. Tii- tendency agrees with the characteristics
of the gamma distributed stc; length function; when the mean is kept
constant, the skewness of gamma distribution function decreases with
increasing r values.

Due to the irregularity of the bed configuration, the irregular-
ity of the experimental longitudinal concentration curves is not
surprising. Figure 5-15a shows the comparison of the experimental
longitudinal dispersion curve with Hubbell-Sayie's stochastic model
and the general one-dimensional stochastic model. The irregularity
of the experimental curves was caused by pockets of tracer particles
which were buried in deep troughs and released later. The area under
the theoretical curves will not equal 1 unless kot is infinite in
Eq. (3-20). However, the area approaches 1 very rapidly at small
kot values. When kyt = 5, the areas under the theoretical curves for
both models are 0.59. The slight area difference between Hubbell-
Sayre's model and the general one-dimensional model in Fig. 5-15a
is caused by using different k, values in each model. The comparison
indicates that the digpersion process can be described by the general
one-dimensional stochastic model at least as well as by Hubbell and
Sayre's stochastic model.

This is more easily seen in Fig. 5-16, a compariscn of the mean,
variance, and skew coefficient between these two models. In

Fig, 5-16 the rate of change of mean and variance for both mode!ls
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the same and the difference of rate of change of skew coefficient
is not significant enough to change the pattern ft(x) very much. This
demonstrates the impracticality of attempting to define all three

parameters from longitudinal dispersion data alone.

Fig. 5-15b demonstrates the possibility and the applicability
of assuming an r value for the general one-dimensional stochastic
model to describe the actual dispersion process. After the r
value is assumed, k; and k, can be obtained from the mean rates
of displacement and spreading of the tracer particles without going
into the problem of skewness. The agreement between experimental
result and the general one-dimensional stochastic model increases the
possibility and confidence that if the mean step length and rest
period can be found from bed configuration data and total sediment
discharge, all the parameters used in the general one-dimensional
stochastic model can be obtained by solving Eqs. (3-11) and (3-13)
together with the assumed r value without having to perform a
dispersion experiment. Thus, this general one—dimesiona; sto-
chastic model not only can be used to describe the process of
dispersion, but also may be used to predict the dispersion
process. The area difference between the experimental result and
the general one-dimensional stochastic model as shown in Fig.

5-15b, is due to the same reason as explained for Fig. 5-15a.
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C. Computer Results of Solving Aris' Moment Equation

The compuéer program of salving Aris' moment equaticn was
designed to simulate the flow condition of Run 1C. tHowever, the
values of the von Karman turbulence coefficient, x, were computed
from velocity distribution data from Run 5 for 0.33 mm sand in tio <ur.
two foot wide flume as given in the U.S. Geological Survey Profession:l
Paper 462-1, which has the same flow condition as Run 1C. Figure 5-17
shows for the conditions specified in Case 1, the relation betwcen
the dimensionless mean displacement of the deposited sediment from
the source and the dimensionless dispersion time for different 2
values. The asymptotic values represent dimensionless mean step

lengths aw . The B8 value is proportional to the fall velocity of

s
sand particles. For the same flow condition, higher 8 values
should be associated with shorter step lemgths as shown in Fig. 5-15.

The computer results for Case 1 can be seen in Table 5-2.

TABLE 5-2. COMPUTER RESULTS FOR CASE 1 GIVING PRE :
DICTE EP
LENGTH CHARACTERISTICS FOR RUN 1C B0 STE

T — D ==
E o2 r T .. & ! 2
B ws ws “5 hs = Vg Ny
g2 Vs
w
1.0 4.62 119.0 .64 0.179 3.73
1.2 3,139 60 .69 196 0.1625 4.97
2.0 1.09 7.84 .49 0.1513 5,14
3.0 0.51 1.55 21 0,168 4.88 i
4.0 0.31 0.507 37 0.18098 .59 |
5.0 0.21 0.222 .40 0.1988 4.48 |
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For a gamma distributed step length, Eq. (3-10), the dimension-
less forms of the mean step length, the variance and the skew

coefficient are

—— “I'
3 _ s o
LR e (5=7)
1w
2 Tw
ug = 'Efi (5-8)
k 1w
and
s' 2
W ® (5-9)
rw

where the subscript w denotes the deposited sand and s denotes the

step length. Case 2 follows Case 1 to make the mean step length and
mean rest period correspond to the experimental results of Run 1C.
Using the computer results of Case 1, as shown in Table 5-2, the proper
T, and klw values can be found by solving Eqs. (5-7) and (5-8).
Equation (5-9) serves the purpose of a double check. The calculated

r and k, - values are 0.1625 and 0.05175, respectively. Based on

these T and klw values, and Eqs. (5-7), (5-8) and (5-9), we have

€, = 3.139, oZ = 60.69 and S_ = 4.97 which agree well with those

values listed in Table 5-2. This strongly suggests that the step

lengths predicted by Case 1 are gamma distributed with 1.
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The input for Case 2 is based on the flow conditions, which are

the same as Case 1, and y corresponding to Run 1C. Since 1/y equals
the mean rest period in dimensionless units, k2w =y =0.0131. From

the general one-dimensional stochastic model, and using the results

obtained from Case 1, we have

“and

2
dcw _ k2w Tw (rw+1)
dt

2
klw

= 0.928

which agree with the slopes in Fig. 5-19 obtained from the numerical
solution of the Aris moment equations for Case 2. From Eq. (3-24)
the skew coefficient for the deposited sediment is

T +2 1
W

S = 43.5(1)" '3 ) (5-10)

w

N/’(rw+1) r K, T

Figure 5-20 shows the comparison between Eq. (5-10) and the results

from the computer program Case 2; the agreement is very good.

Now it can be confirmed that both the general one-dimensional
stochastic model and the Aris' moment equations lead to the same
solution of.the dispersion problem under the condition of Case 2. For
a given value of B, the characteristics of the step length distri-

bution function predicted by the Aris' moment method depends also on
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the selection of the thickness of the bottom layer of flow An.
Therefore, without some meaningful physical criteria to govern
the selection of An, this method cannot be used to predict the
characteristics of fx(x) quantitatively. However, it may sFill be
useful for predicting qualitatively the nature of relationship

between the characteristics of fy(x) and 8 and ﬁ?UT, for example.

D. Vertical Concentration Distribution of Tracer Particles in

an Alluvial Bed

The vertical concentration distribution of tracer particles in

the bed was obtained by using a core sampler. The data in Appendix
C give some examples of the vertical distribution in the bed at
different stations. The water surface was taken as the origin for
all the vertical concentration distribution graphs. The depth axes
of these vertical concentration distribution graphs are located
directly under the stations at which they were taken. The relatively
good agreement between the longitudinal concentration distributions
determined by the scintillation detector and the plotted points,
which represent the total amount of radioactivity in the core, indi-
cate that variation in vertical distribution of tracer particles
along the flume does not cause any serious distortion in longitudinal
distribution curves obtained by the use of a scintillation detector
above the water surface. The time lags between these two sets of

data are due to the fact that the core sample data were taken after

taking the longitudinal concentration distribution data. The time
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lags between the left and right side scintillation detector data
are due to the same cause. No significant tendency concerning the
vertical distribution of tracer particles in the alluvial bed is
apparent in our present data. *

The average depth of penetration of tracer particles in the bed
can also be found in Appendix C. The average depth of penetration
increases slightly with the dispersion distance as a general tendency.
This general tendency is not true near the end of the flume, however,
because a wooden sill at the average bed level &as located at the
end of the flume to help maintain the correct slope of the sand bed.
As a result of this, instead of increasing, the average depth of
penetration of tracer particles tends to decrease somewhat near the

end of the flume.

E. Bed Configuration Analysis

Figure 5-21 gives typical examples of the actual bed configura-
tions for tﬁe ripple and dune bed conditions. Since the dunes are
much larger than the ripples, and the flume is only 60 feet long,
fr;m a statistical point of view not enough information about the
Variation of bed configuration can be obtained for the dune condition.
Even for ripple conditions, the data are barely enough to demonstrate
the tendency of some statistical properties.

Since the movement of sand is closely related to the bed forms

and how they move, it is reasonable to assume that the distribution
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function of step length is related to the distribution function of
the zero crossings of the bed conffhuration. Figure 5-22 shows the
distribution of zero crossings of the bed forms for Run 1M and Run 1F.
These data show that the distribution of zero crossings can be
adequately represented by the gamma distribution function. The
scattering of the data about the theoretical gamma distribution
function is mainly due to insufficient length of record. Nordin's
(1968) computer program was used to calculate the distribution of
zero crossings of the bed configuration.

Two analyses of the frequency distribution of the bed elevation
were performed for both ripple and dune beds. The stationary data
were taken by a transducer located at station 30. Figure 5-23 gives
an example of frequency distirbution data obtained by a stationary

transducer for Run 1M. The subscript Y, used for the relative

/o
frequency in Fig. 5-23 denotes reference to the variation in the

time domain of the bed elevation with respect to a stationary

reference point. Another set of data was taken from a transducer

on the carriage which moved along the flume. Figure 5-24 gives an
ekamﬁle of the frequency distribution based on the variation of

bed elevation along the flume for Run IM also. A computer program

in Appendix D was developed for calculating this distribution of

bed elevation. Both Fig. 5-23 and Fig. 5-24 show that the distribution

of bed elevation follows the normal distribution closely. Also, in

Fig. 5-24 there is no significant difference between the results
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obtained by considering both the positive and negative slope, and
those obtained by considering only the negative slope. Therefore, it
is assumed that it is equally likely that sand particles will be
deposited anywhere on the downstream faces of bed forms but not on
the upstream faces, the distribution in Fig. 5-24 is equivalent to
fY(y), the probability density function for the elevation at which a
sand particle is deposited. There is no significant difference
between FYT(y) and FY(y) when Fig. 5-23 and Fig. 5-24 are compared,
which means the distribution of bed elevation may follow an ergodic
process, i.e., the statistics over a long time interval for any one
system are the same as the statistics over the ensemble of systems
at any one instant of time.

In order to evaluate the mean rest period from the distribution
of bed elevation by using Eq. (3-30), we must have data on the distri-
bution of bed elevation over a sufficiently long time period. Our
records available at present are not long enough to adequately evaluate
ETIY(t|y) and FY(y). From Fig. 5-23 and Fig. 5-24, the variation of
bed elevation follows normal distributions closely; thus, Eq. (3-30)
ma; be used to calculate the mean rest period. From the bed elevation
data in the time domain, the To value in Eq. (3-30) is equal to
19.8 minutes for Run IM. With T0 equal to 19.8 minutes and fY(y) from
the normal distribution curve in Fig. 5-24, the mean rest period can
be obtained by integrating Eq. (3-30) numerically from minus three
standard deviation to plus three standard deviation of the variation of

bed elevation. This calculated mean rest period is about 1 hour. The
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mean rest period for Run 1M obtained from the Hubbell-Sayre stochastic
model is about 2.5 hours, which is larger than the result obtained from
the bed configuration data. But, the readers should be aware that the
mean rest period obtained from the bed configuration data represents
the mean rest periods for all sand particles in the flume and is inde-
pendeﬁt from the tracer size; while the mean rest period obtained from
the dispersion experiment is dependent on the tracer size. The fact
that the dispersion experiments represent the overall results along the
flume, while To is only emphasized at a particular point in the flume,
may also cause some differences between the mean rest period

obtained from these two methods. Another reason for this difference
between the two methods is that the time record for the bed configura-
tion is not long enough; thus, the To value may not be the true T0
value for a much longer record. Thus, the evaluation of the mean

rest period, E(T), needs much longer records of the variation of bed
elevation with respect to time and space.

F. Total Sediment Dischargg

The average total sediment discharge for each run is shown in
Table 4-1. The comparison between Eq. (3-70) and the actual measure-
ment of some other known total sediment discharge equation is
outside the scope of this study. The data are available for those
readers who are interested in making this comparison.

G. Results Obtained from Plane Bed Conditions

Due to the short length of the flume and the high velocity of

moving sand, it took only about 15 seconds for the tracer particles

s
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to pass through the whole experimental reach. Under such conditions,
the response characteristics of the instruments is a very important
factor to the results, and the results obtained under this condition

are not considered to be reliable. Therefore, no further analysis

of this data was made.
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Chapter VI

SUMMARY AND CONCLUSIONS

The general objective of this investigation was to study the
transport and dispersion of sand particles along the bed of an alluvial
channel. The specific objectives were to (1) review and compare some
existing mathematical models for describing the transport and dis-
persion process, (2) use some numerical and/or stochastic approaches
to describe and predict the dispersion process, (3) obtain some addi-
tional experimental information on the effect of flow conditions and
particle size on the transport and dispersion process.

In order to achieve these objectives, the following investiga-
tions were undertaken. (1) A general one-dimensional stochastic model
describing the longitudinal dispersion of sand particles was derived
and its properties were investigated. (2) Existing equations for the
transport and deposition of suspended sediment particles together with
appropriate initial and.boundary conditions were adapted to the case
of sand particles transported along the bed of the channel. These equa-
tions were transformed by the Aris moment method and solved numerically.
(3) The results obtained from the Aris moment method and the general
one-dimensional stochastic model were compared for comparable condi-
tions. (4) A series of laboratory flume experiments with radioactive

tracer particles was conducted. In these cxperiments the movement and
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longitudinal dispersion of tracer particles along the flume, and the
penetration of tracer particlés into the bed were investigated.
Eiperiments were conducted with coarse, medium and fine tracer parti-
cles for two flow conditions that were characterized respectively by
ripple and dune bed configurations. (5) Experiments were conducted
with lightweight plastic particles to find the distribution functions
of step lengths and rest peridds of a single plastic particle. (6) Sta-
tistical anlaysis of bed configuration was made to find the mean rest
period of tracer particles along an alluvial bed.

These investigations led to the following conclusions:

1. Based on the preliminary study with a single lightweight
plastic particle, the step lengths very closely follow a gamma
distribution with parameter r approximately equal to 2; the rest
periods follow an exponential distribution very closely. This con-
clusion disagrees in part with the assumption which Hubbell and Sayre
(1964) made in their one-dimensional stochastic model, in which they
assumed that both the step lengths and rest periods of a single
particle are exponentially distributed. It is not known yet to what
extent this conclusion applies also to sand particles, but readers
should be aware that the exponential distribution function is a special
case of the gamma distribution function with r = 1.

2. The method of approach in deriving the general one-
dimensional stochastic model can be applied to any distribution

function of step length and rest period. Three parameters are needed
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in the general one-dimensional stochastic model, namely, k;, ks, and
r. The rest period is determined by k; and the step length is
determined by k; and r.

3. According to this general one-dimensional stochastic model,
the mean displacement and the variance of the longitudinal distribu-
tion of tracer particles increase linearly with dispersion time, and
the skew coefficient approaches zero at large dispersion time. This
means that the longitudinal concentration distribution of tracer
particles described by this model approaches symmetry at large
dispersion time.

4. Due to the irregularity of bed configuration, the
irregularity of the experimental longitudinal concentration distri-
bution of tracer particles along the flume should be expected. In
spite of this irregularity, the mean rate of displacement and spreading
(variance) of the tracer particles still approach different constants
Qnder different flow conditions at large dispersion times. These linear
relationships exist even near the initial stage for those runs in
which the tracer particles were initially well mixed with the sand
in the flume. According to the general one-dimensional stochastic
model, when the mean rate of displacement and spreading of the tracer
particles are kept constant, the skew parameter should also be a
constant. Because the skew parameter was obtained from the third
moment of the longitudinal concentration distribution data, it is less

reliable than the mean and variance obtained from the first and second

—-—————
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moment of the same data. The limitation in length of the experimental
flume increases this irregularity and unreliability of the skew
parameter. The experimental skew parameters scatter considerably.

5. In order to determine k;, k, and r in the general one-
dimensional stochastic model from the experimental results, three
relations,-obtained from the data, are needed, which can be solved
simultaneously. The mean rates of movement and spreading of the
longitudinal concentration distribution of tracer particles provide
two satisfactory relationships. However, due to the scatter, the
skew parameter does not provide a sufficiently reliable third
relationship. For given values of mean rate of displacement and
spreading of tracer particles, the pattern of ft[x) can almost
as well be described by using different combinations of k;, k; and
r values. The change of r values has little influence on the skewness
of ft(x), especially when r > 2.

6. If r is assumed, an alternative method of finding k; and
ko is used in this study. Since the change of r values has little
influence on the skewness of ft(x), an r value can be assumed for a
given flow condition. With the assumed r value, k; and k, can be found
from the mean rate of displacement and spreading of longitudinal
concentration distribution data of tracer particles. Fairly good
agreement has been obtained between the experimental result and the
stochastic model by using this method.

7. Theoretical investigation of the bed configuration is made

to find the mean rest period and mean step length of tracer particles.
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The mean rest period 1/k, can be determined from the bed configuration.
The mean step length r/k; can be determined from the mean rest period,
total sediment discharge, and bed configuration data. When the r
value is properly assumed, all the threec parameters in the general one-
dimensional stochastic model can be determined without doing
dispersion experiments. However, the presently available data are
not sufficient to adequately evaluate this method.

8. Since a higher flow velocity and higher total sediment dis-
charge existed in the dune condition than in the ripple condition,
the mean rate of displacement and spreading of tracer particles are
also higher for the dune condition than for the ripple condition.

9. The size of tracer particles should have some influence on
the rate of displacement and spreading of tracer particles. The
finer the tracer particles are, the faster they should travel and
spread. The experimental results indicated no significant difference
between the behavior of the medium and coarse tracer particles, but
the fine tracer particles traveled and spread much faster than the
medium and coarse tracer particles. This may be caused by the fact
that the fine tracer particles were temporarily suspended during part
of their movement.

10. The distribution of step lengths may be closely related to
the distribution of zero crossings of the bed forms. The distribution
of zero crossings for the ripple condition of this study follows the

~gamma distribution closely with parameter r approximately equal to 3.
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11. The distributions of bed elevation in both the time and
space domains follow the normal distributions closely, and there is
no significant difference between the results obtained by considering
both the positive and negative slopes of the bed configuration and
the negative slope only. Therefore, if it is assumed that it is
equally likely that sand particles will be deposited anywhcre on the
downstream face of the bed forms (negative slope), then the above

distribution is equivalent to the probability density function for

the elevation at which a sand particle is deposited. The agreement

~between the distributions of the bed elevation in the time and space

domains suggests that the distribution of bed elevation may follow
an ergodic process.

12. As the dispersion process goes on, the tracer particles
have a general tendency to penetrate deeper and deeper into the sand
bed until they are distributed to the level of the deepest sand
troughs, which impose a lower limit. The vertical concentration dis-
tribution of tracer particles in the sand bed, obtained by core
sampling, is very irregular, with no clear indicaticon as to what
kind of distribution function it follows. The agreement between
longitudinal concentrationdistributions obtained by the scintillation
detector and core sample methods indicates that the variation in verti-
cal distribution of tracer particles along the flume does not cause any
serious distortion in the longitudinal concentration distribution aé
determined by a scintillation detector located above the water

surface.
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13. The computer progran originally developed by Sayre (1968)
to solve the Aris moment equations numerically is a valuable
tool to obtain a solution that can describe and predict the
behavior of sand particles in open channel flow, if the parameters
in the program corresponding to actual conditions can be determined.
‘hen applied to particles that are creeping along the bed, however,
the numerical solutian depends to some extent on the grid size, i.e.,
An value. The An value which corresponds best to a particular actual
situation cannot be predicted, so this method cannot be used to pre-
dict the step length quantitatively. However, it is a good method
for describing the dispersion process and relating some of its attri-
butes to basic hydraulic parameters and sediment properties.

14. The numerical solution of the Aris moment equations for
the initial concition that all the tracers are concentrated at the
origin in the bottom layer of flow with the layer thickness equal
to An, and the boundary condition that each tracer particle is

-absorbed by the bed after completing a step, indicates that the step
lengths are gamma distributed with r < 1. The value of r obtained

from this case depends to some extent on the value of An selected.

15. The agreement between the general one-dimensional stochastic

model and the numerical solution of the Aris moment equations for
initial and boundary conditions corresponding to those in the
stochastic model is excellent. They apparently lead to the same

solution under the same conditions. The general one-dimensional
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stochastic model can serve to predict the dispersion process as

well as to describe it, if the mean rest period can be found from the

bed configuration data; if mean step length can be found from the mean

rest period, total sediment discharge and bed configuration data; and

if the r value can be properly assumed. If only the discharge of

water, the water surface slope, the channel dimensions and bed

material properties are given, the general one-dimensional stochastic

model will not be able either to describe or to predict the dispersion

process. However, the Aris moment equations can give some qualitative

description of the dispersion process with this limited information.
16. When all the necessary information is given for both the

general one-dimensional stochastic model and the dispersion model

by solving Aris' moment equations, the stochastic model gives a

more realistic picture of the movement of sand particles along a

sand bed. Also, the stochastic model can provide longitudinal

concentration distribution curves at any dispersion time, a function

which the dispersion model is unable to perform.
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Chapter VII
SUGGESTIONS FOR FURTHER RESEARCH

1. In any further similar longitudinal dispersion experiment,
a flume at least 100 feet long should be used.

2. From this dispersion study, the behavior of each individual
tracer particle is not clear. No direct measurement of the step
lengths and rest periods of a single tracer particle is possible from
a dispersion study. In order to have a better understanding of the
behavior of each sand particle along an alluvial bed, an experiment in
which only a single tracer particle or a few identifiable tracer pér—
ticles are followed should be carried out. A strongly radioactive
tracer particle which has the same properties as the sand in the
alluvial bed may be the best choice for this kind of study.

3. A longer flume should be used for this single tracer
particle study, so that longer bed configuration records can be ob-
tained. These bed configuration data are helpful in relating step
lengths and rest periods to other variables and serving as a double
check.

4. Such a single tracer particle experiment should be carried
out for different flow conditions and different sizes of tracer
particles to find the relationships between the flow conditions, the
size of tracer particles, and the parameters used in the general one-

dimensional stochastic model.

e
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5. The results of the single tracer particle experiment should

be compared with the result of the dispersion study for the same

conditions to see if they agree.

6. The method of using the skew parameter and the mean rate
of displacement and spreading, obtained from the longitudinal concen-
tration distribution curve, to find three parameters in the general
one-dimensional stochastic model is not the best way. More study
should be done to find a better parameter with good physical meaning
to the dispersion process to replace the skew parameter.

7. After this general one-dimensional stochastic model has
been tested, the two-dimensional stochastic model developed by Sayre
and Conover (1967) should also be tested.

8. The Aris' moment equations should be generalized to the
three-dimensional case, so that it can be applied to the point source
dispersion study.

9. More studies about the velocity distribution of flow, fall
velocity of sediment particles, the exchange of sand particles between
the bed and the flow, and the mechanics of entrainment should be under-
taken, especially in an alluvial channel, so the parameters used in
the Aris' moment equations can be better determined.

10. The total sediment discharge should be analyzed, so the

total sediment discharge equation, Eq. (3-69) can be tested.
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APPENDIX A

COMPUTER PROGRAM AND SUPPLEMENTARY
INFORMATION OF ARIS MOMENT EQUATIONS
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SELECTED VARIABLE NAMES USED IN PROGRAM
FOR SOLVING ARIS MOMENT EQUATION

Variable Name Term Represented
DT At
DYy An
K1 A 1/An
K2 No. of At steps in
program
K3 No. of At steps between
print outs
E(I) p ()
u(I) equation 3—55
EA(I) equation 3-56
i K
B B
A a
G : Y
UA u/u,
co(I1,J) C,(n,1)
C1(I,J) Cl(n,t)
C2(1,J) C,(n,7)
C3(I,J) C3(n,T)
Wo(J) W, (1)
w1 (J) W, ()
w2(J) W, (1)

W3 (J) Ws(r)




Variable Name

SCO

Suco

EC1 (1)

SC1

VAR(T)

SC2

S(I)

'SC3

us

ESC]
AVAR
SK
EW

VARW
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Term Represented
= K1 .
mg(v) Y € (1,9)DY
I=1
K1
6 Y oI, J)U(I)n
k2 1I=1

Eé(n,T)

K1
Y Ci(I,3)8n
[=1

Ug(n,r)

K1
Y C,(1,0)n

1-1

SS(T)

K1

Y C.(1,3)8n
I=1

ug (1)

Egln)
a3 (1)
SS(T)
T, (0

ok (1)



Variable Name

SKW
UST
CoT
CIT

VART

SKT
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Term Represented

Sy (1)
()
mo (1) +Hg (1)
Bl
o2 (1)

Y




1e7

Velocity and Diffusion Coefficients
in Program for Solving Aris' Moment
Equations, Logarithmic Velocity

Distribution, DY = 0.1

I u(1) E(I) E(A)
1 -2.30258 0.00000 0.28000
2 -0.91629 0.54000 0.76000
3 -0.39303 0.96000 1.12000
4 -0.05325 1.26000 1.36000
5 0.19941 1.44000 1.48000
6 0.40077 1.50000 1.48000
7 0.56829 1.44000 1.36000
8 0.71157 1.26000 1,12000
9 0.83688 0.96000 0.76000
10 0.94823 0.54000 0.28000
11 0.00000

Sum 0.00000 10.00000
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CASE 1

*FORTRAN
PROGRAM SAYRE
DIMENSICN E(Sl)iU(5C}!Eh(5Gl!CO{EC$2}1C1{55!23’C2[55l21’ECI‘EO]!
1_VAR(5C1’D2‘5C)yD3(5bl9D4l5o}!051501vC3(50l2)$515C1!D§(50)l
2 WO{Z}QHI(Z)!WZ‘ZI!WB{Zi
10 FCRMAT EF8-6!F5o2'I391X’219)
READ (5510) DT sDYsK1aK29K3

20 FORMAT {BFb.B.Fe.5,F7.3}

25 FCORMAT (1Rr0s3H T =yF6e335Hs B =yFbe3scH A =sFbe395rs G =sFBeds
1 6Hy UA =sFTe3//) -
K4=K1+1
K5=K1-1

L
]

; FORMAT{FB;5!3X.F8.5!3X!F8.5,
READ (5»30) lEll}!U[llsE#(I}9I=19Kli
35 FCRMAT(FB845)
READ (5235) E(K&)
D1=DT/DY
36 READ (5,20} Ts»31AsGsUA
IF (T-94599) 37,17C+170
37 WRITE (61923) TsBrAsGeJA
D7= D1#64%¥B%(1e—A)
Do = DT*A¥6e%D

D9=0-0

Gl = D1*G

G2 = DT*G

DC 40 1=19K1
DZ(I}=E(I+1!/DY+6.*E
D2(1)=E(1)/DY
Db{1)=6.*DT*(U(I1+T*UA1/T*‘2

D5(11=2«*DT*EAL])
DblIl‘DQ{Il/DT
Cl(Is1)=00
Cz(I1+1)=0CeC

4C C3(191)=040
CGl1s1)=1C.0
DO 45 1=2sK1

45 CO(1+1)=0.C
W0=0-0
wl(l)
waill)
w3(l)
L=1
DC 160 J=1yK2

wonon
eloNeal

oC
o0
oG

=1
CU(1;21=C0{In11+01*132lI}*lCUlI+1’11"Cb(I’ll)}+b7*CU{I|11
1 + G1l*wG(1)

DO 50 I=2sK5

50 CO(1;2]=CC(Isli+Dl*lDZlI}*{Cu(l+1pll—C0lIsllI—DBlIi*iCUlIoll-

1 CClI=-1+12))

1=K1 '
CO{IsZJ=CC(Isl)—ﬁl*lDBlI}*{COlIsli-CCll—lol1}+6-*E*CC(I;1}}
wC(2) = wC(1) #+ DE#CC(1ls1) - Gz#*v.0(1)

1=1 -
Clll;21=C1l1s11+31*102lII*EC}!I+1-1)—C1{Iv1}ll+:LlI)*Cu(l’l}
1 +D7%C1(I»1) + Gl#alll)

CL 8L 1=29KE
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8C Cl{Is2)=Cl(Is1)+CLl¥(L2(I)#(CL(I+1s1)-Clilsl))=-L3CI)*(CLl(Is1}~
1 CLOI=1s10))4D4(1)#CU(Is1)
[=K1
CliIs2)=Cl(Is1)-D1#(D3(I)*(CLl(I51)=-CllI=191))+6e%¥3%C1(I>1))
1 +D4([)*CC([s1)
Wlt2) = Wl(l) + DB8%C1l(1s1) = DS*n0(1) = G2%Ww1l(1l)
I=1
C2(T192)=C2 L1401 % (L2201 )% (C2(1+191)=C2(I191)))+2e*DGI1)%C1(1s1)
1 +05(1)*CC(I+1) + DT7#C2(191) + Gl*¥ui(1l)
DG 1CC [=2sK5
100 C2(1»2)=C2(1»1)4D1* (0211 )1#(C2(I+1+1)=C2(1s1))=U3([)%(C2(1s1)~-
1 C2(I=191)))+2«#L4([)*C1 (11 )+05(1)%CC(1s1)
=K1
C2lI92)=C2(191)=D1#(U3(1)%(C2(1s1)=C2(I=1s1))+6e®:%C2(1s1)}
1 +2¥D4(1)*C1(Is1)+05(1)%C0O(1s1)
w2l2) = w2(1) + DE*C2(1s1) = 24#D9#%r1(1l) - G2%w2Z(1)
I=1
C3CT92)=C3(T91)1+01%(D2(1 )% (C3(I+191)-Ca{Io1)))+2e#D4{IV1%*C2(1s1)
1 +34%¥DS(I1*C1(I»1) + D7*C2(1s1) + Gl*wa(1l)
CO 1305 [=23K>
105 C3(1»2)=C2(Is1)+D1*(C2(1)*#(C3(1+151)-C3(Is1))=D3(1)*(C3(Is1)-
1 C30I=-191)))43e%D4(1)*¥C2(191)+34%*D5(1)*C1(1s1)
1=K1
C3(I+2)=C3(I191)=01* (U301 )*(C2(191)-C3(I=191))+6e*c#*¥C3(1s1))
1 +3%¥D4(1)*¥C2(191)+3«%*¥D5(1)1%#C1(1s1)
wW3(2) = w3(1) + DE#*C3(191) = 34¥05*%52(1) = Cz*a3(1)
IF (J- L K3) 15C+112417C

113 SCO=3J

DO 123 [=1sK1
SCC=CCU+CC(Is1)%DY
SUCC=SuCC+Det T ) *CC(Is1) %Y
IF (CO(Is1)) 11591169115

115 ECL(I)=Cl(Is1)/CG(Is1)
VAR(IT)=C2(T21)/CO0I+1)=ECL(T) *%2
SOI)=((C3(Is1)=3«*ZC1(I)*¥C2(1»1))/COUL9)1)+2%ECL(])*%3)/
1 VAR(I)%#%*1,45

. G2 TC 117
115 EC1(1)=C

<
1>
0
—
-

u
€Y (D (
- =
@O

S{l)=CeC
117 sCl= 3C1+Cl{l'lI*JY
3C2=5Cc+C2(1s1)%#0Y
120 SC3=5C3+Ca(Ts11%0Y
IF (5CU=Ce3Cull) 36936slzl
121 US=3LCU/SCC
E3Cl=2C1l/3CC

AVAR=5C2/5CU—-zoC1#%#2
SK=({(5C3-3.%25C1*5C2) /50042 %C5C1#%3) JAVAR®*]1,.5
IF (aC(1)) 125»126-123

UST=5Co#UZ
VARw = v 2 ) = ¥
3 - W So¥n20L) I ol L) 42 et # k) /AR TH

(%11



1256
1308

143

144
142

146

147
15¢C
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CuT = SCC # «O(1)

UST = SCC*u3 - wCll)®oe*UA/T

C1T = (SC1 + wltl1)/7C0T

CeT = (5C2 + aell)l)sCud

VART = C2T - C1lT%*#*2

€37 = (SC3 + «3(1))1/C0T

SKT = (C3T - 3.%¥C1T*C2T + 2.%C1T*%3)/ VART#%1.5
Ji=J-1

FCRMATI(1h

|]593Xs15s3XrF505!3X1F9.4-3XlFl:oQ|3XsF9-41
WRITZ (6+1320) (Jl!lsCClI!l)lECl(I}9VAR(I]!SII)|I=1010)
FCRMAT {thvl503x9FS.4,3X;F5-5;3X'F§-4'3XQF10-5y3X;F9.5/)
WRITE (63140) J1yu5sSCCHESTLIAVARISK
FCRMAT(IH .Ib,zx;Fa.a-bx,Fc.b.bx,F9.4¢bx.Flc.:.:x,Fv.b///)
FCRMAT( LA ’139lﬁxer-:sBX:F9-Go3A'FlC-5sJilF%otl/)
IF (w0l1)) 14691479146

WRITE (69165) JlswnC(l)sEnsVARWIORA
WRITE (€&,144) J1sLoTsCOT9C1T s VART » KT
L=J

a0l1) = w0(2)

willl) = =«1(2)

w2ll)y = welz)

W3(1) = w2(2)

DC 167 1=1sK1
Cotl191)=CC(1s2)
CI{I 1) =CT Ta2)
Czl1s1)=C2l1s2)
CZ(1s91)1=C2(1s2)
GG TS 36

STOUP

END

- ifare s

PR T S Pt T PP P —



131

CASE 2

Essentially there is no difference between the computer program for
case 1 and case 2, except the initial and boundary conditions. The
difference between case 1 and case 2 are listed as follows.

R

Case 1 Case 2
D6 (1)=D4(1)/DT D6(1)=D4(I)/DT
C1(1,1)=0.0 C0(I1,1)=0.0
€2(1,1)=0.0 C1(1,1)=0.0
40 C3(1,1)=0.0 C2(1,1)=0.0
C0(I,1)=10.0 40 C3(1,1)=0.0
DO 45 1I=2, kl Wo(1)=1.0
45 C0(I,1)=0.0 W1(1)=0.0
W0=0.0 W2(1)=0.0
W1(1)=0.0 W3(1)=0.0
W2(1)=0.0
W3(1)=0.0
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APPENDIX B

COMPUTER PROGRAM AND SUPPLEMENTARY
INFORMATION FOR THE GENERAL
ONE-DIMENSIONAL STOCHASTIC MODEL
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ES USED IN THE PROGRAM

SELECTED VARIABLE NAM
STOCHASTIC MODEL

FOR THE GENERAL ONE-DIMENSIONAL

Term Represented

Variable Name

F ft(x)
G T
T t
TABLE (J) ~ gamma function
from mathematics table
X X
XK1 kl
ks

XK2
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*FORTRAN

[« o o R i Sl P

0

2
36

38

35

42

4y

PROGRAM FUNXT

DIMENSION X(lCCl1TAbLE(2Cl}9u1{4CG)suZ{AUC)s&3(400}vXKlil1001

READ (5s4) (TAULE(J)sJ=100s2CC)
FURMAT (1CFoe5)

READ (592) TiXK1lsXK21G

IF (TeEGa222422222) 006
FCRMAT (4FBe5)

Ml=1

ME=M1+9

READ (33F) (X(M)sM=M1sM2)
FORMAT (1CFbBe5)

DO &5 M=ilaM2Z

IF ((X(M)=aCUCYS)=e20C10) 73795
Kl=¥-1

GG TC o

CCNTINUE

Ml=p2+1

GC TC 10

N=1CC

WRITE (6970) XK19XK239GsT
FORMAT (4F1Ce3)

DT 74 =1kl

DC 45 1=1N

XxI=1

XIG=X1*G

NEKIX () =XK1*X (M)

IF (XIGsEGelal) GC TO 39
CONTINUE

IGX=XIGC*1CCeC

J=1GX

IF (XIG=2+0) 319314C

IF (XIG-1s0) 365129936
Cllll=(XK1x{M1**(XIG-1.GI)/TABLE(J}
GC TC 45

JO=(X1G+1eC)*1CCWC

J=JD )
ultIl={xK1le}**lXIG-1-UIi/iTAbLEtJI/KIGi
GO TO 45 :

Gl(l)=1a0

GO 'TU 45

P=X1G=1.0

L=P=1

DC 42 K=1lsL

3=K+1

P=P*(X1G-B)

C=L+1

J=(XIG-C)*1CCa0

Gr=P*TAZLE(J)
GIUI)=(XL1IX(M)*¥*(X]IG—1.0))/0OM
CUNTINUE

XK2T=XK2%*T

G2l1)=XK2T




48
63

66
67
68

71
T4
TH
80

Do 48 I=2sN

xI=1
OZ[I\=OZII—1)*XK2T/XI
pc 63 1=1sN
OBCI!=GI(I!*GZ(I)
SUM=J-G

0Cc 67 L=1sN

Suv= SUM+G3 L 1

CONT INUE
O4=EXP(-XK.IX(."".)'XK2T )
F=XK1*GA*SUM

wRITE (6271) (X(M)sF)
FORMAT (2F155)

CONT INUE

GC 10 1

STOP

END

135
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APPENDIX C

CORE SAMPLE RESULTS AND SOME
COMPARISONS WITH RESULTS FROM
LONGITUDINAL CONCENTRATION
DISTRIBUTION EXPERIMENTS




Figure
C-1

C-2

C-3

C-4

C-6

C-8

C-10

c-11

137

-

LIST OF FIGURES IN APPENDIX C

Response of detection system to line source
across flume .

Experimental longitudinal concentration dis-

tribution determined by scintillation detector

and core sample results for Run 1C Pass 7

Comparison between experimental longitudinal
concentration distribution and core sample
results for Run 1C Pass 8 o b o
Comparison between experimental longitudinal
concentration distribution and core sample
results for Run IM Pass 5 .
Comparison between experimental longitudinal
concentration distribution and core sample
results for Run 1M Pass 7 e e e
Comparison between experimental longitudinal
concentration distribution and core sample
results for Run 1F Pass 4 &

Comparison between experimental longitudinal
concentration distribution and core sample
results for Run 1F Pass 7

Comparison between experimental longitudinal
concentration distribution and core sample
results for Run 2M pass 4

Comparison between experimental longitudinal
concentration distribution and core sample
results for Run 2M Pass 6

Comparison between experimental longitudinal
concentration distribution and core sample
results for Run 2C Pass 3

‘Comparison between experimental longitudinal

concentration distribution and core sample
results for Run 2C Pass 5

Page

139

140

141

142

143

144

145

146

147

148

149



Figure

C-12

Cc-13

C-14

C-15

C-16

138

Core sample results of the mean
penetration of tracer particles
bed along the flume for Run 1C

Core sample results of the mean
penetration of tracer particles
bed along the flume for Run 1M

Core sample results of the mean
penetration of tracer particles
bed along the flume for Run 1F

Core sample results of the mean
penetration of tracer particles
bed along the flume for Run 2M

Core sample results of the mean
penetration of tracer particles
bed along the flume for Run 2C.

depth of

in the sand

depth of

in the sand

depth of

in the sand

-

depth of

in the sand

- . .

depth of

in the sand

-

Page

150

151

152

. 153

.154




fa(x)

139

1.2 | T h— r 1

1.0} -

.

:

:

ﬁ
o _ | | | 1 A :
-3 -2 0 2 3

Distance from the Origin, x, in feet

Figure C-1. Response of detection
system to .line source
across flume,



Run 1C Pass 7

o Left Side Core Somple

m  Right Side Core Somple -
—-— LeM Side Longitudinal Concentration Disiribulon
—=== Righ! Side Longitudingl Concentration Drstribulion

Depth below Woter Surface, in inches

La)

““ss Bed Surfoce

Y
‘\ ;Y\ ;"' N T
N = N
‘\v.’ v N
. —
v o b -
i i \_-'l:':::'—d-_ g 1 T - I 1
42 46 50 54 58

Station

Left Side Core Somple

L 1

L 1 I L | il L L 1 A I I
200 4000 800 16000 2000 40000 2000 40000 12(;{1)14(’;.'130 4(130 le‘O ICIO

Righ! Side Core Somple

.EL-'?':'I’? —
Fril LA
4 TR

4 e
R [

Sz 1R G

Figure C-2. Experimenta

L i T T | T I RO TR G N T T I T N |
200 400 O B0 1BOO O A00 4000 a00 40000 2000 40000 400 80 0 0o 20 0 0o A0

Concentration, in Counls per minute

1 longitudinal concentration distribution determined

by scintillation detector and core sample results for Run 1C Pass 7

ovl

Vv



ffhd

009 T T T T T T T T T T T T T T T T T T T T T T

0.08} : Run 1C Pass 8 -1

007} U Left Side Core Somple ]

0 06 N ®  Right Side Core Somple =

005 t=21L.2HRS — -— Left Side Longitudinal C on Distribuf =

oL t=21.4 HRS \u ===~ Right - Side Longitudinal C

0 03 5 1
e

002 =1 b
- o by

oo} _; e \%“E-“x .

0 g L fl i L i 1 L L L L L 1 1 i 1 1 1 = e B ¢ 1 L
14 18 22 26 30 a2 46 50 54 58 60

Il ] { P | Il 1 'l i
o] 1000 20000 400 BOOO 100

Right Side Core Somple

Depth belcw Woter Surface, in inches

| o
ﬁﬁ I | 1 - | L 1 1 1 'l 1 L 1 1 L 1 ] L L L 1 1 L 1 1 L L 1 P 1 I 1
% 8 O 400 8000 1000 20000 1000 20000 1000 20000 1000 20000 1000 20000 400

Concentration, in Counts per minute

Figure C-3. Comparison between experimental longitudinal concentration
distribution and core sample results for Run 1C Pass 8

vt



Run 1M Pass 5 -

o Left Side Core Sample
u Right Side Core Sample -1
— - — Left Side Longitudinai Concentration Distrnibution
————— Right Side Longitudinal Concentration Distribution —
- =
L N
e )
2 -
| 1 ey
s . 32
Station
3
A Left Side Core Sample
<
o g
2
5
n 8 L H
o
=
o 9 1 1 1 1 L 1 1 L 1 i L 1 Il I 1 L 1 Il L I "
= 0 200 4000 O IC00 2000 O 1000 2000 O 1000 2000 200
; Right Side Core |Sampie |
@ i 4 L
a T s 2
@
o

i " A A 1 1 1 1 L] A 1 L L L L il 1 L L
O 2000 4000 0 1000 2000 O OGO 2000 O  lc00 2000
Concentration, in Counts per minute

I

z F-- -
|
0 40 800 0 100 200

Figure C-4. Comparison between cxperimental longitudinal concentration
distribution and core sample results for Run IM Pass 5

448




!I.(xl

(8] T T T T T T T T T T T T T T T T T T T T T T T T
\ Run IM Poss 7 B
AT o Lelt Side Core Somple -
o e e . ® Right Side Core Sample
7 : s, Lett Side Long C D N
/'_‘\- /_1, . \\ Samyy TR Right Side L C |
oo . 1=17.2 HRS e Tomiag BINAET TN N
1=17.5 HRS L. - ’
004(- \_,v" i
SR P K
002 Fd '___‘_:,__-f’ .
//‘ — I
0] i L I Il Il L Il 1 Il L L I A L 1 'l i
14 [3 8 20 22 24 26 28 30
Stotion
Left Side Core Somple
' ) e
4

leath Below Woler Surfoce, in inches

n
“*g_fl_

Right Side Core Somple

1 1 1 L 1 1 | M |

Figure C-5.

oy R SO S (e ] ) o Lo 1
8OO O A0 400 €0 B0 O 400 BOO 1200 1600 O

Concentration, in Counis per minute

Comparison between experimental longitudinal concentration
distribution and corec sample results for Run 1M Pass 7

vl



T T T T T T T T T T T T T T T T T T T
0.20-
L Run \F  Pass 4
016} . o Left Side Core Sample
J b A ® Right Side Core Sompie
~ ' Yo A% o : o
| / \\\ ~— —— Laft Side Longitudinol Concentrotion
a2r / g Y 1+4.5hs. ~=-—-Right Side Longifudinal Concenralion
L / ~/ \ 14 8hes
. o \\ ’ \\/
0.08 \ AWK L.
I "’// N S
0.04 // W e
|- ’l’ \::}"'—--,.-—_‘-—-\:L__\_
/1 o - —— e STt —m— ] a
0 1 L 1 1 1 1 1 1 ' 1 L 1 1 1 1 L L L A 1 A 1
14 8 22 26 30 34 38 42 46 50 54 58
Station
Left Side Core Somple
nd
‘1‘
]
a L 1 il 1 L L L 1 1 1 A I 1 l 1 1 1 La " N 1 1
"0 2000 4000 O 2000 40(1)0 2000 40030 400 80O 1200 BOCO 400 800 1200 0 200 400 800

Depth Below Water Surface, in inches

Right Side Core Somple

/ I EE— —_— |

6 - L\~ 8 5
bt e e
g ‘
i K—n—ﬂ _ 8 L
9 1 1 1 1 L L 1 I 1 1 L L L i L L 1 L L 1 1 1 I
0 2000 4000 O 2000 40000 2000 40000 400 800 1200 16000 400 800 200 0
Concentration, in Counts per minute

Figure C-6.

Comparison between experimental longitudinal concentration
distribution and core sample results for Run IM Pass 7.

'200400800

1271




00‘!{ = T T T T T T T T T ) & r T T T T T T T
I Ruom IF  Poss 7
—~ OD& & Muddle Core Sompln
X ——-—— Left Side Longrudionl Concantratiaa Destribubon
= E SRR AN sTEsa S, w0 L eeseEs Right Side Longitudinat Concentialion Destribotion
OO'Il
. e e e -
a "_I-____‘N\-‘ ALY ’f\
002 =g £ Ny ;
N a

1 L i Il 1 1 L L L L

14 18 22 i 26 0 34 38 42 46 50 54 5e
Station
Middle Core Sample
& ditiiiiiw Bed Surtoce [ L L

o g i
1‘-_.; i ot e i PRI,
= Et"‘-""l E EP AT o= i | 4 ‘:“"“—‘J
c ;’ f:..d lL,_. b‘”’ﬂ!
& GL_L._._L_._J.._'....J_..L._I__'_._..L.. ! T OO S Y Lol O S e YL ) RESPRY S T, RN (Y R
B 0 200 400 w00 BOOD 0 4C0 BRO 1200 0] 24 400 600 BOO O 200 400 €00 800

5.

Depth Below Water

| Mii'e Core Semple

6 1 3
] _-."!’ ey ey i1 bk mpremieiamn
7= i el P27 ] A s (R
-"-,.""""'?'-mmwmm ! B v e 7 e e P H TRy
3{‘:‘1__"_;‘.».‘)_ SRS 1.',,_;_" o) &m-« PSS G
]I_-_J 4] F““A
=) S S g Py e TS i Wi P [ LI | | AT AR AT ALY LR TR ORE | 1 ! A I
0 200 400 600 BOR 0 a0 800 200 o 200 402 600 BOD 6] 200 <00

Concentralior in Counis per minute

Comparison between evperimental longitudinal concentration

Figure C-7.
distribution and core sample results for Run 1F¥ Pass 7

SPI



QI2r—T T v T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
. |
Qior g Sz Run 2M Pass 4 ]
t=1.9HRS s i o Lell Side Core Somple |
! N K " » frght Side Core Somgie i
0081 t=2.2 HRS / % d A ———-— Leli Sude Long ion Distribet |
ok N i | i Fight Side L st = |
" ] \
= / ’ e \ ’
3 oosf \\’ p. b " \ E
004}- i \ = ~ 5 \ L s AN e !
it PO o o \ e N Y |
002} } P e 2 -y 228
LN\ a \M_//’ “{:ﬂ”/f‘\\\ : 1
/l‘ 5 B emmm—— - |
ob— 1 1 1 1 1 i 1 . i 1 i 1 op 1 1 L 1 1 L i i I I L i f et YT i 1 el | i
8 [¥] 12 14 [ 8 20 22 24 26 28 30 32 34 Ak 40
Station
Left Side Core Somple
oy 3
5 d
L
4
‘ e DR IS SR S S |
0 00 400 800 BOO

Depth Below Water Surfoce, in inches

R

L1 1 1 1 L__ | S ey N Y 1]

200 400 €00 600

I L RIS I TR EE e e ..I - e | uJ-l—L-—j—.——L—L—-L-—J
2000 4000 6000 8OO0 O 1800 200 3200 O© BOO 00 2400 3200 O 400 800 1200 €00 O 200 400 600 O O

Concentration, in Counts per minute

Figure C-8. Comparison between experimental longitudinal concentration
distribution and core sample results for Run 2M Pass 4

ov 1




OOt —r T T T T T T T i I T T T T Run 2M Pasc 6 ' T T
v Left Side Long Corncs [ o Lelt Swe Core Scenple ]
<wpay 00 = flight Swe Longiudine! Concentraiun  [aisuton - S & gt Side Core Somple t=4.8 HAS N
M3}~ -
oo _ T
ol wwr
a €0
Station
Left Side Core Sample
it Pad Surloce L‘.’. i | " L:_ £t s ey %J‘(le‘ﬂ-
8 I ;"l‘: *! 1 t il B 2l
| L : H ! sl
$ 9l Ty ( : v M
5 £ Py 4t - t oy i va.!_..;l
(= IUi v == - Ft oyl f b ]
| ke By iaald firs
€ o . T‘ to L Lot v IQ PR YA YOO W T {;_‘ I .t S T
o O 200 40 0 8OO W00 O 800 1600 0O 500 w0 0 1G5 20000 80 18600
: fih Side Core Senple
é !'.{A .-A:: .
W k il 3 .' T Ti— L” )
@ by b B Lo 1 e
= f,]'»_.. | “ramy . f --! b i o : ‘._,___l ':‘-_'...-455
' ST i S Tl f 'J‘
T\ 5 S Cei oy Selmy | fat i ] (I R N O |
(4] 2000 Q00 Q g0 LD 0 B0 B0 0 B 16000 1000 VOO0 BOO 1600 O

Concentration, in Counts per minuvte

Comparison between cxperimental longitudinal concentraticn

Figure C-9.
distribution and core sample results for Run 2M Pass 6

Lyl



o4k ' I l ' Run 2C Poss 3 -
= Lan Side Core Somple §

R t=2.3 HRS :n..ws.e: ety Somple -

_ 00~ t=2.5 HRS T i  (aten € i
o 4
=0 ;
.

= o '/-__——___‘ - S
o002k e N \____,..‘{ g '.“‘:;.-sg‘__‘ _--...\_._:L:m-- : K
- e il Py L L e T————== k. e — L

0 le ] _5 i Hli i % L I'é A ZJ(’J i Z.I?_ i 214 L 23 = 35 o o — !

Station

Left Side Core Sample

_l
i wrp—— 8

@ : R
2 | il
e  RIEPOCAEIN. ]
= F R L‘J i L n 1 i L i
£ 800> O 1000" 2000 O 2000 4000
af
k]
5
w
.E Right Side Core Sampie
=
E 7
@
- 8
a 9
a

10

11} 1 i 1 1 L 1L I 1 L L i i 1 A 1 L

0 &0 6000 8000 O 4000 8000 0 ; 000 2000 2000 4000

Concentration, in Counts per minute

Figure C-10. Comparison between experimental longitudinal concentration
distribution and core sample results for Run 2C Pass 3

8P




in inches

e

1=6.1 HRS
t=523 uRS

. &7 8
L P L L | Ly I

\ Run 2C Pass. 5.

a o Left Side Core Samph
1 o Ny & Right Side Core Sample
—— Left Side Longuudinal Concentration Distribulicn

R _- \/\/,\V\ === Righ! Side L dingd C Drsibut

a - <
) - - e P S
~ T o e - - s
Aj}/ ‘3."'_“\-.—-::_ e Tas B" \‘
i "- ——

b L I \-'""'-.ﬁ\_.._._

P |

14 8 22

diisssii Hed Surfoce

et
AT
-

1%
a et
T -

=

o

B

_ '
o, i
Ya i S e e e '2
* ke _l._._-’_i_,. - ~
0 axr) n I'{Ij PG 6.4 XD 2000

Figure C-11.

i
Wt k3920 S SO R | et ocec i MR - MATIA T
0

26 30 34 38 42 46 50 54 53
Station

Left Side Coro Somple

'f il I[ ey

I . .._’! i Y - J

| =t i . . By ] i
P, oz 5% [T

P T 1 po
tinice: AL e
e P
1 1 ]

1 L
200 0 000 X000 2000 400D oW W0 o

Right Side Core Sample

}
1 I 1
o

o] IOOO 2000
Concentration, in Coun’: per minute

Comparison between exnerimental longitudinal concentration
distribution and core sample results for Run 2C Pass 5

61



150

S0 T T T - T
Run 1C Poss 5 o Left side
® Right side
BOF ~
°
»
” Mean Depth of Fenetration
70 ° -
o
9 o
§ Meon Bed Elevation S|
g L i e e e e e i i e e e
<
]
‘2 | | 1 1
& 2¢ 15 20 25 30
]
°
=
z
§ T T T T T T T
¢ A Run 1C Poss 7 1|
T S0
& 4
o
§ 1 o i .
= BOF a o Meon Depth of Penetration ]
° . o °
§ e
5 ° - ®
£ TOp -
@
[=
&
k-]
£ Mean Bed Elevation
R e e — A —rea]
c
S ! 1 1 1 ! 1 1
=
9.0 T T T T T T T
Run {C Paoss B
L]
80¢ & <
< . 8 Mean Depth of Penetration ® .
° . = e
° .
70 & —
60 Meon Bed Elevation
| 1 1 1 1 1 |
15 20 25 30 35 40 45 50 55
Station

Figure C-12. Core sample results of the mean depth of penetra-
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flume for Run 1C,
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APPENDIX D

COMPUTER PROGRAM AND
SUPPLEMENTARY INFORMATION FOR
THE VARIATION OF BED ELEVATION
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SELECTED VARIABLE NAMES USED IN THE
PROGRAM FOR THE DISTRIBUTION OF BED ELEVATION

Variable Name Term Represented
Program
ID  Identification number
N Number of data
Y Original data of bed

elevation y

X Data of ﬂégative slope
bed elevation

S of original data to
ith ;

SD(1) power

N
=5 y
j=0 ’

Sum of data after trend
line removed to ith power

N

ST(I) .

=) ¥
j=0

Sum of data after
SS(1) standardized and trend line
removed to the ith power

N

. i
L
j=0

JJ Number of negative slope
data '

SDX(I) =y Xt
k=0

FJJ - Number of x's (negative
slope data)




Variable Name

; STX(I)

SSX (1)

Subroutine trend 2

SY

SXY

. SY2

Y1

157

Term Represented

FJJ

z x> after trend line
i J removed

3=l

FJJ

E x* after trend line
J removed and
standardized

N
z y. where y is the
ordinate

T ™M=
Fad
<

L]
]
—

where x is abscissa
(same as distance)

il s
<
(o]

—
I
=

™M =
P

—
1]
—

™M =
%
(ye]

n

j=1
Slope of trend line
Intercept of trend line

Computed Y on trend line



Variable Name

Subroutine MOM2

XMO (I)
XMM (1)
VAR
STD
cov
CON
CSKEW

CKUR

Subroutine FREQ3

CL

PROB

Sum(J)

Subroutine STD2

YBAR

S

190

Term Represented

ith moment about origin

ith moment about mean
Variance

Standard deviation
Coefficient of variation
Constant

Coefficient of skewness

Coefficient of kurtosis

Lower class limit

Probability

N
y =
k=1

where x = bed elevation

-Y- -

Standard deviation of ¥'s
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*FORTRAN
PROGRAM YANG?2
COMMON DXs»CUASNCL WM
DIMENSION X(1CCC)sY(100C)sSD(&) sST(4)s55(4),SDX(4])sSTX(4)355X(4)
READ (5395 )DXsCUASNCL M
99 FORMAT(2F1G«2+2110)
C ZERO QUT SUMMATIONS
2 DO 1 I=1+4
S50(1)=0.0
ST(I)=0.0
55(011=0.0
S50X(1)=0.0
STX(1)=0.0
1 SSX(11=0.0C
) READ(5s1CC)ICsN
100 FORMATI(I9e4Xs13)
IF (IDsEQel111111111)4»3 :
3 WRITE(6+1C2)IDsN -
102 FORMAT(*1%,]10910XsxN =#*,]1551CXs*ALL CATA®)
READ(521C1L)(Y(I)sl=1N)
101 FORMAT(16(F&4es291X))
JJ=0
N1=N-1
DC 50 I=1sN1
IFIY(I+1)elLTaY(I))51950
51 JJ=JJ+1
X(JJr=Y(1)
5C CONTINUE
DO 5 I=1sN
DO 5 1J=1»4
5 SD(IJ)=5SD(1J)+Y(1)*%x]J
FN=N
WRITE (691C3)
103 FURMAT(//% STATISTICS OF RA~ DATA%)
CALL MOMZ(3DsFN)
CALL TREND2(YsNsFN)
J=1
DC & I=1sN
DO &6 1J=1+v4
6 STIIJ)=ST(IUI+Y (1) *%])
WRITE(6»104)
104 FCRMAT(//% STATISTICS OF DATA wlTH TRENC LINE REMOVED*)
CALL MOMZ2(STaFnN)
CALL STDZ2(YsNsFN)
K=1
DO 7 I=1N
DO 7 1J=1s4
T SSUIJ)=SSUIIY+Y D) ®%])
WRITE (6+1C5)
105 FCRMAT(//* STATISTICS OF STANDARDIZED DATA wITH TREND LINE REMCVE
10%)
CALL MOMZ(SSsFN)
WRITE (6+1C8)
108 FCRMAT( #1CISTRISUTION COF ELEVATICNS USING ALL CATA®)
CALL FREQD3(YsN)
WRITE (6+1C6)[0sJJ
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106 FORMAT(#1%,11Cy1CXs*N =*91591CX9*DCWNSTREAM DATA ONLY#*)

DC 8 I=1,J4
DO 8 IJ=14 ,

8 SOX(IJ)=SDX(IJ)+X(1)#**]y
FJd=JJd
WRITE(6s1C3)
CALL MOM2(SDXsFJJ)
CALL TRENDZ(XsJJsFJJ)
DO 9 I=1sJJ
DO 9 IJ=1s4

G STX(IJ)=STX(IU)+X(])*%]J
WRITE(64104)
CALL MCOM2(STXsFJUJ)
CALL STD2(XsJJsFud)
DO 1Z I=1sJy
DO 10 1J=1,4

10 SSEX(IJ)=SSXtlJU)+X(1)%%*1J
WRITE(6s1CE)
CALL MCMZ(SS8YsFJJ)

_ WRITE (6+107) )
107 FORMAT( *1DISTRIBUTION CF ELEVATICNS USING COWNSTREAM DATA ONLY#)

CALL FREGD3(XsJJ)

GO TO 2
4 CALL EXIT
END

SUBROUTINE MOM2(SUMXENX)

DIMENSION XMO(64)sXMM(4) sSUMX (&)

IF (FRX #GTs 341) GO TO 8049

wRITE (65100) FNX

100 FORMAT (*GFNX = #*,F3.1/7)

GG TO &C0O0
8049 DO 8050 I=1,4
8050 XMC(I)=SUMXI(1)/FNX

XMM(2)=XMO(2)-XxMD(])#%gz

XMNM{3)=XMO(3) =34 0¥XMC(2)%XMO(1)+24CAXMO( 1) ##3

XHMt41=XMO(4!—4.G*XMGt3i*XHOKI)éb.O*XMOt21*XMO{1)**2—3-0*XM011]**4

XMM(1)=C.C

VARZFNX®XNMNI2)/(FNX=1.0)

STD=SGRTF(VAR)

WRITE CUTPUT TAPE 6456054,45X¥0(1)sVARSSTD
8054 FCRMAT(THOMEAN =3E1545,5Xy10HVARIANCE =9Z15.695X9Z0HSTANDARD DEVIA

1TION =3E15%486)

LF(ABSFIXMO(1))=e0CC1)605698C56,8057
8056 CCV=55559Y,9%
8057 COV=STD/XMOI(1)

CON =FNX*¥#2/((FNX=140)*(FNX=24.0))

CSKEW=CON#XMi4(3)/(VAR*3TD)

CKUR=CON*({FNX+1cC)*XMH{ai—Z-C*IFNX-l.OI*XNM{Z}**2l/((FNX—B-CJ*VAR

1#%2)

WRITE QUTPUT TAPE 6+56055sCOVsCSKEW s CKUR
8055 FORMAT(27H COEFFICIENT OF VARIATION =9E1548+5X910HSKEWNESS =4E15.8

125Xs8HEXCESS =4,E1548)
8000 RETURN

END
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SUBROUTINE TREND2(YsNsFN)
COMMON DX»CUASNCL oM
DIMENSION Y(10C0) =
S5Y=0.0

SXY=0e0

5Y2=C.0

DO 20 I=1»sN

Fl=I]

SY=SY+Y (1)

SY2=SY2+Y (] )*#2
SXY=SXY+Y(I)*F]
SX=FN*¥(FN+140)/240
SX2=FN*(FN+1e0)*#(2.%FN+140)/640
WFN*SXY=-SX*SY
UsFN%SX2-(SX)%#%2

B=w/U

A=(SY-B*S5X)/FN
WRITE(612CC)BsA

FCRMATI(///% TREND LINE IS Y £%,Fb.39%X + ¥3F343)
PC 12 I=1sN

Fl=1

Y1=3*FI+A

Yily=y(1y=-vl1

RETURN

END

SUBROUTINE STD2(YsNsFN)
CCMMCN DXsCUAWNCL oM
DIMENSION Y(1CCC)
SUM=J|0

SUM2=C|O

DO 1 I=1sN

SuM=5UN+YI(T)

DC 3 I=1N
SUMZ=SUM2+Y (L)%Y (1)
YBAR=SUM/FN
S=SORT((SUM2=(SUN*%2)/FN)/(FN=1.0))
DO 2 I=14N
Y(I)=(Y(])=YBAR)/S
RETURN

ENC
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31
22

23

32
24
4c

110

111
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SUBROUTINE FREGD2(XsN)
COMMON CXsCLASNCL M
DIMENSICN X(1CCCT)eFO(13C)sSLNMIG)

ThIS SUBROLTINE CUOMPUTES AND PRINTS A PRUBALILITY CISTRIBUTIONS
DATA CAN of oCTh POSITIVE AND NE£GATIVE

LIST OF VARIAS3LES

CX=CLASS wl10TH

CU=UPPER CLASS LINMIT

NCL=NUMBER CF CLASSES

M=SESUENCE NUMZER OF FIRST CLASS CONTAINING PCSITIVE NUMBERS
JX=3EGUENCE NUMZER OF CLASS

X=DATA

SUM(J)=SUM CF X-5 TO JTh POWER

Cu=CUA

DC 10 I=1»150C

FC(I)=Cs0

PLACE OATA IN THE PRUPER CLASS

DO 4C I=1sN

IF(X(1))21+22+23

JX=X(1)/DX

JX=M-1+JX

IF(JUX)31s21424

JX=1

GG TC 24

JX=M

GO TO 24

JX=X11)/0X

JX=V+IX

IF(JX=NCL) 24524932

JX=NCL

FOIJX)=FD(JX)+1.C

CONT INUE

PRINT FRES CISTRIBUTICN-THE TITLE CF THE CISTRIBUTICN MUST BE
PRINTED 3EFCRE CALLING THIZS ZUSBROUTINE
WRITE (6+110)

FORMAT(EX o XCLASS*# 910K s *PROBa#Y) !
FN=N

PRUZ=FD(1)/FN

wRITL(65111)CJ»FPROb
FOURMATI2X»*¥3ELUw*93XsFDez95X9F543)
N1=NCL-1

DC 30 I=2sN1

CL=CU

CU=CU+DX

PROE=FD(I)/FN
#RITE(631121CLsCL»PROB

2 FORMAT(1XsF5429% TC #43F34295XsF543)

PROC=FDINCTLI/FN
wRITE(62113)CUsPRO3
FURMAT(Z2X s *ABOVE¥ 93X 9F2e293X9F543)

RETURN
END
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