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ABSTRACT OF DISSERTATION

STOCHASTIC SIMULATION OF HYDROLOGIC DATA BASED ON
NONPARAMETRIC APPROACHES

Stochastic simulation of hydrologic data has been widely developed for several
decades. However, despite the several advances made in literature still a number of
limitations and problems remain. The major research topic in this dissertation is to
develop stochastic simulation approaches to tackle some of the existing problems such as
the preservation of the long-term variability and the joint modeling of intermittent and
non-intermittent stations. For this purpose, nonparametric techniques have been applied.
For simulating univariate seasonal streamflows, a model is suggested based on k-nearest
neighbors resampling (KNNR). Gamma kernel density estimate (KDE) perturbation is
employed to generate realistic values of streamflow that are not part of the historical data.
Further, aggregate and pilot variables are included in KNNR so as to reproduce the long-
term variability. For multivariate streamflows, the moving block bootstrapping procedure
is employed considering a random block length, KNNR block selection to avoid the
discontinuity between blocks, a Genetic Algorithm mixture, and Gamma KDE
perturbation. In addition, the drawbacks of an existing nonparametric disaggregation
scheme have been examined and appropriate modifications developed that include
accurate adjusting for the disaggregate variable, KNNR, and Genetic Algorithm mixture.

The suggested univariate, multivariate, and disaggregation models have been compared
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with existing nonparametric models using several cases of streamflow data of the
Colorado River System. In all cases, the results showed major improvements.
Furthermore, disaggregation from daily to hourly rainfall for a single site has been
studied based on three disaggregation models so as to account for the diurnal cycle in
hourly data. Those models are (1) Conditional Markov Chain and Simulated Annealing
(CMSA), (2) Product Model (GAR(1)-PDAR(1)) with Accurate Adjusting (PGAA), and
(3)Stochastic Selection Method with Weighted Storm Distribution (SSMW). Various
tests and comparisons have been performed to validate the models and it revealed that
PGAA is superior to the others for preserving the diurnal cycle and the key statistics of

hourly rainfall.

Taesam Lee

Department of Civil and Environmental Engineering
Colorado State University

Fort Collins, CO 80523

Fall 2008
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CHAPTER 1

INTRODUCTION

1.1 Study Motivation and Background

Water allows living creatures to exist on the earth. The amount of water is not
proportionally distributed. Complex physical reactions on the surface and in the
atmosphere of the earth cause diverse climate regions. If the average annual precipitation
is less than 500mm and the average annual potential evapo-transpiration exceeds 800mm
in a region, the region is defined as arid (McMahon, 1979). In large river basins one may
find a variety of climatic regions such as arid, semi-arid, and moderate. For example, the
Colorado River system includes arid zones such as Arizona and Nevada, semi-arid areas

such as Colorado and Utah, and the moderate zone of California.

The Colorado River is one of the main sources of water for several states in the
western United States. Water management is an important issue in the Colorado River
system. Generally, some water is delivered from places where plenty of water exists to
the places where water is scarce. Planning the storage, diversion, and delivery of water

must consider current and future conditions of the available water resources. Estimating



the future availability of water resources is not be easy task. Stochastic simulation have
been suggested to create possible streamflow scenarios that may arise in the future. The
simulated data allow water managers checking many possible options. Many models for
simulating streamflows at monthly and yearly time scales have been developed and

applied in water resources management area.

The time series simulation models that are typical in hydrology and water
resources include Autoregressive Moving Average (ARMA), periodic ARMA (PARMA),
multisitet ARMA (MARMA), contemporancous ARMA (CARMA), and disaggregation
models (Salas, 1980, Loucks et al., 1981). These models are linear and assume normal
distribution. Since hydrologic data such as rainfall and streamflow are not normally
distributed, data transformation is unavoidable. The data transformation might induce
bias on key statistics such as the mean and standard deviation of the original variable in

real domain even if there are no biases in the transformed (normal) variable.

In the last two decades, nonparametric simulation techniques such as
bootstrapping, k-nearest neighbors resampling, conditional kernel density estimate,
nonparametric disaggregation, and more have been developed to provide alternatives and
get around some of the shortcomings of parametric models. In this study, the current
nonparametric simulation techniques for streamflow data are investigated and drawbacks
of the techniques are revealed such as generating only historical values, and the repetition
of seasonal and spatial patterns. In order to tackle the drawbacks of the current
nonparametric models, a number of modifications are proposed such as Gamma KDE
perturbation, the inclusion of aggregate or pilot variable, Genetic Algorithm mixture, and

combination of nonparametric disaggregation and accurate adjusting. Furthermore, the



proposed modifications will be useful for simulating intermittent and non-intermittent

streamflows jointly at several sites.

In addition, finer time scale data such as hourly precipitation are needed for water
quality modeling and dam operation. A disaggregation model from daily to hourly is very
useful becausé often only daily data are available. Even though some disaggregation
models have been developed, the diurnal cycle that may be an important feature in some
areas has not been considered. Therefore, some disaggregation models from daily rainfall

to hourly are proposed that include the effect of the diurnal cycle.

1.2 Objectives of the Study

The general objective of this research is developing nonparametric simulation
techniques that are applicable to hydrologic data such as streamflow and rainfall. For
streamflow data, nonparametric models are mainly focused considering the long-term
variability and the joint modeling of intermittent and non-intermittent data. For rainfall
data, existing rainfall disaggregation models are enhanced to account for the diurnal cycle

in hourly data. Specific objectives that will be considered are:

(1)  To develop a model that is capable of generating seasonal streamflow data at
single sites. The model will be nonparametric which will enable one generating
data values that are not part of the historical data, it will avoid generating
negative values, and it will improve the preservation of long-term variability.
This will be accomplished by Gamma kernel density estimate (GKDE)
perturbation conditioning on pilot or aggregate variable based on k-nearest

neighbors resampling (KNNR).



(2)  To develop a model that is capable of simulating streamflows at multiple
stations. Nonparametric techniques are applied to generate sequences that will
produce feasible mixing (spatial and temporal) and the joint modeling of
intermittent and non-intermittent data. This will be done by the multivariate
bootstrapping with a random block length, KNNR block selection, and Genetic

Algorithm mixture.

(3)  To develop a model for disaggregating higher scale variable (e.g. yearly) into a
lower scale variable (e.g. monthly). The model must preserve the correlation
between the last month of the previous year and the first month of the current
year and be capable of spatially disaggregating data for intermittent and non-
intermittent sites. This will be accomplished by modifying an existing
nonparametric technique with the accurate adjusting and Genetic Algorithm

mixture.

(4)  To enhance the existing models to disaggregate daily rainfall data to hourly so

that the effect of the diurnal cycle are taken into account.

(5)  To validate and apply the various models listed in (1)-(4) using actual single

site and multisite data, particularly data of the Colorado River system.

1.3 Dissertation Qutline

This dissertation includes mainly four different modeling chapters followed by
conclusions and recommendations. In Chapter 2, a univariate model for generating

seasonal streamflow is proposed. The model uses the nonparametric techniques such as



k-nearest neighbors resampling (KNNR) and Gamma Kernel Density Estimate (GKDE).
In Chapter 3, a multivariate model is suggested to simulate multi-station seasonal
streamflow with nonparametric techniques such as bootstrapping and KNNR as well as
the mixing process with Genetic Algorithm. In Chapter 4, a model is proposed that
disaggregates higher-level data (e.g. yearly) into lower-level data (e.g. monthly). The
suggested model employs the nonparametric technique KNNR and the accurate adjusting
procedure. In Chapter 5, the current existing models that disaggregate the daily rainfall
data into hourly are investigated. The disaggregation models are enhanced to account for
the diurnal cycle. Chapter 6 presents conclusions and summary of the contributions from

this study followed by the recommendations for future study.



CHAPTER II

NON-PARAMETRIC SIMULATION OF SINGLE SITE SEASONAL
STREAMFLOWS

2.1 Introduction

Stochastic models of hydrological processes have been developed so as to
reproduce key statistical features of the observed hydrological data such as mean,
variance-covariance, skewness, seasonality, and long-term dependency (e.g. Salas et al.,
1980; Hipel and McLeod, 1994). The synthetic data obtained from these models are used
for evaluating alternative designs and operating rules of hydraulic structures, or analyzing
the effect of extreme hydrologic events such as droughts (e.g. McMahon, 2006). For this
purpose, a number of parametric models have been suggested in literature such as the
autoregressive moving average (ARMA) model (e.g. Salas et al., 1980; Loucks et al.,
1981), the shifting mean (SM) (Salas and Boes, 1980; Fortin et al., 2004; Sveinsson et al.
2003), and the fractional gaussian noise (e.g. Mandelbrot and Wallis, 1969). However,
most parametric models suffer from a number of drawbacks. For example, the marginal
distribution of hydrologic data is often non-gaussian which requires transforming the

observed data (e.g. using logarithmic or power transformations) prior to fitting the



models. However, modeling in the transformed domain may cause some bias in
reproducing the basic historical statistics (e.g. standard deviation) although modifications
have been suggested to correct for such bias (e.g. Fiering and Jackson, 1971; Chebaane et
al., 1995). Also gamma autoregressive models with gamma marginal distribution have
been developed to model AR auto-covariance instead of transforming the data
(Fernandez and Salas 1986, 1990). Still, if the historical marginal distribution is bimodal
or multimodal, it is difficult to replicate it with parametric models. And if an
inappropriate transformation function is applied to transform the skewed data, it may lead
to generation of extremely large values which may not be acceptable from the practical
standpoint. It is challenging to reproduce skewed data yet avoiding the generation of
negative values. Furthermore, non-linear relationships, which may be observed in the

historical data can not be captured by the usual parametric time series models.

To overcome some of the mentioned drawbacks (in parametric models,)
nonparametric models have been developed such as resampling techniques
(bootstrapping.) For example, block bootstrapping has been suggested (Vogel and
Shallcross, 1996) but because of discontinuity between blocks (each block is resampled
independently) only historical values are generated. Srinivas and Srinivasan (2005 and
2006) devised a hybrid model combining a periodic autoregressive model and block
bootstrapping. Their model was used for generating monthly streamflows of the Beaver
and Weber rivers in Utah and yield generated values other than the historical ones.
However, the model has limited variability especially where multi-season data are
generated because it uses yearly block innovations (Lee and Salas, 2008). On the other

hand, more elaborate schemes based on k-nearest neighbor resampling (KNNR), has been



developed by Lall and Sharma (1996). This resampling scheme has been further
advanced and applied by many researchers in the field such as Rajagopalan and Lall
(1999), Yates et al (2003), Prairie et al (2006) and Sharif and Burn (2007). For example,
Prairie et al (2006) modified the KNNR technique employing local polynomial regression.
Also, the conditional density estimate is used for nonparametric simulation instead of
utilizing the resampling scheme [Sharma et al. 1997 and 2002]. Independently, Young
(1994) applied a similar approach (called multivariate chain model) for generating
weather variables. Young’s method employs the discriminant space obtained from
multivariate discriminant analysis of the observed data and a set of similar days is chosen

from discriminant space using a nearest neighbor algorithm.

One of the major difficulties in simulating seasonal time series has been the
reproduction of interannual variability. The traditional approach to tackle this problem
has been using temporal disaggregation (e.g. Valencia and Schaake, 1993; Stedinger et al.
1985). In this approach the annual series is modeled and generated first, which are then
disaggregated into seasonal data (e.g. monthly). Also a nonparametric disaggregation
scheme has been devised by Tarboton et al (1998) employing conditional kernel density
estimate. These disaggregation models are not efficient since they employ the entire
relation structure in the lower scale time series. On the other hand, Koutsoyiannis and
Manetas (1996) suggested a simpler disaggregation scheme where the seasonal and the
annual series are generated by two separate models. The lower scale (i.e. seasonal) time
series are regenerated until the summation of the seasonal data is close to the higher scale
(annual) data, and then the lower scale time series data are readjusted to meet the

additivity condition. Still, some bias in the lower scale synthetic data is unavoidable



resulting from the adjustment. Sharma and O’Neil (2002) developed a nonparametric
simulation technique that employs the conditional kernel density estimate and the
summation of the previous p-months as a condition. Furthermore, the upper scale (e.g.
yearly) streamflow data may involve certain unique features such as long memory
(O’Connell, 1971) and shifting means (e.g. Salas and Boes, 1980; Sveinsson et al. 2003).
These features may be incorporated in the generation of seasonal streamflows indirectly
via temporal disaggregation as suggested above. Including these features directly in the
generation of seasonal streamflows is not straightforward. Nevertheless, Langousis and
Koutsoyiannis (2006) developed a seasonal streamflow generation model that is able to
reproduce long memory by using Fractional Gaussian Noise structure and

cyclostationarity.

In this study, some representative nonparametric simulation techniques are further
reviewed and analyzed. From reviewing their pros and cons new schemes for generating
seasonal streamflows are developed utilizing KNNR and a Gamma Kernel density
estimate which are geared to reproducing both seasonal and interannual variability. In
Section 2, a brief review of key nonparametric simulation techniques is described. The
mathematical description of the suggested model is illustrated in Section 3, followed by a
description of the data and the procedure for assessing the models in Section 4. Sections 5

and 6 show the results and conclusions, respectively.
2.2 Review of nonparametric simulation models

Let x,, define seasonal streamflow at time steps z =I1,..., @ (seasons) and

v=1,...,N (years) where @ and N denote the number of seasons (e.g. months) and years,



respectively. Furthermore, x, stands for yearly streamflow data where =1,...,N. The

superscripts G or H, e.g. x” or x/', will be used where referring to generated or historical

data, respectively. Also random variables for yearly and seasonal time series are denoted

by X, and X, _, respectively. Sometimes the lower-scripts are excluded where referring

to random variables. Three nonparametric simulation alternatives, are described here
such as k-nearest neighbor resampling (KNNR) (Lall and Sharma, 1996), local
polynomial with KNN innovation (LPK) (Prairie, et al., 2006), and nonparametric order
p simulation with long-term dependence (NPL) (Sharma and O'Neill, 2002). Pros and

cons of each model are also discussed from the authors’ point of view.

2.2.1 KNNR

The KNNR method was developed for the generation of yearly and monthly time
series by Lall and Sharma (1996) and applied to streamflow generation of the Weber
River in Utah. The mathematical background of this approach relies on k-nearest
neighbor density estimator that employs the Fuclidean distance to the k™ nearest data

' point and its volume containing k-data points. KNNR generates a value from the
historical data according to the closeness of the distance estimated from the current
feature vector and the historical feature vector. Thus the same values of the historical
data are obtained but with different combinations and orders. The procedure is

summarized below using as example the illustration in Figure 2.1.

Firstly two notations are employed to indicate the yearly scale, namely v refers to
years in the historical data and v =1,...,N while ¢ refers to years in the generated data and

z=1,...,NG where N is the required length of generation. Then, assume that the initial

10



value x{ is known and set D, =x{ (x{ may be taken randomly from the historical

values) and the number of neighbors £, is determined by k& = JN (Lall and Sharma,

1996). Then:

(a) We want to generate (resample) x° given the (known) feature vector D, = xﬁl.

For example, x, =2.39 in Figure 2.1.

(b) The k-nearest neighbors of x”, =2.39 are those values of x”, that have the
closest Euclidian distances relative to x”,. For example, for k=3 Figure 2.1
shows that from all the values x, , v =2, .., N+l the set
{xF 1={2.39,2.36,2.43} are the three values having distances {0.00, 0.03,

0.04}, respectively relative to the feature value D, =2.39 (note that for

convenience the distances have been ordered in increasing order of

magnitude).

(¢) The potential successors of x, are the values of x/ that correspond to the &-

nearest neighbors (as referred to in (b) above). For example, Figure 2.1 shows

that for /=3 the potential successors are {xVH }={2.05,2.55,2.38} , which

correspond to the successive values of {x/ }.

(d) From the k& potential successors { x’’ } one is selected using the weights

W, = i=1,..k 2-1)

i

S,
=1

11



where w, is the weight that corresponds to the smallest distance. For example,
for &=3, w,= 1/(1/1+1/2+1/3) = 6/11=0.545, w, =3/11 =0.273, and

w, =2/11=0.182, where w, = 0.545 corresponds to the first value in the set

{x7}, ie. x=2.05. The selection is made at random using the cumulative

uniform distribution with values 0.545, 0.818, 1.000. For example, if the

uniform random number drawn is 0.625, then the second value 2.55 is

selected so that x =2.55.

(e) The steps (a) to (d) are repeated until the desired generated sample size is

obtained.

The good features of the KNNR approach are: (1) preserving the marginal
distribution, (2) reproducing linear or nonlinear dependence in the historical data, and (3)
easy to extend to higher order dependence and multi-dimension. However, there are a
few significant drawbacks: (1) It generates only historical values since it is a resampling
technique. This can be a serious drawback because one would expect that synthetic
streamflows may exceed the observed maximum and also fall below the observed
minimum value. (2) The inter-annual variability will not be preserved unless an
appropriate term is included in the feature vector D,. Up to the present this has not been
accomplished and the lack of preservation of interannual variability remains a
shortcoming in using the KNNR method. (3) The variability is deflated where using the
KNNR technique. The variance deflation has been examined by Buishand and Brandsma

(2001) using varying k. They suggested that utilizing an appropriate value of & (around 2

12



to 5) minimize the deflation. The cause of this variance deflation is further explored

below.

Young (1994) argued that data points lying at or near the edges of the cloud of
points (refer to Figure 2.1) would not be selected as those located well within the clouds
of points. Thus isolated points such as that shown in Figure 2.1 will be undersampled
(the clouds of points mean those in the range of high frequency.) KNNR is dissimilar to
the bootstrapping method regarding this phenomenon. Each historical data points have
equal probability to be selected. However, the resampling data in KNNR procedure have
different chances to be selected especially when the points are near the edges of the
clouds. In Figure 2.1, two isolated points are illustrated. The isolated points are more
likely to be extreme values. If the historical data have the tendency to generate less
probability on near extreme values, then the variance of the generated data will be
lessened. To investigate further, the histogram of the number of times that each data
points are selected is drawn for each month at Figure 2-B.1 from the KNNR simulation of
Lees Ferry site at Colorado River. One hundred data sets are simulated with the same
data length as historical (98 years). Since the 100 data sets are simulated, each data points
should be generated around 100 times. However, some values are generated only 20 to 40
times. The selected times of each data points versus the order of data points are displayed
in Figure 2.2(left) for the KNNR simulation. Y-axis presents the increasing order of the
data points. The order of the data points which are less than 80 times more likely to be
low or high in Figure 2.2. The data points in low order with less than 80 times has 5
points and the ones in high order 10 points. Unlike, bootstrapping simulation, the uniform

selection of the historical data, does not show this behavior. In the right side of Figure
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2.2, uniform distribution of order according to times sampled is shown for bootstrapping
method. It is obvious that the undersampling near extreme values will induce the
underestimation or deflation of variance. Furthermore, one might assume that this
predisposition will be raised when the data are highly correlated. If the data are serially

independent, then the KNNR procedure will not produce this bias.

To examine the relation between the variance deflation and serial correlation, a
brief experiment has been performed over the KNNR model using the Beaver River
monthly streamflow at Utah as in Lall and Sharma (1996). Here, k=30=NYED g
employed as suggested by Fukunaga (1990) and d entails selected lag which is one in this
case. From one hundred set of the synthetic data with the same record length, the average
value of the relative variance bias (described below) and the centered lag-1 correlation is
illustrated in Figure 2.3. The purpose of this experiment is to examine the effect of serial
correlation onto the variance of the generated data from KNNR. £=30 might be a little
awkward for KNNR. However, this setup will more clearly visualize the effect of the

serial correlation that might be hidden. The relative bias of variance at month 7 (rv,) is

denoted as

o2 (X9 -0 (X"
T alx )

v (2-2)

where &} (X) is the variance of X for month 1. If the value is less than zero, the variance
from KNNR model o (X9)is less than o2(X™) which implies underestimation of the

variance with the KNNR model. This statistic is the measurement of the deflation scaled

with the historical variance. In Figure 2.3, it reveals that the higher lag-1 correlation, the
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lower the relative variance bias. And ©'  is negative for all months. It represents that the
monthly variance of the synthetic data from the KNNR model is underestimated. And, it
is obvious that the bias is negatively related to lag-1 correlation from Figure 2.3, saying
that the lag-1 correlation each month leads underestimation of the variance from KNNR
model. The higher serial correlation leads the higher deflation of the variance. If k is
small (around 2 or 5), the effect of serial correlation is diminished. However, there is still
some deflation in case of small k, when the data are serially correlated. This deflation
from KNNR is unavoidable since the applied data for simulation are always significantly
correlated. If the data are serially independent, simply bootstrapping method can be
applied, alternatively. Later, this bias will be compensated through applying the

smoothing kernel.
2.2.2 Local Regression with KNN for innovation (LRK)

To improve the KNNR model Prairie et al. (2006) adopted a nonlinear local
polynomial regression with the innovation sampled from KNNR and applied it to
monthly streamflow generation for the Colorado River at Lees Ferry. The LRK model is

given by
Xt :g(Xt~1)+el (2'3)

where g(X, ) is a local polynomial and e, is the residual. For more detail on a local

polynomial fit, readers are referred to Simonoff (1996). After fitting the local polynomial

the residuals are estimated as e, = X, — g(X,_,), which then are employed for generation

using KNNR.
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The good features of LRK includes: (1) values other than historical are simulated,
(2) any arbitrary relationship (linear or nonlinear) that is present in the observed data is
captured, and (3) heteroscedasticity can be reproduced (Lee and Salas, 2006). On the

other hand the shortcomings of the LRK approach are: (1) Negative values may be

generated because of the error term, i.e. if e, <0 and g(X, ) < ’ e,] the generated value

will be negative. For highly skewed data, this may occur frequently. (2) The variation
generated from this model is limited to a directional pathway as depicted in Figure 2.4.
In the figure, the relationship between the generated flows for months 3 and 4 is shown
for the Colorado River at Lees Ferry using LRK (the length of the generated data was the
same as the length of the historical, i.e. 90 years). This is a natural behavior for any
hybrid model such as local regression and KNNR innovation, or PAR(1) and KNNR
innovation since the innovation resampling arises from a limited number of data points.
(3) It does not preserve the inter-annual variability. The variance of the generated annual

series will be degraded and the correlation of the yearly series will not be preserved.

2.2.3 NP and NPL

Utilizing the conditional kernel density estimate, a nonparametric alternative to
the lag-p autoregressive (NP) model has been developed by Sharma et al.(1997). The

conditional kernel density with normal kernel on the random variables X, and X,_,, the

corresponding values x,andx, , is denoted as

n

. 1 (x, —b,)°
X % )= E ——————— W, eXp| — ————— 2-4
fX,|X1_l( t t t—l) o (272_/125“)1/2 i p( 2/125” ( )
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where x,,....,x, are observed data, S, = Cov( X, X, ), S,=S,,=0’(X) , and

S'=8,, —52S,, . Inaddition,
by =x;+(x, xS, /S, (2-5)
and

expl- (o = x,)* 1 2% )
3 expl- (x,, —x,,)? 124°S,, )
J=1

; (2-6)

i

and Ais a smoothing parameter (described below in some detail).
The generation procedure based on Eq.(2-4) is as follows:
(a) Two alternatives for initializing procedure are suggested as

al. to set X,equal to mean and remove warm-up period

a2. to select one of the historical values with equal probability for x, and

generate from N (xo,izS”)

(b) From the given value X, =x,_,, select one of the observation x, according to the

=12

weight w,

(c) Simulate X, from normal distribution N(b,, A(S")"'?).

(d) Repeat the step (b) to (c) until the desired length of data are simulated.
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The variance for this model denoted by ¢>(X)' is (Sharma et al., 1998)

A X)'= S, (1+ ) = 62 (X) + Ro?(X) 2-7)

This indicates that the variance of the generated series will be inflated (or
overestimated) as much as A’c*(X). The estimation of the smoothing parameter A is
crucial to estimating the density accurately. One of the most common approaches for

estimating A is by Least Square Cross Validation (LSCV), to minimize the Integrated

Square Error (ISE) and simplified as
. 2 Iy A
LSCV(4) = R(f(x)) - - IS (2-8)
i=1

where R(g(x)) = j.g(x)zdx , /} (x)and /}_ .(x) denote a marginal kernel density estimate of

x and the density estimate excluding the i™ observed data point, respectively.

Furthermore, Sharma and O’Neil (2002) developed a nonparametric alternative
that incorporates the interannual variability (NPL) for monthly simulation. The model

denoted as NPL is based on conditioning the variable X, = on X, , | and the summation

12
of the previous 12 months, i.e. fy . (x, |x ) where Z, = ZXV .-, - Note
> STy T » > /=] > .

v,r-12 Zv,r

that referring to the subscripts of X, ,_, in the summation, if 7 — j <0 then v must be

J
changed by v—1 and 7~/ by 12—|r—j|. The merits of NPL are: (a) preserves the
marginal distribution, (b) reproduces the linear or nonlinear relation embedded in the

observed data, and (c) preserves the interannual variability. Nevertheless, there are a few

drawbacks such as: (i) The variance of the generated series will be overestimated as
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mentioned above. Overestimation of the variance might lead to the exaggeration of the
extreme events. This will be corroborated in the simulation results later. (i) Since it is a
normal kernel based model, negative values may be generated unless a modification is
conducted. In Sharma et al. (2002), variable kernel is employed to prevent generating
negative values. The idea behind is to adjust the smoothing parameter A such that the
probability of generating negative values is not greater than a certain threshold (e.g. 6
percent in the referred paper). However, the variable kernel will lead to larger higher
bias on density estimate (Simonoff 1996). This will be elucidated more clearly below in

a subsequent section.
2.3 Proposed methods
2.3.1 KNNR with Gamma KDE (KGK)

Since KNNR is a resampling algorithm with discrete conditional density estimate
it produces generated values that are identical to the historical values (except in different
order). Furthermore, the review of the KNNR model in Section 2.1 above suggests that
the variance of the generated data becomes underestimated. To surmount this limitation, a
perturbation of the value x; obtained from KNNR is suggested. As presented in Figure 2.1,
the selected historical value (x; =2.55) from KNNR is treated as the center of a kernel in
the kernel density estimate. And a value is generated (perturbed) from a Kernel density

according to the smoothing principle of KDE. This is related to the generation from

normal distribution with b,and A*S' for mean and variance in NP method (explained in

Section 2.3). The main difference between NP and the suggested approach is that NP

model generates data with conditional nonparametric distribution while the proposed
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approach here uses the KNNR to find x, (comparable to b,in NP) and perturbs the value

x; with a selected kernel (e.g. gamma) instead generation from N(b,, A(S")"?). The
perturbation process is performed independently on the previous condition (X, ;). The
independent perturbation might weaken the relation between X, ;and X,. But if KNNR

reflects the relation appropriately, the overall bias might not be significant because
perturbation is performed with centering the selected value (x;). The underestimation of
the relation is investigated thoroughly in result section. Furthermore, the variance of the
generated value is increased from this perturbation procedure since it is more likely to
add randomness. The source of the variance comes from two parts such as the selection

of x, with KNNR and the perturbation into the selected value. However, this will not be

problematic since we review that the KNNR process underestimates the variance. The
underestimation will be compensated with the additional variance from the perturbation.
More detail will be discussed about this in the smoothing parameter estimation section

later.
The properties of Gamma Kernel Density Estimator

Since the perturbation process is based on the Kernel density estimate, the
suggested model requires the selection of a Kernel and the smoothing parameter.
Generally, a Gaussian kernel is employed for kernel density estimation in Nonparametric
modeling literature (Sharma et al., 1997). The kernel, however, is unbounded. This is
shortcoming for generating hydrologic data that are positively skewed and bounded by
zero. If the data is highly skewed, the density estimate using a normal kernel is

significantly biased and the cumulative probability below zero may be significant. This
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indicates that the significant amount of generated data will be negative that is not
physically suitable for hydrologic data. To avoid the bias and bound, many different
approaches are suggested such as boundary kernels, varying the bandwidth, and
transformation-based estimation (Simonoff, 1996). Furthermore, the other types of
kernels are developed for the skewed and bounded data such as exponential kernel
(Mugdadi, 2004), beta kernel (Chen 1999), and gamma kernel (Chen 2000). The
exponential kernel is not smoothed even with high smoothing parameter because of the
discontinuity of the exponential distribution nature in the estimate. This leads the
unsmoothness in the point of each historical value. The beta kernel is bounded in both
sides. Typically, hydrological data such as streamflow is bounded at zero and unbounded

for x > 0. Therefore, the gamma kernel is most desirable for hydrological data.

Chen (2000) proposed the gamma kernel as
A 1 &
S0 =5 2 K (X) (2-9)
i=1

where

tx/h —t/h

K pp ()= (2-10)

"M/ h+1)

1s a gamma kernel with shape parameter @ = x/h+1 and scale parameter g =h, X,is

the random sample of size N, % is the bandwidth of the gamma kernel, and f (x)1is the
density estimator evaluated at x. Chen (2000) showed that the gamma kernel density

estimate achieves the optimal rate of convergence for the mean integrated squared error,
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and the variance of the gamma kernel estimator gets smaller as x increases. The mean and
variance of the gamma kernel above are x+hand xh+ h’, respectively, and x is the
mode (Chen, 2000). If one uses Chen’s gamma kernel for non-parametric data generation
as suggested above, it will produce some bias in the mean although it will avoid

generating negative values.

In the generation procedure proposed in this paper, a point say X, =x obtained

from the KNNR method will be perturbed with the gamma kernel. If one uses Chen’s
gamma kernel the mean will be x+#4, so the mean of the generated data will be
overestimated as much as 4. Instead, another type of gamma kernel is suggested here to

avoid this bias as:

Py

f(x) =%2sz,hz,hz/x(X,-) (2-11)

where

txz/hz—le—t/(hz/x)

(W 1) TP TR

sz/hz,hz/x 0= (2-12)

where in this case K, ;(¢) is the gamma kernel with shape parameter & = x” / h* and scale

parameter f=h"/x . The mean and variance of the gamma kernel are u(f)=x ,

o’ ()= h*, respectively. Thus the gamma kernel above is formatted so that the generated
data from the suggested approach will preserve the mean. And also the variance for this

gamma kernel is independent on x so that the magnitude of the variance from this kernel
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is simple to manipulate. Next we verify properties of the gamma kernel density estimator

such as the bias and variance.

The expected value of ]} (x) of (11) may be expressed as

- 1 & 1 &
E{f(x)}ZE{—NZKxZ/hZ,hZ/x(Xi)} =WZE{Kx2/h2,h2/x(Xi)}
=1 i=1 (2-13)

= K o OF= [T K e e o OV )y = ELS(2))

where Z is Gamma[x* / h,h* | x] with mean u(Z) = x and variance o*(Z)=h’.

To find E{f(Z)} we will use the Taylor series expansion up to the second order

as in Chen (2000), i.e.

E{f(Z)} =~ f(a) oy ElZ -a]+
Z=a Z-a (2-14)

- f()+ —; F@ e Z) = f(x)+ %f”(x) 2

2
o (2) 1D g
oz

where a = u(Z) = x . Therefore,
- 1
E{f(0)}~ f(x)+ Ehz f'(x) (2-15)
/And the bias is

Bias[ f (x)] = E{f (x)} - f(x) z—;hz £ (x) (2-16)
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In addition, the variance of the density estimator is derived in Appendix A. It gives

1 .
A ____2N Py f(x) if x/h—>w
Var{f(x)} (2-17)

2 — 2
S—\%—%(zi)) (h/xH) 1272 (%) ifx/h>k

For comparison the bias and variance of the density estimator from Chen’s

Gamma Kernel is (Chen, 2000)
Bias[f (x)] = E{f (x)} — F (x) ~ hf'(x) + % x (%) (2-18)

1 ~1/2 .
x x ifx/h—>wo
2NhN 7 7

Var{f(x)} ~ (2-19)

I'x-1) .
S (et D) f(x) ifx/'h—>«k

Comparing Egs.(2-16) and (2-18) one may see that the bias of the kernel density

estimator from Chen (2000) has the unpleasant term f'(x). In addition, the second term

of the bias in Eq.( 2-18) increases with x as opposed to that in Eq.( 2-16), which does not
depend on x. Thus the suggested Gamma Kernel of Eq.( 2-12) leads to smaller bias than
the Gamma Kernel by Chen (2000). On the other hand, the variance of the density
estimator by Chen (2000) has a better feature when x/ % goes to infinity, i.e. the variance
decreases, but this does not occur when x//goes to zero. In conclusion, the results of
the bias and variance of the two gamma kernels promulgate that the suggested gamma

kernel density estimate is comparable to the kernel of Chen (2000). The applicability of
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the suggested gamma kernel density estimate has been verified by data generation. Even
though the estimation of the density as such has nothing to do with generation, it is
important to assess whether the suggested gamma kernel density estimate is acceptable to
apply.

Selection of the bandwidth h for the gamma kernel and the number of neighbors k for

KNNR

The variability of the suggested model will come from two sources, KNNR and
gamma Kernel density. Therefore, the number £ is reduced to VN /2 instead of
JN suggested by Lall and Sharma (1996), since 20 < N <1001is in the range between 2
to 5. This also effects the lagged correlation since the smaller number of & results more

similar relation to historical data. The lower variability from the smaller £ will be

compensated through the Gamma kernel perturbation.

The kernel smoothing (perturbation process) yields an extra variance in the
simulated data. The suggested generation method KGK is made up of two components:
(1) a generated variable say X' = x" obtained from KNNR and (2) a perturbation gamma
variable say X" =x" such that the mean is equal to x’ and the standard deviation is

equal to the smoothing parameter 4. Consequently the variance of the generated variable

X=X+X"1is
Var(X) =Var(X"+Var(X")= o> (X") + h* (2-20)

where o?(X") refers to the variance obtained from KNNR. ( ¢*(KNNR)) is not

explicitly known, it reveals that the variance of the resampled data from KNNR tends to
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be underestimated as described in KNNR review section. As indicated in the review
section above the variance obtained from KNNR is smaller than the historical variance
(i.e. KNNR underestimates the variance). But as suggested in the foregoing analysis such
underestimation will be compensated by the variance induced by the gamma random term.
Thus, the smoothing parameter 4 (bandwidth) has two missions: (1) to smooth out the
historical values so that the generated data values are placed over the physical range of

the hydrologic data and (2) enhance the variance of the generated data.

A possible approach for estimating the bandwidth is the Least Square Cross-
Validation (LSCV) as in Chen (2000). It is approximate estimation procedure and
requires a fair amount of computation. Instead, an heuristic estimation approach is
suggested here as

_o(X)_ a(X)

h =
ko IN/2

(2-21)

Note that as N — o« ,h— 0. This is basic characteristics of the bandwidth. Since the
number of data increases as infinity implying that the population of the data is known, the
variance burdened into smoothing parameter should be diminished. Also note that the
smoothing parameter for normal distribution with normal kernel in the context of
minimizing the approximate mean integrated square error is h=1.060(X)N -1/
(Silverman, 1986). In this case for a data range 20 < N <100 the bandwidth # is in the
range 0.580(X)and 0.420(X). Since this is for the normal distribution with normal
kernel which is one of the most smoothed distributions and season streamflow data tends

to be skewed, the smoothing parameter for gamma kernel should be less than this
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magnitude. Eq.(2-21) is in the range between 0.450(X) and 020(X) for

20 < N £100 reaching this argument.
2.3.2 Description of the new models

KGK model is to model the dependency structure with KNNR analogous to

f(X,.1X,,,) and smoothing with Gamma Kernel perturbation. The KGK based on

only the previous month quantity X __ cannot reproduce satisfactorily the interannual

v,7-1
variability. To enhance the model capability to reproduce long-term variability, an

additional term should be included as a conditional variable, i.e. f(x,, |x,,,'¥) where

Y is the addition variable to consider the interannual variability. For this purpose, two
schemes are suggested here: (1) employing the aggregate flow variable of the previous p
months analogous to the NPL model and (2) utilizing the yearly value generated from
separate yearly model to specify the condition of a certain year for monthly time scale

generation. The specific description on each model is followed.

Gamma KDE on KNNR with the aggregate variable (KGKA)

The conditional term for interannual variability is the moving aggregate flow

variable

Iy = ixv,féj (2'22)

J=1

As noted before in Eq.(2-22) if 7-j <0, then x,,_; becomes x The term

v-La-r-j|

ZV,T

represents the sum of the previous @ seasons. Since we will find our generated
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value xS . by conditioning on xVG’ .. and z, ., it is necessary to determine the weighted

v,T?
Euclidean distance between the generated and historical x's of the previous time 7 —1
and between the generated and historical sums z's of the previous @ seasons. Thus the

weighted distance denoted by 7, ,y 1s given by

1/
Fom = o, o =2y P w20 -2 P fore =1, v, 151 (2:23a)

v,T

and

1/
Fm = e 0 =3 P w0 -2 PP for s vsl (223b)

v,T

Note that the calculations of » begins at =2 and 7 =1. The scaling weights

. . . H
w,_(x) and w,(z") are given by the inverse of the variance of xf’[T_l and z, .,

respectively. Also Mahalanobis distance may be employed as more elaborate work to
relation, which is suggested by Yakowitz and Karlsson (1987) for best prediction in least

square sense. However, it encumbers on computation and no significant difference is

found from the test performed in this study. The benefits from including the term z, ,

are: (a) to take into account the dependency between the current’s month’s flow and the
previous year flow, i.e. the summation of the previous w seasons, and (b) self-
constructed on yearly time scale meaning that it does not require any yearly time series

models and values.

The procedure for simulating the synthetic data is:
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(1) Estimate the smoothing parameters £ and % following the method suggested

above.

(2) The initial value le’1 is randomly selected from the historical data set xf’l where

v=1,...,N. Each historical data has an equal chance to be selected.

(3) General KNN Resampling process in Chapter 3.2 (a)-(d) is employed for data

generation of the rest months of the first year. From the second year, the

following processes are employed such that xf, where t=2,....N and 1=1,...,0.

(4) At first, the aggregate variable of the generated data are obtained with

w
Zf, =for_ ; - The k-nearest neighbors are obtained from the estimated
J=1 ~

distances employing Eq.(2-23 a and b). From the same selection procedure in

KNNR, the successor of the selected one among k values is taken, say x:r. This

step is repeated until the required generation sample is filled.

(5) Perturb with Gamma Kernel Density Estimate meaning that generate from the

. * 2 x 2
gamma distribution xfr =Gam[x, . / W h* X, ]

Gamma KDE on KNNR with the pilot variable (KGKP)

It is not easy task to generate seasonal streamflow data with long-term (yearly)
variability such as Hurst Phenomenon, Shifting-mean, and climate change as well as
common serially correlated structure. Here, we suggest a seasonal simulation model that

from modeling or obtaining yearly series separately, the data obtained from a simulation
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model or other sources is used as the pilot variable. It presents that the known yearly
value will be used as conditional variable which adds to the feature vector of the KNNR
model. Yearly data with the unique features mentioned above can be generated from
yearly model [e.g. FGN (Hurst Phenomenon), Shifting Mean Level (Shifting-Mean

Level)], and denoted asx,'. For example, if x," is lower than normal implying drought

condition, this will lead the tendency that the whole monthly values of the current year be

small. The feature vector of KNNR algorithm is described as

G H 2 v _H 2|12
Ry = 1 8 =)y (x,—x)] (2-24)

The merits of this scheme is that (1) any long-term variability can be adopted into the
synthetic seasonal data, (2) no complex unnecessary structure is included, and (3) it is
very straightforward to apply the long-term variability into seasonal system structure.
This model is not a disaggregation model in that the pre-obtained yearly values are only
employed for leading the status of the current year. As an alternative, El Nifio/Southern

Oscillation (ENSO) index can be employed to define the status of the current year.
The process of KGKP model is followed as:

(1) Estimate the smoothing parameters k and 4.

(2) Fit a model for yearly data for the pilot variable x,'. The same yearly data or

exogenous variable might be employed for this variable. And generate annual data

for the pilot variable x,' where t=1,....N% and N%is the required generation length.
t
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(3) The initial value le,1 is obtained with the same procedure as mentioned in the

previous KGKA model (random selection from the historical data of the first

month). The other months and years use the following procedure.

(4) The current yearly state x,' and the previous month state xfr_l are compared with

the historical data and measures the distance with the Eq.(2-24). Obtain the

resampled value from the k-nearest neighbors and the weighted probability. The
resampled value is assigned intox, , . With this value and the selected bandwidth
from Eq.(2-21), the final generated value will be obtained with Gamma Kernel
perturbation. These selection procedures are exactly the same as the KNNR

model.

(5) Perturb with Gamma Kernel Density Estimate meaning that generate from the

x 2

gamma distribution xg .= Gam[xz 72 ! W*, h? /x,. 1.
The steps (4)-(5) is repeated until the required length of the data generation is met.

2.4 Data Description and Model Assessment

To assess the suggested models, two sets of monthly streamflow data are applied,
the Colorado River at Lee Ferry (site 20 of the Colorado River System) and the Niger
River at Koulikoro. The historical data of the Colorado River has been naturalized and
partially extended for the period 1906-2003 (Lee and Salas, 2006). The historical
streamflow data of the Niger River at Koulikoro has been used for the period 1907-1979

to avoid the effect of reservoir regulation after 1979. The tested models for site 20 in
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CRS are (1) NPL, (2) Gamma KDE on KNNR with the aggregate variable (KGKA), and
(3)Gamma KDE on KNNR with the pilot variable generated from Shifting mean level
model (KGKP with SML) and for Niger River flow data at Koulikoro are (1) NPL,
(2)Gamma KDE on KNNR with the aggregate variable (KGKA), and (3) Gamma KDE
on KNNR with the pilot variable generated from Shifting mean level model (KGKP

with SML).

To test the models, one hundred sets of synthetic monthly streamflow data of the
same length as the historical data were generated from each model. A number of basic
statistics are calculated from each which are displayed using boxplots. For example,
Figure 2.5 shows the basic statistics such as the mean, standard deviation, skewness, lag-
1 serial correlation, maximum, and minimum constructed from the generated data
obtained from a given model. The end line of the box implies the 25 and 75 percent
quantiles while the cross lines above the box on the whisker correspond to the 90 percent
quantile and the maximum, while the cross lines below the box on the whisker represents
the ten percent quantile and the minimum. And the ‘X’ mark and the segment line
connecting the x mark represent the historical statistics. The comparison of boxplot for
the referred statistics has been done for both monthly and annual time scales. The kernel

density estimate of the generated data is also compared to that of the historical data.

In addition, various drought and surplus statistics as well as storage capacity have
been estimated and compared on historical and generated yearly data from the selected
models above such as maximum drought length, maximum drought amount, maximum
surplus length, maximum drought amount, storage capacity. Maximum drought length is

defined as longest length of the deficit which is shortage from the water demand during
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the year. The demand is denoted as the mean value multiplied by threshold level [0.6, 0.7,
0.8, 0.9, and 1.0]. Maximum amount length is the maximum amount of the deficit.
Surplus is excessive water over the demand. The definition on surplus is the similar to
drought. The storage capacity is the extent to which streamflows can be stored for later
release. The sequent peak algorithm is employed for estimation of this statistic (Loucks et

al., 1981).
2.5 Evaluation and Comparison of the methods
2.5.1 Colorado River Streamflow at Lees Ferry

The time series of yearly streamflow for Colorado River at Lees Ferry is
illustrated in Figure 2-B.3. Notice that the of the fist 20 years has higher flows and
significant drought period at the last 5 years which is one of the worst droughts in
Colorado River. The key monthly statistics of historical and generated data from three
~ selected model is shown in Figure 2.5-Figure 2.7. The behavior of the generated data
from KGKA and KGKP are very similar to each other (Figure 2.5 and Figure 2.6). Every
key statistics of both models are well preserved except slight underestimation in lag-1
correlation through all months. The underestimation of lag-1 correlation comes from the
weakness represented by KNNR algorithm. This behavior is observed also in pure KNNR
model (Lall and Sharma, 1996). For the statistics from NPL model, the standard deviation
and maximum are overestimated and underestimation for skewness and minimum (Figure
2.7). These deviations from the NPL model imply that the model does not appropriately
reproduce the historical distribution. Furthermore, the inflation of the standard deviation

by NPL model is expected as Eq.(2-7). In KGKA and KGKP model, however, the
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deflation of the variance by KNNR model is compensated by using the Gamma KDE
(Figure 2.5 and Figure 2.6). The inflation of the NPL model effects the overestimation of
maximum and the underestimation of minimum as shown in Figure 2.7. Furthermore, the
underestimation of the skewness (Figure 2.7) is induced from the nature of the Gaussian
kernel especially for the highly skewed months such as October, February, and
September. The KDE based on symmetric kernel has some difficulty to preserve the
high-skewness. From Figure 2-B.4 to Figure 2-B.6, the scatter plots of the generated and
historical monthly data to show how well the generated data will reproduce the relation.
The generated data of KGKA and KGKP relatively well reproduce the overall local

relation of the historical data while NPL eliminates the local relation of the historical data.

In yearly time-scale statistics as illustrated at Figure 2.8, mean and lag-1
correlation are well preserved through all models. Inter-annual variability in KGKA
represented as standard deviation is underestimated while KGKP well preserves this
statistics. This notices that the aggregate variable is not good enough to deliver the long-
term variability combining KGK model. This variable can deliver more sophisticated
inter-annual structure into the downscale generation such as shifting mean process.
Conversely, the NPL model overestimates the yearly standard deviation propagated from
the overestimation of the monthly variability (Figure 2.7). In case of minimum, the NPL
is relatively underestimated through whole months while maximum is overestimated.
Since NPL model employs normal kernel in generation which is symmetric distribution.
Some negative values might be generated. To avoid negative values, Sharma and O’Neill.
(2002) suggests employing variable kernel. However this artificial procedure will leads to

the bias (Simonoff, 1996). The drought, surplus, and reservoir statistics of the yearly data

34



with the threshold presented as the historical yearly mean in Figure 2.9 are comparable
through whole models. Those statistics with different thresholds behaves similarly. No
significant difference between models can be observed. More detailed figures are
presented from Figure 2-B.7 to Figure 2-B.21. The storage capacities of the monthly data
with different thresholds (multiplying the basic threshold as the historical mean by the
threshold levels, 0.3-1.0) are estimated (Figure 2-B.22, Figure 2-B.23, and Figure 2-B.24
for KGKA, KGKP, and NPL respectively). The preservation of the statistics is
comparable to all the models. The storage capacities are underestimated through the
range of the threshold levels of 0.3-0.6 and overestimated through 0.7-1.0 in KGKA and

KGKP models while the statistics are overestimated through all the range in NPL model.
2.5.2 Niger River at Koulikoro

The time series of the yearly data at Niger River station is shown at Figure 2.10
(time series plot with bar at Figure 2-B.25) with the one example of the generated set
from KGKP model. The apparent particular pattern of shifting means is revealed from the
figure. The basic statistics of the monthly and yearly similarly behaves at the results of
Colorado River Site shown at Figure 2-B.26, Figure 2-B.27, Figure 2-B.28, and Figure 2-
B.29. Here, Figure 2.11 shows the KDE of the generated time series of NPL (left) and
KGKP (right) and for KGKA at Figure 2-B.30 for months 1, 5, and 9. The densities of
the main body (near mode) of the generated distribution from the NPL are
underestimated while overestimated in the outside of the main body. The distributional
behavior illustrated in Figure 2.11 reflects the inflation of the variation through NPL
model. Furthermore, to scrutinize the local and overall relations embedded on the

historical data, scatter-plots for the month 8 and month 9 are drawn in Figure 2.12 for
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KGKP (upper) and for NPL (bottom). The scatter plot of KGKA is no difference to the
one of KGKP so that it is not shown in this paper. From these figures, the overall relation
between month 8 and month 9 are well preserved through the models. The localized non-
linearity is better preserved in KGKP model (Figure 2.12, upper) while the NPL model
blurs the local non-linearity (Figure 2.12, bottom). The drought, surplus, and reservoir
statistics with the historical yearly mean as the threshold are shown in Figure 2.13. More
detailed descriptions are shown in Table 2-1. The KGKP model well preserves the
drought, surplus, and storage statistics while KGKA and NPL model underestimate those
statistics (Figure 2.13) especially drought and surplus length and drought amount. The
drought, surplué, and storage statistics of yearly data with different threshold (multiplying
threshold levels,0.6-1.0, by the historical mean) are estimated and shown at the Table 2-1
and Figure 2.14 (only maximum surplus length is shown, the other plots are referred to
from Figure 2-B.31 to Figure 2-B.34). In Table 2-1, the results seem to preserve the
estimated statistics because of the high standard deviation. But, the boxplot figures of
these statistics show differently such that as an example in Figure 2.14, the maximum
surplus length is underestimated at NPL model (Figure 2.14, bottom) and KGKA model
(Figure 2-B.37) while KGKP model preserves the statistics fairly well through all
different threshold levels (Figure 2.14, upper). The same behavior can be seen for
maximum surplus amount and maximum drought length. For storage capacity and
maximum drought amount, all the applied models fairly preserve those statistics. Overall,
the surplus and drought statistics of different thresholds is well reproduced in KGKP
model whereas some bias in NPL and KGKA model except storage capacity and

maximum drought amount. The ratios of the storage capacity (the statistics of the
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monthly generated data divided by the historical one) with different threshold levels are
estimated from 0.3 to 1.0 and are illustrated in Figure 2.15 for KGKP and NPL model.
The estimated real values are shown at Figure 2-B.44, Figure 2-B.45, and Figure 2-B.46
for KGKA, KGKP, and NPL respectively. The storage capacities of the historical data are
well reproduced in the generated data of the KGKP model through all range 0.3-1.0 while
the ones of the NPL model are mostly overestimated through all range except the last part
0.9-1.0. The preservation of these statistics is difficult to reproduce. The KGKP model,
however, well reproduces these statistics through all different thresholds. Through the
test statistics, it can be concluded that the employment of the pilot variable with proper
fitting leads to better preservation of the long-term variability. More clear evidence can
be observed in Figure 2.10. It is observable that the historical time series shows the
sudden shifting mean process. One set of the yearly generated data obtaining from the
summation of the generated monthly data into yearly is also illustrated in Figure 2.10. It
is shown that the KGKP model reproduces the particular behavior of the historical long-
term variability. To model yearly data with shifting mean and to employ it as the pilot

variable is very efficient to reproduce the particular long-term process.

2.6 Summary and Conclusions

Synthetic data in hydrology has performed important roles for planning reservoir
capacity, drought analysis, etc. Enhancing the model capability from parametric ARMA
type, nonparametric models has been employed for its simplicity and for avoiding the
bias through transformation procedure. In this study, a generation model employing

KNNR algorithm is proposed to overcome the drawbacks of the KNNR such as
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generating new feasible values other than observations and reproducing the interannual
variability embedded in historical data. For the first part of enhancement (generating new
values), Gamma KDE is proposed. Gamma KDE has been proposed by Chen (2000) but
it has not been applied or tested in hydrologic fields. Different setup for Gamma kernel
parameterization is proposed to preserve the historical mean and standard deviation better.
And the second part of development (preserving the annual variability) is achieved
through employing the aggregate variable or the pilot variable. Instead of complicated
smoothing parameter estimation, heuristic estimation method is proposed employing the
monthly variance and k nearest neighbor. The aggregate variable has been suggested by
Sharma and O’Neil (2002) applying conditional kernel density with normal kernel while
the pilot variable is suggested from this paper to lead the current yearly state. The pilot
variable can be either the model of the same station as the monthly data or the exogenous
variable. Here, only the yearly model of the same station is tested. KGKA (employing
aggregate variable) and KGKP (employing pilot variable) model has been compared with
the NPL model (Sharma and O'Neill, 2002) since it has one of the most recently
developed nonparametric techniques with the reproduction of the inter-annual variability.
Various streamflow data in different rivers are applied and tested. Here, we show only
two stations such as Lees Ferry station at Colorado River and Koulikoro station at Niger

River.

Various tests are performed with the generated data such as key statistics of
yearly and seasonal time scale and drought, surplus, and storage statistics for monthly
and annual time scale with different threshold levels. Some conclusions are derived from

the results. KGKA and KGKP has superior to preserve the skewness and the variance of
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the monthly time scale but a slight underestimation of the month-to-month correlation is
unavoidable while NPL model has better performance on the lag-1 correlation with
overestimation of the variance and underestimation of the skewness. The gaussian kernel
has the limitation to preserve skewed distribution of the historical data, especially highly
skewed data. The KGKP preserves the yearly variance while KGKA underestimate this
statistics and NPL model overestimate the variance propagated from the overestimation
of the monthly data. In drought statistics, KGKP model has a little bit better performance
in case of Niger River data. But the results are not consistent in Colorado River case.
Furthermore, it is shown that the particular long-term pattern (e.g. shifting means) can be
reproduced through employing pilot variable in yearly time scale in KGKP model while

the aggregate variable cannot reproduce the pattern.

Overall, the suggested model such as KGKP and KGKA shows the reliable results
to generate a univariate seasonal time series. Furthermore, the model procedure is very
simple to apply such that the monthly data is obtained from KNNR including the
aggregate variable or the pilot variable and then the data is perturbed through the Gamma
distribution. Employing exogenous variable with the KGKP model might be a good topic

for future research.
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Table 2.1 Drought, surplus, and storage statistics of the historical and generated yearly

data (meanzstdev) for Niger River at Koulikoro

T.L 0.6 0.7 0.8 0.9 1
Hist 1 2 3 7 11
Max Dr. | KGKA  0.8¢0.7 2+0.9 3.5¢1.4 5317 9.243.2
Leng. | KGKP 1.1£1 26427 4137 7.645.1 12.147.7
NPL 1.4+0.8 2.31.1 36415 5.4+1.8 8.2+3
Hist 63 28 25 15 11
'\S"jrx KGKA  56.5£14.9 32.3¢12.5 20.6£6.5 10.8+4.2 6.3£2.2
leng | KGKP  51.3+168  36.8:157 2641134 16.429.7 10.646.4
NPL 443214 29.8+11.5 19.127.6 11.3¢3.7 8.113.1
Hist 2.46 11.54 20.99 42.89 91.81
Max Dr. | KGKA 1.74¢1.9 7.844.4 19.648.7  415:¢154  86.3:33.9
Amt. | KGKP 2.7+2.7 11.7+12.9 29.2+32 67.8£59.9 138.7+113.4
NPL 6.5¢4.9 144276 2752133 5154234  91.7+38.1
Hist 1260.21 481.77 348.8 206.94 136.08
'\S"j‘rx KGKA 1099.4+3252 532242202 283.13103.8 137.5:54.9  78.2¢29.5
Amt. | KGKP  1079.24417.8 680.1£334.9 417.1x253 218.3:154.5  118:92.9
NPL 94043264  547.1#221.1 301.7¢1232  162+60.1  103.1+42.4
Hist 2.46 11.54 20.99 42.89 101.04
Stor. | KGKA 1.74¢1.9 7.924.5 21.2+£10 53.8426.9  146.7¢71.9
Cap. | KGKP 2.742.9 14+21.8 431558  106.1£104.8 229.7+168.2
NPL 6.5+4.9 15.148.7 31417.6 63.2+33.2  143.9+71.9

40



2.8 -
Perturbation with Gamma Dist. ©

2.6 o (2.36, 2.55) /.

ﬁ%z.ss

2.4+

2.2+

O
oG

@) o © e isolated Point

(@]
9] ©

1.2} O

C «—— isolated Point
xZ,=2.39

N

0.8 ! I I I 1 1 ! _ ! _
0.8 1 1.2 1.4 1.6 1.8 2 22 24 26 2.8

1 o)

Figure 2.1 Fundamentals of k-nearest neighbor resampling where #=3. The values in
parenthesis near the oval refer to the coordinates ( x, ,,x, ). Taking x’, =2.39, the 3-

nearest historical values (in the oval, x; are 2.55, 2.38, and 2.05, respectively) are
selected according to the distance of the feature vector ( D, =2.39) and then selected one

value x”=2.55 among three with the probability in Eq.(2-1).
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Order of each data point

Figure 2.2 Scatterplot of times sampled versus order of the data point from and KNNR
simulation (left) and Bootstrapping (right) for month 8 of Site 20 Colorado river; 100 sets
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Appendix 2-A : Variance of the Gamma kernel density estimate

In Chen (2000), the variance of the density estimator suggested by Chen(2000) is

derived as

Var(7 () = var(: 3 K.y (X)) = <7 2 var(K, (X))

=N var(K, ,(0) = N'[E(K, , (0F - (E{K, ,(0})’] (2-A.1)
= N'E{K, ,()} +O(N )
In this equation, E{K, ;(x;)} is shown in Eq.(2-13) and [E{Ka,ﬁ()(l.)}]2 ~ f(x)°.
N7 f£(x)*is negligible by comparing N'IE{Ka’ﬁ (1)} of Eq.(2-A.1) since E{K, (HY'is a

function of f(x)and 0< f(x)<1.And

r2a—26—-2t/ﬂ t(2a—1)—1e—z/(ﬂ/2) (ﬂ / 2)2a—lr(2a _ 1)

K;,ﬂ(t): Zag-2 = 201 2ap-2
BT () (B/2) TQRa-1) BT (a)

(2-A.2)

{Qa-1,-1/(p12)

Here,
(B/2** ' TQa-1)

can be interpreted as the gamma distribution function with the

shape parameter 2 —1 and scale parameter /2. Therefore, let present this as g(¢) where
g is the gamma distribution function denoted as Gama|2a—1,/2] . From this

formation, the gamma function term envisage as:

2 _ (B2 ' TQRa-1) IF'Ca-1) 45260 ]
K, 5(t)=g() AT (q) = g(t) Ta) B2 (2-A.3)
Let, R(z)="2me "z {2 +1)for 220 (Chen, 1998) and
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rQa-1) _R@-1) 1
(@) RQRa-2)\2z

(a _1)—1/2 22&—3/2 (2'A.4)

Brown and Chen (1998) proved that R(z)is a monotonic increasing function
which converges to 1 as z-—>w and R(z)<1 for any z>0 . Thus,
R*(a—1)/ R(2a —2) <1 and therefore,

R(a-1) 1

R20—2) \/ﬂ(a—l)_ 27 BT E{g(n)

E{K, (O} =

_R@a-D 1
RQ2a-2) 2z

(a-1)7"pE{g(t)} (2-A.5)

Substitutinga = x> / h*and 8 = h* / x instead of @ = x/h+1and B = h by Chen (2000)

E{K 2010, D) = ,I:(z(jf //Zz :g Nl; (/R =17 (0 1x) T E{g(n)} (2-A.6)

As of Eq.(2-13) with the variance h*(1/2—h%/4x?)with g() distribution, E{g(¢)} is

represented as:

) 1, 1., A
E{g()} = f(x—h"/2x) +§f (x)(—z—h - 4x2] (2-A.7)
From the Taylor expansion,
fx=h12x)~ f(x)= f'(x) -g’; (2-A.8)
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var{f(x)} = N"E{K, ,(t)}* + ON ™)

22 21 1 , ) . (2-A.9)
~ N ﬁ(z(;/# _2)) NS 2R =DV %) F(x)

1
f(x) ifx/h—> o
var{ f(x)} ~ iﬁ h{; N (2-A.10)
K - 2y-1~ =22+ .
—NF—Z(—KT)_(MK) 2 f(x) ifx/h>«k

R*(x* I h* -1)

—#—)1 as x/ h— o from
R(2x°/h" =2)

The first term in Eq.(2-A.9) 1s derived from the

the theorem in Brown and Chen(1999), and the second term with the case of x/h — x

and replace the term R*(x*/h* —1) and R(2x*/h> =2) as follows.

\/2—7;3_(x2/h2_1) x2 /hz ‘l)rz/hz—1+]/2 2
T )

R(x*Ih -1)=

\/2—7;6_(“2/}1242)(2)62 IR 2)2x2/h2~2+1/2

R(2x*/h* =2) =
( ) T(2x* /1 h* =2+1)
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Appendix 2-B: Detailed Figures

45

40

35

30

%5

Number of Points

20

Figure 2-B.1 Histogram of the number of times individual points were selected from
KNNR simulation for each month; 100 sets are simulated for the length 98 yrs as
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Figure 2-B.3 Time Series of Yearly streamflow for Colorado River at Lees Ferry with the
annual mean (15.076 million acre feet)
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Figure 2-B.4 Scatter plot of monthly streamflow data with month § (x-axis) and month 9

(y-axis) for historical (filled triangle) and 50 sets of the generated data from KGKA
model (grey circle) for Colorado River at Lees Ferry Unit : Acre-feet
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Figure 2-B.5 Scatter plot of monthly streamflow data with month 8 (x-axis) and month 9

(y-axis) for historical (filled triangle) and 50 sets of the generated data for Colorado River
at Lees Ferry from KGKP model (grey circle) Unit : Acre-feet
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Figure 2-B.6 Scatter plot of monthly streamflow data with month 8 (x-axis) and month 9

(y-axis) for historical (filled triangle) and 50 sets of the generated data for Colorado River
at Lees Ferry from NPL model (grey circle) Unit : Acre-feet
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Figure 2-B.7 Maximum Deficit Length of historical and from historical (circle) and
generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot)
with different threshold level
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Figure 2-B.8 Maximum Deficit Length of historical and from historical (circle) and
generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry with
different threshold level
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Figure 2-B.9 Maximum Deficit Length of historical and from historical (circle) and
generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot) with
different threshold level
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Figure 2-B.10 Maximum Deficit Amount (AF) of historical and from historical (circle)
and generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot)
with different threshold level
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Figure 2-B.11 Maximum Deficit Amount (AF) of historical and from historical (circle)
and generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry
with different threshold level
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Figure 2-B.12 Maximum Deficit Amount (AF) of historical and from historical (circle)

and generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot)
with different threshold level
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Figure 2-B.13 Maximum Surplus Length of historical and from historical (circle) and
generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot)
with different threshold level
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Figure 2-B.14 Maximum Surplus Length of historical and from historical (circle) and
generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry with
different threshold level
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Figure 2-B.15 Maximum Surplus Length of historical and from historical (circle) and
generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot) with
different threshold level
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Figure 2-B.16 Maximum Surplus Amount (AF) of historical and from historical (circle)
and generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot)
with different threshold level
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Figure 2-B.17 Maximum Surplus Amount (AF) of historical and from historical (circle)
and generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry
with different threshold level
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Figure 2-B.18 Maximum Surplus Amount (AF) of historical and from historical (circle)
and generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot)
with different threshold level
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Figure 2-B.19 Storage Capacity (AF) of historical and from historical (circle) and
generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot)
with different threshold level
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Figure 2-B.20 Storage Capacity (AF) of historical and from historical (circle) and
generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry with
different threshold level
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Figure 2-B.21 Storage Capacity (AF) of historical and from historical (circle) and
generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot) with
different threshold level
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Figure 2-B.22 Storage Capacity of historical and generated (KGKA) monthly data with
different threshold as TL*the overall mean of the historical monthly data for site 20 CRS,
(unit : Acre-feet)
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Figure 2-B.23 Storage Capacity of historical and generated (KGKP) monthly data with
different threshold as TL*the overall mean of the historical monthly data for site 20 CRS,
(unit : Acre-feet)
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Figure 2-B.24 Storage Capacity of historical and generated (NPL) monthly data with
different threshold as TL*the overall mean of the historical monthly data for site 20 CRS ,
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Figure 2-B.25 Time Series of Yearly streamflow for Niger River at Koulikoro with yearly
mean (1498 m*/s)

75



5000 - - 2000 r———

5000 } % ]
; %a 1500 |
4000} S

£ 3000 %j : = 1000 T
= , y 1 @ % N
2000 / % , ‘
& | 500 ,.% v
1000 , > X Y
0 bﬁ-h..._%"'.; e ttﬁ“ﬂl‘: L
Jan  Mar May Jul Sep Nov Jan  Mar May Jul  Sep Nov
3 08¢ \? ; i T /%}
- "\" T -~
z 2 'g 0B+t ]
@ ’
& E g
1 %%, %\ , 504 q
a %k%]%{ 1 02
Jan  Mar May Jul  Sep Now Jan  Mar May Jul  Sep Nov
10000 —~ - T T 4000 - —
8000 + %?‘ . 3000 |
A
_ Eo00} ! T
© S 2000+
=
= om0} ﬁ ? ]
. \ _
2000 k3 =1 1000
I
R el T

Figure 2-B.26 Key Statistics of Historical (dot line) and KGKA model simulations
(boxplot) of the Niger River monthly streamflow (unit : m’/ s)
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Figure 2-B.27 Key Statistics of Historical (dot line) and KGKP model simulations
(boxplot) of the Niger River monthly streamflow (unit : m’/s)
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Figure 2-B.28 Key Statistics of Historical (dot line) and NPL model simulations
(boxplot) of the Niger River monthly streamflow (unit : m*/s)
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Figure 2-B.29 Key Statistics of Historical (circle) and simulated from KGKA, KGKP,
and NPL model (boxplot) of the Niger River yearly streamflow (unit : m’/s)
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Figure 2-B.30 Kernel density estimate of historical (segment line) and generated
(boxplot) monthly streamflow data for Niger River at Koulikoro from KGKA mode] for

month 1, 5, and 9
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Figure 2-B.31 Maximum Deficit Length of historical and from historical (circle) and
generated yearly data from KGKA model (boxplot) for Niger River at Koulikoro with
different threshold level
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Figure 2-B.32 Maximum Deficit Length of historical and from historical (circle) and
generated yearly data from KGKP model (boxplot) for Niger River at Koulikoro with
different threshold level
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Figure 2-B.33 Maximum Deficit Length of historical and from historical (circle) and
generated yearly data from NPL model (boxplot) for Niger River at Koulikoro with
different threshold level
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Figure 2-B.34 Maximum Deficit Amount (10° m®) of historical and from historical
(circle) and generated yearly data for Niger River at Koulikoro from KGKA model
(boxplot) with different threshold level
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Figure 2-B.35 Maximum Deficit Amount (10° m®) of historical and from historical

(circle) and generated yearly data for Niger River at Koulikoro from KGKP model
(boxplot) with different threshold level
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Figure 2-B.36 Maximum Deficit Amount (10° m®) of historical and from historical
(circle) and generated yearly data for Niger River at Koulikoro from NPL model
(boxplot) with different threshold level
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Figure 2-B.37 Maximum Surplus Length of historical and from historical (circle) and
generated yearly data from KGKA model (boxplot) for Niger River at Koulikoro with
different threshold level
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Figure 2-B.38 Maximum Surplus Amount (10° m®) of historical and from historical
(circle) and generated yearly data from KGKA model (boxplot) for Niger River at
Koulikoro with different threshold level
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Figure 2-B.39 Maximum Surplus Amount (10° m®) of historical and from historical
(circle) and generated yearly data from KGKP model (boxplot) for Niger River at
Koulikoro with different threshold level
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Figure 2-B.40 Maximum Surplus Amount (10° m?) of historical and from historical
(circle) and generated yearly data from NPL model (boxplot) for Niger River at
Koulikoro with different threshold level
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Figure 2-B.41 Storage Capacity (10° m?) of historical and from historical (circle) and
generated yearly data from KGKA model (boxplot) for Niger River at Koulikoro with
different threshold level
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Figure 2-B.42 Storage Capacity (10° m®) of historical and from historical (circle) and
generated yearly data from KGKP model (boxplot) for Niger River at Koulikoro with
different threshold level
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Figure 2-B.43 Storage Capacity (10 m’ ) of historical and from historical (circle) and
generated yearly data from NPL model (boxplot) for Niger River at Koulikoro with
different threshold level
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Figure 2-B.44 Storage Capacity of historical data and generated (KGKA) data with
different threshold as (TL*the overall mean of the historical monthly data), (unit : m’)
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Figure 2-B.45 Storage Capacity of historical and generated (KGKP) monthly data with
different threshold as (TL*the overall mean of the historical monthly data) (unit : m®)
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CHAPTER III

NON-PARAMETRIC MULTIVARIATE SIMULATION OF
INTERMITTENT AND NON-INTERMITTENT MONTHLY
STREAMFLOWS

3.1 Introduction

Stochastic simulation models have been broadly employed in water resources to
analyze the statistical characteristics of drought or flood, control plans on water resources
systems. Multivariate seasonal time scale generation data are generally used for the
drought analysis and planning of the water resources in a river network system. Seasonal
streamflow data, however, has peculiar characteristics that hinder proper modeling such
as high skewness, bimodality, intermittency, long-term persistency and non-linear

relations, as well as seasonality and serial and cross correlation.

The main objective of this paper is to develop a simulation model for multivariate
seasonal streamflow data with the combination of the intermittent sites and the non-
intermittent sites. For this purpose, multivariate nonparametric techniques are employed
based on the matched block bootstrapping technique. To simulate variable data between

the generated sequences and to produce the values not in historical data, a perturbation
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process will be utilized after selection of the historical data point with Gamma Kernel
Density estimate (Lee and Salas, 2008a). The suggested model scheme will preserve the
interannual variability also. Furthermore, the conceptual Genetic Algorithm process is

applied to blend the generated sequences so that the generated data can be mixed spatially.

In Section 2, how those problems have been handled in simulation modeling
literature is described. And the suggested modeling procedure is explained, including the
techniques to preserve the annual variability and shun the repetition of the historical
seasonal and spatial patterns in Section 3. The data and statistics for model verification
are described in Section 4. The application and results are shown in Section 5, with the

following conclusion in Section 6.

3.2 Brief Review of Literature

First of all, seasonal streamflow data are generally positively skewed while annual
streamflows are close to be symmetric although, in some cases, annual may be
significantly skewed. The majority of the existing Multivariate Autoregressive Moving
Average (MARMA) models, as well as disaggregation models, assume that the data are
normally distributed. For skewed streamflow data, various data transformation techniques
for the current parametric normal based models (e.g. Autoregressive Moving Average,
ARMA models) have been developed such as log, power, Box-Cox, and gamma (Salas,
2006). Still, the generated data in the original domain yields some bias during the back-

transformation without bias on the transformation domain.

91



Secondly, some researchers believe that the marginal distribution of the monthly
or higher time scale streamflow data has bimodality or multimodality (e.g. Lall and
Sharma, 1996; Prairie et al., 2006; Sharma and O’Neill, 2002). However, this is still
controversial since two or more different systems (e.g. snow-melt and precipitation)
should affect the streamflow in a certain scale to have a bi- or multi-modal marginal
distribution. Otherwise, it might be just a matter of degree of smoothing or inducing from
record shortage. For example, a short record can easily produce the bi or multi modal
distribution because of random sampling. To prove what causes the multimodality
distribution, meticulous work for each river streamflow should be performed. For
example, the regional consistency of the multimodality in marginal distributions may

buttress that those multimodality are real.

Thirdly, preservation of long-term (e.g. annual) persistency from a lower time
scale (seasonal) model simulation is a difficult task in modeling. A monthly model
preserving the long-term persistency should include a longer number of seasons in
parameterized terms (Vecchia et al, 1983). Disaggregation models have been used with
(1) generating the yearly model first, then (2) disaggregating it into seasonal data
(Valencia Schaake, 1973; Stedinger, 1985). Disaggregation models generally request a
tremendous number of parameters. A nonparametric disaggregation approach has been
devised by Tarborton et al.(1998), and Prairie (2007) to avoid the oversized
parameterization. However, those cannot preserve the serial correlation between the last

month of the previous year and the first month of the current year.

Fourthly, parametric time series models generally use the linear relations (serial

and cross between variables). After transforming data into normal domain, the ARMA
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type parametric models employs the linear relations. However, there are still many cases
in which the relations are not linear and also modeling in transformed domain induce

some biases on a back-transformed original domain.

Lastly, intermittency, non-event occurrence between events, in coarser than
seasonal time scale streamflow data may occur in arid or semi-arid regions, as well as
weekly or daily. The intermittency hinders to apply the existing simulation models such
as Periodic ARMA (PARMA) model since it yields a lot of negative simulation values
combining with high skewness and brings discontinuity. Beard (1973) and Srikanthan
(1979) developed the truncated type model in that if the generated value is negative,
assign it as zero. The model, however, yields significant bias on the basic statistics of the
generated data. Alternatively, a product model has been suggested combining a binary
occurrence process with the amount process (Chebaane et al., 1995). For the binary
process, a periodic discrete ARMA (PDARMA) has been fitted and a PARMA or
Periodic Gamma Autoregressive (1) processes (PGAR(1)) have been applied for the
amount process. Since the PARMA model is restricted to a normal distribution based,
some bias on the generated data produce some bias on the key statistics. The PGAR(1)
model might be a good alternative instead of the PARMA model. However, the
parameter region is so restricted that some data might not be applicable or require further

analysis such as Fourier transformation.

Because of the intricate modeling procedures and drawbacks of the intermittent
seasonal time series, a simple nonparametric approach has been developed by Svanidze
(1978) and Srikanthan and McMahon (1980), named the Method of Fragments (MF).

Here, the fragments refer to the ratios of the seasonal values divided by the yearly so that
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the sum of the ratios of all seasons at a certain year is unity. The drawback of this
approach is that the serial correlation between the last month of the previous year and the
first month of the present year is not preserved. Furthermore, Potter and Pink (1991)
argued that the drawback of MF is the noticeable duplication of seasonal patterns
occurring especially on generating a time series longer than the historical or large number
of sets. One of the purposes of data generation is to analyze risks from the unprecedented
event of high flows or low flows and to employ the risk analysis into the water resources
system design. The repetitive seasonal patterns of the generated data from MF might lead

to significant mistakes on decision making.

A large river basin, such as the Colorado River, may include intermittent and non-
intermittent flows together. The simulation modeling techniques for multisite data
combining intermittent and non-intermittent seasonal streamflow have not been fully
developed in literature. Some plausible techniques that surmount part of the difficulties
described above are overviewed as follows. One of the simplest approaches is block
bootstrapping, resampling the data block from the historical data for synthesized data.
This method was developed originally by Kunsch (1989) and applied for hydrologic
simulation by Vogel and Shallcross (1996). This approach, however, encounters some
drawbacks such as: (1) discontinuity between blocks from block-by-block sampling; (2)
repetition of the same sequences of the blocks; and (3) generation of historical values
only. In the Srinivas & Srinivasan (2005) article, they proposed a hybrid model with low
order Periodic Autoregressive (PAR) and the block bootstrapping of the innovation terms
to overcome those drawbacks. Firstly, the seasonal streamflow data are standardized and

fitted using PAR(1) model, where the innovation term for each site and each season are
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stored. In simulation, (a) The innovation terms are block bootstrapped where a block
implies the multisite and multi-season block, and the block length should be a multiple of
the number of seasons (e.g. 24 months are used in the paper); (b) After setting the initial
value to zero for all sites, synthetic data are simulated recursively with the innovation
terms and the fitted PAR(1) model; (¢) The data are inverse standardized to transform the
generated data back to the original domain. However, this hybrid model has some
significant drawbacks too. At first, it is not feasible for intermittent time series modeling.
Even if the original block bootstrapping can reproduce the intermittent process, the fitting
procedure with PAR(1) cannot be applicable for the intermittent data. Second, it may
generate negative values especially where the seasonal streamflow data are highly
skewed (e.g. exponential type marginal distribution). And third, the seasonal generated
data of later seasons will be almost the same as historical. The first part of the seasons
(e.g. month 1, 2, and 3) generates different values from the historical. However, the other
parts of the seasons (month 10, 11, and 12) generate almost the same values of the

historical. The more elaborate explanation will be followed in the application section.

Moreover, Markovian Matched Block Bootstrapping (MBB) method was
developed by Carlstein et al.(1998) to surmount the block discontinuity. The principle of
this method is to compare the last element of the historical blocks and the last value of
the generated data. From assigning a probability for each block according to the distance
estimated from the comparison, choose the next block. Srinivas and Srinivasan (2006)
applied this procedure for the resampling of a seasonal hydrologic time series. They used

uniform distribution for the assigning probability with a certain number of blocks as a
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range. But, the MBB method employs a somewhat intricate procedure. Here, a simple k-

nearest neighbor resampling technique replaces this model.

Furthermore, other approaches have been applied for at modeling daily weather
variables. The weather simulators require combining the intermittent variable,
precipitation, with the non-intermittent variables such as maximum temperature,
minimum temperature, and wind velocity. This might be useful for modeling the river
network combining intermittent and non-intermittent stations which have not been
applied for streamflow data. Rajagopalan and Lall (1999) extended the k-nearest
neighbor resampling approach (Lall and Sharma, 1996) to simulate multivariate weather
variables. Also, many researchers have improved this technique (Yates et al., 2003;
Buishand and Brandsma, 2001). However, both the MBB and the extended K-Nearest
Neighbors Resampling (KNNR) models have the drawback that there is no variability in
cross relation. In other words, there is no chance to be mixed between variables. The
resampled multivariate sequences are mixed on not spatially but temporally. This is the

same drawback as the repetition of the same seasonal pattern.

Even though the seasonal streamflow (combined with intermittent and non-
intermittent) and daily weather variables have many of similar characteristics for
simulation modeling, the seasonal streamflow data has stronger seasonality than daily
weather variables. Therefore, a periodic model should be fitted into the seasonal
streamflow data, while a stationary model or ranged stationary model is employed for a

daily weather variable with a certain period, such as a month.
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3.3 Mathematical Description of Model Components

The model scheme suggested here employs matched block bootstrapping
targeting on generating a unique data set with the preservation at key statistics of seasonal
and yearly time scales. The description below starts from the exhibition of the
fundamental block bootstrapping followed by the extension to MBB and the
modifications thereof. A distinctive blending process adopting the Genetic Algorithm is
applied in order to obtain the sequences with different spatial combinations. Afterward,
further improvements are stated, such as perturbing the resampled data with Gamma

KDE to attain the new unprecedented values other than historical data and manipulating.

The elementary notations employed in this paper are expressed here. A set

notation is employed as a e[b,c], implying that the integer index, a, is ranged from b to
c. For instance, {X,}, g5 = (X4, Xy, X}, Where a<c . Suppose that seasonal
streamflow data is available with @ number of seasons and N number of years, and x, is

employed to express yearly observed data at year v, whilex, _ is for monthly data at year

vand month 7. For multisite data, x;,is used for the monthly streamflow for year v,

month 7 at site s with s €[1,5], where S is the number of sites. The symbol is capitalized
to illustrate a variable or generated data corresponding to the observed data. For instance,

X, . expresses a random variable or generated data in contrast tox, .. In addition, a

vector notation is utilized to represent a set of data, e.g. X, ={x,_ }, ¢ - The same

vector notation is also applied for yearly data. g (X) and o (X)represent the mean and
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standard deviation of x for month 7 at site s, respectively while 4'(x) and &) (x)
represent corresponding estimates from the observed data. Also, u(X | ®) is the mean of

the variable X satisfying the condition ® . Additional notations are specified with
necessity along with description. Likewise, ¢ is used to differentiate the generated data

time step from the historical data time step, e.g. X, and =1,...,T instead of X, . when T

is the required years of simulation.
3.3.1 Matched block bootstrapping and different block length

The simple bootstrapping scheme for a stationary (e.g. yearly) time series is

sketched in Figure 3.1. Define x,, ,as the value of the ;™ element of the i™ block. Each
block consists of / elements, such that x,,, ={x;, 1} ., for i"™ block. The historical data

set with the record length N contain (N-/ + 1) blocks since the blocks overlap (refer to
Figure 3.1) the historical data. For a generation, choose a block randomly among the
overlapped (N-I+1) blocks, each having the same probability 1/(N-/ + 1), and the selected
block is the length / generated data. For example, in Figure 3.1, it schematically
illustrates the simple block bootstrapping. With nine years of record length and block
length as three, seven historical blocks are structured. The second block of the historical

blocks 1is selected for the first block of the resampled data, such

that X, =xp,,,X, =Xp,,,and X; =x,,, . This generated block is presented as
Xy - The next resampled block X, is the seventh block of the historical data such that

Xpo) =Xy =Xp00 =X, X5 =X, =Xg, X5 =Xp,3 =X} presented in Figure 3.1.
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Notice that while the historical blocks do overlap the historical data, the generated blocks

do not.

For a seasonal time series, the block length / should be a multiple of the total
number of seasons, i.e. [ = @x m, where m is the number of years considered to preserve
inter-annual variability (Srinivas and Srinivasan, 2001). The reason for this format is to
reproduce seasonality and annual key statistics. Furthermore, m should be greater than
one to take into account interannual variability (i.e. yearly serial correlation).

Subsequently, a block of the seasonal time series is
XB(l') = {xB(i,1)7"" xB(i,l)} = {xv,l’ xv,2 2o xv,a)’ xv+l,1 [ xv+m—l,a)}

where ie[l,N-m+1] . A block is overlapped in the yearly scale such

that X ) = {15 Xy 5ees X1 s X 5ees X o b Xpay = X015 X0 5005 X5 g5 X3 150005 Xy o » AN SO ONL

If yearly data are not serially correlated, which might often be the case for
seasonal intermittent data due to the discontinuity of seasonal streamflow induced from
zero values, then one is good enough for m. The major drawback of this bootstrapping
method is the same as the one for the method of the fragments discussed by Poter and
Pink (1991) and Lee and Salas (2008). The obvious seasonal patterns will occur
repeatedly in the simulated data. To circumvent this shortcoming, Srinivas and Srinivasan
(2006) suggested subdividing a year, in other words, splitting the monthly data of one
year into non-overlapping within year blocks. The subdivided blocks of historical data
are not overlapped. However, this subdivision will underestimate the yearly variance

because the correlation of the seasonal data is attributed to the yearly variance and it does
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not depend on only the lag-1 correlation. But it is broken from subdividing the yearly
data. And, the seasonal pattern will be incurred recurrently but in subdivided time scale.
The first month is the division point in the general block bootstrapping technique. And,
seasonal division points (Srinivas and Srinivasan, 2006) are always the same through the
generation. This yields that the yearly data (for general block bootstrapping) or the

seasonal data are always the same as the historical.

Alternatively, we suggest assuming the block length as a random variable. Instead
of the same division point for blocks, the division points are randomly changed since the
block length is alternated at each block resampling. Suppose the block length is a discrete
random variable with any feasible discrete distribution such as geometric or Poisson
distribution. The Geometric and Poisson distributions were tested for a random variable
of the block length and the results were no difference. From now on, the method
description is based on the Poisson distribution. If the block length / is Poisson random

variable, then the length can be generated from the Poisson distribution as:

e~l

A()! G-1)

p(l')=
where [/'=0, 1,...... and /=["+1. [” is employed instead of / to abstain from generating zero

values. An example procedure of the block length variable is as follows:
(1) A block length is generated from the Poisson distribution Eq.(3-1), say /=4.

(2) Choose a block from the historical data. The historical blocks should start
with the same month of the division point. If the previous generated blocks

end at 7, then the division point for all the historical blocks are 1+1. For
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example, if one start with X, ={X, } ., , then the possible historical
blocks consist of Xy = {xBH,..,xBH =X Xt s Xpoy = (X, 10 X0 4) s s

Xpew) =%y 15> Xy 4} - One among N blocks is selected for X, .

(3) Suppose /=3 for the second generate block (suppose it is generated from the

Poisson  distribution) with conducting Step(l) above so that

Xy =1X,5 X4, X,;} and the historical possible blocks —are

Xpny = {xB,,lr-:xBL3 }= {x1,5>x1,6’x1,7} > ooos Xpoyy = {xN,S’xN,6’xN,7} . One among
those N historical blocks is selected as X, . Repeat this process for as many

years of required simulations as are necessary.

Notice that this process does not produce any discontinuity between years since a

block can crossover two years, when X, contains the elements with two different years.

For example, if the previous generated block stops at yearv and month@—2 and the

generated block length /=3, then X, ={X X, 4»X, .11} - The parameter A of Poisson

v,o-1> Xy o>
distribution in Eq.( 3-1) is directly related to the mean value of / as E[/]= E[I'|+1=A+1.
A is estimated from E[/]. The higher the serial correlation of monthly and/or yearly data is,
the larger this mean will be. Srinivas and Srinivasan (2005) suggest that the block length
as four is the suitable number to preserve the serial correlation and cross-yearly serial
correlation with matching the following block algorithm explained later. By the same
token, the mean value of the block length can take this amount. From an experiment on
the different mean values in this study (not shown), three to six is appropriate if there is

no strong cross-year correlation, otherwise six to twelve might be used. The random
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variation of the record length brings different combinations of the seasonal data so that
the repetition of the same seasonal pattern will not occur. Speculatively, the block length
variable simply eliminates the repetition issue. Furthermore, it allows producing the

generated data set with exploring different combinations of the historical seasonal data.

Yet, the discontinuity between blocks still cannot be resolved. The way to connect
a block with neighbor blocks should be proposed. Carlstein et al. (1998) attains the
requirement using matched block bootstrapping. A following block is selected from the
probability assigned corresponding to the distances from the last elements of the recently
generated block to the previous condition of the historical candidateA blocks. Srinivas and
Srinivasan (2005) applied this procedure for resampling a univariate seasonal hydrologic
time series. From the subdivided within a year block of the historical data, the last
elements from cach block are ordered at first. The nearest neighbors are obtained
according to the order of the last element of the recent generated block. Here, one among
a certain number of neighbors is selected randomly with the same probability. The
following block of the selected neighbor is taken as the next generated block. The
different numbers of neighbors were tested to find an appropriate number, and the result
revealed that five neighbors reproduced the monthly serial correlation and inter-year
serial correlation well. Alternatively, instead of using the uniform distribution and
ordering to choose the matched block, we offer to utilize the k-NN resampling algorithm
(KNNR; Lall and Sharma, 1996). A subsequent block is selected from the condition of
the last element of the preceding generated block and the previous condition of the
candidate historical blocks. The selection is attained with KNNR. After being suggested

by Lall and Sharma (1996), KNNR has been flourished in hydrologic literature because
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of the simple and effective way to model serial relations (Yates et al. 2003, Buishand and
Brandsma, 2001). The original algorithm of KNNR in Lall and Sharma (1996) for
stationary time series generation is summarized below since it is employed many other

places of this paper as well.

(1) Define the current and historical feature vectors D,and D, respectively, and
the number k. D,and D, are vectors whose components are the conditional
variables to resample. Here X, , is used for the feature vector such
as D, ={X,_,}so as x,_, for D,. And the number of neighbors (k) is estimated
from the heuristic method, VN , suggested by Lall and Sharma (1996).

Assuming that we know the initial value X, the next key steps are followed.

(2) Estimate the distance between the feature vector of the historical and the

current state as

r z\:iwi(dtj' —dvj)z} (3'2)

where w; is the scaling factor of each J component where J is the number of

the conditional variables. This factor is employed for which each conditional
variable equally attributes to the distance. Since only one variable is utilized

as suggested in Step (1), w,is not necessary. Therefore, it is expressed as

r, = ‘X 1~ %, d,; stands for 7™ component of the current feature vector and

d,, is the /" component of the i year historical feature vector.
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(3) Among the smallest k neighbors, one of them is selected from the weighted

distribution as:

(3-3)

1/is
pis =

il/ls

Is=1

where is=1,...,k& This probability shows that the neighbor with the closer
distance weighs high probability to be selected and vice versa. The selection
from the discrete weighted probability within a certain range (1,..,k) can be
also done by Roulette wheel selection in the Genetic Algorithm literature

(Goldberg 1989).

(4) The subsequent value of the selected neighbor is obtained as X, . This

procedure continues until obtaining the T length of the generated data as is

supposed.

The application of KNNR to find a matched block is facile. Schematically, the
first element of the following generate block is found using the KNNR approach with the
same step above. Here, the last element of the recently generated block, is assigned as the

feature vector D, = X, | and the last elements of the plausible historical blocks for the
historical feature vector such as D, = {xB(,._L,)} ,and =2,..., N-I+1. Afterward, the

subsequent /-1 data values of the first point are chosen to complete the synthetic data

block.

The simplified algorithm is (a) to choose a value from one to &, say £* and (b) to

find the neighbor of the k*th smallest distance in Eq.(3-2). This scheme is less time
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consuming in a generation since ordering all distances have to be performed at each
generation in general. The searching algorithm to find A*th smallest distance is well

described in Press (2002, in Chapter 8.5).
3.3.3 Blending process with Genetic Algorithm

The objective of this paper is to develop a methodology for the multisite seasonal
streamflow data in which part or all sites are intermittent. The proposed approach for this
objective here is the matched block bootstrapping with the variable block length and the
KNNR algorithm to find the matched following block. To manipulate the cross-
correlation of multisite data, a summary statistics, suggested by Buishand and Brandsma
(2001), is employed to abridge the multivariate dimension problem into the univariate
one, explained later. The handling of the multisite data in this way, however, resulted in
the fact that the generated data are not mixed between different sites. The generated
multisite data set of the certain generate year and month always originates from the same
historical year. For example, suppose that we need to generate the S site data starting
from year t=10 and month 7 =5; the generated block length is one, and the historical year
of the bootstrapped data is eight. And the selected data elements from the historical data

: 1 S
is Xos ={Xgso-s¥gs} and Xjo¢ ={x;4,-Xs¢} - As you can observe, S number of

multisite data values are derived from the same historical year. The repetition of the same
multisite pattern will occur in the generated data set from this summary statistic
formation. Instead, a procedure to blend the bootstrapped multisite data might be

preferred with preserving the cross-correlation between the sites. Here, we propose a
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scheme to blend the multisite data with the conceptual Genetic algorithm (GA). The

fundamental and the process of GA are expressed briefly below.

Genetic algorithm is a search technique based on a biological metaphor, such as
natural selection and mutation (Goldberg, 1989). GA explores the whole range of the
feasible region and evolves toward a better solution with a probability manner. A better
solution implies the maximization or minimization of the specified fitness function. This
technique is an efficient and robust search process, since it produces a near-optimal
solution through the traveling around all possible regions. The GA application needs to
encode each parameter or target variable as an array of bits (binary code), called strings.
The initialization performs establishing the starting searching points with a certain
number of populations. A fitness function is required to evaluate the preference of each
population. For a simple example, suppose that the feasible region of the target variable,

denoted as Z, is from zero to sixty three with only integer values, and we try to find a
value that maximize the fitness function f(Z)=Z>. The example of GA for this problem

is expressed in Table 3.1 and Figure 3.2 with four population sizes. The steps are as

follows:

(1) The string length should be six because six strings of binary can be decoded as the

range of zero to sixty three, such as from 000000 decoded as 0 and 111111

6
decoded as 63; (226’[ x b, , where b,is the binary values at each bit 7). The strings

i=1
of the initialized four populations are displayed in the second column of Table 3.1.

The probability to be reproduced, the fifth column of Table 3.1, is estimated from
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dividing the fitness value of each population (the fourth column) by the summation

of the total fitness value (sixth row of the fourth column).

(2) Among the current populations, two populations are independently selected from
the estimated probability. Notice that the selected two populations can possibly be

the same.

(3) The two selected populations (population 2 and population 4 in Figure 3.2, left)
mate and generate two new populations with the crossover of some elements
(Figure 3.2, left) or without the crossover corresponding to the crossover
probability, p,. If a uniform random number, u, ~ Unif[0,1], is less than p,, two
selected populations crossover their values from the first elements to the cross
point. On the left side of Figure 3.2, the crossover point is three, three values are
crossovered, and generate two new populations. Otherwise, explicitlyu > p,, two
selected populations, itself, become new populations. The cross point is assigned
randomly from one to five in this example. Goldberg (1989) suggested the
appropriate probability as p, =0.6. Further process can be applied at this stage,
called tournament selection. Instead selecting both cross-over populations, only

one of them is chosen in the favor of a certain criterion (i.e. fitness function).

(4) Each string of the new population mutates randomly as shown in Figure 3.2 with a

mutation probability ( p, ). The second element is mutated. Goldberg (1989)

suggested p, =1/30.
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Furthermore, the real-coded GA has been used such that real numbers are used for
bits instead of binary (zero or one) code (Dasgupta and Michalewicz, 1997). And
tournament selection in which two individuals compete for selection, only one remaining
has been employed with better performance. The capability of GA to explore the whole
feasible region of a variable with crossover and mutation is profitable for the MBB
method with summary statistics since the method suffers from the repetition of the same
pattern between sites as mentioned previously. The GA algorithm, however, should be
modified to embed in this method because the purpose of GA here is to yield different
generated data combinations between sites without loosing the cross relationship between

sites. The embedded GA with modification is explained.

The reproduction process of GA is analogous to bootstrapping in that the data are
resampled from the existing data X,/ ={X/ } i, - Let the resampled data from MBB be
the reproduced data from GA. The next procedure of GA is the crossover. For this

process, it entails one more multisite data set denoted X*, _, and this additional multisite

data should be similar to X, _, avoiding the decrease of the cross-relation of the generated

data. For this purpose, KNNR is employed to find the neighbors of X, . Subsequently,
the portion of the original resampled data set X, . is substituted randomly with the values

of another data set of X*, shown in Figure 3-A.1 with the crossover probability p, .

This probability is rather downsized as 0.3333 in application because of the cross-relation

preservation. If the multisite data set X, is probabilistically rejected to perform the

crossover, each element (each site value) is replaced with another historical value among
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{x, ¢ }yep i Tandomly with the mutation probability p, illustrated in Figure 3-A.2. The

replacement might be constrained to k- nearest neighbors of X' in order to preserve the

cross-correlation.

The differences between the rudimentary GA and the modified are: (1) only one

multisite-data set is obtained instead of two data sets (i.. another data set X* . is

discarded after the crossover); (2) instead of cross-point exchange, the exchange data

points are selected randomly with probability 0.5; (3) assign the probability p. as one-

third rather smaller than what Goldberg (1989) suggested as 0.6; (4) a mutation process is
performed only on the multisite generated data set for which the crossover is
probabilistically refused. The difference between (3) and (4) is applied because higher
probability for crossover and higher chance of mutation might incur lessening the cross-
relation between sites. The exact procedure is described in the next section, with a simple

example as shown in Appendix A.

The serious shortcoming of the simulated data from the suggested process above
is that it generates only historical value. Short term water resources planning will be
significantly affected from this deficiency. This might lead to failure of the analysis for
the most significant drought with short duration. Lee and Salas (2008) suggested

generating the unprecedented value utilizing the Gamma kernel density estimate.
3.3.3 Perturbation process with Gamma Kernel

One of the major drawbacks for bootstrapping is that the generated sequences are

historical values. In literature, a few of the methods have strived to solve this problem on
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nonparametric generation models (Prairie et al., 2006; Srinivas and Srinivasan, 2006;
Sharif and Burn, 2007). The hybrid method, devised by Srinivas and Srinivasan (2006),
with the low-order periodic autoregressive and moving block bootstrapping on the
innovation term, is not plausible in the case of the mixture with non-intermittent site and
intermittent site. The normal kernel density, derived by the bandwidth from the approach
of Sharma et al. (1997), with KNN on weather variable can be a good candidate (Sharif
and Burn 2007). However it employs the normal variable kernel which yields some bias
on the marginal distribution in case that the observed data is significantly skewed and
bounded. This might be a plausible approach when the record range of the variable

includes the negative part such as the intervening flow (Lee and Salas, 2006).

Meanwhile, Lee and Salas (2008) suggested that the Gamma kernel density
estimate with KNNR and Gamma kernel does not produce any bias in case of positive
bounded data range. It can be applied into the MBB without any hassles. The vital point

is described succinctly. The Gamma kernel suggested in the paper is:

txz/hz—le—t/(hz/x)

(R 0T T RY)

sz/hz,hz/x (t) (3'4)

where K, ,(¢)is the gamma kernel function with shape parameter  and scale
parameter £ . The mean and variance from the gamma kernel are u(f)=x ,

o’ (t) = h’ respectively. The heuristic parameter estimation of the bandwidth suggested

in Lee and Salas (2008) is employed here such that:

h= (3-5)
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The application of Gamma KDE is that the resampled data (x) from the procedure
described in the previous section is perturbed with Gamma kernel by replacing the data
with a generated value from the gamma distribution such as Gam(x’/h’, h/x’) only if x>0

Notice that Gamma kernel perturbation does not vary the resampled zero values.

The perturbation with the Gamma kernel with mean x and variance 4”might not
be appropriate in case of the highly skewed data since the variance of the kernel is fixed.
The coefficient of variance (CV) of the kernel (/%) is too large in case of low value x.
The high variance on low value will yield frequent extreme low values. Moreover, the
lofty value x case has relatively low CV. This often occurs in highly skewed data. In
general, the intermittent streamflow are significantly skewed. Here, additional Gamma

kernel only with different parameter formulation is proposed as:

i gt eI )

Kh,x/h(t):m (3-6)

where u(t)=xand o*(¢)=x/h. Notice that the variance of Gamma kernel is

varied along with x. And the expected value of the variance of the Gamma kernel 1s

2 2
o, U,

E[c*(H)] = E[x*/h] = (3-7)

For estimation of the bandwidth, a heuristic approach is suggested here with the

similar quantity as Eq.(3-5), whereby the variance of the gamma kernel in Eq.(3-4) is the

2
same as the mean variance of the gamma kernel as E[c>(t)]=h* = %—Z . Then,
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2 2 2
O—x +qu _ g, (3-8)

Flo ()= === N/4

The smoothing parameter 4 is

p N oltul
4 0'2

X

(3-9)
If the coefficient of variance (o / u ) is close to one, then Eq.(3-7) is simplified as:

h=

N
u (3-10)

3.4 Applied Model Procedure

In Section 2, the employed model components are described. With the
rudimentary matched block bootstrapping, the Genetic Algorithm and KNNR matched
block process with the block length variable are included in order to attain the plausible
diverse combination of the seasonal data without lessening the serial and cross relations.
And the Gamma KDE is utilized to synthesize the unprecedented values from the MBB
generated values. In addition, the way to manipulate the interannual variability is
suggested by means of the pilot variable. The model components are formulated into one

procedure described below.
Description of the applied Model Procedures

To implement the MBB with the suggested modification into multisite data, some
preprocessing work is required. Instead of dealing with multisite data, Buishand and
Brandsma (2001) proposed employing summary statistics over the different variables.
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Those have been commonly employed in multivariate nonparametric modeling literature
(Yates et al., 2003; Buishand and Brandsma, 2001). Here, the summary statistics are
utilized to reduce the multivariate problem into the univariate one. From the outset, the
multi-site seasonal streamflow data should be scaled as follows so that each of the data

sites contributes equally on the summarize statistics:

: X,
Voe = (3-11)
T (x| x>0)
for the multi-site seasonal streamflow data on which part or all of sites are intermittent
and /(x| x> 0)is the mean estimate from the observed data that is greater than zero.

Eq.(3-11) is formatted to prevent scaling over zero values, or if the data consist of only

non-intermittent data:

L A C)) (3-12)

SR

This scaling, however, is avoidable if the historical multisite data are not
significantly different from each site. In this case, y, . = x, . After scaling the data with

Eq.(3-11) or Eq.(3-12), the summary statistics are attained for each year and month such

that:
1S,
Ve == Vs (3-13)
S s=1

With the summary statistics, the proposed model procedures follow.
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A. Set the block length parameter of Poisson distribution (A) allowing the mean
block length ( E[/]) around three to six in proportion to the magnitude of the

temporal relation of monthly and yearly time scale. Obtain the current block

length (/) from the random variable (/’) with the Poisson distribution with the

parameter (A) and /=/"+1.

B. For the first generate block ?B(l) ={IN’]7 i}y » the candidate blocks are the
historical values constrained t0 {¥5,)}icnn @04 ¥ a0 =V} ey = i} jenin »
e.g. if I=4 and =10, then ¥ 5,0, ={ Y1015 V1025 V103> Y104 } - Select a block randomly

with equal probability 1/N among N (the number of record length) candidates. For
the other generate block and the current generate month 7 , the potential generate

blocks are restricted to {iB(i)}iE[LN] and the elements of each block iBU) are
Usuntiensy = Wit jqeesiay - For example, if i=6, =10, and 1=5, then Y 56)
={ Vo105 Ve11>Ye12sY11>Y14 - Notice that if j>@ where o is the number of seasons
(e.g. ®=12 for monthly) then i=i+1 and j=j-®. Among N blocks, one block is
selected such that one of the first elements of the candidate blocks Z,T is selected

with the KNNR and the following elements are automatically selected. To do this,

(a) the distances are estimated between the previous generate data )7,,1_1 and the

previous value of the candidate historical blocks {y, .}, ;» €Xpressed as:

r= Y;,‘r-l - ;i,r—l (3-14)
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where, i=1,...N;

(b) among the & nearest neighbors (i.e. the indexes from the first to the k smallest

distances); choose one with the weight probability in Eq.(3-3); & is estimated with

the heuristic choice v N ;

(c) the subsequent block of the selected is assigned as the generated block. Notice
that if the block length is always one, the KNNR matched block bootstrapping

converges to the original KNNR method.

. Retrieve and back-transform (according to Eq.(3-11) or (3-12)) f’;’r into the
original domain {X/ } . It is facile to acquire {¥} 5 from )N’[’r just by

keeping track of the year of the historical data from which )N’,J is originated.

. The multisite generated data in the original domain {X;,} ., ¢,is blended with the

Genetic algorithm for each month and year as follows:

(a) Set the probability of crossover p,and mutation p,, ; Here 0.333 and 0.01 are

used respectively as suggested by Goldberg (1989).

(b) Choose another set of multisite data for t and T whose summary statistics are

close to the one of {X; } ()N’t)r ) with KNNR, and assign it as {X*, } -

1
Here, k is estimated with\/ﬁ . The closeness is defined with the absolute
distance between )N’M and y, ., where v =1,.N . One from k nearest neighbors

is found in Eq.(3-3).
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(c) The elements of the two sets, {X } ,gand {X* } ., are exchanged or
not with the crossover process in Genetic Algorithm as follows. If a generated
uniform random number (u,) is smaller than p, (u, < p, ), alternate the
elements of {X, } g 5 into {X* } g . Whether each element will be
altered or not is decided randomly with p . As shown in Figure 3-A.3,
tournament selection can be employed to select one of the two exchange data.
With interchanging the values of {X, } 4 and {X* } _, and ending up
with two sequences, the favorable one can be selected. The measurement of
the preference is varied. One possibility is to choose the one that is yielding
higher positive temporal crosscorrelation in case an applied algorithm
underestimates the serial correlation through months. A drawback of
tournament selection with the criterion of the higher serial correlation might

be the underestimation of the mean in highly skewed data because the values

of extreme cases tend not to be selected in highly skewed data. Therefore, the
original sequence {X, }. ¢ With the crossover from the other set
{X* }ans) and the following mutation for the elements {X; }, g is

employed, but without employing the tournament selection.

(¢) If u, > p,, mutate the {X,,} . The mutation is performed independently

for each element (s=1,...S). One of the main objectives, in time series
modeling, is to preserve the temporal dependence structure such as lagged

cross-correlation. Therefore, instead of applying the mutation for all elements
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(s=1,...S) with p, , only the data values not to be crossovered from the
previous Step (c) are mutated with the probability p, . From a generated

random number u,, , if u, < p,,, then substitute the current element X' with

one of the historical candidates {x,_},, - Instead of randomly selecting
any x, . (where v=1,....,N), choose a value close to the generated value
X, with KNNR where k (the number of nearest neighbors) is obtained from
N* suggested by Fukunaga (1990) not from N'"? so that the candidates to be

replaced have a wide range.

E. From repeating the steps above A to D, attain the generated data set with the
target length 7. The Gamma Kernel perturbation is performed to the resampled
and blended data with MBB and GA mixture. The process is independent on the

other process and simply applied with substituting the resampled data with the

gamma generated data with parameter o = (X, /h)?and B=h’/X .+ or for

highly skewed data, & = (h)*and B = (X, /h.

3.5 Data Description and Test Statistics

To verify the suggested model, a portion of the Colorado River system was
utilized. The Colorado River system (CRS) portrays the river flow with 29 selected
stations. The historical gaged data has been naturalized for these 29 stations through 2003.

Part of the data has been extended by Lee and Salas (2006) back to 1906, employing the
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combination of the parametric linear regression and the nonparametric bootstrapping with

a trace selection method.

In application, two sets of simulation studies were performed. Firstly, three non-
intermittent sites, non-zero values in the data set, are selected among 29 stations of the
CRS, such as sites 8, 16, and 20. Those are the most vital sites in managing the Colorado
River system. The hybrid model (Srinivas and Srinivasan, 2005) and the moving block
bootstrapping with genetic algorithm (GAMBB) model, developed in this paper, were
applied to these sites. Since the hybrid model does not have the ability for intermittent
data, three non-intermittent sites are selected to compare with the GAMBB model.
Secondly, the combined sites with non-intermittent (Sites 21 and 24) and intermittent
(Sites 22 and 27) were applied only into the GAMBB model from the reason above. The
tributaries of the lower basin of the system include the arid and semi-arid region such as
Nevada, Arizona, and New Mexico. The monthly streamflow of the tributaries, especially
Site 22 and 27, has intermittency, defined as zero streamflow between the flows greater

than zero. The exact location of those sites is displayed in Figure 3-A.4.

The one hundred set of the data set with the same length as the historical are
generated for each experimented model. Several statistics are estimated from the
historical and generated data to verify the model performance such as mean, standard
deviation, skewness, maximum and minimum, and lag-1serial correlation in seasonal and
yearly time scale. A boxplot is employed to show the estimated statistics from the
generated data. The end line of the box implies the 25 and 75 percent quantile, while the
cross line above the box on the whisker does the 90 percent quantile and maximum,

below the box on the whisker 10 percent quantile and minimum. And the segment line
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with the ‘x” mark presents the historical values. The preservation of the cross or serial
relation in the generated data is checked through comparing a scatterplot. Half of the
generated data sets (50 set) were used, as well as the historical data. Furthermore, the
drought statistics with the yearly historical and generated data were compared with the
boxplot. The employed drought statistics are the maximum drought and surplus amount,
the longest drought and surplus length, and storage capacity with the historic mean as

demand level.

Moreover, multisite drought event statistics of the yearly data explained in
Haltiner (1985) were calculated for the observed and generated data. The estimated
statistics are mean run length (MERL), mean run-sum (MERS), max run length (MARL),
and max run-sum (MARS), and storage capacity. Mean and max run length is the mean
and maximum value of /(i) defined as the length of deficit at the i drought event. Mean
and max run-sum is the mean and maximum value of S(i), that is the length of deficit at

th

the i~ drought event where S(i) is the summation of the deficit of all sites

S
S@) = Z S* (i) for the it drought event. Storage capacity can be estimated through the
k=1

deficits described in Figure 3-A.5 with sequence peak algorithm (Louks et al., 1981). A

different threshold level is considered for the water demand D; for site k and unvaried

through time. D/ is defined as the historic mean of site & ; multiplying threshold level

(TL) ranged from 0.7 to 1.0 with 0.05 interval.
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3.6 Results

As it is mentioned, two sets of simulation tests were performed in order to verify
the suggested GAMBB model. First, non-intermittent sites are applied to the hybrid and
GAMBB model. Second, the combined sites are applied only to the GAMBB model. The

results of each application are explained in the following two subsections.

Before full application, to observe the effect of the Genetic Algorithm, MBB with

KNNR matched block and variable block length (E[/]=12) with GA and without GA

were tested. Gamma KDE perturbation is not employed in this experiment. The one
hundred set of the same record length multisite ([8, 16, and 20]) CRS data were simulated.
The scatterplot between Moth8 of Site 8 and Site 20 is presented in Figure 3.3 for the
model without GA (left) and Figure 3.3 for the model with GA(right). The significant
difference can be monitored between two figures. It is obvious that the generated data
without GA rarely simulate the new combination between sites. This implies that the
multisite KNN models (Buishand and Brandsma, 2001; Yates et al., 2003) in literature
will show the same feature and cannot produce the new combination of the generated
data between sties. This behavior might be undesirable in that a data simulation model is
built in order to explore any possible events that are unprecedented from the observed

data.

3.6.1 Model comparison for non-intermittent case

For the first data set (non-intermittent sites: 8, 16 and 20 of CRS), the hybrid
model (Srinivas and Srinivasan, 2005) and GAMBB model were applied. The hybrid

model is the combining model with the lag-1 PAR and the bootstrapping of innovation as
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it is explained in the review section. The applied block length for the innovation is 24
months (two year period). For the GAMBB model, 12 months (1 year period) of the
expected length of E[/] is employed. Site 20 data are presented as the representative result

site if a statistic is separately estimated. Completed results can be found in Appendix C.

The basic monthly statistics of site 20 are displayed in Figure 3.4 for the hybrid
model and Figure 3.5 for the GAMBB model. Those statistics are shown from Figure 3-
A.6 to Figure 3-A.15. Most of the monthly statistics such as mean, standard deviation,
skewness, and lag-1 correlation are well preserved in both models. However, minimum
and maximum are not preserved in the hybrid model. In detail, the generated maximum
can not be higher than the historical maximum especially in the later months of the
seasons (i.e. after February). And the generated minimum can not be lower than the
historical, especially right after February. To investigate the behavior of the hybrid model,
the scatterplots are illustrated in Figure 3.6. In Figure 3.6, the historical data points for
site 8 for month 2 and month 3 are presented with triangles and 50 sets of the simulated
data from (a) the hybrid model and (b) the GAMBB model with gray circles and the same
plot but with the month 8 and month 9 for (c) the hybrid model and (d) GAMBB model.
The linear directional shape is shown in Figure 3.6 (a), which is the general characteristic
in the hybrid model. Similar behavior is also shown in the local regression with KNN
innovations developed by Prairie et al. (2007) and further investigated by Lee and Salas
(2008). The synthetic data in this case are only generated from the directional lines. The
GAMBB model, however, aptly reproduces the historical relation with local non-linearity
(Figure 3.6 (b)). More importantly, the reasons of the underestimation of the minimum

and the overestimation of the maximum are revealed here in Figure 3.6 (c). The generated
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data from the hybrid model are not much different from the historical data in the later part
of the season, here Month 8, as shown in Figure 3.6 (c). The reason is because the fixed
block innovation of the hybrid model fits the monthly data into lag-1 PAR model such

that:

s _ g8 § s
Xv,r - ¢1,TXV,T“1 + gv,r

where ¢’ and ¢, is the parameter and random component at month T and site s,

respectively, and the stored random components &, . are resampled at the generation

procedure. Since the innovation is resampled with a two-year block, the whole months of
the innovation in a year are generated from the same year of the historical data. The only

difference of X  in generated data can be achieved from X __ because ¢, is taken from

v,r-1
the resampling of the stored innovation. However, the synthetic data is recursively

generated with the previous value; the difference from the historical data will be

diminished along with the later portion of the months. In case of the higher ¢’ value that

is the lag-1 serial correlation in method of moment parameter estimation, the difference

of the generated data from X/ _, the historical value, might propagate further down to the

later months of the season. To the extent of the extreme case of ¢, is zero, the generated

data is no different from the historical data through the next months of the year. Figure
3.6 (d) shows that the GAMBB model properly preserves the locality and dispersion as

the historical.

The monthly cross correlations are well preserved at both models, as shown at
Figure 3.7 (left) and (right), respectively. Lag-1 cross-correlations are also well preserved,

as shown Figure 3-A.10 and Figure 3-A.11. The yearly key statistics for both models in
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Figure 3.8 (Hybrid) and Figure 3.9 (GAMBB), are well reproduced in both models,
except lag-1 correlation. Even if the block length of the hybrid model is considered as a
two-year period to preserve the interannual variability, there is still some underestimation
on the lag-1 correlation (Figure 3.8). Meanwhile, the lag-1 correlation for the GAMBB
model is better preserved, though the mean block length is half of the hybrid model
(Figure 3.9). This is the effect of the KNN matched block selection. The underestimation
of the lag-1 yearly serial correlation in the hybrid model affects the slight
underestimation of the storage capacity in Figure 3.10(a). The drought, surplus, and
storage statistics are slightly better preserved by the GAMBB model than the hybrid
model (Figure 3.10 (a) and Figure 3.10 (b) for site 20). The other stations (site 8 and 16)
behave the same as site 20. A reader refers to the figures from Figure 3-A.16 to Figure 3-
A.19. The multisite monthly and yearly drought statistics with different threshold levels
were estimated and presented in Figure 3-A.20 to Figure 3-A.25 for both models. The
only storage capacity at 1.0 TL had some underestimation in the generated data from the

hybrid model.

Furthermore, negative values rarely occurred in the generated data from the
hybrid model. It might not be significant in this case since the frequency of being
negative is very small. However in case of the highly skewed data, this might be a serious
drawback in that the streamflow data cannot be physically negative. Cross-correlation

pairs of historical and generated data are shown in Figure 3-A.26 to Figure 3-A.31.
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3.6.2 Application to the combined sites with intermittent and non-intermittent

For the multisite model application, the intermittent sites 22 and 27 were applied,
as well as the non-intermittent sites 21 and 24. The portion of the results sites 21 and 22
(one for non-intermittent site and one for non-intermittent site) are presented here.
Completed results can be obtained in Appendix C. The specification of the applied
GAMBB model was the moving block bootstrapping model with variable block length
E[/]=12. KNN matched block selection is also used in the model procedure. The applied
Gamma KDE formulation is shown in Eq.(3-6), and Eq.(3-9) was employed for
smoothing parameter estimation since the applied dataset is highly skewed. For the GA
algorithm, tournament selection was applied, such that one with higher lag-1 correlation

was selected with the probability 0.8.

The basic monthly statistics displayed in Figure 3.11 and Figure 3.12 show that
the model reproduced those statistics reasonably well for Sites 21 and 22. For Sites 24
and 27, refer to Figure 3-A.32 and Figure 3-A.33. All the basic statistics are fairly well
preserved through the GAMBB model for both sites. Also, the statistics of Sites 24 and
27 are preserved well. The monthly minimum of Site 22 was always zero at each month
in the historical and almost in simulated data except for a few cases in August and
September of the generated data since the site is intermittent for all months, including.
zero values (Figure 3.12). This indicates that the model reproduced the intermittency in
the historical data well. The lag-0 cross correlation was well preserved as illustrated in
Figure 3.13, as well as lag-1 cross correlation (referred to Figure 3-A.34). The pair cross-
correlations, the correlation between a pair of monthly or annual data, were estimated and

shown for Site 21 and 22 in Figure 3.14 (a) and (b), respectively. Most of all pair
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correlations were well preserved as shown. The yearly statistics of the two sites were
fairly preserved with some minor bias, as well as the other sites. Related results are
shown from Figure 3-A.35 to Figure 3-A.38. The yearly drought statistics for each site
displayed in Figure 3.15 for Sites 21 and 22 were well preserved with the GAMBB model.
Further results for the yearly drought statistics are shown in Figure 3-A.39 and Figure 3-
A.40. Figure 3-A.41 and Figure 3-A.42 illustrate the pair correlation. The multisite
drought statistics were also well preserved as shown in Figure 3.16. Figure 3-A.43 to
Figure 3-A.48 shows the further multisite monthly and yearly drought, surplus, and
storage statistics. The yearly cross-correlation in Table 3.1 was reproduced well in the

generated data from the GAMBB model

3.7 Summary and Conclusions

In this paper, we made an effort to build the stochastic simulation model of the
multivariate seasonal streamflow time series with the combination of intermittent and
non-intermittent sites. So far, there is not much development for this study except in the
generation model of the multivariate weather variable. The nonparametric technique, the
moving block bootstrapping procedure, was employed for the suggested model in this
paper. To this end, we developed some new features in order to yield more variable
sequences, since one of the critical drawbacks for the nonparametric generation model is
to generate only the same value as the historical, the repetition of the same seasonal
pattern, and no variation spatially (the values are exactly the same as the historical site-
by-site). The new features were: (1) the variable block length — the aggregated values to

annual or seasonal (in case of monthly generation) will be different from historical, (2)
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KNNR block selection — the connection between blocks will be preserved, and (3)
Genetic Algorithm mixture — spatially different sequences to historical will be generated,
and (49) Gamma KDE perturbation — unprecedented values from historical will be
generated. Overall, the developed model was built in order to generate as many
unprecedented sequences as possible while preserving the statistical behaviors embedded

in the observed data, such as key basic statistics and drought statistics.

In application, the suggested model was compared with the hybrid model at first
with the non-intermittent case since the hybrid model does not have the adoptability of
the intermittency. The hybrid model has undesirable features, such as the directional
relation in the generated data and the generation of the almost the same sequences as the
historical, especially during the later part of the seasons. The suggested model, GAMBB,
reproduces the basic and drought statistics that are estimated with various synthetic data

sets that are unprecedented in the observed data.

In case of the combination cases, the GAMBB model reproduces well the
statistical features of the observed data such as the basic key statistics and drought,
surplus, and storage statistics. It suggests that the developed model might be an attractive
model for the combined case of the intermittency and non-intermittency in a reasonable

manncr.
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Table 3.1 Initialized Population for GA with six strings and four populations

No String V4 {(2)=7"2 % of Total
1 011010 26 676 9.90
2 110100 52 2704 39.6
3 101000 40 1600 23.4
4 101011 43 1849 27.1
Total 6829 100

Table 3.2 Cross-correlation of Historical and Generated Yearly Streamflow

GAMBB
21 .
Sooon | 053 1.00 0.68 0.65
24 | 058 0.68 1.00 0.70
27
GAMKNN | 21
o220 | 063 1.00 0.77 0.73
24 0.66 0.77 1.00 0.77
27 0.59 0.73 0.77 1.00
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Figure 3.1 Schematic representation of Block Bootstrapping with overlapping; the

number inside each box presents time index; Xg; > - the value of the first block and second
: element;
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Selected to Mutate

(a) (b)
Figure 3.2 Sketch of the crossover process (a) and the mutation process (b) for GA with
six strings and four populations; (a) From the original population (Table 3-1), population
2 and population 4 is selected as reproduction and the items are exchanged from zero
element to the crossover point. (b) from the new population, the second of the elements
of the second new population is mutated
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Appendix 3-A. Further Detailed Figures

Figure 3-A.1 Sketch of the crossover process applied to MBB method; From the
initial X, _, the part of the values is exchanged with the separately selected multisite data

t,r >

set X*, _. Unlike the basic GA, only one set of data are selected as the generated.

Figure 3-A.2 Sketch of the mutation process applied to MBB method. X *ir is selected

from the k-nearest historical values.
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Figure 3-A.3 Sketch of the tournament selection with crossover process applied to MBB
method
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Figure 3-A.4 Map of Colorado River System with twenty nine stations; the system is
divided into two as the upper Colorado River basin (1-21) and the lower Colorado River
basin (22-29); the map is obtained from Bureau of Reclamation (2007)
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Figure 3-A.5 Graphical Representation of Multisite Drought Statistics : X ¥ presents
the time series for site k and time t, D{ is the water demand for site k and unvaried
through time. This quantity is defined as mean of X * multiplying threshold level (TL)

ranged as 0.7 to 1.0 with 0.05 interval. And S* (i) is the amount of deficit at k™ site
and the i™ drought event and (i) is the length of the deficit the i drought event.
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Figure 3-A.13 Key Statistics of Historical (dot line) and simulations (boxplot) with
GAMBB for Site 8 of the Colorado River yearly streamflow Unit : Acre-feet
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Figure 3-A.15 Key Statistics of Historical (dot line) and simulations (boxplot) with
GAMBB for Site 16 of the Colorado River yearly streamflow Unit : Acre-feet
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Figure 3-A.16 Reservoir-related statistics from Historical (dot line) and simulations
(boxplot) with Hybrid for Site 8 of the Colorado River yearly streamflow — maximum
drought length, maximum surplus length, maximum drought amount, maximum surplus

amount, and storage capacity (Unit : Acre-feet)
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Figure 3-A.17 Reservoir-related statistics from Historical (dot line) and simulations
(boxplot) with GAMBB for Site 8 of the Colorado River yearly streamflow — maximum
drought length, maximum surplus length, maximum drought amount, maximum surplus

amount, and storage capacity (Unit : Acre-feet)
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Figure 3-A.18 Reservoir-related statistics from Historical (dot line) and simulations
(boxplot) with Hybrid for Site 16 of the Colorado River yearly streamflow — maximum
drought length, maximum surplus length, maximum drought amount, maximum surplus

amount, and storage capacity (Unit : Acre-feet)
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Figure 3-A.19 Reservoir-related statistics from Historical (dot line) and simulations
(boxplot) with GAMBB for Site 16 of the Colorado River yearly streamflow —
maximum drought length, maximum surplus length, maximum drought amount,

maximum surplus amount, and storage capacity (Unit : Acre-feet)
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Figure 3-A.20 Multisite Monthly Drought Statistics of Historical (-x-) and Hybrid

simulations (boxplot) of the Colorado River streamflow Unit : Acre-feet
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Figure 3-A.21 Multisite Monthly Drought Statistics of Historical (-x-) and GAMBB
simulations (boxplot) of the Colorado River streamflow Unit : Acre-feet
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Figure 3-A.22 Multisite Seasonal Drought Statistics of Historical (-x-) and Hybrid
simulations (boxplot) of the Colorado River streamflow Unit : Acre-feet
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Figure 3-A.23 Multisite Seasonal Drought Statistics of Historical (-x-) and GAMBB
simulations (boxplot) of the Colorado River streamflow Unit : Acre-feet
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Figure 3-A.24 Multisite Yearly Drought Statistics of Historical (circle) and Hybrid
simulations (boxplot) at the Colorado River streamflow Unit : Acre-feet
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Figure 3-A.25 Multisite Yearly Drought Statistics of Historical (circle) and GAMBB
simulations (boxplot) at the Colorado River streamflow Unit : Acre-feet
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Figure 3-A.26 cross-correlation pairs of Historical (dot line) and Hybrid simulations
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Figure 3-A.27 Cross-correlation pairs of Historical (dot line) and simulations (boxplot)
with GAMBB of Site 8at the Colorado River monthly streamflow. The label in x-axis (5-
A) indicates the pair between month 5 and annual data
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Figure 3-A.28 cross-correlation pairs of Historical (dot line) and Hybrid simulations
(boxplot) of Site 16 at the Colorado River monthly streamflow. The label in x-axis (5-A)
indicates the pair between month 5 and annual data
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Figure 3-A.29 Cross-correlation pairs of Historical (dot line) and simulations (boxplot)
with GAMBB of Site 16 at the Colorado River monthly streamflow. The label in x-axis
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Figure 3-A.30 cross-correlation pairs of Historical (dot line) and Hybrid simulations
(boxplot) of Site 20 at the Colorado River monthly streamflow. The label in x-axis (5-A)
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Figure 3-A.34 Lag-1 cross-correlation between sites from the historical (-x-) and
GAMBB simulations (boxplot) of the Colorado River monthly streamflow
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Figure 3-A.35 Key Statistics of Historical (circle) and GAMBB simulations (boxplot) for
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Figure 3-A.36 Key Statistics of Historical (circle) and GAMBB simulations (boxplot) for
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Figure 3-A.37 Key Statistics of Historical (circle) and GAMBB simulations (boxplot) for
Site 24 of the Colorado River yearly streamflow
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Figure 3-A.38 Key Statistics of Historical (circle) and GAMBB simulations (boxplot) for
Site 27 of the Colorado River yearly streamflow

168



¥ 10 x10
| 11t : 3t T -
25} .
12r 1 25 ]
20¢r .
1ot 1=
S £ g 2} 1 ]
@ @ &
ol L3 i @ i o
@ [} r ]
g g 8 r 1 @™
S ®
& &) B 15} i
i3
10+ y gl i
1+ .
5t . 4t .
05t .
1 2 1 2 1
LengDr and LengSup AmtDr and AmtSup StrCap

Figure 3-A.39 Reservoir-related statistics from historical (circle) and GAMBB
simulations (boxplot) for Site 24 of the Colorado River yearly streamflow — maximum
drought length, maximum surplus length, maximum drought amount, maximum surplus
amount, and storage capacity
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Figure 3-A.40 Reservoir-related statistics from historical (circle) and GAMBB
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Figure 3-A.44 Multisite Seasonal (4 seasons) Drought Statistics of Historical (-x-) and
GAMBB simulations (boxplot) of the Colorado River streamflow
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Figure 3-A.46 Multisite Yearly Drought Statistics of Historical (circle) and GAMBB
simulations (boxplot) of Site 22 at the Colorado River streamflow
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Figure 3-A.47 Multisite Yearly Drought Statistics of Historical (circle) and GAMBB
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CHAPTER IV

NONPARAMETRIC STREAMFLOW DISAGGREGATION MODEL

4.1 Introduction

Stochastic generation models are required for drought analysis and reservoir
planning of a complex river system in the hydrologic field. For analyzing a river system,
a generation model of multisite data should be used in order to account for the cross
effects among individual sites. Multivariate autoregressive (MAR) time series models
have been employed in literature (Salas 1993) and for a seasonal multivariate time series,
periodic MAR (PMAR). Since the seasonal time series model cannot reproduce the
variability of the aggregated level, disaggregation models have been developed such as
Mejia and Rousselle (1976), Santos and Salas (1992), and Valencia and Schaake (1973).

The model with single site is mathematically described as

Y=4X+BV (4-1)
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where Y is the seasonal data and X is the annual data, A and B are parameter matrices
and V is the independent [dx1] vector with the standard normal distribution, and d is the

number of seasons. A final requirement is the model met the additivity condition such

.....

i=1
preserve the serial correlation between the last month of the previous year and the first
month of the current year. Thus, Mejia and Rousselle (1976) included an additional term

to fix the drawback as

Y = AX + BV +CE 4-2)

where C is the parameter matrix and E is the last seasonal value of the previous year.
The parametric disaggregation models (Mejia and Rousselle, 1976; Valencia and Schaake,
1973) , however, require estimating a tremendous number of parameters. For this reason,
some parsimonious disaggregation models have been proposed by researchers (e.g.
Stedinger and Vogel, 1984, Stedinger et al., 1985a and 1985b, and Santos and Salas,
1992. Furthermore, Koutsoyiannis and Manetas (1996) developed a useful algorithm that
combines two different models for two time scales, called the accurate adjusting
procedure (AAP). For example, if yearly and monthly data are simulated from the lag-1
autoregressive (AR-1) model and lag-1 periodic AR (PAR-1) independently, then this
algorithm works to match two different time-scale sequences. Further details will next be

described in the review section

Those disaggregation models have significant drawbacks about which many

researchers have mentioned (Prairie et al. 2007; Srinivas and Srinivasan 2006; Tarboton
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et al. 1998) such as requirements of transformation, along with the assumption of the
gaussian marginal distribution, bias of the statistics of the generated data; and generating
negative values. To overcome the shortcomings of the parametric disaggregation models,
a nonparametric disaggregation (NPD) model has been developed by Tarboton et al.
(1998). Rotating disaggregate variables with the Gram-Schmidt orthonormal (GSO)
matrix, the rotated data are generated from the kernel density estimate and the scaled
aggregate variable is included as the last element of the rotated data. The data are back-
rotated to get the original domain. To avoid a massive multivariate kernel density
estimate, Prairie et al. (2007) employed KNNB to select the GSO rotated observed data.
In this paper, we will investigate the characteristics of the NPD model and reveal the
similarity to AAP. Its drawbacks are revealed from the results such as no concern on the
variability of each disaggregate variables and the same pattern of disaggregate variables
as the historical data. Further detail will be explained later in the result section. To
surmount those identified drawbacks, a modification of the NPD model along with a

Genetic algorithm is suggested and tested.

In brief summary for the following chapters, two fundamental nonparametric
disaggregation models are reviewed in chapter 2. In chapter 3, the suggested model
components and procedure are described. The data description and results is shown in

chapter 4 followed by the conclusion and summary in chapter 5.

4.2 Review of two existing disaggregation approaches

Among various disaggregation approaches, two existing approaches are reviewed

in this section, such as the accurate adjusting procedure (AAP) suggested by
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Koutsoyiannis and Manetas (1996) generally used in parametric modeling, and
nonparametric disaggregation model with KNN (Prairie et al., 2007), the cutting-edge
technique of disaggregation models. At the end of this section, the similarity of these two
models is explained followed by suggestions to introduce a new approach according to

the weaknesses of these two models.

4.2.1 Notation

Disaggregation in stochastic simulation is a process that splits a higher-level (or
aggregate) value into multiple lower-level (or disaggregate) values while preserving the
statistics characteristic of both levels. For example, yearly data are disaggregated into
monthly data, called temporal disaggregation and main stream station data are

disaggregated into multiple substations, called spatial disaggregation. Lower-level
variables (e.g. monthly) are denoted as Y =(¥,....Y,)" where d is the number of

disaggregate variables and X denotes the upper-level or aggregate (e.g. annual) variable.
One of the most important features in disaggregation lexicon is the additivity condition,

l.e.
LV, .47, =X (4-3)

Also Z" will denote the generated data for the variable Z. The disaggregation
approaches suggested in this paper will require initially choosing a candidate
disaggregation variable set. Then the selected disaggregation variables are adjusted to

meet the additivity condition. The generated candidate disaggregate variables are denoted

as Y =[V",7,,..,¥,]", and their sum denoted as X . Note that the candidate lower-

177



level variables may be generated from parametric models (e.g. MPAR) or from
nonparametric procedures, e.g. using KNN. In the nonparametric case, the lower-level
sequence candidates are drawn from historical data. In addition, aggregation and

disaggregation can be conducted temporally or spatially. Generally our notations here are
applicable for both. However, in some cases, we will use y, , where s=1,...,S represents
sites with S total number of sites, v = 1..., N denotes years with N=total number of years,
and 7=1,..,0 represents seasons (or months) with @ =number of seasons.
Furthermore, 1, and o, are used to represent the mean and standard deviation of the Z,

and o, , represents the covariance between the variable Z, and Z, .

4.2.2 Accurate Adjusting Procedure

Koutsoyiannis and Manetas (1996) developed a useful scheme for coupling two
different level models for aggregate and disaggregate variables. The models for the
aggregate and disaggregate variables are fitted independently and the data generation

procedure proceeds as follows:

(1) The aggregate data X are generated from the corresponding higher-level model.

Then, the d-dimensional lower-level data Y* =Y, .Y, ,...,)7;]7' are generated

from the lower-level model independently from the aggregate variable.

(2) The sum of the disaggregate values are determined and the distance between the

generated aggregate value X is calculated as:
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japat 4 d aed . . e
where X = ZY, and o, is the standard deviation of the yearly

data X.

(3) If £ <A, where ¢is the tolerance level (0.1~1), then regenerate the disaggregate

data set Y . Otherwise the disaggregate data are adjusted with one of three
adjustments such as proportional, linear, and power adjusting procedures to match
up with the additivity condition in Eq.(4-3). These three adjustments are

explained below.

(4) The steps (1) ~ (3) will be continued until all the higher-level data are
disaggregated. The adjusting procedures referred to in step (3) above may be

proportional, linear, and power as:

Y =7 A (X -5 J=1,ed (4-4)
* ok X*

Y =Y — J=1,...d 4-5
J 1Y J (4-5)
* g 3 * iyt ] ,{]./ I .

Y, =Y, (X [ X Jj=1,....d (4-6)

where A4, =0y /oy and 77, = Hy [y

The linear adjustment above preserves the mean and standard deviation as well as
the variance-covariance matrix of the lower-level variables (Koutsoyiannis and Manetas
1996). But negative values might be generated and higher order statistics such as

skewness might be biased. Therefore, when disaggregate variables exhibit low skewness
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(close to normal distribution) it is better to use the linear adjustment. Koutsoyiannis and
Manetas (1996) derived the proof that the linear adjusted variables Y; in Eq.( 4-4) have

the identical mean and variance-covariance matrix assuming that the mean and standard
deviation of the aggregate variable are the same as those of the sum of the disaggregate
variables. However, it is frequently not true and the variance of the summation of the
low-level variables are underestimated when a direct lower-level model is applied (e.g.
lag-1 Periodic Autoregressive model:PAR-1) since the covariance matrix of the lower-
level variables is not preserved with low-order PARMA model (Bartolini and Salas 1993).
This is principle reasons to employ the disaggregation model instead of direct application

of the lower-level model.

Koutsoyiannis (1994) showed that the proportional adjusting is appropriate on a
gamma marginal distribution with the same common scale parameter and different shape
parameters for each disaggregate variable and independent each other. The assumption of
independency might be relaxed from numerical tests. Generally monthly streamflow are
skewed and can be fitted to a Gamma distribution. This distribution does not produce any
negative values in any condition unless an aggregate or a disaggregate variable has
negative values, which is the general case that the observed streamflow records are non-
negatives. Moreover, proportional adjusting is useful when disaggregate data include
intermittent process, zero values between non-zero values. If a disaggregate value is zero,
then the proportional adjusting retains zero unlike linear adjustment. The power adjusting
procedure is useful in that it is the generalization of the proportional adjustment. But
additional repetitions are required to meet the additivity condition since this will not

initially preserve the additivity condition and it slows the generation procedure
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(Koutsoyiannis and Manetas 1996). Therefore, the linear adjustment and the proportional

adjustment are employed with different modeling structure in this study.

The lag-1 Contemporaneous Periodic Autoregressive (CPAR(1)) model is applied
to the lower-level data (e.g. monthly) in the paper (Koutsoyiannis and Manetas 1996).
Specifically, they propose this model to preserve the skewness coefficient employing the
parameterization into the random components. The parameterization for the CPAR(1)
model with embedded skewness parameterization is still cumbersome, and easily
generates negative values. Since CPAR(1) only accounts for lag-1 serial correlation, the
long-term monthly correlation cannot be preserved. Therefore, as Koutsoyiannis and
Manetas (1996) mentioned, the CPAR(1) model is not appropriate in cases where the
snow-melt dominates streamflows, such as in the Colorado River System. And the lagged
cross-correlations between sites are underestimated, since it approximates the dependent

structure in variance-covariance matrix during parameter estimation procedure.
4.2.3 Nonparametric Disaggregation model

Tarboton et al.(1998) invented a nonparametric disaggregation (NPD) approach.

The NPD model employed the nonparametric conditional density estimate as

fY,X)

JY1X)=
[roe, x0av

(4-7)

The coordinates of the disaggregate variable vector are rotated into a new vector space

LZ=(Z,,..,Z,) using the rotation matrix (R, ,) obtained from the Gram Schmidt

orthonormalization (GSO) such as:
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Z=RY (4-8)

The rotation estimation procedure of GSO guarantees that the last coordinate of a new
vector space is aligned perpendicular to the hyperplane in Eq.(4-3). And, the last

elements of the rotated variable Z, are the rescaling of X such as:

Z,=X/\d (4-9)

GSO procedure is described in Appendix A with the example on d=2. Tarboton et al.
(1998) used the multivariate density estimate of the rotated variable Z . Generating

variable X separately from a desirable model, the multivariate kernel density estimate is

used to generate the Z variables ( Z,,...,Z,_,) with the condition of Z,, which is obtained

from variable X as of Eq.( 4-9). Then the generated variables are back rotated by:
Y=R'Z=R"Z (4-10)

to obtain the original disaggregate level data, where R™ =R’ , using a standard basis

(see appendix A).

Since the burdensome feature of the NPD procedure is using the d-dimensional
multivariate density estimate, Prairie et al. (2007) employed the k-nearest neighbor
bootstrapping (KNNB) technique (Lall and Sharma 1996). KNNB is used to select the
Z variables obtained from the rotated historical data in place of generating from a

multivariate density estimate.

The generation procedure of the disaggregation model (Prairie et al. 2007) is
summarized as:
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(1) Estimate the R matrix according to the number of disaggregate variables

referring to Eq.(4-A1) and (4-A2), and obtain the Z, =(Z,,,...,Z, ;) variables
from the historical variables as Eq.(4-9), where v =1,..., N and N is the record

length.

(2) An aggregate value is generated from the selected model such as

ARMA(p,q),(Salas 1980), the modified KNN (Prairie et al. 2006) or KNN

bootstrapping model (Lall and Sharma 1996), called X .

(3) K-nearest neighbors are obtained from the distance between Z d* = X" //d and
Z,, (v=1..,N). In other words, the K-closest values of Z, , to Zd* are chosen

among N number of Z, ,. The K-neighbors are assigned weights as:

w(i) = kl/ : i=12,..K @-11)

D1/
Jj=1

where the number of nearest neighbor is K =+/N, and N is the sample size
(Prairie et al. 2007). Subsequently, one of the weighted K-neighbors is randomly
selected. The selection among K-neighbors is the random generation from the
discrete weighted distribution from one to K and their probabilities to be selected

are as of Eq.(4-11). Roulette sampling can be also applied for this generation

(Goldberg 1989).
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(4) The remaining elements from Z' , Z,,Z,,.,Z,, are taken from the

corresponding values to Z, from step (3). For example, if the ™ year is selected,

set Z' = (Z,,,Z

230

Z j,d—l:Z;) where Z, is the rotated historical value at i

year among N years and i" variable among d variables. And notice that g

element of Z is replaced with Z; obtained from step (3).

(5) Back-rotate the Z' vector to original space as:

=RT

*

z

(6) Steps (2) to (5) are repeated until the generation length is met.

This procedure is mathematically investigated for a two dimensional case.

Mathematically (readers are referred to Appendix A), Z is described as:

Z=RY=(8”

€51

Y
Y2

€p

[

€»

1/Nd -1/Jd
1/Vd

From back rotation Y’ =R’Z’

Y' ' =R"Z’ =[

/Nd  1/Nd
~1/Nd 1/Jd

I

5
Y2

I

1/Jd
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By applying d=2,

v [Yl +(X*-X)/2] @12)

(X =002

From Eq.(4-12), it is noticed that the disaggregation procedure equally distributes
the difference between the simulated aggregate value X and the historical aggregate
value X for each disaggregate values. Further investigation has been performed for the
higher dimension of d, not included here. Logically, the procedure can be described

differently as:

With the simulated aggregate value X ', find the historical disaggregate data set
Y =(Y;,...,Y,) whose sum is close to X employing K-nearest neighboring approach

(Lall and Sharma 1996).

The selected historical disaggregate data set is adjusted as

Y, +(X -X)/d
Y,+(X -X)/d

*

(4-13)

Y, +(X -X)/d

This simplified procedure is exactly the same as one from Prairie et al. (2007).
This procedure, however, confronts significant consequences as: (a) The generated values
might have negative values which are physically impossible to be produced in the
directly measured records. Furthermore, it is not applicable for an intermittent streamflow

case (zero values between non-zero sequences); (b) If the variance of the disaggregate

185



variables are significantly different from each other, overestimation of the variability in
the disaggregate variables that have small variation might be yielded. And also, the
variable with higher variance will be no different from the historical values. This might
lead to overestimating minimum and underestimating maximum values. (¢) In temporal
disaggregation, the disaggregate values are selected only with the condition of the
aggregate value of the current year. Subsequently, the correlation between the last month

of the previous year and the first month of the current year cannot be preserved.

4.3 Model Description

The two disaggregation approaches presented are similar in that the distance
between the aggregate generated value and the summation of the disaggregate generated

values are estimated. And, the NPD with KNN (NPDK) performs the linear adjusting

procedure (Eq.4-4) with the scaling factor 4, =1/d for all disaggregation values

(g=L,...,d). The major difference is that the NPD uses the KNNB technique (Lall and
Sharma 1996) to find a close set of lower-level generated data values whose sum is close
to the aggregate value while AAP employs the repetition process. The use of KNNB
allows the NPDK model to capture nonlinear data distributions, which the AAP model

cannot.

From the investigation of the two disaggregation models in the previous chapter,
we propose an algorithm that is able to surmount the shortages of both models such as:
(1) not reproducing the long-term monthly correlation from CPAR(1) and degrading the

cross-correlation from contemporaneous modeling in AAP, (2) not preserving the
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correlation between the first moth of the current year and the last month of the previous
year in temporal disaggregation and overestimating the variability in sites with relatively
small variation in respect to lower-level data by NPDK, and (3) generating negative
values which is not physically plausible for streamflow observation by both AAP and

NPDK. Those shortcomings are visibly revealed in the results section.

The main procedure proposed in this paper is the combination of two
disaggregation models, AAP and NPD. The KNN matching process is employed to find
the candidate disaggregate values, whose sum is close to the generated aggregate value.
The adjusting procedure is followed to meet the additivity condition. Since the current
disaggregate values are not connected to the previous disaggregated values of the
previous year, a remedy for the linkage is made by including the last disaggregate value
of the previous year in the lower level sequence selection. Since the current selection
algorithm of disaggregate variable only reproduce the same historical pattern in a year,
Genetic Algorithm mixture of the disaggregate variables is applied here suggested by Lee
and Salas (2008). Overall, the objective of the disaggregation model development in this
paper is to develop an algorithm that disaggregates the higher level data preserving both
lower and higher level statistics of the historical data and generating new sequences with

new seasonal and spatial patterns, as well as new values, not present in historical data.

4.3.1 Combination of the NPD and adjusting procedure

A combination of the NPD and APP disaggregation models is suggested to
surmount the shortages of each model. The combined procedure first models the

aggregate variable and generating independently and from the historical disaggregate

187



sequences of which summation is close to the generated aggregate value employing
KNNR. Finally, the selected disaggregated values are adjusted to meet the additivity

condition. The specific model procedure is as follows:

(1) Generate an aggregate series from a selected model (e.g. KNNR (Lall and
Sharma, 1996); the modified K-NN (Prairie et al., 2006); Shifting Mean Level

(Sveinsson et al., 2003); ARMA).

(2) The distance between X ,* and the historical higher-level data X, is estimated

where X is the historical aggregate value at year v . The distance is

A, =X =X, v=1,..,N (4-14)

(3) Among the smallest K-values of A, where K = JN (Prairie et al., 2007), one is

selected with the random generation from the discrete weighted distribution
(with the range from 1 to K) and their probabilities to be selected are the weights
as Eq.( 4-11). If the j" year is selected, the corresponding historical disaggregate

values are assigned as the primary generated  disaggregate
value \NKZ =Y, ={Y,.Y,,...Y, ;}. The disaggregate sequences whose sums are

closer to X" have a higher probability to be chosen and vice versa according

represented in the weights from Eq.( 4-11).

(4) Then, the selected historical lower-level dataset S?l is adjusted with a linear or a
proportional adjusting procedure as in Eq.( 4-4) or (4-5) to obtain the generated

disaggregate set Y = {YI*,Y;,...,YJ } whose sum is equal to X~ from step(1). If a
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linear adjustment is used, this disaggregation model is called Disaggregation
with KNN and linear adjustment (KILA). And for the proportional adjustment, it

is called KPA.
(5) Steps (1) through (4) are repeated until the generation length is met.

The number of nearest neighbors (K) can also be obtained with generalized cross

validation. The heuristic method, K =~/ , has performed also well in the applications
(Lall and Sharma, 1996; Yates et al. 2003). K takes important role for the variability of
the resampled sequences. When K is smaller, the similar aggregate value of the historical
to the generated aggregate variable will be obtained. However, the problem is that the
variability of the disaggregate variable over the similar generated aggregate variable gets

smaller.

The suggested model in the previous section is not able to preserve the correlation
between the disaggregate variables of the current year and those of the previous year. The
same problem occurred when the first parametric disaggregation model had been
developed by Valencia and Schakke (1973) as described already. A remedy to link the
past with the disaggregate values by Mejia and Rousselle (1976) was to include the

additional term for the disaggregate value of the previous year.

In this nonparametric disaggregation process, it is easier to include the condition
of the last month of the previous year. It only requires replacing the distance

measurement in Eq.(4-14) with:

A, =l X f v (0, -Y, ) (4-15)
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where v=2,..,N and Y,'_Ld is the last generated disaggregate value of the previous
generate year (¢-1) and Y,_, , is the previous historical disaggregate value of the previous

year for year v. And ¢, and ¢, are scaling factor, and since the distance is measured
with two different variables, the inverse of variance for each variable are generally
employed such as 1/o7 and 1/ O'Y2d , respectively(Buishand and Brandsma 2001). This

inclusion of the additional term allows preserving the relation between the last month of
the previous year and the first month of the current year. Instead of the weighted
Euclidean distance, Mahalanobis distance also can be applied (Wdjcik et al. 2000).
Notice that this distance measurement in Eq.(4-15) is applicable only to temporal
disaggregation. Spatial disaggregation does not require this procedure. Instead, the
distance in Eq.( 4-14) should be use. Even though, the suggested disaggregation approach
is explained with the focus on the temporal disaggregation, it is basic to expand the

process to comply with the spatial disaggregation.
4.3.2 Mixing with Genetic Algorithm

The suggested model, however, has a critical drawback because the repetitive
seasonal patterns from the generated data might lead to a significant mistake in decision
making. The repetitive seasonal patterns occur because during the selection procedure
from KNN (step(3), chapter 3.1), the entire disaggregate sequence is selected as a block.
This argument was previously discussed in Lee and Salas (2008), Porter and Pink (1991),
and Srikanthan and Mcmahon (1980). The seasonal repetition is not desirable in that the
purpose of stochastic simulation is to analyze the frequency of certain critical events,

such as floods or droughts including their pattern which is unprecedented in the historical

190



dataset. In the paper (Lee and Salas 2008), the mixing process with the Genetic
Algorithm has been proposed to overcome this problem. Here we also include this
process in the disaggregation algorithm to avoid generating the same pattern as the
historical. The cross-over algorithm is only GA process used among the three process,

reproduction, crossover, and mutation.

In the selection procedure from the k-values at step (3) of the previous section 3.1,

another disaggregated sequence is selected , Y =Y ={Y,.Y,,,...Y,,} assuming that the

i year is selected, so that two sets of lower-level data are chosen, denoted as

Z

=Y, ={Y,,.Y,,,...Y, ,} and \7,2 =Y, ={Y,,Y,,..Y 3. The cross-over process of

I I,

the Genetic Algorithm is performed with either random or competition selection. The
random selection chooses one of two values for each lower-level data with equal
probability while the competition selection chooses the one value having the better

statistical characteristics, such as preserving the serial correlation better. For example, the
random selection is performed with the disaggregate values by selecting Y ,or Y, ; with
equal probability where /=1,..,d. This can be done by generating a uniform random
number (u), and if # < 0.5 choose ¥, otherwise choose ;2. The competition selection is

employed to increase the serial correlation of the generated data. The serial correlation

will be increased by one of two values for which the correlation gets higher. In case that:

Yt,ll - /uYI . Ytjl—l - /uY,J < Ytzl _ ,uy[ . Y:l_l _ IUYH (4-16)
Oy, Oy, %y, Tn-1
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choose )N’,i, otherwise choose )7,1, where /=1,...d.. And the other steps (4) and (5) are the

same as the previous chapter 3.1 as well as step (1) through (2).
4.4 Data description and Model Assessment

To verify the suggested model, the Colorado River system is utilized. The
Colorado River System is represented with 29 selected stations. The historical gaged data
has been naturalized (Prairie and Callejo, 2005;
http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html) for these 29 stations from
1906 to 2003. Part of the data has been extended by Lee and Salas (2006) back to 1906
employing the combination of the parametric linear regression and the nonparametric
bootstrapping with trace selection method. The locations of the 29 stations are shown in

Figure 4-1.

The temporal and spatial disaggregations are tested separately. For temporal
disaggregation, site 20 (Lees Ferry) yearly and monthly data have been used to validate
the performance of the suggested model and compare to the model of Prairie et al. (2007).
In Table 4-1, the basic monthly and yearly statistics of the historical data are presented.
The last row of Table 4-1 illustrates the ratios of standard deviation for each month
divided by the yearly data. This value indicates the percent of variance each month has
over the total yearly variance. The months in wet seasons (JJA) explain most of the
yearly variance while the months in dry seasons contribute little to aggregate (yearly)
variance. The KNN with the Gamma kernel density estimate perturbation method (KGK)
developed by Lee and Salas (2008) is employed for the yearly data simulation, called X" .

The simulated yearly data have been disaggregated with NPDK and the suggested models
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in this work. Five types of the models are tested: (1) Nonparametric Disaggregation
model with KNN (NPDK). (2) Temporal Disaggregation with KNN selection and the
linear accurate adjusting procedure — KLA; (3) Temporal Disaggregation with KNN
selection and the linear accurate adjusting procedure with Genetic Algorithm- KLAG; (4)
Temporal Disaggregation with KNN selection and the proportional accurate adjusting
procedure — KPA; (5) Temporal Disaggregation with KNN selection and the proportional

accurate adjusting procedure with the Genetic Algorithm - KPAG.

To demonstrate spatial disaggregation, we use the tributary sites of the lower
Colorado River System (sites 21, 22, 24, and 27). An index station is used whose
streamflow value is the summation of these four sites. This index station is necessary for
the additivity condition in spatial disaggregation. The monthly data of this index station
are obtained from the temporally disaggregated data with proportional adjusting and
genetic algorithm mixing and the yearly data are generated from KGK (Lee and Salas,

2008) model.

Two model schemes are tested for spatial disaggregation: (1) Spatial
Disaggregation with Gram-Schmidt orthonormal rotation and KNN selection — NPDK
and (2) Spatial Disaggregation with KNN selection and the proportional accurate
adjusting procedure — KPA. Since the linear adjustment procedure employed in the
suggested model may produce negative values especially in highly skewed data, only the
proportional adjustment model is applied for testing. The former model is the
disaggregation model of Prairie et al. (2007). Tributary sites of the lower Colorado River
Basin (sites 21, 22, 24, and 27) were chosen to investigate model performance for the

intermittent case such that some months have no streamflow (zero value). Those tributary
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sites are arid regions where sudden thunderstorms are the main sources of the streamflow.
The data are highly skewed, not only in the monthly scale but in the yearly scale and the
key yearly statistics are shown in Table 4-2. The ratios in the last row of Table 4-2
signify that site 21 typically has the lowest contribution among those four disaggregate

sites.

One hundred sets of the generated series with the same length as the historical
data are generated from each model. Various key statistics are estimated from the
historical and generated data to verify the model performance such as mean, standard
deviation, skewness, maximum and minimum, and lag-1 serial correlation at the seasonal
and yearly time scale. A boxplot is employed to show the estimated statistics from the
generated data. The end line of the box indicates the 25 and 75 percent quantile while the
cross line above the box on the whisker denotes the 90 percent quantile and maximum,
and the cross line below the box on the whisker denotes the 10 percent quantile and
minimum. The segment line with the ‘X’ or ‘0’ mark presents the historical statistics. The
preservation of the cross or serial relation in the generated data is checked through using
a scatterplot. The generated data sets (100 sets) are used as well as the historical data, to
display the shape of two relations, such as temporal and spatial relations. Furthermore,
drought statistics with the historical and generated data are compared with the boxplot for
yearly and monthly data. The employed drought statistics are the maximum drought and

surplus amount, the maximum drought and surplus length, and storage capacity with the

historical mean water demand multiplying various demand levels from 0.6 to 1.0.
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4.4.1 Temporal Disaggregation

From the five indicated temporal disaggregation models, the various test statistics
are estimated and compared for the suggested and existing nonparametric disaggregation
model. The results are followed. As mentioned, the aggregate variable is modeled with
KGK. The basic and drought statistics of the historical and generated (SM model) yearly
data are presented in Figure 4-C.1 and Figure 4-C.2. The basic statistics of the simulated
and historical data in the lower-level are shown in Figure 4-2 and Figure 4-3 for NPDK
and KLA, respectively. The minimum and lag-1 correlation of KLAG and KPAG are
shown in Figure 4-4. Full results of the basic statistics for KLAG, KPA, and KPAG are
shown in Figure 4-C.3, Figure 4-C.4, and Figure 4-C.5. In Figure 4-2, the characteristics
of the NPDK model (Prairie et al. 2007) is well presented there. The first significant
aspect of the figure is the underestimation of the lag-1 serial correlation of the first month
since the model has no model structure to link the past of the previous year with the
disaggregate values. This shortcoming will be easily fixed by adding one more term in
the disaggregate value selection in the suggested model, as in Eq.(4-15). The
improvement of this feature on the suggested models such as KLA, KLAG, and KPA is
clearly shown in the lag-1 correlation of Figure 4-3 and Figure 4-4. The correlation
between the last month of previous year and the first month of the current year is fairly
well preserved in the suggested models compared to NPDK model. The slight
underestimation of the lag-1 correlation can be observed for the KLAG model in Figure
4-4 (also in KPLAG, referred to Figure 4-C.5). The underestimation is because the
Genetic Algorithm mixture disturbs the historical correlation with small magnitude and is

the price to pay for employing GA mixture. The effect of GA mixture will be discussed

195



more on the later in this section. Also, the minimum values are sometimes negative even
if it infrequently happens in NPDK model as shown in Figure 4-2. That is because NPDK
uses linear adjustment with A;=1/d and j=1,....d as in Eq.(4-4). The months with low
variability (NDJF) will be highly affected resulting in negative values. The KLA and
KLAG models, however, do not produce any negative values in this case as in Figure 4-3
and Figure 4-4 since the difference of the historical and generated yearly are
proportionally distributed with the contribution of covariance. Linear adjustment is not
preferable when the data is highly skewed because in that case negative values are highly
likely. The KPA model guarantees that no negative values will be generated unless there
are negative values in the aggregate variable or in the historical data. As shown in Figure
4-4, the minimum value 1s better preserved with the KPA model. Thirdly, the minimum
values in low flow months are underestimated, such as months NDJF, while some
overestimation is observed in the higher flow months MIJ. Generally, overestimation of
the minimum occurs when the simulation model cannot reach the historical minimum in
generation and underestimation of the minimum occurs when the model has higher
variability than the historical data. This is the nature of the NPDK model since the
difference between the generated aggregate value and the summation of the selected
disaggregated values is distributed equally without considering the degree of the
variability of individual lower-level variables as shown in Table 4-1. Therefore, the
higher flow months are not affected much from the adjustments while the lower flow
months are highly affected and result in higher variability. This is the leading factor of
the bias in the NPDK model. Some underestimations are shown with the KLA and

KLAG models (Figure 4-3 and Figure 4-4) especially for June and July (JJ) with very
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rare chance of generating negative values. Those months have higher variance so that the
difference from the historical and generated data is weighted into these months. The KPA
and KPAG models show better preservation of the minimum values (Figure 4-4 and

Figure 4-C.5).

In Figure 4-5, the standard deviation is closely investigated for the NPDK and
KLA models. It is obvious that the standard deviation in NPDK is overestimated in the
low-flow months, while it is properly reproduced in the KLA model. Underestimation of
the variability is not present in high flow months MJJ although the historical mean is
slightly above the median; therefore the variability is preserved appropriately with the
KNNB procedure. Figure 4-6 indicates the evidence of low variation from the historical
data pattern used by NPDK. The scatterplot in F‘igure 4-6 displays the relationship
between month 8 (X-coordinate) and month 9 (Y coordinate), which are high flow
months. The 100 generated data sets are marked with gray circles while the triangles
represent the historical values. The generated data is always extremely close to the
historical values in NPDK model. The scatterplot (Figure 4-6) reveals a weakness of the
KL A model. The generated values have directional patterns induced from the linear
adjustment. A similar feature is also observed in the KPA model, not shown. The
Genetic Algorithm mixture suggested by Lee and Salas (2008) is employed to remedy
this weakness. The generated data of the GA applied models on KLA and KPA (KPAG
and KPAG) has appropriate spread through the data region while containing the historical
relationships (Figure 4-6). The inclusion of the GA induces some underestimation of the

lag-1 serial correlation as mentioned (Figure 4-4).
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The densities of the historical and disaggregated data set are estimated with
normal kernel and the asymptotic optimal bandwidth (Simonoff 1996) shown in Figure 4-
7 for Month 5 (February). In NPDK model, the density around the mode is
underestimated while it is overestimated outside of mode, especially lower part. This
indicates the overestimation of variance as mentioned for the NPDK model in Figure 4-5.
Smaller magnitude of underestimation is observed in the KLAG model, which the
Genetic Algorithm mixture causes. The density estimate of the other months is relatively

well preserved for all models.

Temporal pair cross- correlation of the historical and the models (NPDK, KLA,
and KLAG) are shown in Figure 4-8. Some significant overestimation of the cross
correlations are revealed for NPDK model (Figure 4-8 (a)), especially Months 1-6 which
are low flow months. Notice that this is inconsistent with Figure 6 of the paper of Prairie
et al. (2007), but the aggregate variable is generated from Shifting Mean model while in
the paper the modified KNN model was employed. A parametric model (e.g. ARMA and
SM) might generate values smaller than the historical minimum while a nonparametric
model -(especially employing resampling technique) is limited to generate the smaller
than the historical minimum. Employment of the SM model propagates the variance of
the cross correlation in low flow months different from Figure 6 of Prairie et al. (2007).
The pair cross correlations are well preserved in the KLLA model. Some significant bias is
shown for the KLAG model. As mentioned, the GA mixture process disturbs the
temporal cross-correlation even if the competitive selection with Eq.( 4-16) is used. This

is a shortcoming of the GA mixture, but the GA mixture yields more variable sequences
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as shown in Figure 4-6 and the long-term persistency is preserved with the aggregate

variable.

The ratios of monthly drought, surplus, and storage statistics for the historical and
generated data are estimated to represent the long-term variability of time series. The
behavior of those statistics depends highly on the aggregate variable (yearly data in this
temporal disaggregation). The generated data of the temporal disaggregation model
employs the same yearly data as the aggregate variable. In other words, there are not
many differences that can be observed on the drought, surplus, and storage statistics even
if improved representation is found with the basic statistics of both the KLA and KPA
models. Detailed graphs related to these statistics are found from Figure 4-C.6 to Figure

4-C.10.
4.4.2 Spatial Disaggregation

The mean and minimum of the generated and historical data for site 21 (the
statistics for site 22 are shown in Figure 4-C.11) are illustrated in Figure 4-9 for NPDK
and KPA. The whole statistics are shown at Figure 4-C.13, Figure 4-C.14, and Figure 4-
C.15 for NPDK, KPA, and KPAG respectively. Significant biases are observed in all of
the basic statistics of the generated data for site 21 from NPDK model (Figure 4-9). That
effect is induced from the low-variability relative to the other sites highlighted in Table 4-
2. Among the four sites, site 21 has the lowest yearly variance. Also, a significant number
of negative values are generated as shown in the minimum of the plot since the monthly
streamflow data is highly §kewed in this semi arid region for sites 21 and 22. Meanwhile,

the key statistics for sites 21 and 22 are well preserved with the KPA model except for a
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slight bias in the lag-1 serial correlation and minimum. Similar behavior is obtained in
the statistics of yearly time scale for site 21. There is no significant difference for the
yearly key statistics between the two models for site 22 (Reader are referred to Figure 4-
C.17 and Figure 4-C.20). The cross-correlation of the historical and generated data is
presented in Figure 4-10. The KPA model better preserves the cross-correlation than then
NPDK model. In particular, the cross-correlation between site 21 and the other stations

(site 22, site 24, and site 27) is not reproduced in many months for the NPDK model.

Monthly and yearly drought statistics are estimated for historical and generated
data with different demand levels (0.7-1.0). The ratios of the statistics for the generated
data divided by historical data are illustrated for monthly (referred to Figure 4-C.23 and
Figure 4-C.26) and for yearly (Figure 4-11 and Figure 4-12), respectively. The maximum
deficit and surplus amount as well as the storage capacity at 0.7 and 0.8 demand levels of
monthly drought statistics for site 21 are highly overestimated in the NPDK model while
the KPA model preserves these statistics reasonably well. The same behavior is also
indicated in the yearly drought statistics (Figure 4-11 and Figure 4-12). For site 22, there
are no significant differences in the monthly and yearly drought statistics between the
NPDK and KPA models (Reader are referred to the figures from Figure 4-C.25 to Figure

4-C.28).

4.5 Summary and Conclusions

The stochastic disaggregation modeling is inevitable to analyze critical events
such as drought for an entire river system. From reviewing the existing disaggregation

models and uncovering the pros and cons of the current models, we suggest a useful
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disaggregation model to overcome the shortcomings of these models. The suggested
modeling procedures are: (1) to model the aggregate variable independently and generate
the sequences; (2) to find two disaggregated data sets whose summation is close to the
current aggregate value with KNNB; (3) to cross-over the two data sets with the random
or competition selection from GA process and select one data set; and (4) to adjust the
selected disaggregated sequences with linear or proportional adjusting according to the
characteristics of the historical data set. We recommend the following: (1) in the case of
data with high skewness and no negative values, the proportional adjustment should be
used, such as the tributary stations of the lower Colorado River System; (2) in the case of
data with small skewness and negative values, the linear adjustment is recommended,

such as the intervening flows of the Colorado River System (Lee and Salas 2006).

The temporal and spatial disaggregation has been tested using data from the
Colorado River System. The testing results indicate that the suggested modeling
procedure is reasonable at both sites with lower skewness and sites with high skewness
and zero values (intermittent process). The specific conclusion from the results is that the
proposed models overcome the drawbacks mentioned in the paper of Prairie et al. (2007)
such as the inability to capture the correlation between the first month of the current year
and the last month of the previous year and the proper preservation of the extrema
( minimum and maximum). The former is overcome by including the variable of the last
month of the previous year on KNN selection and the latter is done by the accurate
adjusting procedure. Furthermore, the proposed disaggregation models have the ability to
model the intermittent and non-intermittent variables jointly with the proportional

adjustment. More variable sequences can be obtained using the Genetic Algorithm
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mixture. A drawback employing this algorithm is the underestimation of cross correlation.
But the aggregate variable holds the dependency structure so that the GA mixture is

useful to apply in case more variable sequences are needed.

The disaggregation procedure suggested in this paper can be used differently in
the schematic disaggregation. For example, the CRS contains 29 stations. One single
direct multivariate model is not a reasonable approach to use for the entire large river
basin. The schematic approach would generate data of a few index sites with multivariate

modeling, and then these index sites are spatially disaggregated to the tributary stations.

202



Table 4-1 Basic monthly and statistics of site 20 (month 1~ month 6) Unit: Acre-Feet

Mon 1 Mon 2 Mon 3 Mon 4 Mon 5 Mon 6 Mon 7
Mean 580893 480821 382530 356611 393775 645201 1199946
Std 272006 141531 95859 78632 97576 211390 512460
Skewness 1.6408 1.2147 1.2225 0.59 1.4188 1.0814 0.9605
Lag-1 Corr  0.5575 0.7577 0.8255 0.7032 0.5515 0.4819 0.4699
Hy /Hx (%) 6.2 3.2 2.2 1.8 2.2 4.8 11.7
Mon 8 Mon 9 Mon 10 Mon 11 Mon 12 Yearly
Mean 3037199 4054340 2190444 1083174 671371 15076306
Std 1146760 1572353 1012249 423971 309698 4365301
Skewness 0.2713 0.4266 1.1327 0.9464 1.9532 0.1402
Lag-1 Corr  0.5923 0.6251 0.8311 0.7815 0.6373 0.283
'y 0% ) 26.3 36.0 23.2 9.7 7.1 100

" o, lox represents the standard deviation of each monthly data over the one of the yearly
data

Table 4-2 Basic yearly statistics of tributary sites of lower Colorado River basin (sites
21~24) Unit: Acre-Feet

Site 21 Site 22 Site 24 Site 27
Mean 21118 180415 169968 98190
Std 8313 140404 88275 125025
Skewness 0.8392 2.0084 1.6774 2.6731
Lag-1 Corr 0.1465 -0.0384 0.0607 0.0608
Hy /Hx (%) 4.5 384 36.2 2.1
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Figure 4-1 Map of Colorado River System with twenty nine stations; the system is
divided into two as the upper Colorado River basin (1-20) and the lower Colorado River
basin (21-29): Map from Bureau of Reclamation (2007)
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(d)

Figure 4-6 Scatterplot from Historical (dot line) and (a)NPDK, (b)KLA, (c) KLAG, and
(d) KPAG simulations (boxplot) at the Colorado River monthly streamflow; X-coordinate

for X% and Y-coordinate X %%
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Appendix 4-A. Gram Schmidt Orthonormalization (GSO)

Gram Schmidt orthonormalization procedure to obtain the rotation matrix with

unit orthogonal basis vectors,R = (e, ,e,,....e,) is summarized as

e, =(1/Vd,..1/Vd) (4-A1)
.=l )

For1<j<d-1 (4-A2)

d
i/ - Z(ek 'ij)ek
k= j+1
d
= (e, e,

k=j+1

e./' =

where i, = (1,0,...,0)",i, = (0,,...,0)" ...,i, = (0,0,....)",

a‘ is the norm of vector a, and

a-b is the inner product of vector a and b.

For example, if d=2 then

e, =(1/v21/42f

@—(1/\6,1/\/5(;)@:2 [1-/12/2j 1/v2
elz[l}(l/ﬁ,l/ﬁfj[l;ﬁ L)
0 0\ 1/N2
Therefore,
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Appendix 4-B. Example of Disaggregation with KNNR and linear or proportional

adjustment

A simple example of the suggested disaggregation model with KNNR and linear
adjustment (KLA) or proportional adjustment (KPA) is shown below. The process is
taken from the model procedure in Chapter 4-3. The employed generated data is the
monthly streamflow of Lees Ferry at Colorado River for the first 10 years as shown in

Table 4-B1.

(1) Fit a model for X t* and generate from the fitted model (KGK model is

employed), say the X 1* =179.5 is generated at first .

(2) The distances A, = ’X X V’and v=1,...,10 is estimated as shown in Table 4-B2.

(3) Among the smallest K-values of A, , where K =N =3, one is selected with

the random generation from the discrete weighted distribution and its cumulative
distribution {0.55, 0.82, 1.00} is compared with the generated value from

uniform distribution, say 0.62. And the monthly data set of second year is

selected as Y, =Y, , ={6.7,5.4,...,7.8} .
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(4) Then, the selected historical lower-level dataset SNQ (the first second row of

Table B3) is adjusted with a linear (the fourth row of Table 4-B3) or a
proportional (the fifth row of Table 4-B3) adjusting procedure. For example, for
linear adjustment 11.4+0.023*(179.5-190.8)=11.1 and for proportional

adjustment 11.4*179.5/190.8=10.7

(5) For the next year, say X 2*=214.9, generated from KGK. The distances from

Eq.( 4-15) is estimated as

vi

A, = \/¢1(Xt* “Xv)z + @, (Ytil,d _Yv—l,d)
=1/35.62(214.9-212.3) +1/3.7%(5.9-15.0)"
=2.46

Notice that the first historical year is excluded since Y, , =Y, cannot be

obtained. One is selected from the k-nearest neighbors {1909,1912,1911}. The
monthly data set of the selected year is adjusted linearly or proportionally as

shown in Step (4).
(6) Step(5) is repeated until the generation length is met.

The below steps are necessary when Genetic Algorithm mixture is employed. If from the

steps (1)~(3), Y, =Y,,,, ={6.7.5.4,...,7.8} is taken, then
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d ~
(3-1) One more monthly set is obtained with KNNR that is close to X, = Z Y, .

i=]

The distances for KNNR are A, =‘X , — X,

where v=1,..,N. Notice that X, is also

included since the same monthly set as the current set Y, is possible to be selected.

(3-2) From the cumulative weighted probability with K = JN =3 as {0.55, 0.82,
1.00}, one is selected from uniform random number [0,1]. Assume that the uniform

random number 0.93 is generated, then the monthly data set of the third order (1914) is

chosen for ?12 =Y, and set Y, =Y, .

(3-3) Two data set (Yl1 and T(]z ) are mixed with GA as follows and create the new

monthly data set, say SN(]GA . Set the cross probability as 0.5 and a new data set is obtained
with one by one. If the uniform random number u, where i=1,...,d

|
?GA - Yl ui < pc
Y’ otherwise

1

For example, #, =0.59then ¥ =6.7. All the new data set Y,* is presented in

Table 4-B6 and Figure 4-B1. This new data set is linearly or proportionally adjusted with

the Steps (4) and (5) and repeating as Step(6).
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Table 4-B1. The monthly data of Lees Ferry at Colorado River for the first 10 years

(1075 AF)
1 2 3 4 5 6 7 8 9 10 11 12 Yr
1906 | 46 40 23 24 29 68 120 364 501 295 16.1 150 182.1
1907 | 74 50 35 36 38 79 147 270 5987 510 192 96 2123
1908 | 61 38 27 28 38 66 104 160 292 192 112 6.0 1177
1909 | 48 40 31 38 32 76 112 335 720 411 188 153 2184
1910 6.8 49 38 29 49 140 173 330 310 137 87 6.3 1474
1911 | 62 45 35 37 48 90 95 292 412 235 102 59 1513
19121114 44 35 35 33 54 90 368 615 321 136 63 1908
1913 64 53 31 35 31 52 183 327 314 198 87 7.0 1447
1914 6.7 54 33 37 40 88 159 469 630 312 141 78 2107
19151 96 53 33 30 40 53 148 243 364 215 85 53 1414
Mean | 70 47 32 33 38 77 133 316 476 283 129 85 1717
Stdev| 21 06 04 05 07 26 33 83 157 113 41 37 356

Table 4-B2. The estimated distance between the historical yearly data and X, and its

order
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
Av 268 3287 6173 38.95 3210 2822 1135 34.75 31.20 38.09
Order 1 6 10 9 5 3 2 7 4 8

Table 4-B3. The selected historical monthly data \N{, and linear adjustment coefficient A,

and linearly and proportionally adjusted data

Mon 1 2 3 4 5 6 7 8 9 10 11 12
His 11.4 4.4 3.5 3.5 3.3 5.4 90 368 615 321 13.6 6.3
Xj 0.023 0.011 0.005 0.004 0.007 0.023 0.060 0.210 0.323 0.189 0.072 0.036
L.Adj 111 4.3 3.5 3.4 3.2 5.1 83 345 578 299 128 59
P.Adj | 10.7 4.2 3.3 3.3 3.1 5.1 85 346 579 302 128 5.9
Table 4-B4. The estimated distances and its order
1907 1908 1909 1910 1911 1912 1913 1914 1915
A, 246 104 010 255 025 014 026 030 057
Order 8 7 1 9 3 2 4 5 6
Table 4-BS5. The estimated distance between the historical yearly data and X, and its
order
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
A, 0 302 644 363 347 308 87 374 286 407
Order 1 4 10 7 6 5 2 8 3 9
Table 4-B6. Monthly streamflow of year 1912, 1914, and the selected set from GA
Month 2 3 4 5 6 7 8 9 10 11 12
1912 11.4 44 3.5 3.5 3.3 54 9 368 615 321 13.6 6.3
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1914 6.7 5.4 3.3 3.7 4 88 159 469 63 312 141 7.8
Rand 059 033 039 067 077 087 045 036 088 058 09 023
Selected 6.7 4.4 3.5 3.7 4 8.8 9 36.8 63 312 1441 6.3
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Figure B1. Monthly streamflow of year 1912, 1914, and the selected set from GA
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Appendix 4-C. Detailed Figures
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Figure 4-C.1 Key Statistics of Historical (dot line) and KPAG simulations (boxplot) for
Site 20 of the Colorado River yearly streamflow
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Figure 4-C.2 Drought, Surplus, Storage Statistics of site 20 at Colorado River yearly
streamflow
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Site 20 of the Colorado River monthly streamflow
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Figure 4-C.22 Reservoir-related statistics from historical (circle) and NPDK(up) and
KPA (bottom) simulations (boxplot) for Site 22 of the Colorado River yearly streamflow
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Figure 4-C.24 Monthly drought statistics at different threshold levels of Historical (dot
line) and KPA simulations (boxplot) for Site 21 of the Colorado River monthly
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Figure 4-C.26 Monthly drought statistics at different threshold levels of Historical (dot
line) and KPA simulations (boxplot) for Site 22 of the Colorado River monthly

streamflow
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Figure 4-C.27 Yearly drought statistics at different threshold levels of Historical (dot
line) and NPDK simulations (boxplot) for Site 22 of the Colorado River monthly

streamflow

247




w
[8) ]
B

™
[ay]
T
~

Max Def Leng
~ o
] !
T {
-
1
| |
] I
Max Def Amt
- K
2t H—
i HII |

05 L_:[—J L - r-:—j
0 07 0. 0.9 10 0 07 09 10
4 8 -

35} 7
3 B}

S ]

H) -

|+

st H| A

—H{ﬂ%—:

%Hﬂ-{——{
_{.__{
H—

i it
0 L i 0 \
0.8 1.0 0.7 09 1.0
4 T T T T
3k - —_
o
o
S ot - .
&7 N —_
T = : ]
s
0 | | { |
0y 08 09 1.0

Threshald Levet
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CHAPTER V

DISAGGREGATION OF DAILY TO HOURLY PRECIPITATION

5.1 Introduction

The requirement of rainfall data of lower-level time resolution (daily, hourly) has
been increased for the hydrological modeling and prediction, such as flood prediction and
water quality assessment. Most precipitation data are measured with daily scale while the
requirement of the detailed scale, such as hourly for detailed models, has been amplified.
Relative shortage of hourly time scale hinders the task. Using measured daily
precipitation data and their characteristics, some researchers have developed
disaggregation schemes to fulfill the requirement (Hershenhorn J. and Woolhiser, 1987;
Econonpouly et al., 1990; Bardossy, 1999). The developed approaches are applicable on
the stationary basis through a day (24hours). But some sites, such as the Denver Airport
site, have a significant diurnal cycle from a convective cyclic weather system through a
day. The disaggregation scheme to consider the diurnal cycle would not have much
attention. By the author’s knowledge, no applicable disaggregation schemes with diurnal

cycle have yet been presented in the literature. Therefore, the objective of this paper is to
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develop and present the appropriate disaggregation schemes for daily rainfall to hourly
rainfall with the diurnal cycle, to apply the schemes on different cases, and to investigate

and compare the statistical behaviors of the schemes.

Daily rainfall disaggregation models can be applied to three cases in terms of the
availability of daily rainfall data. The first case is for simulation. In this case, the
complete hourly data exist for the entire year, obviously, as well as daily. Therefore, we
can simply generate the daily rainfall and disaggregate the data into the hourly rainfall.
The purpose of this case is rather different than the others. The second case is that only
some portion of the hourly data is missed, while the entire daily data subsist. The goal is
to disaggregate the daily data that the hourly data are missing. The third case is that only
the daily rainfall data exist so that the disaggregation should be performed using the
hourly rainfall characteristics of other sites, which have climatologically and regional
proximity to the target site. In the application, we assumed that a portion (the second
case) or all data (the third case) are missing so that we could check the model
performance employing the difference between the model value synthesized from the

proposed disaggregation model and the historical value and their statistical characteristics.

In Section 2 the history and developments of the disaggregation models are
discussed and in Section 3 and 4 data and model description are shown, respectively. In
Section 5 model performance and comparison are presented and followed by conclusive

remarks in Section 6.
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5.2 Literature Review

Daily rainfall disaggregation models have been developed and tested by
researchers. The main categories could be as follows : the distribution-based approach,
point process based approach, stochastic precipitation method using stored data, adjusting

schemes, neural networks, and scaling cascade models, etc.

Betson et ai.(l980) described a model to disaggregate daily rainfall into hourly
rainfall. It requires a large number of transition probabilities. For the parameter-efficient
model, Hershenhorn and Woolhiser (1987) and Econonpouly et al. (1990) developed a
distribution-based approach. The method disaggregates daily rainfall into individual
storms and simulates the number of rainfall events in a day and the amount, durati()'n, and
starting time of each event conditioned on the amount of that day and the preceding and
following days. The model is fitted on the Walnet Gulch Experimental Watershed No5.
The estimated parameter was used to fit the model for the other sites near the site
presenting the applicable results according to 5% of the Kolmogorov-Smirnov significant
test for the distributions. Arnold and Williams (1989) and Lane and Nearing(1989)
proposed a simple model to simulate half hourly rainfall intensity from daily rainfall
using a double exponential function to determine breakpoint. The disaggregation model
assumes daily rainfall falls in only one event. Connolly et al (1998) used a similar
methodology as Hershenhorn and Woolhiser(1987) but with a different distribution
function. For a number of events Poisson distribution was applied and event duration
with gamma distribution, event amount with exponential distribution, event starting time
with beta distribution, and break point intensity within each event- double exponential,

respectively. The approach was fitted on Biloela and Katherine data in Australia.
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Accuracy of the model was determined by comparing the measured and simulated event
characteristics and cumulative rainfall kinetic energy given in Rosewell(1986). The
model was a reasonably accurate prediction of peak rainfall, so that it was adequate for
input to infiltration and runoff models, while the accurate parameterization required

enough high quality data.

A stochastic precipitation disaggregation method was developed to enforce the
Upper Charles River Watershed by Socolofsky et al.(2001) using an hourly gauge near
the watershed, the Logan Airport gauge. The method relies on measured hourly data in
the same climatological regimes as the daily data to be disaggregated and samples the
measured hourly data directly applied from the Logan Airport gauge. Therefore, the main
task of this approach is to select appropriate event statistics from the nearby Logan hourly
events database so that they sum to the daily total rainfall recorded within the watershed.
It concludes that the technique performs well in supplying hourly rainfall data for use by
continuous simulation watershed models and disaggregating distant gauges in a similar
climate regime without any concern on diurnal cycle. Further, Choi et al. (2008) tested

this model through the Texas region with slight modification.

Some researchers have developed the disaggregation scheme of daily rainfall
based on the point process model (Glasbey et al, 1995; Koutsoyiannis and Onof, 2001;
Cowpertwait et al., 1996). Glasbey et al. (1995) studied the disaggregation of daily
rainfall by simulating long sequences of hourly data based on the Rodrigues-Iturbe et al.
(1998) model and comparing the daily totals between all generated days and choosing the

best match and then rescaling to match the daily total. The method applied to Edinburgh
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(Turnhouse) and it was concluded that the model simulated realistic hourly data, while it

does not involve the diurnal cycle.

Koutsoyiannis and Onof (2001) developed the model based on the Bartlett-Lewis
process, adjusting the hourly values to obtain the required daily values. The adjusting
method has been studied by Koutsoyiannis (1994), and Koutsoyiannis and Manetas
(1996) such as proportional adjusting, linear adjusting, and power adjusting for different
time scales. They also applied the lag-1 Gamma Autoregressive (GAR(1)) model to test
the performance of the adjusting method revealing that, by some distant allowance
between the value of the total sum of hourly generated rainfall and the target daily value
to disaggregate, the process worked reasonably well. The performed scaling analysis with
different aggregated level showed that the method reproduced most of the important
statistics like variance, skewness, lag-1 autocorrelation, and dry probability, as well as

mean, but no consideration on diurnal cycle.

Bo et al. (1994) performed the disaggregation of rainfall time series using
Bartlett-Lewis rectangular pulses fitting on central Italy and Kentucky in the U.S. and
remarked that the upper limit for the disaggregation scale for the model would be two
days and these characteristics are related to the power law dependence of the power

spectrum for timescales smaller than two days.

Bardossy (1999) developed a disaggregation scheme with three steps. First, the
number of wet sub-periods is generated, conditioned on the total daily amount using the
Polya distribution. Second, with Aitchisons relative distributions the relative precipitation

amounts are generated arbitrarily. Finally, the generated amounts are rearranged to match
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the autocorrelation function and the scaling properties using Markov Chain Monte Carlo
(MCMC) based on Metropolis Hastings algorithm. Furthermore, Additional information
such as atmospheric circulation patterns was taken into account for the disaggregation to
improve the reproduction properties. The model was applied into Essen and
Hennetalsperre in the Ruhr catchments (German). It disclosed that the scheme reproduced
the autocorrelation function and the scaling properties properly. Furthermore, Bardossy
and his colleagues have been using the Simulated Annealing (SA) to generate a
precipitation time series (Bardossy 1997, 1998), and to disaggregate monthly to daily
(Guenni and Bardossy 2002). In the papers, the objective was focused on fitting the

scaling characteristics into historical data rather than periodicity or cycle.

The Neural Networks technique has been used to disaggregate the hourly rainfall
data into sub-hourly time increments by Burian et al (2000,2001,2002). The model
performed 15-min rainfall depth by training with performance measures such as signal-
to-noise ratio. But this method does not include the intermittency in subdividing the
hourly rainfall. Furthermore, Olsson J. et al (2004) used the Artificial Neural Network
(ANN) to forecast a 12-hr period mean rainfall with wind speed at 850 hpa and
predictable water. They separated the Neural Network approaches into two parts such as
the intermittency and variability, and after each prediction, they were combined. The
approach was applied into the Chikugo River basin in Japan. It concluded that two NNs
in series improved the reproduction of intermittency and better performance during

winter and spring than summer and autumn.

Scaling cascade models are applied for the rainfall disaggregation by Olsson

(1998), Olsson and Berndtsson(1998), and Guntner et al. (2001). This model operates by
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dividing each rainy time period into halves of equal length and distributing the rainfall
volume between the halves. It was shown to reproduce the important fundamental
characteristics such as the division of rainy and dry periods and the scaling behavior
using the power spectrum, respectively. But the diurnal cycles could not be taken into
account by the scale invariant properties, and for the halving characteristics of the model,
the starting time interval should be not be the day but the value corresponding to power
of 2 requiring a smaller scale data set. These multifractal random cascade approaches
treat the data as a realization of a stochastic process possibly not being able to account for
the uniqueness of the data set used. To overcome this problem, the notion of deterministic
chaos and the related methods of data processing has been developed by Sivakumar et

al.(2001)

In this study, among many of daily rainfall disaggregation models, the stochastic
disaggregation methods are investigated and enhanced in order to preserve the diurnal

cycle in hourly data as well as the basic statistics.

5.3 Model Description

Three stochastic models for disaggregating daily rainfall data into hourly are
utilized and compared extensively for estimating hourly precipitation from daily. They
are; (1) Conditional Markov Chain and Simulated Annealing based method (CMSA); (2)
mixed periodic discrete autoregressive with gamma autoregressive PDAR(1)-GAR(1)
model with Accurate Adjusting (PGAA); and (3) Stochastic selection method with
Weighted Storm Distribution (SSMW). In describing the methods, we will use the same
(or similar) notation as much as possible.
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We denote by D, the daily precipitation amount and y,, is the hourly

precipitation (amount) where d represents any particular day and 7 represents any

particular hour (of the day). They are related as:

24

D, :'Zyd,r (5-1)
r=]

Also, we will use D), to denote the precipitation occurrence of a given day, i.e. D, =1 if

precipitation occurs, otherwise D, = 0.

5.3.1 Conditional Markov Chain and Simulated Annealing (CMSA)

This method consists of two basic components. The first one accounts for the
occurrence of hourly precipitation using conditional Markov Chain, that is, we use a
transition probability for hourly precipitation conditioned on the daily state. The second
component determines the amount of hourly precipitation. For this part we modified
substantially the simulated annealing approach utilized by Bardossy(1997). His approach
uses simulated annealing for determining the hourly precipitation occurrence and amount
geared to preserving the source type of the scaling feature of precipitation. However,
because our objective is to estimate hourly precipitation where the daily cycle may be a
relevant feature, Bardossy’s simulated annealing approach had to be modified. First of all,
as indicated above, we used a different approach for determining the occurrence of hourly
precipitation. Secondly, we used more realistic probabilistic model for fitting the
transformed ratios of precipitation amounts and different objective functions so that the
daily cycle can be accounted for. Thirdly, Bardossy (1997) used Polya distribution to

define the number of wet hours connected with the aggregated daily amount. We tried the
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same procedure but it was hard to deal with the daily cycle later on the simulated
annealing. Instead, the following occurrence procedure was developed to handle the

number and time of wet hours.
Occurrence Process

Natural hourly precipitation occurs whenever some amount of precipitation
occurs in a given day (and vice versa). Because hourly precipitation is auto-correlated,
we will use a Markov Chain for the modeling occurrence of precipitation at a certain hour
conditioned on the state in the previous hour and the state of the corresponding day as

follows:
P(t)=Pix,, =jlx,,,=i.D; =1} (5-2)

where i, j =0,1 and D} = 1 if D,>0, otherwise, D, =0 . x, is whether the current day

(d) at a certain hour () is rainy or not In addition, the conditional limiting distribution is

denoted as

P(r)=Pix,, =j|D; =1} (5-3)

The referred probabilities are estimated by counting. For instance, P;(r) is estimated by

P,j () = n{x,, =Jlx,,. :*z', D, =1}
n{xd,r—l =1 ’ Dd = 1}

(5-4)
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where for example n{x,, = j| D"4 =1} is the number of times in a certain day d where

precipitation occurred, the precipitation during the hour 7 is in state j given that the
precipitation in the previous hour was in state i. Thus, the generation of the precipitation
occurrence can be executed without trouble using the foregoing conditional transition

probabilities.
Precipitation Amount

The daily precipitation amount must be divided into hourly quantities in such a
way that their sum add up to the daily quantity. For this purpose, a transformation
procedure (partition) suggested by Aitchison (1982) is employed. Three logistic
transformations such as additive, multiplicative, and hybrid were described by Aitchison
for compositional data. Here, the hourly precipitation data are transformed using additive
logistic transformation. The hourly data are described as the ratios of daily data with the
condition that the sum of ratios adds to unity in each day. Bardossy(1997) first applied
Aitchison’s procedure by fitting the normal distribution to the log-transformed region.
Instead we fit a gamma distribution because of the fact that the ratios and the logs of the
ratios are skewed. In our application, the maximum among the ratios in a certain day is
specified so that the transformed data are bounded in a negative side and possible

distributions to fit such bounded data are the gamma or log-normal. Obviously, the

mathematical description as shown below applies only for the case where D), = 1.

Assume that in a given day there are k hours of precipitation (not necessarily

continuous). For example, Fig 1. shows a precipitation occurrence where k=3 and

258



precipitation occurrence at times 7 =12, 17, and 18. In this case there will be three non-

zero precipitation amounts y, ,,¥, 7,V 5. Consider the ratios

R =227 i=1,...k . (5-5)

where R, is defined only when y, > 0. Then,

iRj =1 (5-6)

J=1
In addition, let

R

J

W, =log ,i=1,...k (5-7)

max

where R, = max(R,,...,R,) and W, 6 <0. Although the normal distribution has been
used to represent W, (e.g. Bardossy, 1997), it is restricted because W, is bounded (i.e.
W,<0 ). Thus, instead of the normal, the gamma distribution will be used (i.e.

-W, ~Gamma(a, ) ). The parameters may be estimated from the data based on the

method of moments or maximum likelihood (Kottegoda and Rosso, 1997). Notice that

among W,(j=1,....k) there is one zero value when R, = R . This zero is always occurred

at the hourly rainfall in a rainy day. This zero should be excluded in fitting and

generation. Therefore, the number of the fitted k values for W, (j=1,...,k) are k-1 at each

rainy day.
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From the model of the precipitation occurrence process, it is clear that occurrence
and the specific times (hours) of such occurrence on a certain day are defined. Then,

each portion —W, can be generated from the gamma distribution and retransformed to

get R,. Note that only k-1 values of R need to be generated because R, can be acquired

with the condition at (5-6). For example, if k=3, —W,and —W, are generated from

gamma distribution, then set R,, R,,and R, =R__ and from Eq.( 5-6)

Il
—

R
x —=exp(¥,) i=1,... k-1 (5-8)

max

and we need one more equation to obtain the values (R,, R,,and R, =R, ). The
unity condition in Eq.( 5-6) can do this role. Therefore from simple mathematics,
1
Ry =—17— (5-9)
1+ Z exp(W,)
J=1
and
R, =R exp(W)) (5-10)

The procedure is illustrated in Figure 5.1, where a unit daily amount is divided
into three hourly portions. Notice that R,is not necessarily R _, . It is just ordered for

convenience. For example, one can distribute R__ in any place (e.g. R,canbe R__).

X

A suitable distributing scheme of the hourly precipitation amount is needed to

account for the diurnal cycle in statistics such as the mean, variance, and skewness. This
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will be accomplished by using Simulated Annealing (technique). The values of hourly
precipitation will be rearranged and successively verified so that the final arranged values
will preserve the main statistics and the diurnal cycle. Simulated annealing (SA) is based
on the Metropolis algorithm. The following will give a brief sense on the Metropolis-

Hastings and the Metropolis algorithm, which will be used in simulated annealing.

Let us assume that f(z) is the distribution (density) of interest, where z is the
value of the variable such that generally z € R and R represents the real domain. The goal
will be sampling z from the distribution f(z). Once the random variable is generated,

further statistical analysis can be performed over the generated values such as mean,

standard deviation, and skewness. Commonly, the distribution f(z) knows the analytical
form but the distribution f(z) cannot be generated from a general method. Therefore, an
indirect type of approach is suggested to generate the variable z from the density f(z).

From the general generation method, such as the rejection method, (1) a random variable
is generated from another distribution, say a proposal distribution ; (2) the generated
value is kept or rejected with certain probability; and (3) if it is rejected, then the previous
value is selected instead for current generation value. The procedure can be described as

follows:

(a) Initialize the iteration counter to i=1 and the chain to z°. The initial value

z"is selected within the domain R .

(b) Generate a proposed (or candidate) value z* from the proposal distribution

denoted as ¢(z' | z'"). Notice that we use notation z* instead of z' because
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(©

it is not fixed at this point. In other words, the value is just a candidate at this
step. The proposal distribution should be a distribution easy to generate. A
uniform distribution with some range at the center of z“™" is generally used,
ie. q(z" | z™") ~ Unif[z"™ +a,z"" —a], where a is the certain range such as

1.

Evaluate the acceptance probability as follows to determine whether to

choose the candidate or not.

* i—1 *

P(z*,z"-‘)=min£1, J(z ez IZ,-_I)J (5-11)
F(Z gz [27)

Here, if the proposal distribution ¢(z" |z'™") is symmetric (i.e. g(z"™"|2z")=

g(z" | z"™"), typically it is true (e.g. uniform case)), then the acceptance

probability is reduced to:

Pz 2= min(l,ff((TZi;))j (5-12)

If Eq.( 5-12) is used for the acceptance probability instead of Eq.( 5-11), then
this total procedure (a)-(e) is called Metropolis algorithm instead of M-H

algorithm. In this case, the acceptance probability depends only on the ratio

of the target distribution f(z")/ f(z“™").

(d) Setz=z" with probability P(z",z"™") and z=z"" otherwise

(©)

Iterate (b) to (d) until the desired number of sampling values are obtained
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From this algorithm, the sampling values from the desired density f(z) of

interest are obtained. More detail will be found at Press (2003) or Gelman et al. (2003).

Different from Metropolis or M-H algorithm, simulated annealing is used as an
algorithm to find a value or location to minimize or maximize a certain objective function
instead of generating a complex density. But the procedure is almost identical to the
Metropolis algorithm. From the example in Figure 5.1, since we already know in which
hour the rain occurs, the only necessary step is to rearrange those three values sot that the
diurnal cycle in the key statistics is preserved from the generated data. To achieve this,
two values among three as in Figure 5.1 are selected. Say, R, and R, are selected. Then,
decide whether ‘R, = Ryand R, = R, orleave it asitis ‘R, = R and R, = R,’. Simulated
annealing is employed here to determine whether two selected precipitation amounts
greater than zero are switched or not. In a certain rainy day for more than one occurrence
hour, two precipitation amounts are selected randomly and determined from simulated
annealing whether the value is switched between each other or not, probabilistically. The
specified target distribution for the simulated annealing is aimed at maximizing an

objective function. The target distribution commonly utilized has the form
fo(O)=K(T)exp(-0O/T) (5-13)

where Ois an objective function and T is the temperature T, and K(T) is the constant that
makes the objective function f,(0) to be unity, i.e. L £,(0) =1 (Ingber, 1993). The
scheme is built to minimize the objective functionO. In the foregoing formulation, T

plays a key role in the algorithm for “cooling”. The algorithm starts with a “hot”
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temperature that gets cooler as the annealing continues until the objective function is
stabilized. The term annealing is from a smith heating a steel material and hammering
(annealing) until it is cooled to get the targeted shape. More details on MCMC and
Simulated Annealing can be found in Robert and Casella (1999), Press (2003), and
Ingber (1993). In applications, several values of temperatures are applied so that the
temperature is hot enough (easy to change a shape) at the starting place and gets cooler
with the appropriate speed to have enough time for shaping. There is no rule of thumb for
those temperatures. Those temperatures are selected subjectively satisfying the necessary
condition as the starting temperature T=1000 and the ending temperature T=0.001, and
the diminution (or decreasing) factor DF= 0.99. The starting temperature gets cooler as

the process continues with 7, =7, x DF where i represents the iteration step. If T

becomes smaller than the ending temperature, the process is stopped. In this study, only
one set of values (initial temp, end temp, and diminution factor) are used as described

above.

The objective function used herein is geared to preserve the variation of the

hourly statistics of the precipitation amount :
24 . 5 24 . 5 24 . )
OZW]Z(ur_ur) +WQZ(O-7:_O-T) +W3Z(71_71) (5-14)
. =1 7=1 =]

where u_,0,,y, are the historical hourly mean, standard deviation, and skewness,
respectively and the statistics with the asterisk are the calculated value at the current state.

w,,w,, and w,are weighting factors. One might try a different weighting on objective

function. But the proper controlling of temperature in simulating annealing (slow
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decreasing) will lead to make no difference by different weighting from the
characteristics of the approach. Therefore, the unity weighting factor is used in

application, i.e. w, =w, =w; =1.

As mentioned, the main focus for the disaggregation problem is to decide whether
the selected two values switch or not. For this swapping process, simulated annealing is

employed. At first, the objective function f,(O)is estimated with before and after

switching two values. If the after-switching objective function is larger, then switch the

value.  Otherwise only switch the value with the probability of

P, — f(Oq/ier) _ K(T)exp(_Oqfter /T)
’ f(Obeﬁ)re) K(T) exp(_Ob(;f()re /T)

and P, =exp[(O,p. =~ Oy )/ T from Eq.(5-12)

before

and (10). From this scheme, the minimization of the objective function is achieved, since
the objective is to rearrange the hourly amounts partitioned from the daily amount in

order to preserve the hourly statistics with the diurnal cycle.
Overall procedure for the disaggregation may be summarized as follows:

(1) The hourly occurrence process for a day is taken using Egs.( 5-2) and (5-3) if
a certain day has some amount of rainfall. A number of occurrence events and

the specific times are determined in this process.

(2) (k-1) number of W, are generated from the gamma distribution as

=W, ~ Gamma(a, B) .

(3) Initially, the generated hourly rainfall amount obtained from Eq.( 5-8) should

be randomly or subjectively distributed at first on the event occurred hours
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determined from the stage (1). This arrangement of the hourly rainfall

quantities is not important at this point, since it will be exchanged.

(4) Execute the swapping procedure:

ii.

iii.

iv.

vi.

Set up the initial Temperature (T=1000)

Select two hourly amount values out of k amounts which are

greater than zero

Calculate the objective function before and after swapping as P,

Swapping or keeping the values according to the objective
function and the acceptance probability (i.e. P, >1), then switch

those selected wvalues, otherwise decide with generating

u~unif[0,1] (i.e. if u<P,, then swap.)

Cooling the temperature with the diminution factor (DF=0.99)

Do (1i~v) until the critical low temperature (T=0.001)

(5) Repeat (1)~(4) until all daily data are disaggregated

The graphical description is displayed in Figure 5.1.

5.3.2 Product model with Accurate Adjusting (PGAA)

Koutsoyiannis and Manetas (1996) and Koutsoyiannis and Onof (2002)

developed a simple and useful disaggregation strategy. The main constraint in
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disaggregation is the additivity, thus, they suggested an adjusting scheme in which the
lower scale process is generated (using a specific lower scale model and estimated
parameters) e.g. a Periodic-Autoregressive(1) model to generate monthly flows, until
their sum, i.e. the value of the higher scale process(e.g. annual flow volume) is within the
range close to the higher target scale amount, and then the generated values are adjusted
to procure the additivity condition. In our study, the lower temporal scale is hourly and
the upper scale is daily, so two different scale models are selected, and then the
disaggregation scheme of Koutsoyiannis and Manetas (1996) is applied to fulfill the

additivity condition.

The model selected for the lower scale is chosen to preserve the hourly (periodic)
statistics. The model is the product of a Periodic Discrete Autoregressive and a Gamma

Autoregressive model denoted as PDAR(1)-GAR(1). The product model is denoted as

yd,r :xd,rzd,r (5'15)

And the PDAR(1) is a binary process (x, ) that represents the intermittency of the daily

rainfall data. It is equivalent to a Periodic Markov Chain (Chebaane et al., 1995) i.e. the
occurrence probability of the state at present time depends only on the state at the
previous hour. But the occurrence probability varies throughout the day. The varying
occurrence probability during the day is an important feature of the model. The stationary
Gamma-Autoregressive(l) model is used after eliminating the periodicity of the daily

cycle of the mean and standard deviation for the amount process ( z,, ). It implies

constant skewness and lag-1 autocorrelation throughout the day. Typically, hourly

rainfall is highly skewed and autocorrelated. The log-transformed AR(1) model can be
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applied. But the transformation can lead the bias of the key statistics such as mean,

standard deviation, and skewness.

Periodic Discrete First order Autoregressive and Gamma First order
Autoregressive (PDAR(1)-GAR(1)) model is used for hourly generation, and the
proportional adjusting procedure is applied for additivity constraints. The model
description is separated with PDAR(1) for the occurrence process that is equivalent to the

periodic Markov chain and GAR(1) for the amount process in Eq.(5-15).

PDAR(1) for occurrence process

The model can be described simply using PMC as follows:

{x ¢» =L, if it rains during the hour of day d

x, . = 0,otherwise

The periodic Markov Chain defined by the transition probabilities may be estimated
using maximum likelihood estimation.
P.(t)=Plx,;, = j|x,,, =i] where,i,j=0,1 and 7 =1,..,24

and they may be estimated by maximum likelihood such as

By r) = 20 (5-16)

=)
where 7, () implies that the number of data to change the state from i at 1-1 time to j

at time 1, and #,(7 —1) is the number of the data at the state i at time 1-1. The limiting

distribution can be defined for the starting generation as :

P(7) = Z—(—%) , here n(r)is the number of data at 7. (5-17)

n(t
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GAR(1) for amount process

The GAR-1 model has been applied on streamflow generation (Salas, 1993). It is
non-Gaussian process so that it does not need to transform the data. In fact, the marginal

distribution is gamma, and the model has been applied by standardization as
z,, = Zar T He , where p_and o, are the hourly mean and standard deviation. After the
generation from the GAR(1) model, the generated data should be reformatted
withz, , =z, o, + u,. Thus, the stationary GAR(1) is

Z;i,r = ¢1ZL1,1—1 +&,, (5-18)

The marginal distribution would be z,, ~ Gamma(z,,a, f3).

4. =% (I-¢)+n,, (5-19)

n=0 it M=0

M -
n=>E(4)" ifM>0 (5-20)
=1

J

where z,,a, B are the location, scale, and shape parameters, respectively, ¢ is the
autoregression coefficient, M is distributed with Poisson, mean —fIn(4), £, is the iid

exponential variable with mean 1/« , and U, is uniform(0,1). Parameter estimation is

available based on the method of moments (Fernandez and Salas, 1990)

2
~ 2 57 A oA
ﬂ=(;J ca=T 2 = p-ap, §=n, (5-21)
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where f1,6,7,r are the estimated mean, standard deviation, skewness, and lag-1

autocorrelation from the data in non-zero values (Salas et al. , 1980).

Since Katz and Parlange (1995) recommended to smooth out the diurnal cycle in
the key statistics, the key statistics applied in the GAR(1) model including mean and
standard deviation of the rainfall amount data, are smoothed with Fourier transformation

as described in that paper.
Adjusting Procedure

Koutsoyiannis and Manetas(1996) proved that the proportional adjusting
procedure might lead an accurate same marginal distribution for Gamma distribution with
higher and lower scale. The amount procedure is a Gamma based model, GAR(1), even if
the autocorrelation is concerned. Therefore, the proportional adjusting is backed up to

apply rather than the power and linear adjusting procedures.

If the generated values are satisfied with the condition below Eq.(5-23), a
proportional adjusting procedure is applied to the generated lower scale (hourly) values

according to

& D
yd,‘t = yd,r 24—d_— (5'22)

D Ve
=]

where y, . is the generated hourly value from the product model and D, is the known

daily value.
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In| == <g™ (5-23)

where £/ is a tuning parameter compromising with time consumption and bias reduction.

If ¢ is too small, the acceptance chance, as in Eq. (5-23), is very rare so that the
computation time gets longer. If it is too large, the final values are biased on the statistics,
such as mean and standard deviation. Here the study for the tuning parameter is out of the

scope for this paper. Therefore, only one small value (0.1) is used for this parameter.

The procedure can be summarized as:

(1) Estimate the parameters for the hourly model by using the methods and

equations outlined above.

(2) Generate the hourly values from the model.

(3) If the aggregated amount of the candidate is within the critical value £*? ,as in
Eq.(5-23), then adjust the current generated value using Eq.(5-22), otherwise

repeat Step (2).
(4) Repeat (2)~(3) until the target data are wholly disaggregated.
5.3.3 Stochastic Selection Method with Weighted Storm Distribution (SSMW)

This method was developed by Socolofsky et al.(2001). It uses the measured

lower scale (hourly) data set with the same climatological regime to disaggregate. The
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method is based on separating the measured daily precipitation into events that are

distributed uniformly with non-overlapping constraints (Socolofsky et al., 2001).

Without any adjustment, the method would preserve the stationary hourly
statistics. The model, however, should concern the diurnal cycle so that the model should
be periodic-based. The adjustment has been applied for the distribution of the storm
events for the diurnal cycle developed by the authors of this paper. To account for the
diurnal cycle, the storm events are distributed with the weights of the hourly occurrence

probability P, (7)of Eq.(5-17). Therefore, the events will more likely occur where the

probability is higher than other hours. This is the modification from the original model in

Socolofsky et al.(2001) by the authors of this paper.

An event is defined as a continuous sequence of hourly precipitation separated by
at least one dry hour period (i.e. separated from the non-event period). The step is

summarized as :

(1) The hourly precipitation events in a day can be separated. The depth and
duration (hours) of each event can be defined from the hourly data set. The
events are ordered as the increasing depth of each event (e.g. y.>y1). Set a table
of the ordered events based on a depth of each event with the duration of each
event, like the table on the right side of Figure 5.2, where n is the total number of
events in the hourly data set. The events will be obtained from the whole
historical data set. As mentioned, an event is a continuous sequence of hourly

rainfall until it gets dry period.
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(2) Get a cumulative density function F; (CDF) of event depth employing the order

and the depth in Figure 5.2 as F, = j/(n+1).

(3) The objective is to separate a daily precipitation amount D, into several
precipitation events. The separated events should be selected and defined from

~ the historical data set which is on the table (Figure 5.2). To begin with, get the
depth of daily precipitation D, from a generated time series or from the current

(historical) data and search the CDF ordinate & corresponding to D, as shown

in Figure 5.2 (right side).

(4) Generate ¢ ~unif[0, £] and find the corresponding event amount from the CDF
¢ (Figure 5.2 — right side),which is ). The event corresponding or closest to
the depth y), should be defined from the table and stored as an event with its

duration.

(5) Set D, =D, - ', and repeat (3)~(4) until D, <&“ , where £ is the stopping

critical value. This critical value should be larger than, or at least the same as,

dat

the smallest value of the events in the table. If the condition D, <& is met,

then the repetition should be stopped. The residual is distributed uniformly

dat

through hours . ¢“" can be used as a calibration parameter using different values

of £, but here the effect of the calibration parameter is not checked.
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(6) Distribute the event according to the hourly occurrence pr‘obability (A (r).Eq.(5-
17)) with a constraint that the current value should not overlap to the next day.

The probability that an event starts at a certain time 7 is:

£

24 ?

> P

P{an event starts at a certain hour 7 } =

If the events overlap inside, they should be added together. The final remaining

value, which is less than &“, is added for one of 24 hours with discrete uniform

selection.

More details are referred to by Socolofsky et al. (2001).

5.4 Applications and Model Performance Criteria
5.4.1 Applications

Three cases are illustrated in which disaggregation of daily precipitation may be
needed: (1) for simulating hourly precipitation whereby daily precipitation is generated
first, which in turn is disaggregated into hourly quantities; (2) for record extension of
hourly data where longer daily data are available; (3) for estimating hourly data at a given
station where daily data are available given that hourly data are available at another
station. For the first case hourly rainfall data, Denver International Airport (DIA), which
are available for the period (1949-1990) are employed. For the second case, the hourly

and daily data of the DIA station are used. Assuming that hourly data for the record 1979
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to 1990 are missing that record extension for that record is needed. For the third case,
daily and hourly precipitation at DIA assumed that only daily data at Parker are available,
and hourly data will be obtained by disaggregating from the daily data employing the
disaggregation for the parameter derived for the data at DIA. DIA is station number 5220,

and Parker is 56326 obtained from U.S. Hourly precipitation data from NOAA.

Some occurrence probabilities and basic statistics of the hourly precipitation data
for the month of July for Denver Airport for the period 1949-1990 (whole record), 1949-
1978, and 1979-1990 are shown in Table 5.1 and Table 5.2, as well as Parker. The same
statistics are shown in Table 5.1 and Table 5.2 for the hourly precipitation for the periods
1949-1978 and 1979-1990, respectively. Note that in the period 1979-1990, brecipitation
has not occurred in the hours 10, 11, and 12. Likewise, the same statistics are shown in
Table 5.1 and Table 5.2 for hourly precipitation in July for the period 1950-1994 for
Parker near the airport. in Table 5.1 and Table 5.2 unveil the difference and resemblance
in statistical behavior of hourly precipitation. The Denver site shows a more frequent
precipitation occurrence while the precipitation amount at Parker is generally larger than
at Denver (Figure 5.3). Both sites depict the diurnal cycle. The DIA hourly precipitation
data has been assessed by Collander et al. (1993) and employed for testing the developed

hourly precipitation generation model by Katz and Parlange (1995).

The model validation is performed for the three cases, and the statistical criteria
are selected for checking the validity of the models. The investigation is not only on the
difference between the real value and the disaggregated value, but also on the difference

between the statistics of the historical data and the statistics of the disaggregated data.
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5.4.2 Model Performance and Validation Criteria

To judge the performance of a given model and to compare among the models,
two types of statistical criteria have been used. The first ones are statistics that compare
the observed hourly precipitation values versus the predicted hourly values obtained from
a disaggregation model. The second ones are statistics that compare the hourly
precipitation statistics (e.g. mean) from the observations versus those estimated from the
predicted hourly values (obtained from a disaggregation model). Although the statistical

criteria are well-known and may be found in many references, we summarize them below.

A few of model performance criteria used are explained. Mean absolute error
(MAE), and root mean square error (RMSE) are among the most popular criteria for
checking the model performance. Model 1 may be selected over Model 2 if the MAE and
RMSE of model 1 are better than the comparing values for model 2. Another common
performance criterion is the coefficient of determination R?, but it only evaluates the
linear relationships between variables. R* is insensitive to additive and proportional
differences between the model simulations and observations. To overcome these
shortcomings, Legates and McCabe(1999) recommended using the baseline-adjusted

modified coefficient of efficiency(MCE). It is defined as:

n

>0, -2

MCE=10--1 (5-24)

§|0,—5'|

where O;= measured observations; Pi=model predictions; O'=baseline value of the

observations against which the model is to be compared (e.g. mean) ; and n is the number
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of observations to be compared. Values of MCE between —© and O represent that the
predicted values are not better than the baseline values, while values of MCE larger than

0 and approaching to 1 imply better fitting.

In addition, the index of agreement d, (Willmott, 1981) has been used for

checking the model performance. It is given by:

N
>jo.-x| ‘
d=1.0-—-= (5-25)
Y|0, - B|+|0, -0

i=1

It varies from 0.0 to 1.0, with higher values indicating better agreement between
the model and observations, similar to the interpretation of the coefficient of
determination R?. The index has been modified not to be sensitive to extreme values from

the squared differences so it represents an improvement over R”.

Furthermore, the second type of statistical criteria as referred above is

summarized here:

HO_HG

1 24
MAE, = EZZ
7=]

24
RMSE, = JEIZZ(H: —69)?
=1

24

|07 -o¢
MCE=1.0-5——
2|67 -0

7=]
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24

2.

d=1.0-o—=
2({9f~5'4+10f—5'|)
=1

9° —g°

where 07 represents a historical statistic for hour 7 estimated from the observed hourly

values and @ represents a statistic for hour 7 estimated from the predicted hourly values

obtained from the disaggregated values of a given model. The hourly statistics included

mean, standard deviation, skewness, and P.(1),P.(0,1), P.(1,1). For the base-line value,

the mean value of observed hourly statistics was used.

Those performance criteria shows employing boxplots. All box plots in this paper
have the same representation, such that the box and the middle line in the box depicts the
quartiles and median, respectively, while the straight line is stretched until the max and

min value from the box.
5.5 Results

Three different cases of disaggregations were tested as mentioned with the
developed three models. The simulated, extended, and transferred data for each
disaggregation case were investigated and employed to validate three proposed models

through comparing the statistical features with those of the historical data.

For the first case, the first part of the Denver hourly record (1949~1990 July) was
employed for model fitting and parameter estimation of disaggregation model. The
objective was to build up a disaggregation model so that the disaggregated data would

preserve the statistical characteristics through the higher time scale (daily), as well as the
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lower time scale (hourly). The necessity of this case can be described as follows. One
might build a daily model and generate daily data. Then, the daily data are disaggregated
to obtain the lower time scale data, such as hourly. This disaggregation is named as a data
simulation case. The transition probability for the CMSA model at Eq.(5-2) and Eq.(5-3)
is estimated and shown at Table 5.3 for the whole record in Denver. The 100 sets of the
same length of the record as the Denver (42yrs, 31days) have been disaggregated into
hourly data. One month example is shown at Figure 5.4 (one more example in Figure 5-
A.1). The statistics from the disaggregated data sets are estimated and compared with the
historical data. In Figure 5.5, Figure 5.6, and Figure 5.7 for mean, skewness and Pj,
CMSA and PGAA model reproduces the basic statistics and occurrence probabilities with
the diurnal cycle. SSMW underestimate the mean and standard deviation during the
frequent rainfall hours (i.e. hours 14-22, referred to Table 5.2), but overestimate the
skewness and the transition probabilities (Py; and Py;) during the infrequent hours (i.e.
hours 1-12). The occurrence probabilities (P;) of the historical through the whole hours
are overestimated as shown Figure 5.7. This is the evidence of the model such that the
diurnal cycle is not properly reproduced from this model. The reason is that multiple
numbers of events selected from the historical data cannot be arranged with preserving
the diurnal cycle. The other figures for standard deviation, Py;, and Py can be found from
Figure 5-A.2 to Figure 5-A.4. Notice that the basic statistics in the PGAA model are
reproduced but with smoothed manner as expected from the modeling process
(smoothing the key statistics for the diurnal cycle). The mean of the performance criteria
of the occurrence probabilities and the key statistics are shown in Table 5.4 and the

boxplots of the performance criteria for mean and P, are shown at Figure 5.8 and Figure
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5.9. Further results are shown from Figure 5-A.5 to Figure 5-A.8. It is shown that the
CMSA and PGAA model have similar behavior in the preservation of the occurrence
probabilities. It is because those two models employ the transition probability matrix and
limiting distribution in generating the occurrence process with a different format (CMSA:
conditional transition probability and PGAA: PDAR(1) model). And the basic statistics
such as mean, standard deviation, and skewness are well preserved in the CMSA and
PGAA. PGAA has the priority to be selected according to the performance criteria as
shown in Table 5.4. The historical Denver hourly data can be compared with the
disaggregated data. Even if the suggested models are not for forecasting, the comparison
can be made to obtain the model performance and features. The results are in Table 5.5.
The criteria revealed the priority on the SSMW model. Note that the value comparison
should be carefully made on this case because the data are intermittent, which include a
lot of zero values. But the models do not capture the specific time of occurrence. The
models only disaggregate the daily rainfall into hourly stochastically not forecasting. If
the zero values are compared with some amount, the criteria might be biased on a model,
which has more frequent events and less peak points on amount. The statistical behavior
of the SSMW model is to have more frequent on occurrence and less frequent on large
values, which makes significant difference between two other models in the comparison
of the performance criteria with the disaggregated values. This feature can be read from
Figure 5.10 in that the events spread out through all hours the disaggregated time series
for the SSMW model. Therefore, choosing a model with this comparison might not be

reliable.
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The second case can be explained as follows (named extension case). If one has
longer length of the record in a higher time scale (daily) and also has shorter length of the
record in a lower time scale (hourly), the shorter record may be extended until the record
of the higher time scale is available. The objective of the model for this case is to extend
the unmeasured record during the available daily data employing the statistical behavior
of the measured hourly record. Half of the data in Denver are used for model fitting and
the other half are assumed not to be measured at a lower time scale (hourly) but measured
at a daily time scale. The assumed non-measured data are extended using the
disaggregation models. The statistics of the disaggregated data and the values are
compared with the real historical data. Again, the disaggregated data can be compared
with the real historical data. In Table 5.4, the results are shown with similar behavior in
the first disaggregation case (simulation). The occurrence probabilities, P1 and P01, are
better matched on CMSA, while P11 is better on the CMSA and PGAA. In Figure 5.11,
an example month of the disaggregated time series and historical data for daily and
hourly are shown (One more example is in Figure 5-A.1). The similar distributional
characteristic as the simulation case in SSMW is shown. In the figure, there are two days
in which the event occurs. The historical hourly time series has shown that the rainfall
events occurred through a small number of hours. This can be explained by the behavior
of the diurnal cycle. The rainfall tends to occur in certain frequent hours in a day, such as
hours 16 to 22. This could be related with the performance criteria on the comparison of
the generated value and historical value which is represented in Figure 5.12. The same
conclusion as the simulation case with Figure 5.10 is leaded such that the SSMW model

tends to spread the daily rainfall into hourly rainfall uniformly. In Figure 5.13, the
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standard deviation of the historical and disaggregated hourly data for the extension case
is shown. Completed plots are shown from Figure 5-A.10 to Figure 5-A.15. It is shown
that the standard deviation underestimated during the frequent rainfall hours (i.e. 14-21)
as in Figure 5.13. This is the same behavior as the simulation case. The other statistics
(mean, skewness, and occurrence and transition probabilities) of this extension case
behaves similarly as the simulation case. The disaggregated hourly data from SSMW are
rather distributed evenly compared with the other models (low mean value and high
occurrence probability through the hours). Completed plots are shown from Figure 5-

A.16 to Figure 5-A.21.

The third case is to disaggregate the daily precipitation data at another site using a
Denver parameter set, named as a data transfer case as presented by Econopouly, et al.
(1990). For this purpose, the climatologically and regional proximity station of rainfall
data, Parker, was chosen. The statistical characteristics of the hourly rainfall data for this
station are shown in Table 5.1 and Table 5.2. The aim of this transfer case is to fit a
disaggregation model with the hourly and daily data with the data of a different site
(Parker) and the daily rainfall data of the target station (DIA) are disaggregated into
hourly data. Two examples of this disaggregation case are shown at Figure 5-A.22. The
same criteria and basic statistics are estimated and compared at three models as the
previous cases. The performance criteria of the occurrence and transition probabilities
and key statistics are shown in Table 5.4. P1 and PO1 are better fits on CMSA and P11 on
PGAA. There are some negative values which imply that the disaggregated values from
the models are not better than the case in which the values are filled with the baseline

values such as the historical mean. PGAA seems to be prior to the other models except

282



the index of agreement d which chooses CMSA as a better one. Figure 5.14 illustrates the
performance criteria of the mean. From the figure, the variability of the estimated criteria
seems to be lager than the ones in the other cases. It should be noted that the larger
uncertainty is shown because the disaggregation was performed using the statistics of
another site compared to the first simulation case. Figure 5.15 show the mean of the
historical and the disaggregated hourly data for three models and also for the historical
mean of the Parker. The others such as standard deviation, skewness, and occurrence and
transition probabilities are also estimated. Those are shown from Figure 5-A.23 to Figure
5-A.27. The mean and the variation of the mean through hours are similar between two
stations so that the employment of Parker station as the reference site should be feasible.
The key statistics and occurrence and transition probabilities are relatively well preserved
in the disaggregated data of CMSA and PGAA models while SSMW has the same
deviation as the previous cases (i.e. the simulation and extension cases). The similar
behavior of the performance criteria is observed as the previous simulation and extension

cases. Those are shown at from Figure 5-A.28 to Figure 5-A.34.

5.6 Summary and Conclusions

Three distinctive disaggregation models were developed employing the current
available technologies in order to reproduce the diurnal cycle embedded in the key
statistics and occurrence probabilities. The first model, CMSA, is based on the
conditional Markov Chain for the occurrence process and simulated annealing for the
amount arrangement, which combines the binary process with the conditional probability
matrix and the amount process rearranging the quantities with simulated annealing. The

second model, PGAA, is PDAR(1)-GAR(1) with an accurate adjusting procedure. The
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model generated the hourly rainfall data for a day with PDAR(1)-GAR(1) and the
generated value was taken or regenerated according to whether the summation of the
generated hourly is smaller than the tuning parameter. The third one, SMWSD, is the
stochastic selection with weighted storm distribution. From the event table and CDF of
event depth produced from the hourly historical data, historical events were selected until

the summation of the events was smaller than the calibration parameter.

Three applications were experimented with for three models such as a simulation
case, an extension case, and a data transfer case. Four performance criteria over the
generated values, occurrence probabilities, and key statistics were estimated and

compared with three proposed disaggregation models at each case.
From the results, some critical remarks are presented as follows:

a. PGAA and CMSA well preserve the occurrence probabilities. Two models

employ a similar model for occurrence process.

b. PGAA is superior to reproduce the key statistics of hourly data with diurnal

cycle.

c. The proposed disaggregation models are not useful for forecasting, since the
exact rainfall occurrence in a day cannot be defined. It is not critically
important as long as the disaggregated data preserves the diurnal cycle, the key

statistics, and the occurrence probabilities.

The developed disaggregation model could be applicable and considerable to split

daily rainfall data where a diurnal cycle is predominant.
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Table 5.1 Hourly Precipitation occurrence probabilities
DIA (1949-1990)

DIA (1949-1978)

DIA (1979-1990)

Parker (1950-1994)

Time pl p01 pli pl p01 pli pl po1 pll pl p01 pll
1 0.018 0.006 0.708 0.02 0.008 0.632 0.013 0 1 0.019 0.009 0.538
2 0016 0.0056 0714 0.016 0.003 08 0.016 0008 05 0.019 0.007 0615
3 0012 0.002 08 0.012 0.003 0.727 0.011 0 1 0.014 0.004 0.737
4 0.009 0.004 0583 0.009 0004 05 0.011 0.003 0.75 0.006 0.001 0.889
5 0.012 0.005 0533 001 0.003 0667 0.016 0.011 0.333 0.006 0.003 0.5
6 0.008 0.004 0545 0.008 0.003 0.571 0.011 0.005 0.5 0.006 0.005 0.222
7 0009 0005 0.5 0.01 0.005 0.444 0.008 0.003 0.667 0.006 0.004 0.333
8 0011 0005 05 0.011 0.007 04 0011 0.003 0.75 0.007 0.004 04
9 0008 0002 038 0.01 0.002 0.778 0.003 0 1 0.009 0.005 0.417
10 0.005 0.001 0.857 0.008 0.001 0.857 0 0 0 0.008 0.007 0.182
11 0.004 0.001 0.8 0005 0001 08 0 0 0 0.011 0.011 0.063
12 0.003 0.002 0.25 0.004 0.003 0.25 0 0 0 0.008 0.006 0.273
13 0.009 0.009 0.083 0.012 0.011 0.091 0.003 0.003 0 0.012 0.008 0.353
14 0.031 0.029 041 0.032 0.03 01 0.027 0.025 041 0.032 0.026 0.205
15 0.058 0.047 0.227 0.067 0.059 0.177 0.035 0.019 0462 0.052 0.035 0.361
16 0.068 0.044 0404 0.068 0.038 0476 0.07 0.058 0.231 0.049 0.03 0412
17 0.084 0.055 0.409 0.078 0.051 0.397 0.099 0.063 0432 0.057 0.034 0.438
18 0.078 0.041 052 0.073 0.042 0.471 0.091 0.038 0.618 0.055 0.035 0.403
19 0.082 0.042 0.533 0.077 0.038 0.542 0.094 0.05 0514 0.043 0.019 0.567
20 0.081 0.043 0.505 0.072 0.038 0.507 0.102 0.057 0.5 0.04 0.024 0.429
21 0.048 0.021 0.587 0.052 0.026 0.521 0.04 0008 0.8 0.042 0.024 0.448
22 0.042 0.018 0.6 0.041 0.016 0632 0.046 0.023 0.529 0.034 0.016 0.563
23 0.034 0.01 0.727 0033 001 071 0035 0.008 0769 0.027 0.011 0.595
24 0034 0.012 0.659 0.032 0.012 0.633 0.038 0.011 0.714 0.022 0.004 038
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Table 5.2 Basic Statistics of the Amount for Hourly Precipitation

DIA (1949-1990)

D!A (1949-1978)

DIA (1979-1990)

Parker (1950-1994)

Mean  Std Skew  Mean Std Skew Mean Std Skew Mean  Std Skew
1 1.598 1.932 1.863 139 2015 2262 2388 1.488 0.057 1729 1999 1578
2 0.581 0.783 3559 0542 0915 3341 0677 0308 -0.06 1.456 1.103 0.082
3 0.66 0.566 0.964 0.716 0.651 066 0.508 0.207 0 2.634 4142 2343
4 0.783 0689 1.479 0.603 0469 1.012 1.143 0984 0.795 1101 1.047 0.576
5 066 0643 1.975 0508 0.402 2013 0.889 0.891 1.219 1365 1.309 0.386
6 0947 1035 1.117 0.617 0584 1.299 1524 1481 0.058 158 1.141 -0.24
7 0572 0377 0.598 0.593 0421 0.485 0 0 0 1919 0881 -0.75
8 1.07. 1777 3.087 1295 2079 2502 0508 0359 0817 1092 1.023 0.736
9 1.219 1509 1.577 1326 156 1.429 0 0 0 1.63 1.007 -0.28
10 1.27 1278 1.754 127 1278 1.754 0 0 0 1.663 1.025 -0.28
11 1.727 1.782 0.586 1.727 1.782 0.586 0 0 0 2635 2353 2.083
12 0.635 0.328 0 0.635 0.328 0 0 0 0 0.993 0.868 0.868
13 1609 1905 1.197 1.709 1.965 1.064 0 0 0 2.809 3271 2166
14 21563 2946 2 232 3338 1721 1651 1156 0.119 3.331 3404 299
15 2791 4913 2821 2802 5169 2824 2735 3607 1777 3.563 5756 3.848
16 2078 329 319 1879 2655 2678 256 4503 2852 3485 4.564 2145
17 1942 4356 6567 206 4967 6481 1.709 2.831 2074 4.099 6577 3.885
18 3529 5995 2613 4.004 6.317 2011 2577 5251 4605 3741 5135 2195
19 1.947 3496 4207 2039 3.026 261 1.756 4351 5.092 2718 449 3.896
20 1933 3.665 3277 2051 3916 3.284 1.725 3.212 3.017 3.207 6.335 3.868
21 2157 3782 4106 2111 3912 4397 2303 3455 2588 4257 6.655 2943
22 2203 3223 2517 1578 1675 1123 3601 5056 1374 272 3601 2298
23 1.3561 2.004 3.096 1.098 1.783 3.329 1.954 2426 2703 1977 165 1.144
24 1409 258 3357 1.143 2.285 3.827 1.978 314 2705 2481 3.552 2.961
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Table 5.3 Transition probabilities and limiting probabilities conditioned on D, =1 of
CMSA in Egs.( 5-2) and (5-3) for DIA hourly precipitation for the period (1949-1990)

Hour 1 2 3 4 5 6 7 8 9 10 11 12

P1 0.063 0.054 0.039 0.031 0.039 0.028 0.031 0.036 0.026 0.018 0.013 0.010
PO1 0.019 0.016 0.008 0.013 0.019 0.013 0.016 0.019 0.005 0.003 0.003 0.008
P11 0.708 0.714 0.800 0.583 0.533 0.545 0.500 0.500 0.800 0.857 0.800 0.250
Hour 13 14 15 16 17 18 19 20 21 22 23 24

P1 0.031 0.103 0.193 0.229 0.283 0.262 0.275 0.270 0.162 0.141 0.113 0.113
PO1 0.029 0.103 0.185 0.177 0.233 0.171 0.177 0.183 0.080 0.066 0.035 0.043
P11 0.083 0.100 0.227 0.404 0.409 0.520 0.533 0.505 0.587 0.600 0.727 0.659

Table 5.4 Basic Statistics of the Amount for Hourly Precipitation
Case2:Extension

Case1:Simulation

Case3:Transfer

Stat Method P1 P01 P11 P1 P01 PO1 P11
CMSA 0.048 i 75! ' 0053
MAE _
(0) PGAA D04t 0,089
SSMW 0.173 0.129
CMSA 0.218 0ip28
RMSE
(0) PGAA 8202 0.243
SSMW 0.415 0.359
CMSA G752 0459
MCE
1) PGAA 0.789 0.392
SSMW 0.111 -0.323 -0.542
. CMSA 8763 0.426
™) PGAA 0.738 gasy
SSMW 0.434 0.35
Mean Std Skew
VA CMSA 4.69 7.111 7.307 12.587 7.636
(0) PGAA 5618 G oA Bes B458 44978 71408
SSMW 4.837 10.811 9.84 6.886 12.277 9.005
CMSA 2.158 3.566 2.694 3.528 2.757
RMSE s e B
(o) PGAA 1.896 2,154 2532 3332 24
SSMW 2.199 3.284 3.501 2.994
ViE CMSA 0.03 0.023 -0.093 0.02 -0.004 0.313 0.09 0.076
1) PGAA 0252 g7 go94 0185 0.2 0.344 0.192 G403
SSMW 0 -0.001 -0.301 0.118 0.156 0.05 0.113 -0.09
d CMSA 0.589 0.589 0.482 0.559 0.565 0.616 05574 0.545
(1)  PGAA 06138 Dses 0543 | 066 0813 0631 0.565 !
SSMW 0.455 0.447 0.33 0.395 0.458 0.449 0.409 0.458

Note: The number following the statistics is the value when a model has the perfect fit.

(e.g. MAE(0)). And the best fit model highlighted with gray color.
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Table 5.5 Mean Values of the Performance criteria in comparison between the model
value and the historical value at DIA

Case1:Simulation Case2:Extension Case3:Transfer
CMSA PGAA SSMW CMSA PGAA SSMW CMSA PGAA SSMW
MAE 0.111 0.109 0104 0.114 0.111 0.129 0.127 0123
RMSE 0.334 0.329 0.338 0.333 § 0.359 0.356 0.351
MCE 0.076 0.099 0134 0.061 0.092 0.084 6160 0.123
d 0.539 0.549 0,562 0.535 0.549 0.522 0.526 §

Note: The number following the statistics is the value when a model has the perfect fit.
(e.g. MAE(0)). And the best fit model highlighted with gray color.
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Figure 5.1 Conditional Markov Chain and Simulated Annealing : The upper-left side bar
represents the unit daily amount (D4=1) . The event hours are specified from the
conditional Markov Chain (k=3, h=12, 17, 18). And the daily amount should be separated
employing the modified Atchison distribution. The separated hourly amounts will be
found proper place using the simulated annealing process (switching process).
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Figure 5.11 Realization of the disaggregation for Extension case
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Figure 5-A.1 Realization of the disaggregation and historical hourly and daily for the
simulation case
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Figure 5-A.9 Realization of the disaggregation for Extension case
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CHAPTER VI

CONCLUSIONS, CONTRIBUTIONS, AND RECOMMENDATIONS

6.1 Conclusions

Stochastic generation models are required for various purposes such as drought
analysis, reservoir planning of a complex system, and water quality modeling. Over the
decades many alternative models have been proposed based on parametric and non-
parametric techniques. For streamflow data nonparametric modeling techniques are
focused. From the meticulous investigations over the existing models, new models are
proposed and some existing models are enhanced. The proposed and enhanced model in
this study eliminates the limitations and drawbacks that the existing nonparametric
models have. Those developed models are tested with various streamflow data, mainly in
the Colorado River system. The results show that they are reliable and useful models to
simulate streamflows of a single site and a large river basin even with intermittent and
non-intermittent sites jointly. For rainfall data, the existing disaggregation models are
improved to account for the diurnal cycle in hourly data. The improved three models are
tested with rainfall data in Colorado stations. The results showed that two among three

models reproduce the diurnal cycle properly as well as the key statistics of hourly data.
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)

€)

)

The specific conclusions drawn from the research are:

The model KNNR with Gamma KDE perturbation and aggregate or pilot
variable produces feasible generated data that are not par of the historical data
and preserve the long-term variability. Extensive comparisons and applications
of the proposed techniques show significant improvements over the existing

models.

The proposed multivariate bootstrapping model with KNN block selection and
Genetic Algorithm mixture yield new spatial patterns different from the part of
the historical data and avoid the discontinuity in block selection. Further, the
model can be applied for cases of joint intermittent and non-intermittent flows.
This capability is very useful when a multivariate simulation is required on a
large river basin such as the Colorado River system which includes arid, semi-
arid, and moderate zone. The arid and semi-arid zone contains the intermittent

data.

The detailed investigation of existing disaggregation models uncovered a
number of drawbacks. Appropriate modifications and simpler structure is
suggested employing the accurate adjusting and the KNNR sélection
accompanied by the Genetic Algorithm mixture. The proposed model has been

shown to perform more efficiently and better than the existing one.

Three distinctive disaggregation models such as CMSA, PGAA, and SSMW
are enhanced to take the diurnal cycle into account in the disaggregated hourly

data. From various tests and comparisons, CMSA and PGAA models well
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reproduce the diurnal cycle as well as the key statistics. And PGAA is the

easiest model to apply.

6.2 Summary of Contributions

Nonparametric models for streamflow data are proposed and some existing

models are improved if applicable. Those proposed and improved models has better

performance than the existing model such as generation of the values not part of the

historical data, preservation of long-term variability, applicability to the sites that

intermittent and non-intermittent data are combined. The improvements on the

disaggregation models of rainfall data now allow to reproduce the diurnal cycle in hourly

data.

(1)

Univariate model: The developed approach is based on the k-nearest neighbors
resampling (KNNR). The critical drawback of the existing KNNR generation
model is that it only produces historical values. This drawback is overcome by
using the Gamma Kernel Density Estimate. New parameterization of the
Gamma kernel is proposed and compared with the previous one revealing some
superior features. Also the reproduction of the long-term variability cannot be
achieved with the existing KNNR model. Here the interannual variable and the
pilot variable are proposed to reproduce long-term variability. The suggested
models have been tested with the data of the Colorado River and Niger River
and revealed successful preservation of the key statistics and drought and

storage statistics.
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)

Multivariate Model: The critical drawbacks of the existing nonparametric
generation model is to generate the same values as the historical, the repetition
of the same seasonal pattern, and no variation spatially. The new features of the
model proposed herein include (a) the variable block length — the aggregated
values to annual or seasonal (in case of monthly generation) will be different
from historical, (b) KNNR block selection — the connection between blocks will
be preserved, and (¢) Genetic Algorithm mixture — spatially different sequences
to historical are generated, and (d) Gamma KDE perturbation — different values
than the historical data will be generated. The suggested model has been tested
using data of Colorado River System and showed better results than those

obtained based on the existing model.

Disaggregation Model: The drawbacks of an existing nonparametric
disaggregation technique have been examined in some detail. Firstly, the
correlation between the first month of the current year and the last month of the
previous year is not preserved and the proper spatial or temporal mixing cannot
be reproduced. These drawbacks are remedied with the suggested much simpler
model. The proposed model uses (a) the KNNR selection of the aggregate
variable followed by accurate adjusting for the disaggregate variable data
corresponding to the selected aggregate variable (b) the consideration of the
correlation between the first month of the current year and the last month of the
previous year with including the condition of the last month of the previous
year when the lower-level variable is obtained with KNNR selection (c)

Genetic Algorithm mixture for obtaining more variable pattern than the
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historical data. The suggested model has been tested using data of the Colorado
River System. The results are compared with the existing models and showed

that the referred drawbacks are all eliminated.

(4)  Daily rainfall disaggregation model: The various models for disaggregating
daily rainfall data do not consider the diurnal cycle in the hourly data. Three
distinctive disaggregation models were improved to disaggregate daily rainfall
data into hourly so that the diurnal cycle of hourly data are properly taken into
account. The capability of the reproduction diurnal cycle will be useful as input
data for dam operation and water quality modeling that diurnal cycle is

important feature to be considered.
6.3 Recommendations
Two recommendations for further studies are:

(1) Include exogenous variable into the KGKP model as a pilot variable to reflect
global climate effect on streamflow. Wavelet analysis and Hilbert-Huang
transformation may be useful techniques to find a component to be used as an

exogenous variable from climate variable (e.g. ENSO index).

(2) Currently, a drawback of nonparametric disaggregation model is to perform spatial
and temporal disaggregation one-by-one. More than one step of spatial
disaggregation after temporal disaggregation for a river basin system induce the

underestimation of the seasonal correlation in the spatially lower-level stations.
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Therefore, a nonparametric disaggregation model that can implement the spatial-

temporal disaggregation at the same time could be useful in this sense.
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