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ABSTRACT OF DISSERTATION 

STOCHASTIC SIMULATION OF HYDROLOGIC DATA BASED ON 
NONPARAMETRIC APPROACHES 

Stochastic simulation of hydrologic data has been widely developed for several 

decades. However, despite the several advances made in literature still a number of 

limitations and problems remain. The major research topic in this dissertation is to 

develop stochastic simulation approaches to tackle some of the existing problems such as 

the preservation of the long-term variability and the joint modeling of intermittent and 

non-intermittent stations. For this purpose, nonparametric techniques have been applied. 

For simulating univariate seasonal streamflows, a model is suggested based on k-nearest 

neighbors resampling (KNNR). Gamma kernel density estimate (KDE) perturbation is 

employed to generate realistic values of streamflow that are not part of the historical data. 

Further, aggregate and pilot variables are included in KNNR so as to reproduce the long-

term variability. For multivariate streamflows, the moving block bootstrapping procedure 

is employed considering a random block length, KNNR block selection to avoid the 

discontinuity between blocks, a Genetic Algorithm mixture, and Gamma KDE 

perturbation. In addition, the drawbacks of an existing nonparametric disaggregation 

scheme have been examined and appropriate modifications developed that include 

accurate adjusting for the disaggregate variable, KNNR, and Genetic Algorithm mixture. 

The suggested univariate, multivariate, and disaggregation models have been compared 
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with existing nonparametric models using several cases of streamflow data of the 

Colorado River System. In all cases, the results showed major improvements. 

Furthermore, disaggregation from daily to hourly rainfall for a single site has been 

studied based on three disaggregation models so as to account for the diurnal cycle in 

hourly data. Those models are (1) Conditional Markov Chain and Simulated Annealing 

(CMSA), (2) Product Model (GAR(l)-PDAR(l)) with Accurate Adjusting (PGAA), and 

(3)Stochastic Selection Method with Weighted Storm Distribution (SSMW). Various 

tests and comparisons have been performed to validate the models and it revealed that 

PGAA is superior to the others for preserving the diurnal cycle and the key statistics of 

hourly rainfall. 

Taesam Lee 

Department of Civil and Environmental Engineering 

Colorado State University 

Fort Collins, CO 80523 

Fall 2008 
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CHAPTER I 

INTRODUCTION 

1.1 Study Motivation and Background 

Water allows living creatures to exist on the earth. The amount of water is not 

proportionally distributed. Complex physical reactions on the surface and in the 

atmosphere of the earth cause diverse climate regions. If the average annual precipitation 

is less than 500mm and the average annual potential evapo-transpiration exceeds 800mm 

in a region, the region is defined as arid (McMahon, 1979). In large river basins one may 

find a variety of climatic regions such as arid, semi-arid, and moderate. For example, the 

Colorado River system includes arid zones such as Arizona and Nevada, semi-arid areas 

such as Colorado and Utah, and the moderate zone of California. 

The Colorado River is one of the main sources of water for several states in the 

western United States. Water management is an important issue in the Colorado River 

system. Generally, some water is delivered from places where plenty of water exists to 

the places where water is scarce. Planning the storage, diversion, and delivery of water 

must consider current and future conditions of the available water resources. Estimating 
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the future availability of water resources is not be easy task. Stochastic simulation have 

been suggested to create possible streamflow scenarios that may arise in the future. The 

simulated data allow water managers checking many possible options. Many models for 

simulating streamflows at monthly and yearly time scales have been developed and 

applied in water resources management area. 

The time series simulation models that are typical in hydrology and water 

resources include Autoregressive Moving Average (ARMA), periodic ARMA (PARMA), 

multisite ARMA (MARMA), contemporaneous ARMA (CARMA), and disaggregation 

models (Salas, 1980, Loucks et al., 1981). These models are linear and assume normal 

distribution. Since hydrologic data such as rainfall and streamflow are not normally 

distributed, data transformation is unavoidable. The data transformation might induce 

bias on key statistics such as the mean and standard deviation of the original variable in 

real domain even if there are no biases in the transformed (normal) variable. 

In the last two decades, nonparametric simulation techniques such as 

bootstrapping, k-nearest neighbors resampling, conditional kernel density estimate, 

nonparametric disaggregation, and more have been developed to provide alternatives and 

get around some of the shortcomings of parametric models. In this study, the current 

nonparametric simulation techniques for streamflow data are investigated and drawbacks 

of the techniques are revealed such as generating only historical values, and the repetition 

of seasonal and spatial patterns. In order to tackle the drawbacks of the current 

nonparametric models, a number of modifications are proposed such as Gamma KDE 

perturbation, the inclusion of aggregate or pilot variable, Genetic Algorithm mixture, and 

combination of nonparametric disaggregation and accurate adjusting. Furthermore, the 
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proposed modifications will be useful for simulating intermittent and non-intermittent 

streamflows jointly at several sites. 

In addition, finer time scale data such as hourly precipitation are needed for water 

quality modeling and dam operation. A disaggregation model from daily to hourly is very 

useful because often only daily data are available. Even though some disaggregation 

models have been developed, the diurnal cycle that may be an important feature in some 

areas has not been considered. Therefore, some disaggregation models from daily rainfall 

to hourly are proposed that include the effect of the diurnal cycle. 

1.2 Objectives of the Study 

The general objective of this research is developing nonparametric simulation 

techniques that are applicable to hydrologic data such as streamflow and rainfall. For 

streamflow data, nonparametric models are mainly focused considering the long-term 

variability and the joint modeling of intermittent and non-intermittent data. For rainfall 

data, existing rainfall disaggregation models are enhanced to account for the diurnal cycle 

in hourly data. Specific objectives that will be considered are: 

(1) To develop a model that is capable of generating seasonal streamflow data at 

single sites. The model will be nonparametric which will enable one generating 

data values that are not part of the historical data, it will avoid generating 

negative values, and it will improve the preservation of long-term variability. 

This will be accomplished by Gamma kernel density estimate (GKDE) 

perturbation conditioning on pilot or aggregate variable based on k-nearest 

neighbors resampling (KNNR). 
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(2) To develop a model that is capable of simulating streamflows at multiple 

stations. Nonparametric techniques are applied to generate sequences that will 

produce feasible mixing (spatial and temporal) and the joint modeling of 

intermittent and non-intermittent data. This will be done by the multivariate 

bootstrapping with a random block length, KNNR block selection, and Genetic 

Algorithm mixture. 

(3) To develop a model for disaggregating higher scale variable (e.g. yearly) into a 

lower scale variable (e.g. monthly). The model must preserve the correlation 

between the last month of the previous year and the first month of the current 

year and be capable of spatially disaggregating data for intermittent and non-

intermittent sites. This will be accomplished by modifying an existing 

nonparametric technique with the accurate adjusting and Genetic Algorithm 

mixture. 

(4) To enhance the existing models to disaggregate daily rainfall data to hourly so 

that the effect of the diurnal cycle are taken into account. 

(5) To validate and apply the various models listed in (l)-(4) using actual single 

site and multisite data, particularly data of the Colorado River system. 

1.3 Dissertation Outline 

This dissertation includes mainly four different modeling chapters followed by 

conclusions and recommendations. In Chapter 2, a univariate model for generating 

seasonal streamflow is proposed. The model uses the nonparametric techniques such as 
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k-nearest neighbors resampling (KNNR) and Gamma Kernel Density Estimate (GKDE). 

In Chapter 3, a multivariate model is suggested to simulate multi-station seasonal 

streamflow with nonparametric techniques such as bootstrapping and KNNR as well as 

the mixing process with Genetic Algorithm. In Chapter 4, a model is proposed that 

disaggregates higher-level data (e.g. yearly) into lower-level data (e.g. monthly). The 

suggested model employs the nonparametric technique KNNR and the accurate adjusting 

procedure. In Chapter 5, the current existing models that disaggregate the daily rainfall 

data into hourly are investigated. The disaggregation models are enhanced to account for 

the diurnal cycle. Chapter 6 presents conclusions and summary of the contributions from 

this study followed by the recommendations for future study. 
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CHAPTER II 

NON-PARAMETRIC SIMULATION OF SINGLE SITE SEASONAL 
STREAMFLOWS 

2.1 Introduction 

Stochastic models of hydrological processes have been developed so as to 

reproduce key statistical features of the observed hydrological data such as mean, 

variance-covariance, skewness, seasonality, and long-term dependency (e.g. Salas et al., 

1980; Hipel and McLeod, 1994). The synthetic data obtained from these models are used 

for evaluating alternative designs and operating rules of hydraulic structures, or analyzing 

the effect of extreme hydrologic events such as droughts (e.g. McMahon, 2006). For this 

purpose, a number of parametric models have been suggested in literature such as the 

autoregressive moving average (ARJV1A) model (e.g. Salas et al., 1980; Loucks et al., 

1981), the shifting mean (SM) (Salas and Boes, 1980; Fortin et al., 2004; Sveinsson et al. 

2003), and the fractional gaussian noise (e.g. Mandelbrot and Wallis, 1969). However, 

most parametric models suffer from a number of drawbacks. For example, the marginal 

distribution of hydrologic data is often non-gaussian which requires transforming the 

observed data (e.g. using logarithmic or power transformations) prior to fitting the 
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models. However, modeling in the transformed domain may cause some bias in 

reproducing the basic historical statistics (e.g. standard deviation) although modifications 

have been suggested to correct for such bias (e.g. Fiering and Jackson, 1971; Chebaane et 

al., 1995). Also gamma autoregressive models with gamma marginal distribution have 

been developed to model AR auto-covariance instead of transforming the data 

(Fernandez and Salas 1986, 1990). Still, if the historical marginal distribution is bimodal 

or multimodal, it is difficult to replicate it with parametric models. And if an 

inappropriate transformation function is applied to transform the skewed data, it may lead 

to generation of extremely large values which may not be acceptable from the practical 

standpoint. It is challenging to reproduce skewed data yet avoiding the generation of 

negative values. Furthermore, non-linear relationships, which may be observed in the 

historical data can not be captured by the usual parametric time series models. 

To overcome some of the mentioned drawbacks (in parametric models,) 

nonparametric models have been developed such as resampling techniques 

(bootstrapping.) For example, block bootstrapping has been suggested (Vogel and 

Shallcross, 1996) but because of discontinuity between blocks (each block is resampled 

independently) only historical values are generated. Srinivas and Srinivasan (2005 and 

2006) devised a hybrid model combining a periodic autoregressive model and block 

bootstrapping. Their model was used for generating monthly streamflows of the Beaver 

and Weber rivers in Utah and yield generated values other than the historical ones. 

However, the model has limited variability especially where multi-season data are 

generated because it uses yearly block innovations (Lee and Salas, 2008). On the other 

hand, more elaborate schemes based on k-nearest neighbor resampling (KNNR), has been 
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developed by Lall and Sharma (1996). This resampling scheme has been further 

advanced and applied by many researchers in the field such as Rajagopalan and Lall 

(1999), Yates et al (2003), Prairie et al (2006) and Sharif and Burn (2007). For example, 

Prairie et al (2006) modified the KNNR technique employing local polynomial regression. 

Also, the conditional density estimate is used for nonparametric simulation instead of 

utilizing the resampling scheme [Sharma et al. 1997 and 2002]. Independently, Young 

(1994) applied a similar approach (called multivariate chain model) for generating 

weather variables. Young's method employs the discriminant space obtained from 

multivariate discriminant analysis of the observed data and a set of similar days is chosen 

from discriminant space using a nearest neighbor algorithm. 

One of the major difficulties in simulating seasonal time series has been the 

reproduction of interannual variability. The traditional approach to tackle this problem 

has been using temporal disaggregation (e.g. Valencia and Schaake, 1993; Stedinger et al. 

1985). In this approach the annual series is modeled and generated first, which are then 

disaggregated into seasonal data (e.g. monthly). Also a nonparametric disaggregation 

scheme has been devised by Tarboton et al (1998) employing conditional kernel density 

estimate. These disaggregation models are not efficient since they employ the entire 

relation structure in the lower scale time series. On the other hand, Koutsoyiannis and 

Manetas (1996) suggested a simpler disaggregation scheme where the seasonal and the 

annual series are generated by two separate models. The lower scale (i.e. seasonal) time 

series are regenerated until the summation of the seasonal data is close to the higher scale 

(annual) data, and then the lower scale time series data are readjusted to meet the 

additivity condition. Still, some bias in the lower scale synthetic data is unavoidable 
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resulting from the adjustment. Sharma and O'Neil (2002) developed a nonparametric 

simulation technique that employs the conditional kernel density estimate and the 

summation of the previous p-months as a condition. Furthermore, the upper scale (e.g. 

yearly) streamflow data may involve certain unique features such as long memory 

(O'Connell, 1971) and shifting means (e.g. Salas and Boes, 1980; Sveinsson et al. 2003). 

These features may be incorporated in the generation of seasonal streamflows indirectly 

via temporal disaggregation as suggested above. Including these features directly in the 

generation of seasonal streamflows is not straightforward. Nevertheless, Langousis and 

Koutsoyiannis (2006) developed a seasonal streamflow generation model that is able to 

reproduce long memory by using Fractional Gaussian Noise structure and 

cyclostationarity. 

In this study, some representative nonparametric simulation techniques are further 

reviewed and analyzed. From reviewing their pros and cons new schemes for generating 

seasonal streamflows are developed utilizing KNNR and a Gamma Kernel density 

estimate which are geared to reproducing both seasonal and interannual variability. In 

Section 2, a brief review of key nonparametric simulation techniques is described. The 

mathematical description of the suggested model is illustrated in Section 3, followed by a 

description of the data and the procedure for assessing the models in Section 4. Sections 5 

and 6 show the results and conclusions, respectively. 

2.2 Review of nonparametric simulation models 

Let xVit define seasonal streamflow at time steps z =1,. . . , co (seasons) and 

v=\,...,N (years) where co and N denote the number of seasons (e.g. months) and years, 
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respectively. Furthermore, xt stands for yearly streamflow data where 7=1,...,N. The 

superscripts G or H, e.g. xf or xf , will be used where referring to generated or historical 

data, respectively. Also random variables for yearly and seasonal time series are denoted 

by Xt and Xv T, respectively. Sometimes the lower-scripts are excluded where referring 

to random variables. Three nonparametric simulation alternatives, are described here 

such as ^-nearest neighbor resampling (KNNR) {Lall and Sharma, 1996), local 

polynomial with KNN innovation (LPK) {Prairie, et al., 2006), and nonparametric order 

p simulation with long-term dependence (NPL) {Sharma and O'Neill, 2002). Pros and 

cons of each model are also discussed from the authors' point of view. 

2.2.1 KNNR 

The KNNR method was developed for the generation of yearly and monthly time 

series by Lall and Sharma (1996) and applied to streamflow generation of the Weber 

River in Utah. The mathematical background of this approach relies on A>nearest 

neighbor density estimator that employs the Euclidean distance to the kth nearest data 

point and its volume containing A>data points. KNNR generates a value from the 

historical data according to the closeness of the distance estimated from the current 

feature vector and the historical feature vector. Thus the same values of the historical 

data are obtained but with different combinations and orders. The procedure is 

summarized below using as example the illustration in Figure 2.1. 

Firstly two notations are employed to indicate the yearly scale, namely v refers to 

years in the historical data and v =1,.. .,N while t refers to years in the generated data and 

t=\,...,N° where 1\ is the required length of generation. Then, assume that the initial 
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value x^ is known and set D{ = X(Q (x% may be taken randomly from the historical 

values) and the number of neighbors k, is determined by k - vvV (Lall and Sharma, 

1996). Then: 

(a) We want to generate (resample) xf given the (known) feature vector Dt - x(
(',. 

For example, xfA = 2.39 in Figure 2.1. 

(b) The ^-nearest neighbors of xf_x = 2.39 are those values of x"_{ that have the 

closest Euclidian distances relative to x^_x. For example, for k=3 Figure 2.1 

shows that from all the values x ^ , v =2, ..., N+\ the set 

{x"_x} = {239, 2.36, 2.43} are the three values having distances {0.00, 0.03, 

0.04}, respectively relative to the feature value Z>1=2.39 (note that for 

convenience the distances have been ordered in increasing order of 

magnitude). 

(c) The potential successors of xf_{ are the values of x" that correspond to the k-

nearest neighbors (as referred to in (b) above). For example, Figure 2.1 shows 

that for k=3 the potential successors are {xf} = {2.05, 2.55, 2.38} , which 

correspond to the successive values of {x"_x}. 

(d) From the k potential successors { x„ } one is selected using the weights 

w, =—k , i = l,...,k (2-1) 

I"; 
7=1 
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where wi is the weight that corresponds to the smallest distance. For example, 

for k=3, wx= 1/(1/1 + 1/2 + 1/3)= 6/11=0.545, w2 =3/11 =0.273, and 

w3 =2/11=0.182, where wx =0.545 corresponds to the first value in the set 

{x" }, i.e. x" =2.05. The selection is made at random using the cumulative 

uniform distribution with values 0.545, 0.818, 1.000. For example, if the 

uniform random number drawn is 0.625, then the second value 2.55 is 

selected so that xf =2.55. 

(e) The steps (a) to (d) are repeated until the desired generated sample size is 

obtained. 

The good features of the KNNR approach are: (1) preserving the marginal 

distribution, (2) reproducing linear or nonlinear dependence in the historical data, and (3) 

easy to extend to higher order dependence and multi-dimension. However, there are a 

few significant drawbacks: (1) It generates only historical values since it is a resampling 

technique. This can be a serious drawback because one would expect that synthetic 

streamflows may exceed the observed maximum and also fall below the observed 

minimum value. (2) The inter-annual variability will not be preserved unless an 

appropriate term is included in the feature vector Dt. Up to the present this has not been 

accomplished and the lack of preservation of interannual variability remains a 

shortcoming in using the KNNR method. (3) The variability is deflated where using the 

KNNR technique. The variance deflation has been examined by Buishand and Brandsma 

(2001) using varying k. They suggested that utilizing an appropriate value of £ (around 2 
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to 5) minimize the deflation. The cause of this variance deflation is further explored 

below. 

Young (1994) argued that data points lying at or near the edges of the cloud of 

points (refer to Figure 2.1) would not be selected as those located well within the clouds 

of points. Thus isolated points such as that shown in Figure 2.1 will be undersampled 

(the clouds of points mean those in the range of high frequency.) KNNR is dissimilar to 

the bootstrapping method regarding this phenomenon. Each historical data points have 

equal probability to be selected. However, the resampling data in KNNR procedure have 

different chances to be selected especially when the points are near the edges of the 

clouds. In Figure 2.1, two isolated points are illustrated. The isolated points are more 

likely to be extreme values. If the historical data have the tendency to generate less 

probability on near extreme values, then the variance of the generated data will be 

lessened. To investigate further, the histogram of the number of times that each data 

points are selected is drawn for each month at Figure 2-B.l from the KNNR simulation of 

Lees Ferry site at Colorado River. One hundred data sets are simulated with the same 

data length as historical (98 years). Since the 100 data sets are simulated, each data points 

should be generated around 100 times. However, some values are generated only 20 to 40 

times. The selected times of each data points versus the order of data points are displayed 

in Figure 2.2(left) for the KNNR simulation. Y-axis presents the increasing order of the 

data points. The order of the data points which are less than 80 times more likely to be 

low or high in Figure 2.2. The data points in low order with less than 80 times has 5 

points and the ones in high order 10 points. Unlike, bootstrapping simulation, the uniform 

selection of the historical data, does not show this behavior. In the right side of Figure 
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2.2, uniform distribution of order according to times sampled is shown for bootstrapping 

method. It is obvious that the undersampling near extreme values will induce the 

underestimation or deflation of variance. Furthermore, one might assume that this 

predisposition will be raised when the data are highly correlated. If the data are serially 

independent, then the KNNR procedure will not produce this bias. 

To examine the relation between the variance deflation and serial correlation, a 

brief experiment has been performed over the KNNR model using the Beaver River 

monthly streamfiow at Utah as in Lall and Sharma (1996). Here, ^30-iV4^ +4) is 

employed as suggested by Fukunaga (1990) and d entails selected lag which is one in this 

case. From one hundred set of the synthetic data with the same record length, the average 

value of the relative variance bias (described below) and the centered lag-1 correlation is 

illustrated in Figure 2.3. The purpose of this experiment is to examine the effect of serial 

correlation onto the variance of the generated data from KNNR. AK30 might be a little 

awkward for KNNR. However, this setup will more clearly visualize the effect of the 

serial correlation that might be hidden. The relative bias of variance at month x (rv r) is 

denoted as 

a](X") 

where crT (X) is the variance of X for month x. If the value is less than zero, the variance 

from KNNR model of(XG)is less than a2
T(XH) which implies underestimation of the 

variance with the KNNR model. This statistic is the measurement of the deflation scaled 

with the historical variance. In Figure 2.3, it reveals that the higher lag-1 correlation, the 
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lower the relative variance bias. And r is negative for all months. It represents that the 

monthly variance of the synthetic data from the KNNR model is underestimated. And, it 

is obvious that the bias is negatively related to lag-1 correlation from Figure 2.3, saying 

that the lag-1 correlation each month leads underestimation of the variance from KNNR 

model. The higher serial correlation leads the higher deflation of the variance. If k is 

small (around 2 or 5), the effect of serial correlation is diminished. However, there is still 

some deflation in case of small k, when the data are serially correlated. This deflation 

from KNNR is unavoidable since the applied data for simulation are always significantly 

correlated. If the data are serially independent, simply bootstrapping method can be 

applied, alternatively. Later, this bias will be compensated through applying the 

smoothing kernel. 

2.2.2 Local Regression with KNN for innovation (LRK) 

To improve the KNNR model Prairie et al. (2006) adopted a nonlinear local 

polynomial regression with the innovation sampled from KNNR and applied it to 

monthly streamflow generation for the Colorado River at Lees Ferry. The LRK model is 

given by 

X,=g(Xt_,) + e, (2-3) 

where g(Xt_x) is a local polynomial and etis the residual. For more detail on a local 

polynomial fit, readers are referred to Simonoff (1996). After fitting the local polynomial 

the residuals are estimated as et = Xt - g{Xt_x), which then are employed for generation 

using KNNR. 
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The good features of LRK includes: (1) values other than historical are simulated, 

(2) any arbitrary relationship (linear or nonlinear) that is present in the observed data is 

captured, and (3) heteroscedasticity can be reproduced (Lee and Salas, 2006). On the 

other hand the shortcomings of the LRK approach are: (1) Negative values may be 

generated because of the error term, i.e. if et < 0 and g(XtA) <\et\ the generated value 

will be negative. For highly skewed data, this may occur frequently. (2) The variation 

generated from this model is limited to a directional pathway as depicted in Figure 2.4. 

In the figure, the relationship between the generated flows for months 3 and 4 is shown 

for the Colorado River at Lees Ferry using LRK (the length of the generated data was the 

same as the length of the historical, i.e. 90 years). This is a natural behavior for any 

hybrid model such as local regression and KNNR innovation, or PAR(l) and KNNR 

innovation since the innovation resampling arises from a limited number of data points. 

(3) It does not preserve the inter-annual variability. The variance of the generated annual 

series will be degraded and the correlation of the yearly series will not be preserved. 

2.2.3 NP and NPL 

Utilizing the conditional kernel density estimate, a nonparametric alternative to 

the lag-p autoregressive (NP) model has been developed by Sharma et al.(1997). The 

conditional kernel density with normal kernel on the random variables Jf( and Xt_x, the 

corresponding values xt and xt_x is denoted as 

fx,|x,_, (*, I */-i) = X n a 2^i /2 wt e xP (2-4) 
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where xl,....,xn are observed data, Sn - Cov( XtXt_x ), Su - S22 =a2(X) , and 

S'= Su - SX\S22. In addition, 

bt =x, +(xt.i-xi_l)Sn/Sl2 , (2-5) 

and 

w - exp(-(xf_1-x,_1)2/2A2^22/ 
w, - ^- ^- , (2-0) 

Xexp(- (x M -x H ) 2 /21 2
l S 2 2 ) 

7=1 

and X is a smoothing parameter (described below in some detail). 

The generation procedure based on Eq.(2-4) is as follows: 

(a) Two alternatives for initializing procedure are suggested as 

al. to set X0 equal to mean and remove warm-up period 

a2. to select one of the historical values with equal probability for x0 and 

generate from N(x0,l
2Su) 

(b) From the given value Xt_x = xM , select one of the observation xi according to the 

weight wi 

(c) Simulate Xt from normal distribution TV(bt, 2(5" )1/2). 

(d) Repeat the step (b) to (c) until the desired length of data are simulated. 
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The variance for this model denoted by cr2(X)' is (Sharma et al., 1998) 

o-2 (X)' = S, j (1 + X2) = a1 (X) + X2cr2 (X) (2-7) 

This indicates that the variance of the generated series will be inflated (or 

overestimated) as much as X2<j2{X). The estimation of the smoothing parameter X is 

crucial to estimating the density accurately. One of the most common approaches for 

estimating X is by Least Square Cross Validation (LSCV), to minimize the Integrated 

Square Error (ISE) and simplified as 

LSCV(X) = /?(/(*)) - - X /-/ (*) (2-8) 
» /=i 

where R(g(x)) = \g(x) dx, f(x) and /_,(*) denote a marginal kernel density estimate of 

x and the density estimate excluding the t observed data point, respectively. 

Furthermore, Sharma and O'Neil (2002) developed a nonparametric alternative 

that incorporates the interannual variability (NPL) for monthly simulation. The model 

denoted as NPL is based on conditioning the variable Xv r on Xv T_x and the summation 

12 

of the previous 12 months, i.e. fx.t\xvr.^vS
xv,r I xv,r^zv,r) w n e r e Zvj = Zi^.w • N o t e 

that referring to the subscripts of Xv T_j in the summation, if T - j < 0 then v must be 

changed by v - 1 and r-j by 12- | r -y ' | . The merits of NPL are: (a) preserves the 

marginal distribution, (b) reproduces the linear or nonlinear relation embedded in the 

observed data, and (c) preserves the interannual variability. Nevertheless, there are a few 

drawbacks such as: (i) The variance of the generated series will be overestimated as 
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mentioned above. Overestimation of the variance might lead to the exaggeration of the 

extreme events. This will be corroborated in the simulation results later, (ii) Since it is a 

normal kernel based model, negative values may be generated unless a modification is 

conducted. In Sharma et al. (2002), variable kernel is employed to prevent generating 

negative values. The idea behind is to adjust the smoothing parameter A such that the 

probability of generating negative values is not greater than a certain threshold (e.g. 6 

percent in the referred paper). However, the variable kernel will lead to larger higher 

bias on density estimate (Simonoff 1996). This will be elucidated more clearly below in 

a subsequent section. 

2.3 Proposed methods 

2.3.1 KNNR with Gamma KDE (KGK) 

Since KNNR is a resampling algorithm with discrete conditional density estimate 

it produces generated values that are identical to the historical values (except in different 

order). Furthermore, the review of the KNNR model in Section 2.1 above suggests that 

the variance of the generated data becomes underestimated. To surmount this limitation, a 

perturbation of the value xt obtained from KNNR is suggested. As presented in Figure 2.1, 

the selected historical value (x( =2.55) from KNNR is treated as the center of a kernel in 

the kernel density estimate. And a value is generated (perturbed) from a Kernel density 

according to the smoothing principle of KDE. This is related to the generation from 

normal distribution with bj and X2 5" for mean and variance in NP method (explained in 

Section 2.3). The main difference between NP and the suggested approach is that NP 

model generates data with conditional nonparametric distribution while the proposed 
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approach here uses the KNNR to find xt (comparable to b( in NP) and perturbs the value 

Xj with a selected kernel (e.g. gamma) instead generation from N(bt., A(S')V2). The 

perturbation process is performed independently on the previous condition (X,_,). The 

independent perturbation might weaken the relation between X M and Xt. But if KNNR 

reflects the relation appropriately, the overall bias might not be significant because 

perturbation is performed with centering the selected value (x,). The underestimation of 

the relation is investigated thoroughly in result section. Furthermore, the variance of the 

generated value is increased from this perturbation procedure since it is more likely to 

add randomness. The source of the variance comes from two parts such as the selection 

of x. with KNNR and the perturbation into the selected value. However, this will not be 

problematic since we review that the KNNR process underestimates the variance. The 

underestimation will be compensated with the additional variance from the perturbation. 

More detail will be discussed about this in the smoothing parameter estimation section 

later. 

The properties of Gamma Kernel Density Estimator 

Since the perturbation process is based on the Kernel density estimate, the 

suggested model requires the selection of a Kernel and the smoothing parameter. 

Generally, a Gaussian kernel is employed for kernel density estimation in Nonparametric 

modeling literature (Sharma et al., 1997). The kernel, however, is unbounded. This is 

shortcoming for generating hydrologic data that are positively skewed and bounded by 

zero. If the data is highly skewed, the density estimate using a normal kernel is 

significantly biased and the cumulative probability below zero may be significant. This 
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indicates that the significant amount of generated data will be negative that is not 

physically suitable for hydrologic data. To avoid the bias and bound, many different 

approaches are suggested such as boundary kernels, varying the bandwidth, and 

transformation-based estimation (Simonoff, 1996). Furthermore, the other types of 

kernels are developed for the skewed and bounded data such as exponential kernel 

(Mugdadi, 2004), beta kernel (Chen 1999), and gamma kernel (Chen 2000). The 

exponential kernel is not smoothed even with high smoothing parameter because of the 

discontinuity of the exponential distribution nature in the estimate. This leads the 

unsmoothness in the point of each historical value. The beta kernel is bounded in both 

sides. Typically, hydrological data such as streamflow is bounded at zero and unbounded 

for x > 0. Therefore, the gamma kernel is most desirable for hydrological data. 

Chen (2000) proposed the gamma kernel as 

where 

.xlh-llh 
K"MJ,(f)=h"Mnx/h+i) (2"10) 

is a gamma kernel with shape parameter a = x I h +1 and scale parameter /? = h , Xt is 

the random sample of size N, h is the bandwidth of the gamma kernel, and f(x) is the 

density estimator evaluated at x. Chen (2000) showed that the gamma kernel density 

estimate achieves the optimal rate of convergence for the mean integrated squared error, 
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and the variance of the gamma kernel estimator gets smaller as x increases. The mean and 

variance of the gamma kernel above are x + h and xh + h2, respectively, and x is the 

mode (Chen, 2000). If one uses Chen's gamma kernel for non-parametric data generation 

as suggested above, it will produce some bias in the mean although it will avoid 

generating negative values. 

In the generation procedure proposed in this paper, a point say Xt - x obtained 

from the KNNR method will be perturbed with the gamma kernel. If one uses Chen's 

gamma kernel the mean will be x + h , so the mean of the generated data will be 

overestimated as much as h. Instead, another type of gamma kernel is suggested here to 

avoid this bias as: 

where 

, l 2 / / i 2 - l -t/(h2/x) 

r 2 / /> 2 ( , 2 / r V / = 1 2772 i T~ V^'l^J 
x/h'h/x (h2/x)x/h T(x2/h2) 

where in this case Ka p (t) is the gamma kernel with shape parameter a = x21 h2 and scale 

parameter /? = h21' x . The mean and variance of the gamma kernel are /u(t) = x , 

a2 {t) = h2, respectively. Thus the gamma kernel above is formatted so that the generated 

data from the suggested approach will preserve the mean. And also the variance for this 

gamma kernel is independent on x so that the magnitude of the variance from this kernel 
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is simple to manipulate. Next we verify properties of the gamma kernel density estimator 

such as the bias and variance. 

The expected value of f(x) of (11) may be expressed as 

N <=i (2-13) N 

Ek>/h>y/x(0}= CKx>lh>ytx(y)f(y)dy =E{f(Z)} 

3- I /„ 7-2 where Z is Gamma[x /h,h I x\ with mean ju(Z) = x and variance a (Z) = h 

To find E{f(Z)} we will use the Taylor series expansion up to the second order 

as in Chen (2000), i.e. 

£ { / ( Z ) } « / ( * ) • 
df(Z) 

dZ 
E[Z -a] + 

dZf(Z) 

Z=a dZ' 
E[Z-af 

Z=a 

1 r-.., s 2 / 7 \ _ / v „ \ , 1 r n / x 1.2 = ftx) + -f'(x)<r\Z) = f(x) + -f\x)h 

(2-14) 

where a = ju(Z) = x . Therefore, 

W)}-/w4*Vw (2-15) 

And the bias is 

Bias[f(x)] = £ { / (* )} - / ( * ) * ^/z2 / " (x ) (2-16) 
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In addition, the variance of the density estimator is derived in Appendix A. It gives 

Var{f(x)} 
2Nh4n 

m 

NY2(K2) 

2\~\^~2K2+\ 

if x / h —> GO 

f{x) if xlh->K 

(2-17) 

For comparison the bias and variance of the density estimator from Chen's 

Gamma Kernel is (Chen, 2000) 

Biasm^--ECm}--m^nx)^riX) (2-18) 

Var{f{x)}: 

1 -1/2 
/ ( * ) 

VK+inhY\K + \) 
/ ( * ) 

if x / h -> co 

if x/h-> K 

(2-19) 

Comparing Eqs.(2-16) and (2-18) one may see that the bias of the kernel density 

estimator from Chen (2000) has the unpleasant term / ' (x). In addition, the second term 

of the bias in Eq.( 2-18) increases with x as opposed to that in Eq.( 2-16), which does not 

depend on x. Thus the suggested Gamma Kernel of Eq.( 2-12) leads to smaller bias than 

the Gamma Kernel by Chen (2000). On the other hand, the variance of the density 

estimator by Chen (2000) has a better feature when xlh goes to infinity, i.e. the variance 

decreases, but this does not occur when x/hgoes to zero. In conclusion, the results of 

the bias and variance of the two gamma kernels promulgate that the suggested gamma 

kernel density estimate is comparable to the kernel of Chen (2000). The applicability of 
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the suggested gamma kernel density estimate has been verified by data generation. Even 

though the estimation of the density as such has nothing to do with generation, it is 

important to assess whether the suggested gamma kernel density estimate is acceptable to 

apply. 

Selection of the bandwidth h for the gamma kernel and the number of neighbors k for 

KNNR 

The variability of the suggested model will come from two sources, KNNR and 

gamma Kernel density. Therefore, the number k is reduced to ViV/2 instead of 

-JN suggested by Lall and Sharma (1996), since 20 < N < 100 is in the range between 2 

to 5. This also effects the lagged correlation since the smaller number of A: results more 

similar relation to historical data. The lower variability from the smaller k will be 

compensated through the Gamma kernel perturbation. 

The kernel smoothing (perturbation process) yields an extra variance in the 

simulated data. The suggested generation method KGK is made up of two components: 

(1) a generated variable say X' = x obtained from KNNR and (2) a perturbation gamma 

variable say X" = x" such that the mean is equal to x and the standard deviation is 

equal to the smoothing parameter h. Consequently the variance of the generated variable 

X = X' + X" is 

Var(X) = Var(X') + Var(X") = cr2(X') + h2 (2-20) 

where <j2(X') refers to the variance obtained from KNNR. ( a2 (KNNR) ) is not 

explicitly known, it reveals that the variance of the resampled data from KNNR tends to 
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be underestimated as described in KNNR review section. As indicated in the review 

section above the variance obtained from KNNR is smaller than the historical variance 

(i.e. KNNR underestimates the variance). But as suggested in the foregoing analysis such 

underestimation will be compensated by the variance induced by the gamma random term. 

Thus, the smoothing parameter h (bandwidth) has two missions: (1) to smooth out the 

historical values so that the generated data values are placed over the physical range of 

the hydrologic data and (2) enhance the variance of the generated data. 

A possible approach for estimating the bandwidth is the Least Square Cross-

Validation (LSCV) as in Chen (2000). It is approximate estimation procedure and 

requires a fair amount of computation. Instead, an heuristic estimation approach is 

suggested here as 

» = ^ = ^ (2-21) 
k 4NI2 

Note that as N -> oo , h —» 0 . This is basic characteristics of the bandwidth. Since the 

number of data increases as infinity implying that the population of the data is known, the 

variance burdened into smoothing parameter should be diminished. Also note that the 

smoothing parameter for normal distribution with normal kernel in the context of 

minimizing the approximate mean integrated square error is h = \.06<j(X)N~l 5 

(Silverman, 1986). In this case for a data range 20 < TV < 100 the bandwidth h is in the 

range 0.58cr(X) and 0.42cr(X). Since this is for the normal distribution with normal 

kernel which is one of the most smoothed distributions and season streamflow data tends 

to be skewed, the smoothing parameter for gamma kernel should be less than this 
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magnitude. Eq.(2-21) is in the range between 0.45cr(X) and 0.2cr(X) for 

20 < N < 100 reaching this argument. 

2.3.2 Description of the new models 

KGK model is to model the dependency structure with KNNR analogous to 

f(Xv T | Xv X_A) and smoothing with Gamma Kernel perturbation. The KGK based on 

only the previous month quantity Xv T_x cannot reproduce satisfactorily the interannual 

variability. To enhance the model capability to reproduce long-term variability, an 

additional term should be included as a conditional variable, i.e. f(xVT \ xVT_v
x¥) where 

¥ is the addition variable to consider the interannual variability. For this purpose, two 

schemes are suggested here: (1) employing the aggregate flow variable of the previous p 

months analogous to the NPL model and (2) utilizing the yearly value generated from 

separate yearly model to specify the condition of a certain year for monthly time scale 

generation. The specific description on each model is followed. 

Gamma KDE on KNNR with the aggregate variable (KGKA) 

The conditional term for interannual variability is the moving aggregate flow 

variable 

a 

7=1 

As noted before in Eq.(2-22) if r - j < 0 , then xvt_J becomes x v l a>_\T_.-\ • The term 

z represents the sum of the previous co seasons. Since we will find our generated 

27 



value xv T by conditioning on xv T_x and zv T , it is necessary to determine the weighted 

Euclidean distance between the generated and historical x's of the previous time r - 1 

and between the generated and historical sums z's of the previous co seasons. Thus the 

weighted distance denoted by r((v, r ) is given by 

^(v.r) = k ( * H ) [ * f - i . a , - A j 2 + w , ( ^ ) [ 4 - < J 2 } 1 / 2 f o r r = l v>\, t>\ (2-23a) 

and 

r K r > T ) ={ W r _ 1 (x / / ) [x^ 1 -x v
/ ; T _ 1 ] 2

+ W T (z / / ) [z5-z^] 2 } 1 / 2 f o r r > l , v > 1 (2-23b) 

Note that the calculations of r begins at t=2 and r = 1. The scaling weights 

^ ^ ( x ^ ) and wT(zH) are given by the inverse of the variance of x^r_x and z^T , 

respectively. Also Mahalanobis distance may be employed as more elaborate work to 

relation, which is suggested by Yakowitz and Karlsson (1987) for best prediction in least 

square sense. However, it encumbers on computation and no significant difference is 

found from the test performed in this study. The benefits from including the term zv t 

are: (a) to take into account the dependency between the current's month's flow and the 

previous year flow, i.e. the summation of the previous co seasons, and (b) self-

constructed on yearly time scale meaning that it does not require any yearly time series 

models and values. 

The procedure for simulating the synthetic data is: 
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(1) Estimate the smoothing parameters k and h following the method suggested 

above. 

(2) The initial value xfx is randomly selected from the historical data set x"x where 

v =1,.. .,N Each historical data has an equal chance to be selected. 

(3) General KNN Resampling process in Chapter 3.2 (a)-(d) is employed for data 

generation of the rest months of the first year. From the second year, the 

following processes are employed such that xt T where t=2,...,Nand x=l,...,co. 

(4) At first, the aggregate variable of the generated data are obtained with 

CO 

z?r
 =^jX?r-j • The k-nearest neighbors are obtained from the estimated 

distances employing Eq.(2-23 a and b). From the same selection procedure in 

KNNR, the successor of the selected one among k values is taken, say xt T. This 

step is repeated until the required generation sample is filled. 

(5) Perturb with Gamma Kernel Density Estimate meaning that generate from the 

gamma distribution xfr = Gam[x* T I h2 ,h2 I x*tT ] . 

Gamma KDE on KNNR with the pilot variable (KGKP) 

It is not easy task to generate seasonal streamflow data with long-term (yearly) 

variability such as Hurst Phenomenon, Shifting-mean, and climate change as well as 

common serially correlated structure. Here, we suggest a seasonal simulation model that 

from modeling or obtaining yearly series separately, the data obtained from a simulation 
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model or other sources is used as the pilot variable. It presents that the known yearly 

value will be used as conditional variable which adds to the feature vector of the KNNR 

model. Yearly data with the unique features mentioned above can be generated from 

yearly model [e.g. FGN (Hurst Phenomenon), Shifting Mean Level (Shifting-Mean 

Level)], and denoted asx( '. For example, if xt' is lower than normal implying drought 

condition, this will lead the tendency that the whole monthly values of the current year be 

small. The feature vector of KNNR algorithm is described as 

rt(v,T) V 4 - i -<r-i)2 +w2(V-*?)2]1/2 (2-24) 

The merits of this scheme is that (1) any long-term variability can be adopted into the 

synthetic seasonal data, (2) no complex unnecessary structure is included, and (3) it is 

very straightforward to apply the long-term variability into seasonal system structure. 

This model is not a disaggregation model in that the pre-obtained yearly values are only 

employed for leading the status of the current year. As an alternative, El Nino/Southern 

Oscillation (ENSO) index can be employed to define the status of the current year. 

The process of KGKP model is followed as: 

(1) Estimate the smoothing parameters k and h. 

(2) Fit a model for yearly data for the pilot variable x / . The same yearly data or 

exogenous variable might be employed for this variable. And generate annual data 

for the pilot variable xt' where t= 1,... ,NG and NG is the required generation length. 
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(3) The initial value xfx is obtained with the same procedure as mentioned in the 

previous KGKA model (random selection from the historical data of the first 

month). The other months and years use the following procedure. 

(4) The current yearly state xt' and the previous month state xfr_x are compared with 

the historical data and measures the distance with the Eq.(2-24). Obtain the 

resampled value from the k-nearest neighbors and the weighted probability. The 

resampled value is assigned intox*2. With this value and the selected bandwidth 

from Eq.(2-21), the final generated value will be obtained with Gamma Kernel 

perturbation. These selection procedures are exactly the same as the KNNR 

model. 

(5) Perturb with Gamma Kernel Density Estimate meaning that generate from the 

gamma distribution x^T = Gam[xtT Ih ,h lx*tT ]. 

The steps (4)-(5) is repeated until the required length of the data generation is met. 

2.4 Data Description and Model Assessment 

To assess the suggested models, two sets of monthly streamflow data are applied, 

the Colorado River at Lee Ferry (site 20 of the Colorado River System) and the Niger 

River at Koulikoro. The historical data of the Colorado River has been naturalized and 

partially extended for the period 1906-2003 (Lee and Salas, 2006). The historical 

streamflow data of the Niger River at Koulikoro has been used for the period 1907-1979 

to avoid the effect of reservoir regulation after 1979. The tested models for site 20 in 
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CRS are (1) NPL, (2) Gamma KDE on KNNR with the aggregate variable (KGKA), and 

(3)Gamma KDE on KNNR with the pilot variable generated from Shifting mean level 

model (KGKP with SML) and for Niger River flow data at Koulikoro are (1) NPL, 

(2)Gamma KDE on KNNR with the aggregate variable (KGKA), and (3) Gamma KDE 

on KNNR with the pilot variable generated from Shifting mean level model (KGKP 

with SML). 

To test the models, one hundred sets of synthetic monthly streamflow data of the 

same length as the historical data were generated from each model. A number of basic 

statistics are calculated from each which are displayed using boxplots. For example, 

Figure 2.5 shows the basic statistics such as the mean, standard deviation, skewness, lag-

1 serial correlation, maximum, and minimum constructed from the generated data 

obtained from a given model. The end line of the box implies the 25 and 75 percent 

quantiles while the cross lines above the box on the whisker correspond to the 90 percent 

quantile and the maximum, while the cross lines below the box on the whisker represents 

the ten percent quantile and the minimum. And the 'x' mark and the segment line 

connecting the x mark represent the historical statistics. The comparison of boxplot for 

the referred statistics has been done for both monthly and annual time scales. The kernel 

density estimate of the generated data is also compared to that of the historical data. 

In addition, various drought and surplus statistics as well as storage capacity have 

been estimated and compared on historical and generated yearly data from the selected 

models above such as maximum drought length, maximum drought amount, maximum 

surplus length, maximum drought amount, storage capacity. Maximum drought length is 

defined as longest length of the deficit which is shortage from the water demand during 
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the year. The demand is denoted as the mean value multiplied by threshold level [0.6, 0.7, 

0.8, 0.9, and 1.0]. Maximum amount length is the maximum amount of the deficit. 

Surplus is excessive water over the demand. The definition on surplus is the similar to 

drought. The storage capacity is the extent to which streamflows can be stored for later 

release. The sequent peak algorithm is employed for estimation of this statistic (Loucks et 

al., 1981). 

2.5 Evaluation and Comparison of the methods 

2.5.1 Colorado River Streamflow at Lees Ferry 

The time series of yearly streamflow for Colorado River at Lees Ferry is 

illustrated in Figure 2-B.3. Notice that the of the fist 20 years has higher flows and 

significant drought period at the last 5 years which is one of the worst droughts in 

Colorado River. The key monthly statistics of historical and generated data from three 

selected model is shown in Figure 2.5-Figure 2.7. The behavior of the generated data 

from KGKA and KGKP are very similar to each other (Figure 2.5 and Figure 2.6). Every 

key statistics of both models are well preserved except slight underestimation in lag-1 

correlation through all months. The underestimation of lag-1 correlation comes from the 

weakness represented by KNNR algorithm. This behavior is observed also in pure KNNR 

model (Lall and Sharma, 1996). For the statistics from NPL model, the standard deviation 

and maximum are overestimated and underestimation for skewness and minimum (Figure 

2.7). These deviations from the NPL model imply that the model does not appropriately 

reproduce the historical distribution. Furthermore, the inflation of the standard deviation 

by NPL model is expected as Eq.(2-7). In KGKA and KGKP model, however, the 
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deflation of the variance by KNNR model is compensated by using the Gamma KDE 

(Figure 2.5 and Figure 2.6). The inflation of the NPL model effects the overestimation of 

maximum and the underestimation of minimum as shown in Figure 2.7. Furthermore, the 

underestimation of the skewness (Figure 2.7) is induced from the nature of the Gaussian 

kernel especially for the highly skewed months such as October, February, and 

September. The KDE based on symmetric kernel has some difficulty to preserve the 

high-skewness. From Figure 2-B.4 to Figure 2-B.6, the scatter plots of the generated and 

historical monthly data to show how well the generated data will reproduce the relation. 

The generated data of KGKA and KGKP relatively well reproduce the overall local 

relation of the historical data while NPL eliminates the local relation of the historical data. 

In yearly time-scale statistics as illustrated at Figure 2.8, mean and lag-1 

correlation are well preserved through all models. Inter-annual variability in KGKA 

represented as standard deviation is underestimated while KGKP well preserves this 

statistics. This notices that the aggregate variable is not good enough to deliver the long-

term variability combining KGK model. This variable can deliver more sophisticated 

inter-annual structure into the downscale generation such as shifting mean process. 

Conversely, the NPL model overestimates the yearly standard deviation propagated from 

the overestimation of the monthly variability (Figure 2.7). In case of minimum, the NPL 

is relatively underestimated through whole months while maximum is overestimated. 

Since NPL model employs normal kernel in generation which is symmetric distribution. 

Some negative values might be generated. To avoid negative values, Sharma and O'Neill. 

(2002) suggests employing variable kernel. However this artificial procedure will leads to 

the bias (Simonoff, 1996). The drought, surplus, and reservoir statistics of the yearly data 
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with the threshold presented as the historical yearly mean in Figure 2.9 are comparable 

through whole models. Those statistics with different thresholds behaves similarly. No 

significant difference between models can be observed. More detailed figures are 

presented from Figure 2-B.7 to Figure 2-B.21. The storage capacities of the monthly data 

with different thresholds (multiplying the basic threshold as the historical mean by the 

threshold levels, 0.3-1.0) are estimated (Figure 2-B.22, Figure 2-B.23, and Figure 2-B.24 

for KGKA, KGKP, and NPL respectively). The preservation of the statistics is 

comparable to all the models. The storage capacities are underestimated through the 

range of the threshold levels of 0.3-0.6 and overestimated through 0.7-1.0 in KGKA and 

KGKP models while the statistics are overestimated through all the range in NPL model. 

2.5.2 Niger River at Koulikoro 

The time series of the yearly data at Niger River station is shown at Figure 2.10 

(time series plot with bar at Figure 2-B.25) with the one example of the generated set 

from KGKP model. The apparent particular pattern of shifting means is revealed from the 

figure. The basic statistics of the monthly and yearly similarly behaves at the results of 

Colorado River Site shown at Figure 2-B.26, Figure 2-B.27, Figure 2-B.28, and Figure 2-

B.29. Here, Figure 2.11 shows the KDE of the generated time series of NPL (left) and 

KGKP (right) and for KGKA at Figure 2-B.30 for months 1, 5, and 9. The densities of 

the main body (near mode) of the generated distribution from the NPL are 

underestimated while overestimated in the outside of the main body. The distributional 

behavior illustrated in Figure 2.11 reflects the inflation of the variation through NPL 

model. Furthermore, to scrutinize the local and overall relations embedded on the 

historical data, scatter-plots for the month 8 and month 9 are drawn in Figure 2.12 for 
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KGKP (upper) and for NPL (bottom). The scatter plot of KGKA is no difference to the 

one of KGKP so that it is not shown in this paper. From these figures, the overall relation 

between month 8 and month 9 are well preserved through the models. The localized non-

linearity is better preserved in KGKP model (Figure 2.12, upper) while the NPL model 

blurs the local non-linearity (Figure 2.12, bottom). The drought, surplus, and reservoir 

statistics with the historical yearly mean as the threshold are shown in Figure 2.13. More 

detailed descriptions are shown in Table 2-1. The KGKP model well preserves the 

drought, surplus, and storage statistics while KGKA and NPL model underestimate those 

statistics (Figure 2.13) especially drought and surplus length and drought amount. The 

drought, surplus, and storage statistics of yearly data with different threshold (multiplying 

threshold levels,0.6-1.0, by the historical mean) are estimated and shown at the Table 2-1 

and Figure 2.14 (only maximum surplus length is shown, the other plots are referred to 

from Figure 2-B.31 to Figure 2-B.34). In Table 2-1, the results seem to preserve the 

estimated statistics because of the high standard deviation. But, the boxplot figures of 

these statistics show differently such that as an example in Figure 2.14, the maximum 

surplus length is underestimated at NPL model (Figure 2.14, bottom) and KGKA model 

(Figure 2-B.37) while KGKP model preserves the statistics fairly well through all 

different threshold levels (Figure 2.14, upper). The same behavior can be seen for 

maximum surplus amount and maximum drought length. For storage capacity and 

maximum drought amount, all the applied models fairly preserve those statistics. Overall, 

the surplus and drought statistics of different thresholds is well reproduced in KGKP 

model whereas some bias in NPL and KGKA model except storage capacity and 

maximum drought amount. The ratios of the storage capacity (the statistics of the 
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monthly generated data divided by the historical one) with different threshold levels are 

estimated from 0.3 to 1.0 and are illustrated in Figure 2.15 for KGKP and NPL model. 

The estimated real values are shown at Figure 2-B.44, Figure 2-B.45, and Figure 2-B.46 

for KGKA, KGKP, and NPL respectively. The storage capacities of the historical data are 

well reproduced in the generated data of the KGKP model through all range 0.3-1.0 while 

the ones of the NPL model are mostly overestimated through all range except the last part 

0.9-1.0. The preservation of these statistics is difficult to reproduce. The KGKP model, 

however, well reproduces these statistics through all different thresholds. Through the 

test statistics, it can be concluded that the employment of the pilot variable with proper 

fitting leads to better preservation of the long-term variability. More clear evidence can 

be observed in Figure 2.10. It is observable that the historical time series shows the 

sudden shifting mean process. One set of the yearly generated data obtaining from the 

summation of the generated monthly data into yearly is also illustrated in Figure 2.10. It 

is shown that the KGKP model reproduces the particular behavior of the historical long-

term variability. To model yearly data with shifting mean and to employ it as the pilot 

variable is very efficient to reproduce the particular long-term process. 

2.6 Summary and Conclusions 

Synthetic data in hydrology has performed important roles for planning reservoir 

capacity, drought analysis, etc. Enhancing the model capability from parametric ARMA 

type, nonparametric models has been employed for its simplicity and for avoiding the 

bias through transformation procedure. In this study, a generation model employing 

KNNR algorithm is proposed to overcome the drawbacks of the KNNR such as 
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generating new feasible values other than observations and reproducing the interannual 

variability embedded in historical data. For the first part of enhancement (generating new 

values), Gamma KDE is proposed. Gamma KDE has been proposed by Chen (2000) but 

it has not been applied or tested in hydrologic fields. Different setup for Gamma kernel 

parameterization is proposed to preserve the historical mean and standard deviation better. 

And the second part of development (preserving the annual variability) is achieved 

through employing the aggregate variable or the pilot variable. Instead of complicated 

smoothing parameter estimation, heuristic estimation method is proposed employing the 

monthly variance and k nearest neighbor. The aggregate variable has been suggested by 

Sharma and O'Neil (2002) applying conditional kernel density with normal kernel while 

the pilot variable is suggested from this paper to lead the current yearly state. The pilot 

variable can be either the model of the same station as the monthly data or the exogenous 

variable. Here, only the yearly model of the same station is tested. KGKA (employing 

aggregate variable) and KGKP (employing pilot variable) model has been compared with 

the NPL model (Sharma and O'Neill, 2002) since it has one of the most recently 

developed nonparametric techniques with the reproduction of the inter-annual variability. 

Various streamflow data in different rivers are applied and tested. Here, we show only 

two stations such as Lees Ferry station at Colorado River and Koulikoro station at Niger 

River. 

Various tests are performed with the generated data such as key statistics of 

yearly and seasonal time scale and drought, surplus, and storage statistics for monthly 

and annual time scale with different threshold levels. Some conclusions are derived from 

the results. KGKA and KGKP has superior to preserve the skewness and the variance of 
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the monthly time scale but a slight underestimation of the month-to-month correlation is 

unavoidable while NPL model has better performance on the lag-1 correlation with 

overestimation of the variance and underestimation of the skewness. The gaussian kernel 

has the limitation to preserve skewed distribution of the historical data, especially highly 

skewed data. The KGKP preserves the yearly variance while KGKA underestimate this 

statistics and NPL model overestimate the variance propagated from the overestimation 

of the monthly data. In drought statistics, KGKP model has a little bit better performance 

in case of Niger River data. But the results are not consistent in Colorado River case. 

Furthermore, it is shown that the particular long-term pattern (e.g. shifting means) can be 

reproduced through employing pilot variable in yearly time scale in KGKP model while 

the aggregate variable cannot reproduce the pattern. 

Overall, the suggested model such as KGKP and KGKA shows the reliable results 

to generate a univariate seasonal time series. Furthermore, the model procedure is very 

simple to apply such that the monthly data is obtained from KNNR including the 

aggregate variable or the pilot variable and then the data is perturbed through the Gamma 

distribution. Employing exogenous variable with the KGKP model might be a good topic 

for future research. 
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Table 2.1 Drought, surplus, and storage statistics of the historical and generated yearly 
data (mean+stdev) for Niger River at Koulikoro 

Max Dr. 
Leng. 

Max 
Sur. 

Leng. 

Max Dr. 
Amt. 

Max 
Sur. 
Amt. 

Stor. 
Cap. 

T.L 
Hist 

KGKA 

KGKP 

NPL 
Hist 

KGKA 

KGKP 
NPL 

Hist 
KGKA 
KGKP 
NPL 
Hist 

KGKA 
KGKP 

NPL 
Hist 

KGKA 
KGKP 
NPL 

0.6 
1 

0.8±0.7 

1.1±1 

1.4±0.8 
63 

56.5±14.9 

51.3±16.8 
44.3±14 

2.46 

1.7±1.9 
2.7±2.7 
6.5±4.9 
1260.21 

1099.4±325.2 

1079.2±417.8 

940±326.4 
2.46 

1.7±1.9 

2.7±2.9 
6.5±4.9 

0.7 

2 
2±0.9 

2.6±2.7 

2.3±1.1 
28 

32.3±12.5 

36.8±15.7 

29.8±11.5 
11.54 

7.8±4.4 
11.7H2.9 
14.4±7.6 

481.77 
532.2±220.2 
680.1±334.9 

547.1 ±221.1 
11.54 

7.9±4.5 
14±21.8 
15.1±8.7 

0.8 
3 

3.5±1.4 

4.1±3.7 

3.6±1.5 

25 

20.6±6.5 

26.4±13.4 
19.1±7.6 

20.99 
19.6±8.7 
29.2±32 

27.5±13.3 

348.8 
283.1±103.8 

417.1±253 

301.7±123.2 

20.99 
21.2+10 

43±55.8 
31±17.6 

0.9 
7 

5.3±1.7 

7.6+5.1 

5.4±1.8 
15 

10.8±4.2 

16.4±9.7 
11.3±3.7 

42.89 
41.5±15.4 
67.8±59.9 
51.5±23.4 

206.94 

137.5±54.9 
218.3±154.5 

162±60.1 
42.89 

53.8±26.9 

106.1±104.8 
63.2±33.2 

1 

11 
9.2±3.2 

12.1+7.7 

8.2±3 

11 

6.3±2.2 

10.6±6.4 
8.1±3.1 

91.81 
86.3±33.9 

138.7+113.4 

91.7+38.1 
136.08 

78.2±29.5 
118±92.9 

103.1 ±42.4 
101.04 

146.7171.9 
229.71168.2 
143.9171.9 
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Figure 2.1 Fundamentals of k-nearest neighbor resampling where k=3. The values in 
parenthesis near the oval refer to the coordinates ( xvA, xv). Taking xf_x =2.39, the 3-

nearest historical values (in the oval, x* are 2.55, 2.38, and 2.05, respectively) are 

selected according to the distance of the feature vector (Dt = 2.39) and then selected one 

value xf = 2.55 among three with the probability in Eq.(2-1). 
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Figure 2.2 Scatterplot of times sampled versus order of the data point from and KNNR 
simulation (left) and Bootstrapping (right) for month 8 of Site 20 Colorado river; 100 sets 
are simulated for the length 98 yrs as historical for Colorado River Site 20 
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Figure 2.5 Key Statistics of Historical (dot line) and KGKA model simulations (boxplot) 
of the Colorado River monthly streamfiow Unit: Acre-feet 
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Figure 2.6 Key Statistics of Historical (dot line) and KGKP model simulations (boxplot) 
of the Colorado River monthly streamflow Unit: Acre-feet 
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Figure 2.7 Key Statistics of Historical (dot line) and NPL model simulations (boxplot) of 
the Colorado River monthly streamflow, Unit: Acre-feet 
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Figure 2.8 Key Statistics of Historical (circle) and KGKA, KGKP, and NPL model 
simulations (boxplot) of the Colorado River yearly streamflow Unit: Acre-feet 
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Figure 2.10 Yearly time series of historical data (segment line) and one set (dotted line 
with 'x') of the summation of generated monthly data (KGKP) 
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Figure 2.12 Scatter plot of monthly streamflow data with month 8 (x-axis) and month 9 
(y-axis) for historical (filled triangle) and 50 sets of the generated data for Niger River at 
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Figure 2.15 The ratios of storage capacity of generated monthly data divided by the one 
of historical data with different threshold as TL*the overall mean of the historical 
monthly data for Niger River; the threshold level range 0.3-1.0. The line at 1.0 is 
presented as a indication mark of perfect match to historical, (a) KGKP with threshold 
levels 0.3-06; (b) NPL with 0.3-0.6; (c) KGKP with 0.65-1.0; (d) NPL with 0.65-1.0 

55 



2.7 References 

Buishand, T. A., and T. Brandsma (2001), Multisite simulation of daily precipitation and 
temperature in the Rhine basin by nearest-neighbor resampling, Water Resources 
Research, 37, 2761-2776. 

Chebaane, M., Salas JD, and Boes DC (1995), Product Periodic Autoregressive Processes 
for Modeling Intermittent Monthly Streamflows, Water Resources Research, 31, 1513-
1518. 

Chen, S. X. (1999), Beta kernel estimators for density functions, Computational Statistics 
& Data Analysis, 31, 131-145. 

Chen, S. X. (2000), Probability density function estimation using gamma kernels, Annals 
of the Institute of Statistical Mathematics, 52, 471-480. 

Fernandez, B., and J. D. Salas (1986), Periodic Gamma-Autoregressive Processes for 
Operational Hydrology, Water Resources Research, 22, 1385-1396. 

Fernandez, B., and J. D. Salas (1990), Gamma-Autoregressive Models for Stream-Flow 
Simulation, Journal of Hydraulic Engineering-Asce, 116, 1403-1414. 

Fortin, V., Perreault L, and Salas JD (2004), Retrospective analysis and forecasting of 
streamflows using a shifting level model, Journal of Hydrology, 296, 135-163. 

Fukunaga, K. (1990), Introduction to Statistical Pattern Recognition, 2 ed., Academic 
Press. 

Goldberg, D. E. (1989), Genetic algorithms in search, optimization, and machine learning, 
Addison-Wesley Pub. Co. 

Hipel K.W., A. I. McLeod. (1996), Time Series modeling of Water Resources and 
Environmental Systems, Elsevier. 

Koutsoyiannis, D., and A. Manetas (1996), Simple disaggregation by accurate adjusting 
procedures, Water Resources Research, 32, 2105-2117. 

Lall, U., and A. Sharma (1996), A nearest neighbor bootstrap for resampling hydrologic 
time series, Water Resources Research, 32, 679-693. 

Langousis, A., and D. Koutsoyiannis (2006), A stochastic methodology for generation of 
seasonal time series reproducing overyear scaling behaviour, Journal of Hydrology, 322, 
138-154. 

56 



Lee T., J. D. Salas (2008), Periodic Stochastic Model for Simulating Intermittent 
Monthly Streamflows of the Colorado River System, paper presented at World 
Environmental & Water Resources Congress 2008, Honolulu, Hawaii. 

Lee T, and Salas JD (2006), Record Extension of Monthly Flows for the Colorado River 
System, USBR Report, in Print 

Loucks, D. P., Stedinger J.R., and Haith D.A. (1981), Water Resources Systems Planning 
And Analysis, Prentice-Hall. 

Mugdadi, A., and A. Lahrech (2004), The exponential kernel in density estimation, Far 
East Journal of Theoretical Statistics, 14, 1-14. 

Mandelbrot B, and J. R. Wallis (1969), Computer Experiments with Fractional Gaussian 
Noises .1. Averages and Variances, Water Resources Research, 5, 228-. 

McMahon, T. A., et al. (2006), Understanding performance measures of reservoirs, 
Journal of Hydrology, 324, 359-382. 

Prairie, J. R., et al. (2006), Modified K-NN model for stochastic streamflow simulation, 
Journal of Hydrologic Engineering, 11, 371-378. 

Rajagopalan, B., and U. Lall (1999), A k-nearest-neighbor simulator for daily 
precipitation and other weather variables, Water Resources Research, 35, 3089-3101. 

Salas, J. D., D.C. Boes (1980), Shifting level modeling of hydrologic series, Advances in 
Water Resources, 3, 59-63. 

Salas, J.D., D.C. Boes, Yevjevich, V, and Pegram, GGS (1979), Hurst Phenomenon as a 
Pre-Asymptotic Behavior, Journal of Hydrology, 44, 1-15. 

Salas, J. D., Delleur J.W., Yevjevich V., and Lane W.L. (1980), Applied Modeling of 
Hydrologic Time Series, Water Resources Publications. 

Sharif, M., and D. H. Burn (2007), Improved K-nearest neighbor weather generating 
model, Journal of Hydrologic Engineering, 12, 42-51. 

Sharma, A., Tarboton DG, and Lall U (1997), Streamflow simulation: A nonparametric 
approach, Water Resources Research, 33, 291-308. 

Sharma, A., and R. O'Neill (2002), A nonparametric approach for representing 
interannual dependence in monthly streamflow sequences, Water Resources Research, 38, 
5.1-5.10. 

57 



Sharma, A., Lall U, and Tarboton DG (1998), Kernel bandwidth selection for a first order 
nonparametric streamflow simulation model, Stochastic Hydrology and Hydraulics, 12, 
33-52. 

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis : 
Monographs on Statistics and Applied Probability, Chapman and Hall. 

Simonoff, J. S. (1996), Smoothing Methods in Statistics, Springer. 

Srinivas, V. V., and K. Srinivasan (2006), Hybrid matched-block bootstrap for stochastic 
simulation of multiseason streamflows, Journal of Hydrology, 329, 1-15. 

Srinivas, V. V., and K. Srinivasan (2005), Hybrid moving block bootstrap for stochastic 
simulation of multi-site multi-season streamflows, Journal of Hydrology, 302, 307-330. 

Stedinger, J. R., et al. (1985), A Condensed Disaggregation Model for Incorporating 
Parameter Uncertainty into Monthly Reservoir Simulations, Water Resources Research, 
21, 665-675. 

Sveinsson, O. G. B., Salas, J. D., Boes, D. C, and Pielke, R. A. (2003), Modeling the 
dynamics of long-term variability of hydroclimatic processes, Journal of 
Hydrometeorology, 4, 489-505. 

Tarboton, D. G., et al. (1998), Disaggregation procedures for stochastic hydrology based 
on nonparametric density estimation, Water Resources Research, 34, 107-119. 

Valencia, D., and J. C. Schaake (1973), Disaggregation Processes in Stochastic 
Hydrology, Water Resources Research, 9, 580-585. 

Vogel, R. M., and A. L. Shallcross (1996), The moving blocks bootstrap versus 
parametric time series models, Water Resources Research, 32, 1875-1882. 

Yates, D., Gangopadhyay, S., Rajagopalan, B., and Strzepek, K. (2003), A technique for 
generating regional climate scenarios using a nearest-neighbor algorithm, Water 
Resources Research, 39, -. 

Yakowitz, S., and M. Karlsson (1987), Nearest-Neighbor Methods with application to 
rainfall-runoff prediction, 149-160 pp. 

Young, K. C. (1994), A Multivariate Chain Model for Simulating Climatic Parameters 
from Daily Data, Journal of Applied Meteorology, 33, 661-671. 

58 



Appendix 2-A : Variance of the Gamma kernel density estimate 

In Chen (2000), the variance of the density estimator suggested by Chen(2000) is 

derived as 

Var{f(x)} = v a r f l f x , / ^ / ) } = ^ r E var{ i^(X, )} 
iV ,=1 TV i = i 

^N-1vav(Ka^t)) = NA[E{Ka^)}2-(E{Ka^t)})2} (2-A.l) 

= N-lE{Ka^t)}2+0(N-1) 

In this equation, E{KaJ(xi)} is shown in Eq.(2-13) and [E{Kap{Xi)}f «f{x)2 . 

NAf(x)2is negligible by comparing NAE{KatP(t)}2of Eq.(2-A.l) since E{Kafl(t)}
2is a 

function of f(x) and 0 < f(x) < 1 . And 

K2 t2a-2e-2l//3
 = t

{2a-X)-xe-tl{fil2) (/?/2)2a-T(2a -1) 
a,/? /?2<T2(a) (^ /2) 2 a " 1 r (2a- l ) j32aT2(a) 

t(2a-\)-\e-tl(pi2) 
Here, —: can be interpreted as the gamma distribution function with the 

O0/2)2 a _ 1r(2a-l) 

shape parameter 2a -1 and scale parameterP12. Therefore, let present this asg(i)where 

g is the gamma distribution function denoted as Gama\2a -1, /312] . From this 

formation, the gamma function term envisage as: 

Kl,it) = g(t)(^^T(2a-V)= T(2a-l) 
a'p J32ar2(a) T2(a) 

Let, R(z) = ^27re~z zZ+UV for z > 0 (Chen, 1998) and 
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r(2a-l) = RHa-^\ _ 1/2 22a_3/2 

Brown and Chen (1998) proved that R(z) is a monotonic increasing function 

which converges to 1 as z -> oo and i?(z) < 1 for any z > 0 . Thus, 

R2 (a -1) / i?(2« - 2) < 1 and therefore, 

,2 . . . R\a-\) 1 
£ { £ ' ( ; ) } = v J .—(a-l)-1 / z2 z a- J / z^- '2- z g + 1£{g(0} 

R(2a-2)^j2n 

R\a-\) 1 
( a - i r ^ - ^ t e C O } (2-A.5) 

i ? (2«-2 )2V^ 

Substituting a - x2 / h2 and (3 = h21 x instead of a = x / /z +1 and (3 -hby Chen (2000) 

*<^W/*('»2 = |2$7^i^ ( x 2 / ' , 2-1 )" , / 2 ( ; i 2 / x )"1^ ( / ) } (2"A-6) 

As of Eq.(2-13) with the variance /z2(l/2-/z2 /4x2)with g $ distribution, £{g(f)} is 

represented as: 

{ \ h4^ 

v 2 4x' j 
(2-A.7) £{g(0} = / ( x - ^ 2 / 2 x ) + i / " ( x ) 

From the Taylor expansion, 

f(x - h212x) * / (x ) - / ' ( x ) ~ (2-A.8) 
2x 
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yav{/(x)} = N-lE{Ka/3(t)}
2+0(N-1) 

N' 
,Rl{xllhl-\) 1 , 2 / , 2 

R{2x2 lh2 -2)2-^ 
(xl lhl-\y\hl lxyf{x) 

(2-A.9) 

var{/(x)} 

1 

NT2(K2) 

f(x) ifx/h->cc 

(h/K2y}2-2K2+lf(x) if x/h^ic 

2Nh^7i 
(2-A.10) 

The first term in Eq.(2-A.9) is derived from the — ^ — ^ -> 1 as xl h-^co from 
R(2xz/h - 2 ) 

the theorem in Brown and Chen(1999), and the second term with the case of xlh —> K" 

and replace the term i?2(x2 / /z2 -1) and i?(2x2 / h2 - 2) as follows. 

R\x2 Ihz-\) 
27ce-^lh'-xjx2lh2-\) 

/AM+1/2 

T(xz/hz) 

R(2xz/hz-2) = 
27re'(2x2,h2^{2x2/h2-2fxl hl-2+ll2 

T(2xz lhl-2 + \) 
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Appendix 2-B: Detailed Figures 

Figure 2-B.l Histogram of the number of times individual points were selected from 
KNNR simulation for each month; 100 sets are simulated for the length 98 yrs as 
historical for Colorado river Site 20 
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Figure 2-B.3 Time Series of Yearly streamflow for Colorado River at Lees Ferry with the 
annual mean (15.076 million acre feet) 
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Figure 2-B.4 Scatter plot of monthly streamflow data with month 8 (x-axis) and month 9 
(y-axis) for historical (filled triangle) and 50 sets of the generated data from KGKA 
model (grey circle) for Colorado River at Lees Ferry Unit: Acre-feet 
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Figure 2-B.5 Scatter plot of monthly streamflow data with month 8 (x-axis) and month 9 
(y-axis) for historical (filled triangle) and 50 sets of the generated data for Colorado River 
at Lees Ferry from KGKP model (grey circle) Unit: Acre-feet 
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Figure 2-B.6 Scatter plot of monthly streamflow data with month 8 (x-axis) and month 9 
(y-axis) for historical (filled triangle) and 50 sets of the generated data for Colorado River 
at Lees Ferry from NPL model (grey circle) Unit: Acre-feet 
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Figure 2-B.7 Maximum Deficit Length of historical and from historical (circle) and 
generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot) 
with different threshold level 
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Figure 2-B.8 Maximum Deficit Length of historical and from historical (circle) and 
generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry with 
different threshold level 
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Figure 2-B.9 Maximum Deficit Length of historical and from historical (circle) and 
generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot) with 
different threshold level 
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Figure 2-B.10 Maximum Deficit Amount (AF) of historical and from historical (circle) 
and generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot) 
with different threshold level 
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Figure 2-B.l 1 Maximum Deficit Amount (AF) of historical and from historical (circle) 
and generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry 
with different threshold level 

10 
m 

Q 

Figure 2-B.l 2 Maximum Deficit Amount (AF) of historical and from historical (circle) 
and generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot) 
with different threshold level 
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Figure 2-B.13 Maximum Surplus Length of historical and from historical (circle) and 
generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot) 
with different threshold level 
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Figure 2-B.14 Maximum Surplus Length of historical and from historical (circle) and 
generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry with 
different threshold level 
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Figure 2-B.15 Maximum Surplus Length of historical and from historical (circle) and 
generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot) with 
different threshold level 

Figure 2-B.16 Maximum Surplus Amount (AF) of historical and from historical (circle) 
and generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot) 
with different threshold level 
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Figure 2-B.17 Maximum Surplus Amount (AF) of historical and from historical (circle) 
and generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry 
with different threshold level 
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Figure 2-B.18 Maximum Surplus Amount (AF) of historical and from historical (circle) 
and generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot) 
with different threshold level 
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Figure 2-B.19 Storage Capacity (AF) of historical and from historical (circle) and 
generated yearly data for Colorado River at Lees Ferry from KGKA model (boxplot) 
with different threshold level 
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Figure 2-B.20 Storage Capacity (AF) of historical and from historical (circle) and 
generated yearly data from KGKP model (boxplot) for Colorado River at Lees Ferry with 
different threshold level 
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Figure 2-B.21 Storage Capacity (AF) of historical and from historical (circle) and 
generated yearly data for Colorado River at Lees Ferry from NPL model (boxplot) with 
different threshold level 
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Figure 2-B.22 Storage Capacity of historical and generated (KGKA) monthly data with 
different threshold as TL*the overall mean of the historical monthly data for site 20 CRS, 
(unit: Acre-feet) 
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Figure 2-B.23 Storage Capacity of historical and generated (KGKP) monthly data with 
different threshold as TL*the overall mean of the historical monthly data for site 20 CRS , 
(unit: Acre-feet) 
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Figure 2-B.24 Storage Capacity of historical and generated (NPL) monthly data with 
different threshold as TL*the overall mean of the historical monthly data for site 20 CRS , 
(unit: Acre-feet) 
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Figure 2-B.25 Time Series of Yearly streamflow for Niger River at Koulikoro with yearly 
mean (1498 m3/s) 
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Figure 2-B.26 Key Statistics of Historical (dot line) and KGKA model simulations 
(boxplot) of the Niger River monthly streamflow (unit : m3/s) 
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Figure 2-B.27 Key Statistics of Historical (dot line) and KGKP model simulations 
(boxplot) of the Niger River monthly streamflow (unit: m3/s) 
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Figure 2-B.28 Key Statistics of Historical (dot line) and NPL model simulations 
(boxplot) of the Niger River monthly streamfiow (unit : m3/s) 
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Figure 2-B.29 Key Statistics of Historical (circle) and simulated from KGKA, KGKP, 
and NPL model (boxplot) of the Niger River yearly streamflow (unit: m3/s) 
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Figure 2-B.30 Kernel density estimate of historical (segment line) and generated 
(boxplot) monthly streamflow data for Niger River at Koulikoro from KGKA model for 
month 1, 5, and 9 
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Figure 2-B.31 Maximum Deficit Length of historical and from historical (circle) and 
generated yearly data from KGKA model (boxplot) for Niger River at Koulikoro with 
different threshold level 
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Figure 2-B.32 Maximum Deficit Length of historical and from historical (circle) and 
generated yearly data from KGKP model (boxplot) for Niger River at Koulikoro with 
different threshold level 
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Figure 2-B.33 Maximum Deficit Length of historical and from historical (circle) and 
generated yearly data from NPL model (boxplot) for Niger River at Koulikoro with 
different threshold level 
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Figure 2-B.34 Maximum Deficit Amount (109 m3) of historical and from historical 
(circle) and generated yearly data for Niger River at Koulikoro from KGKA model 
(boxplot) with different threshold level 
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Figure 2-B.35 Maximum Deficit Amount (10 m ) of historical and from historical 
(circle) and generated yearly data for Niger River at Koulikoro from KGKP model 
(boxplot) with different threshold level 

Figure 2-B.36 Maximum Deficit Amount (10 m ) of historical and from historical 
(circle) and generated yearly data for Niger River at Koulikoro from NPL model 
(boxplot) with different threshold level 
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Figure 2-B.37 Maximum Surplus Length of historical and from historical (circle) and 
generated yearly data from KGKA model (boxplot) for Niger River at Koulikoro with 
different threshold level 
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Figure 2-B.38 Maximum Surplus Amount (10 m ) of historical and from historical 
(circle) and generated yearly data from KGKA model (boxplot) for Niger River at 
Koulikoro with different threshold level 
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Figure 2-B.39 Maximum Surplus Amount (109 m3) of historical and from historical 
(circle) and generated yearly data from KGKP model (boxplot) for Niger River at 
Koulikoro with different threshold level 
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Figure 2-B.40 Maximum Surplus Amount (10 m ) of historical and from historical 
(circle) and generated yearly data from NPL model (boxplot) for Niger River at 
Koulikoro with different threshold level 

85 



Figure 2-B.41 Storage Capacity (109 m3) of historical and from historical (circle) and 
generated yearly data from KGKA model (boxplot) for Niger River at Koulikoro with 
different threshold level 
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Figure 2-B.42 Storage Capacity (10 m ) of historical and from historical (circle) and 
generated yearly data from KGKP model (boxplot) for Niger River at Koulikoro with 
different threshold level 

86 



itr 

o 

10u 

Figure 2-B.43 Storage Capacity (10 m ) of historical and from historical (circle) and 
generated yearly data from NPL model (boxplot) for Niger River at Koulikoro with 
different threshold level 
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Figure 2-B.44 Storage Capacity of historical data and generated (KGKA) data with 
different threshold as (TL*the overall mean of the historical monthly data), (unit: m3) 

- i 1 1 r ~i r -

i-% T 
,.-*§' 

_ l I I I L [_ 
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.8 

Threshold Leva 

0.90 0.95 1.00 

Figure 2-B.45 Storage Capacity of historical and generated (KGKP) monthly data with 
different threshold as (TL*the overall mean of the historical monthly data) (unit: m3) 
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Figure 2-B.46 Storage Capacity of historical and generated (NPL) monthly data with 
different threshold as (TL*the overall mean of the historical monthly data) (unit: m ) 
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CHAPTER III 

NON-PARAMETRIC MULTIVARIATE SIMULATION OF 
INTERMITTENT AND NON-INTERMITTENT MONTHLY 

STREAMFLOWS 

3.1 Introduction 

Stochastic simulation models have been broadly employed in water resources to 

analyze the statistical characteristics of drought or flood, control plans on water resources 

systems. Multivariate seasonal time scale generation data are generally used for the 

drought analysis and planning of the water resources in a river network system. Seasonal 

streamflow data, however, has peculiar characteristics that hinder proper modeling such 

as high skewness, bimodality, intermittency, long-term persistency and non-linear 

relations, as well as seasonality and serial and cross correlation. 

The main objective of this paper is to develop a simulation model for multivariate 

seasonal streamflow data with the combination of the intermittent sites and the non-

intermittent sites. For this purpose, multivariate nonparametric techniques are employed 

based on the matched block bootstrapping technique. To simulate variable data between 

the generated sequences and to produce the values not in historical data, a perturbation 
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process will be utilized after selection of the historical data point with Gamma Kernel 

Density estimate (Lee and Salas, 2008a). The suggested model scheme will preserve the 

interannual variability also. Furthermore, the conceptual Genetic Algorithm process is 

applied to blend the generated sequences so that the generated data can be mixed spatially. 

In Section 2, how those problems have been handled in simulation modeling 

literature is described. And the suggested modeling procedure is explained, including the 

techniques to preserve the annual variability and shun the repetition of the historical 

seasonal and spatial patterns in Section 3. The data and statistics for model verification 

are described in Section 4. The application and results are shown in Section 5, with the 

following conclusion in Section 6. 

3.2 Brief Review of Literature 

First of all, seasonal streamflow data are generally positively skewed while annual 

streamflows are close to be symmetric although, in some cases, annual may be 

significantly skewed. The majority of the existing Multivariate Autoregressive Moving 

Average (MARMA) models, as well as disaggregation models, assume that the data are 

normally distributed. For skewed streamflow data, various data transformation techniques 

for the current parametric normal based models (e.g. Autoregressive Moving Average, 

ARMA models) have been developed such as log, power, Box-Cox, and gamma (Salas, 

2006). Still, the generated data in the original domain yields some bias during the back-

transformation without bias on the transformation domain. 
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Secondly, some researchers believe that the marginal distribution of the monthly 

or higher time scale streamflow data has bimodality or multimodality (e.g. Lall and 

Sharma, 1996; Prairie et al., 2006; Sharma and O'Neill, 2002). However, this is still 

controversial since two or more different systems (e.g. snow-melt and precipitation) 

should affect the streamflow in a certain scale to have a bi- or multi-modal marginal 

distribution. Otherwise, it might be just a matter of degree of smoothing or inducing from 

record shortage. For example, a short record can easily produce the bi or multi modal 

distribution because of random sampling. To prove what causes the multimodality 

distribution, meticulous work for each river streamflow should be performed. For 

example, the regional consistency of the multimodality in marginal distributions may 

buttress that those multimodality are real. 

Thirdly, preservation of long-term (e.g. annual) persistency from a lower time 

scale (seasonal) model simulation is a difficult task in modeling. A monthly model 

preserving the long-term persistency should include a longer number of seasons in 

parameterized terms (Vecchia et al, 1983). Disaggregation models have been used with 

(1) generating the yearly model first, then (2) disaggregating it into seasonal data 

(Valencia Schaake, 1973; Stedinger, 1985). Disaggregation models generally request a 

tremendous number of parameters. A nonparametric disaggregation approach has been 

devised by Tarborton et al.(1998), and Prairie (2007) to avoid the oversized 

parameterization. However, those cannot preserve the serial correlation between the last 

month of the previous year and the first month of the current year. 

Fourthly, parametric time series models generally use the linear relations (serial 

and cross between variables). After transforming data into normal domain, the ARMA 
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type parametric models employs the linear relations. However, there are still many cases 

in which the relations are not linear and also modeling in transformed domain induce 

some biases on a back-transformed original domain. 

Lastly, intermittency, non-event occurrence between events, in coarser than 

seasonal time scale streamflow data may occur in arid or semi-arid regions, as well as 

weekly or daily. The intermittency hinders to apply the existing simulation models such 

as Periodic ARMA (PARMA) model since it yields a lot of negative simulation values 

combining with high skewness and brings discontinuity. Beard (1973) and Srikanthan 

(1979) developed the truncated type model in that if the generated value is negative, 

assign it as zero. The model, however, yields significant bias on the basic statistics of the 

generated data. Alternatively, a product model has been suggested combining a binary 

occurrence process with the amount process (Chebaane et al., 1995). For the binary 

process, a periodic discrete ARMA (PDARMA) has been fitted and a PARMA or 

Periodic Gamma Autoregressive (1) processes (PGAR(l)) have been applied for the 

amount process. Since the PARMA model is restricted to a normal distribution based, 

some bias on the generated data produce some bias on the key statistics. The PGAR(l) 

model might be a good alternative instead of the PARMA model. However, the 

parameter region is so restricted that some data might not be applicable or require further 

analysis such as Fourier transformation. 

Because of the intricate modeling procedures and drawbacks of the intermittent 

seasonal time series, a simple nonparametric approach has been developed by Svanidze 

(1978) and Srikanthan and McMahon (1980), named the Method of Fragments (MF). 

Here, the fragments refer to the ratios of the seasonal values divided by the yearly so that 
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the sum of the ratios of all seasons at a certain year is unity. The drawback of this 

approach is that the serial correlation between the last month of the previous year and the 

first month of the present year is not preserved. Furthermore, Potter and Pink (1991) 

argued that the drawback of MF is the noticeable duplication of seasonal patterns 

occurring especially on generating a time series longer than the historical or large number 

of sets. One of the purposes of data generation is to analyze risks from the unprecedented 

event of high flows or low flows and to employ the risk analysis into the water resources 

system design. The repetitive seasonal patterns of the generated data from MF might lead 

to significant mistakes on decision making. 

A large river basin, such as the Colorado River, may include intermittent and non-

intermittent flows together. The simulation modeling techniques for multisite data 

combining intermittent and non-intermittent seasonal streamflow have not been fully 

developed in literature. Some plausible techniques that surmount part of the difficulties 

described above are overviewed as follows. One of the simplest approaches is block 

bootstrapping, resampling the data block from the historical data for synthesized data. 

This method was developed originally by Kunsch (1989) and applied for hydrologic 

simulation by Vogel and Shallcross (1996). This approach, however, encounters some 

drawbacks such as: (1) discontinuity between blocks from block-by-block sampling; (2) 

repetition of the same sequences of the blocks; and (3) generation of historical values 

only. In the Srinivas & Srinivasan (2005) article, they proposed a hybrid model with low 

order Periodic Autoregressive (PAR) and the block bootstrapping of the innovation terms 

to overcome those drawbacks. Firstly, the seasonal streamflow data are standardized and 

fitted using PAR(l) model, where the innovation term for each site and each season are 
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stored. In simulation, (a) The innovation terms are block bootstrapped where a block 

implies the multisite and multi-season block, and the block length should be a multiple of 

the number of seasons (e.g. 24 months are used in the paper); (b) After setting the initial 

value to zero for all sites, synthetic data are simulated recursively with the innovation 

terms and the fitted PAR(1) model; (c) The data are inverse standardized to transform the 

generated data back to the original domain. However, this hybrid model has some 

significant drawbacks too. At first, it is not feasible for intermittent time series modeling. 

Even if the original block bootstrapping can reproduce the intermittent process, the fitting 

procedure with PAR(l) cannot be applicable for the intermittent data. Second, it may 

generate negative values especially where the seasonal streamflow data are highly 

skewed (e.g. exponential type marginal distribution). And third, the seasonal generated 

data of later seasons will be almost the same as historical. The first part of the seasons 

(e.g. month 1, 2, and 3) generates different values from the historical. However, the other 

parts of the seasons (month 10, 11, and 12) generate almost the same values of the 

historical. The more elaborate explanation will be followed in the application section. 

Moreover, Markovian Matched Block Bootstrapping (MBB) method was 

developed by Carlstein et al.(1998) to surmount the block discontinuity. The principle of 

this method is to compare the last element of the historical blocks and the last value of 

the generated data. From assigning a probability for each block according to the distance 

estimated from the comparison, choose the next block. Srinivas and Srinivasan (2006) 

applied this procedure for the resampling of a seasonal hydrologic time series. They used 

uniform distribution for the assigning probability with a certain number of blocks as a 
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range. But, the MBB method employs a somewhat intricate procedure. Here, a simple k-

nearest neighbor resampling technique replaces this model. 

Furthermore, other approaches have been applied for at modeling daily weather 

variables. The weather simulators require combining the intermittent variable, 

precipitation, with the non-intermittent variables such as maximum temperature, 

minimum temperature, and wind velocity. This might be useful for modeling the river 

network combining intermittent and non-intermittent stations which have not been 

applied for streamflow data. Rajagopalan and Lall (1999) extended the k-nearest 

neighbor resampling approach (Lall and Sharma, 1996) to simulate multivariate weather 

variables. Also, many researchers have improved this technique (Yates et al, 2003; 

Buishand and Brandsma, 2001). However, both the MBB and the extended K-Nearest 

Neighbors Resampling (KNNR) models have the drawback that there is no variability in 

cross relation. In other words, there is no chance to be mixed between variables. The 

resampled multivariate sequences are mixed on not spatially but temporally. This is the 

same drawback as the repetition of the same seasonal pattern. 

Even though the seasonal streamflow (combined with intermittent and non-

intermittent) and daily weather variables have many of similar characteristics for 

simulation modeling, the seasonal streamflow data has stronger seasonality than daily 

weather variables. Therefore, a periodic model should be fitted into the seasonal 

streamflow data, while a stationary model or ranged stationary model is employed for a 

daily weather variable with a certain period, such as a month. 
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3.3 Mathematical Description of Model Components 

The model scheme suggested here employs matched block bootstrapping 

targeting on generating a unique data set with the preservation at key statistics of seasonal 

and yearly time scales. The description below starts from the exhibition of the 

fundamental block bootstrapping followed by the extension to MBB and the 

modifications thereof. A distinctive blending process adopting the Genetic Algorithm is 

applied in order to obtain the sequences with different spatial combinations. Afterward, 

further improvements are stated, such as perturbing the resampled data with Gamma 

KDE to attain the new unprecedented values other than historical data and manipulating. 

The elementary notations employed in this paper are expressed here. A set 

notation is employed as a e [b,c], implying that the integer index, a, is ranged from b to 

c. For instance, {Xa}ae[bc] = {Xb,Xb+1,...,Xc} , where a<c . Suppose that seasonal 

streamflow data is available with a> number of seasons and N number of years, and xv is 

employed to express yearly observed data at year v, while xv T is for monthly data at year 

v and month r . For multisite data, x* T is used for the monthly streamflow for year v, 

month r at site s with s e [\,S], where S is the number of sites. The symbol is capitalized 

to illustrate a variable or generated data corresponding to the observed data. For instance, 

XVT expresses a random variable or generated data in contrast to xv t . In addition, a 

vector notation is utilized to represent a set of data, e.g. xv T = { x v ' r } A . e [ , S]. The same 

vector notation is also applied for yearly data, ju* (X) and a] (X) represent the mean and 
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standard deviation of x for month r at site s, respectively while ju*(x) and <J*(X) 

represent corresponding estimates from the observed data. Also, ju(X | 0) is the mean of 

the variable X satisfying the condition 0 . Additional notations are specified with 

necessity along with description. Likewise, t is used to differentiate the generated data 

time step from the historical data time step, e.g. Xt T and t=\,.. .,T instead of Xv T when T 

is the required years of simulation. 

3.3.1 Matched block bootstrapping and different block length 

The simple bootstrapping scheme for a stationary (e.g. yearly) time series is 

sketched in Figure 3.1. Define xB,t;) as the value of the / element of the f block. Each 

block consists of/ elements, such that xB(() = {xB(l n}MU] for z'th block. The historical data 

set with the record length N contain (N-l + 1) blocks since the blocks overlap (refer to 

Figure 3.1) the historical data. For a generation, choose a block randomly among the 

overlapped (N-l+l) blocks, each having the same probability \l(N-l +1), and the selected 

block is the length / generated data. For example, in Figure 3.1, it schematically 

illustrates the simple block bootstrapping. With nine years of record length and block 

length as three, seven historical blocks are structured. The second block of the historical 

blocks is selected for the first block of the resampled data, such 

that X, = xB{2X),X2 = xB{j2),andX3 = xB{23) . This generated block is presented as 

XB(1) .The next resampled block XB(2) is the seventh block of the historical data such that 

^s(2) = {̂ "4 = XB{I,\) ~ XT X5 = xB(7;2) = *8> X5 = xB(j^ = x9} presented in Figure 3.1. 
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Notice that while the historical blocks do overlap the historical data, the generated blocks 

do not. 

For a seasonal time series, the block length / should be a multiple of the total 

number of seasons, i.e. I = a>xm, where m is the number of years considered to preserve 

inter-annual variability (Srinivas and Srinivasan, 2001). The reason for this format is to 

reproduce seasonality and annual key statistics. Furthermore, m should be greater than 

one to take into account interannual variability (i.e. yearly serial correlation). 

Subsequently, a block of the seasonal time series is 

X B(( ) = \XB(i,\)>'">XB(i,l)f = \Xv,\'Xv,2>--->Xv,co>Xv+l,l>--->Xv+m~l,/») 

where ie [l,N -m + \] . A block is overlapped in the yearly scale such 

t n a t X ^ j ) = {Xll,Xl2,...,Xlo},X21,...,Xma}}, XB (-2) ~ {X2,\>X2,2,'",X2,o> X3,l'---'Xm+l,a>) ' a n C * S 0 0 n > 

If yearly data are not serially correlated, which might often be the case for 

seasonal intermittent data due to the discontinuity of seasonal streamflow induced from 

zero values, then one is good enough for m. The major drawback of this bootstrapping 

method is the same as the one for the method of the fragments discussed by Poter and 

Pink (1991) and Lee and Salas (2008). The obvious seasonal patterns will occur 

repeatedly in the simulated data. To circumvent this shortcoming, Srinivas and Srinivasan 

(2006) suggested subdividing a year, in other words, splitting the monthly data of one 

year into non-overlapping within year blocks. The subdivided blocks of historical data 

are not overlapped. However, this subdivision will underestimate the yearly variance 

because the correlation of the seasonal data is attributed to the yearly variance and it does 
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not depend on only the lag-1 correlation. But it is broken from subdividing the yearly 

data. And, the seasonal pattern will be incurred recurrently but in subdivided time scale. 

The first month is the division point in the general block bootstrapping technique. And, 

seasonal division points (Srinivas and Srinivasan, 2006) are always the same through the 

generation. This yields that the yearly data (for general block bootstrapping) or the 

seasonal data are always the same as the historical. 

Alternatively, we suggest assuming the block length as a random variable. Instead 

of the same division point for blocks, the division points are randomly changed since the 

block length is alternated at each block resampling. Suppose the block length is a discrete 

random variable with any feasible discrete distribution such as geometric or Poisson 

distribution. The Geometric and Poisson distributions were tested for a random variable 

of the block length and the results were no difference. From now on, the method 

description is based on the Poisson distribution. If the block length / is Poisson random 

variable, then the length can be generated from the Poisson distribution as: 

/?(/•) = -£ (3-1) 
! ' ( / ' ) ! 

where /'=0, 1, and l-l'+\. V is employed instead of / to abstain from generating zero 

values. An example procedure of the block length variable is as follows: 

(1) A block length is generated from the Poisson distribution Eq.(3-1), say 1=4. 

(2) Choose a block from the historical data. The historical blocks should start 

with the same month of the division point. If the previous generated blocks 

end at x, then the division point for all the historical blocks are x+1. For 
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example, if one start with Xfl(1) = {X{ 7 } / e [ 1 4 ] , then the possible historical 

blocks consist ot xB^ ={xs ,..,xB^} = {Xj,,..,x14} , \B^2) — \x2,\>">x2,4f •> •••' 

XB(N) = K j v . ^ } • One among Nblocks is selected forXB(1). 

(3) Suppose 1=3 for the second generate block (suppose it is generated from the 

Poisson distribution) with conducting Step(l) above so that 

XB(2) = {Xl5,Xl6,Xl1} and the historical possible blocks are 

**-B(l)={XBll>">XBlji\
Xl,5>X\,6>Xl,7>> • • • ' XiJ(W) = XXN,5'XN,6'XN,lf - ^ n e a m 0 n g 

those N historical blocks is selected as XB{2). Repeat this process for as many 

years of required simulations as are necessary. 

Notice that this process does not produce any discontinuity between years since a 

block can crossover two years, when XB(i) contains the elements with two different years. 

For example, if the previous generated block stops at year v and month co-2 and the 

generated block length 1=3, then XB(/) = {Xva^,Xvw,Xv+ll}. The parameter X of Poisson 

distribution in Eq.( 3-1) is directly related to the mean value of / as E[l] = £[/'] +1 = X +1. 

X is estimated from E[/]. The higher the serial correlation of monthly and/or yearly data is, 

the larger this mean will be. Srinivas and Srinivasan (2005) suggest that the block length 

as four is the suitable number to preserve the serial correlation and cross-yearly serial 

correlation with matching the following block algorithm explained later. By the same 

token, the mean value of the block length can take this amount. From an experiment on 

the different mean values in this study (not shown), three to six is appropriate if there is 

no strong cross-year correlation, otherwise six to twelve might be used. The random 
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variation of the record length brings different combinations of the seasonal data so that 

the repetition of the same seasonal pattern will not occur. Speculatively, the block length 

variable simply eliminates the repetition issue. Furthermore, it allows producing the 

generated data set with exploring different combinations of the historical seasonal data. 

Yet, the discontinuity between blocks still cannot be resolved. The way to connect 

a block with neighbor blocks should be proposed. Carlstein et al. (1998) attains the 

requirement using matched block bootstrapping. A following block is selected from the 

probability assigned corresponding to the distances from the last elements of the recently 

generated block to the previous condition of the historical candidate blocks. Srinivas and 

Srinivasan (2005) applied this procedure for resampling a univariate seasonal hydrologic 

time series. From the subdivided within a year block of the historical data, the last 

elements from each block are ordered at first. The nearest neighbors are obtained 

according to the order of the last element of the recent generated block. Here, one among 

a certain number of neighbors is selected randomly with the same probability. The 

following block of the selected neighbor is taken as the next generated block. The 

different numbers of neighbors were tested to find an appropriate number, and the result 

revealed that five neighbors reproduced the monthly serial correlation and inter-year 

serial correlation well. Alternatively, instead of using the uniform distribution and 

ordering to choose the matched block, we offer to utilize the k-NN resampling algorithm 

(KNNR; Lall and Sharma, 1996). A subsequent block is selected from the condition of 

the last element of the preceding generated block and the previous condition of the 

candidate historical blocks. The selection is attained with KNNR. After being suggested 

by Lall and Sharma (1996), KNNR has been flourished in hydrologic literature because 

102 



of the simple and effective way to model serial relations (Yates et al. 2003, Buishand and 

Brandsma, 2001). The original algorithm of KNNR in Lall and Sharma (1996) for 

stationary time series generation is summarized below since it is employed many other 

places of this paper as well. 

(1) Define the current and historical feature vectors Z^and irrespectively, and 

the number k D(and Dv are vectors whose components are the conditional 

variables to resample. Here Xt_l is used for the feature vector such 

asDt = {Xt_l}so as x^forD,,. And the number of neighbors (k) is estimated 

from the heuristic method, -JN , suggested by Lall and Sharma (1996). 

Assuming that we know the initial value X0, the next key steps are followed. 

(2) Estimate the distance between the feature vector of the historical and the 

current state as 

1/2 

(3-2) 

where wt is the scaling factor of each J component where J is the number of 

the conditional variables. This factor is employed for which each conditional 

variable equally attributes to the distance. Since only one variable is utilized 

as suggested in Step (1), w, is not necessary. Therefore, it is expressed as 

rv = \Xt_x - xv_j|. dtJ stands for / component of the current feature vector and 

dvj is t h e / component of the ith year historical feature vector. 
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(3) Among the smallest k neighbors, one of them is selected from the weighted 

distribution as: 

1/w ~ ~ 
Pis = (3-3) 

Tl/ls 
ls=\ 

where is=\,...,k. This probability shows that the neighbor with the closer 

distance weighs high probability to be selected and vice versa. The selection 

from the discrete weighted probability within a certain range (l,..,k) can be 

also done by Roulette wheel selection in the Genetic Algorithm literature 

(Goldberg 1989). 

(4) The subsequent value of the selected neighbor is obtained as Xt . This 

procedure continues until obtaining the T length of the generated data as is 

supposed. 

The application of KNNR to find a matched block is facile. Schematically, the 

first element of the following generate block is found using the KNNR approach with the 

same step above. Here, the last element of the recently generated block, is assigned as the 

feature vector Dt = Xt_x and the last elements of the plausible historical blocks for the 

historical feature vector such as Dv ={xB{i_xl)} ,and i=2,..., N-l+l. Afterward, the 

subsequent l-\ data values of the first point are chosen to complete the synthetic data 

block. 

The simplified algorithm is (a) to choose a value from one to k, say k* and (b) to 

find the neighbor of the &*th smallest distance in Eq.(3-2). This scheme is less time 
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consuming in a generation since ordering all distances have to be performed at each 

generation in general. The searching algorithm to find A:*th smallest distance is well 

described in Press (2002, in Chapter 8.5). 

3.3.3 Blending process with Genetic Algorithm 

The objective of this paper is to develop a methodology for the multisite seasonal 

streamflow data in which part or all sites are intermittent. The proposed approach for this 

objective here is the matched block bootstrapping with the variable block length and the 

KNNR algorithm to find the matched following block. To manipulate the cross-

correlation of multisite data, a summary statistics, suggested by Buishand and Brandsma 

(2001), is employed to abridge the multivariate dimension problem into the univariate 

one, explained later. The handling of the multisite data in this way, however, resulted in 

the fact that the generated data are not mixed between different sites. The generated 

multisite data set of the certain generate year and month always originates from the same 

historical year. For example, suppose that we need to generate the 5* site data starting 

from year t=T0 and month r =5; the generated block length is one, and the historical year 

of the bootstrapped data is eight. And the selected data elements from the historical data 

is X105 ={Xg5,...,X8*5} and X106 ={Xg6,...,x^6} . As you can observe, S number of 

multisite data values are derived from the same historical year. The repetition of the same 

multisite pattern will occur in the generated data set from this summary statistic 

formation. Instead, a procedure to blend the bootstrapped multisite data might be 

preferred with preserving the cross-correlation between the sites. Here, we propose a 
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scheme to blend the multisite data with the conceptual Genetic algorithm (GA). The 

fundamental and the process of GA are expressed briefly below. 

Genetic algorithm is a search technique based on a biological metaphor, such as 

natural selection and mutation (Goldberg, 1989). GA explores the whole range of the 

feasible region and evolves toward a better solution with a probability manner. A better 

solution implies the maximization or minimization of the specified fitness function. This 

technique is an efficient and robust search process, since it produces a near-optimal 

solution through the traveling around all possible regions. The GA application needs to 

encode each parameter or target variable as an array of bits (binary code), called strings. 

The initialization performs establishing the starting searching points with a certain 

number of populations. A fitness function is required to evaluate the preference of each 

population. For a simple example, suppose that the feasible region of the target variable, 

denoted as Z, is from zero to sixty three with only integer values, and we try to find a 

value that maximize the fitness function / (Z ) = Z2 . The example of GA for this problem 

is expressed in Table 3.1 and Figure 3.2 with four population sizes. The steps are as 

follows: 

(1) The string length should be six because six strings of binary can be decoded as the 

range of zero to sixty three, such as from 000000 decoded as 0 and 111111 

6 

decoded as 63; (^T26~' x&., where 6, is the binary values at each bit /'). The strings 

of the initialized four populations are displayed in the second column of Table 3.1. 

The probability to be reproduced, the fifth column of Table 3.1, is estimated from 
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dividing the fitness value of each population (the fourth column) by the summation 

of the total fitness value (sixth row of the fourth column). 

(2) Among the current populations, two populations are independently selected from 

the estimated probability. Notice that the selected two populations can possibly be 

the same. 

(3) The two selected populations (population 2 and population 4 in Figure 3.2, left) 

mate and generate two new populations with the crossover of some elements 

(Figure 3.2, left) or without the crossover corresponding to the crossover 

probability, pc. If a uniform random number, uc ~ Unif[0,\], is less than pc, two 

selected populations crossover their values from the first elements to the cross 

point. On the left side of Figure 3.2, the crossover point is three, three values are 

crossovered, and generate two new populations. Otherwise, explicitly u > pc, two 

selected populations, itself, become new populations. The cross point is assigned 

randomly from one to five in this example. Goldberg (1989) suggested the 

appropriate probability as pc = 0.6. Further process can be applied at this stage, 

called tournament selection. Instead selecting both cross-over populations, only 

one of them is chosen in the favor of a certain criterion (i.e. fitness function). 

(4) Each string of the new population mutates randomly as shown in Figure 3.2 with a 

mutation probability ( pm ). The second element is mutated. Goldberg (1989) 

suggested pm = 1 / 30. 
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Furthermore, the real-coded GA has been used such that real numbers are used for 

bits instead of binary (zero or one) code (Dasgupta and Michalewicz, 1997). And 

tournament selection in which two individuals compete for selection, only one remaining 

has been employed with better performance. The capability of GA to explore the whole 

feasible region of a variable with crossover and mutation is profitable for the MBB 

method with summary statistics since the method suffers from the repetition of the same 

pattern between sites as mentioned previously. The GA algorithm, however, should be 

modified to embed in this method because the purpose of GA here is to yield different 

generated data combinations between sites without loosing the cross relationship between 

sites. The embedded GA with modification is explained. 

The reproduction process of GA is analogous to bootstrapping in that the data are 

resampled from the existing data X, r = {X*T } r e [ 1 s ] . Let the resampled data from MBB be 

the reproduced data from GA. The next procedure of GA is the crossover. For this 

process, it entails one more multisite data set denoted X*, r, and this additional multisite 

data should be similar to X, r , avoiding the decrease of the cross-relation of the generated 

data. For this purpose, KNNR is employed to find the neighbors of X, T. Subsequently, 

the portion of the original resampled data set X( r is substituted randomly with the values 

of another data set of X* r r shown in Figure 3-A.l with the crossover probability pc. 

This probability is rather downsized as 0.3333 in application because of the cross-relation 

preservation. If the multisite data setX, r is probabilistically rejected to perform the 

crossover, each element (each site value) is replaced with another historical value among 
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{xlT}ve[lN]randomly with the mutation probability pm illustrated in Figure 3-A.2. The 

replacement might be constrained to k- nearest neighbors of Xs
tT in order to preserve the 

cross-correlation. 

The differences between the rudimentary GA and the modified are: (1) only one 

multisite-data set is obtained instead of two data sets (i.e. another data set X*lT is 

discarded after the crossover); (2) instead of cross-point exchange, the exchange data 

points are selected randomly with probability 0.5; (3) assign the probability pc as one-

third rather smaller than what Goldberg (1989) suggested as 0.6; (4) a mutation process is 

performed only on the multisite generated data set for which the crossover is 

probabilistically refused. The difference between (3) and (4) is applied because higher 

probability for crossover and higher chance of mutation might incur lessening the cross-

relation between sites. The exact procedure is described in the next section, with a simple 

example as shown in Appendix A. 

The serious shortcoming of the simulated data from the suggested process above 

is that it generates only historical value. Short term water resources planning will be 

significantly affected from this deficiency. This might lead to failure of the analysis for 

the most significant drought with short duration. Lee and Salas (2008) suggested 

generating the unprecedented value utilizing the Gamma kernel density estimate. 

3.3.3 Perturbation process with Gamma Kernel 

One of the major drawbacks for bootstrapping is that the generated sequences are 

historical values. In literature, a few of the methods have strived to solve this problem on 
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nonparametric generation models (Prairie et al., 2006; Srinivas and Srinivasan, 2006; 

Sharif and Burn, 2007). The hybrid method, devised by Srinivas and Srinivasan (2006), 

with the low-order periodic autoregressive and moving block bootstrapping on the 

innovation term, is not plausible in the case of the mixture with non-intermittent site and 

intermittent site. The normal kernel density, derived by the bandwidth from the approach 

of Sharma et al. (1997), with KNN on weather variable can be a good candidate (Sharif 

and Burn 2007). However it employs the normal variable kernel which yields some bias 

on the marginal distribution in case that the observed data is significantly skewed and 

bounded. This might be a plausible approach when the record range of the variable 

includes the negative part such as the intervening flow (Lee and Salas, 2006). 

Meanwhile, Lee and Salas (2008) suggested that the Gamma kernel density 

estimate with KNNR and Gamma kernel does not produce any bias in case of positive 

bounded data range. It can be applied into the MBB without any hassles. The vital point 

is described succinctly. The Gamma kernel suggested in the paper is: 

. x 2 / A 2 - l - r / ( / i 2 / x ) 

i W^ ( 0 =WW^n/Tif) (3"4) 

where Kap(t)is the gamma kernel function with shape parameter a and scale 

parameter J3 . The mean and variance from the gamma kernel are ju(t) = x , 

<y2(t) = h2 respectively. The heuristic parameter estimation of the bandwidth suggested 

in Lee and Salas (2008) is employed here such that: 

h = -^— (3-5) 
VJV72 
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The application of Gamma KDE is that the resampled data (x) from the procedure 

described in the previous section is perturbed with Gamma kernel by replacing the data 

with a generated value from the gamma distribution such as Gam(x2/h2,h/x2) only if x > 0 . 

Notice that Gamma kernel perturbation does not vary the resampled zero values. 

The perturbation with the Gamma kernel with mean x and variance h2might not 

be appropriate in case of the highly skewed data since the variance of the kernel is fixed. 

The coefficient of variance (CV) of the kernel (h/x) is too large in case of low value x. 

The high variance on low value will yield frequent extreme low values. Moreover, the 

lofty value x case has relatively low CV. This often occurs in highly skewed data. In 

general, the intermittent streamflow are significantly skewed. Here, additional Gamma 

kernel only with different parameter formulation is proposed as: 

th-\e-tl(xlh) 

KKx/h(t)= / M A T V M (3-6) 
(x/h) T{h) 

where ju(t) = xand a2(t) = x2 Ih. Notice that the variance of Gamma kernel is 

varied along with x. And the expected value of the variance of the Gamma kernel is 

2 2 

E\a2 (r)] = E[x21 h] = ^—^- (3-7) 
h 

For estimation of the bandwidth, a heuristic approach is suggested here with the 

similar quantity as Eq.(3-5), whereby the variance of the gamma kernel in Eq.(3-4) is the 

2 

same as the mean variance of the gamma kernel as E\a2(t)] = h2 = —x— . Then, 
N/4 
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2 , 2 2 

E[<r\t)]= x ^x = -^- (3-8) 
h N/4 y ' 

The smoothing parameter h is 

h = l.^±A (3-9) 
4 cr 

If the coefficient of variance (cr/ ju ) is close to one, then Eq.(3-7) is simplified as: 

N 
h=l- (3-10) 

3.4 Applied Model Procedure 

In Section 2, the employed model components are described. With the 

rudimentary matched block bootstrapping, the Genetic Algorithm and KNNR matched 

block process with the block length variable are included in order to attain the plausible 

diverse combination of the seasonal data without lessening the serial and cross relations. 

And the Gamma KDE is utilized to synthesize the unprecedented values from the MBB 

generated values. In addition, the way to manipulate the interannual variability is 

suggested by means of the pilot variable. The model components are formulated into one 

procedure described below. 

Description of the applied Model Procedures 

To implement the MBB with the suggested modification into multisite data, some 

preprocessing work is required. Instead of dealing with multisite data, Buishand and 

Brandsma (2001) proposed employing summary statistics over the different variables. 
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Those have been commonly employed in multivariate nonparametric modeling literature 

(Yates et al., 2003; Buishand and Brandsma, 2001). Here, the summary statistics are 

utilized to reduce the multivariate problem into the univariate one. From the outset, the 

multi-site seasonal streamflow data should be scaled as follows so that each of the data 

sites contributes equally on the summarize statistics: 

s 

y t r = — — — O11) 
v'r # ( x | x > 0 ) 

for the multi-site seasonal streamflow data on which part or all of sites are intermittent 
and p,sz(x | x > 0) is the mean estimate from the observed data that is greater than zero. 

Eq.(3-ll) is formatted to prevent scaling over zero values, or if the data consist of only 

non-intermittent data: 

y* = L "•«• ^ v n (3-12) 
oT{x) 

This scaling, however, is avoidable if the historical multisite data are not 

significantly different from each site. In this case, ys
v r = xs

VT. After scaling the data with 

Eq.(3-11) or Eq.(3-12), the summary statistics are attained for each year and month such 

that: 

1 s 

>V=T;Z->V O13) 
*-> . 5 = 1 

With the summary statistics, the proposed model procedures follow. 
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A. Set the block length parameter of Poisson distribution (A) allowing the mean 

block length (E[l]) around three to six in proportion to the magnitude of the 

temporal relation of monthly and yearly time scale. Obtain the current block 

length (/) from the random variable (/') with the Poisson distribution with the 

parameter (A) and /=/ '+1. 

B. For the first generate block YB(J) ={^>}>e[W] , the candidate blocks are the 

historical values constrained to {ys(0}/6[lfJV]and yB(0 ={£2,0.;) >MU] =^>U UIUI ' 

e.g. if 1=4 and i=10, then yBm={ym,yma,yw,3,yl0A}- S e l e c t a b l o c k randomly 

with equal probability UN among N (the number of record length) candidates. For 

the other generate block and the current generate month x , the potential generate 

blocks are restricted to {yB(0}/6[1 N] and the elements of each block yB(0 are 

{yB(,j)}Mij] ={yl,j}Mr,r+iA] • F o r example, if i=6, x=10, and 1=5, then yB(6) 

={ 3̂610•> 5̂ 611' ?612' yi 1' ̂ 7 2 } • Notice that if j>co where co is the number of seasons 

(e.g. co=12 for monthly) then i=i+\ and j—j-a>. Among JV blocks, one block is 

selected such that one of the first elements of the candidate blocks Yt r is selected 

with the KNNR and the following elements are automatically selected. To do this, 

(a) the distances are estimated between the previous generate data Yt z_x and the 

previous value of the candidate historical blocks {yi r_1},e[1 N], expressed as: 

Hv.->vi| (344) 
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where, i=l,...JV; 

(b) among the k nearest neighbors (i.e. the indexes from the first to the k smallest 

distances); choose one with the weight probability in Eq.(3-3); k is estimated with 

the heuristic choice y/N ; 

(c) the subsequent block of the selected is assigned as the generated block. Notice 

that if the block length is always one, the KNNR matched block bootstrapping 

converges to the original KNNR method. 

C. Retrieve and back-transform (according to Eq.(3-ll) or (3-12)) l^into the 

original domain {X*T}se[lS] . It is facile to acquire {Yt
x
T}xe[lS] from YlT just by 

keeping track of the year of the historical data from which YtT is originated. 

D. The multisite generated data in the original domain {X;'r}re[1;S]is blended with the 

Genetic algorithm for each month and year as follows: 

(a) Set the probability of crossover pc and mutationpm ; Here 0.333 and 0.01 are 

used respectively as suggested by Goldberg (1989). 

(b) Choose another set of multisite data for t and x whose summary statistics are 

close to the one of {Xs
tz}se[lS] (YtT) with KNNR, and assign it as {X*s

t r } s e [ l S ] . 

Here, k is estimated withViV . The closeness is defined with the absolute 

distance between YtT and yv T, where v = \,..N . One from k nearest neighbors 

is found in Eq.(3-3). 
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(c) The elements of the two sets, {X'str} ve[1 S] and {^*^}iS.e[1S], are exchanged or 

not with the crossover process in Genetic Algorithm as follows. If a generated 

uniform random number ( uc) is smaller than pc ( uc < pc), alternate the 

elements of {^r}S6[ij5] into {X ** T} se[l S] . Whether each element will be 

altered or not is decided randomly with pc . As shown in Figure 3-A.3, 

tournament selection can be employed to select one of the two exchange data. 

With interchanging the values of {X*T}se[lS] and {X*,sr}se[lS] and ending up 

with two sequences, the favorable one can be selected. The measurement of 

the preference is varied. One possibility is to choose the one that is yielding 

higher positive temporal crosscorrelation in case an applied algorithm 

underestimates the serial correlation through months. A drawback of 

tournament selection with the criterion of the higher serial correlation might 

be the underestimation of the mean in highly skewed data because the values 

of extreme cases tend not to be selected in highly skewed data. Therefore, the 

original sequence {XfT}se[]S] with the crossover from the other set 

{X**T}se[1 S] and the following mutation for the elements {X"T}se[ls] is 

employed, but without employing the tournament selection. 

(c) If uc >pc, mutate the {X*T}se[ls]. The mutation is performed independently 

for each element (s=\,...S). One of the main objectives, in time series 

modeling, is to preserve the temporal dependence structure such as lagged 

cross-correlation. Therefore, instead of applying the mutation for all elements 
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(5=1,...S) with pm , only the data values not to be crossovered from the 

previous Step (c) are mutated with the probability pm . From a generated 

random number um , if um < pm , then substitute the current element Xs, T with 

one of the historical candidates {xs
VT}v^1N] . Instead of randomly selecting 

a n y x ^ (where v=l,...,N), choose a value close to the generated value 

Xt\ with KNNR where k (the number of nearest neighbors) is obtained from 

NAIS suggested by Fukunaga (1990) not from NU2 so that the candidates to be 

replaced have a wide range. 

E. From repeating the steps above A to D, attain the generated data set with the 

target length T. The Gamma kernel perturbation is performed to the resampled 

and blended data with MBB and GA mixture. The process is independent on the 

other process and simply applied with substituting the resampled data with the 

gamma generated data with parameter a = {Xi
tT IK)2 and (3 = h21Xs

lT, or for 

highly skewed data, a = (h)2and fi = (z/>r j /h . 

3.5 Data Description and Test Statistics 

To verify the suggested model, a portion of the Colorado River system was 

utilized. The Colorado River system (CRS) portrays the river flow with 29 selected 

stations. The historical gaged data has been naturalized for these 29 stations through 2003. 

Part of the data has been extended by Lee and Salas (2006) back to 1906, employing the 
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combination of the parametric linear regression and the nonparametric bootstrapping with 

a trace selection method. 

In application, two sets of simulation studies were performed. Firstly, three non-

intermittent sites, non-zero values in the data set, are selected among 29 stations of the 

CRS, such as sites 8, 16, and 20. Those are the most vital sites in managing the Colorado 

River system. The hybrid model (Srinivas and Srinivasan, 2005) and the moving block 

bootstrapping with genetic algorithm (GAMBB) model, developed in this paper, were 

applied to these sites. Since the hybrid model does not have the ability for intermittent 

data, three non-intermittent sites are selected to compare with the GAMBB model. 

Secondly, the combined sites with non-intermittent (Sites 21 and 24) and intermittent 

(Sites 22 and 27) were applied only into the GAMBB model from the reason above. The 

tributaries of the lower basin of the system include the arid and semi-arid region such as 

Nevada, Arizona, and New Mexico. The monthly streamflow of the tributaries, especially 

Site 22 and 27, has intermittency, defined as zero streamflow between the flows greater 

than zero. The exact location of those sites is displayed in Figure 3-A.4. 

The one hundred set of the data set with the same length as the historical are 

generated for each experimented model. Several statistics are estimated from the 

historical and generated data to verify the model performance such as mean, standard 

deviation, skewness, maximum and minimum, and lag-1 serial correlation in seasonal and 

yearly time scale. A boxplot is employed to show the estimated statistics from the 

generated data. The end line of the box implies the 25 and 75 percent quantile, while the 

cross line above the box on the whisker does the 90 percent quantile and maximum, 

below the box on the whisker 10 percent quantile and minimum. And the segment line 
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with the 'x' mark presents the historical values. The preservation of the cross or serial 

relation in the generated data is checked through comparing a scatterplot. Half of the 

generated data sets (50 set) were used, as well as the historical data. Furthermore, the 

drought statistics with the yearly historical and generated data were compared with the 

boxplot. The employed drought statistics are the maximum drought and surplus amount, 

the longest drought and surplus length, and storage capacity with the historic mean as 

demand level. 

Moreover, multisite drought event statistics of the yearly data explained in 

Haltiner (1985) were calculated for the observed and generated data. The estimated 

statistics are mean run length (MERL), mean run-sum (MERS), max run length (MARL), 

and max run-sum (MARS), and storage capacity. Mean and max run length is the mean 

and maximum value of /(/) defined as the length of deficit at the il drought event. Mean 

and max run-sum is the mean and maximum value of S(J), that is the length of deficit at 

the ith drought event where S(i) is the summation of the deficit of all sites 

s 
S(i) = VS'*(/)for the ith drought event. Storage capacity can be estimated through the 

k=\ 

deficits described in Figure 3-A.5 with sequence peak algorithm (Louks et al., 1981). A 

different threshold level is considered for the water demand DQ for site k and unvaried 

through time. D\ is defined as the historic mean of site k ; multiplying threshold level 

(TL) ranged from 0.7 to 1.0 with 0.05 interval. 
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3.6 Results 

As it is mentioned, two sets of simulation tests were performed in order to verify 

the suggested GAMBB model. First, non-intermittent sites are applied to the hybrid and 

GAMBB model. Second, the combined sites are applied only to the GAMBB model. The 

results of each application are explained in the following two subsections. 

Before full application, to observe the effect of the Genetic Algorithm, MBB with 

KNNR matched block and variable block length (£[/] = 12) with GA and without GA 

were tested. Gamma KDE perturbation is not employed in this experiment. The one 

hundred set of the same record length multisite ([8, 16, and 20]) CRS data were simulated. 

The scatterplot between Moth8 of Site 8 and Site 20 is presented in Figure 3.3 for the 

model without GA (left) and Figure 3.3 for the model with GA(right). The significant 

difference can be monitored between two figures. It is obvious that the generated data 

without GA rarely simulate the new combination between sites. This implies that the 

multisite KNN models (Buishand and Brandsma, 2001; Yates et al., 2003) in literature 

will show the same feature and cannot produce the new combination of the generated 

data between sties. This behavior might be undesirable in that a data simulation model is 

built in order to explore any possible events that are unprecedented from the observed 

data. 

3.6.1 Model comparison for non-intermittent case 

For the first data set (non-intermittent sites: 8, 16 and 20 of CRS), the hybrid 

model (Srinivas and Srinivasan, 2005) and GAMBB model were applied. The hybrid 

model is the combining model with the lag-1 PAR and the bootstrapping of innovation as 
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it is explained in the review section. The applied block length for the innovation is 24 

months (two year period). For the GAMBB model, 12 months (1 year period) of the 

expected length of E[/] is employed. Site 20 data are presented as the representative result 

site if a statistic is separately estimated. Completed results can be found in Appendix C. 

The basic monthly statistics of site 20 are displayed in Figure 3.4 for the hybrid 

model and Figure 3.5 for the GAMBB model. Those statistics are shown from Figure 3-

A.6 to Figure 3-A.15. Most of the monthly statistics such as mean, standard deviation, 

skewness, and lag-1 correlation are well preserved in both models. However, minimum 

and maximum are not preserved in the hybrid model. In detail, the generated maximum 

can not be higher than the historical maximum especially in the later months of the 

seasons (i.e. after February). And the generated minimum can not be lower than the 

historical, especially right after February. To investigate the behavior of the hybrid model, 

the scatterplots are illustrated in Figure 3.6. In Figure 3.6, the historical data points for 

site 8 for month 2 and month 3 are presented with triangles and 50 sets of the simulated 

data from (a) the hybrid model and (b) the GAMBB model with gray circles and the same 

plot but with the month 8 and month 9 for (c) the hybrid model and (d) GAMBB model. 

The linear directional shape is shown in Figure 3.6 (a), which is the general characteristic 

in the hybrid model. Similar behavior is also shown in the local regression with KNN 

innovations developed by Prairie et al. (2007) and further investigated by Lee and Salas 

(2008). The synthetic data in this case are only generated from the directional lines. The 

GAMBB model, however, aptly reproduces the historical relation with local non-linearity 

(Figure 3.6 (b)). More importantly, the reasons of the underestimation of the minimum 

and the overestimation of the maximum are revealed here in Figure 3.6 (c). The generated 
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data from the hybrid model are not much different from the historical data in the later part 

of the season, here Month 8, as shown in Figure 3.6 (c). The reason is because the fixed 

block innovation of the hybrid model fits the monthly data into lag-1 PAR model such 

that: 

where $T and es
VT is the parameter and random component at month x and site s, 

respectively, and the stored random components s*VT are resampled at the generation 

procedure. Since the innovation is resampled with a two-year block, the whole months of 

the innovation in a year are generated from the same year of the historical data. The only 

difference of X"v r in generated data can be achieved fromX* r_x because ss
v r is taken from 

the resampling of the stored innovation. However, the synthetic data is recursively 

generated with the previous value; the difference from the historical data will be 

diminished along with the later portion of the months. In case of the higher $T value that 

is the lag-1 serial correlation in method of moment parameter estimation, the difference 

of the generated data from Xs
v t, the historical value, might propagate further down to the 

later months of the season. To the extent of the extreme case of $T is zero, the generated 

data is no different from the historical data through the next months of the year. Figure 

3.6 (d) shows that the GAMBB model properly preserves the locality and dispersion as 

the historical. 

The monthly cross correlations are well preserved at both models, as shown at 

Figure 3.7 (left) and (right), respectively. Lag-1 cross-correlations are also well preserved, 

as shown Figure 3-A.10 and Figure 3-A.ll. The yearly key statistics for both models in 
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Figure 3.8 (Hybrid) and Figure 3.9 (GAMBB), are well reproduced in both models, 

except lag-1 correlation. Even if the block length of the hybrid model is considered as a 

two-year period to preserve the interannual variability, there is still some underestimation 

on the lag-1 correlation (Figure 3.8). Meanwhile, the lag-1 correlation for the GAMBB 

model is better preserved, though the mean block length is half of the hybrid model 

(Figure 3.9). This is the effect of the KNN matched block selection. The underestimation 

of the lag-1 yearly serial correlation in the hybrid model affects the slight 

underestimation of the storage capacity in Figure 3.10(a). The drought, surplus, and 

storage statistics are slightly better preserved by the GAMBB model than the hybrid 

model (Figure 3.10 (a) and Figure 3.10 (b) for site 20). The other stations (site 8 and 16) 

behave the same as site 20. A reader refers to the figures from Figure 3-A. 16 to Figure 3-

A.19. The multisite monthly and yearly drought statistics with different threshold levels 

were estimated and presented in Figure 3-A.20 to Figure 3-A.25 for both models. The 

only storage capacity at 1.0 TL had some underestimation in the generated data from the 

hybrid model. 

Furthermore, negative values rarely occurred in the generated data from the 

hybrid model. It might not be significant in this case since the frequency of being 

negative is very small. However in case of the highly skewed data, this might be a serious 

drawback in that the streamflow data cannot be physically negative. Cross-correlation 

pairs of historical and generated data are shown in Figure 3-A.26 to Figure 3-A.31. 
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3.6.2 Application to the combined sites with intermittent and non-intermittent 

For the multisite model application, the intermittent sites 22 and 27 were applied, 

as well as the non-intermittent sites 21 and 24. The portion of the results sites 21 and 22 

(one for non-intermittent site and one for non-intermittent site) are presented here. 

Completed results can be obtained in Appendix C. The specification of the applied 

GAMBB model was the moving block bootstrapping model with variable block length 

E[/]=12. KNN matched block selection is also used in the model procedure. The applied 

Gamma KDE formulation is shown in Eq.(3-6), and Eq.(3-9) was employed for 

smoothing parameter estimation since the applied dataset is highly skewed. For the GA 

algorithm, tournament selection was applied, such that one with higher lag-1 correlation 

was selected with the probability 0.8. 

The basic monthly statistics displayed in Figure 3.11 and Figure 3.12 show that 

the model reproduced those statistics reasonably well for Sites 21 and 22. For Sites 24 

and 27, refer to Figure 3-A.32 and Figure 3-A.33. All the basic statistics are fairly well 

preserved through the GAMBB model for both sites. Also, the statistics of Sites 24 and 

27 are preserved well. The monthly minimum of Site 22 was always zero at each month 

in the historical and almost in simulated data except for a few cases in August and 

September of the generated data since the site is intermittent for all months, including 

zero values (Figure 3.12). This indicates that the model reproduced the intermittency in 

the historical data well. The lag-0 cross correlation was well preserved as illustrated in 

Figure 3.13, as well as lag-1 cross correlation (referred to Figure 3-A.34). The pair cross-

correlations, the correlation between a pair of monthly or annual data, were estimated and 

shown for Site 21 and 22 in Figure 3.14 (a) and (b), respectively. Most of all pair 
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correlations were well preserved as shown. The yearly statistics of the two sites were 

fairly preserved with some minor bias, as well as the other sites. Related results are 

shown from Figure 3-A. 3 5 to Figure 3-A.38. The yearly drought statistics for each site 

displayed in Figure 3.15 for Sites 21 and 22 were well preserved with the GAMBB model. 

Further results for the yearly drought statistics are shown in Figure 3-A. 3 9 and Figure 3-

A.40. Figure 3-A.41 and Figure 3-A.42 illustrate the pair correlation. The multisite 

drought statistics were also well preserved as shown in Figure 3.16. Figure 3-A.43 to 

Figure 3-A.48 shows the further multisite monthly and yearly drought, surplus, and 

storage statistics. The yearly cross-correlation in Table 3.1 was reproduced well in the 

generated data from the GAMBB model 

3.7 Summary and Conclusions 

In this paper, we made an effort to build the stochastic simulation model of the 

multivariate seasonal streamflow time series with the combination of intermittent and 

non-intermittent sites. So far, there is not much development for this study except in the 

generation model of the multivariate weather variable. The nonparametric technique, the 

moving block bootstrapping procedure, was employed for the suggested model in this 

paper. To this end, we developed some new features in order to yield more variable 

sequences, since one of the critical drawbacks for the nonparametric generation model is 

to generate only the same value as the historical, the repetition of the same seasonal 

pattern, and no variation spatially (the values are exactly the same as the historical site-

by-site). The new features were: (1) the variable block length - the aggregated values to 

annual or seasonal (in case of monthly generation) will be different from historical, (2) 
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KNNR block selection - the connection between blocks will be preserved, and (3) 

Genetic Algorithm mixture - spatially different sequences to historical will be generated, 

and (4) Gamma KDE perturbation - unprecedented values from historical will be 

generated. Overall, the developed model was built in order to generate as many 

unprecedented sequences as possible while preserving the statistical behaviors embedded 

in the observed data, such as key basic statistics and drought statistics. 

In application, the suggested model was compared with the hybrid model at first 

with the non-intermittent case since the hybrid model does not have the adoptability of 

the intermittency. The hybrid model has undesirable features, such as the directional 

relation in the generated data and the generation of the almost the same sequences as the 

historical, especially during the later part of the seasons. The suggested model, GAMBB, 

reproduces the basic and drought statistics that are estimated with various synthetic data 

sets that are unprecedented in the observed data. 

In case of the combination cases, the GAMBB model reproduces well the 

statistical features of the observed data such as the basic key statistics and drought, 

surplus, and storage statistics. It suggests that the developed model might be an attractive 

model for the combined case of the intermittency and non-intermittency in a reasonable 

manner. 
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Table 3.1 Initialized Population for GA with six strings and four populations 
No String Z f(Z)=ZA2 % of Total 
1 
2 
3 
4 

011010 

110100 

101000 

101011 

26 
52 
40 
43 

676 
2704 

1600 

1849 

9.90 

39.6 

23.4 

27.1 

Total 6829 100 

Table 3.2 Cross-correlation of Historical and Generated Yearly Streamflow 

His 
21 
22 
24 
27 

GAMBB 
21 
22 
24 

:: 27 
GAMKNN 

21 
22 
24 
27 

21 
1.00 
0.51 
0.60 
0.59 

21 
1.00 
0.53 
0.58 
0.55 

21 
1.00 
0.63 
0.66 
0.59 

22 
0.51 
1.00 
0.63 
0.62 
22 
0.53 
1.00 
0.68 
0.65 

22 
0.63 
1.00 
0.77 
0.73 

24 
0.60 
0.63 
1.00 
0.68 

24 
0.58 
0.68 
1.00 
0.70 

24 
0.66 
0.77 
1.00 
0.77 

27 
0.59 
0.62 
0.68 
1.00 

27 
0.55 
0.65 
0.70 
1.00 

27 
0.59 
0.73 
0.77 
1.00 
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XB(2) ~\XB(2,\)'XB(2,2yXB(2,3)) 

Historical 

Resampled 

X2S(7) —\XB(7,iyXB(7,2yX%J,3)) 

^0(1) _ V^6( l , l ) ' ^ ( l , 2 ) ' ^ ( l > 3) j l ^ (2 ) _%(2,l) '^B(2,2) ' J^fi(2,3)}1 ^8(3) - (^6(3 ,1) '^ (3 ,2) '^ (3 ,3)} 

Figure 3.1 Schematic representation of Block Bootstrapping with overlapping; the 
number inside each box presents time index; XBI,2 - the value of the first block and second 

element; 
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(a) (b) 
Figure 3.2 Sketch of the crossover process (a) and the mutation process (b) for GA with 
six strings and four populations; (a) From the original population (Table 3-1), population 
2 and population 4 is selected as reproduction and the items are exchanged from zero 
element to the crossover point, (b) from the new population, the second of the elements 
of the second new population is mutated 
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Figure 3.3 Scatterplot of one hundred generated data set (gray filled circle) with the same 
length as historical (triangle) from MBB without Genetic Algorithm (a) and with Genetic 
Algorithm (b), Site 8 (x-coordinate) and Site 20 (y-coordinate) for month 5 
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Figure 3.4 Key Statistics of Historical (dot line) and simulations (boxplot) with Hybrid 
for Site 20 of the Colorado River monthly streamflow Unit: Acre-feet 
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Figure 3.5 Key Statistics of Historical (dot line) and simulations (boxplot) with GAMBB 
for Site 20 of the Colorado River monthly streamflow Unit: Acre-feet 
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Figure 3.6 Scatterplot from Historical (triangle) and (a) Hybrid, (b) GAMBB simulations 

(gray filled circle) for month 2 and month3, (c) Hybrid, (d) GAMBB simulations for 
month 7 and month 8 (gray circle) of Colorado River site 20 
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Figure 3.8 Key Statistics of Historical (dot line) and simulations (boxplot) with Hybrid 
for Site 20 of the Colorado River yearly streamflow Unit: Acre-feet 
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Figure 3.9 Key Statistics of Historical (dot line) and simulations (boxplot) with GAMBB 
for Site 20 of the Colorado River yearly streamflow Unit: Acre-feet 
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Figure 3.10. Reservoir-related statistics from Historical (dot line) and simulations 

(boxplot) with (a) Hybrid and (b) GAMBB for Site 20 of the Colorado River yearly 
streamflow - maximum drought length, maximum surplus length, maximum drought 

amount, maximum surplus amount, and storage capacity (Unit: Acre-feet) 
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Figure 3.11 Key Statistics of Historical (dot line) and GAMBB simulations (boxplot) for 
Site 21 of the Colorado River monthly streamflow Unit: Acre-feet 
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Figure 3.13 Lag-0 cross-correlation between sites from the historical (circle) and 
GAMBB simulations (boxplot) of the Colorado River monthly streamfiow 

139 



1-11 2-10 3-10 4-11 5 - A 7-10 9-11 

(a) 

0.8 

| 0.6 

| 0.4 

" 0.2 

-0,2 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

w 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I 

1-11 2-10 3-10 4-11 5 - A 7-10 9-11 

(b) 
Figure 3.14 cross-correlation pairs of the historical and simulated data from GAMBB 
simulations (boxplot) and E[l]=12 of (a) the site 21 and (b) the site 22 at the Colorado 

River monthly streamflow. The label in x-axis (5-A) indicates the pair between month 5 
and annual data 

140 



x 10 x 10 

LengDr and LengSup 
1 2 

AmtDr and ArntSup 

(a) 

xlO" 

StrCap 

x1CT 

18 

16 

14 

12 

10 

8 

6 

4 

2 

Le 

• 

• 

ng 

_, ! 

- • 

r-L-i 

T 

•< 

_ 

-

^ 

[ . 
' 1 

1 2 

3r and Ler igSu 

1.6 

1.4 

1.2 
£ 

CO 
m 1 
C 
o 
O 

0.8 

0.6 

0.4 

P A 

• 

• 

t 

• 

. 

i 1 

> 

r ~<-

-t 

-

5 

, , 
1 2 

mtD r and Am tSuf 

4.b 

4 

3.5 
D

ra
ge

 C
a

p
a

ci
ty

 

to
 

i 
en

 
no

 

co 2 

1.5 

1 

0.5 

: • • - " " i 

• 

• 

U 
. 

I " ' " • - " _ 

-

y 

-

i 

1 
StrC ;ap 

(b) 
Figure 3.15 Reservoir-related statistics from historical (circle) and GAMBB simulations 

(boxplot) for (a) Site 21 and (b) Site 22 of the Colorado River yearly streamfiow -
maximum drought length, maximum surplus length, maximum drought amount, 

maximum surplus amount, and storage capacity (Unit: Acre-feet) 
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Appendix 3-A. Further Detailed Figures 
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Figure 3-A.l Sketch of the crossover process applied to MBB method; From the 
initial X, r , the part of the values is exchanged with the separately selected multisite data 

set X*t T. Unlike the basic GA, only one set of data are selected as the generated. 
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Figure 3-A.2 Sketch of the mutation process applied to MBB method. X *]T is selected 

from the k-nearest historical values. 
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Figure 3-A.3 Sketch of the tournament selection with crossover process applied to MBB 
method 
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Figure 3-A.4 Map of Colorado River System with twenty nine stations; the system is 
divided into two as the upper Colorado River basin (1-21) and the lower Colorado River 

basin (22-29); the map is obtained from Bureau of Reclamation (2007) 
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Figure 3-A.5 Graphical Representation of Multisite Drought Statistics : X, presents 

the time series for site k and time t, DQ is the water demand for site k and unvaried 

through time. This quantity is defined as mean of Xk
t multiplying threshold level (TL) 

ranged as 0.7 to 1.0 with 0.05 interval. And Sk (z) is the amount of deficit at kth site 
•th th and the i drought event and /(/) is the length of the deficit the i drought event. 
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Figure 3-A.6 Key Statistics of Historical (dot line) and simulations (boxplot) with Hybrid 
for Site 8 of the Colorado River monthly streamflow Unit: Acre-feet 
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Figure 3-A.7 Key Statistics of Historical (dot line) and simulations (boxplot) with 
GAMBB for Site 8 of the Colorado River monthly streamflow Unit: Acre-feet 

151 



K 10 x10 

Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug 

CO 

Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug 

x10u x10 

is 2 • 

0 

. 

• 

^ * - < - ^ 

A 

/ % " 

Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug 

ure 3-A. 8 Key Statistics of Historical (dot line) and simulations (boxplot) with Hybrid 
for Site 16 of the Colorado River monthly streamflow Unit : Acre-feet 

152 



x 10" 

1.5 

0.5 

0 

V 
/ 

- j — i — i — i i i i _ 

Oct Dec Feb Apr Jun Aug 

x10 

a 4 
CO H 

2r 

0 

i •' T - • ! ' -T ' T " • ' r— •' i - • • i —r • ! 

/T\ 
\ T 

4= 
_ j i i i i i i i— 

Oct Dec Feb Apr Jun Aug 

m 

Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug 

x10" 

js 2 

x10 

Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug 

Figure 3-A.9 Key Statistics of Historical (dot line) and simulations (boxplot) with 
GAMBB for Site 16 of the Colorado River monthly streamflow Unit: Acre-feet 
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Figure 3-A. 10 Lag-1 cross-correlation between sites from Historical (dot line) and 
simulations (boxplot) with Hybrid of the Colorado River monthly streamflow 
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Figure 3-A.l 1 Lag-1 cross-correlation between sites from Historical (dot line) and 
simulations (boxplot) with GAMBB of the Colorado River monthly streamflow 
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Figure 3-A. 12 Key Statistics of Historical (dot line) and simulations (boxplot) with 
Hybrid for Site 8 of the Colorado River yearly streamflow Unit: Acre-feet 
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Figure 3-A. 13 Key Statistics of Historical (dot line) and simulations (boxplot) with 
GAMBB for Site 8 of the Colorado River yearly streamflow Unit: Acre-feet 
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Figure 3-A. 14 Key Statistics of Historical (dot line) and simulations (boxplot) with 
Hybrid for Site 16 of the Colorado River yearly streamflow Unit: Acre-feet 
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Figure 3-A.15 Key Statistics of Historical (dot line) and simulations (boxplot) with 
GAMBB for Site 16 of the Colorado River yearly streamflow Unit: Acre-feet 

156 



x 10 x 10 

o 
o 

1 2 
LengDr and LengSup 

1 2 
ArntDr and AmtSup StrCap 

Figure 3-A. 16 Reservoir-related statistics from Historical (dot line) and simulations 
(boxplot) with Hybrid for Site 8 of the Colorado River yearly streamflow - maximum 
drought length, maximum surplus length, maximum drought amount, maximum surplus 

amount, and storage capacity (Unit: Acre-feet) 
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Figure 3-A.17 Reservoir-related statistics from Historical (dot line) and simulations 
(boxplot) with GAMBB for Site 8 of the Colorado River yearly streamflow - maximum 
drought length, maximum surplus length, maximum drought amount, maximum surplus 

amount, and storage capacity (Unit: Acre-feet) 
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Figure 3-A.18 Reservoir-related statistics from Historical (dot line) and simulations 
(boxplot) with Hybrid for Site 16 of the Colorado River yearly streamflow - maximum 
drought length, maximum surplus length, maximum drought amount, maximum surplus 

amount, and storage capacity (Unit: Acre-feet) 
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Figure 3-A.19 Reservoir-related statistics from Historical (dot line) and simulations 
(boxplot) with GAMBB for Site 16 of the Colorado River yearly streamflow -
maximum drought length, maximum surplus length, maximum drought amount, 

maximum surplus amount, and storage capacity (Unit: Acre-feet) 

158 



4 

3 

« 2 

x 10 

CO 

< 

0.6 0.7 0.8 0.9 1 

T [ V 
/ 

^ # - ^ 

frfr 
• 

W i 

0.6 0.7 0.8 0.9 

x 10 

0.6 0.7 0.8 0.9 

co 
cc 
LU 

0.6 0.7 0.8 0.9 
TL (Mon Multi) 

Figure 3-A.20 Multisite Monthly Drought Statistics of Historical (-x-) and Hybrid 
simulations (boxplot) of the Colorado River streamflow Unit: Acre-feet 
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Figure 3-A.21 Multisite Monthly Drought Statistics of Historical (-x-) and GAMBB 
simulations (boxplot) of the Colorado River streamflow Unit: Acre-feet 
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Figure 3-A.22 Multisite Seasonal Drought Statistics of Historical (-x-) and Hybrid 
simulations (boxplot) of the Colorado River streamflow Unit: Acre-feet 
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Figure 3-A.23 Multisite Seasonal Drought Statistics of Historical (-x-) and GAMBB 
simulations (boxplot) of the Colorado River streamflow Unit: Acre-feet 
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Figure 3-A.24 Multisite Yearly Drought Statistics of Historical (circle) and Hybrid 
simulations (boxplot) at the Colorado River streamflow Unit: Acre-feet 
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Figure 3-A.25 Multisite Yearly Drought Statistics of Historical (circle) and GAMBB 
simulations (boxplot) at the Colorado River streamflow Unit: Acre-feet 
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Figure 3-A.26 cross-correlation pairs of Historical (dot line) and Hybrid simulations 
(boxplot) of Site 8at the Colorado River monthly streamfiow. The label in x-axis (5-A) 

indicates the pair between month 5 and annual data 
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Figure 3-A.27 Cross-correlation pairs of Historical (dot line) and simulations (boxplot) 
with GAMBB of Site 8at the Colorado River monthly streamfiow. The label in x-axis (5-

A) indicates the pair between month 5 and annual data 
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Figure 3-A.28 cross-correlation pairs of Historical (dot line) and Hybrid simulations 
(boxplot) of Site 16 at the Colorado River monthly streamfiow. The label in x-axis (5-A) 

indicates the pair between month 5 and annual data 
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Figure 3-A.29 Cross-correlation pairs of Historical (dot line) and simulations (boxplot) 
with GAMBB of Site 16 at the Colorado River monthly streamflow. The label in x-axis 

(5-A) indicates the pair between month 5 and annual data 
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Figure 3-A. 30 cross-correlation pairs of Historical (dot line) and Hybrid simulations 
(boxplot) of Site 20 at the Colorado River monthly streamflow. The label in x-axis (5-A) 

indicates the pair between month 5 and annual data 
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Figure 3-A.31 Cross-correlation pairs of Historical (dot line) and simulations (boxplot) 
with GAMBB of Site 20 at the Colorado River monthly streamflow. The label in x-axis 

(5-A) indicates the pair between month 5 and annual data 
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Figure 3-A.32 Key Statistics of Historical (dot line) and GAMBB simulations (boxplot) 
for Site 24 of the Colorado River monthly streamflow 
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Figure 3-A.35 Key Statistics of Historical (circle) and GAMBB simulations (boxplot) for 
Site 21 of the Colorado River yearly streamflow Unit: Acre-feet 
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Figure 3-A.36 Key Statistics of Historical (circle) and GAMBB simulations (boxplot) for 
Site 22 of the Colorado River yearly streamflow Unit: Acre-feet 
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Figure 3-A.37 Key Statistics of Historical (circle) and GAMBB simulations (boxplot) for 
Site 24 of the Colorado River yearly streamflow 
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Figure 3-A.38 Key Statistics of Historical (circle) and GAMBB simulations (boxplot) for 
Site 27 of the Colorado River yearly streamflow 
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Figure 3-A.41 cross-correlation pairs of the historical and simulated data from GAMBB 
simulations (boxplot) and E[l]=12 of the site 24 at the Colorado River monthly 

streamflow. The label in x-axis (5-A) indicates the pair between month 5 and annual 
data 
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Figure 3-A.42 cross-correlation pairs of the historical and simulated data from GAMBB 
simulations (boxplot) and E[l]=12 of the site 27at the Colorado River monthly 

streamflow. The label in x-axis (5-A) indicates the pair between month 5 and annual 
data 
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Figure 3-A.43 Multisite Monthly Drought Statistics of Historical (-x-) and GAMBB 
simulations (boxplot) of the Colorado River streamflow 
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Figure 3-A.44 Multisite Seasonal (4 seasons) Drought Statistics of Historical (-x-) and 
GAMBB simulations (boxplot) of the Colorado River streamflow 
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Figure 3-A.45 Multisite Yearly Drought Statistics of Historical (circle) and GAMBB 
simulations (boxplot) of Site 21 at the Colorado River streamflow 
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Figure 3-A.46 Multisite Yearly Drought Statistics of Historical (circle) and GAMBB 
simulations (boxplot) of Site 22 at the Colorado River streamflow 
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Figure 3-A.47 Multisite Yearly Drought Statistics of Historical (circle) and GAMBB 
simulations (boxplot) of Site 24 at the Colorado River streamflow 
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Figure 3-A.48 Multisite Yearly Drought Statistics of Historical (circle) and GAMBB 
simulations (boxplot) of Site 27 at the Colorado River streamflow 
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CHAPTER IV 

NONPARAMETRIC STREAMFLOW DISAGGREGATION MODEL 

4.1 Introduction 

Stochastic generation models are required for drought analysis and reservoir 

planning of a complex river system in the hydrologic field. For analyzing a river system, 

a generation model of multisite data should be used in order to account for the cross 

effects among individual sites. Multivariate autoregressive (MAR) time series models 

have been employed in literature (Salas 1993) and for a seasonal multivariate time series, 

periodic MAR (PMAR). Since the seasonal time series model cannot reproduce the 

variability of the aggregated level, disaggregation models have been developed such as 

Mejia and Rousselle (1976), Santos and Salas (1992), and Valencia and Schaake (1973). 

The model with single site is mathematically described as 

Y = AX + B\ (4-1) 
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where Y is the seasonal data and X is the annual data, A and B are parameter matrices 

and V is the independent [d*l] vector with the standard normal distribution, and d is the 

number of seasons. A final requirement is the model met the additivity condition such 

d 

that X = y£JYi where Y = {l^}ie{1 d] . This parametric disaggregation model cannot 

/=i 

preserve the serial correlation between the last month of the previous year and the first 

month of the current year. Thus, Mejia and Rousselle (1976) included an additional term 

to fix the drawback as 

Y = AX + BY + CE (4-2) 

where C is the parameter matrix and E is the last seasonal value of the previous year. 

The parametric disaggregation models (Mejia and Rousselle, 1976; Valencia and Schaake, 

1973) , however, require estimating a tremendous number of parameters. For this reason, 

some parsimonious disaggregation models have been proposed by researchers (e.g. 

Stedinger and Vogel, 1984, Stedinger et al., 1985a and 1985b, and Santos and Salas, 

1992. Furthermore, Koutsoyiannis and Manetas (1996) developed a useful algorithm that 

combines two different models for two time scales, called the accurate adjusting 

procedure (AAP). For example, if yearly and monthly data are simulated from the lag-1 

autoregressive (AR-1) model and lag-1 periodic AR (PAR-1) independently, then this 

algorithm works to match two different time-scale sequences. Further details will next be 

described in the review section 

Those disaggregation models have significant drawbacks about which many 

researchers have mentioned (Prairie et al. 2007; Srinivas and Srinivasan 2006; Tarboton 
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et al. 1998) such as requirements of transformation, along with the assumption of the 

gaussian marginal distribution, bias of the statistics of the generated data; and generating 

negative values. To overcome the shortcomings of the parametric disaggregation models, 

a nonparametric disaggregation (NPD) model has been developed by Tarboton et al. 

(1998). Rotating disaggregate variables with the Gram-Schmidt orthonormal (GSO) 

matrix, the rotated data are generated from the kernel density estimate and the scaled 

aggregate variable is included as the last element of the rotated data. The data are back-

rotated to get the original domain. To avoid a massive multivariate kernel density 

estimate, Prairie et al. (2007) employed KNNB to select the GSO rotated observed data. 

In this paper, we will investigate the characteristics of the NPD model and reveal the 

similarity to AAP. Its drawbacks are revealed from the results such as no concern on the 

variability of each disaggregate variables and the same pattern of disaggregate variables 

as the historical data. Further detail will be explained later in the result section. To 

surmount those identified drawbacks, a modification of the NPD model along with a 

Genetic algorithm is suggested and tested. 

In brief summary for the following chapters, two fundamental nonparametric 

disaggregation models are reviewed in chapter 2. In chapter 3, the suggested model 

components and procedure are described. The data description and results is shown in 

chapter 4 followed by the conclusion and summary in chapter 5. 

4.2 Review of two existing disaggregation approaches 

Among various disaggregation approaches, two existing approaches are reviewed 

in this section, such as the accurate adjusting procedure (AAP) suggested by 
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Koutsoyiannis and Manetas (1996) generally used in parametric modeling, and 

nonparametric disaggregation model with KNN (Prairie et al., 2007), the cutting-edge 

technique of disaggregation models. At the end of this section, the similarity of these two 

models is explained followed by suggestions to introduce a new approach according to 

the weaknesses of these two models. 

4.2.1 Notation 

Disaggregation in stochastic simulation is a process that splits a higher-level (or 

aggregate) value into multiple lower-level (or disaggregate) values while preserving the 

statistics characteristic of both levels. For example, yearly data are disaggregated into 

monthly data, called temporal disaggregation and main stream station data are 

disaggregated into multiple substations, called spatial disaggregation. Lower-level 

variables (e.g. monthly) are denoted as Y = (Yl,...,Yd)
T where d is the number of 

disaggregate variables and X denotes the upper-level or aggregate (e.g. annual) variable. 

One of the most important features in disaggregation lexicon is the additivity condition, 

i.e. 

Yi+Y2+... + Yd=X (4-3) 

Also Z*will denote the generated data for the variable Z. The disaggregation 

approaches suggested in this paper will require initially choosing a candidate 

disaggregation variable set. Then the selected disaggregation variables are adjusted to 

meet the additivity condition. The generated candidate disaggregate variables are denoted 

as Y =[^*,72*,...,7rf*]7, and their sum denoted as X*. Note that the candidate lower-
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level variables may be generated from parametric models (e.g. MPAR) or from 

nonparametric procedures, e.g. using KNN. In the nonparametric case, the lower-level 

sequence candidates are drawn from historical data. In addition, aggregation and 

disaggregation can be conducted temporally or spatially. Generally our notations here are 

applicable for both. However, in some cases, we will use ys
VTwhere ,s=l,...,S represents 

sites with S total number of sites, v = 1,.., TV denotes years with N=total number of years, 

and T = \,...,CO represents seasons (or months) with co =number of seasons. 

Furthermore, juz and a7 are used to represent the mean and standard deviation of the Z, 

and az z represents the covariance between the variable Zx and Z2 . 

4.2.2 Accurate Adjusting Procedure 

Koutsoyiannis and Manetas (1996) developed a useful scheme for coupling two 

different level models for aggregate and disaggregate variables. The models for the 

aggregate and disaggregate variables are fitted independently and the data generation 

procedure proceeds as follows: 

(1) The aggregate data X*are generated from the corresponding higher-level model. 

Then, the d-dimensional lower-level data Y* = [Y',Y^ ,...,Y^ are generated 

from the lower-level model independently from the aggregate variable. 

(2) The sum of the disaggregate values are determined and the distance between the 

generated aggregate value X* is calculated as: 
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_* 7>* \X -X 
A = where X" - V Y* and cr^ is the standard deviation of the yearly 

<*x 

dataX 

(3) If s < A, where s is the tolerance level (0.1-1), then regenerate the disaggregate 

data set Y*. Otherwise the disaggregate data are adjusted with one of three 

adjustments such as proportional, linear, and power adjusting procedures to match 

up with the additivity condition in Eq.(4-3). These three adjustments are 

explained below. 

(4) The steps (1) ~ (3) will be continued until all the higher-level data are 

disaggregated. The adjusting procedures referred to in step (3) above may be 

proportional, linear, and power as: 

Yj=Y;+AJ(x
t-X') J=h..,d (4-4) 

l^'fr J=h..,d (4-5) 

Y*=Y;(riX,f<hl< ,j=U...,d (4-6) 

where A;. =<JY x I' <j2
x and rj. = juY I /ux 

The linear adjustment above preserves the mean and standard deviation as well as 

the variance-covariance matrix of the lower-level variables (Koutsoyiannis and Manetas 

1996). But negative values might be generated and higher order statistics such as 

skewness might be biased. Therefore, when disaggregate variables exhibit low skewness 
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(close to normal distribution) it is better to use the linear adjustment. Koutsoyiannis and 

Manetas (1996) derived the proof that the linear adjusted variables Y* in Eq.( 4-4) have 

the identical mean and variance-covariance matrix assuming that the mean and standard 

deviation of the aggregate variable are the same as those of the sum of the disaggregate 

variables. However, it is frequently not true and the variance of the summation of the 

low-level variables are underestimated when a direct lower-level model is applied (e.g. 

lag-1 Periodic Autoregressive model:PAR-l) since the covariance matrix of the lower-

level variables is not preserved with low-order PARMA model (Bartolini and Salas 1993). 

This is principle reasons to employ the disaggregation model instead of direct application 

of the lower-level model. 

Koutsoyiannis (1994) showed that the proportional adjusting is appropriate on a 

gamma marginal distribution with the same common scale parameter and different shape 

parameters for each disaggregate variable and independent each other. The assumption of 

independency might be relaxed from numerical tests. Generally monthly streamflow are 

skewed and can be fitted to a Gamma distribution. This distribution does not produce any 

negative values in any condition unless an aggregate or a disaggregate variable has 

negative values, which is the general case that the observed streamflow records are non-

negatives. Moreover, proportional adjusting is useful when disaggregate data include 

intermittent process, zero values between non-zero values. If a disaggregate value is zero, 

then the proportional adjusting retains zero unlike linear adjustment. The power adjusting 

procedure is useful in that it is the generalization of the proportional adjustment. But 

additional repetitions are required to meet the additivity condition since this will not 

initially preserve the additivity condition and it slows the generation procedure 
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(Koutsoyiannis and Manetas 1996). Therefore, the linear adjustment and the proportional 

adjustment are employed with different modeling structure in this study. 

The lag-1 Contemporaneous Periodic Autoregressive (CPAR(l)) model is applied 

to the lower-level data (e.g. monthly) in the paper (Koutsoyiannis and Manetas 1996). 

Specifically, they propose this model to preserve the skewness coefficient employing the 

parameterization into the random components. The parameterization for the CPAR(l) 

model with embedded skewness parameterization is still cumbersome, and easily 

generates negative values. Since CPAR(l) only accounts for lag-1 serial correlation, the 

long-term monthly correlation cannot be preserved. Therefore, as Koutsoyiannis and 

Manetas (1996) mentioned, the CPAR(l) model is not appropriate in cases where the 

snow-melt dominates streamflows, such as in the Colorado River System. And the lagged 

cross-correlations between sites are underestimated, since it approximates the dependent 

structure in variance-covariance matrix during parameter estimation procedure. 

4.2.3 Nonparametric Disaggregation model 

Tarboton et al.(1998) invented a nonparametric disaggregation (NPD) approach. 

The NPD model employed the nonparametric conditional density estimate as 

f(Y\X)= / ( Y ' X ) (4-7) 
\f(Y,X)dY 

The coordinates of the disaggregate variable vector are rotated into a new vector space 

Z-(Zl,...,Zd) using the rotation matrix ( Rdxd) obtained from the Gram Schmidt 

orthonormalization (GSO) such as: 
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Z = RY (4-8) 

The rotation estimation procedure of GSO guarantees that the last coordinate of a new 

vector space is aligned perpendicular to the hyperplane in Eq.(4-3). And, the last 

elements of the rotated variable Zd are the rescaling of X such as: 

Zd=Xl4d (4-9) 

GSO procedure is described in Appendix A with the example on d=2. Tarboton et al. 

(1998) used the multivariate density estimate of the rotated variable Z . Generating 

variable X separately from a desirable model, the multivariate kernel density estimate is 

used to generate the Z variables {Zx,...,ZdA) with the condition ofZd, which is obtained 

from variable Xas of Eq.( 4-9). Then the generated variables are back rotated by: 

Y = R Z = R r Z (4-10) 

to obtain the original disaggregate level data, where R ' = Ry , using a standard basis 

(see appendix A). 

Since the burdensome feature of the NPD procedure is using the d-dimensional 

multivariate density estimate, Prairie et al. (2007) employed the k-nearest neighbor 

bootstrapping (KNNB) technique (Lall and Sharma 1996). KNNB is used to select the 

Z variables obtained from the rotated historical data in place of generating from a 

multivariate density estimate. 

The generation procedure of the disaggregation model (Prairie et al. 2007) is 

summarized as: 
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(1) Estimate the R matrix according to the number of disaggregate variables 

referring to Eq.(4-Al) and (4-A2), and obtain the ZK ={ZvX,...,Zvd) variables 

from the historical variables as Eq.(4-9), where v -\,...,N and N is the record 

length. 

(2) An aggregate value is generated from the selected model such as 

ARMA(p,q),(Salas 1980), the modified KNN (Prairie et al. 2006) or KNN 

bootstrapping model (Lall and Sharma 1996), called X*. 

(3) K-nearest neighbors are obtained from the distance between Zd -X lyjd and 

Zvd (v = l,...,N). In other words, the K-closest values of Zvd to Zd are chosen 

among ./V number of Zv d. The K-neighbors are assigned weights as: 

w(i) = - ^ - i=l,2,.,K (4-11) 

. 7 = 1 

where the number of nearest neighbor is K = ^jN , and N is the sample size 

(Prairie et al. 2007). Subsequently, one of the weighted K-neighbors is randomly 

selected. The selection among K-neighbors is the random generation from the 

discrete weighted distribution from one to K and their probabilities to be selected 

are as of Eq.(4-ll). Roulette sampling can be also applied for this generation 

(Goldberg 1989). 
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(4) The remaining elements from Z* , Zx,Z2,...,Zd_A are taken from the 

th. corresponding values to Zd from step (3). For example, if the j year is selected 

th set Z* =(ZJ],ZJ2,...,ZJd_l,Zd) where Z,.is the rotated historical value at j 

year among N years and ith variable among d variables. And notice that dth 

element of Z* is replaced with Z*d obtained from step (3). 

(5) Back-rotate the Z* vector to original space as: 

Y*=R r Z* 

(6) Steps (2) to (5) are repeated until the generation length is met. 

This procedure is mathematically investigated for a two dimensional case. 

Mathematically (readers are referred to Appendix A), Z is described as: 

Z = RY = 
Un enYYA (\Ufd -\/JdYY^ f 

\e2\ e2lJ J2J 

l/vrf -l/vrf 
l/yfd \j4d KY2J 

Yj4d-Yj4d^ 

KYll4d+Y2l4d^ 

And, for replacing Zd with Z*d-X*Hd X*, Z 
Yj4d-Y2/4d' 

x' i4d 

From back rotation Y* =R r Z* 

Y = R r Z = 
' \j4d l/V^YFj I4d - Y2 /4d 
-l/Vrf l/yfdl X* l4d 

rYx-Y2 +X*^ 

d d 

r 
d j 

Y2~YX X* 
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By applying d=2, 

v72 + ( X * - X ) / 2 
(4-12) 

From Eq.( 4-12), it is noticed that the disaggregation procedure equally distributes 

the difference between the simulated aggregate value X* and the historical aggregate 

value X for each disaggregate values. Further investigation has been performed for the 

higher dimension of d, not included here. Logically, the procedure can be described 

differently as: 

With the simulated aggregate valueX*, find the historical disaggregate data set 

Y = (Yl5...,rrf) whose sum is close to X* employing K-nearest neighboring approach 

(Lall and Sharma 1996). 

The selected historical disaggregate data set is adjusted as 

Y = 

rY1+(X*-X)/d^ 
Y2+(X'-X)/d 

KYd+(X -X)ld 

(4-13) 

This simplified procedure is exactly the same as one from Prairie et al. (2007). 

This procedure, however, confronts significant consequences as: (a) The generated values 

might have negative values which are physically impossible to be produced in the 

directly measured records. Furthermore, it is not applicable for an intermittent streamflow 

case (zero values between non-zero sequences); (b) If the variance of the disaggregate 
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variables are significantly different from each other, overestimation of the variability in 

the disaggregate variables that have small variation might be yielded. And also, the 

variable with higher variance will be no different from the historical values. This might 

lead to overestimating minimum and underestimating maximum values, (c) In temporal 

disaggregation, the disaggregate values are selected only with the condition of the 

aggregate value of the current year. Subsequently, the correlation between the last month 

of the previous year and the first month of the current year cannot be preserved. 

4.3 Model Description 

The two disaggregation approaches presented are similar in that the distance 

between the aggregate generated value and the summation of the disaggregate generated 

values are estimated. And, the NPD with KNN (NPDK) performs the linear adjusting 

procedure (Eq.4-4) with the scaling factor X} -\ld for all disaggregation values 

(j=l,...,d). The major difference is that the NPD uses the KNNB technique (Lall and 

Sharma 1996) to find a close set of lower-level generated data values whose sum is close 

to the aggregate value while AAP employs the repetition process. The use of KNNB 

allows the NPDK model to capture nonlinear data distributions, which the AAP model 

cannot. 

From the investigation of the two disaggregation models in the previous chapter, 

we propose an algorithm that is able to surmount the shortages of both models such as: 

(1) not reproducing the long-term monthly correlation from CPAR(l) and degrading the 

cross-correlation from contemporaneous modeling in AAP, (2) not preserving the 
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correlation between the first moth of the current year and the last month of the previous 

year in temporal disaggregation and overestimating the variability in sites with relatively 

small variation in respect to lower-level data by NPDK, and (3) generating negative 

values which is not physically plausible for streamflow observation by both AAP and 

NPDK. Those shortcomings are visibly revealed in the results section. 

The main procedure proposed in this paper is the combination of two 

disaggregation models, AAP and NPD. The KNN matching process is employed to find 

the candidate disaggregate values, whose sum is close to the generated aggregate value. 

The adjusting procedure is followed to meet the additivity condition. Since the current 

disaggregate values are not connected to the previous disaggregated values of the 

previous year, a remedy for the linkage is made by including the last disaggregate value 

of the previous year in the lower level sequence selection. Since the current selection 

algorithm of disaggregate variable only reproduce the same historical pattern in a year, 

Genetic Algorithm mixture of the disaggregate variables is applied here suggested by Lee 

and Salas (2008). Overall, the objective of the disaggregation model development in this 

paper is to develop an algorithm that disaggregates the higher level data preserving both 

lower and higher level statistics of the historical data and generating new sequences with 

new seasonal and spatial patterns, as well as new values, not present in historical data. 

4.3.1 Combination of the NPD and adjusting procedure 

A combination of the NPD and APP disaggregation models is suggested to 

surmount the shortages of each model. The combined procedure first models the 

aggregate variable and generating independently and from the historical disaggregate 
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sequences of which summation is close to the generated aggregate value employing 

KNNR. Finally, the selected disaggregated values are adjusted to meet the additivity 

condition. The specific model procedure is as follows: 

(1) Generate an aggregate series from a selected model (e.g. KNNR (Lall and 

Sharma, 1996); the modified K-NN (Prairie et al., 2006); Shifting Mean Level 

(Sveinsson et al., 2003); ARMA). 

(2) The distance between Xt and the historical higher-level data XY is estimated 

where Xv is the historical aggregate value at year v . The distance is 

A„ - xt -xv 
v = l,...,N (4-14) 

(3) Among the smallest K-values of Av, where K - ^N (Prairie et al., 2007), one is 

selected with the random generation from the discrete weighted distribution 

(with the range from 1 to K) and their probabilities to be selected are the weights 

as Eq.( 4-11). If the j t h year is selected, the corresponding historical disaggregate 

values are assigned as the primary generated disaggregate 

valueYt =Y. ={Yjtl,YJ2,...,Yjd}. The disaggregate sequences whose sums are 

closer to X* have a higher probability to be chosen and vice versa according 

represented in the weights from Eq.( 4-11). 

(4) Then, the selected historical lower-level dataset Y; is adjusted with a linear or a 

proportional adjusting procedure as in Eq.( 4-4) or (4-5) to obtain the generated 

disaggregate set Y* = {T1*,F2*,...,Fj} whose sum is equal to X* from step(l). If a 
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linear adjustment is used, this disaggregation model is called Disaggregation 

with KNN and linear adjustment (KLA). And for the proportional adjustment, it 

is called KPA. 

(5) Steps (1) through (4) are repeated until the generation length is met. 

The number of nearest neighbors (K) can also be obtained with generalized cross 

validation. The heuristic method, K - ^N , has performed also well in the applications 

(Lall and Sharma, 1996; Yates et al. 2003). K takes important role for the variability of 

the resampled sequences. When K is smaller, the similar aggregate value of the historical 

to the generated aggregate variable will be obtained. However, the problem is that the 

variability of the disaggregate variable over the similar generated aggregate variable gets 

smaller. 

The suggested model in the previous section is not able to preserve the correlation 

between the disaggregate variables of the current year and those of the previous year. The 

same problem occurred when the first parametric disaggregation model had been 

developed by Valencia and Schakke (1973) as described already. A remedy to link the 

past with the disaggregate values by Mejia and Rousselle (1976) was to include the 

additional term for the disaggregate value of the previous year. 

In this nonparametric disaggregation process, it is easier to include the condition 

of the last month of the previous year. It only requires replacing the distance 

measurement in Eq.(4-14) with: 

\ = ̂ (x;-xJ+^2fcw-F^)2 (4-15) 
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where v = 2,...,N and^* l r fis the last generated disaggregate value of the previous 

generate year (t-l) and Yv_ld is the previous historical disaggregate value of the previous 

year for year v. And <p, and q>2 are scaling factor, and since the distance is measured 

with two different variables, the inverse of variance for each variable are generally 

employed such as \lcr2
x and \lo\ , respectively(Buishand and Brandsma 2001). This 

inclusion of the additional term allows preserving the relation between the last month of 

the previous year and the first month of the current year. Instead of the weighted 

Euclidean distance, Mahalanobis distance also can be applied (Wojcik et al. 2000). 

Notice that this distance measurement in Eq.(4-15) is applicable only to temporal 

disaggregation. Spatial disaggregation does not require this procedure. Instead, the 

distance in Eq.( 4-14) should be use. Even though, the suggested disaggregation approach 

is explained with the focus on the temporal disaggregation, it is basic to expand the 

process to comply with the spatial disaggregation. 

4.3.2 Mixing with Genetic Algorithm 

The suggested model, however, has a critical drawback because the repetitive 

seasonal patterns from the generated data might lead to a significant mistake in decision 

making. The repetitive seasonal patterns occur because during the selection procedure 

from KNN (step(3), chapter 3.1), the entire disaggregate sequence is selected as a block. 

This argument was previously discussed in Lee and Salas (2008), Porter and Pink (1991), 

and Srikanthan and Mcmahon (1980). The seasonal repetition is not desirable in that the 

purpose of stochastic simulation is to analyze the frequency of certain critical events, 

such as floods or droughts including their pattern which is unprecedented in the historical 
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dataset. In the paper (Lee and Salas 2008), the mixing process with the Genetic 

Algorithm has been proposed to overcome this problem. Here we also include this 

process in the disaggregation algorithm to avoid generating the same pattern as the 

historical. The cross-over algorithm is only GA process used among the three process, 

reproduction, crossover, and mutation. 

In the selection procedure from the k-values at step (3) of the previous section 3.1, 

another disaggregated sequence is selected , Y, = Y,. = {Yi{,Yi2,...,Yid} assuming that the 

il year is selected, so that two sets of lower-level data are chosen, denoted as 

Yt
l =Yj ={Yhl,Yj2,...,YJd} and Y2 =Yi={Yl^Yia,...,Yld} . The cross-over process of 

the Genetic Algorithm is performed with either random or competition selection. The 

random selection chooses one of two values for each lower-level data with equal 

probability while the competition selection chooses the one value having the better 

statistical characteristics, such as preserving the serial correlation better. For example, the 

random selection is performed with the disaggregate values by selecting 3^ or Yt] with 

equal probability where l=\,..,d. This can be done by generating a uniform random 

number (u), and if u < 0.5 choose Y^ otherwise choose Yt]. The competition selection is 

employed to increase the serial correlation of the generated data. The serial correlation 

will be increased by one of two values for which the correlation gets higher. In case that: 

Kj MY, K,t-\ MY 

GY, °Vi 
< 

*t,i MY, *t,i-\ MY 

°Y, °Vi 
(4-16) 
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choose Yt], otherwise choose Yt\ where l=\,..,d- And the other steps (4) and (5) are the 

same as the previous chapter 3.1 as well as step (1) through (2). 

4.4 Data description and Model Assessment 

To verify the suggested model, the Colorado River system is utilized. The 

Colorado River System is represented with 29 selected stations. The historical gaged data 

has been naturalized (Prairie and Callejo, 2005; 

http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html) for these 29 stations from 

1906 to 2003. Part of the data has been extended by Lee and Salas (2006) back to 1906 

employing the combination of the parametric linear regression and the nonparametric 

bootstrapping with trace selection method. The locations of the 29 stations are shown in 

Figure 4-1. 

The temporal and spatial disaggregations are tested separately. For temporal 

disaggregation, site 20 (Lees Ferry) yearly and monthly data have been used to validate 

the performance of the suggested model and compare to the model of Prairie et al. (2007). 

In Table 4-1, the basic monthly and yearly statistics of the historical data are presented. 

The last row of Table 4-1 illustrates the ratios of standard deviation for each month 

divided by the yearly data. This value indicates the percent of variance each month has 

over the total yearly variance. The months in wet seasons (JJA) explain most of the 

yearly variance while the months in dry seasons contribute little to aggregate (yearly) 

variance. The KNN with the Gamma kernel density estimate perturbation method (KGK) 

developed by Lee and Salas (2008) is employed for the yearly data simulation, called X*. 

The simulated yearly data have been disaggregated with NPDK and the suggested models 
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in this work. Five types of the models are tested: (1) Nonparametric Disaggregation 

model with KNN (NPDK). (2) Temporal Disaggregation with KNN selection and the 

linear accurate adjusting procedure - KLA; (3) Temporal Disaggregation with KNN 

selection and the linear accurate adjusting procedure with Genetic Algorithm- KLAG; (4) 

Temporal Disaggregation with KNN selection and the proportional accurate adjusting 

procedure - KPA; (5) Temporal Disaggregation with KNN selection and the proportional 

accurate adjusting procedure with the Genetic Algorithm - KPAG. 

To demonstrate spatial disaggregation, we use the tributary sites of the lower 

Colorado River System (sites 21, 22, 24, and 27). An index station is used whose 

streamflow value is the summation of these four sites. This index station is necessary for 

the additivity condition in spatial disaggregation. The monthly data of this index station 

are obtained from the temporally disaggregated data with proportional adjusting and 

genetic algorithm mixing and the yearly data are generated from KGK (Lee and Salas, 

2008) model. 

Two model schemes are tested for spatial disaggregation: (1) Spatial 

Disaggregation with Gram-Schmidt orthonormal rotation and KNN selection - NPDK 

and (2) Spatial Disaggregation with KNN selection and the proportional accurate 

adjusting procedure - KPA. Since the linear adjustment procedure employed in the 

suggested model may produce negative values especially in highly skewed data, only the 

proportional adjustment model is applied for testing. The former model is the 

disaggregation model of Prairie et al. (2007). Tributary sites of the lower Colorado River 

Basin (sites 21, 22, 24, and 27) were chosen to investigate model performance for the 

intermittent case such that some months have no streamflow (zero value). Those tributary 
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sites are arid regions where sudden thunderstorms are the main sources of the streamfiow. 

The data are highly skewed, not only in the monthly scale but in the yearly scale and the 

key yearly statistics are shown in Table 4-2. The ratios in the last row of Table 4-2 

signify that site 21 typically has the lowest contribution among those four disaggregate 

sites. 

One hundred sets of the generated series with the same length as the historical 

data are generated from each model. Various key statistics are estimated from the 

historical and generated data to verify the model performance such as mean, standard 

deviation, skewness, maximum and minimum, and lag-1 serial correlation at the seasonal 

and yearly time scale. A boxplot is employed to show the estimated statistics from the 

generated data. The end line of the box indicates the 25 and 75 percent quantile while the 

cross line above the box on the whisker denotes the 90 percent quantile and maximum, 

and the cross line below the box on the whisker denotes the 10 percent quantile and 

minimum. The segment line with the 'x' or 'o' mark presents the historical statistics. The 

preservation of the cross or serial relation in the generated data is checked through using 

a scatterplot. The generated data sets (100 sets) are used as well as the historical data, to 

display the shape of two relations, such as temporal and spatial relations. Furthermore, 

drought statistics with the historical and generated data are compared with the boxplot for 

yearly and monthly data. The employed drought statistics are the maximum drought and 

surplus amount, the maximum drought and surplus length, and storage capacity with the 

historical mean water demand multiplying various demand levels from 0.6 to 1.0. 
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4.4.1 Temporal Disaggregation 

From the five indicated temporal disaggregation models, the various test statistics 

are estimated and compared for the suggested and existing nonparametric disaggregation 

model. The results are followed. As mentioned, the aggregate variable is modeled with 

KGK. The basic and drought statistics of the historical and generated (SM model) yearly 

data are presented in Figure 4-C.l and Figure 4-C.2. The basic statistics of the simulated 

and historical data in the lower-level are shown in Figure 4-2 and Figure 4-3 for NPDK 

and KLA, respectively. The minimum and lag-1 correlation of KLAG and KPAG are 

shown in Figure 4-4. Full results of the basic statistics for KLAG, KPA, and KPAG are 

shown in Figure 4-C.3, Figure 4-C.4, and Figure 4-C.5. In Figure 4-2, the characteristics 

of the NPDK model (Prairie et al. 2007) is well presented there. The first significant 

aspect of the figure is the underestimation of the lag-1 serial correlation of the first month 

since the model has no model structure to link the past of the previous year with the 

disaggregate values. This shortcoming will be easily fixed by adding one more term in 

the disaggregate value selection in the suggested model, as in Eq.(4-15). The 

improvement of this feature on the suggested models such as KLA, KLAG, and KPA is 

clearly shown in the lag-1 correlation of Figure 4-3 and Figure 4-4. The correlation 

between the last month of previous year and the first month of the current year is fairly 

well preserved in the suggested models compared to NPDK model. The slight 

underestimation of the lag-1 correlation can be observed for the KLAG model in Figure 

4-4 (also in KPLAG, referred to Figure 4-C.5). The underestimation is because the 

Genetic Algorithm mixture disturbs the historical correlation with small magnitude and is 

the price to pay for employing GA mixture. The effect of GA mixture will be discussed 
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more on the later in this section. Also, the minimum values are sometimes negative even 

if it infrequently happens in NPDK model as shown in Figure 4-2. That is because NPDK 

uses linear adjustment with A,j=l/d and j=l,...,d as in Eq.(4-4). The months with low 

variability (NDJF) will be highly affected resulting in negative values. The KLA and 

KLAG models, however, do not produce any negative values in this case as in Figure 4-3 

and Figure 4-4 since the difference of the historical and generated yearly are 

proportionally distributed with the contribution of covariance. Linear adjustment is not 

preferable when the data is highly skewed because in that case negative values are highly 

likely. The KPA model guarantees that no negative values will be generated unless there 

are negative values in the aggregate variable or in the historical data. As shown in Figure 

4-4, the minimum value is better preserved with the KPA model. Thirdly, the minimum 

values in low flow months are underestimated, such as months NDJF, while some 

overestimation is observed in the higher flow months MJJ. Generally, overestimation of 

the minimum occurs when the simulation model cannot reach the historical minimum in 

generation and underestimation of the minimum occurs when the model has higher 

variability than the historical data. This is the nature of the NPDK model since the 

difference between the generated aggregate value and the summation of the selected 

disaggregated values is distributed equally without considering the degree of the 

variability of individual lower-level variables as shown in Table 4-1. Therefore, the 

higher flow months are not affected much from the adjustments while the lower flow 

months are highly affected and result in higher variability. This is the leading factor of 

the bias in the NPDK model. Some underestimations are shown with the KLA and 

KLAG models (Figure 4-3 and Figure 4-4) especially for June and July (JJ) with very 
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rare chance of generating negative values. Those months have higher variance so that the 

difference from the historical and generated data is weighted into these months. The KPA 

and KPAG models show better preservation of the minimum values (Figure 4-4 and 

Figure 4-C.5). 

In Figure 4-5, the standard deviation is closely investigated for the NPDK and 

KLA models. It is obvious that the standard deviation in NPDK is overestimated in the 

low-flow months, while it is properly reproduced in the KLA model. Underestimation of 

the variability is not present in high flow months MJJ although the historical mean is 

slightly above the median; therefore the variability is preserved appropriately with the 

KNNB procedure. Figure 4-6 indicates the evidence of low variation from the historical 

data pattern used by NPDK. The scatterplot in Figure 4-6 displays the relationship 

between month 8 (X-coordinate) and month 9 (Y coordinate), which are high flow 

months. The 100 generated data sets are marked with gray circles while the triangles 

represent the historical values. The generated data is always extremely close to the 

historical values in NPDK model. The scatterplot (Figure 4-6) reveals a weakness of the 

KLA model. The generated values have directional patterns induced from the linear 

adjustment. A similar feature is also observed in the KPA model, not shown. The 

Genetic Algorithm mixture suggested by Lee and Salas (2008) is employed to remedy 

this weakness. The generated data of the GA applied models on KLA and KPA (KPAG 

and KPAG) has appropriate spread through the data region while containing the historical 

relationships (Figure 4-6). The inclusion of the GA induces some underestimation of the 

lag-1 serial correlation as mentioned (Figure 4-4). 
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The densities of the historical and disaggregated data set are estimated with 

normal kernel and the asymptotic optimal bandwidth (Simonoff 1996) shown in Figure 4-

7 for Month 5 (February). In NPDK model, the density around the mode is 

underestimated while it is overestimated outside of mode, especially lower part. This 

indicates the overestimation of variance as mentioned for the NPDK model in Figure 4-5. 

Smaller magnitude of underestimation is observed in the KLAG model, which the 

Genetic Algorithm mixture causes. The density estimate of the other months is relatively 

well preserved for all models. 

Temporal pair cross- correlation of the historical and the models (NPDK, KLA, 

and KLAG) are shown in Figure 4-8. Some significant overestimation of the cross 

correlations are revealed for NPDK model (Figure 4-8 (a)), especially Months 1-6 which 

are low flow months. Notice that this is inconsistent with Figure 6 of the paper of Prairie 

et al. (2007), but the aggregate variable is generated from Shifting Mean model while in 

the paper the modified KNN model was employed. A parametric model (e.g. ARMA and 

SM) might generate values smaller than the historical minimum while a nonparametric 

model (especially employing resampling technique) is limited to generate the smaller 

than the historical minimum. Employment of the SM model propagates the variance of 

the cross correlation in low flow months different from Figure 6 of Prairie et al. (2007). 

The pair cross correlations are well preserved in the KLA model. Some significant bias is 

shown for the KLAG model. As mentioned, the GA mixture process disturbs the 

temporal cross-correlation even if the competitive selection with Eq.( 4-16) is used. This 

is a shortcoming of the GA mixture, but the GA mixture yields more variable sequences 
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as shown in Figure 4-6 and the long-term persistency is preserved with the aggregate 

variable. 

The ratios of monthly drought, surplus, and storage statistics for the historical and 

generated data are estimated to represent the long-term variability of time series. The 

behavior of those statistics depends highly on the aggregate variable (yearly data in this 

temporal disaggregation). The generated data of the temporal disaggregation model 

employs the same yearly data as the aggregate variable. In other words, there are not 

many differences that can be observed on the drought, surplus, and storage statistics even 

if improved representation is found with the basic statistics of both the KLA and KPA 

models. Detailed graphs related to these statistics are found from Figure 4-C.6 to Figure 

4-C.10. 

4.4.2 Spatial Disaggregation 

The mean and minimum of the generated and historical data for site 21 (the 

statistics for site 22 are shown in Figure 4-C.ll) are illustrated in Figure 4-9 for NPDK 

and KPA. The whole statistics are shown at Figure 4-C.13, Figure 4-C.14, and Figure 4-

C.15 for NPDK, KPA, and KPAG respectively. Significant biases are observed in all of 

the basic statistics of the generated data for site 21 from NPDK model (Figure 4-9). That 

effect is induced from the low-variability relative to the other sites highlighted in Table 4-

2. Among the four sites, site 21 has the lowest yearly variance. Also, a significant number 

of negative values are generated as shown in the minimum of the plot since the monthly 

streamfiow data is highly skewed in this semi arid region for sites 21 and 22. Meanwhile, 

the key statistics for sites 21 and 22 are well preserved with the KPA model except for a 
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slight bias in the lag-1 serial correlation and minimum. Similar behavior is obtained in 

the statistics of yearly time scale for site 21. There is no significant difference for the 

yearly key statistics between the two models for site 22 (Reader are referred to Figure 4-

C.17 and Figure 4-C.20). The cross-correlation of the historical and generated data is 

presented in Figure 4-10. The KPA model better preserves the cross-correlation than then 

NPDK model. In particular, the cross-correlation between site 21 and the other stations 

(site 22, site 24, and site 27) is not reproduced in many months for the NPDK model. 

Monthly and yearly drought statistics are estimated for historical and generated 

data with different demand levels (0.7-1.0). The ratios of the statistics for the generated 

data divided by historical data are illustrated for monthly (referred to Figure 4-C.23 and 

Figure 4-C.26) and for yearly (Figure 4-11 and Figure 4-12), respectively. The maximum 

deficit and surplus amount as well as the storage capacity at 0.7 and 0.8 demand levels of 

monthly drought statistics for site 21 are highly overestimated in the NPDK model while 

the KPA model preserves these statistics reasonably well. The same behavior is also 

indicated in the yearly drought statistics (Figure 4-11 and Figure 4-12). For site 22, there 

are no significant differences in the monthly and yearly drought statistics between the 

NPDK and KPA models (Reader are referred to the figures from Figure 4-C.25 to Figure 

4-C.28). 

4.5 Summary and Conclusions 

The stochastic disaggregation modeling is inevitable to analyze critical events 

such as drought for an entire river system. From reviewing the existing disaggregation 

models and uncovering the pros and cons of the current models, we suggest a useful 
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disaggregation model to overcome the shortcomings of these models. The suggested 

modeling procedures are: (1) to model the aggregate variable independently and generate 

the sequences; (2) to find two disaggregated data sets whose summation is close to the 

current aggregate value with KNNB; (3) to cross-over the two data sets with the random 

or competition selection from GA process and select one data set; and (4) to adjust the 

selected disaggregated sequences with linear or proportional adjusting according to the 

characteristics of the historical data set. We recommend the following: (1) in the case of 

data with high skewness and no negative values, the proportional adjustment should be 

used, such as the tributary stations of the lower Colorado River System; (2) in the case of 

data with small skewness and negative values, the linear adjustment is recommended, 

such as the intervening flows of the Colorado River System (Lee and Salas 2006). 

The temporal and spatial disaggregation has been tested using data from the 

Colorado River System. The testing results indicate that the suggested modeling 

procedure is reasonable at both sites with lower skewness and sites with high skewness 

and zero values (intermittent process). The specific conclusion from the results is that the 

proposed models overcome the drawbacks mentioned in the paper of Prairie et al. (2007) 

such as the inability to capture the correlation between the first month of the current year 

and the last month of the previous year and the proper preservation of the extrema 

( minimum and maximum). The former is overcome by including the variable of the last 

month of the previous year on KNN selection and the latter is done by the accurate 

adjusting procedure. Furthermore, the proposed disaggregation models have the ability to 

model the intermittent and non-intermittent variables jointly with the proportional 

adjustment. More variable sequences can be obtained using the Genetic Algorithm 
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mixture. A drawback employing this algorithm is the underestimation of cross correlation. 

But the aggregate variable holds the dependency structure so that the GA mixture is 

useful to apply in case more variable sequences are needed. 

The disaggregation procedure suggested in this paper can be used differently in 

the schematic disaggregation. For example, the CRS contains 29 stations. One single 

direct multivariate model is not a reasonable approach to use for the entire large river 

basin. The schematic approach would generate data of a few index sites with multivariate 

modeling, and then these index sites are spatially disaggregated to the tributary stations. 
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Table 4-1 Basic monthly and statistics of site 20 (month 1~ month 6) Unit: Acre-Feet 

Mean 
Std 
Skewness 
Lag-1 Corr 

Mv /Mx (%> 

Mean 
Std 
Skewness 
Lag-1 Corr 
f o v / a x (%) 

Mon 1 

580893 
272006 
1.6408 
0.5575 

6.2 
Mon 8 

3037199 
1146760 
0.2713 
0.5923 

26.3 

Mon 2 

480821 
141531 
1.2147 
0.7577 

3.2 
Mon 9 

4054340 
1572353 

0.4266 
0.6251 

36.0 

Mon 3 
382530 
95859 
1.2225 
0.8255 

2.2 
Mon 10 

2190444 
1012249 
1.1327 
0.8311 

23.2 

Mon 4 
356611 
78632 
0.59 

0.7032 
1.8 

Mon 11 

1083174 
423971 

0.9464 
0.7815 

9.7 

Mon 5 
393775 
97576 

1.4188 
0.5515 

2.2 
Mon 12 

671371 
309698 
1.9532 

0.6373 
7.1 

Mon 6 
645201 
211390 
1.0814 
0.4819 

4.8 
Yearly 

15076306 
4365301 
0.1402 
0.283 
100 

Mon 7 
1199946 
512460 
0.9605 
0.4699 

11.7 

f ay /ax represents the standard deviation of each monthly data over the one of the yearly 
data 

Table 4-2 Basic yearly statistics of tributary sites of lower Colorado River basin (sites 
21-24) Unit: Acre-Feet 

Mean 
Std 
Skewness 
Lag-1 Corr 

Mv M̂x (%) 

Site 21 
21118 
8313 

0.8392 
0.1465 

4.5 

Site 22 

180415 
140404 
2.0084 
-0.0384 

38.4 

Site 24 

169968 
88275 
1.6774 
0.0607 

36.2 

Site 27 

98190 
125025 
2.6731 
0.0608 

2.1 
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Figure 4-1 Map of Colorado River System with twenty nine stations; the system is 
divided into two as the upper Colorado River basin (1-20) and the lower Colorado River 
basin (21-29): Map from Bureau of Reclamation (2007) 
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Figure 4-2 Key Statistics of Historical (dot line) and NPDK simulations (boxplot) for Site 
20 of the Colorado River monthly streamflow 
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Figure 4-3 Key Statistics of Historical (dot line) and KLA simulations (boxplot) for Site 
20 of the Colorado River monthly streamflow 
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(a) KLAG (b) KPA 
Figure 4-4 Lag-1 correlation and minimum of Historical (dot line) and simulated data of 
KLAG (left) and KPA (right) for Site 20 of the Colorado River monthly streamflow 
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Figure 4-5 Standard deviation of Historical (dot line) and NPDK(left) and KLA (right) 
simulations (boxplot) for the dry months (October-March) Site 20 of the Colorado River 
monthly streamflow 
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Figure 4-6 Scatterplot from Historical (dot line) and (a)NPDK, (b)KLA, (c) KLAG, and 
(d) KPAG simulations (boxplot) at the Colorado River monthly streamflow; X-coordinate 
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Figure 4-7 Kernel Density Estimate with normal kernel of Month 5 of Station 20 of 
Colorado River system for (a) NPDK, (b) KLA, and (c) KLAG 
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Figure 4-8 Temporal pair cross correlations of historical (segment line) and generated 
data (boxplot) of (a) NPDK, (b) KLA, and (c) KLAG models for Station 20 of Colorado 

River. The x-axis sequence is 1-2,1-3,..., 1-12,1-A, 2-3,... Months are numbered 
according to the water year and A represents annual. 
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Figure 4-9 Key Statistics of Historical (dot line) and (a) NPDK and (b) KPAG 
simulations (boxplot) for Site 21 of the Colorado River monthly streamflow 
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and KPAG simulations (boxplot) of the Colorado River monthly streamflow 
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and NPDK simulations (boxplot) for Site 21 of the Colorado River monthly streamflow 
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Figure 4-12 Yearly drought statistics at different threshold levels of Historical (dot line) 
and KPA simulations (boxplot) for Site 21 of the Colorado River monthly streamflow 
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Appendix 4-A. Gram Schmidt Orthonormalization (GSO) 

Gram Schmidt orthonormalization procedure to obtain the rotation matrix with 

unit orthogonal basis vectors,R = (e1,e2,...,ed) is summarized as 

ed=(l/Jd,...,\/Jd} (4-A1) 

For 1 < j < d -1 (4-A2) 

k=j+\ 

where i, = (l,0,...,0)r,i2 = (0,l,...,0)r...,irf = (0,0,...,1)7 , lal is the norm of vector a, and 

a • b is the inner product of vector a and b. 

For example, if d=2 then 

e2=(l/V2,l/V2)F 

m 
vOy 

•GA/2.1A/2] 

e, = 
Vl/V2y 

ri/2 ^ 

AiA 

vOy ^ ^ » ; s 
v1/ vz-y 

1/V2 

'lA/2 ^ 
-1/V2" 

Therefore, 
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R 
'1/V2 -i/VT 
1/V2 1/V2 

and Rr = R"1 -
l/V2 l/V2 

-l/V2 l/V2 

Appendix 4-B. Example of Disaggregation with KNNR and linear or proportional 

adjustment 

A simple example of the suggested disaggregation model with KNNR and linear 

adjustment (KLA) or proportional adjustment (KPA) is shown below. The process is 

taken from the model procedure in Chapter 4-3. The employed generated data is the 

monthly streamfiow of Lees Ferry at Colorado River for the first 10 years as shown in 

Table 4-B 1. 

(1) Fit a model for Xt and generate from the fitted model (KGK model is 

employed), say the Xx =179.5 is generated at first. 

(2) The distances A„ = \X\ - X land v=l,...,10 is estimated as shown in Table 4-B2. 

(3) Among the smallest K-values of A„, where K - -\JN = 3, one is selected with 

the random generation from the discrete weighted distribution and its cumulative 

distribution {0.55, 0.82, 1.00} is compared with the generated value from 

uniform distribution, say 0.62. And the monthly data set of second year is 

selected as Yl =Y1914 ={6.7,5.4,...,7.8}, 
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(4) Then, the selected historical lower-level dataset Yt (the first second row of 

Table B3) is adjusted with a linear (the fourth row of Table 4-B3) or a 

proportional (the fifth row of Table 4-B3) adjusting procedure. For example, for 

linear adjustment 11.4+0.023*(179.5-190.8)=11.1 and for proportional 

adjustment 11.4*179.5/190.8=10.7 

(5) For the next year, say X2 =214.9, generated from KGK. The distances from 

Eq.( 4-15) is estimated as 

K=^{X; -xv)+(PI{Y;_U-YV_J 

= Vl/35.62(214.9-212.3)2+l/3.72(5.9-15.0)2 

= 2.46 

Notice that the first historical year is excluded since Yv_] d = Y0 u cannot be 

obtained. One is selected from the k-nearest neighbors {1909,1912,1911}. The 

monthly data set of the selected year is adjusted linearly or proportionally as 

shown in Step (4). 

(6) Step(5) is repeated until the generation length is met. 

The below steps are necessary when Genetic Algorithm mixture is employed. If from the 

steps (1)~(3), % = Y1914 ={6.7,5.4,...,7.8} is taken, then 
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(3-1) One more monthly set is obtained with KNNR that is close to Xx = V Yx, . 

The distances for KNNR are Av = \X] -Xv\ where v=l,..,N. Notice that X, is also 

included since the same monthly set as the current set Y, is possible to be selected. 

(3-2) From the cumulative weighted probability with K = VW = 3 as {0.55, 0.82, 

1.00}, one is selected from uniform random number [0,1]. Assume that the uniform 

random number 0.93 is generated, then the monthly data set of the third order (1914) is 

chosen for Y, = Y1914 and set Y, = Y, . 

(3-3) Two data set (Y, and Y / ) are mixed with GA as follows and create the new 

monthly data set, say Y, ' . Set the cross probability as 0.5 and a new data set is obtained 

with one by one. If the uniform random number u,. where i= 1,... ,d 

yGA = | ? U> < Pc 

[Yj2 otherwise 

For example, «, - 0.59 then Y™ = 6.7 . All the new data set Y, ' is presented in 

Table 4-B6 and Figure 4-B1. This new data set is linearly or proportionally adjusted with 

the Steps (4) and (5) and repeating as Step(6). 
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Table 4-B1 

1906 
1907 
1908 
1909 
1910 
1911 
1912 
1913 
1914 
1915 

Mean 
Stdev 

1 
4.6 
7.4 
6.1 
4.8 
6.8 
6.2 

11.4 
6.4 
6.7 
9.6 
7.0 
2.1 

.The 

2 
4.0 
5.0 
3.8 
4.0 
4.9 
4.5 
4.4 
5.3 
5.4 
5.3 
4.7 
0.6 

monthly data of Lees Ferry at Colorado River for the first 10 years 

3 
2.3 
3.5 
2.7 
3.1 
3.8 
3.5 
3.5 
3.1 
3.3 
3.3 
3.2 
0.4 

4 
2.4 
3.6 
2.8 
3.8 
2.9 
3.7 
3.5 
3.5 
3.7 
3.0 
3.3 
0.5 

5 
2.9 
3.8 
3.8 
3.2 
4.9 
4.8 
3.3 
3.1 
4.0 
4.0 
3.8 
0.7 

(10A5AF) 
6 
6.8 
7.9 
6.6 
7.6 

14.0 
9.0 
5.4 
5.2 
8.8 
5.3 
7.7 
2.6 

7 
12.0 
14.7 
10.4 
11.2 
17.3 
9.5 
9.0 

18.3 
15.9 
14.8 
13.3 
3.3 

8 
36.4 
27.0 
16.0 
33.5 
33.0 
29.2 
36.8 
32.7 
46.9 
24.3 
31.6 

8.3 

9 
50.1 
59.7 
29.2 
72.0 
31.0 
41.2 
61.5 
31.4 
63.0 
36.4 
47.6 
15.7 

10 
29.5 
51.0 
19.2 
41.1 
13.7 
23.5 
32.1 
19.8 
31.2 
21.5 
28.3 
11.3 

11 
16.1 
19.2 
11.2 
18.8 
8.7 

10.2 
13.6 
8.7 

14.1 
8.5 

12.9 
4.1 

12 
15.0 
9.6 
6.0 

15.3 
6.3 
5.9 
6.3 
7.0 
7.8 
5.3 
8.5 
3.7 

Yr 
182.1 
212.3 
117.7 
218.4 
147.4 
151.3 
190.8 
144.7 
210.7 
141.4 
171.7 
35.6 

Table 4-B2. The estimated distance between the historical yearly data and X} and its 
order 

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 

K 
Order 

2.68 32.87 61.73 38.95 32.10 28.22 11.35 34.75 31.20 38.09 
1 6 10 9 5 3 2 7 4 8 

Table 4-B3. The selected historical monthly data Y, and linear adjustment coefficient Xj 

and linearly and proportionally adjusted data 
Mon 
His 

h 
L.Adj 
P.Adj 

1 
11.4 

0.023 
11.1 
10.7 

2 
4.4 

0.011 
4.3 
4.2 

3 
3.5 

0.005 
3.5 
3.3 

4 
3.5 

0.004 
3.4 
3.3 

5 
3.3 

0.007 
3.2 
3.1 

6 
5.4 

0.023 
5.1 
5.1 

7 
9.0 

0.060 
8.3 
8.5 

8 
36.8 

0.210 
34.5 
34.6 

9 
61.5 

0.323 
57.8 
57.9 

10 
32.1 

0.189 
29.9 
30.2 

11 
13.6 

0.072 
12.8 
12.8 

12 
6.3 

0.036 
5.9 
5.9 

Table 4-B4. The estimated distances and its order 
1907 1908 1909 1910 1911 1912 1913 1914 1915 

K 
Order 

2.46 
8 

1.04 
7 

0.10 
1 

2.55 
9 

0.25 
3 

0.14 
2 

0.26 
4 

0.30 
5 

0.57 
6 

Table 4-B5. The estimated distance between the historical yearly data and Xx and its 
order 

A, 
Order 

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 

0 30.2 64.4 36.3 34.7 30.8 8.7 37.4 28.6 40.7 
1 4 10 7 6 5 2 8 3 9 

Table 4-B6. Monthly streamflow of year 1912, 1914, and the selected set from GA 
Month 1 2 3 4 5 6 7 8 9 10 11 12 

1912 11.4 4.4 3.5 3.5 3.3 
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1914 
Rand 

Selected 

6.7 
0.59 
6.7 

5.4 
0.33 
4.4 

3.3 
0.39 

3.5 

3.7 
0.67 
3.7 

4 
0.77 

4 

8.8 
0.87 
8.8 

15.9 
0.45 

9 

46.9 
0.36 
36.8 

63 
0.88 

63 

31.2 
0.58 
31.2 

14.1 
0.96 
14.1 

7.8 
0.23 
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Figure Bl. Monthly streamflow of year 1912, 1914, and the selected set from GA 
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Appendix 4-C. Detailed Figures 
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Figure 4-C.l Key Statistics of Historical (dot line) and KPAG simulations (boxplot) for 
Site 20 of the Colorado River yearly streamflow 
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Figure 4-C.3 Key Statistics of Historical (dot line) and KLAG simulations (boxplot) for 
Site 20 of the Colorado River monthly streamflow 
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Figure 4-C.4 Key Statistics of Historical (dot line) and KPA simulations (boxplot) for 
Site 20 of the Colorado River monthly streamflow 
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Figure 4-C.5 Key Statistics of Historical (dot line) and KPAG simulations (boxplot) for 
Site 20 of the Colorado River monthly streamflow 
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Figure 4-C.6 Monthly drought statistics at different threshold levels of Historical (dot 
line) and NPDK simulations (boxplot) for Site 20 of the Colorado River monthly 
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Figure 4-C.7 Monthly drought statistics at different threshold levels of Historical (dot 
line) and KLA simulations (boxplot) for Site 20 of the Colorado River monthly 
streamflow 
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Figure 4-C.8 Monthly drought statistics at different threshold levels of Historical (dot 
line) and KLAG simulations (boxplot) for Site 20 of the Colorado River monthly 
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Figure 4-C.10 Monthly drought statistics at different threshold levels of Historical (dot 
line) and KPAG simulations (boxplot) for Site 20 of the Colorado River monthly 
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Figure 4-C.l 1 Key Statistics of Historical and the model generated monthly data of the 
aggregate variable (KGK and disaggregation) for the tributary stations of Lower 
Colorado River 
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Figure 4-C.12 Key Statistics of Historical and the model generated yearly data of the 
aggregate variable (KGK and disaggregation) for the tributary stations of Lower 
Colorado River 
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Figure 4-C.13 Key Statistics of Historical (dot line) and NPDK simulations (boxplot) for 
Site 21 of the Colorado River monthly streamflow 
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Figure 4-C.14 Key Statistics of Historical (dot line) and KPA simulations (boxplot) for 
Site 21 of the Colorado River monthly streamfiow 
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Figure 4-C.15 Key Statistics of Historical (dot line) and NPDK simulations (boxplot) for 
Site 22 of the Colorado River monthly streamflow 
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Site 22 of the Colorado River yearly streamflow 
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Figure 4-C.24 Monthly drought statistics at different threshold levels of Historical (dot 
line) and KPA simulations (boxplot) for Site 21 of the Colorado River monthly 

streamflow 
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Figure 4-C.25 Monthly drought statistics at different threshold levels of Historical (dot 
line) and NPDK simulations (boxplot) for Site 22 of the Colorado River monthly 
streamflow 
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Figure 4-C.27 Yearly drought statistics at different threshold levels of Historical (dot 
line) and NPDK simulations (boxplot) for Site 22 of the Colorado River monthly 
streamflow 
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CHAPTER V 

DISAGGREGATION OF DAILY TO HOURLY PRECIPITATION 

5.1 Introduction 

The requirement of rainfall data of lower-level time resolution (daily, hourly) has 

been increased for the hydrological modeling and prediction, such as flood prediction and 

water quality assessment. Most precipitation data are measured with daily scale while the 

requirement of the detailed scale, such as hourly for detailed models, has been amplified. 

Relative shortage of hourly time scale hinders the task. Using measured daily 

precipitation data and their characteristics, some researchers have developed 

disaggregation schemes to fulfill the requirement (Hershenhorn J. and Woolhiser, 1987; 

Econonpouly et al, 1990; Bardossy, 1999). The developed approaches are applicable on 

the stationary basis through a day (24hours). But some sites, such as the Denver Airport 

site, have a significant diurnal cycle from a convective cyclic weather system through a 

day. The disaggregation scheme to consider the diurnal cycle would not have much 

attention. By the author's knowledge, no applicable disaggregation schemes with diurnal 

cycle have yet been presented in the literature. Therefore, the objective of this paper is to 
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develop and present the appropriate disaggregation schemes for daily rainfall to hourly 

rainfall with the diurnal cycle, to apply the schemes on different cases, and to investigate 

and compare the statistical behaviors of the schemes. 

Daily rainfall disaggregation models can be applied to three cases in terms of the 

availability of daily rainfall data. The first case is for simulation. In this case, the 

complete hourly data exist for the entire year, obviously, as well as daily. Therefore, we 

can simply generate the daily rainfall and disaggregate the data into the hourly rainfall. 

The purpose of this case is rather different than the others. The second case is that only 

some portion of the hourly data is missed, while the entire daily data subsist. The goal is 

to disaggregate the daily data that the hourly data are missing. The third case is that only 

the daily rainfall data exist so that the disaggregation should be performed using the 

hourly rainfall characteristics of other sites, which have climatologically and regional 

proximity to the target site. In the application, we assumed that a portion (the second 

case) or all data (the third case) are missing so that we could check the model 

performance employing the difference between the model value synthesized from the 

proposed disaggregation model and the historical value and their statistical characteristics. 

In Section 2 the history and developments of the disaggregation models are 

discussed and in Section 3 and 4 data and model description are shown, respectively. In 

Section 5 model performance and comparison are presented and followed by conclusive 

remarks in Section 6. 
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5.2 Literature Review 

Daily rainfall disaggregation models have been developed and tested by 

researchers. The main categories could be as follows : the distribution-based approach, 

point process based approach, stochastic precipitation method using stored data, adjusting 

schemes, neural networks, and scaling cascade models, etc. 

Betson et al.(1980) described a model to disaggregate daily rainfall into hourly 

rainfall. It requires a large number of transition probabilities. For the parameter-efficient 

model, Hershenhom and Woolhiser (1987) and Econonpouly et al. (1990) developed a 

distribution-based approach. The method disaggregates daily rainfall into individual 

storms and simulates the number of rainfall events in a day and the amount, duration, and 

starting time of each event conditioned on the amount of that day and the preceding and 

following days. The model is fitted on the Walnet Gulch Experimental Watershed No5. 

The estimated parameter was used to fit the model for the other sites near the site 

presenting the applicable results according to 5% of the Kolmogorov-Smirnov significant 

test for the distributions. Arnold and Williams (1989) and Lane and Nearing(1989) 

proposed a simple model to simulate half hourly rainfall intensity from daily rainfall 

using a double exponential function to determine breakpoint. The disaggregation model 

assumes daily rainfall falls in only one event. Connolly et al (1998) used a similar 

methodology as Hershenhom and Woolhiser(1987) but with a different distribution 

function. For a number of events Poisson distribution was applied and event duration 

with gamma distribution, event amount with exponential distribution, event starting time 

with beta distribution, and break point intensity within each event- double exponential, 

respectively. The approach was fitted on Biloela and Katherine data in Australia. 
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Accuracy of the model was determined by comparing the measured and simulated event 

characteristics and cumulative rainfall kinetic energy given in Rosewell(1986). The 

model was a reasonably accurate prediction of peak rainfall, so that it was adequate for 

input to infiltration and runoff models, while the accurate parameterization required 

enough high quality data. 

A stochastic precipitation disaggregation method was developed to enforce the 

Upper Charles River Watershed by Socolofsky et al.(2001) using an hourly gauge near 

the watershed, the Logan Airport gauge. The method relies on measured hourly data in 

the same climatological regimes as the daily data to be disaggregated and samples the 

measured hourly data directly applied from the Logan Airport gauge. Therefore, the main 

task of this approach is to select appropriate event statistics from the nearby Logan hourly 

events database so that they sum to the daily total rainfall recorded within the watershed. 

It concludes that the technique performs well in supplying hourly rainfall data for use by 

continuous simulation watershed models and disaggregating distant gauges in a similar 

climate regime without any concern on diurnal cycle. Further, Choi et al. (2008) tested 

this model through the Texas region with slight modification. 

Some researchers have developed the disaggregation scheme of daily rainfall 

based on the point process model (Glasbey et al, 1995; Koutsoyiannis and Onof, 2001; 

Cowpertwait et al., 1996). Glasbey et al. (1995) studied the disaggregation of daily 

rainfall by simulating long sequences of hourly data based on the Rodrigues-Iturbe et al. 

(1998) model and comparing the daily totals between all generated days and choosing the 

best match and then rescaling to match the daily total. The method applied to Edinburgh 
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(Turnhouse) and it was concluded that the model simulated realistic hourly data, while it 

does not involve the diurnal cycle. 

Koutsoyiannis and Onof (2001) developed the model based on the Bartlett-Lewis 

process, adjusting the hourly values to obtain the required daily values. The adjusting 

method has been studied by Koutsoyiannis (1994), and Koutsoyiannis and Manetas 

(1996) such as proportional adjusting, linear adjusting, and power adjusting for different 

time scales. They also applied the lag-1 Gamma Autoregressive (GAR(l)) model to test 

the performance of the adjusting method revealing that, by some distant allowance 

between the value of the total sum of hourly generated rainfall and the target daily value 

to disaggregate, the process worked reasonably well. The performed scaling analysis with 

different aggregated level showed that the method reproduced most of the important 

statistics like variance, skewness, lag-1 autocorrelation, and dry probability, as well as 

mean, but no consideration on diurnal cycle. 

Bo et al. (1994) performed the disaggregation of rainfall time series using 

Bartlett-Lewis rectangular pulses fitting on central Italy and Kentucky in the U.S. and 

remarked that the upper limit for the disaggregation scale for the model would be two 

days and these characteristics are related to the power law dependence of the power 

spectrum for timescales smaller than two days. 

Bardossy (1999) developed a disaggregation scheme with three steps. First, the 

number of wet sub-periods is generated, conditioned on the total daily amount using the 

Polya distribution. Second, with Aitchisons relative distributions the relative precipitation 

amounts are generated arbitrarily. Finally, the generated amounts are rearranged to match 
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the autocorrelation function and the scaling properties using Markov Chain Monte Carlo 

(MCMC) based on Metropolis Hastings algorithm. Furthermore, Additional information 

such as atmospheric circulation patterns was taken into account for the disaggregation to 

improve the reproduction properties. The model was applied into Essen and 

Hennetalsperre in the Ruhr catchments (German). It disclosed that the scheme reproduced 

the autocorrelation function and the scaling properties properly. Furthermore, Bardossy 

and his colleagues have been using the Simulated Annealing (SA) to generate a 

precipitation time series (Bardossy 1997, 1998), and to disaggregate monthly to daily 

(Guenni and Bardossy 2002). In the papers, the objective was focused on fitting the 

scaling characteristics into historical data rather than periodicity or cycle. 

The Neural Networks technique has been used to disaggregate the hourly rainfall 

data into sub-hourly time increments by Burian et al (2000,2001,2002). The model 

performed 15-min rainfall depth by training with performance measures such as signal-

to-noise ratio. But this method does not include the intermittency in subdividing the 

hourly rainfall. Furthermore, Olsson J. et al (2004) used the Artificial Neural Network 

(ANN) to forecast a 12-hr period mean rainfall with wind speed at 850 hpa and 

predictable water. They separated the Neural Network approaches into two parts such as 

the intermittency and variability, and after each prediction, they were combined. The 

approach was applied into the Chikugo River basin in Japan. It concluded that two NNs 

in series improved the reproduction of intermittency and better performance during 

winter and spring than summer and autumn. 

Scaling cascade models are applied for the rainfall disaggregation by Olsson 

(1998), Olsson and Berndtsson(1998), and Guntner et al. (2001). This model operates by 
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dividing each rainy time period into halves of equal length and distributing the rainfall 

volume between the halves. It was shown to reproduce the important fundamental 

characteristics such as the division of rainy and dry periods and the scaling behavior 

using the power spectrum, respectively. But the diurnal cycles could not be taken into 

account by the scale invariant properties, and for the halving characteristics of the model, 

the starting time interval should be not be the day but the value corresponding to power 

of 2 requiring a smaller scale data set. These multifractal random cascade approaches 

treat the data as a realization of a stochastic process possibly not being able to account for 

the uniqueness of the data set used. To overcome this problem, the notion of deterministic 

chaos and the related methods of data processing has been developed by Sivakumar et 

al.(2001) 

In this study, among many of daily rainfall disaggregation models, the stochastic 

disaggregation methods are investigated and enhanced in order to preserve the diurnal 

cycle in hourly data as well as the basic statistics. 

5.3 Model Description 

Three stochastic models for disaggregating daily rainfall data into hourly are 

utilized and compared extensively for estimating hourly precipitation from daily. They 

are; (1) Conditional Markov Chain and Simulated Annealing based method (CMSA); (2) 

mixed periodic discrete autoregressive with gamma autoregressive PDAR(1)-GAR(1) 

model with Accurate Adjusting (PGAA); and (3) Stochastic selection method with 

Weighted Storm Distribution (SSMW). In describing the methods, we will use the same 

(or similar) notation as much as possible. 
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We denote by Dd the daily precipitation amount and ydr is the hourly 

precipitation (amount) where d represents any particular day and r represents any 

particular hour (of the day). They are related as: 

24 

^ = ! > „ , , (5-1) 

Also, we will use D*d to denote the precipitation occurrence of a given day, i.e. D*d = 1 if 

precipitation occurs, otherwise Dd = 0. 

5.3.1 Conditional Markov Chain and Simulated Annealing (CMSA) 

This method consists of two basic components. The first one accounts for the 

occurrence of hourly precipitation using conditional Markov Chain, that is, we use a 

transition probability for hourly precipitation conditioned on the daily state. The second 

component determines the amount of hourly precipitation. For this part we modified 

substantially the simulated annealing approach utilized by Bardossy(1997). His approach 

uses simulated annealing for determining the hourly precipitation occurrence and amount 

geared to preserving the source type of the scaling feature of precipitation. However, 

because our objective is to estimate hourly precipitation where the daily cycle may be a 

relevant feature, Bardossy's simulated annealing approach had to be modified. First of all, 

as indicated above, we used a different approach for determining the occurrence of hourly 

precipitation. Secondly, we used more realistic probabilistic model for fitting the 

transformed ratios of precipitation amounts and different objective functions so that the 

daily cycle can be accounted for. Thirdly, Bardossy (1997) used Polya distribution to 

define the number of wet hours connected with the aggregated daily amount. We tried the 
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same procedure but it was hard to deal with the daily cycle later on the simulated 

annealing. Instead, the following occurrence procedure was developed to handle the 

number and time of wet hours. 

Occurrence Process 

Natural hourly precipitation occurs whenever some amount of precipitation 

occurs in a given day (and vice versa). Because hourly precipitation is auto-correlated, 

we will use a Markov Chain for the modeling occurrence of precipitation at a certain hour 

conditioned on the state in the previous hour and the state of the corresponding day as 

follows: 

PIJ(T) = P{xd^j\xd^=i,D*d=\} (5-2) 

where i, j =0,1 and Dd = 1 if Dd>0, otherwise, D*d =0 . x^ris whether the current day 

(d) at a certain hour (x) is rainy or not In addition, the conditional limiting distribution is 

denoted as 

PJ(r) = P{xd=j\Dt
d=\} (5-3) 

The referred probabilities are estimated by counting. For instance, Py(r) is estimated by 

n{Xj r = 11 x,, T , = i, D*, = 1} 
(r) = "•'-' ' (5-4) 

niXd,r-l = * I Dd = 1} 
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where for example n{xd z = j \ D a - 1} is the number of times in a certain day d where 

precipitation occurred, the precipitation during the hour t is in state j given that the 

precipitation in the previous hour was in state i. Thus, the generation of the precipitation 

occurrence can be executed without trouble using the foregoing conditional transition 

probabilities. 

Precipitation Amount 

The daily precipitation amount must be divided into hourly quantities in such a 

way that their sum add up to the daily quantity. For this purpose, a transformation 

procedure (partition) suggested by Aitchison (1982) is employed. Three logistic 

transformations such as additive, multiplicative, and hybrid were described by Aitchison 

for compositional data. Here, the hourly precipitation data are transformed using additive 

logistic transformation. The hourly data are described as the ratios of daily data with the 

condition that the sum of ratios adds to unity in each day. Bardossy(1997) first applied 

Aitchison's procedure by fitting the normal distribution to the log-transformed region. 

Instead we fit a gamma distribution because of the fact that the ratios and the logs of the 

ratios are skewed. In our application, the maximum among the ratios in a certain day is 

specified so that the transformed data are bounded in a negative side and possible 

distributions to fit such bounded data are the gamma or log-normal. Obviously, the 

mathematical description as shown below applies only for the case where D*d = 1. 

Assume that in a given day there are k hours of precipitation (not necessarily 

continuous). For example, Fig 1. shows a precipitation occurrence where k=3 and 
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precipitation occurrence at times z =12, 17, and 18. In this case there will be three non­

zero precipitation amounts ydn,ycni,ydn- Consider the ratios 

D 
Rj=

:~,rK..^ (5-5) 
d 

where R} is defined only when ydT > 0. Then, 

7=1 

In addition, let 

Wj =\og^- , j = l , . . , k (5-7) 
max 

whereRmax =max(R1,....,Rk) and Wj<0. Although the normal distribution has been 

used to represent W} (e.g. Bardossy, 1997), it is restricted because JF. is bounded (i.e. 

Wj < 0 ). Thus, instead of the normal, the gamma distribution will be used (i.e. 

-Wj ~Gamma(a,/3)). The parameters may be estimated from the data based on the 

method of moments or maximum likelihood (Kottegoda and Rosso, 1997). Notice that 

among Wj(j=l,...,k) there is one zero value when Rmax = J?.. This zero is always occurred 

at the hourly rainfall in a rainy day. This zero should be excluded in fitting and 

generation. Therefore, the number of the fitted k values for W.(j=l,...,&) are k-1 at each 

rainy day. 
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From the model of the precipitation occurrence process, it is clear that occurrence 

and the specific times (hours) of such occurrence on a certain day are defined. Then, 

each portion - Wj can be generated from the gamma distribution and retransformed to 

get Rj. Note that only k-1 values of R need to be generated because i?max can be acquired 

with the condition at (5-6). For example, if k=3, -H^and -W2 are generated from 

gamma distribution, then set R{, R2, and R3 = Rmm and from Eq.( 5-6) 

- ^ - = exp0F,) j=l,-. ,k-l (5-8) 
max 

and we need one more equation to obtain the values (Rl} R2, and R3 = Rimx). The 

unity condition in Eq.( 5-6) can do this role. Therefore from simple mathematics, 

l + j>xp(FT,) 
7=1 

and 

RJ=Rmexp(fVJ) (5-10) 

The procedure is illustrated in Figure 5.1, where a unit daily amount is divided 

into three hourly portions. Notice that R3 is not necessarily i?max. It is just ordered for 

convenience. For example, one can distribute Rmm in any place (e.g. R2 can be Rmax). 

A suitable distributing scheme of the hourly precipitation amount is needed to 

account for the diurnal cycle in statistics such as the mean, variance, and skewness. This 
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will be accomplished by using Simulated Annealing (technique). The values of hourly 

precipitation will be rearranged and successively verified so that the final arranged values 

will preserve the main statistics and the diurnal cycle. Simulated annealing (SA) is based 

on the Metropolis algorithm. The following will give a brief sense on the Metropolis-

Hastings and the Metropolis algorithm, which will be used in simulated annealing. 

Let us assume that f(z) is the distribution (density) of interest, where z is the 

value of the variable such that generally z e R and R represents the real domain. The goal 

will be sampling z from the distribution/(z). Once the random variable is generated, 

further statistical analysis can be performed over the generated values such as mean, 

standard deviation, and skewness. Commonly, the distribution f(z) knows the analytical 

form but the distribution f{z) cannot be generated from a general method. Therefore, an 

indirect type of approach is suggested to generate the variable z from the density f(z). 

From the general generation method, such as the rejection method, (1) a random variable 

is generated from another distribution, say a proposal distribution ; (2) the generated 

value is kept or rejected with certain probability; and (3) if it is rejected, then the previous 

value is selected instead for current generation value. The procedure can be described as 

follows: 

(a) Initialize the iteration counter to i=l and the chain to z°. The initial value 

z° is selected within the domain R . 

(b) Generate a proposed (or candidate) value z* from the proposal distribution 

denoted as q(z* \ z'~x) . Notice that we use notation z* instead of z' because 
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it is not fixed at this point. In other words, the value is just a candidate at this 

step. The proposal distribution should be a distribution easy to generate. A 

uniform distribution with some range at the center of z(,_1) is generally used, 

i.e. q(z* | z''1) ~ Unif[z'~l + a,z'~l - a], where a is the certain range such as 

1. 

(c) Evaluate the acceptance probability as follows to determine whether to 

choose the candidate or not. 

i ,(z*,zM) = min 

Here, if the proposal distribution q(z* \z'~l) is symmetric (i.e. q(z'"] \z*) = 

q(z* {z'"1), typically it is true (e.g. uniform case)), then the acceptance 

probability is reduced to: 

P(z\zi~l) = mm 

If Eq.( 5-12) is used for the acceptance probability instead of Eq.( 5-11), then 

this total procedure (a)-(e) is called Metropolis algorithm instead of M-H 

algorithm. In this case, the acceptance probability depends only on the ratio 

of the target distribution f(z*)l f(z('~l)). 

(d) Setzi=z* with probability P(z*,z('~l)) and Zj= z(,_1) otherwise 

(e) Iterate (b) to (d) until the desired number of sampling values are obtained 
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1, ./u) 
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From this algorithm, the sampling values from the desired density f(z) of 

interest are obtained. More detail will be found at Press (2003) or Gelman et al. (2003). 

Different from Metropolis or M-H algorithm, simulated annealing is used as an 

algorithm to find a value or location to minimize or maximize a certain objective function 

instead of generating a complex density. But the procedure is almost identical to the 

Metropolis algorithm. From the example in Figure 5.1, since we already know in which 

hour the rain occurs, the only necessary step is to rearrange those three values sot that the 

diurnal cycle in the key statistics is preserved from the generated data. To achieve this, 

two values among three as in Figure 5.1 are selected. Say, i^and i?3 are selected. Then, 

decide whether ' R{ = R3 and R3 = R^ or leave it as it is ' Ri = R{ and R3 - R3'. Simulated 

annealing is employed here to determine whether two selected precipitation amounts 

greater than zero are switched or not. In a certain rainy day for more than one occurrence 

hour, two precipitation amounts are selected randomly and determined from simulated 

annealing whether the value is switched between each other or not, probabilistically. The 

specified target distribution for the simulated annealing is aimed at maximizing an 

objective function. The target distribution commonly utilized has the form 

f0(0) = K(T)exVi-0/T) (5-13) 

where Ois an objective function and T is the temperature T, and K(T) is the constant that 

makes the objective function f0(0) to be unity, i.e. f f0(O) = 1 (Ingber, 1993). The 

scheme is built to minimize the objective function O. In the foregoing formulation, T 

plays a key role in the algorithm for "cooling". The algorithm starts with a "hot" 
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temperature that gets cooler as the annealing continues until the objective function is 

stabilized. The term annealing is from a smith heating a steel material and hammering 

(annealing) until it is cooled to get the targeted shape. More details on MCMC and 

Simulated Annealing can be found in Robert and Casella (1999), Press (2003), and 

Ingber (1993). In applications, several values of temperatures are applied so that the 

temperature is hot enough (easy to change a shape) at the starting place and gets cooler 

with the appropriate speed to have enough time for shaping. There is no rule of thumb for 

those temperatures. Those temperatures are selected subjectively satisfying the necessary 

condition as the starting temperature T=T000 and the ending temperature T=0.001, and 

the diminution (or decreasing) factor DF= 0.99. The starting temperature gets cooler as 

the process continues with Tt = Tt_x x DF where i represents the iteration step. If T 

becomes smaller than the ending temperature, the process is stopped. In this study, only 

one set of values (initial temp, end temp, and diminution factor) are used as described 

above. 

The objective function used herein is geared to preserve the variation of the 

hourly statistics of the precipitation amount : 

24 24 24 

0 = W l j > ; -A*r)
2 + w 2 J > ; -CJT)2 +w,2(r: -Y*)2 (5-14) 

r=l r=l r=l 

where JUT,<JT,yT are the historical hourly mean, standard deviation, and skewness, 

respectively and the statistics with the asterisk are the calculated value at the current state. 

wl,w2, and w3are weighting factors. One might try a different weighting on objective 

function. But the proper controlling of temperature in simulating annealing (slow 
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decreasing) will lead to make no difference by different weighting from the 

characteristics of the approach. Therefore, the unity weighting factor is used in 

application, i.e. wx = w2 = w3 = 1. 

As mentioned, the main focus for the disaggregation problem is to decide whether 

the selected two values switch or not. For this swapping process, simulated annealing is 

employed. At first, the objective function f0(0) is estimated with before and after 

switching two values. If the after-switching objective function is larger, then switch the 

value. Otherwise only switch the value with the probability of 

f{Oafter) _ K(T)cxp(-Oafter/T) 

' f(ObefoJ K(T)exp(-ObefoJT) 
Ps = ' = ' J* ' a n d Ps=^{(Pbefore-Oafter)IT]hom Eq.(5-12) 

and (10). From this scheme, the minimization of the objective function is achieved, since 

the objective is to rearrange the hourly amounts partitioned from the daily amount in 

order to preserve the hourly statistics with the diurnal cycle. 

Overall procedure for the disaggregation may be summarized as follows: 

(1) The hourly occurrence process for a day is taken using Eqs.( 5-2) and (5-3) if 

a certain day has some amount of rainfall. A number of occurrence events and 

the specific times are determined in this process. 

(2) (k-1) number of W} are generated from the gamma distribution as 

- Wj ~ Gamma{a,f3) . 

(3) Initially, the generated hourly rainfall amount obtained from Eq.( 5-8) should 

be randomly or subjectively distributed at first on the event occurred hours 
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determined from the stage (1). This arrangement of the hourly rainfall 

quantities is not important at this point, since it will be exchanged. 

(4) Execute the swapping procedure: 

i. Set up the initial Temperature (T=T000) 

ii. Select two hourly amount values out of k amounts which are 

greater than zero 

iii. Calculate the objective function before and after swapping as Ps 

iv. Swapping or keeping the values according to the objective 

function and the acceptance probability (i.e. -PV>1), then switch 

those selected values, otherwise decide with generating 

w~unif[0,l] ( i.e. if u<Ps, then swap.) 

v. Cooling the temperature with the diminution factor (DF=0.99) 

vi. Do (ii~v) until the critical low temperature (T=0.001) 

(5) Repeat (1)~(4) until all daily data are disaggregated 

The graphical description is displayed in Figure 5.1. 

5.3.2 Product model with Accurate Adjusting (PGAA) 

Koutsoyiannis and Manetas (1996) and Koutsoyiannis and Onof (2002) 

developed a simple and useful disaggregation strategy. The main constraint in 

266 



disaggregation is the additivity, thus, they suggested an adjusting scheme in which the 

lower scale process is generated (using a specific lower scale model and estimated 

parameters) e.g. a Periodic-Autoregressive(l) model to generate monthly flows, until 

their sum, i.e. the value of the higher scale process(e.g. annual flow volume) is within the 

range close to the higher target scale amount, and then the generated values are adjusted 

to procure the additivity condition. In our study, the lower temporal scale is hourly and 

the upper scale is daily, so two different scale models are selected, and then the 

disaggregation scheme of Koutsoyiannis and Manetas (1996) is applied to fulfill the 

additivity condition. 

The model selected for the lower scale is chosen to preserve the hourly (periodic) 

statistics. The model is the product of a Periodic Discrete Autoregressive and a Gamma 

Autoregressive model denoted as PDAR(1)-GAR(1). The product model is denoted as 

yd,T=xd,Tzd.T O15) 

And the PDAR(l) is a binary process (xdr) that represents the intermittency of the daily 

rainfall data. It is equivalent to a Periodic Markov Chain (Chebaane et al., 1995) i.e. the 

occurrence probability of the state at present time depends only on the state at the 

previous hour. But the occurrence probability varies throughout the day. The varying 

occurrence probability during the day is an important feature of the model. The stationary 

Gamma-Autoregressive(l) model is used after eliminating the periodicity of the daily 

cycle of the mean and standard deviation for the amount process {zdT). It implies 

constant skewness and lag-1 autocorrelation throughout the day. Typically, hourly 

rainfall is highly skewed and autocorrelated. The log-transformed AR(1) model can be 
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applied. But the transformation can lead the bias of the key statistics such as mean, 

standard deviation, and skewness. 

Periodic Discrete First order Autoregressive and Gamma First order 

Autoregressive (PDAR(l)-GAR(l)) model is used for hourly generation, and the 

proportional adjusting procedure is applied for additivity constraints. The model 

description is separated with PDAR(l) for the occurrence process that is equivalent to the 

periodic Markov chain and GAR(l) for the amount process in Eq.(5-15). 

PDAR(l) for occurrence process 

The model can be described simply using PMC as follows: 

\xd T = 1, if it rains during the hourr of day d 

\xd x = 0' otherwise 

The periodic Markov Chain defined by the transition probabilities may be estimated 

using maximum likelihood estimation. 

Py(r) = P[xdT = j | xdr_x = i] where, i, j=0,l and r =l,..,24 

and they may be estimated by maximum likelihood such as 

nu (r) 

«,0-i) 

where ntj (r) implies that the number of data to change the state from i at x-1 time to j 

at time x, and n^x -1) is the number of the data at the state i at time x-1. The limiting 

distribution can be defined for the starting generation as : 

- n (r) 
Pj (r) = — , here n{z) is the number of data at x. (5-17) 

n(r) 
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GAR(l)for amount process 

The GAR-1 model has been applied on streamflow generation (Salas, 1993). It is 

non-Gaussian process so that it does not need to transform the data. In fact, the marginal 

distribution is gamma, and the model has been applied by standardization as 

z d — ju 
zd = — , where jUT and aT are the hourly mean and standard deviation. After the 

generation from the GAR(l) model, the generated data should be reformatted 

withz^ r = zdTcjl + juT. Thus, the stationary GAR(l) is 

Zd,T = hZd,T-\ + £d,T (5"18) 

The marginal distribution would be zrfr ~ Gamma(z0,a,/?). 

^ = ^ 0 - ^ ) + ̂ . , (5-19) 

7 = 0 if M - 0 
M 

77 = X ^ ( ^ f ' if M>0 
7=1 

(5-20) 

where z0,a,j3 are the location, scale, and shape parameters, respectively, <f\ is the 

autoregression coefficient, M is distributed with Poisson, mean - ^ l n ( ^ ) , £. is the iid 

exponential variable with mean Ma, and [/.is uniform(0,l). Parameter estimation is 

available based on the method of moments (Fernandez and Salas, 1990) 

P-
f^ 

\i J 

cry „ „ * 
, a = — , z0=ju- a(3, fa = rx (5-21) 
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where jj,,<j,y,rx are the estimated mean, standard deviation, skewness, and lag-1 

autocorrelation from the data in non-zero values (Salas et al. , 1980). 

Since Katz and Parlange (1995) recommended to smooth out the diurnal cycle in 

the key statistics, the key statistics applied in the GAR(l) model including mean and 

standard deviation of the rainfall amount data, are smoothed with Fourier transformation 

as described in that paper. 

Adjusting Procedure 

Koutsoyiannis and Manetas(1996) proved that the proportional adjusting 

procedure might lead an accurate same marginal distribution for Gamma distribution with 

higher and lower scale. The amount procedure is a Gamma based model, GAR(l), even if 

the autocorrelation is concerned. Therefore, the proportional adjusting is backed up to 

apply rather than the power and linear adjusting procedures. 

If the generated values are satisfied with the condition below Eq.(5-23), a 

proportional adjusting procedure is applied to the generated lower scale (hourly) values 

according to 

yd,T = y<i,r 
Dd 

24 

X,y<i,T 
Vr=l J 

(5-22) 

where ydT is the generated hourly value from the product model and Dd is the known 

daily value. 
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< saaj (5-23) 

where sadJ is a tuning parameter compromising with time consumption and bias reduction. 

If sad} is too small, the acceptance chance, as in Eq. (5-23), is very rare so that the 

computation time gets longer. If it is too large, the final values are biased on the statistics, 

such as mean and standard deviation. Here the study for the tuning parameter is out of the 

scope for this paper. Therefore, only one small value (0.1) is used for this parameter. 

The procedure can be summarized as: 

(1) Estimate the parameters for the hourly model by using the methods and 

equations outlined above. 

(2) Generate the hourly values from the model. 

(3) If the aggregated amount of the candidate is within the critical value eadj ,as in 

Eq.(5-23), then adjust the current generated value using Eq.(5-22), otherwise 

repeat Step (2). 

(4) Repeat (2)~(3) until the target data are wholly disaggregated. 

5.3.3 Stochastic Selection Method with Weighted Storm Distribution (SSMW) 

This method was developed by Socolofsky et al.(2001). It uses the measured 

lower scale (hourly) data set with the same climatological regime to disaggregate. The 

In 

( 24 

r=l 
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method is based on separating the measured daily precipitation into events that are 

distributed uniformly with non-overlapping constraints (Socolofsky et al., 2001). 

Without any adjustment, the method would preserve the stationary hourly 

statistics. The model, however, should concern the diurnal cycle so that the model should 

be periodic-based. The adjustment has been applied for the distribution of the storm 

events for the diurnal cycle developed by the authors of this paper. To account for the 

diurnal cycle, the storm events are distributed with the weights of the hourly occurrence 

probability P1(r)of Eq.(5-17). Therefore, the events will more likely occur where the 

probability is higher than other hours. This is the modification from the original model in 

Socolofsky et al.(2001) by the authors of this paper. 

An event is defined as a continuous sequence of hourly precipitation separated by 

at least one dry hour period (i.e. separated from the non-event period). The step is 

summarized as : 

(1) The hourly precipitation events in a day can be separated. The depth and 

duration (hours) of each event can be defined from the hourly data set. The 

events are ordered as the increasing depth of each event (e.g. V2>yi). Set a table 

of the ordered events based on a depth of each event with the duration of each 

event, like the table on the right side of Figure 5.2, where n is the total number of 

events in the hourly data set. The events will be obtained from the whole 

historical data set. As mentioned, an event is a continuous sequence of hourly 

rainfall until it gets dry period. 
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(2) Get a cumulative density function Fj (CDF) of event depth employing the order 

and the depth in Figure 5.2 as F. = jl{n +1). 

(3) The objective is to separate a daily precipitation amount Dd into several 

precipitation events. The separated events should be selected and defined from 

the historical data set which is on the table (Figure 5.2). To begin with, get the 

depth of daily precipitation Dd from a generated time series or from the current 

(historical) data and search the CDF ordinate £ corresponding to Dd as shown 

in Figure 5.2 (right side). 

(4) Generate C, ~unif[0, £, ] and find the corresponding event amount from the CDF 

g (Figure 5.2 - right side),which is y'd. The event corresponding or closest to 

the depth y'd should be defined from the table and stored as an event with its 

duration. 

(5) Set Dd =Dd-y'd and repeat (3)~(4) until Dd < sdc" , where sda is the stopping 

critical value. This critical value should be larger than, or at least the same as, 

the smallest value of the events in the table. If the condition Dd < sdc" is met, 

then the repetition should be stopped. The residual is distributed uniformly 

through hours . sdat can be used as a calibration parameter using different values 

of sdal, but here the effect of the calibration parameter is not checked. 
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(6) Distribute the event according to the hourly occurrence probability (-P,(r) ,Eq.(5-

17)) with a constraint that the current value should not overlap to the next day. 

The probability that an event starts at a certain time r is: 

P (1) 
P {an event starts at a certain hour T } = -—• , r -1,... ,24 

7=1 

If the events overlap inside, they should be added together. The final remaining 

value, which is less than sdat, is added for one of 24 hours with discrete uniform 

selection. 

More details are referred to by Socolofsky et al. (2001). 

5.4 Applications and Model Performance Criteria 

5.4.1 Applications 

Three cases are illustrated in which disaggregation of daily precipitation may be 

needed: (1) for simulating hourly precipitation whereby daily precipitation is generated 

first, which in turn is disaggregated into hourly quantities; (2) for record extension of 

hourly data where longer daily data are available; (3) for estimating hourly data at a given 

station where daily data are available given that hourly data are available at another 

station. For the first case hourly rainfall data, Denver International Airport (DIA), which 

are available for the period (1949-1990) are employed. For the second case, the hourly 

and daily data of the DIA station are used. Assuming that hourly data for the record 1979 
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to 1990 are missing that record extension for that record is needed. For the third case, 

daily and hourly precipitation at DIA assumed that only daily data at Parker are available, 

and hourly data will be obtained by disaggregating from the daily data employing the 

disaggregation for the parameter derived for the data at DIA. DIA is station number 5220, 

and Parker is 56326 obtained from U.S. Hourly precipitation data from NOAA. 

Some occurrence probabilities and basic statistics of the hourly precipitation data 

for the month of July for Denver Airport for the period 1949-1990 (whole record), 1949-

1978, and 1979-1990 are shown in Table 5.1 and Table 5.2, as well as Parker. The same 

statistics are shown in Table 5.1 and Table 5.2 for the hourly precipitation for the periods 

1949-1978 and 1979-1990, respectively. Note that in the period 1979-1990, precipitation 

has not occurred in the hours 10, 11, and 12. Likewise, the same statistics are shown in 

Table 5.1 and Table 5.2 for hourly precipitation in July for the period 1950-1994 for 

Parker near the airport, in Table 5.1 and Table 5.2 unveil the difference and resemblance 

in statistical behavior of hourly precipitation. The Denver site shows a more frequent 

precipitation occurrence while the precipitation amount at Parker is generally larger than 

at Denver (Figure 5.3). Both sites depict the diurnal cycle. The DIA hourly precipitation 

data has been assessed by Collander et al. (1993) and employed for testing the developed 

hourly precipitation generation model by Katz and Parlange (1995). 

The model validation is performed for the three cases, and the statistical criteria 

are selected for checking the validity of the models. The investigation is not only on the 

difference between the real value and the disaggregated value, but also on the difference 

between the statistics of the historical data and the statistics of the disaggregated data. 

275 



5.4.2 Model Performance and Validation Criteria 

To judge the performance of a given model and to compare among the models, 

two types of statistical criteria have been used. The first ones are statistics that compare 

the observed hourly precipitation values versus the predicted hourly values obtained from 

a disaggregation model. The second ones are statistics that compare the hourly 

precipitation statistics (e.g. mean) from the observations versus those estimated from the 

predicted hourly values (obtained from a disaggregation model). Although the statistical 

criteria are well-known and may be found in many references, we summarize them below. 

A few of model performance criteria used are explained. Mean absolute error 

(MAE), and root mean square error (RMSE) are among the most popular criteria for 

checking the model performance. Model 1 may be selected over Model 2 if the MAE and 

RMSE of model 1 are better than the comparing values for model 2. Another common 

performance criterion is the coefficient of determination R , but it only evaluates the 

linear relationships between variables. R2 is insensitive to additive and proportional 

differences between the model simulations and observations. To overcome these 

shortcomings, Legates and McCabe(1999) recommended using the baseline-adjusted 

modified coefficient of efficiency(MCE). It is defined as: 

n 

H\Ol-P\ 
MCE = 1.0-^ (5-24) 

where Oj= measured observations; Pi=model predictions; O' =baseline value of the 

observations against which the model is to be compared (e.g. mean); and n is the number 
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of observations to be compared. Values of MCE between -co and 0 represent that the 

predicted values are not better than the baseline values, while values of MCE larger than 

0 and approaching to 1 imply better fitting. 

In addition, the index of agreement d, (Willmott, 1981) has been used for 

checking the model performance. It is given by: 

N 

j = 1.0— j r-ti _ (5-25) 

Ypi-pl\+\ol-o\ 
1=1 

It varies from 0.0 to 1.0, with higher values indicating better agreement between 

the model and observations, similar to the interpretation of the coefficient of 

determination R2. The index has been modified not to be sensitive to extreme values from 

the squared differences so it represents an improvement over R2. 

Furthermore, the second type of statistical criteria as referred above is 

summarized here: 

1 24 

MAEo= — Y\9?-0?\ 
241 

/ i \ X 

1 24 

RMSEe=^-Y^{e:-ey 

MCE = \.Q-^ r=l 
24 

Y\eP-o\ 
v=\ 

277 



24 

d = 1 . 0 ™ ^— — 

£(|^G-oj+|^°-oj) 
r=l 

where 6° represents a historical statistic for hour x estimated from the observed hourly 

values and #f represents a statistic for hour x estimated from the predicted hourly values 

obtained from the disaggregated values of a given model. The hourly statistics included 

mean, standard deviation, skewness, and Pr (1), i^ (0,1), ̂  (1,1) • For the base-line value, 

the mean value of observed hourly statistics was used. 

Those performance criteria shows employing boxplots. All box plots in this paper 

have the same representation, such that the box and the middle line in the box depicts the 

quartiles and median, respectively, while the straight line is stretched until the max and 

min value from the box. 

5.5 Results 

Three different cases of disaggregations were tested as mentioned with the 

developed three models. The simulated, extended, and transferred data for each 

disaggregation case were investigated and employed to validate three proposed models 

through comparing the statistical features with those of the historical data. 

For the first case, the first part of the Denver hourly record (1949-1990 July) was 

employed for model fitting and parameter estimation of disaggregation model. The 

objective was to build up a disaggregation model so that the disaggregated data would 

preserve the statistical characteristics through the higher time scale (daily), as well as the 
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lower time scale (hourly). The necessity of this case can be described as follows. One 

might build a daily model and generate daily data. Then, the daily data are disaggregated 

to obtain the lower time scale data, such as hourly. This disaggregation is named as a data 

simulation case. The transition probability for the CMSA model at Eq.(5-2) and Eq.(5-3) 

is estimated and shown at Table 5.3 for the whole record in Denver. The 100 sets of the 

same length of the record as the Denver (42yrs, 31 days) have been disaggregated into 

hourly data. One month example is shown at Figure 5.4 (one more example in Figure 5-

A.l). The statistics from the disaggregated data sets are estimated and compared with the 

historical data. In Figure 5.5, Figure 5.6, and Figure 5.7 for mean, skewness and Pi, 

CMSA and PGAA model reproduces the basic statistics and occurrence probabilities with 

the diurnal cycle. SSMW underestimate the mean and standard deviation during the 

frequent rainfall hours (i.e. hours 14-22, referred to Table 5.2), but overestimate the 

skewness and the transition probabilities (Poi and Pn) during the infrequent hours (i.e. 

hours 1-12). The occurrence probabilities (Pi) of the historical through the whole hours 

are overestimated as shown Figure 5.7. This is the evidence of the model such that the 

diurnal cycle is not properly reproduced from this model. The reason is that multiple 

numbers of events selected from the historical data cannot be arranged with preserving 

the diurnal cycle. The other figures for standard deviation, Poi, and Pn can be found from 

Figure 5-A.2 to Figure 5-A.4. Notice that the basic statistics in the PGAA model are 

reproduced but with smoothed manner as expected from the modeling process 

(smoothing the key statistics for the diurnal cycle). The mean of the performance criteria 

of the occurrence probabilities and the key statistics are shown in Table 5.4 and the 

boxplots of the performance criteria for mean and Pi are shown at Figure 5.8 and Figure 
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5.9. Further results are shown from Figure 5-A.5 to Figure 5-A.8. It is shown that the 

CMSA and PGAA model have similar behavior in the preservation of the occurrence 

probabilities. It is because those two models employ the transition probability matrix and 

limiting distribution in generating the occurrence process with a different format (CMSA: 

conditional transition probability and PGAA: PDAR(l) model). And the basic statistics 

such as mean, standard deviation, and skewness are well preserved in the CMSA and 

PGAA. PGAA has the priority to be selected according to the performance criteria as 

shown in Table 5.4. The historical Denver hourly data can be compared with the 

disaggregated data. Even if the suggested models are not for forecasting, the comparison 

can be made to obtain the model performance and features. The results are in Table 5.5. 

The criteria revealed the priority on the SSMW model. Note that the value comparison 

should be carefully made on this case because the data are intermittent, which include a 

lot of zero values. But the models do not capture the specific time of occurrence. The 

models only disaggregate the daily rainfall into hourly stochastically not forecasting. If 

the zero values are compared with some amount, the criteria might be biased on a model, 

which has more frequent events and less peak points on amount. The statistical behavior 

of the SSMW model is to have more frequent on occurrence and less frequent on large 

values, which makes significant difference between two other models in the comparison 

of the performance criteria with the disaggregated values. This feature can be read from 

Figure 5.10 in that the events spread out through all hours the disaggregated time series 

for the SSMW model. Therefore, choosing a model with this comparison might not be 

reliable. 
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The second case can be explained as follows (named extension case). If one has 

longer length of the record in a higher time scale (daily) and also has shorter length of the 

record in a lower time scale (hourly), the shorter record may be extended until the record 

of the higher time scale is available. The objective of the model for this case is to extend 

the unmeasured record during the available daily data employing the statistical behavior 

of the measured hourly record. Half of the data in Denver are used for model fitting and 

the other half are assumed not to be measured at a lower time scale (hourly) but measured 

at a daily time scale. The assumed non-measured data are extended using the 

disaggregation models. The statistics of the disaggregated data and the values are 

compared with the real historical data. Again, the disaggregated data can be compared 

with the real historical data. In Table 5.4, the results are shown with similar behavior in 

the first disaggregation case (simulation). The occurrence probabilities, PI and P01, are 

better matched on CMS A, while P l l is better on the CMS A and PGA A. In Figure 5.11, 

an example month of the disaggregated time series and historical data for daily and 

hourly are shown (One more example is in Figure 5-A.l). The similar distributional 

characteristic as the simulation case in SSMW is shown. In the figure, there are two days 

in which the event occurs. The historical hourly time series has shown that the rainfall 

events occurred through a small number of hours. This can be explained by the behavior 

of the diurnal cycle. The rainfall tends to occur in certain frequent hours in a day, such as 

hours 16 to 22. This could be related with the performance criteria on the comparison of 

the generated value and historical value which is represented in Figure 5.12. The same 

conclusion as the simulation case with Figure 5.10 is leaded such that the SSMW model 

tends to spread the daily rainfall into hourly rainfall uniformly. In Figure 5.13, the 
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standard deviation of the historical and disaggregated hourly data for the extension case 

is shown. Completed plots are shown from Figure 5-A.10 to Figure 5-A.15. It is shown 

that the standard deviation underestimated during the frequent rainfall hours (i.e. 14-21) 

as in Figure 5.13. This is the same behavior as the simulation case. The other statistics 

(mean, skewness, and occurrence and transition probabilities) of this extension case 

behaves similarly as the simulation case. The disaggregated hourly data from SSMW are 

rather distributed evenly compared with the other models (low mean value and high 

occurrence probability through the hours). Completed plots are shown from Figure 5-

A.16toFigure5-A.21. 

The third case is to disaggregate the daily precipitation data at another site using a 

Denver parameter set, named as a data transfer case as presented by Econopouly, et al. 

(1990). For this purpose, the climatologically and regional proximity station of rainfall 

data, Parker, was chosen. The statistical characteristics of the hourly rainfall data for this 

station are shown in Table 5.1 and Table 5.2. The aim of this transfer case is to fit a 

disaggregation model with the hourly and daily data with the data of a different site 

(Parker) and the daily rainfall data of the target station (DIA) are disaggregated into 

hourly data. Two examples of this disaggregation case are shown at Figure 5-A.22. The 

same criteria and basic statistics are estimated and compared at three models as the 

previous cases. The performance criteria of the occurrence and transition probabilities 

and key statistics are shown in Table 5.4. PI and P01 are better fits on CMS A and PI 1 on 

PGAA. There are some negative values which imply that the disaggregated values from 

the models are not better than the case in which the values are filled with the baseline 

values such as the historical mean. PGAA seems to be prior to the other models except 
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the index of agreement d which chooses CMS A as a better one. Figure 5.14 illustrates the 

performance criteria of the mean. From the figure, the variability of the estimated criteria 

seems to be lager than the ones in the other cases. It should be noted that the larger 

uncertainty is shown because the disaggregation was performed using the statistics of 

another site compared to the first simulation case. Figure 5.15 show the mean of the 

historical and the disaggregated hourly data for three models and also for the historical 

mean of the Parker. The others such as standard deviation, skewness, and occurrence and 

transition probabilities are also estimated. Those are shown from Figure 5-A. 23 to Figure 

5-A.27. The mean and the variation of the mean through hours are similar between two 

stations so that the employment of Parker station as the reference site should be feasible. 

The key statistics and occurrence and transition probabilities are relatively well preserved 

in the disaggregated data of CMSA and PGAA models while SSMW has the same 

deviation as the previous cases (i.e. the simulation and extension cases). The similar 

behavior of the performance criteria is observed as the previous simulation and extension 

cases. Those are shown at from Figure 5-A.28 to Figure 5-A.34. 

5.6 Summary and Conclusions 

Three distinctive disaggregation models were developed employing the current 

available technologies in order to reproduce the diurnal cycle embedded in the key 

statistics and occurrence probabilities. The first model, CMSA, is based on the 

conditional Markov Chain for the occurrence process and simulated annealing for the 

amount arrangement, which combines the binary process with the conditional probability 

matrix and the amount process rearranging the quantities with simulated annealing. The 

second model, PGAA, is PDAR(1)-GAR(1) with an accurate adjusting procedure. The 

283 



model generated the hourly rainfall data for a day with PDAR(1)-GAR(1) and the 

generated value was taken or regenerated according to whether the summation of the 

generated hourly is smaller than the tuning parameter. The third one, SMWSD, is the 

stochastic selection with weighted storm distribution. From the event table and CDF of 

event depth produced from the hourly historical data, historical events were selected until 

the summation of the events was smaller than the calibration parameter. 

Three applications were experimented with for three models such as a simulation 

case, an extension case, and a data transfer case. Four performance criteria over the 

generated values, occurrence probabilities, and key statistics were estimated and 

compared with three proposed disaggregation models at each case. 

From the results, some critical remarks are presented as follows: 

a. PGAA and CMSA well preserve the occurrence probabilities. Two models 

employ a similar model for occurrence process. 

b. PGAA is superior to reproduce the key statistics of hourly data with diurnal 

cycle. 

c. The proposed disaggregation models are not useful for forecasting, since the 

exact rainfall occurrence in a day cannot be defined. It is not critically 

important as long as the disaggregated data preserves the diurnal cycle, the key 

statistics, and the occurrence probabilities. 

The developed disaggregation model could be applicable and considerable to split 

daily rainfall data where a diurnal cycle is predominant. 
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Table 5.1 Hourly Precipitation occurrence probabilities 
DIA (1949-1990) DIA (1949-1978) DIA (1979-1990) Parker (1950-1994) 

Time pi pOl p l l pi pOl p l l pi pOl p l l pi pOl p l l 

1 0.018 0.006 0.708 0.02 0.008 0.632 0.013 0 1 0.019 0.009 0.538 

2 0.016 0.005 0.714 0.016 0.003 0.8 0.016 0.008 0.5 0.019 0.007 0.615 

3 0.012 0.002 0.8 0.012 0.003 0.727 0.011 0 1 0.014 0.004 0.737 

4 0.009 0.004 0.583 0.009 0.004 0.5 0.011 0.003 0.75 0.006 0.001 0.889 

5 0.012 0.005 0.533 0.01 0.003 0.667 0.016 0.011 0.333 0.006 0.003 0.5 

6 0.008 0.004 0.545 0.008 0.003 0.571 0.011 0.005 0.5 0.006 0.005 0.222 

7 0.009 0.005 0.5 0.01 0.005 0.444 0.008 0.003 0.667 0.006 0.004 0.333 

8 0.011 0.005 0.5 0.011 0.007 0.4 0.011 0.003 0.75 0.007 0.004 0.4 

9 0.008 0.002 0.8 0.01 0.002 0.778 0.003 0 1 0.009 0.005 0.417 

10 0.005 0.001 0.857 0.008 0.001 0.857 0 0 0 0.008 0.007 0.182 

11 0.004 0.001 0.8 0.005 0.001 0.8 0 0 0 0.011 0.011 0.063 

12 0.003 0.002 0.25 0.004 0.003 0.25 0 0 0 0.008 0.006 0.273 

13 0.009 0.009 0.083 0.012 0.011 0.091 0.003 0.003 0 0.012 0.008 0.353 

14 0.031 0.029 0.1 0.032 0.03 0.1 0.027 0.025 0.1 0.032 0.026 0.205 

15 0.058 0.047 0.227 0.067 0.059 0.177 0.035 0.019 0.462 0.052 0.035 0.361 

16 0.068 0.044 0.404 0.068 0.038 0.476 0.07 0.058 0.231 0.049 0.03 0.412 

17 0.084 0.055 0.409 0.078 0.051 0.397 0.099 0.063 0.432 0.057 0.034 0.438 

18 0.078 0.041 0.52 0.073 0.042 0.471 0.091 0.038 0.618 0.055 0.035 0.403 

19 0.082 0.042 0.533 0.077 0.038 0.542 0.094 0.05 0.514 0.043 0.019 0.567 

20 0.081 0.043 0.505 0.072 0.038 0.507 0.102 0.057 0.5 0.04 0.024 0.429 

21 0.048 0.021 0.587 0.052 0.026 0.521 0.04 0.008 0.8 0.042 0.024 0.448 

22 0.042 0.018 0.6 0.041 0.016 0.632 0.046 0.023 0.529 0.034 0.016 0.563 

23 0.034 0.01 0.727 0.033 0.01 0.71 0.035 0.008 0.769 0.027 0.011 0.595 

24 0.034 0.012 0.659 0.032 0.012 0.633 0.038 0.011 0.714 0.022 0.004 0.8 
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Table 5.2 Basic Statistics of the Amount for Hourly Precipitation 
DIA (1949-1990) DIA (1949-1978) DIA (1979-1990) Parker (1950-1994) 

Mean Std Skew Mean Std Skew Mean Std Skew Mean Std Skew 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

1.598 

0.581 

0.66 

0.783 

0.66 

0.947 

0.572 

1.07 

1.219 

1.27 

1.727 

0.635 

1.609 

2.153 

2.791 

2.078 

1.942 

3.529 

1.947 

1.933 

2.157 

2.203 

1.351 

1.409 

1.932 

0.783 

0.566 

0.689 

0.643 

1.035 

0.377 

1.777 

1.509 

1.278 

1.782 

0.328 

1.905 

2.946 

4.913 

3.29 

4.356 

5.995 

3.496 

3.665 

3.782 

3.223 

2.004 

2.58 

1.863 

3.559 

0.964 

1.479 

1.975 

1.117 

0.598 

3.087 

1.577 

1.754 

0.586 

0 

1.197 

2 

2.821 

3.19 

6.567 

2.613 

4.207 

3.277 

4.106 

2.517 

3.096 

3.357 

1.39 

0.542 

0.716 

0.603 

0.508 

0.617 

0.593 

1.295 

1.326 

1.27 

1.727 

0.635 

1.709 

2.32 

2.802 

1.879 

2.06 

4.004 

2.039 

2.051 

2.111 

1.578 

1.098 

1.143 

2.015 

0.915 

0.651 

0.469 

0.402 

0.584 

0.421 

2.079 

1.56 

1.278 

1.782 

0.328 

1.965 

3.338 

5.169 

2.655 

4.967 

6.317 

3.026 

3.916 

3.912 

1.675 

1.783 

2.285 

2.262 

3.341 

0.66 

1.012 

2.013 

1.299 

0.485 

2.502 

1.429 

1.754 

0.586 

0 

1.064 

1.721 

2.824 

2.678 

6.481 

2.011 

2.61 

3.284 

4.397 

1.123 

3.329 

3.827 

2.388 

0.677 

0.508 

1.143 

0.889 

1.524 

0 

0.508 

0 

0 

0 

0 

0 

1.651 

2.735 

2.56 

1.709 

2.577 

1.756 

1.725 

2.303 

3.601 

1.954 

1.978 

1.488 

0.308 

0.207 

0.984 

0.891 

1.481 

0 

0.359 

0 

0 

0 

0 

0 

1.156 

3.607 

4.503 

2.831 

5.251 

4.351 

3.212 

3.455 

5.056 

2.426 

3.14 

0.057 

-0.06 

0 

0.795 

1.219 

0.058 

0 

0.817 

0 

0 

0 

0 

0 

0.119 

1.777 

2.852 

2.074 

4.605 

5.092 

3.017 

2.588 

1.374 

2.703 

2.705 

1.729 

1.456 

2.634 

1.101 

1.365 

1.58 

1.919 

1.092 

1.63 

1.663 

2.635 

0.993 

2.809 

3.331 

3.563 

3.485 

4.099 

3.741 

2.718 

3.207 

4.257 

2.72 

1.977 

2.481 

1.999 

1.103 

4.142 

1.047 

1.309 

1.141 

0.881 

1.023 

1.007 

1.025 

2.353 

0.868 

3.271 

3.404 

5.756 

4.564 

6.577 

5.135 

4.49 

6.335 

6.655 

3.601 

1.65 

3.552 

1.578 

0.082 

2.343 

0.576 

0.386 

-0.24 

-0.75 

0.736 

-0.28 

-0.28 

2.083 

0.868 

2.166 

2.99 

3.848 

2.145 

3.885 

2.195 

3.896 

3.868 

2.943 

2.298 

1.144 

2.961 
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Table 5.3 Transition probabilities and limiting probabilities conditioned on D*d = 1 of 
CMSA in Eqs.( 5-2) and (5-3) for DIA hourly precipitation for the period (1949-1990) 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
P1 

P01 

P11 

Hour 

P1 

P01 

P11 

0.063 

0.019 

0.708 

13 

0.031 

0.029 

0.083 

0.054 

0.016 

0.714 

14 

0.103 

0.103 

0.100 

0.039 

0.008 

0.800 

15 

0.193 

0.185 

0.227 

0.031 

0.013 

0.583 

16 

0.229 

0.177 

0.404 

0.039 

0.019 

0.533 

17 

0.283 

0.233 

0.409 

0.028 

0.013 

0.545 

18 

0.262 

0.171 

0.520 

0.031 

0.016 

0.500 

19 

0.275 

0.177 

0.533 

0.036 

0.019 

0.500 

20 

0.270 

0.183 

0.505 

0.026 

0.005 

0.800 

21 

0.162 

0.080 

0.587 

0.018 

0.003 

0.857 

22 

0.141 

0.066 

0.600 

0.013 

0.003 

0.800 

23 

0.113 

0.035 

0.727 

0.010 

0.008 

0.250 

24 

0.113 

0.043 

0.659 

Table 5.4 Basic Statistics of the Amount for Hourly Precipitation 
Case1:Simulation Case2:Extension Case3:Transfer 

Stat 

MAE 
(0) 

RMSE 
(0) 

MCE 
(D 

d 
(D 

MAE 
(0) 

RMSE 
(0) 

MCE 
(1) 

d 
(D 

Method 

CMSA 

PGAA 

SSMW 

CMSA 

PGAA 

SSMW 

CMSA 

PGAA 

SSMW 

CMSA 

PGAA 

SSMW 

CMSA 

PGAA 

SSMW 

CMSA 

PGAA 

SSMW 

CMSA 

PGAA 

SSMW 

CMSA 

PGAA 

SSMW 

P1 

0.048 

0.Q41 

0.173 

0.218 

0-202 

0.415 

0.752 

0.789 

0.111 

0.881 

0.898 

0.573 

Mean 

4.69 

3.616 

4.837 

2.158 

1.896 

2.199 

0.03 

0.252 

0 

0.589 

0.613 

0.455 

P01 

0.029 

0.03 

0.114 

0.171 

0.172 

0.338 

0.761 

0J6 

0.074 

0.889 

0.888 

0.515 

Std 

10.019 

6.964 

10.265 

3.149 

2.63 

3.202 

0.023 

0.321 

-0.001 

0.589 

0.668 

0.447 

P11 

0.755 

0.754 

1.875 

0.866 

0.867 

1.369 

0.407 

0.408 

-0.474 

0.752 

0.753 

0.343 

Skew 

9.944 

8.244 

11.832 

3.145 

2.86$ 

3.432 

-0.093 

0.094 

-0.301 

0.482 

0.543 

0.33 

Note: The number fol lowing the statistics is 

P1 

0.09 

0.091 

0.177 

0.3 

0.301 

0.42 

0.S84 

0.579 

0.186 

0.779 

0.777 

0.59 

Mean 

7.206 

6.357 

6.485 

2.674 

2.511 

2.544 

0.02 

Pip 
0.118 

0.559 

0.566 

0.395 

P01 

0.072 

0.072 

0.149 

0.267 

0.267 

0.386 

0.466 

0.464 

-0.113 

0.73 

0.729 

0.411 

Std 

12.855 

10.047 

10.811 

3.566 

3.154 

3.284 

-0.004 

1P1 
0.156 

0.565 

0.613 

0.458 

the value when 

P11 

2.146 

2.141 

2.264 

1.461 

1.459 

1.503 

-0.063 

-0.06 

-0.122 

0.471 

0.471 

0.352 

Skew 

7.111 

6.825 

9.84 

2.658 

2.604 

3.131 

0.313 

0.341 

0.05 

0.616 

0.631 

0.449 

a model 

P1 

0.072 

0.082 

0.195 

0.268 

0.286 

0.442 

0.566 

0.506 

-0.17 

0.799 

0.779 

0.519 

Mean 

7.307 

6.459 

6.886 

2.694 

2.532 

2.623 

0.025 

0.139 

0.082 

0.565 

0.531 

0.409 

ias the p 

P01 

0.053 

0.059 

0.129 

0.229 

0.243 

0.359 

0.459 

0.392 

-0.323 

0.763 

0.738 

0.434 

Std 

12.587 

11.178 

12.277 

3.528 

3.332 

3.501 

0.09 

•111 
0.113 

SIS 
0.565 

0.458 

erfect fit. 

P11 

1.823 

1.746 

1.823 

1.347 

1.32 

1.349 

-0.542 

-0.48 

-0.542 

0.426 

0,437 

0.35 

Skew 

7.636 

7.409 

9.005 

2.757 

2.714 

2.994 

0.076 

-0.09 

0.545 

0.558 

0.447 

(e.g. MAE(0)). And the best fit model highlighted with gray color. 
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Table 5.5 Mean Values of the Performance criteria in comparison between the model 
value and the historical value at DIA 

Case1:Simulation Case2: Extension Case3:Transfer 

CMSA PGAA SSMW CMSA PGAA SSMW CMSA PGAA SSMW 
MAE 0.111 0.109 0,104 0.114 0.111 0.106 0.129 0.127 0.123 

RMSE 0.334 0.329 0.323 0.338 0.333 0.325 0.359 0.356 0.351 
MCE 0.076 0.099 0.134 0.061 0.092 0.133 0.084 0.160 0.123 

d 0.539 0.549 0.562 0.535 0.549 0.563 0.522 0.526 0.533 
Note: The number following the statistics is the value when a model has the perfect fit. 

(e.g. MAE(0)). And the best fit model highlighted with gray color. 
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k=3 

Switching Process 

1 R3—Rmax 

°f i 1 1 T - T 
20 24 

Figure 5.1 Conditional Markov Chain and Simulated Annealing : The upper-left side bar 
represents the unit daily amount (Dd=l). The event hours are specified from the 
conditional Markov Chain (k=3, h=12, 17, 18). And the daily amount should be separated 
employing the modified Atchison distribution. The separated hourly amounts will be 
found proper place using the simulated annealing process (switching process). 
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Figure 5.2 Events Table (Left) and CDF (Fj) of Event Depth (Right) 
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Figure 5.3 Comparison of the hourly statistics for the two sites ( Denver International 
Airport: Segment Line with circle and Parker: Segment Line with triangle) 
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Figure 5.4 Realization of the disaggregation and historical hourly and daily for the 
simulation case 
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Figure 5.5 Historical and Disaggregated hourly Mean for Simulation Case 
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Figure 5.6 Historical and Disaggregated hourly Skewness for Simulation Case 
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Figure 5.7 Historical and Disaggregated Occurrence probability PI for Simulation Case 
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Figure 5.8 Performance criteria of the Mean for Simulation case 
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Figure 5.9 Performance criteria of the probability PI for Simulation case 
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Figure 5.10 Performance criteria of the Direct Data Values for Simulation case 

298 



( 
- 4 0 
o 
~?0 
CO 

X n 

D 5 10 
i i 

i i 

15 
i 

j 
i I 

20 

i 

25 

i 

30 3 
_ 

_ 

\ 
in 

0 100 200 300 400 500 600 700 800 

0 100 200 300 400 500 600 700 800 

0 100 200 300 400 500 600 700 800 

Figure 5.11 Realization of the disaggregation for Extension case 
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Figure 5.12 Performance criteria of the Direct Data Values for Extension case 
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Figure 5.13 Historical and Disaggregated hourly Standard Deviation for Extension Case 
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Figure 5.14 Performance criteria of the Mean for Transfer case 

302 



4.5 

4 

3.5 

3 

2.5 
c 
as 

1.5 

0.5 

-e— DIA 
-V— Parker 

CMSA 
PGAA 

--— SSMW 

10 15 
Hrs 

20 25 

Figure 5.15 Hourly mean of the historical and disaggregated data for Transfer Case 
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simulation case 
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Figure 5-A.26 Historical and Disaggregated Occurrence probability P01 for Transfer 
Case 
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CHAPTER VI 

CONCLUSIONS, CONTRIBUTIONS, AND RECOMMENDATIONS 

6.1 Conclusions 

Stochastic generation models are required for various purposes such as drought 

analysis, reservoir planning of a complex system, and water quality modeling. Over the 

decades many alternative models have been proposed based on parametric and non-

parametric techniques. For streamflow data nonparametric modeling techniques are 

focused. From the meticulous investigations over the existing models, new models are 

proposed and some existing models are enhanced. The proposed and enhanced model in 

this study eliminates the limitations and drawbacks that the existing nonparametric 

models have. Those developed models are tested with various streamflow data, mainly in 

the Colorado River system. The results show that they are reliable and useful models to 

simulate streamfiows of a single site and a large river basin even with intermittent and 

non-intermittent sites jointly. For rainfall data, the existing disaggregation models are 

improved to account for the diurnal cycle in hourly data. The improved three models are 

tested with rainfall data in Colorado stations. The results showed that two among three 

models reproduce the diurnal cycle properly as well as the key statistics of hourly data. 
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The specific conclusions drawn from the research are: 

(1) The model KNNR with Gamma KDE perturbation and aggregate or pilot 

variable produces feasible generated data that are not par of the historical data 

and preserve the long-term variability. Extensive comparisons and applications 

of the proposed techniques show significant improvements over the existing 

models. 

(2) The proposed multivariate bootstrapping model with KNN block selection and 

Genetic Algorithm mixture yield new spatial patterns different from the part of 

the historical data and avoid the discontinuity in block selection. Further, the 

model can be applied for cases of joint intermittent and non-intermittent flows. 

This capability is very useful when a multivariate simulation is required on a 

large river basin such as the Colorado River system which includes arid, semi-

arid, and moderate zone. The arid and semi-arid zone contains the intermittent 

data. 

(3) The detailed investigation of existing disaggregation models uncovered a 

number of drawbacks. Appropriate modifications and simpler structure is 

suggested employing the accurate adjusting and the KNNR selection 

accompanied by the Genetic Algorithm mixture. The proposed model has been 

shown to perform more efficiently and better than the existing one. 

(4) Three distinctive disaggregation models such as CMSA, PGAA, and SSMW 

are enhanced to take the diurnal cycle into account in the disaggregated hourly 

data. From various tests and comparisons, CMSA and PGAA models well 
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reproduce the diurnal cycle as well as the key statistics. And PGAA is the 

easiest model to apply. 

6.2 Summary of Contributions 

Nonparametric models for streamflow data are proposed and some existing 

models are improved if applicable. Those proposed and improved models has better 

performance than the existing model such as generation of the values not part of the 

historical data, preservation of long-term variability, applicability to the sites that 

intermittent and non-intermittent data are combined. The improvements on the 

disaggregation models of rainfall data now allow to reproduce the diurnal cycle in hourly 

data. 

(1) Univariate model: The developed approach is based on the k-nearest neighbors 

resampling (KNNR). The critical drawback of the existing KNNR generation 

model is that it only produces historical values. This drawback is overcome by 

using the Gamma Kernel Density Estimate. New parameterization of the 

Gamma kernel is proposed and compared with the previous one revealing some 

superior features. Also the reproduction of the long-term variability cannot be 

achieved with the existing KNNR model. Here the interannual variable and the 

pilot variable are proposed to reproduce long-term variability. The suggested 

models have been tested with the data of the Colorado River and Niger River 

and revealed successful preservation of the key statistics and drought and 

storage statistics. 
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Multivariate Model: The critical drawbacks of the existing nonparametric 

generation model is to generate the same values as the historical, the repetition 

of the same seasonal pattern, and no variation spatially. The new features of the 

model proposed herein include (a) the variable block length - the aggregated 

values to annual or seasonal (in case of monthly generation) will be different 

from historical, (b) KNNR block selection - the connection between blocks will 

be preserved, and (c) Genetic Algorithm mixture - spatially different sequences 

to historical are generated, and (d) Gamma KDE perturbation - different values 

than the historical data will be generated. The suggested model has been tested 

using data of Colorado River System and showed better results than those 

obtained based on the existing model. 

Disaggregation Model: The drawbacks of an existing nonparametric 

disaggregation technique have been examined in some detail. Firstly, the 

correlation between the first month of the current year and the last month of the 

previous year is not preserved and the proper spatial or temporal mixing cannot 

be reproduced. These drawbacks are remedied with the suggested much simpler 

model. The proposed model uses (a) the KNNR selection of the aggregate 

variable followed by accurate adjusting for the disaggregate variable data 

corresponding to the selected aggregate variable (b) the consideration of the 

correlation between the first month of the current year and the last month of the 

previous year with including the condition of the last month of the previous 

year when the lower-level variable is obtained with KNNR selection (c) 

Genetic Algorithm mixture for obtaining more variable pattern than the 
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historical data. The suggested model has been tested using data of the Colorado 

River System. The results are compared with the existing models and showed 

that the referred drawbacks are all eliminated. 

(4) Daily rainfall disaggregation model: The various models for disaggregating 

daily rainfall data do not consider the diurnal cycle in the hourly data. Three 

distinctive disaggregation models were improved to disaggregate daily rainfall 

data into hourly so that the diurnal cycle of hourly data are properly taken into 

account. The capability of the reproduction diurnal cycle will be useful as input 

data for dam operation and water quality modeling that diurnal cycle is 

important feature to be considered. 

6.3 Recommendations 

Two recommendations for further studies are: 

(1) Include exogenous variable into the KGKP model as a pilot variable to reflect 

global climate effect on streamflow. Wavelet analysis and Hilbert-Huang 

transformation may be useful techniques to find a component to be used as an 

exogenous variable from climate variable (e.g. ENSO index). 

(2) Currently, a drawback of nonparametric disaggregation model is to perform spatial 

and temporal disaggregation one-by-one. More than one step of spatial 

disaggregation after temporal disaggregation for a river basin system induce the 

underestimation of the seasonal correlation in the spatially lower-level stations. 
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Therefore, a nonparametric disaggregation model that can implement the spatial-

temporal disaggregation at the same time could be useful in this sense. 

346 


