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ABSTRACT OF DISSERTATIO 

SAND DISPERSION IN A LABORATORY FLUME 

This study is concerned mainly with the longitudinal dispersion 

of sand particles along the bed of an alluvial channel under conditions 

of steady, uniform flow. Attention is foc us sed on developing a general 

one-dimensional stochastic model to describe and predict the longi­

tudinal dispersion process . The method of approach used by Sayre and 

Conover (1967) for a two-dimensional stochastic model , which described 

the movement of sand particles along an alluvial bed, is adapted here 

for the development of a general one-dimensional stochastic model. The 

parameters used in this general one-di me nsional stochastic model can be 

obt ained either from longitudinal dispersi on and transport data, or 

from bed configuration data, or from a combination of both. The 

statistical analysis of ripple bed configurations indicates that 

the distribution of bed e l evation closely follows a normal distribution, 

and may possess the ergodic property . 

The Aris moment equations are used to solve the problem of sand 

dis persion along an alluvial bed as a special case of the problem of 

dispersion of suspended sand particles near the bed . The Aris moment 

equations used in t his study are modified forms of th e conservation of 

mass equations for th e transport, deposition, and re-entra i nmen t of 

suspended sediment. When appropriate initial and boundary conditions 

are used, th ere is excellent agreement bet~een solutions of the Aris 

moment equation and results given by the general one-dimensional 

stochastic model. 
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Fine, medium, and coarse sized radioactive sand grains were used 

as tracer particles in experiments at two different flow conditions, 

namely, ripple and dune conditions. In spite of the irregulari ti es 

of th e experimental longitudinal dispersion curves caused by the 

irregularities of the bed configurations, the mean longitudina l dis ­

placement and the variance of the longitudinal distribution of th e 

tracer particles were found to increase linearly with time , as required 

by the stochastic model. The shape of the experimental longitudi nal 

di spersion curves could also be fairly well repres ented by the general 

one-dimensiona l s tochastic mode l. 
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Chapter I 

INTRODUCTION 

The behavior of sediment in an alluvial channel has long been 

a research subject for both engineers and geologists. The movement 

of sediment combines the action of rolling, sliding, jumping and 

sometimes even suspension. Regardless of the mode of movement, when 

a sediment particle is deposited and stays on the bed surface, it will 

usually be covered by other sediment particles that are deposited later. 

This buried particle will be re-exposed and move again only after all 

the particles covering it have been scoured away. Since each particle 

deposits at a different location on th e bed , the time duration that 

particles r emain buried will differ. As a result of this phenomenon, 

and since the particles do not all move the same distance when they 

move, the particles move at different average rates. This is the main 

mechanism which causes sediment particl es to disperse . The application 

of sedimentation theories can be found in various areas, such as in the 

determination of geometrical shape of a channel cross section, in the 

dete rmination of river meandering, and in the effects of sediment 

transportation on hydraulic structures . 

A recent application of the theories of movement and dispersion 

of sediment is in the water pollution problem. Together with the in­

crease in population and industrial prosperity, t he demand of usabl e 
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water increases rapidly. It is an engineer's responsibility to use 

every practical method to satisfy these growing demands on the water 

supply. However, if pollutio~ is not controlled, the availability of 

usab le water may be sharply curtailed. The permissible l imit of the 

concentration of contaminants in a river depends on its ab ility to 

transport and disperse these contaminants. Most of the dispersion 

s tudi es so far have been concerned with those contaminants whi ch can 

be dissolved or suspended in water and move at the same velocity as 

the wate r. Less work has be en done with those contaminants which can 

be absorbed by bed material and move with the bed material. 

Due to the complex nature of the movement of sediment in 

alluvial channe 1 flow, different investigators tackle this problem 

from different angles. Some s tart from the mechanics point of view 

to explain the movement of s ediment, some classify this movement 

accordir.g to the bed configurations, and some make judgments from 

experience alone. No satisfactory agreement among these methods of 

investigation has ever been achieved. Since the movement of sediment 

in an alluvial channel is so irregular and random, the stochastic 

approach has recently been adopt'ed by a few mathematicians and 

engineers to give a more realis tic description of this movement. 

In order to understand the movement and dispersion process of 

those contaminants which move with the bed material, the movement and 

dispersion process of the sand along an alluvial channel should be 

studied first. This report starts with a review of the theories 
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related to the movement and dispersion of sand along th e bed of an 

alluvial channel. A general one-dimensi onal stochas tic model is 

developed to simulate this process. For the purpose of testing the 

assumptions made in this stochastic model and comparing this stochas­

tic model to actually measured longitudinal concentration distribu­

tions, some supplementary investigations were a lso made. These 

supplementary investigations include some preliminary studies of th e 

step length and rest period of a single plastic particle, the bed 

confi gurations, the vertical concentration distribution of tracer 

particles in the sand bed along the flwne, and the total sediment 

discharge . A numerical solut i on of Aris' moment equations, which 

is used in thi s study as a modified form of the cons ervation of mass 

equations for the transport, deposition, and re-entrainment of 

suspended sediment, is also compared with the stochastic model . 

This investigation is restrict ed to a consideration of the 

dispersion of sand in an alluvia l ch anne l with a uniform, two­

dimens ional, turbul ent shear flow. The initial condition is a line 

source of radioactive sand tracer particles distributed on the bed 

acros s t he flume. Fine , medium, and coarse size sand tracer particl es 

are used for ripple bed conditions. Only the results for the medium 

and coarse size sand tracer particles are r eported for dune bed 

condi t ions to avoid th e problem of significant quantities of trace r 

particles being trans port ed in suspension. This st udy was supported 

by the Water Res ources Division of the U.S . Geo l ogica l Survey in 

Fort Collins, Colorado. 
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.Chapter II 

REVIEW OF LITE RAT URE 

A. TI1e Movement of Sand Along an Alluvial Bed 

The behavior of sediment moving a l ong an a lluvial bed is very 

complicated . It combines the action of ro ll ing , sliding, jumpi ng and 

sometimes even suspension. The b as ic requirement to start a sediment 

particle moving is that the drag force and the intensity of turbulence 

in the vicinity of that particl e must be sufficient to overcome the 

inertial and fricti onal forces acting on th at particle. 

In orde r to have a better understanding of this kind of movement, 

it is necessary to s tudy the bed confi gurati ons, because they are 

closely related to the movement of sediment. Simons and Richardson 

(1960) cl assified the bed forms of alluvial channels into ripples, 

dunes, pl ane bed, standing wave s and an tidunes. 

For the ripple case, the suspended load is small , and the 

ve locity of water is low. Most of the grainf on the bed surface roll 

and slide ; a few grains make short jumps. 

For the dune bed, more grains make jumps whi ch ar e longer than 

in a ripple bed, and the suspended load is increased . If the velocity 

is increased , a plane bed may deve lop. 

In the pl ane bed condition, the grains in the uppe r laye r of the 

bed are in almost continuous movement. In the st anding waves or anti­

dune case, intense turbul ence is created, s o that the concentration of 
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the suspended l oad is very high. This kind of classification gives 

only a qualitative descripti on of the movement of sand along an allu­

vial bed. This is usually not sufficient for engine ering purposes. 

B. The Concept of Entrainment and Deposition 

Regardless of the kind of bed form, the movement of grains 

starts with entrainment into the flow and stops with deposition on 

the bed. Thus, entrainment includes all kinds of movement of sand 

alo.ng and above the bed surface, such as rolling, sliding, jumping 

and suspension. The concept of entrainment has been discussed by 

Lane and Kalinske (1939) among others. They hypothesized that grains 

are picked up from the bed surface and kept in suspens ion by turbulent 

eddies. The rate of pickup (entrainment ) is proportional to the 

intensity of the vertical velocity components due to the turbulent 

eddies. For an equilibrium condition, the rat e of entrainment of 

sediment must be equa l to the rate of deposition on the bed surface . 

O'Brien (1933 ) assumed that the rate of pickup of a given type of sedi-

. ment depends only upon the characteri stics of the flow, and so for 

steady uniform flow under equilibrium condition , the r ate of pickup 

equals the rate of deposit and is a constant expressed mathematically 

as 

E: 
y ( ~~) 

y=O 

= - V 
s 

C 
y=O 

(2-1) 

where E: is t he exchange coeffi cient or the coefficient of eddy dif­
y 

fusivity -in y direction, C = C(y) is the concentration of sediment 
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in suspension, and V is the f a ll ve locity of sedimen t in wa ter. The 
s 

minus sign indicates tha t the ~et trans port by diffus ion is in the 

direction of decreasi ng sediment concentration. 

Hubbell and Sayre (1964) described the moveme nt of bed material 

partic l es as consisting of an alternating sequence of steps and r es t 

periods, where both the step l engths and rest periods are random varia­

b l es. Physically, a particle may roll along the bed or be entrained 

temporarily i n t he flow and then rest on the bed where it wi ll remai n, 

usually becoming covered by other particles until i t is re-exposed and 

takes another step . Thus, the motion of a grain can be described in 

terms of step l engths and rest pe ri ods provided t hat the aggr egate 

resting t ime is l arge in comparison to the aggregate ti me spent in 

motion. 

C. One-Dimensional Stochas tic Mode l 

After rea l izing the comp l exity of th e movement of sediment and 

in troducing the concept of step l engths and rest peri ods, the develop­

ment of a stat istica l model to describe the disp l acement, x, of sedi­

ment along an alluvia l bed at a particul ar time , t, is needed. Hubbell. 

and Sayre (1964) presented a one -dimensiona l stochastic mode l for the 

transport of bed-ma t eria l sediment particl es in an a lluvial ch annel 

wherein the transport of a particle is described as an alternating 

sequence of s t ep l engths and rest periods. TI1e ass umptions are: 

1. The flow condition is steady and uniform. 

2. Both the step l engths and r est periods are exponentially 

an d independently distributed with mean s tep l ength l/k 1 

an d mean rest period l/k2 . 

' '· 



7 

3. The time spent in moving is so short in comparison to the 

rest period that it can be neglected. 

Under th ese assumptions and using the concepts of joint and 

conditional probability, the density function for the probability that 

a particle has traveled a distance x in time t was found to be 

CX) 

, X > 0 (2-2) 

n=l r(n) n! 

Equation (2-2) applies only to particles that have taken at 

least one step. This result was identical to one obtained by Einstein 

(1937) by a different method. 

Todorovif (1967) start ed with a more general proposition where 

the time a particle spent in traveling is not negl ected , and he obtaine d 

Eq. (2-2) as the uppe r boundary, i.e., a special case where the time 

spent in trave ling can be neglected. 

D. Total Sedimen t Discharge Equation 

~~en the flow condition is in equilib~ium and the tracer particles 

have the same properties as sand of th e same size, a continuity 

equat ion based on the tracer study can be used to calculate the total 

sediment discharge . Hubbell and Sayre (1964) used a continuity 

equation 

(Qs) c = i c ( y s \ (1- A) Bd (: ) (2-3) 

C 
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to calculate the total sediment discharge of a certain ~h aracteristic. 

In Eq. (2-3), Q is the total sediment discharge, i is the ratio of 
S C 

the volume of particl es possessing the characteristic to the volume 

of bed material particles in the zone of particle movement, y is the 
s 

specific wei ght of the bed material, A is the porosity, Bis the width 

of the ch annel, d is the average depth of zone in wh ich particle move­

ment occurs, x/t is the average rate of movement during a total 

elapsed time and c is a subscript that denotes terms associated with 

the particles possessing the characteristics. Combining Eq. (2-3) 

with the result from the Hubbell-Sayre one -- dimensional stochasti c 

model. gives the total amoun t of sedime nt discharge for all the sizes 

in the channel as 

(2-4) 

E. The Dispersion of Suspended Particles 

The general equation for dispersion in open- channel flow is 

ac 
-+ at ( E ~)+ d 

x ax ay 
ac 
ay (

E ~) (2-5) 
Z dZ 

where E , E and E are the coefficients of eddy diffusivity in the 
X y Z 

x, y and z direction, respectively, and U = U(y,z) is the velocity 

of flow. Equation (2-5) is valid when the foreign particles used in 

the dispersion study have the same density as the fluid and are 
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completely respons ive to the turbulent motion of the fluid. \'/he n the 

particles are dense and l arge enough t o have a t erminal s ettl ing velo-

city V, whi ch cannot be neg lected in comparison wi th th e eddy velo-
s 

cities, th e plume of particles as a whole tends to settle toward the 

bottom of the ch anne 1. In the study of the movement and dispersion of 

sand along an alluvial channel , the fall velocities of sediment parti­

cl es are large enough so that most of the sediment particles are 

moving alo_ng the bed. If the sediment particles are suspended at all, 

they are suspended only very near the bed surface . In this limiting 

case the study of dispersion of suspended particles re lat es to the 

study of dispersion of sand along an alluvial bed. 

The effect of fall velocity can 'be account ed for in the diffu-

sion equation by introducing a convective term V C. For a uniform t wo­
s 

dimensional flow in the x direction with :~ = 0 and:;= 0. Eq. (2-5) 

becomes , for suspended s edi ment , 

ac 
-+ at ( Es ~)+ V 

y ay s 
ac 
ay 

(2- 6) 

Her e, th e subscripts refers to s edi ment part icl es , and U = U (y). s s 

Brush (1 962 ) and Sayr e (19 68) concluded that the reduction in response 

of a s ediment particle to eddy motion due to its inertia decreases with 

decreasing particl e s ize , and may be neg l ect ed when the di ame t er of 

sediment part icles is l e_ss than about O. 2 mm. Thus , for such part ic l es 

at any part icul ar poi nt in th e fluid, it may be ass ume d that Es 

E 
s 

y 

/7 

= E 
y 

and U 
s 

= u. However , t he average veloci ty of a l 1 t he 

= E 
X ' 

X 
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suspended sediment is not the same as that of the fluid. The average 

velocity of sediment over the depth of flow is 

y 
{ 

11
uc dy 

Us = / yn 
o C dy 

(2-7) 

where y is the normal depth of the flow. n Whenever there is entrainment 

and/or deposition, there must be an exchange existing between the 

boundary of flow and the alluvial bed. Equation (2-6) is valid only 

for the sediment particles that are entrained in the flow. 

F. De Vries ' Diffusion Theory 

In 1966, De Vries developed a diffusion model for the dispersion 

of be d material particles with the following assumptions: 

1. The transport condition is homogeneous in time. and space. 

2. Vari at i ons perpendicular to the main current wi ll be 

neglected. 

3. The bed material is uniform. 

4 . TI1e tracer material has the same transport characteristics 

as the bed ·material. 

5. The amount of input of tracer material is small, and the 

tracer concentrations are small compared to unity, so they 

do not influence the transport phenomenon. 

De Vries started with the equation of continuity and the 

equation of motion to get 

ac 
at + 

ac 
wax" = 0 (2-8) 
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C is th e average concentration over a cross section 

D is the coefficient of diffusion in L2/T 

w is th e ho r i zont a l s and velocity in L/T. 

The initi a l condi tion is 

c Cx, o) = o (2-9) 

and the two boundary conditions are: (1) the concentrations are 

finite for every x and t , and ( 2) there is an instantaneous 

source , name ly, 

c ( 00 J t) = 0 

and 

clC(Ozt) w* 
we (0 J t) - D ax = 6 (t) Bd 

(2-10) 

(2-11) 

where W* is the total weight of tracer particles r e l eased from the 

source, B is the width of the channe l and d is the average depth 

beneath th e bed surface to which the tracer particles are distribut ed , 

-1 
6(t) is a Dirac delta function in T 

The solution of Eq. (2-8) with these initia l and boundary 

conditions is 

C(x, t) ;D exp ( ~ )erfc [ x+wt ]1 
2 v'nt J 

(2-1 2) 

which is De Vri es ' one- dimens iona l diffusion model. 

G. The Comparison Between Stochastic Mode l and Diffusion Mode l 

I-laving reviewed Hubbel 1 and Sayre's one-dimensiona l stoch as t ic 

model and De Vries' one-dimensional diffus ion mode l, it is interes ting 

to consider the similarit ies and differences of these t wo approaches . 
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From Eq. (2-2), the concentration of tracer particles, defined as the 

weight of trace r particles per unit volume of bed mat e rial, is 

C (x, t) = 

= 
Bd n! 

, X > 0 

(2-13) 

De Vries (1965) found the following asymptotic relationships between 

Eq. (2-12) and (2-13): 

and 

w = 
k2 for every X and t (2-14) 

k7 

k2 
D = (2-15) 

k1 

The similarities between these two models are: 

1. The location of the mode of the concentration curve 

described by both models is similar for k2t .::_ 200. 

2. The decay of the relative peak concentration for both 

models is almost the same when k2t .::_ 5. 

3. Neither model can be expected to apply near the source. 

The differences between these two models are: 

1. The difference in the decay of the relative peak concent­

ration between two models increases wi th decreasing k 2 t 

value when k2t <5, At k2t = 2 , the re lative peak 

concentration obtained from the stochastic model equals 

1.15 times the value obtained from the diffusion model. 
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2. The mode of the concentration curve described by the 

diffusion mode l moves faster than the stochastic model at 

small values of k2t . 

3 . For the diffusion model, an artifical boundary condition, 

Eq . (2-11), was applied which acted as a reflect i ng barrier 

at the source that did not permit particles diffusing in 

t he upstream direction to pass the source but reflects them 

back in the downstream direction . For t he stochastic 

model , no such assumption was made. 

The method of approach in both models is good . The diffusion 

model is more familiar to most engineers, but the boundary condition, 

Eq. (2-11) , is not true in actuality . The stochastic model is more 

realistic , but the assumption that the step l ength and rest period 

both follow the exponential function is open to question. 
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Chapter I II 

ANALYTICAL I NVESTIGATIONS 

A. General One-Dimensional Stochastic Model for the Transport and 

Dispersion of Bed-Material Sediment Particles 

As menti oned at the end of the preceding chap ter, Hubbell and 

Sayre 's (1964 ) as sumption of exponenti a lly distributed step l engths 

and rest periods is open to question. Because of this , a set of 

preliminary experiments for the step length and rest period was made 

with colored li gh t we ight plastic particles in the summer of 1966 

(unpub l ished ) at the Enginee ring Research Center, Colorado State 

University . Attention was focused on individual particles, and 

step l engths and rest periods we re actually measured. The results 

of these experiments indicated tha t the distributi on of r es t periods 

f ollowed the exponential function, but the step l engths can be 

represent ed better by the gamma distribution than by the exponential 

function. Therefore , a modified stochastic model is deve loped here. 

In order to make the model more general to fit any distribution 

func tion, the method of approach used by Sayre and Conover (1967) for a 

two-dimensional mode l is adopted here for our one-dimensional model. 

As mentioned before , a sediment particle moves along a~ alluvial bed 

in an a lternat ing sequence of steps and rest periods. Let us define 
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{Xi: i=l,2,3, . .. } as a set of- random variables describing step 

l engths which are independently and identica lly distrib uted according 

to the probability density function fX(x), and {Ti: i=l,2,3 .. . } as a 

s et of random variables describing rest period durations which are 

independently and identica lly distributed according to th e probability 

density function fT(t) . If the initial condition is t hat the process 

starts with a rest period, then the total displacement for a particle 

after n steps from the origin is 

x(n) = 

n 

X. = 
1 

n 

i=O i=l 

X. 
1 

(3-1) 

The probab ility that th e particle has traveled a distance equal to or 

l ess th an x at time tis 

00 N (t) 

p [ I 
n=O i=O 

X. ~ x, N(t) 
1 = n J (3-2 ) 

where P [ ] denot es probability , and (t) is th e numb er of steps t aken 

by th e particle in time t. 

By using th e definition of conditional probability , Eq . (3-2) 

becomes 

00 N (t) 

= I P [ I xi < x I N(t) = n] P [ N (t) = n] (3-3) 

n=O i=O 
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which i s equi va l ent to 

oo n 

Ft (x) = L P [ L Xi .:.. x] P [ N (t) - n] • 

n= O i=O 

oo n 

= L P [ L \ .:_ x] P [ N (t) = n] 
n=l i=l 

+ P [ Xo .:_ X] P [ ~ (t) = 0 J .. (3-4) 

Since t h e s t ep lengths are i ndependently and identi cally distributed, 

by the addi ti on theo r em for i ndependent, identica lly distributed 

random vari ables , 

n 

p[ I 
i=l 

n* 
where {fx(x') i 

\ .:_ X J 
X * 

=f {fx(x')} n dx' 
0 

(3-5) 

i s then-fold convolution of the probability density 

function for the l ength of a single step l ength. This is equal to 

the probab ility dens ity function for the distance traveled by the 

partic l e i nn steps. Similarly, because the r est periods are also 

i ndependently and i dentically distributed, 

P [ N (t) - n J = p 
[N(t):_n] - P [ N (t) :_ n + 1 J 

n n+l 

= p [ I T. .:.. ~ J - p[ I T. < t J 1 1 -

i=l i= 1 
t * 

- {fr(t')} n+l *]dt' = f [ { fT ( t ' ) } n (3-6) 

0 
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n* 
where {fT (t' )} is the n-fold convolution of the probability density 

func t ion fo r the duration of a single rest period wh ich is equal to 

the probabi l i ty density function for the duration of n successive 

rest periods . Since x > 0 and Xo = 0, so P [Xo .::._ x] = 1, combi ning 

Eqs . _(3-4) and (3-5) gives 

oo X 

I f 
n* 

{ fX (x ')} dx ' P [ N(t) = n] + 

n=l o 

(3-7) 

where P [ N (t) = n] is as defined in Eq . (3-6). The des ired densi ty 

funct ion can be obtaine d by differentiating Eq. (3- 7) wi th resp ect to 

x, i.e., 

a 
ft (x) = ax Ft (x) 

/_ 
(X) 

n* 
= I{fx(x)} P [ N(t) =n ]. (3- 8) 

n=l 

Equation (3-8) is the general density funct ion for a particle 

that has moved a distance x from the origin in time t. It should be 

no ted that f t (x) is not a t rue probability densi t y function because 

(X) 

f _ft(x )dx =l-P[ N(t )=O] < l, 
0 

(3-9 ) 
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where P [N (t) = O] is the probabili ty that the part icle has not moved 

fr om its initia l position: Thus , Eq. (3-8) is valid only after the 

particle has moved from it s ini ti a l position . 

If the step l e_ngths are gamma distributed, then 

fx(x) = (3-10) 
r (r) 

where r is a parameter , f( r ) is a gamma function and the mean step 

length i s 

1 X = 
n 

n 

i=l 

X. = 
1 

If the res t periods fo llow the exponential distributi on 

then the mean rest period is 

(3-11) 

(3-12) 

(3-13) 

Then-fold convolution of a gamma probability function with p arameters 

r and k 1 is also a_ gamma probability function with parameters nr and k1 

(P ar zen, 1962). Thus , 

r(nr) 

nr-1 
(k 1X) e (3-14) 
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The n-fold convolution of the expon ent ial probability fW1ction is a 

special c ase of th e n-fold convolution of th e gamma probability 

function with r = 1. Thus, 

(3-15 ) 

Putti_ng Eqs. (3-14) and (3-15) into (3-8), we have 

00 

n=l 

k 2 n 
(k 2t') 

r(n+ l) 

Integrating by parts, we h ave 

t k 2 

I [ RnT 
·o 

and 

t 

f [ k 2 
o r(n+l) 

(k 2t' )° 

f t[ k2 n-1 _kt' 
e-k1x r(n) (k 2t') e 2 

0 

(3-16) 

n-1 i 
(k 2t) 

I 
i=O 

n 

I 
i=O 

• I 
1. 

(k zt)i 
, I 
1. 

(3-1 7) 

(3-18) 
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By subs tit uting Eq s. (3 -1 7) and (3-18) into (3-16) , th e probability 

den s it y function for x at time t can be wri tten as 

CX) 

n! 
. ))(>O ( 3-19) 

n=l 

The k 1 , k2 and r values may be obtained fr om a set of experi­

menta l concentration- distributi on curves with r espect to x for 

various values oft . If r = 1, th en Eq. (3-19) becomes Eq. (2-2) 

'vhich was obtained by Ei nstein (i937 ) , Hubbell an d Sayre (1964) and 

Todorovi ~· (1967) unde r the as sumption th at both the step le.ngths and 

rest periods are exponentia lly distributed. Some of the s.ignificant 

statistical parameters of the density function des cribed by Eq . (3-19) 

are given as fol lows: 

1 . Area under curve : 

2 . 

CX) 

J ft(x) dx = 1 - e-k 2 t 

0 

Mean : 

CX) 

J k2 tr 
X = xft (x) dx = ~ 

0 

3. ~lean rate of movement of tracer particles: 

(3-20) 

(3-2 1) 

(3-22) 
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4. Variance: 

o2 = E(x2 ) - E2 (x) 
X 

· where E( ) is the expected value defined as 

00 

E(x2) = f x 2 ft (x) dx 

0 

k2tr 
= (k2 tr + r + 1) 

k2 

l 
1 

! 2 

E2 (x) = XL = ( k::r ) 

i 
I 

Thus, the variance is 

l 
02 

k 2 tr 
= 
~ 

(r+ 1) 
X 1 

(3-23) 

S. Skew coefficient 

s 
100 

- 0 x 3 ft(x)dx - 3x ! 
00 

x2 ft (x)dx + 2 ex) 3 

(02) 3 / 2 
X 

r+2 
(3- 24) = 

J cr+l) rk 2 t 
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B. Th e Statisti ca l Charact eristi cs of the Bed Form 

Si nce the movement of s and particles along an alluvial bed is 

close ly re l ated t o t he bed con figurations which are very irregu l ar and 

~ary r an dom ly, a study of the statistical characteristics of the bed 

form is necessary . Figure 3-1 is a definition sketch of the. bed form . 

Crickmore and Le an (1962) found that the distribution of surface area 

with depth is approximately Gaussian . Similar results have been 

ob served (1 967) in the two - foot flume in the Enginee ring Research 

Center of Colorado State University. Most studies of the statistical 

properties of bed forms have emphasized the variation in elevati on but 

neglected the variat ion along the direc tion of flow. Usually, a sand 

parti cle starts a step l ength on a positive slope, such as AB or CD 

in Fig . 3-1; the distance it trave ls depends on the local , instantane­

ous fl ow condit ion, but when it is deposited and buried by other part i­

cles , this sand part icle is usually deposited on a negative slope , 

such as BC or DE on Fig. 3-1 . It is, therefore, logical to assume 

that the step length of a moving partic l e is closely related to the 

distance between peaks of ripples or dunes , or the distance between zero 

crossings . If the step lengths of a single partic l e follow the garmna 

distribution, it is reasonable to assume that the zero-crossings of 

the bed form may a l so follow a garruna distribution or vice vers a. 

C. The Mean Rest Period an d the Mean Step Length 

Sin ce the rest periods are c l osely related to the level 

where partic l es are deposited on the bed , and hence th e variation of 
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bed e l evation, it should be possib le to find the mean rest period 

from the bed form data without measuring the longitudinal concen tra­

tion distribution . When the bed elevation is statistically stationary 

in time , Hubbe ll and Sayre (1965) s_ugges ted that the unconditional 

probability density function for th e duration of a rest period, 

ro 

(3-25) 

-00 

could be obtained from sufficiently long continuous records of bed 

elevation in the time domain measured from a stationary reference 

point, and along the direction of flow at an instant . The functio n 

fT(t) corresponds to the assumed exponential distribution for rest 

periods as stated in Eq. (3-12). fTIY(t lY) is the conditional proba­

bi lity density function for the rest period duration, T, of a particle 

given the elevation , Y, at which it was deposit ed. fTIY(tly) relates 

to the variation of bed elevation measure d from a stationary reference 

point. fy(Y) is the probability dens ity function that a particle is 

deposited on the bed at elevation Y. fy(Y) relates to the variation 

of bed elevation with respect to distance x along the direction of 

flow. If it is assumed that the sand particles are equally likely to 

depos it anywhere on the negative slope of the bed surface, fy(Y) is 

equal to the probability density functi on of bed elevation of negative 

sl ope obtained from a record of variation of y with respect to distance 

x along the direction of flow . If there is no significant difference 
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between the probability density function of bed e levation along th e 

direction of flow by considering either both positive and negative 

slopes or just the negative slopes, fy(Y) is equal to the probability 

density function of the bed elevation obtained from a r ecord of y with 

respect to x. Although there are grounds for supposing that fT(t) 

and fy (y) are respectively exponential and normal probability density 

functions, the nature of the conditiona l probability density function 

fTIY(tly) has not yet been determined. 

The mean value of the rest period or the unconditional expected 

value of rest periods can be obtained from 

E[TIY=h] fy(h) dh (3-26) 

Nordi n (1968), in his study of statistical properties of the bed form, 

has ass umed that the elevation h was measured in terms of the standard 

deviation· of bed e l evat ion o 
y 

Thus, it was found that the ratio of 

the expec ted value of rest period of a particle, wh ich was deposited 

at elevation h, to the expected value of rest period of a particle 

deposited at zero elevation, i . e. mean bed elevation, is 

2 . 

E[TIY=h] = 2{P[Y(O) > h] }e(~)/ 2 
E[TIY=O] (3-2 7) 

where P [Y (0) > h] is th e probability th at th e elevation Y at t=O, i.e. 

at th e beginning of the r est period, is greater than h. The value of 

P[Y(O) > h] can easily be found from bed form data a lon g th e directi on 

of flow. The expected value of a rest period of a particle which was 
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depos ited at zero e l evation should be a constant , T, fo r a given flow 
0 

and sediment condition . When a ll the particl es are equally li ke ly 

to deposit anywhere on the negative s l ope of the bed s urfa ce, T is 
. 0 

equa l to the me an va lue of th e duration of burials (rest period) at 

ze ro elevation obtained from a sufficiently long continuous record 

of bed e levation meas ured fr om a stationary reference point. 

Combining Eq . (3-26) and Eq. (3-27), the mean rest period is 

+ oo 

T = 2 T
0 
f ( ~ )/ 2 

e y fy(h) P[Y(O) > h] dh 

- 00 

Becaus e P[Y(O) > h ] and fy(h) are related by the quality 

h 

P[Y(O ) > h] = 1 -J fy(Y) dy , 

:. CX) 

Eq . (3-28) can be simplified s till further to 

+oo h 

(3- 28) 

(3-29) 

T = 2 T
0 
f e( ~y)1/ 

2 
f (h) 
y [l -f fy(y)dy] dh (3-30) 

_ex, - 00 

Equations (3- 28) and (3-30) can be integrated ei ther analytically or 

graphical l y using information based on the ac tual bed form data. 

The mos t direct way of finding the step l engths of a particle 

is to actually follow that particle and measure its step lengths. If 

this me thod is no t possibl e , then an indirect method can be applied 

to find the mean s t ep l ength. This method is based on the mean rest 

pe riod. In a dispersion study , in which n trace r particles are used, 
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suppose that th e j 'th particle (j = 1,2,3 ... , n) requires N. steps to 
J 

travel a dis tance x in time t. If th e time spent in motion can be 

neg lected , then the time , t, r equired for a ll the tracer partic l es 

to trave l an average distance, x, from the origin is 

N. n J 

t N. f. 1 I I T .. = = 
J J n lJ 

j=l i=l 
(3-31) 

where the subscript i, i;l,2,3, ... , N. is the number of steps tak en 
J 

by the j'th particle during th e process. Since th e steps and rest 

periods follow each oth er in s uccess ive cycl es , the tot al number of 

steps should be equa l t o the t otal number of rest peri ods in a finit e 

trave ling distance. The average distance, x, traveled by a ll the 

tracer parti cles from the origin in ti me tis 

N. n J 

N.X.= 1 
I I X .. (3-3 2) X = 

J J n lJ 
j =l i=l 

When th e number of tracer particl es , n, is l arge, the average ve locity 

of trace r parti c l es should be 

N.X. N X x u X _l_.1_ (3-3 3) = - = = = s t N.T. Nf f 
J J 

where N is the average number of steps required by a ll the tracer 

particles to trave l a mean di s t ance, x, from th e origin in t ime t. · 

When the average depth of th e zone in which partic l e mov ement occurs 
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can be determined from bed confi guration data, U can also be obtained 
s 

from Eq . (2-3), ei ther by actual meas urement of the sediment discharge 

or ca l culation of th e s edi ment discharge by some known formulas. 

Thus , th e mean st ep length should be 

X=UT (3-34) 
s 

D. Aris' Moment Equation 

For sand particles that have been entrained into the flow, 

t he th eory of dispersion of suspended particles can be applied. Sayre 

(1968) s uggested the possibility that the probab ility density function 

for the long itudina l distribution of deposited tracers for the initial 

conditi on that al l particles are concentrated near the b~d might turn 

out to be clos e l y re lated to the st ep length distri bution function. 

Sayre further stated that if for this initi a l condition, the probability 

density functi on fo r the deposited tracer with respect to the dimen­

sionless longitudinal distance is an exponenti a l function, it is more 

than li ke l y th at the Hubbell-Sayre stochastic model can be obtained 

as a particular so lution of an appropriate system of dispersion equa­

ti ons and boundary conditions for suspended particles. The methods 

used in this and the next two sections will provide us with some 

th eoretical background in comparing the gamma distributed step lengths 

to th e dis tribut ion function of step length obtai ned from solving the 

Aris momen t equations for the initial condition that al 1 the particles 

are concentrated near the bed. This also makes it possible to compare 

I 
I 
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the general one-di mensiona l stochastic model with the solution of the 
\ 

Aris moment equations to see if it is a particular solution of th e di s­

persion equation for suspended particles with the initial condition 

that all the tracer particles are in the bed at the beginning of the 

process, but where entrai nment into the flow is permitted. 

Following Aris (1956), let us define the velocity of flow in 

the x direction as a function of y by 

U(y) = U[l+ x (y)] (3-35) 

where x (y) defines the variation of velocity relative to the mean 

velocity in the vertical U, and l et the local diffusion coefficient 

be 

E = E = Dtµ(y) 
X y 

(3-36) 

where Dis t he mean value of the diffusion coefficient in the vertical, 

and ~(y ) defines the variation of the diffusion coefficient. Combining 

Eqs . (2-6), (3-35) and (3-36) gives us 

ac U(l+x) ac 
ax 

a2c a ac ac 
= D~ - + D - (~ - ) + V 

ax2 ay ay s ay 
(3-37) 

which is the basic two-dimens ional dispersion equation for sedimenta­

tion in open ch anne l flow. 

Sayre (1968) used Aris ' moment equation to solve the longi­

tudinal di spers i on problem in open ch anne l flow. Sayre's initial 
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condition was an inst an tan eous uniformly-distribut ed pl ane source over 

th e dep th of flow at the origin. A coordinate system moving at the 

mean velocity of flow was adopt ed by Sayre. In this study, Sayre's 

notation is adop ted. To simulate the prob l em in which we· are interested, 

the initial condition is a line source of marked sand particles on 

the bed across the flume at the origin. Since the average rat e of 

movement of the sediment is much slower than t he mean velocity of the 

flow, a fixed coordinate system at the origin is used. To solve the 

prob l em , it is necessary to consider the total amount of tracer 

partic l es as made up of two separa te parts. The concentration of 

the entrained part is denoted by C, and Wis us ed for the deposited 

part . The exch ange between C and W occurs at the int erface between 

the bed surface and flow by the processes of entrai nment and deposi­

tion . Once t he particles are entrained into the fl ow, the dispersion 

theory of suspended particles can be applied . Introducing the 

dimensionless parameters 

( = x/y n 

n = y/yn 

T = Dt/y2 
n (3-38) 

µ = Uy /D n 

V = V y /D s s n 

Equation (3-37) becomes 

ac a ac a2 
(µ + i.ix ) a[= an ( iµ an+ vsC) + iµ a(2 (3-39) 

\,, 
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The equation of conservation of mass for the deposited particles is 

where 

dW + 
- = av cc~,o , T) - yW dT S 

(3-40) 

a= bed absor bency coefficient, which represents the 

probability that a tracer particle settling to the bed 

is deposited, 

W = W{ ~,T ) which represents the amount of tracer particles 

stored per unit area of bed surface, and 

y = ent rainment-rate co efficient such that yW represents 

the average rate of entrainment. 

The boundary condition existing between the flow and the bed is 

n = o t/1 ~C + (1- a ) v C + yW = 0 . on s 
(3-41) 

Equation (3-41) allows the bed to behave either as an absorbing or 

r efl ecting barrier and also per mits temporary storage of the tracers 

on the bed. Since t here can be no trans port of tracers across the 

water surface , t he r e lation 

n = 1 t)! ~+ v C=O an s (3-42) 

must exist at the upper boundary . 
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By using the Aris ' moment transformations 

00 

and (3-43) 

00 

-00 

1vhere C and W are the p 'th moments about E;. = 0 of the longitudinal 
p p 

distribution of C and W, respectively. These moment transformations 

e liminate one variable in the longitudina l direction, i.e. E;.. Thus, 

Eq. (3-39) becomes 

ac a ac 
__E_ =- ( 1/J ~n + \I C ) + p (µ+µx )C l + p (p-1 )1/JC 

2 
(3-44) 

oT an o s p p- p-

and Eq. (3-40) becomes 

dW 
__E_dT = Ct\/ C co+' T) - yW 

s p p 
(3-45) 

The boundary conditions are 

n = 1 . 1/J acP + \) C = 0 (3-46) 
an s p 

ac 
n = 0 1/J __E_ + (1-a) \) C + yW = 0 (3-4 7) an s p p 
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Altho_ugh the number of variables has been reduced by Aris' 

moment transformation, no analytical solutions have been obtained 

except for a few special cases as summari ze d in Table 3-1. 

E. Finite Difference Equation and Computer Program 

In order to solve the dispersion equation given in the previous 

section, a finite difference equation and computer program were 

developed by Sayre (1968) in his Ph.D. dissertation. Following 

Sayre's notation and method of approach, a similar set of finite 

difference equations an<l computer pr_ograms can be obtained. Sayre 

gave the definition sketch of the variables in the finite difference 

equations as shown in Fig. 3-2. The depth of flow is divided into 

N equal increments of thickness DY= 6n . The number of time intervals 

of duration, DT = 61, counted from the beginni_ng of the <lispers ion 

process , is indicated by J, starting with J = 1 at T = 0 so that 

T = (J-l)DT. The average value of C (n ,t) in the increment between I . p 

and I+l after J-1 time intervals is defined as C (I,J) . 
p 

· TABLE 3-1. KEY TO ANALYTICAL SOLUTIONS OF ARIS EQUATIONS 

Variables for 
Cas e which solution Velocity 

I 

obtained distribution B Cl y Range Of T 

1 C1(n,t) parabolic 0 all 

2 C1(n, oo) logarithmic 0 y -+o:> 

3 c0 (n,t) parabolic all 1 0 I 
all 
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Figure 3-2. Definition sketch of variables in 
finite difference equations. 
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The van Karman-Prandtl logarithmic velocity distribution 

function 

1 
(lnn + 1) 

K 
(3-48) 

is employed in this study, where K is the so-called van Karman turbu­

lence coefficient and U is the shear velocity. However, in alluvial 
T 

channels, K has been found to vary with the flow condition, the con-

centration of s ediment and the bed form. By applying Reynold's 

analogy for the equivalence of momentum and mass transfer , the vertical 

turbulent mass transfer coefficient (vertical di ffusion coefficient) 

is 

u 2 y (1-n) 
T n 

E = 
y dU 

dn 

From Eq. (3-48) 

then Eq . (3-49) becomes 

(3-49) 

(3-50) 

(3-51) 
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whic!". is distributed parabolically with r espect to n , and 

(3-52) 
0 

Combi:-..:.n g Eqs. (3-35), (3-38), (3- 48 ) and (3-52), we have 

6 (lnn+l) (3-53) JJX = 
2 K 

and 

E 

l/i = -1.. = 6n (1-n) (3-54) D 

Wi th a_ these dimensionless parameters obtained, we can further define 

the ve: ~ci ty, "¾- [U(I) + KUA], and the diffusion coefficient, EA(I), 
K 

as the ~ver age va lues of JJ + JJ X and l/i in the increment between I and 

I + 1 s.) that 

and 

(I)DY 
6

2 [U(I) + KUA] = ~y f 
K (I-l)DY 

(I) DY 

EA (I) = ~y f 1/i dn . 

(I-l)DY 

(JJ + JJX ) dn . (3-55) 

(3-56) 

The ver:~cal component of the eddy diffusivity, E(I), is defined as 

the valce of l/i at the boundary between the increments in question so 

that E( I _ = l/i(n), where n = (I-l)DY. 
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With the above definitions, the finite difference equation 

corresponding to Eq. (3-44) can be written as 

- E~~) [c (I,J) - C (I-1,J)]} + p 6DT [U(I) + KUA]C (I J) 
p p K2 p-1 ' 

+ p(p-l)DT EA(I) Cp_ 2 (I,J) (3-57) 

The difference equation corresponding to Eq. (3-45) is 

W (J+l) = W (J) + DTav C (l,J) - DTyW (J) 
p p s p p 

(3-58) 

The boundary conditions corresponding to Eqs. (3-46) and (3-47) are : 

and 

I = 1 

v s Cp(I,J) 

(3-59) 

E~~) [Cp(I,J) - Cp(I-1, J)] = - vs(l-a )Cp(I,J) - yWP(J) 

(3-60) 

The basic boundary conditions, Eqs. (3-59) and (3-60), are the 

same as in Sayre's (1968) program. Only th e initial conditions and 

the values of a and yin Eq. (3-60) are changed so as to simulate 

th e t wo different situations described in the following pages. 
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Case 1 - Th e initial condition is that all the tracers ·are 

concent rated a t the origin in the bottom layer of flow with the l ayer 

thi ckness equal to 6n . After the process has started, no re­

en trainment of the tr acer particl es into the flow is allowed, Once the 

paYti cles are deposi t ed , the bed surface behaves as an absorbing 

-barrier , so each tracer particle is abso rbed by the bed afte r comp l eting 

a steo . This case si mulates the condition that each tracer particl e 

is ready to t ake a step and be absorbed by the beci after completing 

th at step . Th e main ·purpose of this program is to find the distribu­

tions and mean values of step l ength for a given flow condition, 6n 

value, and different fal 1 velocities of sand which correspond to differ ­

ent sand particle sizes. 

The initial conditions are 

C (I,l) 1 
I=l , p=O = p 6n 

C (I, l) = 0 I;tl , p=O p 

W (1) = 0 p p=O 

C (I,l) = 0 p>O p 

w (1) = 0 p>O p 

for the case of no entrainmen t from the bed and the bed surface 

behaving as an absorbing barrier , we should have y = O and a = 1. 

(3-61 ) 
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The boundary condition, Eq. (3-59), remains th e same , but Eq . (3-60) 

becomes 

I = 1 

An impor tant dimensionless fali velocity parameter, S, defined as 

v /KU , is used in this comput er program. The shear velocity, 
S T 

(3-6 2) 

u = I gy s is obtai ned f rom the actua l flow condition with th e 
T n e 

known normal depth, y , and the water surface slope S . The K value n e 

is determined fr om th e slope of a dimensi onless plot of log y/y 
n 

vs U/U obtained from velocity distribution measurements . Different B 
T 

values were tri ed in order to simulate sediment partic l es of different 

fall velocities . The gri d size chos en for this cas e was OT= 0 .000 01 

and DY = 0. 1. The data correspond ing to the flo w condition in Run lC, 

which was a ripple case usin g the coarse tracer partic l es , we r e used 

in this program , with K = 0. 287 , B = 1. 20 and U/U = 9.6. 
T 

Case 2 - All the tracer partic l es are ini tia lly in th e bed at 

t he origin , but entrainme nt into the . bott om l ayer of the fl ow is 

permitted . Once a trace r particle is entrained into the bottom laye r , 

it t akes a st ep after whi ch it is absorbed by th e bed where i t remains 

unti 1 it is r e -entrai ned and tak es anothe r step. The main purpose of 

this program i s to fin d out if the general one - di~ensional stochastic 

mode l can be obt a ined as a specia l cas e of th e dis e rsion probl em for 

suspended sediment . 



' 

I' 

40 

When the re is no depo s ition, Eq . (3-40) reduces to 

dW - - - yW (3-63) d, -

lvhich define s th e dimensionless entrai '1ment-rate coefficient y . If 

the pr obability of entrainment is the same for all particles, and is 

independen t of the l ength of time that a particular particle has 

remained at rest, then the solution of Eq. (3-63) is 

The probability th a t the particle wi 11 be entrained after a duration 

of resting time T , is equal to the probability that the time which 

t he particle remains at rest is equal or less than T 

-yT 
1-e 

The probabil ity density function fT( , ') can be obtained by differenti-

a ting the above equat ion with respect to time, 

-yT 
= ye 

i.e., 

(3-64) 

wh ich is the same as the probability density function for rest period 

durations given in Eq . (3-12). The only difference between Eq. (3-12) 

and Eq . (3-64) is that Eq. (3-64) is expressed in a dimensionless unit 

while Eq. (3-12) is expressed in a dimensional unit. Thus, y should 

be equa l to k 2 in dimension l ess unit. Or, 

I 
I 
f 

l 

I 
! 
I 

I 

I 
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where~ is a conversion factor which converts dimensional time units to 

dimensionless time units. The conversion factor ~ can be obtained 

from Eqs. (3-38) and (3-52) as 

6y n 

KU 
T 

They value for Case 2 should then be 

y = 
6y n 

(3-65) 

(3-66) 

The a, e, Kand U/U values should be the same in Case 2 as 
T 

in Case 1. The initial conditions are changed to simulate the condi-

tion that all the tracer particles are concentrated at the origin in 

the sand bed at the beginning of the process so that 

C (I,l) = 0 p = O· 
p 

W (1) = 1 p = 0 
p 

(3-67) 
C (I,l) = 0 p > 0 
p 

W (1) = 0 p > 0 
p 

With a= 1 and y defined as in Eq. (3-66), the upper boundary condi­

tion sti 11 remains the same as in Eq. (3-59), and the lower boundary 

condition becomes 

I = 1 

= (3-68) 
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A gri d size of DT=0.002 and DY= O.l was ch os en f or t his case . The 

flow conJi t ions corresponding to Run lC wer e also adopt ed in this 

cc. e ,,• i th K=O . 287 , 8=1. 20 , y= O. 01 31 and U/U =9. 6. 
T 

In both Case 1 and Case 2, th e t ot a l amount, the average velo-

city, th e me an di sp l acement, the vari ance , and th e sk ew coeffi cient 

fo r both t he C and IV components ,,·er e calcul a t ed. Di ffer ent OT val ues 

Kere tried in order to det ermine the mos t economica l OT va l ue with-

out losing t he accuracy and the s tability of the result. The def i ni ­

tions used i n t hese programs and the programs thems e lves can be found 

in Appendi x A. For a more detail ed deve lopment, the reader shou ld 

r-= fe r t o Sayre (1968) . 

F. Comparison Be t we en the General One-Dimensional Stochastic Model 
and Ari s ' Momen t Equation 

Aris ' momen t equa t ions ar e a good analyti cal approach for s olvi ng 

longi t udina l dispersi on probl ems i n tur bu l ent open-channel flow . With­

out any f ur th er r estriction on the disp ersion equation, Aris ' moment 

transfor mation simp l i fi es the di spersion equat i on by r educi ng the 

number of vari ab l e s in it. The physical meaning of Aris ' moment equa­

tion i s very easy to accept , because the dispersion equation was 

derived f r om the con t inui ty equation . Since , basi cal ly, Ari s' moment 

equat ion is a dispersion equati on, it can be used to describe the 

proces s of dispersion . When a , f3 and y are given for a certain fl ow 

condi tion, Ar i s ' moment equation can a l so be used to predict the 

dispersion process . However , from the Aris moment equation itself, 

the a and y va lues canno t be determined . The fin i te difference 
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equations and the computer program originally established by Sayre 

give numerical solutions which provide information about the actual 

dispersion process. In general, changing the grid size, i.e. 61 and 

6n values, may affect the accuracy and stability of the computer results. 

If the grid size is small enough so that the problem of accuracy and 

stability is eliminated, the change of grid size should not have any 

effect on the computer results in most cases. However , this is not 

true for our problem because a change of 6n means a change of the ini­

tial condition in Eq. (3-61). Therefore, different 6n values will 

give different answers for the step length. The biggest problem in 

applying the Aris' moment equation for predicting the dispersion 

process in this study is how to choose the right combination of Band 

6n to give the proper distribution of step lengths. 

The method of deriving the general one -dimensi onal stochastic 

model in this chapter is better than that presented by Hubbell and 

Sayre (1964). The general one-dimensional stochastic model was 

derived in this chapter without having to specify the probability 

density functions for the step lengths and rest periods. So ~his 

meth~d of approach can be applied to any kind of distribution func­

tion of step lengths and rest periods. 

Three different methods can be applied to find all the parameters 

in this general one-dimensional stochastic model. The first method 

is based on the dispersion experiments to find k 1 , k2 and r from the 

mean rate of displacement , mean rate of spreading and the skew 
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par ame t eis of the l ongitudinal dispersion curves . Because the 

skew parameters ar e ob tain ed from th e third moment of th e longitudinal 

disp ersi on curves , th ey are not apt to be very r e liable. Thus, i f one 

can assume a proper value of r, then k 1 and k2 can be obtained from 

the mean rate of di sp lacement and spreading of the longitudinal dis­

persion curves. As long as the para me ters are obtained from dispersion 

data, this general one-dimensional stochastic model can be used only 

for the purpose of describing the dispersion process; it cannot be 

used to predict the dispersion process. 

The second method of obtaining k 1 , k2 and r is based on the bed 

configuration data. With the records of the variation of bed el evation 

in space and time domains, the mean rest period should be predictable. 

From the bed configuration, the mean depth of movement of sediment can 

also be de termined. The actual total discharge of sediment can either 

be dete rmined by actual measurement or estimated by using a total 

discharge equation such as Einstein's (1950) equation. With the total 

discharge of s ediment and th e mean depth of movement known, the mean 

velocity of tracer particles can be found from Eq. (2-3), and the 

mean step length can be found from Eq. (3-34). Solving Eqs. (3-11), 

(3-13) together with the assumed r value, the values of k 1 and k2 for 

the general on e-dimensional stochastic model can be determined. 

The third method is a combination of the first two methods. 

Determine the mean r es t period from bed configuration data, and mean 

step length from mean rest pe riod, tot a l sediment discharge and bed 

configuration data; then, determine the mean rate of spreading of lon­

gitudinal dispersion curves. By solving Eqs. (3-11), (3-13) and 

Eq. (3-23) simultaneously, k 1 , k2 and r can be determined. 

i 
' 

l 
t 
I 

I 
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Both the Aris moment equations and the general one-dimensional 

stochastic model should be able to provide good descriptions about the 

mean rate of displacement and spreiding, and th e skewness of the dis­

persion process. Both models indica e that the rest periods are 

exponentially distri buted. The general one-dimensional stochastic 

model can provide the actual dispersion curves at any dispersion time, 

and can be applied to any probability density function of step length 

and rest period, whereas the Aris moment equation method gives only the 

moments, and is restricted to particular step-length and rest-period 

distribut ion functions. With k 1 , k2 and r given, this general one­

dimensional stochastic model provides a more complete description of 

the dispersion process of sand along an alluvial bed than the Aris 

moment equations. When the r value is properly assumed, and ~
1 

and . 

1 
I; can be obtained from bed configuration and total sediment discharge 

data, this general one-dimensional stochastic model may also be used to 

predict the dispersion process according to the measured or calculated 

total sediment discharge and bed configuration data. 

G. Tota l Sediment Discharge Equation 

If we combine Eqs. (2-3) and (3-22), the total discharge of 

sediment having a certain characteristic c is 

= i (y ) (1- >- ) 
C S C 

(3-69) 
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Then, the total sediment discharge for all the sizes is 

L i ( Y ) . (1- A) Bd ( k 2 r ) 
C SC k1 

(3-70) 

C C 

where the d value can be found either from core sample data or from 

bed form data. 

f 
-1 
I 
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Chapt er IV 

EXPERIMENTAL EQUIPMENT At\JD PROCEDURES 

A. Flume 

The flume used in the experiment was a recirculati.ng flume 

60 feet long , 2 fe et wide and 2 1/2 feet deep. The side walls were 

made of 1/2-inch plexiglass, and the floor was made of 1/ 4-inch 

stainless steel plate. The discharge coul<l. be adjusted from Oto 8 

cfs, and th e s lope from hori zontal to 10 percent. A schematic dia­

gram of this flume is shown in Fig. 4-1. 

Figure 4-1, showing the parts of the flume, is self-explanatory 

except for the i nstrument carri age and the manometer board for mea­

suring the water surface slope . The motor-driven instrument carriage, 

as shown i n· Fig . 4-2a , carried the transducer for the stream monitor , 

the poi nt gage and t he scintillation detector. The speed of this 

carri.age was controlled by t he control box as shown in Fi g . 4-2b. The 

suppor t bolts for the rai 1 were equa l ly spaced at an interva l of 1 foot 

along t he fl LLme . An event mar ki ng mechanism on the carriage , which 

was activated by a mi croswitch brushing agains t t he support bol t s, 

marked th e position of the carriage on a recorder. The speed of the 

carriage was maint ained at 4 feet per minute . 

In orde r t o check the water surface slope , a manometer board, 

similar to the one used by J. F. Kennedy (1961), was designed for this 

purpose . The manome t er board consisted of 11 plas t ic tubes, each 

4 fe et long and wi th an inner diame t er of 3/8 inch as shown in Fig. 4-3. 
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Figure 4-1. Schematic diagram of the 2- f oot flume 
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(a) 
Instrument 
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(b) 
Control 

box· 

Figure 4-2 . Instrument carriage and its control box 
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B. The Method of Obtaining Equilibrium Condition 

A complete equilibrium condnion is obtained when the following 

parameters are constant or at least statistically constant with 

respect to time: 

1. Discharge - The discharge of water could be determined by 

reading the manometer board connected to a side-contracted orifice 

meter. The discharge could be regulated by a valve. 

2. Temperatur~ - The average room temperature in the hydraul ic 

laboratory was about 24° C. In order to keep a constant water te~ra-

o ture of 20 C, cold water was supplied to the tail box to bring tti1e 

water temperature down to 20° C. The temperature was measured by an 

ordinary laboratory mercury thermometer near the entrance of the flume. 

3. Water-Surface Slope - The slope of the flume was set to the 

right slope by using a surveying level and a rod. When e.q~ilibrium 

conditions are r eached, the water-surface slope should b e-, P._aralle-L.A ·ts, 

the bed slope. The slope of water could be adjusted by the tail gate . 

The water-surface slope was checked several times during ea~h run by 

using the point gage on the carriage and also by the manometer board. 

4. Bed Forms - When equilibrium conditions are reached, the 

average bed slope should be parallel to the water-surfac~ slop e and t h 

same kind of bed forms (statistically speaking) should be obs erved 

along the flume as shown in Fig. 4-4a and Fig. 4-4b. The bed eleva­

tion was obtained by the point gage on the carriage. The actual bed 

form was obtained by the dual channe l stream monitor, Automation 



52 

(a) ripple 

(b) dune 

Figure 4-4. Ripple and dune bed configurations 
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Instruments, Model 1042 , toge ther with a transducer and a strip-chart 

recorder. With this combination of equipment and the event marker, 

which provided the position -of the carriage, a bed surface profile 

could be obtained. 

5. Depth of Flow - The depth of flow can be obtained from the 

difference of point gage reading on the carriage between the water sur­

face and the corresponding bed surf ace. The average distance between 

the water surface and bed surface was the depth of flow. Th~ depth of 

flow was measured several times during each run. 

C. · · Sand and Tracer 

The sand used in this experiment was plaster sand obtained from 

the Sterli_ng Sand and Grave l Company , Fort Collins, Colorado. ~r 

sievi_ng, a fairly uniform sand, ranging from 0.1 mm to 0.7 mm in !iii:.a.~­

eter with a median di ameter of O. 34 mm, was obtained. Figure 4-.S slt~1s 

the sand size distribution. The shade d regions are the fine, me di UTh 

and coa.rse sizes used as tracer particles in the experiment. Th ·• tot ail 

amount of sand in the flume was abou t two tons. 

The amount, size and activity of tracer particles used i n e :: cb 

run are listed in Table 4-1. These tracer particles were ol'>taine . .:- om 

the s and in the two-foot flume. After drying and weighing ,, they v. ·;:, 

sent to Hastings Radiochemical Works , Houston, Texas·, f ;r radioac t :: 

labeli_ng. In the determination of the required amount of radioac : "11 , 

a uniformly distributed source was assumed . The amount of radio­

activity required for each run was determined based on the ass ump ·. 

that after the tracer particles were very well distributed., the ac :r 
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TABLE 4- 1. EXPERIMENTAL VARI AB LES AND PARAMETERS FOR THE 2- FOOT-WIDE FLUME 

Run No . lC lM lF 2M 2C 

Water surface 
s lope x 102 0.088 0.088 0.08 8 0 . 212 0 .204 

No rmal depth (ft) 0 . 499 0 . 518 0.522 0.521 0 . 555 

Water discharge 
(cfs) 1.14 1.14 1.14 1.69 1. 70 

Velocity of water 
(ft/sec) 1.14 1.10 1.07 1.625 1. 53 

ll'ater tempe rature 
c0 c) 20.0 20.0 20.0 20.0 20 . 3 

Bed form ripple r ipple ripple dune dune 

To t al sediment 
concentration (ppm) 88.00 60.21 82.21 871. 55 614.84 

Tot al sediment 
discharge (lb/sec) 0.00626 0 . 00429 0.00585 0.0918 0.065 

Percentage of total 
load in the tracer 
s ize range 3.0 4 .0 6.0 11 . 0 4. 0 

Size of tracer 
(11un) 0 . 50-0.59 0. 30 - 0. 35 0.177-0.210 0.30- 0.35 0 .50- 0 .59 

Calculat ed amount 
of tracer (Rm) 10900 2350 450 2350 10900 

Ac tua l amount of 
tracer (gm) 2100 1600 600 1600 2100 

Ac tual tracer 
ac tiv i t y (µc) 260 260 300 320 450 

lnitial station of 
tracer 15.0 15 .o 15.0 10 . 0 11. 5 

--
Velocity of tracer 
(ft / hr) 0. 848 0 . 585 l. 131 4 . 7 4.1 -Rate of spreading 
of tracer (ft 2/hr) 2.68 1. 724 6 . 48 20.2 lfl,!i 
Period of 1/21/67 15: 12 2/22/67 14:45 3/22/fj ? !§:es . -;f/la/f// 09: jll 6/ l 3/f/'l 12: 25 
experiment -1 / 22/67. 16:25 2/23/67 14: 30 -3/23/ 11 1 j ()! l\,J • 4/ l~/t.,7 l S :45 · 6/l'!,/ 67 t9:09 
'--· - - -

3M 
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or the tracer at any point along the flume should be tv-·ice the back­

ground·. The design criterion for the amount of tracer particle used 

in each run was to get a statistically significant number of tracer 

particles in each core sample segment. Assume that the variation in 

the number :of tracer narticles in each core sample segment (1/4 inch 

to 1/2 inch thick) follows the Poisson distribution, so the coefficient 

of variation C 
V 

= 
0 1 = -- where N is the average number of tracer 

rtf 
partides _per sample segment. If we set N = 100, then C = 10%. Based 

V . 

on the above criterion, the total amount of tracer particles required 

can be .: stimated. The lower limit, where the tracer particles will 

penetrate into the bed, was assumed to be the lower limit of the 

deepest ··::.arid trough existi_ng in the flume. Following this reasoning, 

:m;..~~~~ample for the medium sized tracer particles is given as follows. 

For a ~ample of 3/4 inch diameter and 1/4 inch thick and tracers of 

0.33 mm diameter with a specific gravity of 2.65, 

· weight per particle = i (0.033) 3 X 2.65 = 50 X 10- 6 gm 

we_ight per sample = 
TI 3 2 1 3 100 
4 (4) (4) (2.54) x 62 . 4 = 2.90 gm 

rrf we assume the thickness of movement of the sand is 0.25 foot and the 

dry bulk ·density of sand is 100 lb/ ft 3 , then the weight of sediment in 

movement= 60 x 2 x 0.25 x 100 x 454 = 1.36 x 10 6 gm. The total number 

c0f tracer particles= 100 X 1. 36 X 10 6 

2.90 = 4.7 x 107 , and the total 

\Weight of tracer particles= 4.7 x 10 7 x 50 x 10- 6 = 2,350 gm. One 

c ondition that must be satisfied in using tr2cc . ra rt i clc ~ i r a dis-

1ersion experiment is that the amount of tracer introduced in the 

I 
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channel is small enough so that the composi tion of the bed material near 

the source will not be changed to~ greatly. So the above calculation 

only served as a guide. Actually the amount of tracer partic l es used 

in each run is different from the calculated value and is listed in 

Tab le 4-1. 

D. Introduction of the Tracer Particles 

The flume was run until the right equilibrium condition was 

obtained. By inserting a board slowly at the tail gate and turning 

down the water discharge simultaneously, the bed configurations coul;, 

be kept after the water was drained out. The methods of introducimg 

the tracer particles were different for the rippl e, dun e and 

plane bed conditions. 

For the ripple case, a tren ch was dug at the initial station 

across th e flume. The depth of this trench equaled one standard devia­

tion of the vertical variation of the bed configuration below the 

mean bed level. The wi dth of the trench depended on the amount of 

tracer particles used. After the tracer particles were evenly dist r i­

buted along the trench, _they were covered by ordinary scan~· f ro:m ·the 

flume. The buried tracer particles were then covered b): cloth 

anchored by sheet piling to protect th em from being washed out before 

the righ t flow conditions were re-established. By removing the board 

at th e t ai l gate slowly and increasing the discharge of water to th i 

right discharge simult aneous l y , the ri ght flow condition could be 

easily re-established. Afte r the equilibrium condition was re­

established, th e cloth cov er 1-.·as removed , and th e flo1, 1,·as al101,ed t 

scour out the buri ed trace r particl es. 
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For the dW1e an d plane bed cases, a steel plate was put under 

the tracer particles as shown in Fig. 4-6 . Instead of al lowing the 

tracer particles · to be released slowly by the natural scouring action 

of the flow, th ey ~ere released by lifting the steel plate to give 

an approximately instantaneous in-put into the flow. The main 

reason for this kind of artificial in-put is that it took too l ong 

for all the tracer particles to be scoured by the flow itself ; while 

some part i cles were spread all al ong the flume, others r emained buried 

at the source . The only difference of introducing the tracer particles 

between the dune condi tion and the plane bed condition was that the 

cloth covers were not used for plane bed conditions since only a thin 

layer of s ediment was moving during the plane bed rW1s. 

E. Determination of the Concentration Di s tribut ion Curves 

The instruments us ed in obtaining the longitudina l concentration 

~ : stribution curves were a scintillation detector (Nuclear-Chicago 

Corporation Model DSS), an analytical count ratemeter (Nuclear-Chicago 

Corporation Model 1620B), a radiation analyzer (Nucl ear-Chicago Corpora­

tion Model 1810) together wi th a voltage regulator and a strip-chart 

recorder as shown in Fig. 4-2a and Fig. 4-7. A water-tight casing was 

1put on the scintillation detector, which was carried by the instrument 

carriage on the flume. In order to improve th e spa ti al reso 1 ution of 

~he det ection system, a collimator, consisting of two half annular 

1lead shields th at were one inch thick and three and one half inches 

high , was put on the bottom of the detector with a spacing of 3/ 4 inch 
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Figure 4-6. Sch ema tic diagram of th e tracer rel ease r 

used in dun e and plane bed runs 
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Figure 4-7. Some of the instruments used in determining the 
longitudinal concentration distribution of 
tracer particles 

I 



61 

in between the two half annular lead shields. Fig. C-1 in 

Appendix C shows an example of how effective this collimator can 

improve the spatial resolution of the dete ctor system when all the 

tracer particles are concentrated at the initial station as an 

approximate line source. This detector was connected with the radia­

tion analyzer, and the radi ation analyzer was connected to the 

analytical count ratemeter and strip-chart recorder. The voltage 

regulator was used to provide a constant power supp ly . The integral 

setting for the radiation ana lyzer was used. This set of instru­

ments was calibrated before each run by using a 10 µc cesi um-137 

source as a standard. After the tracer particles were released, six 

to eight passes were made in each run. The detector was located at 

1/2 foot to the left side of th e center line of the flume, then at 

1/2 foot to the right side of the center line for each pass. With 

the event-marker, a longitudinal r adioactivity distribution curve 

with th e stations was plotted on the strip-chart recorder. 

F. Determination of the Tracer Distribution in t he Bed by Using 

Core Samp ler 

In order to det ermin e the vertical distribution of tracer 

particles in the bed, a core sampler was used. It is a 19-inch 

long, 3/4 inch~ I.D. plastic tub~ as shown in Fig. 4-8 . The section 

stop on th e piston rod can provide a precise control for the thickness 

of th e core sample segments. Core samples were t aken only after 
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the tracer particles were spread out along s everal feet of the flume. 

The locations from which the core samples were taken were determined 

by inspecting the longitudinal concentration distribution data on the 

strip-chart, so that representative points were chosen. A pair of 

core samples at 1/2 foot on both sides from the center line of the 

flume were taken for each · core sample location along the flume. The 

depth of core sample corresponded to the maximum trough of the s m d 

bed during the experiment. After the core samples were taken, t ~ey were 

cut into slices of 1/4 inch to 1/2 inch and placed in paper cups . Then, 

the activity in each cup was counted by a scintillation detecto r 

together with a decade scaler and a timer as shown in Fig. 4-8. 

G. Determination of the Total Load by Total Sediment Transport ·sa ~ r 

The total sediment transport sampler was a width~depth 

integrating sampler which sampled a 1/2 inch wide section of the _ pe 

and could ~e moved back and forth across the end of the flume as 

shown in Fig. 4-9. The outlet of this sampler is a triangular ~ LS,h' 

which conveye d the water-sediment mixture to a circular tank. 

po~nt gage was mounted on the circular tank to measure the vo),JlJme 

water-sediment mixture. The sediment in the circular tan)..- was ·J .• 

removed, dried and weighed . About ten samples were 1i_:c,1,~~!;, in ea_ch : 

and the average total sediment discharge was obtained. 

H. Specia l Methods Used for Plane Bed Condition 

For the plane bed case, since the bed is a flat plane, -no be 

configuration information was necessary. Because th e tracer part ·· 



64 

I .. 
; j 
I·,., .... 

Figure 4-9. Total sediment transport sampler 



65 

moved much faster in this case t h an i n ripple or dune conditions , where 

the movement of tracer particles is relatively slow as compared with 

the speed of t he carri_age , t he met.hod of obtaini_ng longitudinal con ­

centration distribut ion data used for the rippl e and dune cases •·a.t 

not valid. Two scintillat ion detectors were used for the plane~~ 

condition . These were l ocate d at stations 35 and 55, respective})~,,~ 

to observe the tracer particl es passing by the det ectors. A port:JrJle 

sci ntillati on detector was located at t he ent ran ce to s ee when tlH 

tracer particles would appe ar again thro_ugh recirculation. Once t h3 

tracer particles reappeared through recirculation , the expeT iment \(_s 

compl eted . 

I . Prel iminary Experiments fo r the De termination of the St ~P...J:~ 

and Res t Period_of a Sing le Particle 

Thes e e x-periments were done dur ing the summer of 1966. 

wide, 20 cm d,e ep and 10 rn lo_ng recircul ating plastic flull~ was us . 

for these experiments . White p las tic particles with d.so = "2. 2 mm , 

specific gravity 1 . 1 s e rved as b ed material . Black plA~tic part ic 

with t he same properties as the white plastic particles were used , 

tracers. The experiments were done under the following condit ions 

water discharge = 0 . 1065 cfs to O .154 7 cfs 

water-surface slope= 0.0006 

water temperature = 24° C 

average water depth= 0.25 ft to 0 . 41 ft 

average height of dune= 0.08 ft to n _:_j f t 

average l ength of dune::. 2 . .L ft to 3 .5 ft. 
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Since th e wh i te plastic particles were transparent, the b lack 

tracing particles cou ld h e seen even if they were buri ed . The step 

l en gth s of each trace r particle were actua lly measured by using a 

measuring tape , and the r est periods 1,;ere measured by using a stop 

watch. The purpose of these exper i ments was to de t ermine the probabi 1-

i ty di s tribution functions for step l engths and r e s t periods; 
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Chapter V 

ANALYSIS AND DISCUSSION OF RESULTS 

A. Distribution of Step Lengths and Rest Periods of a Single Plastic 

Tracer Particle 

The distribution of step lengths of a single plastic tracer 

particle obtained in a 20-cm-wide plastic flume for two different ~ w 

conditions is shown in Fig. 5-1. With the mean and variance obtaii.~ 

from the actual step length data, k 1 and r can be found by solving 

i,!Eq. (3-11) together with 

r 
02 = s s;z 

ls 

where o 2 is the variance of the step length distribution which 
s 

(5-1) 

follows the _gamma distribution function equation (3-10),, _. the sub.sc.Jri p t 

s denoting step length. The curves in Fig. 5-1 are the theoretical 

gamma distribution function as described by equation (3 =--11.Q.) . We can 

see that the distribution of step lengths of this particle is ade­

quately represented by the gamma distribution function. The scatteri ; 

of the actual data about the theoretical curve is due to the fact tha·. 

less than 100 step lengths were measured in each flow cpndi tion, whic '. 

is not sufficient to give a smooth curve . 

The rest periods of the same particle for the same tw o flow 

conditions were also measured. The r esul t s are plotted on exponenti a 
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probability paper. The actual mean rest periods were substituted 

into Eq. (3-13) to get the k2 valu~s. The straight lines in Fig. 5-2 

follow the integral of Eq. (3-12) for exponentially distributed rest 

periods. From Fig. 5-2 we can see that the rest periods follow the 

exponential probability distribution function quite closely. These 

conclusions about the distribution of step lengths and rest periods 

for light-weight plastic particles may or may not be applied to the 

distribution of step lengths and rest periods of sand particles. 

B. Longitudinal Concentration Distribution 

In order to get a general idea of how the dispersion process 

• goes, a set of longitudinal concentration distribution curves would be 

helpful in showi_ng how the process develops over a period of time. 

However, the same kinds of curves are also needed for later comparison 

with the .stochastic model and the core sample results. For the sake 

of avoiding duplication, pres entation of these data will be postponed 

unti_l F_igs. 5-14, 4-15 and Appendix C, whe re the comparison of the 

experimental longitudinal dispersion curves with the stochastic model 

and the core sample r esuits is discussed. 

According to Eq . (3-22), the mean rate of movement of tracer 

particles should be a constant for a certain flow condition and par­

ticle size. If the mean distance traveled by tracer particles is 

plotted as a function of disp ersion time , the .r esult should be a 

straight line passing through t he origin. This relationship can be 

seen from Fig . 5-3 for the r ipp l e condi tions , and from Fi g . 5-4 for 

-
/ 
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the dune con ditions . In each cas e the da ta were obtained 1/2 foot 

e i thel' s ide o . th e cente r l ine of th e fl lllne. The reason for th e 

cunc J po :ti. n rvar the or i gin in some of the rel ati onships is that 

t!1,:) tr,tcer particles were not mixe d uniformly over the entire depth 

of l ayer of moving partic l es at the beginn ing of the experiment . For 

the same flow condi tion and be d confi gurati on, finer particles should 

moYe f' as r: e r than co:i.rs e r par t icles. Thi s is true for both the rippl e 

and the dune cases hi t h the except i on being Run IC, which has a 

high'::i' ;,:-'a!i r:::te of "lO\'cment of tracer par ticles than Run lM . This 

c2.1, be. C!;~pl:1incl~ b · th1? fact th at t he flow condition for Run lC was 

.; ·.tc:t th,1t tl· e m2c1s~tr':,d to tD 1 s ediment discharge for Run IC was higher 

th: ,n that f._1:- Run Di . Si nce both the ;.; ater velocity and the total dis­

ch,1:-gc n., :-.ed:..r• ,.-,n t are high e1 for dune conditions than for ripple 

c,ncb ti n~, - '.,·, mean rat--:, of moveme nt of tracer part icl es is a lso 

hi; -hcr. ·1he L c1,nique of r a ising t he tracer par ticles toward the 

:::ur:·,h cif t · ,:· :J:::c by m':1.;s of a stee l p l a te at th e beginning of 

the t: Xj<;Tin:~n~ .:.s clpp:.ren~ ly ve r y effective as can be s een from the 

rc-sul t:; for PL·, ?:'. and i'un ~C 1,:he re the x vs t r elationship s are 

r\c,:ordi :,g to E·1, ( 3-2 3) the r e l ations hip between the variance 

dis tri ,1t ion and the dispe rsion t ime i s a l s o 

'i.c:. i-i:.L';- .:=.-S Y1d Fig . 5-fi shoh the re l ati onships between th e 

13.Y i. J•,:~ , ; , ai,c ~;-:;:: dispe rsion ti me , t, f or r ipp l e and dune condi -

T '~, ::~ ~_:_,..r .. ty. s~milar ~ff e ct s on th e results due to th e 
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me thod of releasing the tracer, the size of trace r parti cles , the bed 

form and flow condition can be found from Fig. 5-5 and Fig. 5-6 as 

discussed for F_ig. 5-3 and Fig. 5-4. 

For Hubbell and Sayre 's stochastic mode l, Eq. (2- 2) , on l y two 

parameters are nee ded. When r = 1, Eq. (3 - 22) becomes 

(5-2) 

After taking the derivative of cr 2 wi th respect tot and substituting , 
X 

Eq. (5-2) and r = 1 into Eq. (3- 23), the rate of change of variance is 

dcr 2 
X 

-- = 
dt = k2 

1 

2 dx/dt 
k1 

(5-3) 

The two parameters, k 1 and k2 , can be obtained by solving Eq. (5-2) 

and Eq . (5-3) s imultan eously with the dx/dt and dcr 2/dt values ob-
x 

tained from the experimental results. In cases where there is 

curvature near the origin in Fig. 5-3 and Fig. 5-5, a correction is 

necessary. This correction can be done by drawing a dashed straigh t 

line through the origin parallel to the experimental results at 

larger dispersion time. The correction factors x and t are the dis-
o 0 

tance difference and time difference between the solid and dashed 

straight lines, respectively . The corrected distance and time coordin­

ate system should bet' = t - t and x' = x - x, respectively. In 
0 0 

the new coordinate syst em the dashed s traigh t l ines pass through the 

origin. The direction of th e time correction bas ed on th e mean is, 



77 

in some cases, contrary to that based on variance. This means at th e 

beginning stage th e tracer is traveling faster but spreading slower. 

This may be caused by releasing the tracer particles within a short time 

period which is not the natura l condition of movement. The slopes in 

Fig. 5-3 through Fig. 5-6 and the values of k1 and k2 for the Hubbell­

Sayre model that were obtained in the different runs are listed in 

Table 5-1. 

For the genera l one-dimensional stochastic model, three parameters 

k1, k2 and r, are needed. It would seem that these three parameters 

could be obtained by simultaneous ly solving Eq. (3-22) together with 

the derivative of Eq . (3-23) with respect tot 

TABLE 5-1. PARAMETERS US ED IN HUBBELL AND SAYRE'S 
ONE-DIMENSIONAL STOCHASTIC MODEL 

Parameter da2 
k1(ft- 1) 

Ru~~ 
dx (ft/hr) X (ft2 /hr) dt cit 

Run IC 0.848 2.68 0.633 

Run lM 0.585 1. 724 0.679 

Run lF 1.131 6.48 0.349 

Run 2M 4.7 20.2 0.465 

Run 2C 4 .1 16.6 0. 494 

(5-4) 

k2 (hr - l) 

0.537 

0. 397 

0. 392 

2.18 

2.025 
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and the skew parameter, Srt , from Eq. (3-24), i.e.' 

sit = 
r+2 

(5-5) 

If the rate of change of mean displacement is equal to a const ant 1/J1 

an ~ the rate of cha_nge of variance equals another cons t an t 1)J 2- , 

then the skew parameter, Srt, shou ld be 

sit= r+2 
r+l 

1/J2 r+2 
~ = r+l (5-6) 

F_igure 5- 7 shows the relation between 1jJ 3 Srt and r. The variation 

of 1)J 3 sit is limited between 1.0 and 2.0. The actua l experimental 

relationships between the skew parameter, Sit, and the d~spersion 

time, t, are shown in Fig. 5-8 and F_ig. 5-9. All the curves drawn 

thro_ugh the data were made to approach cons t ants as required by 

Eq. (5-6). These constant values are shown by the heavy lines at 

large dispersion ti.me . The result for Run lC is not shown here 

because the results scatter too much. However, because the skew 

parameter is bas ed on the third moment of the longitudinal concen­

tration distribution data, a little difference near the tail of the 

concentration distribution curve will make a big difference in the 

result of the skew parameter . The negative skew parameters are 
/ 

probably caused by pockets of tracer particles which were buried 

near the i ni tial station and released much l ater. The parameters 

of the general one-dimensional stochastic model obtained by this 

method for Run lF are k1 = 0.434 1/ft, k2 = 0.33 1/hr and r = 1.49. 
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The r values for s ome other runs t urned out to be negative, which is 

impossible fo r a- gamma distributioh function . These r esults may be 

caused by the fact that the flume is too short for this kind of 

dispe rs i on study so that data were t aken before the dispersion process 

became fully deve loped. In Fig . 5- 7 the change of skew paramete r 

value is small compared with the change of r values, especially at 

l arger values. As a consequence of this result, a particular set of 

f t (x) curves can apparently be closely approximated by using many 
, 

different combinations of k 1 , k2 and r values. So this method, 

altho_ugh it is one way of getting the parameters for the general 

one-dimensiona l stochastic model, may not be the best way . 

Fo llowing t he initial release of the tracer particles, a certain 

length of time, which may be called an initial mixing period, is re­

quired for estab lishing an overall vertical distribution pattern in 

the bed tha t depends on the bed configuration. In general , at the 

beginning of the di spersion process, these tracer particles will 

penetrate deeper and deeper into the alluvial bed. The depth of 

penetration of tracer particles is eventually limited by the deepest 

tro_ughs of the ripples or dunes. The radioactivity measured by a 

scintillation detector from a tracer particle depends not only on 

the s trength of the activity of that particle, but also on the 

medium and the distance between the particle and the detector. As a 

result of these phenomena and the possibility of loss of some of the 

radi oactive l abe l, the total activity recorded along the flume or the 

area under the longitudinal concentration curve decreases and approaches 

a constant as the dispersion tlme increases as shown in Fig. 5-10 and 

Fig . 5-11. 



-' ..... 
I 

E 
0.. 
u 

.:,c 

.£ 

~ 
> ... 
:::, 
u ... 
4) 

"O 
C 

:::> 
0 
4) ... 
~ 

83 

100~~.--r--.-----,.---,--~--,---.--~-~ -~-----.--.---r---r--~-~ 

o Left Side 

• Right S ide 

0 

• 
0 

500 • 

400 

Run 1C 

300 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 

400 

300 • 
0 . 

Run 1F 

200 
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

500 

,. . 

• 
• 0 

Run 1M 
0 

200.__L-__..J'-----'----'----"---'---'---'---'---'--....L--l.... _ _j__....L__....L___J 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 

Dispersi on Time, t, in hours 

Fi gure 5- 10. Ar ea under th e experime nt a l l ongitudina l 
concentrat i on dis t ribut ion curve as a function 
of dispersi on time for ripp l e c·ondi ti ons 



84 

600,---,-----.---,----,-------.----,-----,--------,,---

• 
0 

0 0 

0 

.:: 
E 400 
a. • 
(.) 
.x • 
.!: 

ef 200 
:; 0 2 3 u 
'-
CIJ 
-0 
C: 

:::> 
0600 
~ 

<l: 

500 0 

300 

0 

• 
• 

Run 2C 

4 5 

Run 2M 

6 

o Left Side 

• Right Side 

0 • 

7 

• 

8 9 

0 • 

200o=------:------2~----,3:;------4~----1-5----.l.6 ____ .J.7__J 

Dispersion Time, t, in hours 

Figure 5-11. Area under the experimental longitudinal 
concentration distribution curve as a function 
of dispersion time for dune conditions 



85 

A computer program in Appendix B serves the purpose of 

~alculating the function f (x) in Eq. (3-19) for all possible 
t 

combinations of the parameters in that equation . Different num-

bets of steps , i . e. N va l ues, were tried in the computer program. 

The results indicate the rate that f t (x) approaches its theore­

tical value, i.e. when N= 00 , decreases with increasing N values. In 

oUr experiments , when N is greater than 100 , it adds no practical 

contribution to the values of f t (x). Figure 5-12 gives an example 

ot the computer result which shows the variation of ft (x) as a 

function of dispersion time. According to Eq. (3-24) the skew 

coefficient decreases when the dispersion time increases. So , 

at large dispersion time , ft(x) tends to become more synunetrica l 

as shown in Fig . 5- 12 . From Eq. (3-10) and Eq . (3 - 12), the dis­

tribution of step lengths i s rel ated tor , but t he distribution 

of rest periods is independent from r. So , the effect of r on ft(x ) 

is comp letely due to the effect of r on the distri bution of step 

lengths. Comparing Eq. (5-6) with Eq. (5-9) in the next section, the 

change of skewness in the step-length distribution function is more 

sensitive to a change in r than is the change of skewness of ft (x) . 

From Eq. (3-24) , when k 1 and k2 are held constants at a particular 

dispers ion time , the skew co efficient decreases with increasing r 

values , and f t (x) should approach symmetry with increasing r values as 

shown in Fig. 5-13. When the mean step length and mean rest period are 

he ld constant at a parti cul ar dispersion time , the effect of differe nt r 

values on the shape of ft(x) can be seen from Fig. 5-14. It is cl early 

shown in Fig . 5-14, th at when th e mean step l eng th and mean r est 
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period are held constant , the ~kewnes s ot the ft(x ) curves decr eases 

with increasing r values. Th · t"endency agree s wi th the charact er is ti cs 

of the gamma distributed st q , length function; when th e mean is kept 

constant, th e s kewness of gamma distri bution f un ct i on decreases wi t h 

increasing r values . 

Due to the irregularity of the bed configurat ion, t he irregular­

ity of the experimental l ongitudinal concentrat ion curves is not 

surprising . Figure 5- 15a shows the comp ar i s on of th e expe r imenta l 

longitudi na l dispersion curve with Hub be 11-Say::e ' s stochas t i c mode 1 

and the gener a l one -dimens iona l stochastic mode l . Th e irregulari t y 

of the experi men t a l curves was caus ed by pocke t s of tracer particl es 

which were buried in deep troughs and r e leased l a t e r . The area unde r 

the theore tical curves will not equal 1 unless k2 t is infinite in 

Eq. (3-20). 1-10\~·ever , the area approache s 1 very r apidly at small 

k2t values . When k2t = 5, the areas unde r t he theor etica l cur ves for 

both mode ls ar e 0 . 99 . The slight area diffe r ence be t ween . 'ubbe ll­

Sayre ' s mode l and the general one-dimensiona l mode l i n Fi g . 5- 15a 

is caused by us i ng di ffe r ent k2 values in each mode l. The comp aris on 

indicates th at th e dispe rsion proces s can be des cribed by t he gene r al 

one-di mensi ona l stochas tic mod e l at least as we ll as by Hubbe ll and 

Sayr e ' s s to chas t i c mode l . 

This i s mor e easily seen in Fi g . 5- 16 , a compar ison of the r.1c.1;, , 

vari ance , and s kew co effic ient between t hese t wo rno<le l c; . In 

Fig. 5-1 6 t he rate of change of mean and vari ance for both ~oJcls 1s 
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the same and the difference of rate of change of skew coefficient 

is not si gnificant enough to change the pattern ft (x) very much. This 

demonstrates the impracticality of attempt ing to define al l three 

parameters from longitudinal dispersion data alone. 

Fig. 5- lSb demonstrates the possibility and the applicabi-li ty 

of assuming an r va lue for the genera l one-dimensiona l stochasti c 

model to describe the actual dispersion process. Afte r the r 

va lue is assume d, k 1 and k2 can be obtained from the mean rat es 

of displacement and spreading of the tracer particles without going 

i nto the prob l em of skewness . The agreement bet ween experimental 

result and the general one-dimensional stochastic mode l incre ases the 

possibility and confiden ce that if the mean step length and rest 

period can be found from bed configuration data and t otal sediment 

di scharge , all the parameters used in the genera l one-dimensi onal 

s t ochastic mode l can be obtained by solving Eqs. (3-11) and (3-13) 

to get her wi th the as sumed r value without having to perform a 

dispersion experiment . Th us , this general one-dimesional sto­

chas t ic mode l not only can be used to describe the process of 

dispersion , but als o may be us ed to predict the dispers ion 

process. The area di fference bet ween the experimental result and 

the general one-dimensional stochastic model as shown in Fig. 

5-lSb , is due to the s ame r eason as expla ined for Fig . 5-lSa. 
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C. Computer Results of Solving Aris ' lament Equa tion 

The computer program of solving Aris ' moment cquaticn :,as 

designed to simulate the flow condit ion of Rw1 l C. !101,c\·e r, t i1t.: 

values of the van Karman turbulence coe ffici ent, K , were car~ u:: u ! 

:fro m velocity distribution data fro m Run 5 for O. 33 mm s a n I i r: t :.: $ , ;:~c· 

two foot wide flume as given in the U. S . Geologica l Sur vey Pr 0fcs sio;1. d 

Paper 462-I , which has the same flow condition as Run lC. Figur e :i-17 

shows for the conditions specified in Case 1, th e r elation b~ t ~cc1 

the dimensio_i:iless mean displacement of the deposited sed i.mcn t frnn 

the source and the dime nsionless dispersion time for different 3 

va lues . The asymptotic values represent dimensi on l ess mean step 

le_ngths i;w The $ value is proportional to the fall veloci ty of 
s 

sand particles . For the same flow condition, hi ghe r 8 value s 

should be associated with shorter st ep length 2.s shown 1n Fig. S-1,S . 

The computer results for Case 1 can be seen in Tab l e S-2. 

TABL E 5-2 . CO~WUTER RESULTS FOR CASE 1 GI VING PREDICTED STE P 
LENGTH CHARACTERISTICS FOR RUN lC 

- a2 -2 

8 ~w s r E. s' 2 1 w w w = ~ s s s s YI =,r:; 
a2 s ws 

w 
s 

1.0 4 . 62 119 .0 4 . 64 0 . 179 4 . 73 

1. 2 3 .139 60 . 69 S .196 0 . 1625 4.97 ' 

I 2 . 0 1. 09 7.84 6.49 0.1513 5 . 14 

I I 
3.0 0 . 51 1. 55 7.21 0 . 168 4.88 i 

I I I 

4 . 0 0 .31 0 . 507 7.37 . o. 1s9s ! .:i .s9 I 

5.0 0.21 0.222 7.40 

--~-~ ~ 
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For a_ garruna distributed step length, Eq. (3 -1 0), the dimension­

l ess fo r ms of the mean step le_ngth, the variance and the skew 

coeffi ci ent are 

r 
I w 

s 
w = 

s 
klw 

(5-7) 

r 
a2 w 

s w = 
s k2 

lw 

(5-8) 

and 

s 1 2 
w ---

s 

A 
(5-9) 

v1he re the subs cript w denotes the deposited sand and s denotes the 

step length. Case 2 follows Case 1 to make the mean step length and 

mean rest period correspond to the experimental results of Run lC. 

Using the computer results of Case 1, as shown in Table 5-2, the proper 

r and k
1 

values can be found by solving Eqs. (5-7) and (5-8). w w 

Equation (5-9) serves the purpose of a double check. The calculated 

r and k
1 

values are 0.1625 and 0.05175, respectively. Based on w w 

these r and k
1 

values , and Eqs. (5-7), (5-8) and (5-9), we have w w 

"[ = 3.139 o2 = 60.69 and S = 4,97 which agree we ll with those 
w ' w w 

values listed in' Table 5-2. This strongly suggests that the step 

l e_ngths predicted by Case 1 are garruna distributed with r < 1. 
w 
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The input for Case 2 is based on the flow conditions, which are 

the same as Case 1, and y corresponding to Run lC. Since 1/y equals 

the mean rest period in dimensionless units, k
2
w = y = 0.0131. From 

the general one-dimensional stochastic mode l, and using the results 

obtained from Case 1, we have 

and 

d{ 
w -a:r- = 

da 2 
w -a:r- = 

k2 r w w 
klw 

= 0.0413 

= 0.928 

which agree with the slopes in Fig. 5-19 obtained from the numerical 

solution of the Aris moment equations for Case 2 . From Eq. (3-24) 

th~ skew coefficient for the deposited sediment is 

s = 
w 

r +2 
w 

./Cr +l) r k
2 

T w w w 

(5-10) 

Figure 5-20 shows the comparison between Eq. (5-10) and the re sults 

from the computer program Cas e 2; the agreement is very good. 

Now it can be confirmed that both the general one-dimensional 

stochas tic model and the Aris' moment equations lead to the same 

solution of the dispersion problem und e r the condition of Case 2. For 

a given value of S, the characteristics of the step length distri­

bution function predicted by th e Aris' moment method depends a l so on 
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the selection of the thickness of the bottom layer of flow 6n . 

Therefore, without some meaningful physical criteria to govern 

• the selection of '6n , this method cannot be used to predict the 

• 

• 

.. 

characteristics of fX(x) quantitatively. However, it may still be 

usefu l for predicting qualitatively the nature of relationship 

betw~en the characteristics of fX(x) and Band U/UT, for example. 

D. Vertical Concentration Distribution of Tracer Particles in 

an Alluvia l Bed 

The vertical concentration distribution of tracer particles in 

the bed was obtained by using a core sampler . The data in Appendix 

C_ give some examples of the vertical distribution in the bed at 

different stations . The water surface was taken as the origin for 

all the vertical concentration distribution graphs. The depth axes 

of these vertical concentration distribution graphs are located 

directly under the stations at which they were taken. The relatively 

good _agreement between the longitudinal concentration distributions 

determined by the scintillation detector and the plotted points , 

which represent the total amount of radioactivity in the core, indi­

cate that variation in vertical distribution of tracer particles 

along the flume does not cause any serious distortion in longitudinal 

distribution curves obtained by the use of a scintillation detector 

above the water surface. The time lags between these two sets of 

data are due to the fact that the core sample data were taken after 

taking the longitudinal concentration distribution data . The time 

I 

t 

f 

t 
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lags between the left and r.ight side scintillation detector data 

are due to the same cause. No significant t endency concerning the 

vertical distribut ion of tracer particles in the a lluvi a l bed is 

apparent in our present data. 

The average depth of penetration of tracer parti cl es in the bed 

can also be found in Appendix C. The average depth of penetration 

increases slightly with the dispersion distance as a general t endency. 

This genera l t endency is not true near th e end of th e flume, however, 

because a wooden sill at th e average bed leve l was located at the 

end of the flume to he lp maintain th e correct slope of the sand bed. 

As a result of this, instead of increas i ng , the average depth of 

penetration of tracer particles tends to decrease somewhat near t he 

end of the flume . 

E. Bed Configuration Analysis 

Figure 5-21 gives typical examples of the actua l bed configura-

.tions fo r the ripp l e and dune bed condit ions . Since the dune s are 

much larger than th e ripples, and th e flume is only 60 feet long, 

from a s tatistica l point of view not enough information about the 

variati on of bed configuration can be obtained for the dune condition . 

Even for ripp l e condi t ions , the data are barely enough to demons trate 

the t endency of some s tati s tical proper t ies . 

Since the movement of sand is closely related to the bed f orms 

and how th ey move , it is r easonable t o assume that the dis tribution 
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function of step length is related to the distribution function of 

the zero crossings of the bed confi.guration. Figure 5-22 shows the 

distribution of zero crossings of the bed forms for Run IM and Run IF. 

These data show that the distribution of zero crossings can be 

adequately represented by the ganuna distribution function. The 

scattering of the data about the theoretical ganuna distribution 

function is mainly due to insufficient l ength of record. Nordin's 

(1968) comput er program was used to calculate t he distribution of 

zero crossings of the bed configuration. 

Two analyses of the frequency distribution of the bed e l evation 

were performed for both ripple and dune beds . The stationary data 

were t aken by a transducer located at station 30. Figure 5-23 gives 

an exampl e of fr equency distirbution dat a obtained by a stationary 

transducer fo r Run IM. The subscript YT us ed for the r elat ive 

frequency in Fig. 5-23 denotes reference t o the variat ion i n th e 

time domain of the bed elevation with r espect to a st ationar y 

reference point. Another set of data was t aken from a t rans ducer 

on th e carriage which moved along t he flume . Figure 5-2 4 gives an 

examp l e of the frequency distribution based on the variation of 

bed elevation along th e flume for Run 1 1 also . A computer program 

in Appendix D was developed for calcul ating this distribution of 

bed elevation . Both Fig. 5-23 and Fig . 5- 24 show t hat the distribution 

of bed elevati on follows th e norma l distribution clos e ly . Also , in 

Fig. 5- 24 there i s no significan t difference between the results 
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obtained by considering both the positive and negative slope, and 

those obtained by considering only the negative slope. Therefore, it 

is assumed that it is equally likely that sand particles will be 

deposited anywhere on the downstream faces of bed forms but not on 

the upstream faces, the distribution in Fig. 5-24 is equivalent to 

fy (y), the probability density function for the elevation -' at which a 

sand particle is deposited. There is no significant difference 

between FY (y) and Fy(Y) when Fig. 5-23 and Fig. 5-24 are compared, 
T 

which means the distribution of bed elevation may follow an ergodic 

process, i.e., the statistics over a long time interval for any one 

system are the same as the statistics over the ensemble of systems 

at any one instant of time. 

In order to evaluate the mean rest period from the distribution 

of bed elevation by using Eq. (3-30), we must have data on the distri­

bution of bed elevation over a sufficiently long time period. Our 

records available at present are not long enough to adequately evaluate 

fTIY(tly) and Fy(y). From Fig . 5-23 and Fig. 5-24, the variation of 

bed elevation follows normal distributions closely; thus, Eq. (3-30) 

may be used to calculate the mean rest period. From the bed elevation 

data in the time domain, the T value ir.. Eq. (3-30) is equal to 
0 

19.8 minutes for Run lM. With T
0 

equal to 19.8 minutes and fy(Y) from 

the normal distribution curve in Fig. 5-24, the mean r est period can 

be obtained by integrating Eq. (3-30) numerically from minus three 

standard deviation to plus three standard deviation of the variation of 

bed elevation . This calculated mean r es t period is about 1 hour. The 
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mean rest period for Run lM obtained from the Hubbell-Sayre stochastic 

mode l is about 2.5 hours, which is larger than the result obtained from 

t he bed configuration data. But, the readers should be aware that the 

mean r es t period obtained from the bed configuration data represents 

the mean rest periods for all sand particles in the flume and is inde­

pendent from the tracer size; while the mean rest period obtained from 

the dispersion experiment is dependent on the tracer size. The fact . 

that the dispersion experiments represent the overall results along the 

flume, while T
0 

is only emphasized at a particular point in the flume, 

may also cause some differences between the mean rest period 

obtained from these two methods. Another reason for this difference 

between the two methods is that the time record for the bed configura­

tion is not long enough; thus, the T value may not be the true T 
· 0 0 

value for a much longer record. Thus, the evaluation of the mean 

rest period, E(T), needs much longer records of the variation of bed 

elevation with respect to time and space. 

F. Total Sediment Discharge 

The average total sediment discharge for each run is shown in 

Table 4-1. The comparison between Eq. (3-70) and the actual measure­

ment of some other known total sediment discharge equation is 

outside the scope of this study. The data are available for those 

readers who are interested in making this comparison. 

G. Results Obtained from Plane Bed Conditions 

Due to the short length of the flume and the high velocity of 

moving sand, it took only about 15 seconds for the tracer particles 

t 

I 
t 

I 
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to pass through the whole experimental reach. Under such conditions, 

the response characteristics of the instruments is a very important 

factor to the results , and the results obtained under this condit ion 

are not considered to be reliable. There fore, no further analysis 

of this data was made . 
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Chapter VI 

SU~IMARY AND CONCLUSIONS 

The general objec tive of this investigation was to study the 

transport and di spersion of sand particles along the bed of an alluvial 

channe 1. Th e specific objectives were to (1) review and compare some 

existing math ematical models for describing t he transport and dis­

pe rsion process, (2) use some numerical and / or stochastic appro aches 

~o des cribe and pr edict the dispersion process, (3) obtain some addi­

tional experimental informati on on the effect of flow conditions and 

partic l e size on the transport and dispersi on process . 

In order to achieve th ese obj ectives, the follo wi ng inves tiga­

t ions were undertaken. (1) A general one-dimensional ~tochastic model 

describing th e longitudinal dispe r sion of sand particles was derived 

and its proper ti es we re inves tigated . (2) Exi sti ng equations for the 

t r anspo r t and deposition of suspended sediment par t icles togeth . r with 

appropriate initial and boundary conditions were adapted to the case 

of sand part icles tran_sported along the bed of the channe 1 . These eq ua­

tions were transformed by the Aris moment method and s olved numer i ca lly. 

(3) The result s obtained from the Aris moment method and the ene ral 

one-dimensional stochastic mode l were compared for comparable condi­

tions . (4) A series of laboratory flume experiment s with radioactive 

tracer particles 1vas conducted . In thes e experiments the movement and 
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longitudinal dispersion of tracer particles along the flume , and the 

penetration of tracer particles into the bed were investigated. 

Experiments were conducted with coarse, medium and fine tracer parti­

cles fo r two flow conditions that were characterized respective ly by 

ripple and dune bed configurations. (S) Experiments were conducted 

with lightweight plastic particles to find the distribution functions 

of step le_ngths and. rest periods of a single plastic particle . (6) Sta­

tistical aniaysis of bed configuration was made to find the mean rest 

period o:f tracer particles alo_ng an alluvi a l bed. 

These investigation~ led to the following conclusions: 

1. Based on the preliminary study with a single lightweigh t 

plastic particle, the step l engths very closely follow a gamma 

distribution wi th parameter r approximately equal to 2; the rest 

periods fo llow an exponential distribution very closely . This con­

clusion disagrees in part with the assumption which Hubbell and Sayre 

(1964) made i_n their one -dimensiona l stochas tic model , in which they 

assumed that both the step l engths and r est periods of a sing l e 

partic l e are exponentially distributed. It is not known yet to what 

extent this conclusion applies also to sand particles, but r eaders 

should be aware that the exponential distribution function is a special 

case of the gamma distribution function with r = 1. 

2. The method of approach in deriving th e general one­

dimensional stochastic mode l can be applied to any distribution 

funct ion of step l ength and rest period. Three parame ters are needed 
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in the gene ral one-dimensional stoch astic model, name ly, k 1 , k2 , and 

r . The rest period is determined by k2 and the step length is 

determined bj k 1 and r. 

3. According to this genera l one -dimensi ona l stochastic mode l, 

the mean displacement and the variance of the long itudinal distribu­

tion of tracer particles increase linearly with disper sion time , and 

the sk ew coefficient approaches zero at large dispersion time. This 

means that the longitudinal concentration distri bution of tracer 

particles described by this model approaches symmetry at large 

dispersion time . 

4 . Due to the irregul arity of bed configuration, the 

irregularity of the experimental longitudinal concentrat ion distri­

bution of tracer particles along the flume should be expected . In 

spite of this irregularity, the mean rat e of displacement and spreading 

(variance)of the tracer particles still approach different constants 

under different flow conditions at large dispersion times .. These linear 

relationships exist even near the initi al stage for those runs i n 

which the tracer particles were initially well mixed wi th the sand 

in the flume. According to the general one-dimensional stochasti c 

mode l, when the mean rate of displacement and spreading of the tracer 

particles are kept constant, the skew parameter should also be a 

constant . Because the skew parameter was obtained from the third 

moment of the longitudina l concentration distribution data, it is less 

reliable than the mean and variance obtained from the first an d second 
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moment of the same data. The limitation in length of the experimental 

flume increases this irregularity ani unre liability of the skew 

parameter. The experimental skew paramet ers scatter considerably. 

S. In order to determine k 1 , k2 and r in the general one­

dimensional stochastic model from the experimental results, three 

relations, obtained from the data, are needed, which can be solved 

simultaneously. The mean rates of movement and spreading of the 

longitudinal concentration distribution of tracer particles provide 

two satisfactory relationships . However , due to the scatter, the 

skew parameter does not provide a sufficiently reliabl e third 

relationship . For given values of mean rate of displ a cement and 

spreading of tracer particles, the pattern of ft(x) can almost 

as well be described by using diffe rent combinations of k 1 , k2 and 

r values. The change of r values has lit tle influence on t he skewnes s 

of ft(x), especially when r > 2. 

6. If r is assumed, an alternative method of finding k1 and 

k2 is used in this study. Since the ch ange of r values has littl e 

influence on the skewness of ft(x), an r value can be assumed for a 

given flow condit i on. With the assumed r value , k 1 and k2 can be found 

from the mean rate of displacement and spreading of longitudinal 

concentration distribution data of tracer particl es . Fairly good 

agreement has been obt ained between th e experimental result _ and th e 

stochastic model by using thi s method. 

7. Th eoretical investigation of the bed configuration is made 

to find th e mean rest period and mean step l ength of tracer part icles . 

ii 
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TI1e mean rest period l/k2 can be dete rmined from the bed configuration. 

The me an step l e_ngth ·r/k 1 can be de t ermined from th e mean rest period, 

tota l sediment disch a_rge, and bed configuration data. When the r 

va lue is prope rly assumed , all the three parameters in the genera l one­

dimensional stoch astic mode l can be determined without doing 

dispers i on experiments . However, the presently availab le data are 

no t sufficient to adequately evaluate this method. 

8 . Since a higher flow veloci ty and high er total sedi men t dis­

charge existed in the dune condition th an i n the ripple condition, 

the mean rate of di sp lacement and spreading of tracer particl es are 

a lso higher for the dune condit ion than for the ripple condition . 

9. The size of tracer particles shou ld have some influence on 

the rate of displacement and spreading of tracer partic les. The 

finer the tracer particles are, the f as t er they should travel and 

spread. TI1e experimental results indicat ed no s ignificant difference 

between the behavior of the medium and coarse tracer particles, but 

the fine tracer parti cles · trave l ed and spread much f aster th an the 

medium and coarse tracer particles. This may be caused by the fact 

that the fine tracer particles were temporari ly suspended during part 

of their movement. 

10. The distribution of step lengths may be closely rel at ed to 

th ~ distribution of zero crossings of the bed forms. The distribution 

of zero crossings for the ripple condition of this s tudy fol lows the 

gamma distribution clos ely with parameter r approxi mately equal to 3. 

\ 
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11. The distributions of bed elevation in both the time and 

space domains follow the normal distributions closely, and there is 

no s_ignificant difference between the results obtained by considering 

both the posi tive and negative slopes of the bed configuration and 

the negative slope only. There fore, if it is assumed that it is 

equally likely that sand particles will be deposit ed anywh ere on the 

downstream face of the bed forms (negative slope), then the above 

distribution is equivalent to the probability density funct ion for 

the elevation at which a sand particle is deposited. The agreement 

between the distributions of the bed elevation in the time and space 

domains s~ggests that the distribution of bed elevation may follow 

an e_rgo dic process. 

12. As the disp ersion process goes on, the tracer particles 

have a general tendency to penetrate deeper and de eper into the sand 

bed u.~til they are distributed to the leve l of the deepest sand 

troughs, whi~h impose a lower limit. The vertical concentration dis­

t ribut ion of tracer particles in the sand bed, obtained by core 

sampling, is very irregu lar, with no clear indication as to what 

kind of distribution function it foll ows . The agreement between 

longitudina l concentration distributions obtained by the scintillation 

detector and core sample methods indicates that th e variation in verti­

ca l distribution of trace r particles along th e flume does not cause any 

serious di s tortion in the longitudinal concentration distributi on as 

de t ermined by a scintillation detector located above the water 

surface. 



.l.lO 

13. The comput er program originally deve l oped by Sayre (1968 ) 

to so lve the Aris raoment equations nwnerical l y is a valuable 

tool to obtain a so lut ion that can describe and predict the 

behavior of s and particles in open channel flow, if th e parameters 

in the program corresponding to actual conditions can be determined . 

When appl ied to particles that are creeping along the bed, howeve r, 

the nw11erical solution depends to some extent on the grid size , i.e., 

6n va lue. The 6n value which corresponds best to a parti cul ar actual 

situation can not be predicted, so this method canno t be used to pre­

dict the step l ength quantitatively . However, it is a good method 

fo r describing the dispersion process and rel ating some of its attri ­

b tes to bas ic hydrau lic parameters and sediment properties . 

14. The nume rica l solution of the Aris moment equations for 

the ini tia l con~ition th at a ll th e t race rs are concen t rated at t he 

origin in the bo t tom layer of flow with the l ayer thickness equa l 

to 6n , and th e boundary condition that each tracer particle is 

absorbed by the bed after completing a step, indicates that the step 

l engths are gamma distribut ed with r < 1. The va l ue of r obtained 

from this case depends to some extent on the value of 6n selected. 

15. The agreement between the general one-dimensional stochastic 

mode l and the numerica l solution of the Aris moment equations for 

initial and boundary conditions corresponding to those in the 

stochastic mode l is excellent . They apparently le ad to the same 

so lution W1der the same condit i ons . The general one-dimensiona l 

l 
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stochastic model can serve to predict th e dispersion process as 

well as to describe it , if the mean.rest period can be found from the 

bed configuration data; if mean step length can be found from th e mean 

rest period, total sediment di scharge and bed configuration data; and 

if the r value can be properly assumed. If only the discharge of 

water, the water surface slope, the channel dimensions and bed 

material properties are given, the general one-dimensional stochastic 

model will not be able either to describe or to predict the dispersion 

process. However, the Aris moment equations can give some qualitative 

description of the dispersion process with this limited information . 

16. When all the necessary information is given for both the 

general one-dimensional stochastic model and the dispersion model 

by solving Aris' moment equations, the stochastic model gives a 

more realistic picture of the movement of sand particles along a 

sand bed. Also, the stochastic model can provide longitudinal 

concentration distribution curves at any dispersion time, a function 

which the dispersion model is unable to perform . 
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Chapter VI I 

SL(;GESTIONS FOR FURTHER RESEARCH 

1. In any further similar longitudinal dispersion experiment, 

a flume at least 100 feet long should be used. 

2. From this dispersion study, the behavi or of each individual 

tracer particle is not clear. No direct measurement of the step 

lengths and rest periods of a single tracer particle is possible from 

a dispersion study. In order to have a better understanding of the 

behavior of each sand particle along an a lluvial bed, an experiment in 

which only a single tracer particle or a few identifiable tracer par­

ticles are followed should be carried out. A strongly r adioactive 

tracer particle which has the same properties as the sand in the 

alluvial bed may be the best choice for this kind of study. 

3. A longer flume should be used for this single tracer 

particle study, so that longer bed confi guration r ecords can be ob­

tained. These bed configuration data are helpful in relating step 

l engths and rest periods to other variabl es and serving as a double 

check. 

4. Such a single tracer particle experiment should be carried 

out for different flow conditions and different sizes of tracer 

particles to find the relationships between the flow conditions, the 

size of tracer particles, and the parameters used in the general one­

dimensional s toch as tic model. 
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S. The results of the single tracer particle experiment should 

be compared wi th the result of the dispersi on study for the same 

condit ions to see if they agree. 

6. The method of using the skew parameter and the mean rate 

of displacement and spreading, obtained from the longitudina l concen­

tration distribution curve, to find three parameters in the general 

one-dimensional stoc.hastic model is not th e best way. More study 

should be done to find a better parameter with good physical meaning 

to the dispersion process to replace the skew parameter. 

7. After this. general one-dimensional stochastic model has 

been t ested, the two-dimensional stochast ic model developed by Sayre 

and Conover (1967) should also be test ed . 

8. The Aris' moment equations should be generalized to the 

three-dimensional cas e , so that it can be applied to th e point source 

dispersion study. 

9. More studies about the velocity distribution of flow, fall 

velocity of sediment particles, th e exchange of sand particles between 

the bed and the flow, and the mechanics of entrainment should be under­

tak_en, especially in an alluvial channel, so the paramete rs us ed in 

the Aris ' moment equations can be better det ermined . 

10. The total sediment discharge should .be analyzed, so the 

total sediment discharge equation, Eq. (3-69) can be tested. 
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APPENDIX A 

COMPUTER PROGRAM AND SUPPLEMENTARY 
INFORJvlATION OF ARIS MOMENT EQUATIONS 



Variable 

OT 

DY 

Kl 

K2 

K3 

E (I) 

U (I) 

EA (I) 

T 

B 

A 

G 

UA 

CO(I,J) 

Cl (I ,J) 

C2(I,J) 

C3(I,J) 

WO(J) 

Wl(J) 

W2(J) 

W3(J) 

Name 
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SELECTED VARIABLE NAMES USED IN PROGRAM 
FOR SO LVI NG ARIS MOMENT EQUATION 

Term Repres ent ed 

tn 

1/lln 

No. of fir steps in 
program 

No. of fir st eps between 
print outs 

equation 3-55 

equation 3-56 

K 

8 

a 

C (n, r ) 
0 

cl (n,r) 

c
2

(n, r ) 

c
3

(n, r ) 

W
0 

(r) 

~l (-r) 

W
2 

( T) 

· W3(T) 



Vari ab l e Name 

sco 

suco 

ECl(I) 

SCl 

VAR( I) 

SC2 

S(I) 

us 

ESC1 

AVAR 

SK 

EW 

VARW 
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Term Represented 

Kl 

moC-r ) LC (I,J )DY 
. 0 

6 

Kl 

I= 1 
Kl 
L c0I,J)U(I) t.n 

I = 1 

L C1(I,J) M1 

1=1 

o~ (n,-r ) 

Kl 

L c
2 

(I ,J ) tin 

I-= 1 

Kl 

L c
3 

(I ,J ) l'ln 

I=l 

µ (-r) 
s 

"[s(, ) 

0~ (,) 

ss (,) 

"[wC,) 

o~(-r) 
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l Variable Name Ter m Represented ' l SKW sw(T ) 

t 
UST ~ (T) j 

COT mo( T)+Wo (T) 

CIT °fT ( T) 

VART o{.(T ) 

SKT ST(T) 

l 



I 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Sum 

.l. .<. I 

Velocity and Diffusion Coe fficient s 
in Program for Solving Aris' Moment 
Equations, Logarithmic Velocity 
Distribution, DY= 0.1 

U (I) E (I) 

~2.30258 0 . 00000 

-0.91629 0. 54000 

-0.39303 0.96000 

-0.05325 1.26000 

0.19941 1.44000 

0. 40077 1.50000 

0.56829 1.44000 

0.71157 1.26000 

0.83688 0.96000 

0.9482 3 0.54000 

0.00000 

0.00000 

E(A) 

0 . 28000 

0.76000 

1.12000 

1.36000 

1. 48000 

1. 48000 

1.36000 

1.12000 

0.76000 

0.28000 

10.00000 
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CASE 1 

* FOR TRAN 
PRO GRA ;,•, SAYRE 
DI MENSI ON E(51) , U( 5Cl ,EA( 5Cl , C0(5 0 , 2l , Cl (5C,2l , C2 ( 50 , 2l •EC1(50 l t 

1 .VAR(5 0 l , D2 ( 50 l ,D 3(5 0 l , D4( 50 l , D5(5C l , C3 ( 50 , 2) , S (5C l , D6 (50 l; 
2 110 ( 2 ) , 1,; 1 ( 2 ) ' ·,: 2 ( 2 ) ' l\1 3 ( 2 ) 

10 FCRMAT ( F8.6,F 5 . Z,! 3 ,1 X, 2 I 9 l 
READ (5 ,l Ol DT, DY , Kl,K2 , K3 

20 FOR~AT (3F6 . 3 , FB . 5 , F7 . 3 l 
25 - FORMAT (lHO , ?H T =,F 6 . 3 , 5H • 5 = ,F6. 3 , 5H , A = , Fo . 3 , 5rl , G = ,F 8 . 5 , 

1 6H , UA =,F7 . 3//l 
K4=Kl+ l 
K5=K l-l 

30 FORMAT(F8 . 5 , 3X , F8.5 , 3X ,F 8 . 5 l 
READ (5 , 30) (El I l , U(Il , EA( Il,I =l,Kll 

35 FCRMA l (F8 o5l 
READ (5 , 35 ) E(K4l 
Dl=DT / DY 

36 READ ( 5 , 20 ) T, a ,A,G• UA 
I F (T- 9 . 999 ) 37 ,1 7C ,170 

37 wR !TE (6 , 25 ) T,B , A, G, 0 A 
D7= D1*6 o*B* (l.-Al 
Do = DT*A* 6 o*ti 
D9=0 . 0 
Gl = Dl*G 
G2 = DT*G 
DO 4 8 I = 1, K 1 
DZ < I l= E( I+l l/ DY+ 6 . *c 
D3 (I l=E (ll/ DY 
D4(l l=6 • *DT* ( U(Il+T*UAl/T **2 
D5 ( I l=2 • *DT*EA ( I l 
D6 (Il =D41 Il/ CT 
Cl(I,ll=O•O 
C2 (l,l l=C oC 

4C C3(I,ll= Oo0 
CO ( l,ll=lC oO 
DO 45 1= 2 ,Kl 

45 CO (l,ll= OoO 
WO=O . O 
Wl(ll = Oo C 
\~'2 (1 ) = c . c 
'l'/3 (1) - o. c 
L=l 
DC 160 J=l , KZ 
I=l CO(I,Zl=CO ( I,1l+Jl* ( ) Z( ll*!Cu (l+l,ll-CL( l,lll l +~7*C0 (I,ll 

l + Gl* wC(ll 
DO 50 I= 2 , K5 

50 CC(I, 2 l =C0 (I,l l+ Dl * ( G2 (l l * (C ~ (l+l,ll- CG( I,lll-D3( l l * ( Cv ll,ll-

l CC( I-1,l l l l 
I= Kl CO ( I , 2 l =CC ( I , 1 l - D 1 * ( i) 3 ( I l * ( C:J ( I , l l - CO ( I -1 , 1 l l + 6 • * f; ·:t C:..; ( I , 1 l l 
WC ( 2l = ~C (ll + DB*CC (l, ll - GZ* ~O(ll 

I=l C 1 ( I , 2 l = C 1 ( I , 1 l + J 1 * l C 2 ( I l * ( C 1 ( I+ 1 , 1 l -C 1 ( I , 1 l l l + JL ( I l *CJ ( 1 , 1 l 
1 +D7*Cl(! ,ll + Gl * ,- 1 (11 

{.) (.; oC I=2, K5 
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BC Cl!l,2l=Cl!l,ll+Cl*!l2!ll*!~l! l+l,ll-Cl! ! ,ll )- D3 ! ! l*!Cl! 1,1)-
1 Cl!I-l ,ll ll+0 4 !ll *CCJ!ltll 

!= Kl 
Cl!!,2l=Cl! I,ll-Dl*!D3!1 l*(Clll,ll-Cl(l-1,ll l+6•* d*C ll I ,ll l 

1 + D4 I I l *CO I I ,1 l 
Wl!2) = \'ll(ll + DB*Cllltll - D9*\•, 0 lll - G2* ',.'lll l 
I= 1 
C2!1,2l=C2(l,ll+Jl*IG2(1l*(C2(1+1,ll-C21I,llll+2.* D4(Il*Cl1I ,l l 

l + 05 11l *CC !I,ll + D7*C21l ,ll + Gl* 'w2 1ll 
DO l CC I= 2 , K'S 

1 00 C2! l,2l=C 2 1 I,ll+Dl*I D2 11 l*(C21l+l,ll-C2! I,l) l- D3 1 ll * IC 2 1 I ,1)-
1 C2 11-l,llll+2•*G4 1Il *Cl(l , ll+ J5 1Il *CO I I , ll 

I= i< l 
C 2 I I , 2 l = C 2 I I • 1 l - D l * I i) 3 I I l *IC 2 ( I , l l -C 2 I I -1 , l l l + 6 • * ::, *C 2 I I , l l l 

1 +2 . *D4 lll *Cl( l,ll+ 051ll*CO ll,l) 
02 12 1 = ~2 11) + DB*C211 ,ll - 2 • *D9*w llll - G2* ~2 1 ll 
I=l 
C31I,2l=C3!I,ll+ Dl* ( D2( I l*IC3( l+l,ll-C31 I •ll l l+3 . *D4( I l *C2 1I ,1 1 

1 +3 . *D51I l* C1II,1l + D7*C3 1!,l) + Gl* V.,13111 
DO 1 0 5 !=2 , K5 

l O 5 C 3 I I • 2 l = C 3 I I • 1 l + D 1 * I D2 I I l *IC 3 I I+ 1 , 1 l -C 3 I I , 1 l l - D 3 ( I l * ( C 3 I I , 1 l -
1 C31I-l,llll+3 . * D41Il*C2!I , ll+3 . *D,ll l*Cl(I ,l l 

!= Kl 
C3 (I• 2 l =C3 (I• 1 l- Dl * ( C3 ( I l * ( C3 (I, 1 )-C3 ( 1-1, 1 l l + 6 • * .::i*C3 I I , l l l 

1 +3.* 0 4(Il*C2!1tll+3 . *D,! Il*Cl1Itll 
~3121 = ~3 (11 + D6*C3(1 ,ll - 3 . •0;•~ 2111 - G2* ~3(ll 
IF IJ-L- i<3 ) 15 0 ,l l : , 17C 

11: SC O=:J . " 
S UCC =C . C 
sc1= :. . c 
SC2= 0 . C 
SC3= C . :J 
DO 12: I=l , Kl 
SC C =S C~ +CC(! , l l*DY 
SL,C G= ~u CO+D6 I I l *CO (I , 1 l *DY 
I F ! CO (! , lll 115tll 6 dl :i 

115 ECl(ll=Cl (ltll/ C.u lltll 
VAR ( I l = C 2 < I , l l /CO ( I , l l - E. Cl I I l * * 2 
S(! )=IIC3( I,1)-3.*ECi( I l*C2( I • l l l/ CGI I , ll+ 2 . *EC1 1I l **3l/ 

1 VA ?- (ll **l o 5 
G:J TC 117 

11 S ECl(! )= C . C 
VAR l!) =0 . : 
S ( I 1= : . : 

11 7 SC l =SC l+Cl(l,ll *DY 
SC2=SC2 +C 2 (I, 1 l *DY 

12 G SC3=.:;,C3+ C .3 (ltll* CY 
IF l ~ CG- C. :Cv:l l 36 , ;6 , 121 

1 21 US = Sl- CCJ / SCC 
ESC l= .::-C l/ .:iCC 
AVA R =~c 21 s c0-~~c1••2 
SK =( ( ~C 3-3 . · ~ ~ Cl*~C2 J l:co+2 . •c:c1•*3l/AVA~**l . 5 
I F I ·;. C ( l l l 1 2 5 , l 2 6 , l 2 :; 
LJST =S CO'-< U.:.: 
VA,::;., •;., = ,· 2 ( 1 l / :. C I l l - E · •. * * 2 
SK,._ = I ( "· 3 I ;, l - 3 • * c .. '.} :. 2 ( l l l / , .. ·.., ( l l + 2 • '.}::. :. * li :; ) / \ • f... f.. :. * <f 1 • : 
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COT = sea + ~O (l) 
U~ T = SCO*u5 - ~C lll *o e*UA / T 
ClT = ( SCl + 1,,l (lll / Cv T 
Cd = ( SC2 + ,, ,: lll )/ Cv T 
VART = C2T - ClT**2 
C :; T = ( SC :; + ,., 3 ( l l l / C Ci T 
SK T = (C3T - 3 . •ClT *C 2T + 2• *C lT **3 l/ VA ~T**l • 5 

126 Jl= J - 1 
1 3C FCRMA T(l h ,! 5 , 3X ,1 3 , 3X , FS . 5 , 3X , F9 . 4 , 3X , Fl : . 4 , 3X , F~ . 4l 

v,1R IT :: I 6 , 1 3 () l ( J 1 , I , CC I I , 1 l , EC 1 ( I J , \/ ,1. RC I l , ~ ( I l , I = 1 , 10 J 
14 ~ FOR MA T (1 HC ,1 5 , 3X , F8 . 4 , 3X , F6 . 5 , 3X , F; . 4 , 3x , Fl0 • 5 • 3X , F9 . 5 /l 

WR ITE (6 , 14 0 ) Jl , U~ , 5CO , ESC1 , AVAR , SK 
144 FCi-< MA T< l H ,I~, cX , r '> . 4 , :,x , Fo . ~ , :,x ,f 9 . 4 , 3X , FiC . :;; , ., X, F'i . ~/// ) 
14 5 FC R~A T( lrl ,1 ~ ,14 X, Fb . 5 , 3X , F9 . 4 , 3X , fl 0 . 5 , .,i , F~ . 5//l 

I F ( ·.-. 0 I 1 l l 1 4 6 , 1 4 7 , 1 4 6 
1 4 6 w R I T E ( 6 , 1 4 5 J J 1 , ,·, (.; ( 1 l , c. ·,: , VA R ,·i , 5 K 1, 

WRITE ( 6 , 144) Jl , ~~T , CO TpClT, VAR T, SK T 
147 L=J 
1 5 ~ ... ,o C 1 l 

i\'l ( 1 l 
1,.;2 ( 1 ) 

= 
:: 

= 

l',0 ( 2 l 
.,,, 1 C 2 l 
·.:2 < 2 l 

',d ( l l = ·,,;3 ( 2 l 
DO 16 ;". I= l , K 1 
COC!,ll= CC C!,21 
Cl CI tl l =Ci ( I, 2 l 
(2 (! , 1)= (2 (!, 2 ) 

160 C~C I,ll=C ~ ( 1, 2 ) 
Gv TC 36 

17 0 STO P 
ENO 
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CASE 2 

Essentially there is no difference between the conputer progr am for 
case 1 and case 2, except the initial and boundary conditions. The 
difference betwe en case 1 and cas e 2 are list ed as follows. 

Case 1 Cas e 2 

D6(I)=D4(I)/DT D6(I)=D4(I)/DT 
Cl(I,1)=0.0 CO(I,1)=0.0 
C2(I,1)=0.0 Cl(I,1)=0.0 

40 C3(I,1)=0.0 C2(I,1)=0.0 
CO(I,1)=10.0 40 C3(I,1)=0.0 
DO 45 1=2, kl WO (1) =l. 0 

45 CO(I,1)=0.0 Wl (l)=O. 0 
WO=O.O W2 (l)=O. 0 
Wl(l)=O.O W3(1) =0.0 
W2(1)=0.0 
W3(1)=0.0 
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APPEND IX B 

COMPUTER PROGRAM AND SUPPLEMENTARY 
INFORMATION FOR THE GENERAL 

ONE-DIMENSIONAL STOCHASTIC MODEL 
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SELECTED VARIABLE NAMES USED IN THE PROGRAM 
FOR THE GENERAL ONE-DIMENSIONAL STOCHASTIC MODEL 

Variable Name 

F 

G 

T 

TABLE (J) 

X 

XKl 

XK2 

Term Represented 

r 

t 

ganuna function 

from mathematics tab le 

X 
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134 

* FOR TRAI\ 
PRO G~Ai•i FUNX T 
DI ~. ENS ! ON X( l OC ) , TAt:. LE<2 Cl) , u l ( 4 CO) , lJ 2 ( 40Cl , G3 (400 ) ,X K1X( l 00 ) 

3 READ (S , 4 l ( TAe LE(J ) , J=l 00 , 2CCl 
4 FGR~ AT (l CFo o5 ) 
l RE AD ( 5 , 2 ) T , XK 1 , XK 2, G 

I F (T . Ec . 222 . 22 222 ) o0 ,6 
2 FORMA T (4F 8 .5l 
6 Ml =l 

l C ~,2 =Ml +9 
RE AD ( 5 , 9 l ( XP1), :-.',=:,, l, M2 l 

9 FOR~A T <1CF6 . 5 l 
DO 5 1V, =Ml, M2 
I F ( ( X( M)-. 00C~ S )-. QOC 1C l 

7 i<.I =,V, -1 
GO TC 6 

. 5 CCN T I NU E 
~, l =M2+1 
GO TC 10 

8 N=l CC. 
~R I TE (6 ,7 0 ) XK 1 , XK2 , G,T 

70 FORMA T ( 4F l Co5 ) 
DO 74 1-l =l , KI 
DO 4:> I=l,N 
XI = l 
XI G= XI *G 
X i<. l X ( 1·1 ) = X r( l * X ( ;vi ) 
I F ( X l G. E G: . 1 • C ) GC TO 3 9 

25 CCN T! NU E 
. !GX=XIG* l OC. C 
J = ! GX 
I F ( Xl G- 2 . C) 3 1 , 31, 4C 

31 IF ( XI G- l oOl 36 , 39 , 36 

7, 7 ,5 

36 Cl ( l ) = ( XKl X( ~ )** ( X!G- 1 . 0 l )/T A3LE(J) 
GO TC 45 

35 J J =( X!G+l. Cl*l GC oC 
J =J D 
u l( l l = ( XKl X( ,V, ) **(XlG - l oOl )/( TAb LU Jl/XI GI 
GO TO 4 :> 

3 <; Ql ( l l=l.O 
GO. TO 45 

4::; P=XIG-1. 0 
L=P-1 
DC 4 2 K=l,L 
o =K+l 

42 P=P * ( XlG- 5 ) 
C= L+l 
J= ( Xl G- Cl *l OG . C 
Gi-. =P*T A:: LE ( J) 

4 4 Gi 1 ( l ) = ( X ~ l X ( ;,·. l * * ( X I G - 1 • G l l / GM 
45 ( t.,,\Tli'; UE 

XKZ T=XK 2* T 
G2 ( l )= XK.2 T 

J 

' 
• t 



DO 48 1=2,N 
XI= I 

48 02 ( IJ=02(1-ll*XK2T/Xl 
DC 63 I=l, N 

63 Q3(1J=Gl( ll *OZ(ll 
SUM=J oO 

6 6 DO 67 l=l, N 
6 7 Su l'.= ::,UM+ G 3 ( l l 
68 CONTINUE 

Q4=EXP( - X~lX<M l-XK2 Tl 
F = XK 1 *G4*5UtJ, 
~R ITE (6,711 ( X(~ l,Fl 

71 FOR~AT (2Fl5o 5 l 
74 eONT lNUE 
75 GC TO l 
80 5 TOP 

END 
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APPENDIX C 

CO RE SAMPLE RESULTS AND SOME 
COMPARISONS WITH RESULTS FROM 

LONG ITUDINAL CONCENTRATION 
DI STRIBUTION EXPERIMENTS 
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APPENDIX D 

COMPUTER PROGRAM AND 
SUPPLEMENTARY INFORMATION FOR 

tHE VARIATION OF BED ELEVATION 
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SELECTED VARIABLE NAMES USED IN THE 
PROGRAM FOR THE DISTRIBUTION OF BED ELEVATION 

Vari able Name Term Represented 

J>rogram 

ID 

N 

y 

X 

SD (I) 

ST(I) 

SS (I) 

JJ 

SDX(I) 

FJJ 

Identification number 

Number of data 

Original data of bed 
elevation y 

-Data of negative slope 
bed elevition 

SUJJ1 of original data to 
·th 1 power 

N 

=Ei 
. 0 J ]= 

Sum of data after trend 
line removed to i th power 

N 

E i = Y. 
j=O J 

Surr\ of data after 
standardized and trend line 
removed to the i th power 

= 

: 

N 

I i y. 
J 

j::.O 

Number of n.egati Ve slope 
data · 

JJ 

E i 
X 

k=O 
k 

Number of x's (negative 
slope data) 
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Vari ab le Name 
Term ReEresented 

FJJ 

STX(I) I i after trend line x. 
J removed 

j=l 

FJJ 

SSX (I) 
;: i after trend line x. 

J r emoved and 
j=l standardized 

Sub r outine t rend 2 
N 

SY r y. where y is the 
J ordinate 

j=l 

N 

SXY I x.y. 
1 J 

j =l 

where x is abscissa 
(s ame as distance) 

,, 
N 

SY2 I y , 2 
J 

j =l 

N 

SX I X, 
J 

j=l 

N 

SX2 I x .2 
J 

j=l 

B Slope of trend line 

A Intercept of trend line 

Yl Computed Yon trend line 



• 

• 

Var i able Name 

Subroutine MOM2 

XMO (I) 

XMM (I ) 

VAR 

STD 

COY 

CON 

CSKEW 

CKUR 

Subroutine FREQ3 

CL 

PROB 

Sum (J) 

Subroutine STD2 

YBAR 

s 

.L.JO 

Term Represente~ 

i th moment about origin 

. th b t 1 moment a ou mean 

Variance 

Standard deviation 

Coefficient of variation 

Constant 

Coefficient of skewness 

Coefficient of kurtosis 

Lower class limit 

Prob abi 1i ty 

N r ~j 
k:cl 

where x = bed elevation 

y 

Standard deviation of Y's 
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*FOR TRAl'l 
PROGRA t-11 YANG2 
CO MM ON DX,CUA,NCL, M 

159 

DI.'I.ENSIO N X<l CCC l , Y(l 00 0 l , SD <,4l , ST(4l ,5 5 ( 4) ,$DX(4) ,STX(4l , SS X(4) 
READ (5,99)DX,CUA,N CL, M 

99 FOR MAT !2Fl0.2,2110l 
C ZE RO OUT SUMMAT ION S 

2 DO l I= l, 4 
Su (Il=O.O 
ST ( I l =-0 • 0 
SS(Il=O . O 
SDX(Il=O . O 
STX(I)::o.o 

1 SSX( I l= O.O 
READ<5,1 0C l ID, N 

10 0 FOR MAT( l9,4X,I3l 
IF (I0 .EQ ollllllllll4,3 

3 WRITE<6 ,1 02 lI D, N 
102 FORM AT<*l*,IlO , lOX, *I\ =*,15,lC X, *A LL DATA*) 

REA D(5,1 Cl)(Y(l),l=l,Ni 
iOl FOR MA T(l6(F4.2,1Xll 

JJ=O 
Nl=N-1 
DC 50 I=l,Nl 
IF(Y( l+l)oLT.Y( 1))51,50 

51 jj:JJ+l 
X(JJl=Y(l) 

5 C co 1T I NUE 
DO 5 I= 1 , N 
DO 5 IJ=l ,4 

5 SD< IJ)= SD < lJ)+Y( I l** IJ 
Fl\= N 
WRITE (6,l C> ) 

103 FORMAT( // * STATISTIC S OF RA~ PA TA*) 
CP.LL MOt--:2 (5 0 ,F I\ ) 
CALL TR END2<Y , N,F ~l 
J=l 
DC 6 I= 1, N 
DO 6 I J:: 1, 4 

6 ST< IJ) ::ST <IJl+Y<Il **IJ 
WR ITE(6,1 04l 

104 FCR MAT(//* STATISTIC S OF DA TA ~ IT H TRE ND LINE REMOVED* > 
CA LL MOM 2.< ST,F1 ) 
CALL STD2 <Y, N,FNl 
K=l 
DO 7 I= 1, N 
DO 7 I J:: 1, 4 

7 SS (IJ)= SS (lJ)+Y<Il **I J 
WRITE (6,l C5l 

105 FCRMAT(//* STATI STIC S OF STANDARD IZ EJ DA TA W!Trl TREN D LIN E RE~OVE 
l D* l 

CALL MOM 2(SS , FN ) 
WR ITE ( 6 ,1 88 ) 

10a FC~MA T( *1DI STR I~0T I ON OF ELEVAT ION~ uSI~G ALL GA TA* ) 
CA.LL FREQD3(Y , ~ l 
','t'R IT E (6tl C6l 10 ,J J 
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160 

106 FORMA T(*l*,Il C,l CX ,•~ =•,1s,1ox,•cc~ STREA M DATA ONLY*) 
DC 8 I=l,JJ 
DO 8 IJ=l,4 

8 SDX CIJ) =SDXC!Jl+X !Il**IJ 
FJJ=JJ 
WR ITEC6dC3) 
CALL MOM 21S DX,FJJ ) 
CALL TREND2CX,JJ,FJ J) 
DO 9 I= 1, JJ 
DO 9 I J= 1, 4 

9 STX CIJl= STX!lJl+X CI)**IJ 
WRITEC6 ,104) 
CALL MCM 21STX,FJJ ) 
CALL STD2(X,JJ ,FJJ) 
DO l C I=l ,JJ 
DO 10 I J= 1, 4 

lC SSX CIJJ= SSXC1Jl+X CI)**IJ 
WR ITEC6tl C5 ) 
CALL MCM 2CSS Y,~JJ) 
\l.' RITE C6tl07) 

i07 FORMAT( *lDISTRl~U TIC N OF ELEVATIC~~ USI NG DO~N~ TR~A M DATA ONLY* ) 
CALL FREGD3CX,JJ) 
GO TO 2 

4 CAL L EXI T 
END 

SUSROU TIN~ M0M2 CSUMX , FNX) 
DI MENSION XM0(4) ,XMMC4) , SUMXC 4) , 
IF CFNX -~t. 3.lJ GO TO 8049 
wRITE !6tl00 J FNX 

100 FOR~AT C*CFNX = * ,F3,l/) 
Go ro scoo 

8049 DO 8050 I =l,4 
80$0 XhO CIJ=SU MX!lJ/FNX 

XMM (2)= XMO C2)- XM0 tlJ**i 
XMM C3)=XMO C3l-3 ,0*X~C C2)*X MO !l)+~. O*XMO !ll **3 
XM MC4l=X M0 (4l-4 . 0*XM0 C3l•XM0 !1) •6 . 0*XMO C2)*X MO (ll**2-3.0*XMO(ll**4 
XM-1 /ii~c.c 
VAR=F NX*X~M C2)/CFNX-l, C) 
S TD=SCRTF C VAR l 
wRITE OU TPUT TAPE 6,6 054,X ~O CI) , VAR,STD 

6054 FCR MA TC7HOMEA N =,E15, &, 5X , 10HVARIANCE = , E15 , 6,5X , 20HSTANDARD DEV IA 
lTI ON =,El5,ol 

I,F C Ab SF C X ,v,o C 1 ) l - • 0~ C 1 ) & C 5 6 , ti C 5 o , 13 C :> 7 
8056 CCV=~ 99~9 ~,9~ 
8057 COV=~T D/XMO Cl) 

( ON =F NX**2 /( CFNX-l, O)* (FNX-2,0)) 
CSK E~=C ON*XMM (3)/(VAR*STD 1 
CK UR =CON*C CF NX +l . Cl*X Ml~ C4J-3,0*CF NX-l . O)*X MM (2l **2 l/C <F NX-3 ,Cl*VAR 

1**2 ) 
WRITE OUTPUT TAPE 6 , 8055 , COV,CSKEW,CKUR 

8055 FO RMAT C27H COEFF ICI EN T OF VARIATION =,El5,8, 5X 1lOrlS<EWNESS =,El5,8 
1,5X, 8H EXCESS =,El5 • 8 J 

8000 RE TURN 
END 
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SUBROUTINE TREND2CY , N,F Ni 
COMMON DX,CUA,NCL,M 
DIMENSION Y(lOCOl 
sv.,o.o 
SXY= O.C 
SY2 2 0.0 
DO 20 l=l, N 
Fl=l 
SY::SY+Y( I l 
SY2=SY2+Y<11**2 

161 

20 SXY=SXY+Y(ll*FI 
SX=FN*CFN+l.OJ/2~0 
SX2=FN*CFN+lo01*<2•*FN+l.Ol/6o0 
W2 FN*SXY-SX*SY 
U=FN*SX2-1SXl**2 
8=\\'/U 
A=1SY-8*SX1/FN 
WRITE16 ,2C Cl8,A 

200 FCRMATI///* TREND LI NE IS Y **,F6.3,*X + *,FB.3) 
DC 12 I= i, N 
FI=I 
Yl=o*FI+A 

12 Y<l>==Ylll-Yl 
RETURN 
E'.ND 

SUBROUtINE STD21Y,N,FNI 
CO MMON DX,C UA , NCL , M 
Dl~ENSION YllOCCI 
SuM=J.O 
Sutv',2=Co0 
DO l I= i, t-; 

1 SvM=SUtv',+Y I I l 
DC 3 I= l, N 

3 SUM2=SU~2+Y(11*Y(I1 
YBAR=SUM/FN 
S=SQRTI CSUM2-1SU~**21/F~1/(FN-l . Cl I 
DO 2 I= 1, N 

2 YCI1=IYCI1-Y3ARl/S 
RETURN 
ENC 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C . 
C 

C 
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• C 
C 

C 

.. 

l :l 

21 

31 

22 

23 

32 
24 
4 (; 

11 J 

suaROUT I ~E F~E~D3 (X , N) 
CO M~O N CX, CLA , NCL , ~ 
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DI NEN S I ON X(l OCC ) ,FJ(l5 0 ) , S~M (4) 

Thl S ~UBRO~TfNi COMPuTlS AND P~I~TS A Pk ~d Al ILITY ~ lST~lbUTIOr.... . 
DATA CAI\ oE oO Th POSITIVE ANJ 1'lEGATlVE 

LI ST OF VAR IA 5LES 
DX= CLAS S ',, I D T rl 
CU=UPPER CLASS LI ~ IT 
NC L= NU NBER CF CLASSES 
M=SE: UEN CE NU~a ER OF FIRST CLA SS CONTA I NI NG PCS ITIVE NU MB ERS 
JX= SECUENCE NU Nd ER OF CLASS 
X=DATA 
Sl.J M(JJ=SU M CF X-S TO JTh PO~E R 

CiJ=CUA 
DO 1 0 I "' l , l 5 0 
FC ( IJ:;:Q . O 
PLACE 0A TA Ir.... ThE PROPER CLASS 
DO 4 " 1"'1 , N 
IF(X(Ill21 , 22 , 23 
JX:;:X(ll / :JX 
JX:;: M-l+J X 
IF(JXl31 , 31 , 24 
JX:;: 1 
GO TC 24 
JX=M 
GO TO 24 
JX=X(I) / JX 
JX=~'+JX 
!F(JX-NCLl 24 , 24 , 32 
JX=NCL 
FDiJ X)"'F Dl JXl+l oC 
CO I\ TINUE 
PRINT FRE : CIST RI 6U TI C. -T HE TITLE CF THE CI S TRI6UTION MU ST BE 
PR ! NTE J 3EFORE CALL I NG THIS 5U5ROU TI NE 
',~R I TE l 6 , 110 l 
FOR~A T(~X , *CLA SS * , l CXo• PR OB ~* l 
FN=N 
PR O:i =FD ( 1 l/FI\ 
wR ITll6 , lll)CJ , FROb 

111 F0R~AT(2X,*5EL0~*,3 X,F5 .2 , 5X,F5 . 3 ) 
Nl= NCL-1 
DC 3 G I "'2 , N 1 
CL=CU 
CU:;:( l.J +DX 
PR Oc "'F D( I l/F1'l 

3C ~R ITEl6 , 112lCL,Cl , PR06 
112 FOR~ AT(lX , F5 . 2 , * TC * , F3 . 2 , 5X, F5 . 3 l 

PR Oc =F D ( NCL ) /r1\ 
~R IT E(6 , 11 3 )C iJ ,P R03 

11 3 FGRM AT(2X,*A 60 VE*, 3X ,F5 o2 , 5X ,F5 . ~ l 

RETURN 
END 
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