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ABSTRACT 

Neutrally and stably stratified flow over a 1:6200 and a 

1:12,000 scale model of San Nicolas Island, California, was studied in 

the Army Meteorological Wind Tunnel of the Fluid Dynamics and Diffusion 

Laboratory at Coloardo State University. Surface characteristics of 

wind movement over the island were studied by the use of indicator 

paints, titanium tetrachloride smoke, and the measurement of mean veloc­

ity, mean temperature, mean concentration, and turbulent intensity 

profiles. 

Available field data revealed that similarity was sufficiently 

achieved to give similar mean flow patterns. Flow in the wake region 

was self consistent, but no comparative field data are available. Con­

centration decay rates for diffusing tracers were comparable for neutral 

flow. Mean velocity, mean temperature, and Richardson number profiles 

were similar for stably stratified flows; however, the similarity of the 

diffusion plumes to plumes in the atmosphere is not clear. It is con­

cluded that over complex terrain flow fields may be satisfactorily 

simulated for stable thermal stratification, but that the characteristics 

of diffusion in the stable stratifications produced by the Army Meteoro­

logical Wind Tunnel should be studied in greater detail. 
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I. INTRODUCTION 

A wind-tunnel study of San Nicolas Island was motivated by the 

desire to estimate the diffusion characteristics of toxic gases which 

might be released at the southern tip of the island (point E on Figure 

1). The U.S. Navy proposed the island as a site for a series of static­

firing tests of rocket motors using solid propellants which in combus­

tion produced a toxic material beryllium oxide. The toxicity of 

beryllium oxide posed a potential health hazard to personnel on the 

island and inhabitants on other islands or on the mainland along the 

downwind trajectory of the combusion product cloud. A field program was 

instituted to analyze the toxicity problem through study of the diffusion 

of fluorescent particle clouds released from the proposed test site on 

San Nic1as Island (9). Such a program is inherently difficult and 

costly due to the vagrancies and unsteadiness of the atmosphere; hence, 

to supplement and complement the prototype study, a model study in the 

meteorological wind tunnel of the Fluid Dynamics and Diffusion Laboratory 

at Colorado State University was initiated. Such a program provided 

the advantages of steadiness of flow conditions and adequate time to 

map flow and diffusion fields in three dimensions; however, the scaling 

of laboratory diffusion and turbulence parameters downstream of the 

peculiar geometry of San Nicolas Island to the field conditions needed 

to be studied experimentally. 

A necessary condition for the modeling of diffusion characteristics 

is that mean flow patterns over a scale model of the terrain be estab­

lished which are similar to those in the prototypeo Accordingly, one 
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primary purpose of this study was to determine if wind patterns observed 

in a wind tunnel over a 1:6200 scale model of San Nicolas Island are 

representative of actual wind patterns observed in the field~ During 

this study, emphasis was placed on stably stratified flows. This empha­

sis was required by the fact that prototype flows are restricted in 

their dispersive capacity by stable stratification such as is commonly 

found to occur over San Nicolas Island. 

The study was exploratory in nature since few attempts have been 

made in previous programs to model wind patterns with thermal stratifi­

cation using such a small scale model with the exception of a 1:50,000 

model study of the lee-wave formation downwind of Mto Fuji by Abe (1), 

and a 1:12,000 model study of diffusion over Point Arguello, California 

(3). Other wind-tunnel studies of stably stratified flows have been 

concerned only with the effect of stratification on turbulence intensity 

(10,30). The reasons for this narrow range of emphasis were that pre­

viously, a wind tunnel capable of creating flow with an adequately con­

trolled density gradient had not been available and adequate field data 

for comparison with laboratory inversion-flow results had not been 

obtained. 

Specifically, the objectives of the present study were: 

1. Determination of the optimum surface roughness, ambient wind 

speed, and thermal gradient in the approach flow to simulate 

prototype conditions, 

2. Determination of characteristic wind patterns over the 1:6200 

scale model, 

3. Comparison of wind-tunnel flow measurements with available 

prototype data, 
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4. Analysis of the distribution of concentration profiles of 

tracer gas downstream from the model island, and 

S. Analysis of wake characteristics downstream from the model 

island. 
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II. EXPERIMENTAL EQUIPMENT 

A. Wind Tunnel 

The wind tunnel has often been disregarded in meteorology as a 

fluid flow analogue because of the difficulties in modeling Coriolis 

effects and temperature stratifications. However, for turbulent shear 

flows less than 1000 meters from the surface, Coriolis effects are 

usually small. In the case where the effects of stratification cannot 

be ignored, it is necessary to employ a wind tunnel installation 

specifically designed to reproduce magnitudes of stability and stratifi­

cation as is found in the atmosphere (5). Such a facility is the Army 

Meteorological Wind Tunnel in the Fluid Dynamics and Diffusion Labora­

tory at Colorado State University (Figure 2). 

The recirculating meteorological wind tunnel, driven by a 250 hp 

DC motor, contains a 27 meter long test section which is 1.8 x 1.8 m in 

cross section. A 12.2 meter length of the test-section floor, beginning 

10 m from the upstream end, can be heated electrically or cooled by cir­

culating brine through the floor, within a range of 00 C to 2100 C. In 

addition, the ambient tunnel air can be heated or cooled from 00 C to 

950 C by passing it over brine-chilled coils. 

A set of fine screens reduces ambient turbulence to a level of 

less than 0.1 percent. A trip fence (turbulence stimulator), located 

just upstream from the test section, serves to stabilize the flow 

pattern as well as to provide a thicker turbulent boundary layer than 

would exist without it. A complete description of the wind tunnel can 

be found in Reference (4). 
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B. Instrumentation 

1. Velocity and Intensity Profiles--The velocity distributions 

were measured with a pitot-static tube of standard (Prandtl) design, 

32 mm in diameter. The two pressure ports of the tube were connected 

to the two ports of an electronic differential pressure transducer 

(Transonic, Equibar type 120). The D.C. voltage output of this differ-

ential capacitor device was recorded on an X-Y plotter (Mosley type 135) 

versus vertical position. Dynamic pressure profiles were converted to 

air velocity by evaluating local density from local temperature and 

barometric pressure measurements. 

Longitudinal and vertical turbulence intensity distributions 

were measured by monitoring the a-c signal of hot wire anemometer probes. 

The longitudinal turbulence scale for neutrally stratified flows was 

measured by a single-wire probe (Disa Company). A tungsten wire of 

.005 mm diameter, 2.54 mm length, and approximately 3.5 ohms cold resis-

tance was used as a sensor. The wire was held at constant temperature 

by a Colorado State University Solid State Anemometer System (26) and the 

fluctuating output was presented on an X-Y plotter from a RMS meter 

(Bruel and Kjaer, type 2409). The vertical turbulence intensities were 

measured by a cross-wire probe (Disa Company), the fluctuating signals 

were combined in an electronic difference circuit, averaged by a RMS 

meter, and finally presented on an X-Y plotter. 

Interpretation of the cross-wire signal for thermally stratified 

flow required calibration of the instrument over a wide temperature and 

velocity range. The relations used to interpret the data were 

-Uh u = 2.36,,~ (2-1) 



where 

and 

where 

and 

where 

8h = 

p = 

li' = 

(au) 
aE 

au 
CaE)T 

6 

dynamic pressure in mm Hg 

air density in slugs/ft 3 ; 

(au) 
aE e' (2-2) 

is the slope of the single wire calibration 

(2-3) 

is the calibration coefficient for the inclined hot wire 
as indicated in Figure 30 

2. Temperature Profiles -- A copper-constantan thermocouple with 

an ice reference was used to measure mean temperatures. Output of the 

thermocouple was recorded on an X-V recorder (Mosely type 135). 

3. Surface and Fluid Flow Patterns --

a. Smoke -- Smoke was used to define the flow patterns for 

the neutral and the inversion flows. Titanium tetrachloride was used 

to provide the dense smoke required for photographic purposeso 

b. Indicator Paint -- Indicator paint was applied to the 

surface of the model to facilitate recognition of flow patterns. The 

paint consisted of white water-base latex paint mixed with congo red 

(an organic indicator of pH intensity). Diluted hydrochloric acid was 

applied to the painted surface which sensitized the surface to the 

presence of anhydrous ammonia. Anhydrous ammonia was then released 

from points of interest on the model surface into the air stream. A 

trace of the diffusion plume of ammonia, indicating the surface wind 

direction, showed as a pink streak on the blue background of the model. 
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Co Camera Equipment -- During this study two cameras were used 

to record smoke and diffusion traces: Ca) a series 100 Polaroid camera 

with integrating shutter utilizing both color and black and white films 

which allowed the results to be seen immediately, and Cb) a Speed­

Graphic camera utilizing 4 x 5 in. black and white film. 

4. Simulated Rocket Exhaust Plume Measurements 

a. Helium Feet and Sampling System -- The plume gas used in 

this study was helium because a technique could be devised to measure 

concentration with the mass spectrometer contained in a Veeco helium 

leak detector. The feed and sampling system used is schematically 

illustrated in Figures 5 and 6. The flow rate of helium to the gas 

source on the San Nicolas Island model surface was controlled by a pres­

sure regulator at the bottle outlet and by a sensitive flowmeter. Source 

strength was maintained at 630 cc/min. of pure helium throughout this 

study. The helium exited from a brass tube of radius 3.2 mm which 

directed the flow vertically upward against a small metal bonnet such 

that the injected gas had negligible longitudinal velocity. The source 

outlet was located flush with the island model surface at the proposed 

rocket test stand site indicated as point E on Figure 5. 

The sampling probe was manufactured from small diameter 

hypodermic tubing and was mounted on a traversing carriage whose hori­

zontal and vertical position was controlled remotely from outside the 

tunnel. Concentration of the helium in the downwind plumes was measured 

at ground level along a line normal to the axis of the plume and 

vertically at the plume centerline. 

b. Instruments to Measure Concentration Levels -- Sample gas 

was continuously drawn into the sampling probe by a small vacuum pumpo 
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Midway between the sampling probe and the vacuum pump aT-connector 

allowed minute samples to be drawn through a calibrated leak into the 

evacuated interior of the Veeco mass spectrometer 0 The helium and other 

components in the air flow were drawn into a V-tube of the mass spectro­

meter where the molecules were converted into positively charged ions 

by electron bombardment. These ions were directed by the repeller grid 

down through a slit and were accelerated by a pair of focus plates in 

the V-tubeo A magnet which was set outside the tube diverted the helium 

ions from the other ions in the beam. At the end of the V-tube the 

charged helium ions were gathered by a collector. An ion current was 

produced and amplified as a visual indication of the intensity of 

helium collection on the portable leak-indicator meter. 

The DC signal of the charged helium was applied to the Y-axis of 

an X-V plotter. The other axis of the X-V plotter was a time base. 

However, because of the slow response of the mass spectrometer, a con­

tinuous horizontal concentration profile could not be taken.. The experi­

mental results in DC voltage were converted into concentration by means 

of a calibration chart~ A typical plume distribution measurement is 

shown in Figure 7. The full scale of the meter ranged from 1 to 1000. 

The least count was 0.02 of the 1 scale" 

c. Calibration Procedures -- Since a closed circuit wind 

tunnel was used, the ambient concentration level built up in the wind 

tunnel with time. Most helium did leak out, thus, the amount of helium 

in the ambient air flow was never higher than 60 ppm - about 0.2 on the 

meter scale. Nevertheless, an ambient concentration measurement was 

taken after each profile. The relative concentration was obtained by 

subtracting the corresponding ambient concentration from the absolute 
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concentration. All data presented in the figures and tables are 

relative concentrations. 

A drift in the mass spectrometer due to contamination of the 

filament of the V-tube often caused a change in the magnitude of the 

concentration measurements which resulted in a parallel shift of the 

calibration curve on log-log paper, so the mass spectrometer was re­

calibrated before and after each run. A typical calibration curve is 

shown in Figure 8. Three calibration points were obtained with helium­

nitrogen mixtures of known helium concentration (0.05, 0.2 and 0.5%). 

Due to the slow response of the mass spectrometer, a period from 

one to two minutes was allotted for the stabilization of each reading 

before it was recorded. The concentration signal itself was usually 

averaged over at least 60 seconds. This method compared favorably with 

the average of signals integrated over a period as long as 250 seconds 

by graphical means. 

c. San Nicolas Island Models 

A 1:6200 scale model of San Nicolas Island was designed and built 

in the Fluid Dynamics and Diffusion Laboratory. The 1:6200 model 

(approximately 2~ x 1 meter in actual size was made of laminated 3/16 

inch balsa wood sheets set on a stiff fibrex board base. Each balsa 

sheet was cut to fit a 100 ft contour on a map which had been photo­

graphically enlarged to the scale of the model. After lamination of the 

balsa sheets, the surface was smoothed to the final shape with a power 

cutting tool using the 100 ft contour outlines as guide lines (Figure 4). 

The completed model was coated with a plastic sealer and finally with 

the indicator paint described in II.B.3.b. above. 
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Subsequently, a smaller 1:12,000 scale model of San Nicolas Island 

was provided by loan from the Paci£ic Missile Range for wake measure­

ments. This model had a vertical distortion of approximately 10:3 and 

was manufactured from a plastic foam with a sealed painted upper surfaceo 

This model was sectioned at a sea level contour and remounted on a ply­

wood sheet for use in the Army Meteorological Wind Tunnel. 
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III. SIMULATION OF ATMOSPHERIC MOTIONS 

In order for flow patterns over models of large topographic 

features to simulate the atmospheric motions over their prototypes, it is 

generally concluded that geometric, dynamic, and kinematic similarity 

must be satisfied (5,15). Such similarity is associated with the model­

to-prototype equivalence of certain significant dimensional groupings 

of the system variables. It is now recognized from experience in fluid 

and hydraulic scaling, however, that physical phenomena not numerically 

significant for the prototype may become so for the model flow, or vice 

versa; hence, exploration of the wind tunnel as a laboratory tool often 

awaits specific comparison of prototype to model measurements for a 

given category of problems before confidence may be placed in the model 

results as a predictive device. The state of the art of terrain aero­

dynamics is at just such an impasse. Current similarity arguments sug­

gest that the required criteria for accurate modeling are geometric 

similarity, Reynold's number similarity, and similarity in the approach­

ing boundary flows. Once these criteria are established, comparative 

prototype measurements must be made to determine if they are sufficient. 

A. Geometrical Similarity 

Geometrical similarity was achieved through use of the primary 

1:6200 scale model constructed from balsa wood at Colorado State 

University. The model scale was undistorted; i.eo, the vertical and 

horizontal scaling were both at 1:6200. A second model of 1:1200 hori­

zontal scale with a 10:3 vertical distortion was provided by the Navy for 

qualitative wake analysis. 
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The effect of such vertical distortion on the wake behavior is 

not well understood; however, it might be expected that vertical convec-

tive motions and initial turbulence intensity might be accentuated. 

B. Dynamic Similarity 

If the Reynolds number is based on the ambient velocity, U, 

m/sec, the height of a characteristic feature, h, m, and the kinematic 

viscosity, v , m2/sec, then typical values of the Reynolds number for 

prototype and model are 

and 

R = ~ = (3)(300) 
P v 

p 
= 6. x 107 (3-1) 

In other words, when the same fluid, wind speed, and flow regime (either 

laminar or turbulent) are used for the model flow as are found in the 

prototype flow, the ratio R /R becomes equal to the scale ratio -­
p m 

1:6200 in this caseo 

To minimize the apparent dissimilarity suggested by the large 

difference in Rand R , there are two distinct approaches availableo p m 

When both flows are in the turbulent state over essentially flat sur-

faces, the model may be roughened to produce flow characteristics cor-

responding to those found at Reynolds numbers larger than the actual 

value. This approach depends upon producing flows in which the flow 

characteristics become constant (independent of Reynolds number) if a 

lower limit of the Reynolds number is exceeded. For example, the resis-

tance coefficient for flow in a sufficiently rough pipe as shown in 

Schlichting (27, p. 521) is constant for a Reynolds number (mean flow 
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speed x pipe diameter/kinematic viscosity) larger than 2 x 104 . This 

implies that the basic flow quantity of surface shear stress, T , is 
o 

directly proportional to the mean flow speed squared, U2 , times the 

fluid density, P -- T pU2 • o Thus, if Pm U2 = p U2 
m p p for such flows, 

T = T om op In turn, this condition is the necessary condition for 

mean turbulence statistics such as root-mean-square values and correla-

tion coefficients of the turbulence velocity components to be equal for 

the model and the prototype flow. For the case of the San Nicolas Island 

models, the roughness height scale equivalent to the prototype situation 

results effectively in a smooth model 0 

In the case where the laboratory flow speeds must be reduced to 

satisfy other similarity criteria ( such as the thermal criteria des-

cribed in the following section), the model flow may be actually laminar. 

When this happens, roughening of the model surface cannot produce the 

desired similarity between inertial and viscous forces (Reynolds number 

similarity of the type discussed previously). However, similarity be-

tween inertial and viscous forces may still be closely approximated. 

Basically the concept to use is that described by Abe (1) in which the 

turbulent prototype fluid is approximated by a fluid of molecular kinematic 

viscosity equal to an average turbulent eddy viscosity or kinematic turbu-

lent exchange coefficient,~. Then a comparison of the Reynolds numbers 

(Rm)lam and (Rp)turb 

U h mm 
v 
m 

and 
U h 
p p 

(~)p 
respectively, 

may be made for estimating the degree of dynamic similarity. The ratio 

of these two Reynolds numbers 

(3-2) 
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can be estimated by selecting typical values for the speed ratio U IU , m p 

the scale ratio h Ih (1:6200 in this study), and the diffusivity ratio 
m p 

(K_) Iv . Considering a velocity ratio of unity, a turbulent exchange -M p m 

coefficient of 2.3 x 103 cm2 sec and a kinematic viscosity for air of 

2.3 x 10- 1 cm2/sec, a very favorable value for the Reynolds numer ratio 

is obtained: 

(1) 1 104 ~ 0.5 . (3-3) 

The photographs of smoke-flow patterns show that flow conditions 

over the laboratory model were essentially laminar near the surface; 

however, flow downstream of the sharp ridges above the surface appears 

to be turbulent. This means that the type of Reynolds number similarity 

proposed in the preceding paragraph should be valid over a large part of 

the model. One should keep in mind, however, that C\i)p is not really 

a constant; it varies both with height and location over the region, so 

that the Reynolds number ratio calculated is an average value having a 

representative order of magnitude. 

In the upper region downstream from the ridges, similarity of 

flow is also expected on the basis of arguments presented in the second 

paragraph of this section. The argument need only be extended to include 

the invariance of flow with Reynolds number downstream from "sharp-edgedH 

objects" 

The dynamic effects of buoyancy forces due to vertical temperature 

gradients and the associated vertical density stratifications are of 

prime importance in determining the flow characteristics around topo-

graphical features. If the modifications of vertical motion by atmos-

pheric inversion are to be similar for the laboratory and the prototype 
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flows, a criterion must be selected to insure adequate temperature 

variation over the wind-tunnel model. Several parameters could have been 

chosen, such as a Froude number or the Obukhov stability length; how-

ever, a Richardson number, as discussed by Sutton (30), was chosen 

because of its wide usage by meteorologists and because of its ease of 

evaluation as a bulk parameter. Batchelor (1953) has shown that in 

stratified flow close to the ground,dynamic similarity depends entirely 

on the Richardson number for the atmosphere (19). 

The Richardson number, Ri, expressed as a local parameter is 

defined by 

(3-4) 

When a bulk Richardson number is desired to describe the thermal 

influence over a layer of thickness 6z, the following form is convenient: 

Ri = £ 68 6z 
8 (6u)2 

(3-5) 

For the purpose of obtaining an estimate of Richardson number 

variation at San Nicolas Island at different heights, use was made of 

Rawinsonde data taken from selected months over the 33 month period 

from June 1963 to February 19660 Richardson numbers were computed from 

profiles of temperature and wind speed taken at 1000 ft increments from 

1000 to 10,000 ft and for one 430 ft increment from 570 to 1000 fto The 

distributions of Richardson number obtained are shown in Figure 90 

Systematic errors result in values abnormally high in computation 

(i.e., » 5 etco), The important observation to be made is, of course, 

that the atmosphere is very frequently stably stratified" 
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The meteorological measurements available for flow over San 

Nicolas Island are unfortunately not suitable for calculation of the 

exact quantitative variation of Richardson number with heightc Accurate 

analysis required data separated by approximately 30 feet while the 

separation increment for the Rawinsonde data provided was a minimum of 

430 feet. In addition, no information was available for the upstream 

flow distributions over the ocean~ Primary conclusions made from the 

prototype flow analysis were: 

a. Stably stratified inversion layers existed to such an 

extent that wind tunnel diffusion testing should include 

their limiting effects to predict dispersion hazards, 

b. The average stratified condition consisted of a raised 

inversion with a base at about 300 meters, and 

c. The most common flow direction for the prototype flow 

was from an azimuth of 3150
. 

Previous experience in the Army Meteorological Wind Tunnel 

indicated that a surface based inversion of an appropriate order of 

magnitude Richardson number could be obtained with the existing thermal 

controls~ Attempts to produce a raised inversion by adding roughness 

or insulating portions of the cooled floor did not significantly effect 

the thermal stabilityc It was concluded that a raised inversion could 

not be obtained without either a) heating the model island and sea 

surface after an initial cooling condition, or b) constructing an up­

stream grid of heating and cooling rods to superimpose the desired 

temperature profileo Both of these methods would require extensive 

developmental expenditure; hence, the decision was made to study the 

surface based inversion as a limiting condition 0 
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Since no accurate data exist for the prototype Richardson number 

magnitude during stable stratification, the scaling criteria for the 

wind-tunnel measurements were based on the fact that other atmospheric 

measurements seem to indicate stable stratification for a value of 

Richardson number greater than 0.2 (30,19). Thus, it was considered 

sufficient for dynamic similarity to provide wind tunnel conditions 

such that the equivalent Richardson number was greater than 0.25 at the 

300 meter contour line of the model. 

To obtain a Richardson number of 0.25 at the equivalent 300 meter 

level of the model required the operation of the wind tunnel at the low 

velocity of 1.6 mpso A further decrease in velocity increases the 

Richardson number but introduces abnormal tunnel fluctuations. 

A typical calculation of the bulk Richardson number for the 

wind-tunnel flow is shown in Figure 10. In this calculation, the layer 

over which Ri is calculated corresponds to the actual boundary-layer 

thickness for the flowo 

Local Richardson number distributions were also calculated from 

measured velocity and temperature distributions in the wind tunnel. In 

the lower 7 inches of the boundary layer, the local Richardson number 

behaves in the manner suggested by the meteorological relation 

R
. Z/L 
1 = 1 + Sz/L (3-6) 

if the log-linear velocity profile holds for the wind profile (see 

section C) (30,19). 

C. Similarity of Approach Flow 

The upstream velocity and temperature profiles may be matched 

rather precisely to those found in the atmosphere by setting the model 
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at varying distances from the leading edge of the boundary layer in the 

wind-tunnel test sectiono Although the momentum and thermal boundary 

layers begin at different sections it has been found that after a short 

distance both layers approach the same heighto Modeling of the thermally 

stratified atmospheric boundary layer in a wind tunnel is an area of con-

tinued effort in the Fluid Dynamics and Diffusion Laboratory at Colorado 

State University 0 It has been found that when the Richardson number is 

adjusted to correspond to values found in nature, the thermal stratifi-

cation will also affect the profile shapes in the laboratory. On the 

basis of several investigations it has been confirmed that the logarith-

mic linear law of Monin and Obukhov (1954) for atmospheric profiles is 

also produced by the Army Meteorological Wind Tunnel (7,23). 

The logarithmic-linear law was devised by Monin and Obukhov (1954) 

to describe the mean velocity profile in the atmosphere under various 

stratification conditionso It has the form 

u = u* z z 
(In z + Sf) (3-7) 

o 

where u* is the friction velocity, Z is a roughness length, B is o 

the empirical coefficient, and L is a stability length parameter 

related to the Richardson number by 

Ri = z/L 
1 + j3z/L (3-8) 

Wind tunnel measurements summarized in Figures 11, 12 and 13 confirm 

the presence of upstream flow conditions in the wind tunnel that appear 

to be similar to prototype conditions in atmospheric surface layers 

(7,17,23) . 
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IVo CHARACTERISTICS OF THE MODEL FLOW AND 
COMPARISON WITH THE PROTOTYPE FLOW 

Having established that geometrical, dynamic and thermal similarity 

should be attained to a reasonable degree for turbulent and laminar flow 

over the model, based on arguments outlined in Chapter III, a program 

of measuring and visualizing flows over the model was undertaken. Since 

inversion flows were of primary interest, the laboratory study was con-

fined primarily to low-speed flow 106 m/sec with a maximum attainable 

temperature difference (the wind-tunnel floor was 1030 F cooler than the 

ambient air). Flow patterns for the stable stratification were well 

documented in the cases of flow approaching from an azimuth of 3150
• 

This direction was selected because it represents the most common flow 

direction for the prototype flow. Flow data for an azimuth of 3150
, 

with no thermal stratification, were obtained to determine flow-pattern 

differences between neutral and inversion flows. 

A. Boundary-Layer Characteristics Upwind from the Model 

One of the first objectives of this study was to determine the 

nature of the boundary-layer flow approaching the model. The bulk 

Richardson number based on the thermal boundary layer gave an indication 

of the overall stability of the flow. As shown in Figure 10, this 

Richardson number for the inversion flow in the wind tunnel was approxi-

mate1y Ri = 0.477. For 5.1 cm from the wall, equivalent to the 310 m 

contour in the prototype, the local Richardson number for the same flow 
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A detailed description of typical upstream inversion velocity 

profiles is given by Figure 14. In this figure, velocity profiles 

measured with a pitot-static tube are shown for a set of stably strati­

fied flows over a range of Richardson numbers. The profile for an 

ambient velocity near 1.6 m/sec has a power-law distribution of the form 

u a zl/5 

where u is the velocity and z is the height above the floor. A 

power-law velocity distribution with this exponent is characteristic of 

low Reynolds number or nearly laminar boundary-layer flows. Velocity 

measurements for flows less than 0.6 m/sec were very difficult to obtain 

reliably; hence, the ambient flow speed was not reduced below 1.6 m/sec 

in order to realize a larger value of the Richardson number. 

A typical temperature profile is shown in Fig. 15. This profile 

depicts an inversion flow with an ambient velocity of 1.8 m/sec. Varia­

tions in temperature profiles were much smaller than for the velocity 

profiles. In a given day, temperature data were reproducible to within 

1 - 20 F. Temperature profiles for the approach flow also appear to 

follow a power-law distribution. 

The temperature profiles were very insensitive to the presence of 

the model or other barriers near the floor level. Efforts to use addi­

tional roughness on the floor or to insulate portions of the cooled floor 

to obtain a raised inversion effect at ground level were not successful, 

although Richardson number profiles were modified due to variations in 

the velocity gradients. 
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B. Temperature and Velocity Fields Over the Model 

Measurements were taken for the velocity and temperature profiles 

directly over the island on a line extending upwind from the proposed 

launch site (Point E, Figure 1). The temperature profiles did not vary 

significantly either upstream, over, or downstream of the island model. 

Surface temperatures on the island were 250 F higher than the surrounding 

model sea surface; however, any adjustments in temperature occurred 

too close to the surface to measure with the thermocouple 0 Reduction of 

field infrared surface temperature measurements made by an airplane about 

noon on a clear day over San Nicolas Island reveals that the land sur­

face is maintained approximately 200 F hotter than the sea surface 

(Figure 16) (data and instrument calibration curves provided by PMR). 

Hence, the higher model island surface temperatures do provide an 

approximation to the prototype condition. 

Velocity profile variation over the island was insignificant 

except in the lee of the steep cliff features on the southwestern edge 

of the island. The details of these variations are discussed in Chapter 

VI as wake flow. 

C. Flow Patterns Over the Model 

As discussed in Chapter II, B, Section 3, two types of flow 

visualization techniques were used to obtain flow patterns. Photographs 

of surface flow directions using the indicator paint on the model gave 

an indication of local flow directions at the surface. Figure 17 shows 

typical examples of these flow patterns. Patterns such as those shown 

were produced by one release of ammonia at the upstream end of each 

streak. 
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A study of the model surface after each ammonia plume release 

revealed gradations in the color of indicator paint tints which allowed 

interpretation of the surface flows. These results are summarized graph­

ically in Figures 18, 19 and 20. Surface flow lines generally agree with 

the ambient flow directions of 3150 for neutral conditions. Inversion 

conditions (Figure 20) result in a deviation of the flow to the west in 

the lee of the steep cliffs to the south of the island. 

A description of the flow pattern above the surface was also 

obtained by photographing smoke over the model. Figures 21 through 30 

show smoke traces for an ambient flow direction of 3150
, ambient velocity 

of 1.6 m/sec, and temperature difference of 115
0 

F. The photographs 

reveal a fairly simple flow over the island proper with interesting 

secondary flows downstream produced by the southern ridge. Mean flow 

patterns were deduced from these photographs and dominant features were 

represented in graphic form on topographic mapso 

The northwest to southeast ridge which runs the length of the 

island reaches from 150 to 275 meters in height on the prototype and 

forms a barrier to the marine layer flow. Photographs in Figures 21 and 

22 reveal the large-scale vortex motion induced by the ridge which pro­

duces large local mixing rates. Several photographs (especially those 

in Figures 21, 23 and 27) reveal a regularity of disturbances downstream 

of the island most typical of ground waves or laminar flow; hence, it 

should be expected that any transport phenomena may be more laminar than 

turbulent in character for the model flow. Figures 24 through 30 all 

reveal the laminar characteristics of the fluid motion over the upstream 

portion of the island. Figure 30 presents the laminar character of the 

flow upstream of the island, in which no turbulent mixing is evident. 
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The tendency of the island to direct atmospheric motions slightly 

to the east may be seen in Figures 23, 27 and 28. Smoke follows the 

lee edge of the island ridge eastward before it releases and continues 

downstream along a 3150 azimuth. 

Figures 31 through 34 show the basic flow patterns established 

with photographs of the smoke. The double cross-hatched regions 

indicate flow in which smoke released near the ground tended to stay 

close to the surface and was laminar in character. The single cross­

hatched regions indicate where the flow, once at the surface, had separated 

and was somewhat above the surface with a turbulent vortex or ground-

wave character to the motion. In general, the smoke remained attached 

to the surface until the flow passed over the downstream edge of the 

island, separated after following the ridge line, and either became 

turbulent or underwent laminar oscillations downstream from the ridge. 

The side views of oil fog plumes released from the proposed rocket 

test stand site, shown in Figure 35, compare favorably to Figures 21 and 

22 over the model. Oil fog pictures were provided by PMR and are 

evidently from series of tests performed by GCA Corporation on January 

22, 1964 (9). The flow patterns indicated by Figures 18, 19, 20, 31, 32, 

33 and 34 are in agreement with wind measurements made by PMR personnel 

at various sites indicated on Figures 36 through 38. 

A total of twelve Berkeley Instruments, Micro-Meteorological 

field stations, Model W5463l, measuring temperature, wind direction 

and wind speed were located on San Nicolas Island. These instruments 

operated continuously from February 1965 until August 1965. The data 

provided by PMR consisted of a printout of the raw data as collected 

with subhourly and hourly averages. Figures 36 through 38 display mean 
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wind directions and standard deviations from April and May of 1965 as 

averaged over approximately thirty days of neutral or stably stratified 

thermal conditions. 
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V. DIFFUSION CHARACTERISTICS OF MODEL FLOW 

Diffusion in a disturbed boundary layer is of great practical 

importance. An atmospheric boundary layer disturbed by obstacles such 

as hills, mountains, canopies, or buildings, is much more common than 

the ideal case of a flat undisturbed boundary. Theoretically, a disturbed 

boundary layer might be interpreted as a conventional nonisotropic wall 

shear layer with a superimposed field of decaying turbulence produced 

by the disturbance. Certainly, in such a flow, the diffusion solutions 

produced for the simpler undisturbed boundary layer are not applicable 

(8,13,30). 

Since disturbances can be generated by infinitely many different 

types of obstructions, it is not satisfactor~practicall~ to wait until 

all aspects of such a flow are understood and predictable. Indeed, it 

is doubtful if diffusion over complex terrain will ever be completely 

definable by such a synthesis. Hence, it is appropriate to consider if 

diffusion characteristics in the presence of such disturbances can be 

satisfactorily modeled in meteorological wind tunnels. The investigation 

of the concentration profiles downstream from the island model were 

directed toward determination of similarity law behavior comparable with 

prototype measurements and a specification of deviations from the non­

disturbed dispersion behavior. 

A. Neutrally Stratified Flow Over the Model 

Measurements made downstream from the model hill (maximum height 

~ 3 cm) follow the trends set by the smooth flat plate. There seem to 
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be no significant differences. This result is in agreement with the 

velocity distirubution and flow development discussed in Chapters IV and 

VI, where it is affirmed that only the lower few centimeters of the 

boundary feel the presence of the island, and the effect of the hill on 

the concentration profile can easily be hidden by random experimental 

errors. This conclusion was also reached by Plate and Sheih in experi-

ments on line-source diffusion downstream from two-dimensional model 

hills (25). 

Vertical and horizontal concentration distributions for neutral 

stratification are plotted in Figures 39 and 40. These profiles have 

been nondimensionalized and compared for various distances downstream 

from the release point. The vertical and horizontal distances, z and y, 

have been divided by the characteristic lengths n and A, respectively. 

The local concentration, C(x, y, T) has been divided by the local maxi-

mum C(x, 0, 0). The length scales A and n were defined as the distance 

from the wall on plume centerline to the position where the local concen-

tration has decreased to half its maximum level. 

The concentration distribution can be described by a dimensionless 

universal curve, 

C(x,y,z) 
C (x,oo) max 

a b 
= exp 0.693 {- (AlK)} - (ntx)) } (5-1) 

where A(X) and n(x) are the lateral and vertical similarity lengths. 

The constants a and b were chosen equal to two. The agreement with 

this universal curve in the presence of the model island is of the same 

order observed by other investigators under various flow conditions (10, 

17,21,25). The vertical and lateral growth of the plumes as character-

ized by the similarity lengths A(X) and n(x) were proportional to 
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A(X) 

and 

h 
IV X where 
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h = 0.53 to 0.65; 

n(x) IV xP , where p = 0.50 to 0077 0 

(5-2) 

Data were taken several times on different days; data scatter was of the 

same order each time. 

The corresponding variation of C (x,o,o) can be approximated max 

by 
-m C (x,o,o) IV x max where m = loll to 1.38. 

These values fall below those obtained previously for point source 

(5-3) 

diffusion utilizing an ammonia gas in the smaller Colorado State Univer-

sity tunnel (10,21). It was considered desirable to determine whether 

this was an effect of the source gas, the wind tunnel, or the test con-

figuration. The test configuration described by Maholtra and Cermak, in 

Reference (21) was duplicated in the small Colorado State University wind 

tunnel, with a helium source release. Measurements made reproduced the 

previous results for plume growth rates within experimental error, except 

for a slight tendency to diffuse faster vertically due to the lower 

density of helium (see Figure 41)0 It was concluded that the ammonia 

and helium detection techniques gave essentially the same results. 

Subsequently,athorough survey was made of the diffusion of a 

helium plume in a neutrally stratified boundary layer for the entire 

length of the Army Meteorological Wind Tunnel. Measurements were made 

for two different scales of free-stream turbulence, 0.03 and 16.0%, and 

velocities ranging from 7 to 30 feet per second. The experimental 

results indicated an order of variation in the growth of plume character-

istics not predicted by the Lagrangian similarity hypothesis of Cermak (2). 
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Figures 42, 43 and 44 summarize the effect of tunnel position on plume 

characteristics. The effects noted may be the result of secondary flow 

or boundary layer growth. A complete tabulation of these results was 

included in Reference (28). 

Kai Kao and Cermak developed an expression for the maximum 

ground-level concentration for a continuous point source released at 

height z = h in a neutrally stratified boundary layer (16). This 

relation was developed upon the hypothesis of Lagrangian similarity and 

a logarithmic velocity profile. They suggest that 

where 

u* z C o max 
Qk = 

z 
z; = - = f(~) z 

o 

1 exp 

z; 
F (Z;) = 1:. f In Z; dZ;, and 

Z; 1 

h 
H =­z 

o 

(5-4) 

Figure 45 compares the measurements made downstream from the San Nicolas 

Island model with this theory. Again, it is apparent that the model 

island has negligible effect on plume dispersion. 

B. Stably Stratified Flow Over the Model 

Several sets of tracer concentration measurements were made to 

determine the degree of similarity between diffusion in the stably stra-

tified model flow and the corresponding neutrally stratified flow. A 



29 

comparison of the relative rates of concentration decay with distance 

downstream from the model and prototype sources is not possible because 

of the failure of the prototype study to provide usable data (9). 

Model results, therefore, are made nondimensional and compared with 

existing theories. 

Nondimensional vertical and horizontal concentration profiles for 

the stably stratified flow are plotted in Figures 46 and 47. These data 

may be approximated by Equation 5-1 with coefficients a and b equal 

to 2 and 2.8, respectively. The increase in value of the coefficient b 

from the neutral lapse situation is related to the increase in Richardson 

number with vertical height for stratified flow. 

The effect of the temperature stratification is also evident in 

the variation of the characteristic lengths A and n with downstream 

distance. The growth of the characteristic lengths A and n decreases 

with increase of longitudinal distance; hence, exponents in Equation 5-2 

vary from 0.6 to 0.2 for n and from 0.8 to 0.4 for p. The variation 

with distance downstream may be indicative of the effect of a raised 

source. Koehler measured n equal to 0.33 and p equal to 0.44 under 

similar thermal and velocity conditions over a smooth flat plate for a 

ground source (17). 

The maximum ground concentration varied with downwind position 

-m as x with m ~ 0.9 to 1.30. Koehler's measurements for a ground 

source under the same stratified conditions resulted in m = 1.2. 

Hence, in this respect it appears that the diffusion plume downstream 

from the model island behaves as if the island was not present. 

Koehler derived an expression from Lagrangian similarity theory 

for the variation of maximum ground concentration with downwind distance 
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in a stratified boundary layer (17). When this expression is rederived 

to account for source height, the following equations are obtained: 

E = n In !L - H In ~ - (n - H) - Sn (n - H) 
no no 0 

+ kH (In ~ + S(H - n )) 
no 0 

(5-5) 

and 

C u*L2 
max const exp (-H2/2n2) 

C = --~~-- ~ -------------------~--~~----------
max Qk ( n2 

1fn2 1, In ..!L - 1 + ! (n-2n +~) 
no 2 0 n 

(5-6) 

where 

n = z/L 

H = h/L 

The other symbols are defined in the table of symbols. The relation 

between C and E has been determined for a characteristic roughness 

no = 0.0001 on a CDC 6600 computer and compared with the concentration 

plume measurements in Figure 48. The island source had a release height 

of H = 0.11. Agreement between theory and data is very good despite the 

presence of the San Nicolas Island model. 
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VI. WAKE CHARACTERISTICS DOWNSTREAM OF THE MODEL 

Experimental investigations of the atmospheric surface layer over 

a flat terrain and of the boundary layer along a flat plate in a wind 

tunnel have shown that both flows are similar (5,7,23). Flat terrain 

is normally the exception, however, on the earth's surface, and flows 

may be dominated by mountains, hills, islands, or other obstructions. 

These obstructions affect the mean velocity distributions in the atmos­

pheric surface layer and strongly influence the order of magnitude of 

the turbulence structure. Both effects are important to the rate of 

dispersion of pollutant clouds near such structures. 

Terrain aerodynamics has been studied for several prototype 

obstructions, including Mt. Fujiyama, Japan; Rock of Gibraltar; Bear 

Mountain, Pennsylvania; and Pt. Arguello, California (1,3,12,14). In 

general, simulation was most complete for the complex terrain of sharp­

edged geometry. A series of studies have also been instigated at 

Colorado State University to synthesize the effects of terrain (6,22, 

24,25). 

Measurements of velocity and turbulent intensity were made 

downstream of the two San Nicolas Island models (1:6200 and 1:12,000 

scale) for wind direction of 3150 and a velocity of 106 m/sec. Data 

were examined for wake growth rates and turbulence decay. 

A. Wake Characteristics in Neutral Flow 

Velocity, vertical turbulence intensity, and longitudinal 

turbulence intensity were measured along a line projected downstream 
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from site E on San Nicolas Island model and parallel lines east and 

west of this projectiono The shallow island heights generally had very 

little effect on the velocity profiles; however, the wake growth and dis­

persion was obvious through the turbulence measurements. 

The wake behind the 1:6200 scale model was extremely weak and 

not evident at all in the velocity measurementso The wake appeared to 

be deflected slightly to the east by the model orientation to the general 

flow and was most intense just downstream from the island tip. The wake 

turbulence had effectively disappeared by one meter (6.2 km on prototype) 

downstream distance (see Figure 49). 

The smaller 1:12,000 scale model of San Nicolas Island had a 

10:3 vertical distortion; hence, although the model was more convenient 

for wake measurements, the vertical height was greater than for the 

1:6200 model. The vertical distortion was evidenced by the marked 

deviation of the velocity profiles, Figure 50, and the large scale of 

the turbulence intensities measured, Figures 51 and 520 Although the 

total length of downstream distance affected by the wake was appreciably 

longer for the 1:12,000 scale model ex ~ 3 meters) there was no notice­

able wake drift to the east. 

B. Wake Characteristics of Stable Flow 

Wake behavior behind the 1:6200 scale model again was not evident 

in velocity measurementso Vertical turbulence intensity data indicated, 

however, that although the strength scale of the eddies was much de­

creased by stable stratification, the eddies persisted to three meters 

downstream from the model, Figure 53. 
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Deviations in the velocity profile were evident in the 1:12,000 

scale model, Figure 54. In this case, separation may have occurred 0 

The vertical turbulence intensity measurements were similar to those for 

the 1:6200 model with a larger scale, Figure 55. 

Co Wake Growth and Dissipation 

The profiles of ~ / Uoo and \fw,2/Uoo for neutral flow shown 

in Figures 49, 51, and 52 have a very similar appearance to those of a 

two-dimensional jet. This similarity includes a linear spread of the 

intensity profiles for distance downstream. An intensity jet width aT 

was defined as that distance from the floor at which the value of \lu'z 

had dropped to half the maximum value, see Figure 56. The amount of 

turbulence present is determined, of course, by the balance of produc-

tion and dissipation of turbulent energy. 

A convenient measure of the integral characteristics of the 

intensity distribution was suggested by Plate as 

(5-7) 

This characteristic length should scale as a spreading parameter of the 

turbulent energy (24)q Figure 57 indicates the rapid generation of 

turbulent energy near the island lee bluffs and its subsequent decay. 

For stably stratified flow, the intensity jet width does not 

grow linearly with downwind distance, Figure 58. The temperature inver-

sion tends to limit vertical growth of the shear effects to a definite 

height 0 Figure 57 also displays the characteristic energy length aT 

for the stably stratified flows. The length has decreased by an order 

of magnitude, but the general shape of the curve is similar. 
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Vllo CONCLUSIONS 

On the basis of the experimental work completed in the 

meteorological wind tunnel, comparison with prototype data, and inter­

pretation of the measurements, the following comments can be made: 

1. Comparison of wind tunnel and prototype temperature data 

established at least a qualitative similarity in the structure of the 

model and prototype temperature field over the San Nicolas Island ground 

surface, for surface-based inversion conditionsc 

2. Comparison of surface-flow directions and smoke traces for 

neutral and surface-based inversion flows established that similarity 

existed in wind flow patterns over the San Nicolas Island and its model 

for neutral and surface-based inversion flows. 

3. Diffusion downstream from a smooth, non-complex terrain may 

be approximated by the assumption of a theoretically flat surface" The 

island will not deflect a diffusion plume appreciably frDm the general 

circulation directionsv 

4. Maximum ground concentrations downstream from a continuous 

point source may be predicted by a diffusion theory based on Lagrangian 

similarity for both neutral and inversion flowsc 

5. The wake downstream from San Nicolas Island will not contain 

a strong separation, will result in only minor deviations from the 

normal mean velocity profiles for flat terrain, and will effectively 

dissipate in less than two to three island lengths. 

60 Turbulence intensity characteristics in the wake of the model 

island decay and spread in a manner similar to the theoretical half jet 

flow. 
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