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ABSTRACT OF DISSERTATION

APPLICATIONS OF GENERALIZED FIDUCIAL INFERENCE

Hannig (2008) generalized Fisher’s fiducial argument and obtained a fiducial recipe for inter-
val estimation that is applicable in virtually any situation. In this dissertation research, we
apply this fiducial recipe and fiducial generalized pivotal quantity to make inference in four
practical problems. The list of problems we consider is (a) confidence intervals for variance
components in an unbalanced two-component normal mixed linear model (b) confidence
intervals for median lethal dose (LD50) in bioassay experiments (c) confidence intervals
for the concordance correlation coefficient (CCC) in method comparison (d) simultaneous
confidence intervals for ratios of means of Lognormal distributions. For all the fiducial
generalized confidence intervals (a)-(d), we conducted a simulation study to evaluate their
performance and compare them with other competing confidence interval procedures from
the literature. We also proved that the intervals (a) and (d) have asymptotically exact

frequentist coverage.
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Chapter 1

INTRODUCTION
1.1 Fiducial Inference History

The idea of fiducial probability and fiducial inference were introduced by R. A. Fisher
(1930). In his 1930’s paper entitled “Inverse Probability”, Fisher discussed the importance
of the maximum likelihood method and then produced a fiducial distribution for a pa-
rameter in roughly the following manner. Let T be a maximum likelihood estimate of a
parameter . The distribution function for T' given 6, F(T|#), has a uniform distribution
on the interval [0, 1]. Differentiating partially with respect to 6 gives a function treated as
a density function for the fiducial distribution of a parameter 6 for a given statistics T. The
idea behind fiducial inference is as follows: Suppose there is a population characterized by a
density function f(z;6), the form of f is known, but there is no prior information available
about the true value of the parameter 8. Given a set of observations, one wants to assign
probabilities to subsets of the set of admissible values of the parameter . The “classical”
method of deriving such inference is by applying the Bayesian theory. The drawback of this
method, is, however that it requires the specification of a prior distribution. Fisher regarded
the specification of a prior distribution as being in conflict with the assumption that no
prior information is available. In Fisher’s 1935 paper entitled “The Fiducial Argument in
Statistical Infereence”, he solved the Behrens-Fisher problem by assuming that the fiducial
distribution is an ordinary probability distribution of a random parameter. The same an-
swer had been obtained by Jeffreys (1940) using a Bayesian argument with non-informative
priors. Fisher argued that the logic behind Jeffreys’ approach was unacceptable because
of the use of an unjustified prior distribution on the parameters. He also criticized the use

of subjective priors because of the subjective element that would inflict upon the posterior



distribution. He thus conceived the fiducial inference as an alternative to Bayes approach,
aiming to obtain a distribution for the unknown parameter without the use of priors.

The ingredients of the fiducial approach are, according to Fisher,
e a sufficient statistics for the parameter of interest,
e a pivot, function of both sufficient statistic and true value of the parameter, and

e the fiducial argument, which states that, from the distribution of the pivot, a distri-

bution for the parameter can be derived based on the sampled sufficient statistic.

To better illustrate the fiducial approach, ws provide a simple example as follows. Let
X1,..., X, beiid with X; ~ (g,n) and X = % Z X;. Then the pivotal random variable is
Z=X-pu~N(0,1). X is a sufficient statistilczior the unknown parameter p. Let Z and
z are observed values of X and Z respectively, then Z and z are related by the algebraic
relation Z — p = 2. Suppose we observe that the value of Z is 1. Then we measure the
“likelihood” of values of u by the corresponding value of Z. For example, we would say
1 < —9 is highly unlikely, since z > 10 is a highly unlikely event. The fiducial argument is
to say the probability density function of y is the same as the probability density function
of z - Z.

Unlike Fisher’s many other original and important contributions to statistical method-
ology and theory, fiducial inference has never gained widespread acceptance. A number of
authors criticized Fisher’s fiducial approach and presented inconsistent results of his theory.
See, for instance, Creasy (1954), Fieller (1954), Lindley (1958). Commenting on Fisher’s
work, Fraser (2006) summarized that the key aspects of fiducial inference that evoked crit-
icism are : (a) that different pivots can lead to different distributions and thus different
intervals; (b) that marginalization of a parameter distribution to a component parameter
can give a distribution that depends on data in a way different from the obvious that would
come from that data; (c) that constraints on the parameter can give a distribution without
total probability being equal to 1; (d) that a fiducial distribution is typically not an in-
verse probability or default Bayesian posterior. He then stated :“Curiously one finds that

the defalut Bayesian approach is subject to precisely the same criticisms (a), (b), (¢) that
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have been attached to the fiducial approach. The fact (d) that a fiducial analysis is not
in general a defult Bayesian analysis seems a rather criticism by Lindley.”. On a positive
note Fraser, in a series of articles (Fraser (1961), Fraser (1966)) and monograph (Fraser
(1968)), attempted to resolve the problem of non-uniqueness by reformulating the fiducial
probability for location and transformation models. He termed his approach structural
probability to distinguish it with Fisher’s formulation.

In 1989, Tusi and Werrahandi introduced the concept of generalized p values and
generalized variables, which are useful for developing hypothesis tests in situations where
exact tests are not available. In 1993, Weerahandi generalized the concept of a pivotal
quantity for a scalar parameter by defining a Generalized Pivotal Quantity (GPQ). He then
proposed a method for constructing a confidence intervals based on GPQs. He referred to
such confidence intervals as Generalized Confidence Intervals (GCls). In 2002, Iyer and
Patterson developed a general recipe for the construction of generalized pivotal quantities
and generalized confidence intervals based on Fraser’s ideas of structural representations.
They illustrated its application through a number of examples. During the past a few years,
generalized confidence intervals have been used by many authors to solve many practical
problems where exact nontrivial frequentist intervals are not available. See, for instance,
Weerahandi 1995, Chang and Huang 2000, Hamada and Werrahandi 2000, McNally et al.
2001, Burdick and Park 2003, Kirshnamoorthy and Lu 2003, Kirshnamoorthy and Mathew
2003, Mathew and Kirshnamoorthy 2004, Weerahandi 2004, Arendacka 2005, Burdick et al.
2005, Daniels et al. 2005, Wang and Iyer 2006, Tian and Wu 2007, Zou and Donner 2008
and Daniels et al. 2008.

In 2006, Hannig et al. singled out a subclass of generalized pivotal quantities. They
labeled the GPQs in this subclass as Fiducial Generalized Pivotal Quantities (FGPQs). A
confidence interval derived from a FGPQ is referred to as a fiducial generalized confidence
interval (FGCI). They explained the reason for chosing the term “FGPQ” is because GCls
based on FGPQs are in fact obtainable using the fiducial argument of Fisher (1935) within
a suitably chosen framework, such as the structural inference of Fraser (1966, 1968). In

fact, Hannig et al. (2006) not only established a clear connection between fiducial intervals



and generalized confidence intervals, but also proved the asymptotic frequentist correctness
of such intervals. In the next section, we describe the definition and applications of FGPQ.

It is interesting to note that most of the published works on fiducial inference con-
centrated on the inference for parameters of continuous distributions. Fisher was aware
that it was difficult applying fiducial arguments to discrete distributions, even for distri-
butions with a single parameter, because of the fact that the probability statements could
not be preserved and only statements about inequalities were admissible. In 1950, Stevens
derived a method of finding an unique fiducial distribution of a parameter of a discrete
distribution by introducing a random variate. In his series of papers from 1966 through
1968 (Dempster (1966), Dempster (1968)), Dempster applied fiducial argument to the bi-
nomial and multinomial models and arrived at an upper and lower bounds on probability
distributions, which was later picked up by Shafer (1976) and named “belief functions”. In
2008, Hannig extended Fisher’s fiducial argument and obtained a generallized fiducial recipe
which is applicable in virtually any situation, both for continuous distribution and for dis-
crete distribution. The resulting inference based on the generalized fiducial recipe is termed
generalized fiducial inference to distinguish with the fiducial inference and emphasize con-
nection with generalized inference as well as the fact that multiple generalized fiducial
distributions can be defined for the same parameter. He argued that the non-uniqueness of
fiducial inference is essentially caused by the Borel paradox, the fact that the conditional
distribution conditioned on an event of probability 0 is not uniquely determined.

It is safe to say that the fiducial inference failed to secure a place in mainstream
statistics. However many recent works, for example, Hannig et al. (2006), Hannig and Lee
(2007), Hannig (2008), showed the fiduical argument leads to statistical procedures with
both good small sample frequentist properties and good asymptotic properties. Hannig
(2008) ends his paper with the statement “The surprisingly good small sample properties
demonstrated by many statistical applications lead us to believe that if computer simula-
tions have been available 60 years ago fiducial argument could have been part of statistical
mainstream today.” In Fisher Memorial Lecture of 1996, Efron (1998) discussed the desir-

ability of something like fiducial inference in future statistics. In the section dealing with



fiducial inference, he says “Maybe Fisher’s biggest blunder will become a big hit in the 21st

century!”

1.2 Generalized Fiducial Inference

In this work, our focus is on the application of generalized fiducial inference, especially
the application of fiducial generalized pivotal quantity introduced by Hannig et al. (2006),
generalized fiducial recipe and fiducial generalized distribution developed by Hannig (2008).
Next, we give the definitions of FGPQ and fiducial generalized distribution, and illustrate

their applications via some examples.
1.2.1 Fiducial Generalized Pivotal Quantity (FGPQ)

Let S € R* denote an observable random vector whose distribution is indexed by a
(possibly vector) parameter £ € RP. Suppose one is interested in making inferences about
6 =mn(£) € R? (¢ > 1). Let S* represent an independent copy of S. Let s and s* denote
realized values of S and $*, respectively. Hannig et al. (2006) defines a fiducial generalized
pivotal quantity for 6, denoted by Ry(S, S*, £), as a function of (S, S*, £) with the following

properties.

(FGPQ1) The conditional distribution of R4(S, S*, &), conditional on S = s,
is free of €.

(FGPQ2) For every allowable s € R*, Ry(s, s, &) = 6.

In the same paper, Hannig et al. (2006) also provided a few recipes for cqnstructing
FGPQs. One of these recipes is based on the structural method when an invertible pivotal
quantity exists. This recipe can be described as follows. Suppose that there exist mappings
fireo oy fr, with f; : R* x RF — R, such that f= (f1,..., fx) is an invertible pivotal quantity

with inverse mapping g(s, -). Then
RG = RQ(S’ S*a f)

= ﬂ'(gl (S7 f(S*v f)), v 7gk(S7 f(S*7 f)))

= 7r(g1(S,1E*), ce agk(Sa ]E*))7



is a FGPQ for 8 = n(§), where E* = £(S*,¢) is an independent copy of E. When 6 is a
scalar parameter, an equal-tailed two-sided (1 — @)100% GCI for 6 is given by Rg a2 <
§ < Rgi-a/2. Here Rg, = Ro,(s) denotes the 100vth percentile of distribution of R
conditional on S =s.

Here is an example given by Hannig (2008) to illustrate how to construct FGPQ. This

example is also known as Behrens-Fisher Problem.

Example 1.1. Consider m iid observations X;,i = 1,...,m, from N(ux,0%) and n iid
observations Y;,7 = 1,...,n, from N(uy,0%), where ux, py,ox, and oy are unknown
parameters. The problem is to obtain confidence bounds for the difference 6§ = pux — py.
Let X and Y denote the sample means and let S% and S2 denote the sample variances for
the two samples. Then we have X ~ N(ux,0%/m), Y ~ N(uy,02/n), (m — 1)S%/o% ~
x3(m — 1), and (n — 1)S% /0% ~ x*(n — 1). The statistic S = (X,Y, 5%, S2) is complete
and sufficient for ¢ = (ux, py,0%,02).

Note that S and £ have an inverse pivotal relationship given by

) =YD g o) s = PP p -
po) =L g ovoy 9= CE - e

with inverse

g1(S,E) = X ,/ —ISX 3(S,E) = —-—( m = 1)5;
2(S.E) = /n—152 2(S.E) = (—El)s%’,

Now by the recipe a FGPQ for mx(§) = px is given by
Sk
S%?

Rux = Rux (S,8%,6) = £1(8,£(8%,€)) = X — (X* — px)

There is a similar expression for R,,. For § = 7x(§) — my(§) the recipe produces the

following FGPQ

N I N T
Ro=Rux =Ry, =X =Y — | (X* — px) S*z“(y — py) G 2
X Y



1.2.2 Fiducial Generalized Distribution

Let X be a random vector with a distribution indexed by a (possibly vector) parameter
¢ € =. Hannig (2008) defines a generalized fiducial distribution for ¢ as follows. Assume
that X has a structural representation given by X = G(U, £), where U is a random variable
or random vector whose distribution is fully known and free of unknown parameters, and
G is a jointly measurable function of U and €. Let T'(x,u) be a set-valued function defined
by T(z,u) ={{:x =G(u,€)}. Theset {{ : * = G(u,€)} may be empty, may consist
of a single element, or, when the distribution of X is not continuous, may consist of more
than one element (possibly uncountably many elements). The function T'(X,U) may be
viewed as an inverse of the function G. Here GG defines u as an implicit function of £ and
x is regarded as fixed. Assume for any measurable set S, there is a random element V' (.S)
with support S, where S is the closure of S. Following Hannig (2008) a generalized fiducial

distribution of ¢ is defined as a conditional distribution of
V(T(x,U*)) given {T(x,U*)# 0}. (1.1)

Here z is the observed value of X and U* is an independent copy of U.
Next, we give two simple examples provided by Hannig (2008) to illustrate the defini-

tion of a generalized fiducial distribution.

Example 1.2. Suppose X; and X, are iid N(u,1). One is interested in the parameter p.
Let U = (E1, E,) where E; are iidd N(0,1). Following Hannig (2008) we have

X=(X1,Xs) =G, U) = (u+ Er, p + Ep).

Let * = (z1,73) and u = (e;,e;) be realizations of X and U respectively. Then the

set-valued function 7" is given by

Iy — €1 if1131—~$2=61—62,

T(@,u) = {(Z) if 17 —z9 # €1 — es.

Notice that T'(x, u) is either empty or it is a singleton. Therefore the quantity V is trivial
and does not have to be considered here. By definiton, a generalized fiducial distribution
of u is the distribution of z; — EY conditional on Ef — E} = 1 — zo where U* = (EY, E3)
is an independent copy of U. Hence a generalized fiducial distribution for u is N(z,1/2)

where 7 = (z; + 22)/2.



Example 1.3. Let X = (X3,...,X,) be a vector of iid Bernoulli random variables X; with
success probability p. Suppose U = (Uy,...,U,) is a vector of iid uniform (0,1) random
variables U;. Let = (z1,...,Z,) be a realization of X and s = > | ; be the observed

number of 1’s. Then the mapping T : [0,1]® — [0, 1] is given by

(10, 1.0 if s =0
(Unin, 1] ifs=n
T(x,u) = < (Usim, Ust1m] Hs=1,...,n—1and
Z?:l I(z; = DI(u; < Usm) = §
U otherwise,
where U,., denotes the st order statistic among U,,...,U,. By definition, a generalized

fiducial distribution of p is given by the conditional distribution of V(T'(x, U*)) conditional
on the event T(x,U™) is not empty where V(T(z,U™)) is any random variable whose
support is contained in T'(x, U*). The exchangeability of U*,7 = 1,...,n, implies that the
generalized fiducial distribution of p is the same as the distribution of V' ([0, U}, ]) when
s =0, V([Ul,, Uts1.n)) when 0 < s < n, and V([Uy,,1]) when s = n. Notice that
if T'(z,U™) is non-empty, it is an entire interval. Therefore the choice V will have an
effect on the result. Hannig (2008) suggested to use V((a,b]) = a with probability 1/2 and
V((a,b]) = b with probability 1/2. In this case the FGPQ of p is R, = BU},+(1—B)U% ..
where B is a Bernoulli(1/2) random variables. For detailed discussion of choices of V,

readers are referred to Hannig (2008).

In this dissertation, we have applied the fiducial generalized pivotal quantity and
generalized fiducial distribution to solve four practical issues. The dissertation is organized
as follows. In chapter 2, we proposed interval estimation procedures for o2, o2 and p in
a two-component mixed effects linear model using the fiducial approach. In chapter 3, we
applied the generalized fiducial recipe to propose a new method for consfructing confidence
intervals of LDgo for a logistic-response curve. In chapter 4, we developed the fiducial
generalized confidence intervals for the concordance correlation coefficient and used it to
conduct statistical tests. In chapter 5 we constructed simultaneous confidence intervals for

all pairwise ratios of means of more than two Lognormal distributions based on a fiducial

generalized pivotal quantity.



Chapter 2

FIDUCIAL GENERALIZED CONFIDENCE INTERVALS FOR VARIANCE
COMPONENTS IN AN UNBALANCED TWO-COMPONENT NORMAL
MIXED LINEAR MODEL

2.1 Introduction

Random effects and mixed effects linear models are useful in applications that require
accounting for components of variability arising from multiple sources. For example, in
animal breeding studies, mixed linear models with two variance components are often
used. One variance component accounts for genetic variability and the other accounts for
variability due to environmental factors. In industrial applications where one is interested
in understanding process variability mixed models with multiple variance components are
used to account for variability due to operators, due to batches of raw material, due to
machine differences, due to measurement errors, and so on. In such situations it is of
interest to estimate the components of variance and provide lower and upper confidence
bounds for them.

Confidence intervals for variance components have been an important topic of research
for over 70 years. Interestingly, the first published work on interval estimation for the
between groups variance component in the standard one-way normal random model is by R.
A. Fisher (1935) who gave a solution to this problem using his then new method of fiducial
argument. Bross (1950) provided further computational details for the fiducial approach
and informally compared it with approximate frequentist methods available at the time.
Numerous subsequent articles have been written on this topic by many authors. See for
instance, Green (1954), Huitson (1955), Graybill et al. (1956), Welch (1956), Healy (1961,
1963), Williams (1962), Broemeling (1969), Burdick and Sielken (1978), Venables and
James (1978), Jeyaratnam and Graybill (1980), Graybill and Wang (1980), Seely (1980),



Burdick and Graybill (1984), Harville and Fenech (1985), Wild (1981), among others. Most
of these papers are concerned with developing exact or approximate confidence intervals
for specified linear functions of variance components or their ratios. Some of the work was
carried out in the context of inference on a heritability coefficient in animal breeding studies.
Healy (1963), Venables and James (1978), and Wild (1981) consider fiducial approaches to
the problem in the case of balanced data.

Our focus in this work is on unbalanced normal mixed linear models with two variance
components. There are several good reasons for limiting ourselves to these models. Two-
component mixed models are actually a fairly general class since there are no restrictions
placed on the fixed-effects part of the model. Also, closed form expressions for minimal
sufficient statistics are available for this situation. Such closed form expressions for minimal
sufficient statistics are typically unavailable for general (unbalanced) mixed models with
more than two variance components. Although, in principle, the fiducial approach can still
be implemented in these cases, one loses the computational advantages that accompany
closed form expressions for minimal sufficient statistics. These are perhaps some of the
reasons explaining why most of the publications on this topic address only the special case
of two-component mixed models.

While there are many papers addressing interval estimation problems for the two
variance-component mixed linear model and its various special cases, a fiducial solution to
the interval estimation problem in this context is not currently available. Here we develop
such a fiducial solution and demonstrate via a simulation study that the resulting proce-
dure has better overall frequentist performance than competing methods. We also establish
the asymptotic exactness of the coverage probability of fiducial intervals for variance com-
ponents of interest. Although we focus on confidence interval estimation, our results can
be used to carry out hypothesis tests about the variance components. In the context of
recovery of intra-block information, Portnoy (1973) has discussed tests of the null hypoth-
esis that the variance component associated with blocks is zero and has proposed improved
tests of parameters in such models. The procedures we develop in this work, automatically,

make use of both inter- and intra-block information.
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More specifically, let Y denote a N x 1 vector of observable random variables. Suppose
Y has a distribution described by the following mixed linear model with two variance

components

Y =XB+Zu+te (2.1)

where X and Z are known incidence matrices of sizes N x p and N X a, respectively, 3 is
a p x 1 vector of unknown parameters, u ~ N(0,02A) is a a X 1 vector of random effects,
g ~ N(0,0%Iy) is the error vector of size N x 1, and u and € are independent. Without
loss of generality we assume rank(X) = p. Also A is a known matrix often referred to as
a relationship matriz in animal breeding context since it describes the degree to which the
elements uy, ..., u, of the vector u covary. For exarpple, if the elements u; and uy of u are
the (additive) genetic effects corresponding to a parent and an offspring, respectively, then
Cov(uy, up) = 02/2 (Falconer, 1989). Note that the standard unbalanced one-way random
model given by )
Yij=p+u+e; i=1,...,a j=1,...,n; (2.2)
is a special case of model (1).

In this work, we focus on constructing confidence intervals for the variance components

02, 0% and the heritability coefficient p = 02/(02 + ¢2). In the special case of a one-
[ed € [0 « -4

way random effects model, o2 is the between-groups variance component and p is the

intraclass correlation coefficient. Our proposed methods follow the fiducial generalized
pivotal quantity (FGPQ) based interval procedures discussed in Hannig et al. (2006) and
the generalizations of the fiducial method given in Hannig (2008).

The chapter is organized as follows. Section 2.2 provides a brief review of published
confidence interval procedures for 02, 02 and p. In Section 2.3 we outline the fiducial
method for obtaining confidence intervals for general situations. We then apply this method
to derive fiducial confidence intervals for o2, 02 and p. Our procedure is applicable to the
two component mixed model given in (2.1). We compare our proposed procedures for a2
with competing methods described in Section 2.2 using a simulation study. Details of the
simulation study are described in Section 2.4 along with a discussion of the simulation
results. In Section 2.5 we consider some data examples using previously published data

and illustrate how our proposed procedures are applied.
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2.2 Published Confidence Intervals for Two Component Mixed Models

In this section we list some of the published confidence intervals for o2, o2, and p =
02/(c% + o) in a two-component mixed model. These will be compared to the proposed
fiducial approach in the simulation study reported in Section 2.4. First we briefly review
some well known results concerning minimal sufficient statistics for the mixed model in
(2.1).

Let H be a N x (N —p) matrix such that HH? = Iy - X(X7X) X" and H'H =
Iy ,. Using the fact that Y ~ N(XB,02Iy + 02 ZAZT), it follows that

HTY ~ N(0,0%Iy_, +02G) (2.3)

where G = HYZAZTH. Let A\; >,...,> Ms > 0 be the distinct eigenvalues of G
having multiplicities 74, ..., rq, respectively. Let P = [Py,..., P4 be a (N —p) x (N —p)
orthogonal matrix such that PTGP = diag(M1T ..., /\dlg;), where P; corresponding to

T1?

A; is of size (N — p) x 7;. Define
V,=YTHP,PTHTY, i=1,...,d (2.4)

Olsen et al. (1976) showed that (V4,...,V;) is minimal sufficient for (02, 02) under (2.3).

Furthermore,
V;

2 .
w2 i=1,....d, 2.5
/\iO'g‘+O'g Xr: ¢ ( )

i
and U;s’ are mutually independent, where x2 represents a central chi-squared distribution

with degrees of freedom v. Note that, when ), is zero, a pure error estimate of o2 is given

by Vi/ra. An exact 100(1 — a)% confidence interval for o2 exists and is given by

Va Va

¥

(2.6)

Y

2 2
Xl—a/2;rd Xa/2;rd

where Xi;'u represents the 100a-percentile of the chi-squared distribution with v degrees
of freedom. We refer to the interval in (2.6) as EXACT (EX) confidence interval for o2.
When )\ > 0 a pure error estimate of 2 is not available. In particular, an exact confidence

interval for o2 is unavailable.
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2.2.1 Confidence Intervals for ¢2 in an Unbalanced One-way Random Effects
Model

Several methods are available in the literature for constructing approximate confi-
dence intervals for o2 in the unbalanced one-way random effects model. Five (iifferent
confidence interval procedures for o2 that have previously appeared in the literature are
used in our simulation study as competitors to the fiducial approach. These methods are -
(a) Burdick-Graybill (BG) confidence interval (Burdick and Graybill, 1992), (b) Thomas-
Hultquist (TH) confidence interval (Thomas and Hultquist, 1978), (c) Burdick-Eickman
(BE) confidence interval (Burdick and Eickman, 1986), (d) Hartung-Knapp (HK) confi-
dence interval (Hartung and Knapp, 2000), and (e) Arendackd (Ar) confidence interval
(Arendacka, 2005).

It is important to note that the first four interval procedures listed above apply only
for the one-way random model. They do not apply to the general two-component mixed
model in (2.1). For this case, the Ar method is applicable when a pure error estimate of

o? is available. Next, we briefly review these five interval procedures.

Burdick-Graybill (BG) Confidence Interval

Before we introduce BG confidence interval, we give some notations used to define

BG confidence interval. Let

_OYMY - Y nT 2 @ 2
V. > i1 Y v M , N=Z"z‘, np = 1 (N_Zz=1n1>’
a

*TTN TN ~1 N

=1

S5 = an’(?i* —?**)27 S8, = ZZ (Yij *71'*)2, 6 = 0'? + noffi, 6y = 03,
i=1

i=1 j=1

52 =88,/(a—1), and S = SS,/(N — a).

“In an unbalanced design, $S;/60, has a chis-squared distribution if and only if 02 = 0. If
it is known that o2 is close to zero, then treating SS;/6; as a chi-squared random variable
may be appropriate. Using this idea, Burdick and Graybill (1992) developed an approx-
imate confidence interval for o2 based on the reasoning that S$S)/6; has, approximately,

a chi-squared distribution with a — 1 degrees of freedom when o2 is close to zero. They
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obtained this approximate confidence interval by appropriately modifying the correspond-
ing confidence interval in balanced case. The resulting approximate two-sided (1 — «@)100%

confidence interval is given by

2 __¢2__ ./ 2 _ Q2
l:ma,x (Sl S2 VL’ 0>’ max (Sl S2+ VU, 0)]

L o

where

Vi = G35} + H3S84 + G1282S2, Vy = HES} + G3S; + H12S2S2,

1 1
Gi=1l-—- Gy=1l-o—
! Fl—a/2;a—1,oo 2 Fl—a/2;N-a,oo
1 1
H=—— "1 Hy=——1,
! Fa/2;a—1,oo 2 Fa/2;N—a,oo
2
(Fl—a/Z;a—l,N—a - ]-) - G%Flrz—a/ma—l,N—a - H22
G12 = F ’
1-a/2a—1,N—-a
2
(1 - Fa/Z;a-1,N—a) - H12F021/2;a-—1,N—a - G%
H12 = ’

Fa/2;a—1,N—a
and Fy.y, 4, represents the a-quantile of the F-distribution with v; and v, degrees of free-
dom. Since this procedure is based on the assumption that ¢2 is close to zero, it might

result in very liberal intervals when o2 is far from zero (Burdick and Graybill, 1992).

Thomas-Hultquist (TH) Confidence Interval

Thomas and Hultquist (1978) derived an approximate pivotal quantity for #; that can
be used for constructing confidence intervals for o2 in the unbalanced one-way random
effects model. This quantity is SS3/603 where

SS —za: Y; liV 2 by =02+ %2, and i = et

P i=1 ( Yoe i=1 i*> Y —Ua"‘g, men= 2 (1/ni)
We define S = SS3/(a — 1). Note that SS3 is the unweighted sum of squares of the
treatment means and 7 denotes the harmonic mean of n; values. Thomas and Hultquist
(1978) showed that the moment generating function of SS3/65 approaches that of a chi-
squared random variable with a — 1 degrees of freedom as all n; approach a constant value

or infinity, or if the ratio n = ¢2%/0? approaches infinity. Furthermore, SS3 is independent

of §S;. Therefore, (5S3/03)/(SS2/62) has an approximate F,_; y_, distribution. Using
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these facts and modifying the Tukey-Williams confidence interval formula for o2 developed
for the balanced case, Thomas and Hultquist (1978) proposed the following approximate
two-sided (1 — &)100% confidence interval for o2

ﬁSSS - (a - 1)‘5’22F11—az/2;a—l,N—a ﬁSS:} - (a - l)SgFa/Z;a-—I,N—a

~ — , (2.7)
nX%—a/Z;a—l nxi/2;a—l

where Xi;v represents the a-quantile of the chi-squared distribution with v degrees of free-
dom. Results of their simulation study indicated that SS3/65 is not well approximated by
a chi-squared random variable when 7 < 0.25 and the design is extremely unbalanced. In

these cases, the confidence interval in (2.7) can be quite liberal.

Burdick-Eickman (BE) Confidence Interval

Williams (1962) constructed an interval for o2 in the balanced one-way random effects
model by solving for the intersection of exact (1 — )100% confidence intervals on o2 +
no2 and the ratio . Burdick and Eickman (1986) followed this strategy and combined
approximate intervals for 63 and 7. The approximate (1 — «)100% confidence interval for
65 they used is based on the Thomas-Hultquist (1978) approximation, and is given by

[ o

2 2
Xl—a/2;a—l Xa/2;a—1

The approximate (1 — «)100% confidence interval on 7 they used is the one developed by
Burdick et al. (1986). This interval is [Lpar, Ugm) where

Lpp = max <0 5 ! )
BM , SgFl——a/Z;a—-l,N—a min (nh oo 7na) ,

2
UBM = max (0 53 - ! >
, M)

=)
S3Faj20-1,N—a max(ng,...

(2.9)

The interval in (2.9) has a confidence coefficient at least as great as 1 — a. By finding
the intersection region of (2.8) and (2.9), Burdick and Eickman arrived at an approximate
two-sided (1 — @)100% confidence interval for 2. This interval is

( AL B ) SSs ( aUpm ) 553 } (2.10)

1+ ﬁLBM X%-a/2;a—1 , 1+ ﬁUBM Xg/Z;a—l

The confidence coefficient of the interval in (2.10) is at least 1 — c.
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Hartung-Knapp (HK) Confidence Interval

In the unbalanced one-way random effects model Wald (1940) showed that the quantity

554 defined by
a a — 2
SS4 = Zwi ?i* — _Z% ,
i=1 Z 1 Wi

where w; = n;/(1 + nn;), is a pivotal quantity for n = 02 /02. Specifically, $S,;/02 follows
chi-squared distribution with a — 1 degrees of freedom. Furthermore, SS; and SS, are

independent. Therefore, letting S? = $S5,/(a — 1), it follows that
S2
R =2~ a—1,N—a
(77) 522 LN
and an exact confidence interval for 7 may be obtained from an interval for R(n). Wald

(1940) showed that SSy is a strictly monotonic decreasing function in 7, so the bounds of

a 100(1 — @)% confidence interval for n are given as the unique solutions to the equations

R(n) = Fi_a/20-1,N-a
. 2.11
R(n) = Fa/Z;a—l,N—a- ( )

Hartung and Knapp (2000) considered the solutions, 7., ny, to equations (2.11) and
used these to construct an approximate two-sided (1 — a)100% confidence interval for o2.
Their interval is given by

[S3n, S3mu,
where

if 0 < n, < R(0 if 0 < <
n, = nL 10_7?L_ (0) and nl, = nu lfO_".?U__R(O)‘
0 otherwise 0 otherwise

Arendacka (Ar) Confidence Interval

Arendackd (2005) considered the special case of Ay = 0 and constructed a confidence
interval for o2 using generalized test variables and generalized p-values. For a discussion
of generalized p-values, see Weerahandi (1991). Arendackd showed that the quantity T

defined by

T= i‘f U - —2Ye__ (2.12)
- i1 ¢ ’Ud+/\iO'gUd ’ .
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is a generalized test variable, where (vy,...,v4) is a realization of (V1,...,V}). She further
defined the function
ee = ViU
mr(v, ..., Ve, 02) = /0 (1 — Fy (; m>)fud(u)du,

where W = 271 U; and fy,(u) is the p.d.f. of Uy. She showed that
LBA S O'Z S UBA (2.13)

is a generalized confidence interval for o2, where L4 and Upa are obtained by solving the

equations

wr(v1, ..., 04, La) = @/2, and

7TT(’()1,. . ,'Ud,UBA) =1- a/2.

In particular, [Lga, Upa] has coverage probability approximately (1 —a). It is worth noting
that Arendacka’s method is closely related to the generalized pivotal quantity for o2 derived
in Iyer et al. (2004) in an unbalanced one-way random model with heterogeneous variances.

Arendackd (2005) also considered three other test variables based on the results in
Zhou and Mathew (1994). Her simulation study showed that all the test variables perform
equally well in terms of empirical coverages. But when comparing the average lengths of
the intervals, the test variable T in (2.12) performed better overall than the other three
test variables. Thus we use the interval in (2.13) for comparing with our proposed fiducial

method.
2.2.2 Confidence Intervals for ¢2 in a Two Variance Components Mixed Model

As mentioned earlier, an exact confidence interval for 2 is available when Ay = 0, i.e.,
a pure error estimate of o2 is available. However, for the case Ay > 0, to our knowledge, no
confidence interval procedure has been proposed in the literature for o2. Here we propose a
fiducial interval éstimate for o2 that appears to have satisfactory coverage properties. The

fiducial approach is discussed in Section 2.3.
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2.2.3 Confidence Intervals for p in a Two Variance Components Mixed Model

In many applications the quantity p = 02 /(02 +02) is of interest. For example, in plant
and animal breeding, p represents the proportion of the total variance that is explainable
by additive genetic effects. It is often referred to as the heritability of the trait under study.

Many authors have considered the problem of constructing exact confidence intervals

for p beginning with Wald (1940) and Wald (1947). Other contributors to this problem
include Khuri (1981), Seely and El Bassiouni (1983), Verdooren (1988), Lee and Seely
(1996), Fenech and Harville (1991), and Burch and Iyer (1997). The main tool used in
these papers is the fact that independent quadratic forms V;, ¢ = 1,...,d, given in (2.4)

are available using which a pivotal quantity for p may be constructed in the form

Z1+p)\~1 ZT’

EIC [
R—- el (2.14)
J
.
% 1+p(A—1) Z ’

jel

where [ is any nonempty subset of {1,...,d}. This pivotal quantity has a central F
distribution. Burch and Iyer (1997) studied a subset of pivots of the above form that led to
locally unbiased intervals for p and recommended the use of an optimal interval from this
subclass. We refer to their recommended interval as BI confidence interval. Since nearly
all of the exact intervals for p proposed in the literature belong to this class, for instance

the Wald intervals, we compare our proposed fiducial interval for p with the BI intervals.

2.3 Fiducial Generalized Confidence Intervals for 02, 02 and p

It is worth noting that generalized confidence intervals such as those proposed by Aren-
dackd (2005) are closely related to fiducial intervals. This connection between generalized
inference and fiducial inference is discussed in detail by Hannig et al. (2006). They also
provide a recipe for constructing fiducial intervals when X has a continuous distribution.
Hannig (2008) generalizes this to arbitrary distributions. They use the term generalized
fiducial inference to emphasize the fact that the version of fiducial inference discussed in
Hannig et al. (2006) and Hannig (2008) is a generalization of R. A. Fisher’s fiducial argu-

ment.
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In this section we describe fiducial interval (FI) procedures for o2, o2 and p that are
applicable under the general two-component mixed model in (2.1). The intervals we propose

are obtained using the fiducial method described in Hannig et al. (2006) and Hannig (2008).
2.3.1 The Fiducial Approach

Following the Hannig’s generalized fiducial recipe (Hannig (2008)) introduced in Chap-
ter 1, we define a generalized fiducial distribution of parameter £ of interest as a conditional
distribution of

V(T (x,U")) given {T(z,U*)# 0}, ' (2.15)
where the parameter £, random variable U*, functions V and 7', and observed value x have
the same definitions as in (1.1). As introduced in Chapter 1, if the probability P(T(x,U*) #
@) = 0, as it is in our case, the conditioning event will have to be interpreted using equations
involving random variables. Therefore the fiducial distribution of (2, 02) is not unique. A
different choice of the conditioning equations will result in a different fiducial distribution
for (02, ¢2). This is related to the well known Borel’s paradox described, for example, in
Casella and Berger (2002), Section 4.9.3. We will present a particular way of interpreting
(1.1) that seems very intuitively appealing and leads to fiducial distribution for 02, g2 with
very good statistical properties.

We begin with the statistics Q; = Vi/r;, i = 1,...,d, where V; and r; are deﬁned in
(2.4). Observe that they are minimal sufficient for {c2, 02} under the model in (2.3). When
d = 2, the relationship between (02, ¢2) and (Q1, Q2) is invertible. This makes fiducial
inference for the case d = 2 quite straightforward and is not considered here. Hereafter we
assume d > 2 which is the more general and challenging case. We rewrite the expressions
in (2.5) as follows.

(M203 +02) Vs

(M2 +a) Uy _ _ (Mo +02) U
Wt ) U 2%t g, - A% %) T
{81 To Td

h (2.16)

Note that (2.16) provide a structural representation for the observable random vector
Q = (Q1,...,Qq) in terms of the random vector U = (Uy,...,U;) whose distribution
is completely known (the Us are independent, each U; having the chi-squared distribu-
tion with r; degrees of freedom). We denote realized values of @); and U; by ¢; and u;,

respectively, fort =1,...,d.
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The main idea in interpreting (1.1) is to pick randomly two equations in (2.16) and
solve for o2 and o2. Then plug these solutions for 02 and ¢2 into the remaining equations

and use them for conditioning. More formally, the set-valued function 7(q,U™) in (1.1) is

the set of all 02, o2, with \;02 + 02 > 0,7 =1,...,d for which the equations
A U;
g = % i=1,...,d (2.17)

are satisfied. Here U™ is an independent copy of U. In particular, assuming that equations

i,7 in (2.17) were chosen and fixed, we solve them for o2 and 2. This gives

1 T Tiqy 1 AT AiTig;
2 _ L . 2 %7 ) 2.18
%= =) (U; U;> e =) < AT (2.18)

The system of equations in (2.17) then has a solution if and only if the values of 62 and
o2 in (2.18) also satisfy the remaining equations in (2.17). This requirement leads to the

following set of constraints that must be satisfied by U™:

o = Uy rigiAe — Aj)  migi (A —
T — A) Uy Ur

J

’\")> for k # 4, j. (2.19)

Summarizing, the set T'(g,U™) is nonempty if and only if (2.19) holds, in which case

o 1 T Tigs 1 AT AiTig; .
thesetT(q,U)——{(()\i_)‘j)(Ui* U}*)’ (/\i—>\j)( 7 + i . This

J
leads us to define the random variables W1 ; ; Wa;; Zg;; as follows.

1 T T4 1 AiTids | NTig;
W, U By — - 3 ij — - )
v gy (78 U ) W=ty (5 o )
7o Uy rigi(As — Aj) g — M)
BT e — Ay) Ur Us ‘

We can now interpret the conditional distribution in (1.1) as
Wl,i,j7 W2,i,j | Zk,i,j =gk, k 7é i ] (2-20)
This conditional distribution has a density that is proportional to the joint density of

Whijs Waijs Ziij, k 7 4, j computed at the point wy, wa, q respectively. Routine calculation

shows that this density is given by

N = Nagig
28k F (\w, + wz)(x Wi + wo)

fi,j(wl,wz,Q) =

_&_&1

d
Tkdk ’r‘k qk
X exp | —= ]_
[ Z M + wz] L s g T om0

20



Unfortunately, a careful inspection of f; ;(w;, we, ) reveals that the conditional distribution
(2.20) depends on the arbitrary choice of i, j.

To remedy this non-uniqueness we have considered the equation ¢, j to be selected at
random. By taking this into account, the fiducial density of (¢2,02) in (1.1) can therefore

be computed as

f(wl,wz) =
_1 3 .
him (g) Zi<j E_dP(Wl,i,j S (wla wy + E), W2,i,j c (w2, wy + 5), Zk,i,j c (Qk, qr + 5)’ k # Z,j)
—1 . .
= (@) T, e H2P(Zrij € (an ae +€), k #1,5)

(2.21)

Notice that each term of the sum in the numerator of (2.21) converges to f; j(w1, w2, q).

The limit in (2.21) is then

f( ) . Zi<j fi,j(wlaw2aq)
ot = Ziq ff fi,j(whwz,(ﬂ dw; dwy

which simplifies to a well-defined joint fiducial distribution of (02, 02), given as follows

flwy,we) = C - g{wy, we) (2.22)

where y
g(W1 w2) = Z ()\1 — /\j)qiqj exp(_% Z?:l /\iw1z‘w2) : I A 0
) i< j (/\i'UJI + 'LU2)()\jw1 + 'LUQ) H:’izl()‘iwl + 'LUQ)LZL {Miwr+w2>0}

=1

and

0 oo 00 00
c! =/ / g(w1, wp)dwadw, +/ / g(wy, wo)dwadw,.
—00 J —Ajwy 0 —Aqw1

For future reference denote a random variable with density (2.22) by (Roz, Ro2).

Hannig et al. (2006) outlined a method that can be used to prove that the fiducial
distribution for (02, 02) given in (2.22) leads to asymptotically correct frequentist inference
if d is fixed and r; — oo. However, this is not sufficient for many applications, where we have
a large number of different eigenvalues with multiplicities that are relatively small, such as
the loin-eye data set discussed in Section 2.5. Consequently, Hannig have generalized his
earlier theorem (Hannig et al. (2006)) by allowing the number of distinct eigenvalues d to
take any value between 2 and n. However this requires the eigenvalues themselves to satisfy
some natural conditions related to the Fisher’s information in order to have asymptotically
correct frequentist inference. The exact conditions are given in Theorem 2.1. The proof of

this theorem can be found in E et al. (2008).
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Theorem 2.1. Denoten = Y o, r; and assume that the limits

d

li L E —)\fn my for k=0,1,2
m - - =
n—oo N, i1 ()\iUg + 0'3)2 b Y

myo
mi
probability of the (1 — &) equal tailed fiducial interval based on the joint fiducial distribution

are such that the matriz 3 = ( zl) is positive definite. Then the frequentist coverage
2

of (62, 02) approaches the stated value as n — 0.

[e 2 4
Remark 2.1. 1t is worth noting that the Fisher information matrix F for (¢2,¢2) based on

Q;, i=1,...,d, is the 2 by 2 matrix whose (7, k) element is given by
d - \Hk-2
(2
; 2(M\o2 + 02)?
for 5,k = 1,2. Hence the conditions of the theorem is a statement of the requirement that
%]—' converge to a positive definite matrix %E as n — oo.
Moreover, it is shown in the proof of the Theorem 2.1 that the fiducial distribution just

as Bayesian posteriors satisfies the Bernstein-von Mises theorem. Thus it is asymptotically

efficient.
2.3.2 A Fiducial Generalized Confidence Interval for o2 and o2

A fiducial distribution for ¢ can be easily derived from the joint fiducial distribution

of (62, 02) in (2.22) and is given by

fRag (w1) = {

Let R,z o be the 100y—percentile of the fiducial distribution of 0. Then a two-sided

O fj\lwl g(wla 'LUQ) d’UJz lf w < 0
C f f?\dw1 g(wy, wy) dwy otherwise.

(1 — @)100% fiducial confidence interval for o2 is given by
[max(O, Rag,a/2)a max(O, Rai,l—a/Z)] .
Similarly it follows that the fiducial distribution of ¢? is given by
C ffz)z/,\d g(wl,wg) dw, fwy<0and Ay >0

ngEQ ('LU?,) = C ffvz//\l g('l.Ul,’LUz) d’ujl if wy > 0
0 otherwise

where C and g(w;,w,) are the same as C and g(w;, ws) in (2.22), respectively.
Let R,z,, be the 100y—percentile of the fiducial distribution of 62. Then a two-sided
(1 — a)100% fiducial confidence interval for o2 is given by

[IIlaX(O, Rag,a/2)a max(O, Ra?,l—a/2)] .
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2.3.3 A Fiducial Generalized Confidence Interval for p

A fiducial distribution for p can be easily derived from the joint fiducial distribution
of (62, 02) in (2.22). In fact, we obtain the fiducial density for p as the density of R, =

a?

Ry3/(Ryz + Ry2) given by

C’f glz,y)dy if ——E——<——1—and)\d>0

11—z Ad
fr,(z) = %0 g 2 o1
Cloglmy)dy if —> "

0 otherwise

where
A — Xi)aigs 1 — ) Ziir/2
oey) = (Z((A-—n T ))( o |y|ﬂ)
& =Ty +y 2y +9) ) \TTZ, (h — Day +)3

d
1 (1-z)rq
X exp (—5 ZE=1 N oy + y> HI Oy ety oy and

'f_l/(l_'\d) fi) 9(z,y) dy dz + floo fi) 9(z,y) dy dz + fll/(l—/\l) fooo g(z,y) dydz, if Ag > 1

e f_ xy)dydg;+fl/l /\1)f0 glz,y)dydz, if \yg=1

c! = fll/(l—xd) f_oo 9(z,) dydm+f-oo 157 g(z,y) dydz + f1°/°(1_mf0°° g(z,y) dy dz, if0< A <1
fll/(l—xd) [° . gla,y)dyde + 1 [ g(z,y)dydz, if A =1

fll/(l—Ad) ffoo g(z,y) dy dz + f11/(1-A1; I3 9(z,y)dydr, if A >1and 0< Ay < 1.

\
Let R, be the 100y-percentile of the fiducial distribution of p. Then a two-sided
(1 — a)100% fiducial confidence interval for p is given by

[max(O, min(R, 42, 1)), max(0, min(R,1-q/2, 1))} .
The next two sections describe details of simulation studies we conducted to compare

the proposed fiducial interval for 02, 62 and p with previously proposed methods.

2.4 Simulation Study and Discussion of Results

We will use the abbreviations introduced in sections 2.2 and 2.3 when referring to
various competing procedures in this and subsequent sections.
The coverage probability of a confidence interval on o2 depends on the design (e.g.

number of within group measurements, n, ...,n,) as well as the values of 02 and o2. The
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degree of imbalance of the design, in the case of a one-way random effects model, has been
quantified by Ahrens and Pincus (1981) using the measure ® defined as & = CJL—? with
N=3Y7 nandn= —a—c-l-——. Note that 0 < ® < 1 and that ® equals one if and only
>izi(1/ni)

if n; are all equal. The smaller the value of ® is, the larger is the degree of imbalance. For
our simulation study we selected seven different unbalanced patterns shown in Table 2.1.
Patterns 1, 2 and 5 were also considered in Hartung and Knapp (2000). Pattern 4 was also
considered in Arendackd (2005). We added the additional patterns 3, 6, and 7 to study the
performance of confidence intervals in small sample situations. Without loss of generality,
we assumed that g = 0. The values selected for (02,02) are (0.1,10), (0.5,10), (1, 10),
(0.5,2), (1,1), (2,0.5), (5,0.2), and (10,0.1), where the settings (0.1, 10), (0.5,2), (1,1),
(2,0.5), (5,0.2) were used by Arendackd (2005). Three more settings were added to our
study to better investigate the performance of confidence intervals under extremely large
and small values of the ratio o2 /o2

For each setting of sample sizes n; and values of (62, 02), 3000 independent data sets
were generated and two-sided 95% confidence intervals for 02 were computed for each
method. The methods compared were (a) BG interval, (b) TH interval, (c) BE interval,
(d) HK interval, (e) Ar interval, and (f) FI interval. The criteria for judging the per-
formance of the methods are (i) the empirical coverage probabilities and (ii) the average
lengths of the confidence intervals. The simulation study was programmed in Fortran. Two

IMSL (IMSL (1994)) subroutines — DQ2AGI and DTWODQ - were used to compute the

needed one-dimensional integrals and the two-dimensional integrals respectively.

Table 2.1: Unbalanced Patterns Used in the Simulation Study.

Pattern d a n;
1 0068 6 11111100
2 0130 6 22222100
3 0.187 3 2560
4 0410 5 444848
5 0.700 6 51015202530
6 0807 4 2246
7 0957 6 66881010
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The results of simulation study are graphically summarized in Figures 2.1, 2.2, 2.3
and 2.4. The numerical results are listed in Appendix A. Figures 2.1 and 2.2 show the
empirical coverage probabilities for settings with ratio n = 02/ < 1 and for settings
with 17 > 1 respectively. Figures 2.3 and 2.4 show the differences of the average confidence
interval lengths, relative to the Fiducial interval, for all competing procedures for settings
with < 1 and for settings with n > 1 respectively. These relative lengths are denoted by
RL, which is defined as (CLy; — CLpy)/CLpy, where CLys denotes the average length of
a competing interval and CLp; denotes the average length of FI interval.

The results show that BG procedure is very liberal when the ratio n is large. The TH
procedure is liberal for small values of  and very unbalanced designs. This finding agrees
with the findings of Burdick and Eickman (1986).‘ The BE procedure is conservative and
its behavior for large 7 is similar to that of the TH procedure. The HK procedure becomes
more conservative as the value of 1 becomes large. The Ar procedure appears to always
maintain the stated confidence coefficient. The FI interval is conservative when the ratio
71 is less than 1, but maintains the stated confidence coefficient when 7 is greater than or

equal to 1.
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Figure 2.1: Empirical coverage probabilities  Figure 2.2: Empirical coverage probabilities
for settings with n < 1. for settings with n > 1.

Comparing average interval lengths, we observe that all the intervals behave very

similarly except the BG interval and the FI interval. Although the BG interval has small
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confidence interval lengths (RL) for settings  confidence interval lengths (RL) for settings
with n < 1. with n > 1.

average lengths, it does not adequately maintain the stated coverage probabilities when 7

is large. Therefore the BG interval is not recommended. When compared with procedures
other than the BG procedure, the FI interval always has the smallest average lengths and
standard deviations, even when it is conservative. The average lengths of FI intervals are
10% to 25% smaller than the average lengths of other intervals, except BG interval. Based

on these results, we recommend the FI intervals for o2 as the most suitable choice for

practical applications.

2.5 Examples

As noted earlier, a fiducial interval for 02, 02 and p is available in the general mixed
model (2.1) with two variance components. In this section we give three examples, one of
which involves incomplete block designs for slope-ratio assays and the other two arise from
animal breeding studies. The first example is taken from Das and Kulkarni (1966). The
second example uses a model that might be referred to as a sire model. Both examples have
positive degrees of freedom for error and the eigenvalue A4 is zero. The third example uses
a model that may be referred to as a full animal model. All eigenvalues A;,j = 1,...,d,

are positive and hence there are no degrees of freedom available for error.
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2.5.1 Incomplete Block Design for Slope-Ratio Assay

"In a (2k+1)—point symmetrical slope-ratio assay, equal number of subjects are admin-
istered to each of k standard and test preparations and to blank dose. The responses are
assumed to linearly depend on doses, usually on a logarithmic scale. This (2k + 1)—point
symmetrical slope-ratio assay requires blocks of size 2k + 1 for a randomized complete
block design. Das and Kulkarni (1966) developed a modified BIB design with blocks of size
2k' +1(k' < k) for slope-ratio assays. Suppose s; and ¢;,7 = 1,..., k, are the ith dose levels
of standard preparation and test preparation respectively, where doses are equally spaced
and sorted in ascending order. First a BIB design for k& doses of the standard preparation
in blocks of size &' is obtained and used as the basic design. The modified BIB design
is then obtained by augmenting every block of the basic BIB design by a blank dose and
k' doses of the test preparation, using the rule that dose t; should be included in every
block containing dose s;. Das and Kulkarni (1966) claimed that the modified BIB design
is more efficient than the randomized complete block design. Kulshreshtha (1969) later
proved that the new design gives shorter confidence interval for relative potency based on
Fieller’s theorem than the random block design with equal replication of nonzero doses.
The relative potency is defined as the ratio of the slope of the dose-response curve for the
test preparation to that for the standard preparation. The model for slope-ratio assay
considered by Das and Kulkarni (1966) and Kulshreshtha (1969) can be described by the

equation
Yijm = b+ Bi%ij + VYm + €jm, t=s,t,orc; j=1,...,k m=1,...,b, (2.23)

where Ysjm, Ysjm and yq;m denote the observation in mth block for jth dose of standard
preparation, test preparation and blank dose respectively, z,; and z; denote the jth dose of
the standard and test preparation respectively, x; is equal to zero, v, represents the effect
of mth block, €;;, are independent, identically distributed, random measurement errors
with a N(0,¢?) distribution. The block effect vy, is taken to be fixed in Das and Kulkarni
(1966) and Kulshreshtha (1969). To illustrate the methods of this work we consider blocks
as random and assume 7, “N (0,02). Furthermore, v,, are assumed to be independent of
Eijm.-
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Das and Kulkarni (1966) gave several real data examples to illustrate the construction
and analysis of the new designs. One example is a 9-point slope-ratio assay on riboflavin
content of yeast with two replications of each dose. These data were first used by Bliss
(1952). Das and Kulkarni (1966) deleted the observations on the highest dose of each
preparation and used the remaining data to develop a modified BIB design for 7 doses in 3
blocks of size 5, with 2 replications of each preparation. The observations of titer per tube,
arranged according to this design, are shown in Table 2.2. Here we calculate the fiducial

distributions associated with o2, 02, and p.

Table 2.2: Data and Modified BIB Design for Example of Slope-Ratio Assay.

Blank Standard Test,
Block
c S1 S9 53 t1 12 t3
1 0.72 | 2.15 4.35 - 2.35 4.40 -
2 0.78 - 4.05 6.10 - 4.70 6.10
3 0.76 | 230 - 5.60 | 2.45 - 5.10

There are three distinct eigenvalues of G = HTZAZTH, A\, = 5 with multiplicity
r1 = 1, Ay = 4.545455 with multiplicity o = 1, and Az = 0 with multiplicity r3 = 10. The
method of moments (MOM) estimates of 02 and o2 are 0.0033 and 0.1045, respectively.
The corresponding estimate of p is 0.0306. The REML estimates of o2 and 02 are the same

as the MOM estimates.

v T T T
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Figure 2.5: Fiducial density plot for o2 for  Figure 2.6: Fiducial density plot for o2 for the

the slope-ratio assay data. slope-ratio assay data.
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Figure 2.7: Fiducial density plot for p for the slope-ratio assay data.

Figures 2.5, 2.6, and 2.7 show plots of the fiducial densities of o2, 02, and p, respec-
tively. Note that the support of the fiducial density for 02, ¢? and p might be a proper
superset of their natural boundaries. For instance, observe that the fiducial density for p
for this data has the range of p equal to the interval (1/(1 — A\y),1),1.e.,(—0.25,1). When
calculating fiducial confidence intervals, we replace negative confidence bounds with 0 and
when a confidence bound for p happens to be bigger than 1 we replace it with 1. Table 2.3
shows the Ar and the FI confidence intervals for 02 with 90% and 95% nominal confidence
coefficients.

Table 2.3: Nominally 90% and 95% Confidence Intervals on o2 for the Slope-Ratio Assay
Data.

Method 90% 95%

Ar (0, 0.898) (0, 1.841)
FI  (0,0.875) (0, 1.781)

In this example, it might be of interest to test the existence of the block random effect,

2 = 0 versus H, : 02 > 0. Portnoy (1973) proposed an

«a

i.e. the hypothesis of Hy : ¢
efficient test of the above hypothesis, which used both intra-block (i.e., between-subjects)
and inter-block (i.e., within-subjects) information. The test is based on three independent

scaled chisquared statistics:

T~ (o2 4ard)l, S~ (0 +bo2xE, San ol
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The null hypothesis is rejected if

(Sl + T)/(Tll + ng)
Sg/m > Fl——oz;(n1+n2),m

(2.24)

where F.,.,, ., represents the y-quantile of F-distribution with v; and v, degrees of freedom.
Portnoy’s test statistic calculated from this slope-ratio assay data is equal to 2.7930, less
than Fp 952,10 = 4.1028. Thus one is unable to reject Hy. Note that the test given in (2.24)
can not be inverted to provide a confidence interval of 2 since the test is applicable for
testing the hypothesis Hy : 02 = 02 for the special case 62 = 0. On the other hand, the
fiducial approach proposed here may be used to obtain a confidence interval for o2.

The hypothesis 02 = 0 can also be tested using the fiducial confidence interval pro-
cedure. In particular, for this example, the 95% one-sided fiducial interval for o, is
(—0.0095, 00) which contains zero. We again fail to reject Hy. Thus, in this example,
the Portnoy (1973) test and the test based on a fiducial interval, both reach the same
conclusion.

For sake of completeness, we show in Table 2.4 the EX and the FI confidence intervals

for o2 with 90% and 95% nominal confidence coefficients.

Table 2.4: Nominally 90% and 95% Confidence Intervals on o2 for the Slope-Ratio Assay
Data.

Method 90% 95%

EX  (0.045,0.210) (0.040, 0.254)
FI  (0.045,0.211) (0.040, 0.257)

For this example, there does not exist an unbiased BI confidence interval for p. In this
case, we take I = {1,2} in (2.14) which gives us the pivotal quantity having the closest
“balance” between the numerator and the denominator degrees of freedom where r3 = 10
and Zle r; = 2. Table 2.5 shows the FI confidence interval and the BI confidence interval

for p with 90% and 95% nominal confidence coefficients.
2.5.2 Sire Model

This data set was used in Harville and Fenech (1985) and Burch (1996). The data

consist of the birth weight of male lambs which were obtained from five distinct population
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Table 2.5: Nominally 90% and 95% Confidence Intervals on p for the Slope-Ratio Assay
Data.

Method  90%  95%

BI  (0,0913) (0, 0.956)
FI  (0,0.916) (0, 0.957)

lines (two control lines and three selection lines). Sixty-two observations were made on
progeny of twenty-three rams and each lamb came from a different dam. The age of each
dam was recorded as belonging to one of three categories: 1-2 years, 2-3 years, and over
3 years. The fixed effects in this case are population line and age of dam. The random
effects are the ram’s (additive) genetic effects (within lines) and error (which includes
environmental effects).

The mixed linear model we consider is Y0 = p+a;+ B8+ Gy +eiju, 1=1,...,3, 7=
1,..,5, k=1,..,23, where Y, is the birthweight of the [** lamb of the k** ram in the j*
population line from a dam belonging to the i** age category. Assume that the ram’s genetic
effects ;) are distributed independently as IV (0,02) and the errors €ijki are distributed
as N(0,0?) independently of each other and of the ram’s genetic effects. The quantity p
is the general mean, o; are fixed effects due to the age group of the dam, and 3; are fixed
effects due to the different population lines. The relationship matrix A is Ise.

The number of distinct eigenvalues of G = HT'ZAZ"H is d = 18. The eigenvalues
range in magnitude from A; = 5.087479 to A;3 = 0. The eigenvalue A3 = 0 with multiplicity
r18 = 37, Ag = 2.0 with multiplicity rg = 2, and all remaining eigenvalues have a multiplicity
of one. The method of moments (MOM) estimates of o2 and o2 are 0.7676 and 2.7631,
respectively. The corresponding estimate of p is 0.2174. We refer to this estimate as MOM
estimate of p. The REML estimates of 02 and o2 are 0.5171 and 2.9616, respectively. The
corresponding estimate of p is 0.1486. We refer to this estimate as REML estimate of p.

Figures 2.8, 2.9, and 2.10 show plots of the fiducial densities of o2, o2, and p, re-
spectively. The supports of the fiducial densities for 02 and o2 are (—o0,00) and (0, o0)
respectively. The support of the fiducial density for p is (1/(1 — A1), 1),4.e.,(—0.2446, 1).

Table 2.6 shows the Ar and the FI confidence intervals for o2 with 90% and 95% nom-

inal confidence coefficients. Simulated empirical coverages associated with the nominally
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Figure 2.10: Fiducial density plot for p for the lamb birth-weight data.

90% and 95% confidence intervals for 02, along with their average lengths, using MOM and

REML estimates of 02 and o2 as their true values, respectively, are shown in Table 2.7.

Table 2.6: Nominally 90% and 95% Confidence Intervals on o2 for the Lamb Birth-weight
Data.

Method 90% 95%

Ar  (0,3.557) (0, 4.346)
FI  (0,2.150) (0, 2.688)

The results show that the FI method gives shorter confidence intervals for this data
set. Comparing the average lengths of the intervals, the FI confidence interval has smaller
average lengths, despite being more conservative than the Ar confidence interval. In sum-
mary, the FI procedure performs better than the Ar method for this lamb birth-weight

data set. Table 2.8 shows the EX and the FI confidence intervals for ¢ with 90% and
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Table 2.7: Empirical Coverage Probabilities and Average Lengths (£ Standard Deviation)
of Nominally 90% and 95% Two-sided Confidence Intervals on o2 for the lamb birth-weight
Data Using MOM Estimates and REML Estimates of 02 and o2 as their True Values,
respectively (based on 5000 simulations).

90% 95%
Method
MOM REML MOM REML
Ar 0.899 0.898 0.948 0.946
2.779+1.355 2.4614+£1.341 3.469+1.655 3.089+1.614
FI 0.903 0.907 0.953 0.959

2.228+1.075 1.92141.024 2.782+1.298 2.418+1.220

95% nominal confidence coefficients. Table 2.9 shows simulated empirical coverages associ-
ated with the nominally 90% and 95% confidence intervals for o2, along with their average
lengths, using MOM and REML estimates of o2 and o2 as their true values, respectively.
The results demonstrate that the FI interval has smaller average length, although it gives

a slightly wider confidence interval for this data set.

Table 2.8: Nominally 90% and 95% Confidence Intervals on o2 for the Lamb Birth-weight
Data.

Method 90% 95%

EX  (1.959, 4.246) (1.836, 4.625)
FI  (2.135,4.633) (1.996, 5.023)

Table 2.9: Empirical Coverage Probabilities and Average Lengths (+ Standard Deviation)
of Nominally 90% and 95% Two-sided Confidence Intervals on o2 for the Lamb Birth-
weight Data Using MOM Estimates and REML Estimates of o2 and o2 as their True
Values, respectively (based on 5000 simulations).

90% 95%
Method
MOM REML MOM REML
EX 0.899 0.892 0.949 0.949
2.300+0.541 2.450+0.573 2.802+0.654 2.978+0.688
FI 0.900 0.902 0.948 0.949

2.237+£0.472 2.3491+0.488 2.713+0.571 2.847£0.590

There does not exist an unbiased BI confidence interval for p. In this case, we take
= 17 in the BI procedure which gives us the pivotal quantity having the closest “bal-

ance” between the numerator and the denominator degrees of freedom where rig = 37 and
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Zil r; = 18. Table 2.10 shows the FI confidence interval and the BI confidence interval
for p with 90% and 95% nominal confidence coefficients. Table 2.11 shows empirical cover-
ages corresponding to these intervals along with their average lengths. These simulations
are conducted with the MOM and REML estimates of o2, 02 and p, respectively, as their
true values. The results show that the FI method gives a shorter confidence interval for p
in this data set. Comparing the average lengths of the intervals, the FI confidence inter-
val has a smaller average length although it is more conservative than the BI confidence
interval. In summary, the FI procedure performs better than the BI method for this lamb

birth-weight data set.

Table 2.10: Nominally 90% and 95% Confidence Intervals on p for the Lamb Birth-weight
Data.

Method 90% 95%

BI  (0,0.592) (0, 0.643)
FI  (0,0.451) (0,0.512)

Table 2.11: Empirical Coverage Probabilities and Average Lengths (£ Standard Deviation)
of the Nominally 90% and 95% Two-sided Confidence Intervals on p for the Lamb Birth-
weight Data Using MOM Estimates and REML Estimates of 02, 02 and p as their True
Values, respectively (based on 5000 simulations).

90% 95%
Method
MOM REML MOM REML
BI 0.900 0.900 0.951 0.951
0.471+0.125 0.436+0.145 0.53840.128 0.501+0.146
FI 0.909 0.919 0.962 0.965

0.42840.121 0.389+0.133 0.495+0.123 0.451+0.135

2.5.3 Full Animal Model

This data was used in Burch (1996) and Burch and Iyer (1997). Data were obtained
on one hundred and seventy-one yearling bulls from a Red Angus seed stock in Montana.
A trait of interest was the loin eye (i.e., ribeye) muscle area measured in square inches.
Ultrasound techniques were used to obtain these measurements. The fixed effect was age

of dam, which belongs to one of five categories: 2 years, 3 years, 4 years, 5-9 years, and
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10 or more years. The random effects are animal’s (additive) genetic effect and error. The

mixed linear model being considered can be represented by
Y=XB+Zu+e,

where Y is a 171 x 1 vector of observable random variables, X is a 171 x5 design matrix, 3 is
a 5 x 1 vector of unknown parameters, Z = Ii71, and u and € are vectors of unobservable
random variables of size 171 x 1. The relationship matrix A was determined using a
recursive method given in Henderson (1976). This means Var(u) = 02 A. The number
of distinct eigenvalues of G = HYZAZ"H is d = 165. Eigenvalues range in magnitude
from A; = 8.5692472 to Ai1g5 = 0.5656916. Except for Ajgs = 0.6718750 having rg5 = 2, all
eigenvalues have a multiplicity of one. The REML estimates of o2 and o2 are 0.2994 and
2.6539, respectively. The corresponding estimate of p is 0.1014. We refer to this estimate
as REML estimate of p.

Figures 2.11, 2.12, and 2.13 show plots of the fiducial densities for ¢2, o2, and p
for the loin-eye data. The support of the fiducial density for ¢2 and for o2 is (—oo, 00).
The support of the fiducial density for p is {p 1pE (1_;)\1, 1) U (1, 1—:1——/\—;> }, ie.,
{p :p € (—0.1321,1) U (1, 2.3025)}. The FI confidence intervals for o2 with 90% and 95%
nominal confidence coefficients are (0, 3.000) and (0, 3.750) respectively. The FI confidence
intervals for o with 90% and 95% nominal confidence coefficients are (0.625, 3.341) and
(0.100, 3.513) respectively.

We estimated the coverage probabilities corresponding to the nominally 90% and 95%
two-sided FI confidence intervals on 02 and o2 using simulation with REML estimates of o2
and o2 as their true values. The results are based on 2000 generated independent data sets.
The simulation estimates of the empirical coverages for FI intervals on o2 are 0.935 and
0.975 corresponding to nominal confidence coefficients of 0.90 and 0.95 respectively. For
the FI intervals on o2 the coverage probability estimates are 0.923 and 0.959 corresponding
to nominal confidence coeflicients of 0.90 and 0.95 respectively.

The BI pivotal quantity that results in a locally unbiased confidence interval corre-
sponds to I = {1,...,83} in (2.14). In this case, S o0, r; = 2;2584 r; = 83. We will refer to

this unbiased confidence interval as the BI confidence interval in the following discussion.
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Figure 2.13: Fiducial density plot for p for the loin-eye data.

Table 2.12: Nominally 90% and 95% Confidence Intervals on p for the Loin-eye Data.

Method 90% 95%

BI (0, 1.000) (0, 1.000)
FI  (0,0.824) (0,0.972)

Table 2.12 shows the FI confidence interval and the BI confidence interval for p with 90%
and 95% nominal confidence coefficients. It is interesting to note that the BI confidence
interval covers the entire parameter space. Inverting the pivotal quantity in (2.14) results
in a confidence interval whose endpoints fall outside of the parameter space. Harville and
Fenech (1985) attribute this to lack of sufficient information in the data about the param-
eter of interest in such cases. Table 2.13 shows the empirical coverages of these interval
procedures for p using REML estimates of 02, 02 and p as their true values, respectively.
The results show that the FI method leads to a shorter confidence interval for p in this data

set. Comparing the empirical coverages, the FI confidence interval is more conservative
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Table 2.13: Empirical Coverage Probabilities of the Nominally 90% and 95% Two-sided
Confidence Intervals on p for the Loin-eye Data Using REML Estimates of 02, 02 and p as
their True Values (based on 2000 simulations).

Method 90% 95%

BI 0.900 0.951
FI 0.939 0.977

than the BI confidence interval. In summary, the FI method performs better than the BI

method for this data set.
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Chapter 3

FIDUCIAL GENERALIZED CONFIDENCE INTERVALS FOR MEDIAN
LETHAL DOSE (LDs,)

3.1 Introduction

Median lethal dose (LDso) is defined as the dose of a substance expected to kill 50% of
subjects in a given population under a defined set of conditions. LDsy is frequently used as a
measure of the acute toxicity of a cbmpound in a species in quantal bioassay experiments. In
these studies, a subject is administered a compound of interest at a certain single dose level,
usually on a logarithmic scale, the death or survival is recorded. The probit and logit models
have been used widely to estimate the LDsg. In this work, we only consider the logistic
dose-response curve. Suppose the experiment involves k dose levels with logarithmic scale
Z1,%9,...,Tg. T; Subjects are administered dose level z; with s; responses and response
probability p;, ¢ = 1,2,...,k. Assume that the relationship between the dose level and

response probability can be represented by the logistic-linear model, given by

log(lpi—ip) = Bo + Bz = fr(zi — 1), (3.1)

where p represents LDsg. Three standard methods are frequently used and recommended to
obtain the confidence intervals for u. They are delta method, Fieller method and likelihood
ratio method. In this work, we propose a new method for constructing confidence intervals
of LDjsg based on a general fiducial recipe developed by Hannig (2008). A simulation study
is done to compare the proposed procedure with these three standard procedures.

The chapter is organized as follows. In the next section, we briefly introduce three
standard procedures for interval estimation of LDsg. In Section 3.3, we develop a fiducial
generalized confidence interval on LDsg. In Section 3.4, we describe the simulation proce-
dure. Finally, we compare our proposed procedure with competing methods described in

Section 3.2 via a simulation study in Section 3.5.



3.2 Three Standard Confidence Intervals for LDy

In this section, we briefly describe three widely used confidence intervals for LDsg, delta
interval, Fieller interval and likelihood ratio interval. Let Bo and ,31 denote the maximum
likelihood estimators of By and (3, respectively. Let f = —,30/ X represent the maximum

likelihood estimate of u. Denote the estimated asymptotic variance matrix of (,5’0, [3’1) by

Un V12
V =
V21 Va2

The delta method confidence procedure uses the fact that f is a function of (Bo, Bl)
and estimates the variance of i by delta method. A 100(1 — «)% delta method confidence

interval is given by

A N ~
133/2 ('U11 + 2fv12 + ,u2v22) (32)

1

ot

where z, is the y—quantile of standard normal distribution.
A 100(1 — a)% Fieller confidence interval based on Fieller’s theorem is given by the

set of yg satisfying
|Go + 1o
\/Un + 2pov12 + pdva

The likelihood ratio confidence interval is derived from the asymptotic likelihood ratio

< 21-a (33)

test of the null hypothesis p = po against the alternative u # po. Let D(uo) and D(u)
denote the deviance under the null hypothesis and the deviance under the alternative hy-
pothesis respectively. From the large sample theory, L(pg) = D(uo) — D(1) asymptotically
follows a chi-squared distribution with 1 degree of freedom under the null hypothesis. It
follows that a 100(1 — )% likelihood ratio confidence interval of x is given by the set of ug
satisfying L(ug) < 22_,

It is worth to note that these three procedures are all based on the large sample the-
ory. Delta method and Fieller method are also based on maximum likelihood estimators
of By and ;. These estimators, however, do not always exist. If the dose-response curve
is steep relative to the spread of doses, then fewer than two dose groups may have ob-

served mortalities strictly intermediate between 0 and 100%. In such cases the maximum
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likelihood estimator of 3, is not calculable. Delta method and Fieller method fail to pro-
vide a confidence interval. Furthermore when the standard wald test does not reject the

hypothesis v
H() : ,81 =0 Ha . ,61 7é 0, (34)

the Fieller intervals are either the entire real line or unions of disjoint intervals. Likewise,
if the hypothesis (3.4) could not be rejected by likelihood ratio test, the likelihood ratio
confidence intervals are either the entire real line or unions of disjoint intervals. Sitter
and Wu (1993) argue that making inference about p makes no sense in such cases since the
regression relationship is not significant at level « and suggest to either reassess the meaning
of the LDj3g or collect more data at other dose levels. Following Sitter and Wu (1993), these
cases are excluded from the analysis in many studies, for example in Harris et al. (1999)
and in Huang et al. (2002a). However when we are dealing with small experiments, we
might not have enough information to reject 8; = 0 although 3; is not equal to zero. In
recognition of these facts, we propose a fiducial solution which provides a finite confidence

interval in any situation.

3.3 A Fiducial Generalized Confidence Interval for LDsg

In this section we develop a new procedure for constructing confidence intervals of
1 based on the generalized fiducial distribution. First we describe the notation used in
this chapter. Denote the generalized fiducial quantities of Gy, 61 and p;,i = 1,...,k, by
Rg,, Rp and R, respectively. Suppose U; = (Up,...,Uin,), @ = 1,...,k, is a vector
of i.i.d. uniform (0,1) random variables and U; are mutually independent. Let Y, ,i =
1,...,k,7 = 1,...,n; denote the j** subject’s response to the dose level z;. Clearly Yin,
follows a bernoulli distribution with success probability p;. Let S; = Z;":l Yjand Y, =
(Yi1,...,Yin,),i=1,..., k. Then we have S; ~Binomial(n;, p;).

Before we derive the fiducial generalized distribution of LD, we first consider the
fiducial generalized distribution of p;,i = 1,...,k. This fiducial distribution has been
derived by Hannig (2008) and is introduced in Section 1.2. For completeness, we rederive

it here.
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Define the mapping Ti(y;, w;) : {0,1]™ — [0,1],c = 1,..., k, as follows

r[o, ui,l:ni] if 5,=0
(ui,ni:np 1] lf S’i = n’i
ﬂ(yw ui) = 4 (ui,si:nu u/i,si+1:ni] -if S§; = ]-a A and
Yo Ty = DI (uij < wigim,) = 8
\(Z) otherwise,
where y,, s; and wu; are realizations of Y;, S; and U; respectively, i = 1,...,k. U, 5mn,
denotes the s* order statistic among Ui, ...,Us,,. By definition, a generalized fiducial

distribution of p; is given by the conditional distribution of V(7'(y;, U7)) conditional on
the event T'(y;, U7) is not empty where V (T'(y;, U7)) is any random variable whose support
is contained in T'(y;, U7).

Next, we consider the fiducial distribution of p = (p1,...,pk). Let Y =
(Yar.., o), U* = (U3,...,U}) and V(T(y,U") = (V(Ty(wy, UD), ... V(Te(we, UD)).
Let’s first assume all k groups are independent and there is no link, such as equation (3.1),
among py,...,pk. Lhen it is easily seen that the generalized fiducial distribution of p is

the conditional distribution of
V(T(y, UIT(y, U*) # 0. (3.5)

However the equation (3.1) introduces an extra conditioning on U™ and not all U* in (3.5)
are allowed now. For example, suppose k = 3, then U™ must satisfy not only T(y,U*) # 0

but also the following equations

logit(V (T3(ys, U3))) — logit(V (T1(y1, UT))) _ logit(V(Ts(ys, Us))) — logit(V (Tz(y2, U3)))

I3 — I xr3 — T2

and

logit(V (T3(ys, Us))) — logit(V (T1(y1,UY))) _ logit(V(To(yz, U3))) — logit(V (Ti(y1, UY)))
I3 — I To — Ty

where logit(z) = log(z/(1 — 2)),0 < z < 1. By extra conditioning on U*, we are modifying
the fiducial solution of a vector of binomial distribution parameters p given in (3.5). The
extra condition is complicated and does not seem to be expressable in a simple close form.
This makes it difficult to obtain the explicit analytical form of the generalized fiducial

distribution of p.
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Based on the relationship between p and (G, 8;) in (3.1), the joint generalized fiducial
distribution of (8, 1) can be derived from the fiducial distribution of p. For simplicity of
notation, denote U},,,, = 0 and U}, ,,.,, = 1. Then by definition and the exchangeability
of U},i = 1,...,k, the generalized fiducial distribution of (B, 5;) is the same as the

distribution of a random vector V(Q(y,U™)), where Q(y, U") is defined as follows

2w U") = { (R Ra) e tog et
By pu = —f/01, the fiducial distribution of p is the distribution of fiducial random variable
R, = —Rg,/Rp,.- Again due to the complicated conditioning, it is hard to obtain the
explicit form of the fiducial distribution of p. To solve this problem, we resort to MCMC
method and sample the fiducial random variable R,,. The detailed procedure is described

in the next section.

3.4 Simulation Procedure

In this section we describe how to use Monte Carlo simulation to set up a confidence
region for . The main simulation process is to generate a vector u* = (uj,...,uf) in
such a way that Q(y,u*) is not empty. Then draw a sample from Q(y,u*) to obtain a
realization of (Rg,, Rg,), consequently a realization of R,. This process is repeated until
the desired number of the realizations of R,, are obtained. The confidence interval of u can
be estimated based on these realizations. There are several ways to generate a u*. Naively,
one can generate u} through u} simultaneously and check if Q(y, u*) is empty. If Q(y, u*)
is not empty, keep u*. Otherwise, regenerate u*. This procedure is easy to implement, but
highly inefficient, especially when the number of doses, k, is large. To solve this problem,
we use Gibbs Sampling approach and generate uj through u; sequentially instead. Each
component of u* is updated conditional on the latest values of the other components of
u*. There are £ components in w*, thus k steps in iteration ¢. ¢ is an integer. Note
that generating w} is equivalent to generate (u], ..., U, 41.,,)- For simplicity of notation,

denote (u?, . ,uf, .1...) by (W, ws), i =1,...,k. Let Rg, and Rg, be random variables
i,8im;0 Yi 84 1my Bo 61
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with support (—00,00). Let R, = —Rpg,/Rg,. Define

w(tl)
log W < Rg, + Rp,z; < log -

Qgt)(y’ u’*) = {(Rﬁov Rﬁl)

w(t——l) (t-1)

1 Wiy
IOg ”—% < Rﬂo + Rﬂlxi < IOg W’

(t),t>0]—1 .,t—1, and

21,jzz’+1,...,k},

(t) — min ( eXp(Rﬁo + Rﬂlxi) a(RﬂoaRﬁl) € Qgt)(y,u*)> , and

1+ exp(Rﬁo + Rﬂl‘ri)

R i
m® = max ( 2P ¥ BoT) (g, Ry e @O, u*)) ,

1+ eXp(Rgo + Rﬁlxi)

The simulation proceeds as follows

For ¢t =0,

1. Generate w( and w22 , © = 1,2, using the fact that U,

and the conditional distribution of (1 — U ,,.,.)/(1 = U% .,

, follows Beta(s;, n; — s+ 1)

) given U; ., is Beta(n; —

si,1). Note that if s; = 0, by our definition w21 = 0, only w is required to be

( {® .

generated. Likewise, if s; = n;, wiz) =1 and only w;;

2. From i = 3 through k,

is required to be generated.

® 4

e if s, =0, draw w ) from truncated Beta(l,n;) with range (m;;’,1).

o if s; = n;, draw w ) from truncated Beta(n;, 1) with range (0, m( ))

e if 0 < s; < m; and

(a) ,(? =0, draw wfl) from truncated Beta(s;, n; — s; + 1) with range (0, m( ))

and draw a sample from Beta(n; — s;,1), denoted by d§1>. Then wa) =

1—(1—w®)*d?.

®

(b) m (t) =1, draw wfz) from truncated Beta(s; + 1, n; — s;) with range (m;/’, 1),

and draw a sample from Beta(s;, 1), denoted by d(t) Then wi = wZ2 * dg)

(¢) Otherwise, the ranges of w ) and w( )

are shown in Figure 3.1. This is the

most complicated but common case. The areas of A and B, denoted by g,

and ps, can be calculated as follows
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g / | - (1 - y)mnldyd
P = ¥ (1 —y)" "% dydz
z (i =1 (n; — s — 1!

- Bm(; 8imi—si+1 B “ ,s, n;—s;+1’ and
m®

= i n;! %1 n;—s;—1

— i _ 4 1 d d
Pe /m/ PO 1T T (1-y) ydx
(t)sl (1— (i))m—&

)

si!(ni — Si)'
where B, 4, is the value of CDF of Beta(v;,v;), evaluated at . In this case,

one has two choices with different probability to sample wgt) and wg).

i) With probability 7, /(p1 + p2), draw w ) from truncated Beta(s;,n; — s + 1)
with range (mg), mz(-t)) and draw a sample from Beta(n; —s;, 1), denoted by dg).
Then wg) =1-(1- (t)) * d(t)

ii) With probability p2/(p1 + fa), draw w ) from the distribution with the prob-
ability density function given by

0)
i ni! -1 —g,—1
= STl —gy)™m T d
fY(y) A ﬁz(si - 1)'(17/@ — 8 — 1)'1' ( y) (m£1):mz(;))(y) t
N — S i—8i—1
mﬁ(l -y e (1Y),

and draw w ) from the distribution with the probability density function given

by
n;! si—1(1 _ ., \ni—si—1
Frar(z.9) (si— Dl —s — 1" (1-y) Lo mo (@0 1Y)
z, =
xy{z,y fmj.? n;! 21— ) o (y)dz
0 (s —1)! (nz -5 —1)! (miy’,1)
_ Si i—1

For t = 1,2,..., follow the procedures in Step 2 and draw (wl(i),wg)) i=1,...,k

Note that we obtain a set Qg)(y, u*) rather than a point after each iteration ¢. Thus, there

are many choices to obtain a realization of (Rg,, Rs, ), consequently a realization of R,,. For

example, one can take the centroid of Q(y, u) as a realization. Based on our experience and

simulation results, the best choice is to randomly select one of the vertices of fo)(y, U~)

as a realization of R, denoted by Rff ), By the construction process, the generated Markov

chain R,(Ll), R,(f), ..., converges to the fiducial generalized distribution of .
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Figure 3.1: Illustration of case (c) in the simulation process.

Table 3.1: Experimental Configurations in the Simulation Study.

Design Slope (1) LDso(u) log,odose (z;)
1 2 3 1,2,3,4,5
2 1 4 1,2,3,4,5
3 2 5.1 2.0566, 3.233, 4.411, 5.589, 6.767, 7.944
4 1 4.9 2.056, 3.233, 4.411, 5.589, 6.767, 7.944
) 1 2.0 0, 0.463, 3.045, 3.296, 3.584, 3.932, 4.394, 5.142
6 7 0.1 -0.3098, -0.2147,-0.1487, -0.0809, -0.0362, 0.0864,

0.1523, 0.2304, 0.2810

3.5 Simulation Study and Discussion of Results

To evaluate the performance of the proposed fiducial intervals, a simulation study was
performed with six designs presented in Table 3.1. Designs 1 and 2 were also considered in
Williams (1986), Sitter and Wu (1993), Huang et al. (2002a) and Huang (2005). Designs 3,
4 and 5 are based on the experimental configurations used by Huang et al. (2002a), Huang
et al. (2002b) and Huang (2005). Design 6 was also considered in Sitter and Wu (1993),
Harris et al. (1999) and Huang (2001). For each configuration listed in Table 3.1, every
dose level has the same number of subjects n. n = 6,10, and 20 were selected. Thus we
had totally 18 sets. 1000 independent data sets were generated for each of 18 sets and
two-sided 95% confidence intervals for y were computed for each method. The methods
compared were (a) delta method confidence interval, (b) Fieller confidence interval, (c)

likelihood ratio confidence interval, and (d) fiducial confidence interval.
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For fiducial intervals, we use Raftery and Lewis’s method ((Raftery and Lewis, 1992)
and (Gilks et al., 1995)) to determine the number of initial burn-in iterations discarded,
M, and the number of iterations required after burn-in, N. Raftery and Lewis’s method is
one of popular methods for MCMC convergence diagnosis. It is intended to calculate the
number of iterations necessary to estimate some quantile of interest within an acceptable of
accuracy, at a specified probability level, from a single run of a Markov chain. We implement
this method using the Raftery and Lewis’s diagnostic function in CODA package (Plummer
et al., 2006). The inputs are the quantile ¢ to be estimated, the desired accuracy r, the
required probability s of attaining the specified accuracy and a convergence tolerance e.
Here we are interested in two-sided 95% confidence intervals corresponding to ¢ = 0.025
and 0.975. We select r = 0.005, s = 0.95 and ¢ = 0.001. Brooks and Roberts (1999)
examined the Raftery and Lewis’s convergence diagnosis method and showed that this
method might lead to an underestimate of the true burn-in length. To avoid this problem,
we set M = 1000 if the value of M suggested by Raftery and Lewis’s method is less than
1000. The largest value of M and N obtained for each combination of parameters (G,
B1, ) and quantiles (0.025,0.975) are used as the burn-in length and number of iterations
required after burn-in, respectively. The M + N iterations are run and the diagnosis process
is repeated to check if iterations are sufficient.

One concern with MCMC method is how to sample the output of a stationary Markov
chain. A systemic subsample of the chain, using only every kth observation, is one of pop-
ular methods and it produces the approximately iid draws. Geyer (1992) and MacEachern
and Berliner (1994) argued convincingly against the use of subsampling by proving that
the estimator resulting from subsampling has larger variance and is poorer than the non-
subsampled estimator. They suggest using the entire Markov chain, instead of subsampling.
Based on their argument, we use the entire Markov chain in our study.

As mentioned in Section 3.1, the following three special cases were excluded from the
analysis in most of literatures,

I The data set has either zero or one partial response.
II The standard wald test could not reject the hypothesis (3.4).
III The likelihood ratio test could not reject the hypothesis (3.4).
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These cases rarely occur in large experiments, but occur frequently in experiments with
small sample sizes or small number of doses. Table 3.2 lists the number of occurrences of
three special cases in the simulation study. Since this paper focuses on the properties of
intervals for small experiment designs, we include these three cases and set the coverages
of delta method confidence intervals and Fieller intervals to be zero in the first case. The
coverages of Fieller intervals and likihood ratio test intervals are set to be zero in Case 11
and Case III respectively since these two interval procedures fail to provide a confidence
interval. Nonetheless, for consistency with other studies, we also report the results from
the exclusion of three special cases. The simulation results are shown in Table 3.2 and
graphically summarized in Figure 3.2 through 3.13. The numerical results are listed in
Appendix B. Figure 3.2, 3.3, 3.4 and 3.5 show empirical coverage probabilities for designs
with sample size n = 6, 10,20 and all designs respectively, with inclusion of three special
cases. Figure 3.6, 3.7, 3.8 and 3.9 show empirical coverage probabilities for designs with
sample size n = 6, 10,20 and all designs respectively, with exclusion of three special cases.
Figures 3.10, 3.11, 3.12 and 3.13 show the averages of length ratios for designs with sample
size n = 6,10,20 and all designs respectively, with exclusion of three special cases. The
length ratio, denoted by LR, is defined as the interval length of competing procedures to
the fiducial interval length.

The results show that three competing confidence intervals are very liberal for designs
with sample sizes when we include all three special cases in the analysis. This is due to the
fact that three special cases, especially Case I, occur frequently in some experiments. For
example, there are 260 Case I among 1000 datasets for design 6 with sample size n = 6.
With increasing sample size, the occurrence of three special cases decrease and the empirical
coverage probabilities are approaching to the nominal value. Among all the confidence
interval procedures, fiducial confidence interval has the smallest variability in terms of
coverage probability. It has the coverage probabilities close to nominal value even for
designs with small sample sizes. When we exclude the three special cases from our analysis,
the Fieller’s confidence interval become conservative. Delta method confidence interval and

likelihood ratio confidence interval are liberal sometimes, especially when the sample sizes
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Table 3.2: The Number of Occurrence of Three Special Cases and the Means of Point
Estimates of LDsg in the Simulation Study.

Deéign Size | Method [ Ny Ny N3 Design | Size | Method [ N; Ny N
o [ 0 a0 o [T
o [ e e [ [T 0
o [Tl [
o [T e | o |
e (o [ i e e [ [
0 | *Guher 401 0 00 0 | *Guher 201 0 00
o P S0 mou s | [T 00 o
o [ [ e 0 o [RE 00 o
2 eS8y [ [ 0

[i: Mean of point estimates of LDgj.
Ny: The number of datasets having either zero or one partial response.
Ny: The number of datasets for which the standard Wald test could not reject the hypothesis

(3.4) at the 0.05 level of significance.
N3: The number of datasets for which the likelihood ratio test could not reject the hypothesis

(3.4) at the 0.05 level of significance.

are small. Fiducial interval appears to maintain the stated confidence coefficient for most
of situations.

Comparing average confidence interval lengths, we observe that delta method confi-
dence intervals have the smallest‘ average confidence interval lengths. Fieller confidence
intervals have the largest average confidence interval lengths for most of situations. The
performance of likelihood ratio confidence intervals and fiducial confidence intervals are
similar. The difference of the average confidence interval lengths among four intervals
decreases with increasing sample size.

The means of the point estimates of LDsq, denoted by fi, are shown in Table 3.2. For

three competing confidence intervals, fi is defined as the mean of MLEs of LDsq of datasets
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without three special cases. For fiducial intervals, we treat the median of the LD5o Markov

chain as the point estimate of LDsy and define 2 as the mean of LDsg point estimates of

all datasets. The results show that fi of all confidence interval procedures are equal or very

close to the true value.

Based on these results, fiducial interval has the best overall performance among all

the intervals. we recommend the fiducial intervals for LD5y as the most suitable choice for

practical applications.
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3.6 Example

This example is taken from Williams (1986). Williams (1986) used this example to
illustrate different kinds of Fieller confidence intervals and likelihood ratio confidence in-
tervals that can occur. Six sets are included in this example and presented in Table 3.3.
Each set has five dose levels with equal sample size n = 5, and doses -2, -1, 0, 1 and 2 on
logarithm scale. Sets 5 and 6 have zero and one partial response respectively. The delta
method confidence interval and Fieller confidence interval for these two sets do not exist.

. For sets 2, 3 and 4, the standard wald test fails to reject the hypdthesis (3.4) at the 0.05
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level of significance. The Fieller confidence intervals for these three sets are either entire
real line or or unions of disjoint intervals. For set 4, the likelihood ratio test fails to reject
the hypothesis (3.4) at the 0.05 level of significance. The likelihood ratio confidence interval

for set 4 is a union of two disjoint intervals. For comparison, the fiducial confidence inter-
vals were also calculated and presented in Table 3.3. The same M and N selection strategy
and parameter setting (r,s,¢€,q) as in Section 3.4 were used. The results show that the
confidence intervals obtained using fiducial procedure are always finite. fiducial procedure
also provides a solution to the point estimate of LDsq for cases where maximum likelihood

estimates of LD5g do not exist. For cases where maximum likelihood estimates of LDsy are
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Table 3.3: The Point Estimates (ji;) and Confidence Intervals of LDsg in Williams’s Ex-

perimental Configurations.

Observed
Set number I 1o Delta Fieller Likelihood Fiducial
of death
1 1,3,2,4,5 -0.61 -0.61 (-1.66,0.44) (-3.36,0.75) (-2.63,0.49) (-2.62, 0.61)
2 2,2,4,3,5 -1.02 -0.99 (-2.49,0.45) (-00,0.59)U (-12.34,0.33) (-5.86, 1.00)
(62.76, 00)
3 1,3,2,4,4 -046 -0.44 (-1.86,0.95) (-00,00) (-11.59,1.65) (-4.13, 2.17)
4 3,2,3,45 -145 -1.33 (-3.33,0.44) (-00,0.16)U (-00,0.01)U  (-9.18, 4.07)
: (6.42,00) (24.80, 00)
5 0,0,4,55 NA -041 NA NA (-0.70, 0.11)  (-1.10, 0.27)
6 00,555 NA -049 NA NA (-1.00, 0.00)  (-0.98, 0.02)

available, the fiducial estimates are very close to the maximum likelihood estimates, which
is consistent with the simulation results in Section 3.4.

To study the convergence properties of Gibbs sampling for fiducial interval procedure,
three chains with different randomly selected starting points were run for each set. Gelman
and Rubin’s statistic (Gelman and Rubin (1992)) and Geweke’s statistic (Geweke (1992))
were calculated based on the the required N iterations after burn-in and used to diagnose
the convergence of the MCMC output. The general rule of thurﬁb is that the Gelman and
Rubin’s statistic should be below 1.2 for all parameters in order for the chain to be judged
to have converged properly (Gelman et al. (1996)). Geweke’s statistic is a standard Z-
score. Therefore, Geweke’s statistic inside of the range of, say 0.95 probability, of standard
normal variates suggests good convergence. Table 3.4 summarizes the resulting Gelman and
Rubin’s statistics and Geweke’s statistics. The results show that all Gelman and Rubin’s

statistics are less than 1.2 and only two among 64 Geweke’s statistics are greater than 1.96,

which suggests satisfactory convergence and complete mixture.
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Table 3.4: Gelman and Rubin’s Statistics and Geweke’s Statistics for Parameters Gy, 0,
and p in Williams’s Experimental Configurations.

. Gelman and Rubin’s Geweke’s Statistic
Design Parameter

Statistic Chain1 Chain 2 Chain 3

Bo 1.00 -1.92 0.37 -0.59

1 5 1.00 0.10 0.77 1.31
7 1.19 1.03 -2.67 -1.51

Bo 1.00 1.63 -0.72 -1.61

2 5 1.01 0.55 1.77 -1.56
i 1.14 . 0.52 -0.14 -0.85

Bo 1.01 0.58 -1.77 -0.40

3 51 1.00 -0.36 -1.51 0.59
o 1.18 -0.50 1.52 1.75

BGa 1.00 0.38 1.09 -1.42

4 B1 1.00 0.09 2.39 -1.05
W 1.12 -1.01 -0.87 -0.97

Bo 1.00 -1.02 0.81 0.02

5 o 1.00 0.80 0.52 -0.25
i 1.00 1.41 -0.34 1.03

BGo 1.00 -0.81 -0.20 -1.03

6 061 1.00 -1.03 -0.76 -1.44
7 1.00 -0.12 -0.34 0.66
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Chapter 4

FIDUCIAL GENERALIZED CONFIDENCE INTERVALS FOR THE
CONCORDANCE CORRELATION COEFFICIENT (CCC)

4.1 Introduction

Assessment of agreement between two methods of measurement is of considerable
importance in many areas, for example, laboratory performance, instrument or assay vali-
dation, etc. In these studies, an equivalence test is usually conducted to evaluate the agree-
ment between a new method and a traditional reference or gold standard before the new
one is put into practice. For categorical responses, Cohen’s Képpa statistic (Cohen (1960))
and weighted kappa statistic (Cohen (1968)) are basic methods to measure agreement. For
continuous responses, concordance correlation coefficient (CCC) was widely used. CCC
was introduced by Lin (1989). He considered the pairs of samples (Y1, Ys;),:=1,2,...,n,

and assumed that they are independently selected from a bivariate population with means

2
o1 012
2 .
O12 05

The concordance correlation coefficient is then defined as

1 and pe and covariance matrix

E[(Yu - Yzi)z] 2012
¢ fred ]_ —_ = = C 5 41
P Eindep[()/li - 1/22)2] U% + U% + (/1'1 - ﬂ2)2 P ( )

where p is Pearson correlation coeflicient,

Cy=2v+1/v+ u) ™,
v = 0, /07 = scale shift, and

u = (1 — p2)/+/0102 = location shift relative to the scale.

C, measures how far the line fitted to the data deviates from the 45°C line through the

origin (measure of accuracy). p measures how far each observation deviates from the line



fitted to the data (measure of precision). Denote the estimate of p. by p.. p. can be
obtained by substituting the sample counterparts into the formula given in (4.1).
Lin (1992) later proposed a hypothesis test to test equivalence between two methods.

The hypothesis test is given by
Hy:p.<p; Ha:pe> py,

where p} represents the least acceptable p,. It’s calculated using the p. formula given in
(4.1) by assuming we can accept 100x% loss in precision (p can be dropped to M),
100u% location shift per standard deviation, 100(1 — v)% scale shift. To illustrate, consider
an equivalence specification where it is assumed that the test method could explain at
least 98.5% (p = 0.995) of the standard method, the loss in precision is no more than
1%(z = 0.01), the difference of the means is not more than 25% relative to the scale
(v = 0.25), the standard deviations do not differ by more than 10% the standard deviation
of the reference system (v = 0.9). This yield a least acceptable p. of 0.95. The above
hypothesis test can be carried out using the lower bound of p.. If the lower bound is
greater than p}, one would reject Hy and infer the satisfactory agreement.

The concordance correlation coeflicient was later generalized and adjusted to be ap-
plicable for different scenarios. Chinchilli et al. (1996) developed a weighted concordance
correlation coefficient to quantify agreement between two methods for repeatedbmeasure-
ment designs. King and Chinchilli (2001) considered alternative distance functions to the
squared distance function in Lin’s CCC and produced more robust versions of concordance
correlation coefficient for continuous responses without replications. Barnhart et al. (2002)
presented an overall concordance correlation coefficient (OCCC) for assessing agreement
among multiple methods without replications. She (Barnhart et al. (2002)) later proposed
the inter-method agreement index, inter-CCC, and the total agreement index, total-CCC,
for agreement data with replications produced by multiple methods. Recently, King and
Chinchilli (2007) proposed a repeated measures concordance correlation coeflicient for data
with repeated measures comparing two methods. Barnhart et al. (2007) proposed coefficient
of individual agreement (CIA) to assess individual agreement between multiple methods

based on the concept of individual bioequivalence.
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Quiroz (2005) considered the two way ANOVA model without method and subject
interaction in the repeated measurement design comparing two methods. He developed
three sets of confidence bounds for concordance correlation coefficient to conduct equiv-
alence tests. In Section 4.2, we consider the same measurement model and develop two
fiducial generalized confidence intervals for CCC based on the Fiducial Generalized Pivotal
Quantity (FGPQ) and the generalized fiducial distribution respectively. we compare our
proposed procedures with the methods developed Quiroz (2005) via a simulation study in
Section 3.5. In Section 4.3 we apply our fiducial procedure to the model with method and
subject interaction. Simulation studies are carried out to evaluate the performance of the
proposed confidence intervals.

4.2 Confidence Intervals for CCC under the Model without Method and Sub-
ject Interaction

4.2.1 Statistical Model and Concordance Correlation Coefficient

Quiroz (2005) considered a study where simultaneous continuous measurements from
the same subject are obtained by using a test method and a reference method. The mea-
surements are paired over time and the experiment is repeated multiple times. He assumed
there is no interaction between the methods and the subjects. The measurement model is
specified as

Yijk=/,L,-+Sj+e,~jk,i=1,2,j=1,...,n,k=1,...,m, (42)

where Y;;i, represents the k™ measurement made on the subject j receiving the method

i, w1 and po are the means of the test method and reference method respectively, S; are

individual effects and S; “N (0,02), €;jx are independent random measurement errors and
sid

eijk ~ N(0, U?i), S; and €, are jointly independent. The ANOVA table for this model is

shown in Table 4.1 where the following notation is used

n Y 2
Z':l 1% E :'= Yi**
— J Y _ =1
- 3 Ik —a

— m Y _ no_
Yij* = ‘X%y Yi** n 9 y SSB = ZmZ (Y*j* —
=1 -
n m . n m o nm — .
SSW] = Z Z ()/ljk - Ylj*)2> SSWZ = Z Z (Yij - ng*)z, and SSM = T(Yl** - YQ**)z.
J=1 k=1 j=1 k=1
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Table 4.1: ANOVA for Model without Interaction between the Methods and the Subjects
(Model (4.2)).

Source DF MS EMS
Methods npy=1 Sﬁ/f =8Su/nym  Oum = (nm(p — M2)2 + 031 + 032)/2
Subjects np =n-—1 S% = SSp/ng O = 2mo? + (0f +02,)/2
2

Error (1) ny =n(m=1) S} =SSw,/m 6, =02
)

Error (2) ny =n(m—1) S5} =SSw,/n, 6 =02,

It’s easy to show that SSw,/0,,5Sw,/62 and SSp/0p are central chi-squared random
variables with degrees of“ freedom n;, ne and np respectively. SSy/0y is a noncentral
chi-squared random variable with noncentrality parameter A = nmf,/(6, + 0;), where
6, = (11— p2)?. SSw, /61, SSw, /02, SSp/0p and SSy/0) are mutually independent.

Quiroz (2005) showed the concordance correlation coefficient under the model (4.2)

can be expressed as

202
.= s =20(¢p+1/¢ +¢*)71, 4.3
P 203 0-&?1 0-32 (/J‘l [1,2)2 p(d) /¢ d) ) ( )

where

Cov(Yijk, Yoir o? . .
( Jr _ 2 ) = = = Pearson correlation coefficient,

P Var (V) Var(Yos) /(02 + 02)(02 1 0Z)

Var(Yijk) o2+ 031 )
= = = scale shift
¢ \/VGT(Yij) P 0_32 scale shift, and
(Ml - Nz)z

_ (1 — p2) _ _ : : :
= \/Var(Y e ) = \/(02 o) (02 T o) = location shift relative to the scale.
1k 25k s €1 s €2

2

,d)Z

4.2.2 Published Confidence Intervals for CCC

Quiroz (2005) developed three sets of lower confidence intervals for p, based on the
Z-transformation, a modification that adjusts formulas to take into account the random
effects model and the generalized inference proposed by Weerahandi (1993) respectively.
We denote these three confidence intervals as ZT confidence interval, MRM confidence
interval and GCI confidence interval, respectively. Next, we briefly introduce these three

intervals.

o7



ZT Confidence Interval

For simplicity, we define the following statistics which are used in the construction of
ZT confidence interval,

1
nm

(253 — (ST + 53)), and s = =—(S% — (S + 53)/2).

- - . p 1
0, =520, =855,0p=5%,0,= %(

Denote 85 = 03. One can show that 91,é2,53,éu and és are unbiased and consistent
estimates of 61, 62,05, (41 — u2)? and g respectively.

Lin (1989) demonstrated that the inverse hyperbolic tangent transformation given by
= Zln-—Lt¢ :
w gInT— (4.4)

can improve the asymptotic convergence of estimates of CCC, denoted by p.. This trans-
formation is also known as Z-transformation. W in (4.4) asymptotically follows a normal

distribution with mean

1. 1+pc
o ==1 , 4.
by = 5 In > (4.5)
and variance
2 ‘7%
02 = Pt 4.6
= o2 (45)

where O’%C is the variance of j.. Using Z-transformation method, Quiroz (2005) developed

a 100(1 — @)% lower bound on CCC given as follows
(4.7)

where L = W + Za\/G%, 0% is an estimate of o2 in (4.6), and z, is the a quantile of a
standard normal distribution. g, was calculated using él, éz, éﬂ and és, and is given by
3 205

2és+é1 +92+é“‘

Pe
To compute 63, Quiroz first approximated ‘7;230 in (4.6) using the delta method. Note that
the formula of the approximation of a%c provided by Quiroz is not right. The corrected

version is given as follows

41 — pe)?peVi + paVa — 4p3(1 — pc)Va
46
(203 — (91 + 02))2 ' '

Var(p.) =
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where

1 46% 62 + 62
V1~8m2 (n—1+n(m—1)

Vy =

2(6? + 62 -2
e (2(91 +65)° + 4nm(61 + 62)0, + Sl )) - and

n?m(m — 1)

(nm —1)(6? + 62)
2m2n?2(m —1)

V= —
Quiroz estimated Var(g.) by replacing p., 61,02, 62,63 and 65 in (4.8) with consistent es-
timate p., unbiased and consistent estimates 6y, s, (n,/(ny + 2))82, (na/(ns + 2))62 and
(np/(np+2))6% respectively. Finally 62 was calculated as the estimate of Var(p,) divided
by (1 — p%)2. We refer the interval [Lz7, 1] as the ZT1 confidence interval.

Another way to estimate Var(p.) is to replace p,61,62,6, and 6p in (4.8) with the
consistent estimates ﬁc,él,éz,é# and 0g respectively. We refer to the resulting interval

as the ZT2 confidence interval. We compare ZT1 and ZT2 confidence intervals with our

proposed fiducial confidence intervals via a simulation study in Section 4.2.4.
MRM Confidence Interval

Dolezal et al. (1998) showed that the distribution of 5%, can be approximated by a
scaled central chi-squared distribution. By using this approximation and the random model
formulas developed by Graybill and Wang (1979), Quiroz (2005) developed a modified

random model interval for p.. A 100(1 — )% lower bound for p, is given by

S% - (1/2)(512 + S%)Fl—a,n-—l,n(m—l)

Larpys = 4.9
MBEM = 62 L OF) am1ae 83/ + (1/2)(2m — 1 = 2/0)(S2 + S2)F1—am—1n(m-1) (49)

where

.| @+2h)? . S,
nte |2l A M
144X ST+ 5%

[.] is the ceiling function, and F},, ,, represents the y—quantile of F-distribution with
v, and vy degrees of freedom. We refer to the interval [Lygrar, 1] as the MRM confidence

interval.
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GCI Confidence Interval

Quiroz (2005) developed a generalized confidence interval of p. based on the generalized
inference method introduced by Weerahandi (1993). A generalized pivotal quantity (GPQ)
for p. was first set up and an approximate confidence interval for p. was constructed by
computing the required bpercentile of the GPQ using Monte Carlo simulation. We refer to
this confidence interval as the GCI interval. In the construction of GPQ for (u; — u2)?,
Quiroz first constructed a GPQ for u; — o using the fact that D = Y,, — Y. has a
normal distribution with mean p; — uo and variance (0’ + 2 )/nm. This GPQ is given by

1182 Ngs2
R5=d—Z1\/ L, 2

nmUl nmU2

where d, s? and s2 are realizations of D, S? and S? respectively, Z; is a standard normal
random variable, U; and U, are chi-squared random variables with n; and ny degrees of
freedom respectively, Z;,U; and U, are jointly independent. By the delta method, the
asymptotic distribution of D? is N(6,,46,(c2 + 02,)/nm). Based on this result, Quiroz

constructed a GPQ for 6, which is given by

Re, = d° —222|R5|\/ My | na% (4.10)
3

nmU4

where Z; is a random variable which follows a standard normal random distribution asymp-
totically, Us and Uy are chi-squared random variables with n; and n, degrees of freedom
respectively. In the Monte Carlo simulation process, Quiroz treated Z, as the standard
normal random variable and generated the realizations of Z,, Zy, Uy, Uz, Us and U, inde-
pendently. In fact, Z, and Z, are not independent, U; is the same as U,, and Us; is the
same as U;. Furthermore, by the construction process, the GPQ for p. developed by Quiroz
is not an exact GPQ since Zs is not a standard normal random variable. We expect this
“approximate” GPQ might not have good properties as the exact GPQ. In the next section,

we develop an exact GPQ for 6, and construct a confidence interval based on it.

4.2.3 Fiducial Generalized Confidence Intervals for CCC
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FGCI based on Fiducial Generalized Pivotal Quantity (FGPQ)

In this section we construct confidence intervals for pc based on the Fiducial Gener-
alized Pivotal Quantity (FGPQ) defined by Hannig et al. (2006). First, Observe that the
statistic S = (SSw,, SSw,, SSB, SSu) and parameter £ = (64, 62,05, 0,) have the following
pivotal relationship under the model (4.2)

91 —+ 92 XnM'/\,

SSw, SSw. SSp
:TNXEW U, = HZZNXELZ’ U3=_§NX$LB, and Uy =

U
where A = nmf,,/(6; + 62), x2 represents a central chi-squared distribution with degrees of
freedom v, x2, ,, represents a noncentral chi-squared distribution with degrees of freedom v,
and noncentrality parameter vy, Uy, Us, Uz and U, are independent of each other. Applying

the structural method for construction of FGPQ based on the invertible pivotal relationship

given by Hannig et al. (2006), we obtain the following FGPQ for p,

2Rg
R = s 4.11
Pe 2R¢, + Ro, + Re, + 'Ra# ( )
where
_ SSw, _ SSw, 1 [5Sg R, + Ro,
Roy = SS, O, R, = SS, b2, Ro. = 5 SS;;HB 2 :
Ro, + Ro 258y, nmb ) 258y
Ry, = ——=Q\ F o | ,
O — ( (01 +0,6,+6,) Ry +Re,

SSy,, SSy,, SS§ and SS}, are independent copies of SSw,, SSw,, SSp and SSy respec-
tively. F(z,v) is the value of CDF of noncentral chi-squared distribution with 1 degree of
freedom and noncentrality parameter v, evaluated at . Q(u,z) can be considered as the
inverse function of F(z,v) when F(z,v) is viewed as a function of v, keeping x fixed. Given
F(z,v) =u € (0,1), Q(u, z) is defined as

R M

Q(u,z) is guaranteed to exist by the monotonicity of F(z,v) viewed as a function of v.
Observe that Rg,, Rg,, Re, and Ry, in (4.11) are FGPQs for 61, 65, 6 and §,,, respectively.
It follows that R,_ is a FGPQ for p.. Let R, denote the y—quantile of the distribution of
R,., then a (1 — @)100% lower bound for p. is given by [R,, ,,1]. We refer to this interval

as the FGCI1 confidence interval.
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FGCI based on Generalized Fiducial Distribution

In this section we describe another fiducial interval procedure for p.. The fiducial
intervals are obtained using the generalized fiducial distribution described in Hannig et al.
(2006) and Hannig (2008). Before we derive the generalized fiducial distribution of p, and
construct a confidence interval for p., we first obtain the minimal sufficient statistics for

(1, p2, 02,02, 0%) under the model (4.2).

Proposition 4.1. The minimal sufficient statistics for (p1, p2, 0'521, 0522,03) under the model

(4.2) are

(Y 100, Y 2x, SSw, SSws, SS5,, SS5,, SS12).
where Y 14s, Y 244, SSw,, and SSw, have the same definition as in the ANOVA table in Table
4.1, and

SSBi =2 (Viju Y1) 88B: = > (Va5 = Y2.)2, 8812 = D (Viju = Vi) (Vaju — V)

7j=1 j=1 j=1
Proof. Let Y denotes a 2nm x 1 vector and' Y = (Yi11...Y10m Yo11.-- Youm)'. Then
under the model (4.2), Y has a multivariate normal distribution whose probability density

function is given by

1

Y)= —  _ex
0= Gzt

p(—5(¥ — /= - w) (412)

where p = (p; p2) ® I is the mean of Y, and ¥ is the covariance matrix of Y. ¥ can

be expressed as follows
Y= U§(U2®In®Um)+VE®In®Im,

where ® represents kronecker product, I, represents a v X v identity matrix, U, represents

a v X v matrix whose elements are all equal to 1, and

2
—_ 051 0
VE*[ 0 ]

Next, we find the inverse of the covariance matrix ¥. We first rewrite X as follows

Y= UE(V] + V2 + V3 + V4) + 0-31\/5 + 0'32\/6,
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0

0 0]®In®Um, v3=[0

vlz[l 0]®In®Um, V2=[ oI, ®U,n

1
00 01 0
00 10 00

Assuming £7! = aV; + bV, + cV3 4+ dV4 + Vs + fVg, we have

2_12 = (0’3(\/1 =+ V2 + V3 + V4) + 051\,5 + 0'?2V6)(GV1 + bV2 + CV3 -+ dV4 + €V4 + fV4)

= Vi+Ve (4.13)

where a,b,c,d,e and f are unknown constants. Solving the equation (4.13) for a,b,c,d, e

and f, we get

o

02 (mo20? +mo?o?, + 0202)’
e olo?

0% (mo2o? +mo20?, + 0% 02,)’

1

C = E,
d= -, and

€2

2
e=f=— 032 2 2 2 °
mozoZ, +mogo;, + 0Z 0;,

After Plugging the above explicit form of ™! into the pdf in (4.12), one can easily show

that the minimal sufficient statistics of (1, ps, 02, 02,,02) under the model (4.2) are
(?]**7?2**; SSW1 ) SSWQ) SSBl ’ SSBz: SSIZ)'
O

Next, we follow the generalized fiducial recipe developed by Hannig (2008) and derive

the generalized fiducial distribution of p.. We first define the following quantities

552 SS ) 62 )
o B Se O = L T =

SSur = SSm — 5ot B=gg-

Note that the quantities B and S5y, are, respectively, the linear regression coefficient and

the residual sum of squares from the regression of Y, on Y,,. It is easily seen that the
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statistics are associated with the following pivotal quantities with known distributions as

indicated
SSw, SSw, s 558, 2
= ~ U - ~ =2 3.~
Ui 0 Xn—1 2 ) Xn=1 Us Os + 01/m Xn-1
oo 288w 2y S5 7=-B"5 _ _No1. (419

T 6+ 6, X1 621 Xn—2 \/0211/55B,
where the random variables Uy, U,, Us, Uy, Us and Z are mutually independent.

We classify the equations in (4.14) into three groups, and rewrite the above pivotal

relationship as follows

X = Gi(Er, &) (4.15)
Xo = Ga(E2, &2) (4.16)
X3 = G3(E3, &3) (4.17)

where

X, = (SSw,, SSw,, SSp,) & = (01,62,0s) E\ = (Uy,Us,Us)

Xe = S5Su & = (04,61) E,=U,

X3 = (882, B) & =4 E3 = (Us, Z).
Let @1 = (SSw,, SSwy, 8Sb,), T2 = SSp, and x3 = (ssg1,b) be the realized values of X;, X,
and X3 respectively. Let e; = (u;,us,u3), ez = uy and eg = (us, z) be the realized values

of Ey, E; and Fj respectively. Define the set-valued functions T3 (1, €;) and Ta(x2, €2) as

follows

Ti(z1,e1) = {& 1 &1 = Gi(e1, &)}, (4.18)

Tz(fl?z,ez) = {9u @y = Ga(ez, (9mT1($1,61)))}- (4-19)

The structural equations in (4.15),(4.16) and (4.17) are consistent if and only if the values

of & in (4.18) also satisfy the equations in (4.16) and (4.17). This requirement leads to the
following set of constraints that must be satisfied by « and e

Tz(wz, 62) 75 @, and (420)

I3 = G3 (63,T1(.’l!1, 61)) . (421)
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Equation (4.21) is equivalent to
s ss ss ss $Suw \2 [ U
b wi w2 b1 wy 3
§831 = Us e e B el I e I
U3 muy mius Usz mui S$Sp,

2
b=1_ ~Lsswlug 42 1 85y, 55w, n 8Sw, [ 8Sh  SSuy U3
m S$Sp, U1 SSp, \ U3 mu; Mg U3 mu, 58p,

(4.22)

Following Hannig et al. (2006), the generalized fiducial distribution of { = (6, 0,,0s,6,,) is

the conditional distribution of
Ti(z1, E}), Tz (2, E3)) |23 = G3 (E3, Ty (%1, EY)) (4.23)

The distribution in (4.23) can be written as a product of two individual conditional distri-

butions as follows

f (Tv(z1, EY), Ta (22, E3) |3 = G3 (B3, Ti(x1, BY}))) =
f (Tl(wl, Ef)tw3 = G3 (E;,Tl(:vl, E{))) X

[ (Tz (@2, E}) | T (1, EY) # 0,23 = G5 (E3, Ty (1, EY)))

Next, we derive the conditional distribution of Tl(:z:l,Ef)|a:3 = G3 (B}, Ti(xy, EY)). In

view of equation (4.18) and equation (4.22), we define the random variables Wy, -+, W5 as
follows
$Sw ‘ ss 58,  SSw
W — 1 , W — w2 , W — 1 1 ,
YUy 2T Us ST U mUr

2
W, = us 885 SSu n SSwy [ SSb  SSw U3 and
Uy mUy mU; Uy mUt $sp, ) |’
2
We =1 1 55,,Uz I 1 [ssy, S84 + 884y, 88y, 88y, U3z
=1 w13 - - -
m ssp, Ut ssp, \ Uy mUy  mU; Uy mUy 88p, ‘

The conditional distribution of Tj(x, Ef)':cg = G3 (B}, Ti(x1, EY)) is then the same as

the conditional distribution of (Wi, W, Ws) given Wy = ssop and W5 =.b. The routine

65



calculation shows that the probability density function of this distribution is given by-

(mW1W3 + mW,oWs + W1W2)1_Tn
(W1 + ng)(W1W2)(1+" ";_1 )

1
W3(s8y 2 o MW2
2(mW W3 + mW, W5 + W1W2)(W1W2)(‘ 3(88w, MW + 850, mWy)

+WEWa(s821m + S8y + 886, mb%) + WiW2 (55, + s55,m) + Wi W Ws(ssp,m

f (Wl,Wz,W3|W4 = S$2|1,W5 = d) =

x exp{—

+88y,m + 855, b°m? + 832,1m2 + 88, M — 288p, bmz))}l(o,oo)(WI)I(O,OO)(WQ)I(O,OO)(Wg)
(4.24)
Notice that it’s hard to obtain the explicit expression of probability density function
of the conditional distribution T (2, E3) |T1(z1, E}) # 0,3 = G3 (E}, Ty(z1, E})) due to
the implicity of the function 75 (x5, E3) and the complicity of pdf of non-central chi-squared

distribution. We resort to Monte Carlo simulation. The simulation procedure is as follows

1. Draw K samples of (6y,6,,6s), denoted by (9~§i) s, 9(1)) 1,---, K, from the

distribution given in (4.24).

2. Generate K uniform variate, denoted by @i = 1,... K, and use the bisection

method to solve the following equations for 6,

F ,_288’”1 L] ~nm0/;" =a(i)7i=17..' ’K’ (425)
T+ 00 30+ )

where F'(x,v) is the value of CDF of noncentral chi-squared distribution with 1 degree
of freedom and noncentrality parameter v, evaluated at x. Denote the solution to
the equation (4.25) by éff) If a® > F(2ssm/(9~§i> + égi)),O), then set é,(f) as 0 by

definition.

After step 2, we obtain K samples of (6,65, 6s,6,) from the generalized fiducial dis-
tribution of (6, 62,05, 8,,) given in (4.23). Plugging these samples into the p, formula given
n (4.3), we obtain K simulations of p.. Let R/, v, denote the y—quantile of the these K
simulations, then a (1 — @)100% lower bound for p. is given by [R], _,1]. We refer to this

interval as the FGCI2 confidence interval.
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4.2.4 Simulation Study and Discussion of Results

To evaluate the performance of the proposed fiducial intervals, a simulation study was
performed using the design considered by Quiroz (2005). Four cases where py — pp = 0 or
2, 02 =1 or 1.25, and 02, = 1 were considered in the simulation study. For each case,
the correlation coefficient p = 0.99,0.97,0.95,0.90,0.80,0.70, and 0.50, were selected with
sample size n = 5,15,30 and repeated measurements m = 2 and 5 per subject. Thus,
we had 168 designs. To estimate the test size, some boundary scenarios were considered
in our simulation study. We used the same cutoff value, 0.95, as in simulation study in
Quiroz (2005) and selected ‘731 = 0.1,1,5 and 10, ¢2, = 0.1 and 2, p = 0.99 and 0.97.
6, = (p1 — p2)? was calculated using the formula (4.3) by setting p. = 0.95. Simulations
were conducted with combinations of n = 5,15,30, and m = 2 and 5. Combining 168
designs, we have totally 264 designs.

2000 independent data sets were generated for each of 264 designs and 95% lower con-
fidence bounds were constructed for each method. For FGCI1 interval procedure, 10000
realizations of the random variable R, given in (4.11) were generated to construct the con-
fidence intervals for each data set. For FGCI2 interval procedure, the confidence intervals
were calculated based on K = 10000 simulations of (0~1, 65, 05, éﬂ), for each data sét.

The methods compared were (a) ZT1 interval, (b) ZT2 interval, (c) MRM interval, (d)
FGCI1 interval and (e) FGCI2 interval. The criteria for judging the performance of the
methods are the empirical coverage probabilities and the average lengths of the confidence
intervals. The normal approximation to the binomial distribution suggests that, when the
true coverage probability is 0.95, then there is less than a 5% chance that the empirical
coverage based on 2000 simulations will be less than 0.942. Thus, we consider the interval
liberal if its coverage probability is less than 0.942. The simulation results are listed in
Appendix C and summarized in Table 4.2 and Figures 4.1 through 4.8. The column 2 in
Table 4.2 gives the percentage of empirical coverage probabilities (C' P) less than 0.942. The
column 3 lists the percentage of confidence intervals having lengths greater than the lengths
of FDCI2 intervals. Figures 4.1 through 4.4 show the empirical coverage probabilities for

different designs. Figures 4.5 through 4.8 show the relative differences of the average
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confidence interval length, denoted by RL. RL is defined as (CLy; — CLrger2)/CLrgere,
where C' L), denotes the average length of a competing interval and C'Lrgcrs denotes the

average length of FGCI2 interval.

Table 4.2: Comparison of Fiducial Intervals with Competing Intervals.

Method CP < 0.942 CLy > CLpgcr2
ZT1 10.6% 81.4%
ZT2 -10.9% 79.9%

MRM 0.0% 98.1%
FGCI1 0.4% 59.9%
FGCI2 0.0% -

CP: Coverage Probability, CLys: The average length of a competing interval, CLpgcra:

The average length of FGCI2 interval.

Coverage Probability
093 084 095 096 097 0988 099 1.00
1
Coverage Probabiiity
093 084 095 096 097 098 099
!

1
] oo}_....:.... i
:

oo

FGCi1 FGCI2 MRM Zmn zT2 FGC1 FGC2 MRM zn T2

Method Method

Figure 4.1: Empirical coverage probabilities  Figure 4.2: Empirical coverage probabilities
for designs with sample size n = 5. for designs with sample size n = 15.

The results show that the ZT1 intervals and the ZT2 intervals are liberal sometimes.
The MRM intervals are more conservative than other procedures for most of situations.
The coverage probabilities of FGCI2 are the closest to the nominal value 0.95 for most of
situations, especially when the sample size is small. Its behavior for designs with large
sample size is similar to FGCIL1.

Comparing the average interval lengths, we observe that FGCI2 has the smallest av-

erage confidence lengths among all other procedures most of times, especially when the

68



Coverage Probability

082 093 094 095 096 097 098 099

1

1

1

1l

=

—_ —_—
o o
T T T T T
FGCi1 FGCI2 MRM 7 ZT2

Method

Figure 4.3: Empirical coverage probabilities
for designs with sample size n = 30.
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Figure 4.5: Relative differences of the average
confidence interval lengths (RL) for designs
with sample size n = 5.
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Figure 4.4: Empirical coverage probabilities
for all designs.

Relative Length Difference w.r.t. FGCI2 (RL)
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Figure 4.6: Relative differences of the average
confidence interval lengths (RL) for designs
with sample size n = 15.

sample size is small. MRM has the largest average lengths overall. The ZT2 procedure

behaves slightly better than ZT1 procedure in terms of the confidence interval length.

Based on the above results, we recommend the FGCI2 intervals for p. as the most

suitable choice for practical application under the model (4.2).

4.3 Confidence Intervals for CCC under the Model with Method and Subject
Interaction
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confidence interval lengths (RL) for designs  age confidence interval lengths (RL) for all
with sample size n = 30. designs.

4.3.1 Statistical Model and Concordance Correlation Coefficient

In this section, we consider a general model with method and subject interaction,

which is given below
}/z’jk =/L¢+Sij+€ijk,i== 1,2,7=1,...,n,k=1,...,m. (426)

where Yj;; is the k" measurement made on the subject j receiving the method i, u; and
2 are the means of test method and reference method respectively, S;; is a random effect
of subject j receiving method %, and €;;; are the within-subject measurement errors. The
random variables €, are jointly independent and distributed normally with mean 0 and
variance in,i =1,2. The vector S = [S1; S2;]' are mutually independent bivariate normal

with zero means and a covariance matrix given by

V=<ﬁ @).

o12 05

Finally, S;; and €, are mutually independent. Note when o2 = 02 = gy, = 02, the
model (4.26) is reduced to the model (4.2). The ANOVA table for the model (4.26) is
shown in Table 4.3. The collection of statistics SSM, SSB;, SSw, and SSy, are mutually
independent. Also, the collection of statistics SSM, SSB,, SSw, and SSyw, are mutually

independent.

70



Table 4.3: ANOVA for Model with Interaction between the Methods and the Subjects
(Model (4.26)).

Source DF MS EMS
Methods ny = 1 812\/1 = SSM/nM eM' = 1/2(m(0f +U§ — 20’12)/2
fmml — a)f + 0% + 07,
Subject (1) np, =n -1 5% = SSp,/np, 0p, = 01 + agl/m

(1
Subject (2) np,=n-—1 S3, = SSp,/np, OB, =0} +0%,/m
Error (1) n =n(m-1) S? =8Sy,/n1 6 —021
)

Error (2 ng =n(m—1) S =8Sw,/ny 6, =02

For simplicity, the following parameter definitions are used in this Section,

1 2 &
93=§(m(0f+ag+2012)+031+0522) 92“:03—*—% U1+; 2,/m
o1 nm(py — p2)?
Our = m(6s, + O, — 2613) + 0, + 0, B = N |
o (s, 3, 12)+6+6, B ol + o2 /m m(o? + 05 — 2012) + o2 + o2

The statistics definitions in this section are the same as in Section 4.2 unless defined specif-

ically.

By the definition of p., the concordance correlation coefficient under the model (4.26)

can be expressed as follows

pe=1- E[(Y% — Yz;'k)2] _ 2012
‘ Einaepl(Yige — Yajx)?]  0f +03 + 02 + 02, + (k1 — p2)?
=2p(¢+1/¢ + 9% | (4.27)
where
Cov(Yiji, Yait) = o1z = Pearson correlation coeflicient,

- VVartVar(aw) \ foF +02)(03 + 2,)

b= \/VaT(Yuk) = \/01 s scale shift, and

Var(Yaj) o2+ o2,

- 2 _ 2
Y = (1 — 1) = (1 — p2) = location shift relative to the scale.

- VVar(Yijx)Var(Yaje) \/(Jf + 02 )(03 + 02,)

4.3.2 Published Confidence Interval for CCC

In this section, we follow the ZT interval construction procedure developed by Quiroz

(2005) to construct a ZT interval for CCC under the model (4.26). The following statistics
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and parameters definitions are used in the construction of the ZT confidence intervals of

Pe,

b _ g2 G fe—si_ St g _gr 5

61:51 02=S2 gslszl_E 052:’5'32_;

. S% S; +S3 2
B =22 = (S} — m(Sh, + S5,) + 5h).

It’s easy to show that 01, 9}, ésl,ésm 912 and ép are unbiased and consistent estimators of

61,02,0s,,0s,,012 and 6, respectively. Using these estimators to estimate p., we get

5= 2612 _ 25%/m — (5%, + S%,)
s, + 05+ 0t 0a 0 (353, 4 253) /() + (1~ 2)(S5, + 53,) + (1 —)(5? + )

(4.28)

Let § = 951 + ész + 01+ 6, + HAM. pc in (4.28) can then be expressed as a ratio of 2015
to 6. By the delta method, the variance of this ratio is approximated as follows

_ 403 (Var(Bia)  2Cou(8,612) N Var(6)
g2 62, 0120 62 )

Var(p.) (4.29)

It’s easy to show that Var(0y,), Var(d) and Cov(8,f15) in (4.3.2) have the following ex-

pression

Var(fy,) = #Var(s%) + -411 (Var(S%,) + Var(Sg,)) — %Cov(sg, Sg,) — —T%COU(S%, 5%.)
+ %Cov(Sﬁl, Séz),
Var(d) = —— (Var(S%) + Var(s3)) + (1 _ l)2 (Var(S?) + Var(S2)) + (1 - 3>2
m-n m n
< (Var(S3,) + Var(S3,) + 200083, 53,)) + “2.= 2 Cou(s3, 53,)

+ Cou(S3,53,)),

5 oA 2Var(S% -3 -2
Cov(8,6,2) = Z:Ez ) + nnm (Cov(S%, S3,) + Cov(SE, S3,)) — %—-(Var(b%l)
+ Var(S%,) +2Cou(Sg,, SE,))- ' (4.30)
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The expression of the variance and covariance terms in (4.30) can be found in following

upper triangular part of the covariance matrix X of the vector [S3, S% S3 S S7 S3)

( 200 (Op +mnb,) 0 0 0 0 0
2034  m(0p, +612) m(fp, + 012)
0 0
n—1 n— 1 n-— 1
= B 0 0
n—1 0g?
1
n—1 0
202
n—1

The Var(p.) is finally estimated by replacing 0p,,0p,,0:,02,612 and 6, with
931,932,491, ég,élg and GAH, respectively.

By plugging p. in (4.3.2) and the estimate of the variance of g, into the formula of
Z-transformation lower bound given in (4.7) and setting a = 0.05, we obtyain a 95% lower
confidence bound on p., denoted by L%,;. We refer to the interval [L’,1] as the ZT

confidence interval.
4.3.3 A Fiducial Generalized Confidence Interval for CCC

In this section we construct a fiducial generalized confidence interval of p, based on
the Fiducial Generalized Pivotal Quantity.

Following the procedure of finding the minimal sufficient statistics given in Sec-
tion 4.2.3, we obtain the following minimal sufficient statistics of (u1, y2, 61, 62, 0s,, 6s, ,612)

under the statistical model (4.26),
(Y 1 Y 200, SSwr, SSwy, SSB,, SSB,, SS12).

Note these minimal sufficient statistics are the same as the ones under the model (4.2).
However they are complete under the model (4.26). It is easily seen that the minimal suffi-
cient statistics are associated with the following pivotal quantities with known distributions

as indicated

SS
Ul = S‘Zwl ~ X?l——l U2 = S_Z'% ~ X?},—l U3 = 0 b ~ 727.—1
1 2 B
2SSy, _SSm 7=—B2=8 _ Np)

Uy = 22°M Uy = 2_
T ey X 57 oy X NN
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where the random variables Uy, Uy, Uz, Uy, Us and Z are mutually independent. Based the
above pivotal quantities, we apply the structural method for construction of FGPQ and

obtain the following FGPQ for p.

2Re
R, = 12 , 4.31
¢ Res, +Ros, +Re, + Ro, + R, (4:31)
where
SSW SSW SSB RG
Ro, = —0 Ry, = —20 = ———tfg — —*
th SS;VI 1y 64 SS;‘@ 25 R@gl SSEl B; m 3
S5 Re Rg
Ry = ———Oyp — — + ——H2
% = 555, T Tm " Ry, + Reyfm
SS B* —
RBIZ = —31931 - ﬂ

\/(555,551)/(SS5,553,)

1
R‘9 = (m(Resl + R952 - 2R912) + R@l + ROz) Q(F(vl; ’Ug); US):

nm
e 2583, |
m(0s, +0s, — 2012) + 6 + 62
o — nmb,
27 m(fs, + Os, — 2612) + 61 + 05
25S5u
V3 =

m(Res, + Ros, — 2Rey,) + Re, + Re,’

S8V, SS%,,555,,555,,55;, and S5y are the independent copies  of
SSwy, SSw,, SSp,,SSB,,SS21 and SSyr respectively, the functions F(z,A) and Q(u,x)
have the same definition as in Section 2.4.1. Observe that Ry,, Rs,, Rgsl , R952 and Ry, are
the FGPQs for 6,,60,,0s,,0s, and 8, respectively. It follows that R, is the FGPQ for p..
Let R, denote the y—quantile of the distribution of R, then a (1 — a)100% lower bound

for p. is given by R,,. We refer to the interval [R,_, 1] as the FGCI confidence interval.
4.3.4 Simulation Study and Discussion of Results

A simulation study was carried out to evaluate the performance of the proposed fidu-
cial intervals. Eight cases where p; — pip = 0 or 2, 62, = 1or 1.25, 02, = 1, 6¢ = 20 or
25, 02 = 20 were considered in the simulation study. For each case, the correlation coeffi-
cient p = 0.95,0.9,0.8 and 0.7, were selected with sample size n = 5,15,30 and repeated

measurements m-= 2 and 5 per subject. Thus, we had 192 designs.
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The simulation was done using 2000 independent data sets for each of a number of
scenarios covering different parameter settings. For each simulated data set, the 95%
lower confidence bounds were constructed for each method. For FGCI interval procedure,
the confidence interval was estimated using 10000 realizations of the random variable R,
given in (4.31). The simulation results are listed in Appendix C and summarized in Table
4.4 and Figures 4.9 through 4.16. The column 2 in Table 4.4 gives the percentage of
empirical coverage probabilities less than 0.942. The column 3 lists the percentage of the

ZT confidence intervals having lengths greater than the lengths of FGCI intervals.

Table 4.4: Comparison of Fiducial Intervals with ZT Intervals

Method CP < 0.942 CLz1 > CLrger
ZT 28.6% 10.42%
FGCI 0.0% -

CP: Coverage Probability, CLzT: The average length of ZT interval, CLrger: The average

length of FGCI interval.
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Figure 4.9: Empirical coverage probabilities  Figure 4.10: Empirical coverage probabilities
for designs with sample size n = 5. for designs with sample size n = 15.

The simulation results show that ZT confidence intervals are liberal in many situations,
especially when sample sizes are small. Overall, about 30% ZT confidence intervals have
coverage probabilities less than 0.942. For designs with n=>5, about 58% ZT confidence

intervals are liberal. Nonetheless, no FGCI intervals are found to be liberal. Therefore
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Figure 4.11: Empirical coverage probabilities  Figure 4.12: Empirical coverage probabilities
for designs with sample size n = 30. for all designs.

although ZT intervals have shorter average confidence interval lengths than FGCI intervals

in most of situations, FGCI intervals are more suitable for practical application, especially

for small experiments.
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Figure 4.13: Relative differences of the aver-  Figure 4.14: Relative differences of the aver-
age confidence interval lengths (RL) for de-  age confidence interval lengths (RL) for de-
signs with sample size n = 5. signs with sample size n = 15.
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Chapter 5

SIMULTANEOUS FIDUCIAL GENERALIZED CONFIDENCE INTERVALS
FOR RATIOS OF MEANS OF LOGNORMAL DISTRIBUTIONS

5.1 Introduction

Simultaneous confidence intervals for certain lognormal parameters are useful in phar-
maceutical statistics. In bioequivalence studies comparing a test drug to a reference drug,
it is of interest to compare the mean responses of the two drugs to ensure that they are
(more or less) equally effective. With this in mind the U.S. Food and Drug Administra-
tion (FDA) requires the lab submitting an approval request to demonstrate that certain
equivalence criteria are satisfied. One such criterion is called the average bioequivalence
criterion which requires the ratio 8§ = ur/ug to be sufficently close to 1, where ur denotes
the mean response to a test formulation of a drug and g denotes the mean for the reference
formulation of the drug. A confidence interval for the ratio 8 = ur/ug is useful in this
situation. A key response variable in such studies is called AUC which is the area under
the curve relating the plasma drug concentration in a patient to the elapsed time after the
drug is administered. As per the FDA guidelines, the analysis of AUC is to be carried out
using the log scale. This is because the distribution of AUC is typically modeled well by a
log-normal distribution. So the parameter of interest is the ratio of means of two log-normal
distribution. This approach is termed bioequivalence and involves the calculation of the
confidence interval for the ratio of the average of test and reference products.

The experimental design of choice in bioequivalence studies comparing two or more
formulations of a drug is a crossover design with adequate washout periods to minimize
carryover effects. However, a parallel design is more appropriate when the half lives of drugs
being tested are very long and this is recognized in the U.S. Food and Drug Administration

(2001). The two-group parallel design was considered by Kirshnamoorthy and Mathew



(2003) who derived FGCIs for the ratio of means of two Log-normal Distributions using
the ideas of generalized p-values and generalized confidence intervals.

Some bioequivalence studies consider one or more reference drugs (for instance, the
same drug in different forms — tablets, capsules, caplets, liquid, etc) and one or more
test drugs. In such studies one is often interested in all pairs of ratios of means to help
assess mutual bioequivalence of all formulations. More specifically, suppose Y, ..., Yin,
is a random sample from LN(ui,af), i=1,...,k, where LN(u,0o?) refers to a lognormal
distribution with parameters g, o2, i.e., In(Y;;) ~ N(p;,0?). We are interested in obtaining
simultaneous confidence intervals for all pairwise ratios 6,; = 6,./0s (1 < r < s < k) where
6, is the mean of LN (u,,02). In particular, logf, = u, + 02/2. This is equivalent to the

problem of obtaining simultaneous Cls for all pairwise differences of the form
oo o
brs = log(f;) — log(0s) = (ur — ps) + 5(01' - 03).

We propose a solution to this problem by applying the method introduced by Abdel-Karim
(2005) for constructing simultaneous confidence intervals for for all pairwise differences
of means of k£ normal distributions based on FGPQs. The performance of the proposed
method is assessed using a statistical simulation study.

The chapter is organized as follows. In the next section we decribe the method used
to construct simultaneous Fiducial Generalized Confidence Intervals for ratios of lognormal
means. The performance of these intervals is assessed by statistical simulation which is
described in Section 5.3. A proof of the asymptotic correctness of the proposed intervals is

given in Section 5.4.

5.2 A Simultaneous Fiducial Generalized Confidence Interval for Ratios of
Means of Lognormal Distributions

In this section we show how one may construct simultaneous confidence intervals for
parameters of interest based on a vector FGPQ. First we describe the notation and termi-
nology used in this chapter.

For ¢ = 1,..., K, suppose Yj; w N(pi,02), for j = 1,...,n;. Then exp(Yy;), 7 =

1,...,n; is an iid sample from a lognormal distribution with mean 6; = exp(u; + ¢2/2).
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The problem of constructing simultaneous confidence intervals for ;; = 6;/6; for all i #
7 is equivalent to the problem of constructing simultaneous confidence intervals for the
parameters &;; = log(0;;) = (u: + 07/2) — (u; + 02/2).

We first observe that a FGPQ for d;; is given by

1
R(Si]- (S’ S*, 6) = Rlii - Rﬂj + —(Ralz - ROJZ)

2
where
_ S,
Ry, =Yp — g‘i‘(y}, _.“p)
p
and
SZ
Roz = 20
P
for p =1,...,K. Here }_’p denotes the mean and Sg is the sample variance of Y,; for
j=1,...,n, and }_/p*, SI’:Q are independent copies of Y, Sg.. .‘
Define

Y.+ (1/2)82 — R (S, S,
(5,5, = x| T U/250) = s+ (/25 ~ e, (85,8
i#j Vi
where V;; is a consistent estimator of the variance of 7 (1/2)83) — (Y; + (1/2)5?), i.e
S? St S? S;
T 2o Ty T -

Then 100(1 — «)% two-sided simultaneous FGClIs for pairwise ratios 6;;,7 # j of means of

(5.1)

(5.2)

more than two independent lognormal distributions are [L;;, U;;] where

Ly =exp (V= V;+ (1/2)82 - (1/2)8? - dia/ Vi) (5.3)
Uy = exp (Vi = ¥+ (1/2)87 = (1/2)82 + di-ay/Vy ) (5.4)

and d, denotes the 100~y-percentile of the conditional distribution of D(S, S*, {) given S = s.

Remark 5.1. Let § denote a vector of parameters whose components are d;;, 1 <4 < 7 <
K. It is instructive to note that the confidence region for & resulting from the proposed
simultaneous intervals for d;; are one of the many possible ways in which to construct a
generalized confidence region for §. We begin with the vector FGPQ R and obtain a
confidence region for § that has a prespecified shape.

In the next section we examine the performance of these simultaneous intervals in
small sample situations as well as large sample situations. Section 5.4 contains a theorem

describing the asymptotic behavior of these intervals.
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5.3 Simulation Study and Discussion of Results

Simultaneous FGCIs for all pairwise ratios of means of three independent lognormal
distributions were considered in the simulation study. The simulations were done using
5000 independently generated datasets for each of a number of scenarios covering different
parameter settings. For each simulated dataset the 95% simultaneous generalized confi-
dence intervals were estimated using 10000 realizations of the random variable D(S, S*, ¢)
defined in (5.1). Without loss of generality, it was assumed that all u;’s, i = 1,2,3, are
equal to 0. The values used for sample sizes were 5, 25 and 125. Five levels of o2 were used
- 0.01, 0.1, 1, 10 and 100. For each level of o2, o2 values were set at 2’0, and o values
were set at 2™o2, where | and m are integers and 0 < | < m < 3. Thus, totally 995 settings
were considered in this simulation study. The simulation results are listed in Appendix D
and summarized in Table 5.1, Table 5.2 and Figures 5.1 through 5.4. Table 5.1 gives a
classification of the various sample size combinations considered in the simulation study
into small sample cases, medium sample cases and large sample cases. The last column
of Table 5.1 gives the proportion of the simulation settings for which the empirical cover-
age probability is not significantly different from the target coverage rate of 0.95. Several
scenarios with combinations of very large sample sizes and extreme variances were also
included in the study to judge how soon the asymptotics take effect (see Section 5.4). The
parameter settings for these large sample cases are given in in Table 5.2. The last column
in Table 5.2 gives the empirical coverage probability for the particular simulation setting
considered.

Table 5.1: Classification of Sample Sizes and Proportions of Empirical Coverage Probabil-
ities within Limits of Simulation Error for Each Class (Three Populations)

Size Combination Proportion

small (555) (55 25) (525 25) (55 125) 13.09%
medium | (25 25 25) (5 25 125) (5 125 125) (25 25 125) (25 125 125) 39.28%

large (125 125 125) 62.86%

Figures 5.1 through 5.4 shows histograms of empirical coverage probabilities for small

sample cases, medium sample cases, large sample cases, and all of the cases combined,
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Table 5.2: Empirical Coverage Probabilities of 95% Fiducial Generalized Confidence Inter-
vals for Designs with Very Large Sample Size and Extreme Variances (Three Populations).

m Ty 3 o1 o) o3 | Empirical Coverage
125 125 125 0.01 0.01 0.01 0.9531
625 625 625 0.01 0.01 0.01 0.9490
1000 1000 1000 0.01 0.01 o0.01 0.9491
2000 2000 2000 0.0t 0.01 0.01 0.9498
1256 125 125 100 800 1600 0.9509
625 625 625 100 800 1600 0.9488
1000 1000 1000 100 800 1600 0.9513
2000 2000 2000 100 800 1600 0.9484

respectively. It is seen that the empirical coverage rates are in the range from 0.94 to

1.0 and hence the proposed interval procedure is conservative. The results also show that

most of the empirical coverages bigger than 0.98 occur with the combination of very small

samples and large variances.

As the sample size increases, the empirical coverage approaches the claimed coverage

and the proportion of empirical coverage within the binomial simulation error bounds

increases. Table 5.2 shows that empirical coverages approach the claimed coverage as

sample sizes increase even for very large variances. The convergence appears to be slower

for scenarios with large variances than scenarios with small variances.
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5.4 Asymptotic Behavior of Simultaneous Fiducial Generalized Confidence
Intervals for Ratios of Means of Lognormal Distributions

We continue to use the notation of the previous section. We now prove that the

constructed simultaneous fiducial intervals have correct asymptotic coverage.

Theorem 5.1. Let all ny,...,ng approach infinity in such a way that r; = limn;/(n; +
-+ ng) exists and 0 < r; < 1. Then the 100(1 — a)% two-sided simultaneous confidence

intervals have asymptotically 100(1 — )% frequentist coverage, i.e.,

P(Lij < 055 < Uy, for alli,j) — 1~ a.

Proof. Set n =nj+---+ng. Define a vector m = (uy, ..., ux,0%,...,0%), and a diagonal
matrix
D = diag b ey oK ,0%\/5,...,0?(\/5 .
VT VTE /T1 VTK

The central limit theorem implies that /n(S, — m) P, DZ where Z = (Zy, ..., 2Z2K)
are i.i.d. N(0,1) variables. By Skorokhod’s theorem (see Billingsley (1995)) we can find a
sequence S, independent of S* such fhat S, has the same distribution as S and /n(S,, —
m) — DZ almost surely. In what follows we can therefore assume without loss of generality

that
Vn(S, —m) — DZ as. (5.5)
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It follows from the Slutsky’s theorem that as n — oo

Zio ¢ Z:+Kj27 z;;—% gt
D(S,$%, &) — mjx - 73 a.s. (5.6)

27‘1 2r;

Here the a.s. comes from the a.s. convergence'in (5.5).
Recall the definition of the percentile d,(s) above. Since the limiting distribution in

(5.6) is continuous, we have by the definition of convergence in distribution
dy(S) — gy, (5.7)

where g, is the the 100y-percentile of the limiting distribution in (5.6).

Finally, realize that (5.5) implies

- o? a;
V.-V, + (128t - (282 -5, DRt Zenn — L - J+K¢—
—

V¥ ( +1+2+”)1/2

2r; 2r;

This, together with (5.7) and some algebra gives

P(Li]‘ < 9ij < Ui]‘, for all 'L,])

Y:-Y,;+(1/2)82 — (1/2)8? — 6;;
= P | max 1, J+(/)z (/)] t] Sdl——a
i#j Vi
o? o; o?
Zi\/;+Zz+K72—’;; Zj‘\/‘% Zivk o
— P | max < Qi-a
#] o2 | ot | o2 | ot \1/2
(T—i+2—“+;;+2r])
=1—-«
as n — oo. O
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Chapter 6
CONCLUSIONS

In this dissertation, we have applied the fiducial generalized pivotal quantity and
generalized fiducial recipe developed by Hannig (2006) and Hannig (2008) and solved four
practical issues.

In Chapter 2, we have proposed interval estimation procedures for 2, ¢? and p in
a two component mixed effects linear model using the fiducial approach. A simulation
study was carried out to compare the proposed confidence interval for 02 with five other
confidence intervals from the literature, the proposed confidence interval for o2 with an
exact confidence interval, and the proposed confidence interval for p with the method
due to Burch and Iyer (1997). The results showed that the proposed fiducial intervals
for o2 are satisfactory in terms of coverage probability. Although they are conservative
for small values of the variance ratio n = 02/02, they have the smallest average interval
lengths among all confidence intervals. Three examples are given to illustrate the use of the
proposed procedures. The results confirm that the fiducial intervals can be recommended
for practical use over the methods previously discussed in the literature. We also proved
that these fiducial intervals have asymptotically exact frequentist coverage probability.

Median lethal dose (LDsp) is a common measure of the acute toxicity of a compound in
a species in quaﬁtal bioassay experiments. In this work, we applied the generalized fiducial
recipe to propose a new method for constructing confidence intervals of LDyj, for a logistic-
response curve. The method uses the Gibbs sampling approach to empirically estimate
the percentiles of the fiducial distribution for LDsg. The resulting intervals were compared
with three other competing confidence interval procedures — Delta method, Fieller’s method

and Likelihood Ratio method. QOur simulation results showed that fiducial intervals have

satisfactory performance and are more stable than other confidence intervals in terms of



coverage probability. The fiducial distributions also appear to give unbiased point estimates
of LDse. Williams’s experimental configurations (Williams, 1986) were used to study the
convergence properties of the Markov chains in Gibb’s sampling,.

Evaluation of the equivalence between two methods is often required in medicine and
other areas to see if two methods sufficiently agree well. Lin (1989, 1992) proposed an
index called concordance correlation coefficient (CCC) to quantify agreement between two
methods of measurement. CCC has components of precision and accuracy and is widely
used in method comparison studies due to its simplicity and good statistical properties.
In chapter 4, we developed the Fiducial Generalized Confidence Intervals (FGCIs) for the
concordance correlation coefficient and used it to conduct statistical tests. The statistical
model for a repeated measurement design used by Quiroz (2005) and a generalization of
this model were considered in this work. Simulation studies were conducted to compare
the proposed methbd with the Z-transformation methods and modified random model
methods. Our simulation results showed that the FGCIs based on the generalized fiducial
distribution perform better than other procedures under the model without method and
subject interaction. FGCI intervals based on the Fiducial Generalized Pivotal Quantities
(FGPQ) have satisfactory performance in terms of coverage probability under the model
with method and subject interaction.

In chapter 5 we constructed simultaneous confidence intervals for all pairwise ratios of
means of more than two lognormal distributions based on a Fiducial Generalized Pivotal
Quantity (FGPQ). We verified by means of a simulation étudy that these intervals perform
satisfactorily in small samples. We also proved that the constructed confidence intervals
have correct asymptotic coverage. The role of such intervals in bioequivalence studies was
also discussed.

The asymptotic properties of the constructed fiducial generalized confidence intervals
on LD5g and CCC need further investigation in the future work.

The fiducial approach was never accepted by mainstream statisticians. Our investi-
gation in this thesis shows that the confidence intervals constructed using the generalized

pivotal quantity and generalized fiducial recipe have satisfactory performance. Our inves-
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tigations and those of Patterson (2006), Hannig et al. (2006) and Hannig (2008) suggest

that it might be wise to reevaluate the role of fiducial inference in statistical inference.
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Appendix A

SIMULATION RESULTS FOR CONFIDENCE INTERVALS FOR ¢2 IN AN
UNBALANCED ONE-WAY RANDOM EFFECTS MODEL

For a discussion of results see Section 2.4.



Table A.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Confidence In-
tervals for o2

(0% 0%)

Design Method
(0.1,10) (0.510) (1,10) (0.52) (1,1) (2,05) (5,0.2) (10,0.1)

1 BG 0.949 0947 0949 0945 0.926 0.907 0.896 0.895
TH 0.937 0.936 0941 0945 0.947 0950 0.951 0.950
BE 0.985°  0.984 0981 0979 0959 0952 0.951 0.950
HK 0.950 0.949 0951 0.954 0956 0.958  0.960 0.958
Ar 0.947 0.944 0954 0947 0949 0951 0.950 0.956
FI 0.986 0.982 0.987 0.988 0.982 0944 0.948 0.949
2 BG 0.949 0947 0946 0.938 0.917 0.905 0.898 0.898
TH 0.937 0.938 0943 0948 0948 0.950 0.952 0.950
BE 0.986 0.982 0978 0971 0954 0951 0.952 0.950
HK 0.951 0.951 0.954 0.957 0.957 0.958  0.960 0.957
Ar 0.947 0.950 0.950 0.947 0.953 0.947 0.954 0.954
FI 0.985 0.985 0.987 0986 0.957 0946  0.951 0.947
3 BG 0.948 0.952 0.949 0940 0937 0934 0931 0.928
TH 0.931 0.940 0941 0943 0951 0.953 0.950 0.948
BE 0.991 0.983 0976 0.966 0.955 0.953  0.950 0.948
HK 0.949 0.949 0.954 0.959 0950 0.958  0.954 0.950
Ar 0.948 0.953 0.950 0951 0953 0946  0.949 0.944
FI 0.988 0.981 098 0985 0980 0.961  0.958 0.954
4 BG 0.952 0.949 0.940 0938 0926 0.921 0.922 0.922
TH 0.938 0.943 0.945 0947 0952 0951 0.956 0.954
BE 0.991 0.981 0971 0962 0954 0.951 0.956 0.954
HK 0.950 0.960 0.958 0.958 0.958 0.958  0.958 0.957
Ar 0.950 0.952 0.947 0947 0952 0950  0.950 0.952
FI 0.987 0987 0986 0985 0.950 0.949 0.947 0.948
5 BG 0.951 0949 0943 0941 0936 0932 0.929 0.935
TH 0.931 0.945 0948 0953 0949 0.950 0.952 0.952
BE 0.990 0.982 0975 0965 0951 0.950 0.952 0.952
HK 0.955 0.953 0.958 0.958 0.957 0.959  0.960 0.958
Ar 0.952 0.949 0947 0946 0.947 0.947 0.954 0.953
FI 0.990 0.976 0965 0950 0946 0.946  0.946 0.950
6 - BG 0.947 0.949 0.948 0949 0948 0.943 0.944 0.938
TH 0.944 0.949 0.951 0.955 0.960 0.953  0.953 0.947
BE 0.977 0.976 0971 0.969 0.964 0.953 0.953 0.947
HK 0.947 0.958 0961 0974 0971 0.972 0.974 0.973
Ar 0.955 0.947 0944 0.953 0.950 0.947 0.951 0.945
FI 0.990 0.989 0991 0989 0976 0.955  0.947 0.950
7 BG 0.950 0.951 0950 0954 0948 0952 0.948 0.948
TH 0.947 0.953 0.954 0955 0952 0.954  0.951 0.950
BE 0.975 0.969 - 0965 0960 0.952 0.954 0.951 0.950
HK 0.954 0.955 0961 0962 0963 0963 0.966 0.962
Ar 0.951 0.948 0953 0951 0.950 0.953 0.951 0.949
FI 0.973 0.971 0966 0953 0949 0.957 0.957 0.947
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Table A.2: Average Lengths of Nominally 95% Two-sided Confidence Intervals for o2

(05:0%)

Design Method
(0.1,10) (0.5,10) (1,10) (0.5,2) (1,1) (2,0.5) (5,0.2) (10,0.1)

1 BG 26.0  28.7 31.6 8.1 8.3 12.6 28.4 57.1
TH 42.1 44.8 47.8 11.3 10.0 13.6 28.7 57.2

BE 43.7 46.4 49.3 11.6 101 13.7 28.8 57.2

HK 41.6 44.3 47.6 11.3 101 13.7 29.4 57.1

Ar 41.5 44.0 474 11.2 9.9 13.6 29.1 56.3

FI 31.0 32.9 34.5 8.6 7.9 11.0 25.2 48.5

2 BG 13.7 16.1 19.1 5.6 7.0 12.0 28.1 56.8
TH 21.4 23.9 26.9 71 79 12.5 28.3 56.9

BE 22.2 24.7 27.6 7.2 8.0 12.5 28.3 56.9

HK 211 23.7 26.9 7.2 7.9 12.5 28.9 56.8

Ar 21.2 23.5 26.6 7.1 7.8 124 28.8 56.0

FI 16.0 20.1 20.5 5.5 5.6 10.6 24.8 49.0

3 BG 63.6 80.0 98.8 32.0 46.2 81.1 194.3 388.7
TH 95.3 1119 1314 38.6 49.0 83.1 196.2 388.8

BE 95.5 1121 1316 38.7 49.1 83.2 196.2 388.8

HK 93.8 111.8 1314 38.0 483 83.2 199.5 403.2

Ar 93.5 111.9 130.1 37.9 478 82.2 196.5 398.8

F1 73.5 87.1 99.5 29.1 358 62.4 149.6 296.4

4 BG 9.6 12.9 17.3 5.9 8.8 16.2 39.6 78.4
TH 13.6 16.9 21.5 6.7 9.3 16.5 39.7 78.1

BE 13.9 17.2 21.7 6.8 9.3 16.5 39.7 78.1

HK 13.7 16.8 21.0 6.7 9.5 17.1 40.6 79.7

Ar 13.8 17.1 21.2 6.6 9.1 16.7 39.9 77.9

F1I 10.2 12.8 15.5 5.0 7.2 12.7 32.0 62.9

5 BG 3.5 5.9 8.8 3.5 5.9 11.5 28.4 55.7
TH 4.6 7.0 9.9 3.7 6.0 11.5 27.9 55.6

BE 4.7 7.1 10.1 3.8 6.1 11.5 27.9 55.6

HK 4.5 6.9 10.0 3.7 6.1 11.6 28.5 56.4

Ar 4.6 6.9 10.1 3.7 6.0 11.5 28.3 57.2

- FI 3.2 5.1 74 2.7 4.7 8.8 21.7 43.7

6 BG 40.7 46.2 53.4 14.7 177 28.7 67.5 138.3
TH 47.0 52.2 59.9 159 184 29.1 68.0 138.6

BE 47.0 52.4 60.1 159 185 29.2 67.9 138.6

HK 48.0 54.2 61.9 16.3 191 31.0 71.8 140.2

Ar 45.3 50.6 58.6 16.4 18.1 29.2 68.9 135.5

FI 39.1 43.4 47.9 129 145 23.0 54.8 106.3

7 BG 6.8 9.2 121 4.2 6.3 11.6 27.9 56.0
TH 7.1 9.5 12.4 4.2 6.3 11.6 28.0 55.9

BE 7.2 9.6 12.5 4.2 6.3 11.6 28.0 55.9

HK 7.3 9.7 12.8 4.4 6.5 11.9 29.2 57.8

Ar 7.1 9.4 12.3 4.2 6.4 11.5 28.4 57.0

F1 6.1 8.2 10.8 3.7 5.5 10.2 24.9 49.8
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Appendix B

SIMULATION RESULTS FOR CONFIDENCE INTERVALS FOR MEDIAN
LETHAL DOSE (LDs,)

For a discussion of results see Section 3.5.



Table B.1: Empirical Coverage Probabilities and Average Lengths of Nominally 95% Two-
sided Confidence Intervals for LDsy

. Sample . Sample
Design Si Method CP; CP; CL Design | = Method CP, CP, CL
ize Size
Delta 0.755 0.924 1.126 Delta 0.919 0.931 1.797
6 Fieller 0.809 0.990 1.583 6 Fieller 0.953 0.966 2.351
Likelihood 0.920 0.924 1.222 Likelihood 0.938 0.945 1.984
Fiducial 0.957 0.960 1.337 Fiducial 0.949 0.950 2.077
Delta 0.874 0.927 0.861 Delta 0.937 0.938 1.377
1 10 Fieller 0.910 0.965 1.029 4 10 Fieller 0.954 0.955 1.572
Likelihood 0.927 0.927 0.902 Likelihood 0.939 0.940 1.446
Fiducial 0.959 0.958 0.953 Fiducial 0.941 0.941 1.477
Delta 0.927 0.930 0.616 Delta 0.954 0.954 0.974
20 Fieller 0.943 0.946 0.666 20 Fieller 0.963 0.963 1.034
Likelihood 0.936 0.936 0.630 Likelihood 0.955 0.955 0.996
Fiducial 0.944 0.944 0.641 Fiducial 0.957 0.957 1.003
Delta. 0.938 0.937 4.028 Delta 0.915 0.922 1.878
6 Fieller 0.850 0.976 8.679 6 Fieller 0.959 0.971 2.579
' Likelihood 0.853 0.948 5.842 5 Likelihood 0.932 0.934 2.041
Fiducial 0.966 0.961 5.813 Fiducial 0.946 0.947 2.137
Delta 0.953 0.953 2.008 Delta 0.943 0.943 1.425
9 10 Fieller 0.947 0.961 2.916 10 Fieller 0.966 0.966 1.623
Likelihood 0.934 0.947 2.555 Likelihood 0.948 0.948 1.481
Fiducial 0.960 0.959 2.542 Fiducial 0.951 0.951 1.524
Delta 0.962 0.962 1.101 Delta 0.953 0.953 0.989
20 Fieller 0.951 0.951 1.244 20 Fieller 0.976 0.976 1.044
Likelihood 0.947 0.947 1.206 Likelihood 0.960 0.960 1.004
Fiducial 0.949 0.949 1.211 Fiducial 0.962 0.962 1.017
Delta 0.705 0.953 1.229 Delta 0.955 0.951 0.243
6 Fieller 0.737 0.996 1.716 6 Fieller 0.941 0.951 0.343
Likelihood 0.895 0.966 1.303 Likelihood 0.932 0.938 0.295
Fiducial 0.972 0.974 1.446 Fiducial 0.943 0.942 0.294
Delta 0.872 0.953 0.927 Delta 0.956 0.956 0.160
3 10 Fieller 0.895 0.978 1.114 6 10 Eieller 0.951 0.951 0.182
Likelihood 0.922 0.953 0.957 Likelihood 0.943 0.943 0.176
Fiducial 0.962 0.958 1.047 Fiducial 0.946 0.946 0.177
Delta 0.927 0.931 0.662 Delta 0.954 0.954 0.109
20 Fieller 0.963 0.967 0.7174 20 Fieller 0.950 0.950 0.116
Likelihcod 0.951 0.954 0.672 Likelihood 0.948 0.948 0.114
Fiducial 0.958 0.958 0.704 Fiducial 0.944 0.944 0.114

CP,: The empirical coverage probabilities of confidence intervals, with inclusion of three special cases.

CP,: The empirical coverage probabilities of confidence intervals, with exclusion of three special cases.

CL: The average lengths of confidence intervals, with exclusion of three special cases.
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Appendix C

SIMULATION RESULTS FOR CONFIDENCE INTERVALS FOR
CONCORDANCE CORRELATION COEFFICIENT

For a discussion of results see Section 4.2.4 and Section 4.3.4.



Table C.1: Empirical Coverage Probabilities and Average Lengths of Nominally 95% One-
sided Confidence Intervals (Lower Bound) for CCC under the Model without Method and
Subject Interaction (Model (4.2) in Section 4.2); py — pp =0, 62, =1 and 62, = 1.

Parameter Empirical Coverage Average Confidence Interval Length
p n m| ZT1 ZT2 MRM FGCIl FGCI2 | ZT1 2T2 MRM FGCIl FGCI2
2 10017 0952 00992 0978 0983 | 0049 0059 0094 0.069  0.086

5 510053 0984 0981 0971 0972 | 0.050 0.060 0059 0.054  0.054
099 15 2| 0915 0925 0988 0973 0974 | 0021 0022 0032 0025 0027
: 5 (0959 0965 0980 0970 0963 | 0.021 0022 0023 0022 0.021
2 | 0.928 0932 098 0970 0969 | 0.017 0.017 0022 0018  0.019

30 5 | 0959 0961 0978 0964 0962 | 0.016 0017 0017 0017  0.016

2 (0911 00940 008 0079 0084 |0.127 0152 0222 0.167 0207

> 5 10054 0981 0973 0968 0966 | 0122 0146 0.141 0129  0.130
097 15 2 |0904 0928 0988 0967 0975 | 0061 0.064 0090 0072 0077
5 0962 0970 0979 0969 0965 | 0.061 0063 0067 0062  0.062

2 10922 0931 099 0969 0975 | 0.049 0050 0064 0054  0.056

30 5 10095 0963 0979 0965 0963 | 0.048 0049 0052 0049  0.049

2 (0923 0955 0092 0083 0091 | 0.109 0235 0325 0249  0.306

5 51005 098 0984 0972 0971 | 0188 0222 0212 0196  0.197
095 15 2 |0932 0948 0990 0976 0982 |0103 0.106 0.47 0117 0127
5 | 0953 0966 0972 0962 0962 | 0100 0103 0.109 0102  0.101

2 | 0920 0927 0988 0970 0974 | 0.082 0083 0.05 0089  0.093

30 5 10958 0966 0980 0965 0.966 | 0.079 0.080 0.084 0080  0.080

7 10914 0050 0988 0077 098 | 0341 0392 0501 0393 0474

5 510955 0981 0978 0972 0969 | 0319 0370 0347 0323  0.326
090 15 5 | 0912 0920 0985 0964 0973 | 0191 0198 0261 0214 0230
510956 0964 0974 095 0959 | 0187 0.194 0202 0190  0.189

2 10928 0933 0991 0973 0977 | 0157 0159 0.197 0170  0.176

30 5 10963 0966 0977 0967 0964 | 0.154 0.156 0.163 0157 0.156

2 [0.027 0956 0992 0976 0988 | 0540 0603 0713 0575 0676

5 510950 0982 0971 0963 0962 | 0498 0.564 0520 0491  0.497
0.80 2 | 0926 0940 0988 0972 0974 | 0.356 0.367 0450 0.381  0.409
80 15 5 | go52 0966 0976 0961 0957 | 0.340 0.350 0.358 0.340  0.339
2 | 0923 0928 099 0967 0969 | 0.299 0302 0360 0315  0.328

30 5 | 0958 0963 0972 0961 0960 | 0.292 0296 0.305 0.294  0.293

2 10030 0960 0992 0977 0990 | 0674 0738 0840 0692 0794

5 5100959 0985 0979 0971 0972 | 0.641 0708 0.653 0.620  0.629
070 15 2 | 0933 0947 0992 0976 0976 | 0496 0509 0594 0516 0551
5 | 0958 0971 0977 0964 0959 | 0476 0488 0491 0471 0471

2 | 0925 0932 0987 0963 0968 | 0431 0435 0499 0444  0.463

30 5 10961 0965 0976 0963 0960 | 0.414 0418 0427 0414 0413

2 (0920 0963 0994 0068 0990 | 0.851 0896 1.003 0834  0.021

5 5100967 099 0978 0965 0967 | 0827 0882 0819 0788  0.801
050 15 2 | 0935 0947 0988 0968 0978 | 0732 0747 0811 0726 0772
5 10066 0973 0973 0958 0962 | 0.691 0.704 0.696 0.676  0.678

2 10931 0940 0989 0964 0973 | 0.668 0674 0728 0.669  0.693

30 5 | 0955 0959 0968 0954 0951 | 0.631 0.635 0.638 0.625 0.625
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Table C.2: Empirical Coverage Probabilities and Average Lengths of Nominally 95% One-
sided Confidence Intervals (Lower Bound) for CCC under the Model without Method and
Subject Interaction (Model (4.2) in Section 4.2); 3 — pp = 2, 02 =1 and 02, = 1.

Parameter Empirical Coverage Average Confidence Interval Length
p n m| ZT1 ZT2 MRM FGCI1 FGCI2 | ZT1 ZT2 MRM FGCI1 FGCI2
2 10955 0979 0.985 0.969 0976 | 0.131 0.155 0.163 0.136 0.150

> 510959 0.983 0964 0.957 0.951 j 0.122 0.144 0.121 0.117 0.115
0.99 15 2 10948 0.962 0.978 0.955 0.958 | 0.063 0.065 0.070 0.064 0.064
5 10966 0971 0.966 0.960 0.955 | 0.060 0.062 0.059 0.059 0.058

2 10949 0951 0.968 0.952 0.949 | 0.049 0.050 0.053 0.050 0.050

30 5 0964 0.967 0965 0.960 0.954 | 0.048 0.049 0.048 0.048 0.047

5 2 10949 0978 0985 0.970 0977 | 0.294 0.338 0.343  0.295 0.321

5 | 0962 0.987 0964 0.960 0.957 | 0.283 0.328 0.276  0.268 0.266

0.97 15 2 10952 0959 0974 0.957 0.956 | 0.171 0.177 0.187 0.171 0.173
5 10962 0970 0961 0.957 0954 | 0.162 0.167 0.160 0.158 0.156

0 2 10957 0962 0.982 0.959 0.959 | 0.136 0.138 0.145 0.136 0.136

30 5 0.964 0967 0964 0.962 0956 | 0.134 0.136 0.134  0.133 0.131

2 (0959 0981 0.983 0.968 0.977 | 0.407 0.460 0.459 0.399 0.434

5 5 0.961 0.983 0961 0.954 0.952 | 0.391 0446 0377 0.367 0.365
0.95 15 2 10955 0963 0.979 0.959 0.958 | 0.259 0.267 0.279  0.257 0.260
5 10966 0971 0.963 0.959 0.955 | 0.250 0.257 0.246  0.242 0.239

0 2 10956 0.962 0.981 0.962 0.960 | 0.213 0.215 0.225 0.213 0.213

0 5 0.956 0.961 0.956 0.949 0.945 | 0.206 0.209 0.205 0.203 0.201

2 10954 0973 0.980 0.959 0.971 | 0.590 0.652 0.638  0.565 0.611

5 5 0.963 0.987 0.961 0.956 0.954 | 0.567 0.631 0.541  0.529 0.527
0.90 15 2 10958 0973 0.984 0.961 0.964 | 0.420 0.430 0443 0.412 0.418
5 {0966 0973 0.961 0.957 0952 | 0410 0421 0.401 0.396 0.393

0 2 10958 0963 0.980 0.958 0.957 | 0.364 0.368 0.380 0.361 0.362

30 5 0.958 0.961 0.955 0.952 0.944 | 0.356 0.360 0.353  0.350 0.347

2 10964 0981 0985 0.965 0978 | 0.781 0.837 0.816 0.737 0.788

5 5 0.973 0.989 0.965 0.959 0.956 | 0.757 0.818 0.717 0.704 0.704
0.80 15 2 10959 0969 0981 0.957 0.960 | 0.629 0.641 0.648 0.611 0.621
510974 0983 0968 0.962 0.960 | 0.615 0.626 0.598  0.592 0.590

0 2 10967 0971 0981 0.963 0964 | 0.570 0.574 0.585 0.561 0.564
305 0.967 0973 0964 0.956 0.949 | 0.554 0.558 0.547 0.544 0.541

2 10966 0988 0.988 0.960 0.981 | 0.876 0.920 0.906 0.826 0.875

5 5 0979 0.992 0963 0.954 0.952 | 0.852 0.903 0.807 0.794 0.797
070 15 2 | 0.967 0972 0979 0.958 0.961 | 0.757 0.769 0.770 0.731 0.745
510974 0983 0964 0.959 0.955 | 0.736 0.747 0.716 0.710 0.708

2 10960 0963 0972 0.951 0.951 | 0.701 0.705 0.713 0.687 0.693

30 5 0968 0972 0958 0952 0947 | 0.684 0.687 0674 0670  0.668

2 10977 0994 0.989 0.951 0.982 | 0.962 0.982 1.000 0.916 0.956

5 5 0.984 0996 0.967 0.950 0.954 0952 0.979 0915 0.902 0.907
050 15 2 10978 098 0.986  0.958 0971 | 0906 0.915 0911 0.876 0.893
5 10979 098 0.957 0.947 0.946 | 0.879 0.887 0.859  0.853 0.853

30 2 10968 0971 0979 0.951 0.957 | 0.862 0.866 0.869  0.846 0.854

5 10970 0974 0.957 0.948 0.944 | 0.842 0.845 0.832 0.828 0.828
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Table C.3: Empirical Coverage Probabilities and Average Lengths of Nominally 95% One-
sided Confidence Intervals (Lower Bound) for CCC under the Model without Method and
Subject Interaction (Model (4.2) in Section 4.2); p; — pg = 0, 02, = 1.25 and 02, = 1.

Parameter Empirical Coverage Average Confidence Interval Length
p n m| ZTl 2ZT2 MRM FGCIl FGCI2 | ZT1 7ZT2 MRM FGCHl FGCI2
2 0924 0051 0089 0084 00985 | 0049 0060 0095 0060 0087

5 510947 0976 0973 0965 0965 | 0.049 0.059 0058 0.053  0.053
099 15 2| 0928 0941 0990 0975 0980 | 0021 0022 0031 0024 0027
: 5 | 0956 0966 00976 0963 0960 | 0.021 0.022 0023 0021 0021
2 | 0922 0927 099 0970 0972 | 0017 0017 0022 0018 0019

30 5 10956 0958 0.973 0964 0960 | 0.016 0017 0018 0017  0.017

2 10025 0956 0089 0079 0989 | 0.133 0.157 0228 0.168 0212

5 50951 0979 0978 0.967 0966 | 0.126 0.150 0.145 0133  0.134
oo7 15 2 |0926 0938 0988 0974 0976 | 0062 0065 0.09L 0072 0078
510951 0959 0971 0963 0956 | 0.061 0.063 0068 0.063 0.062

2 | 0921 0928 0986 0965 0970 | 0.049 0.050 0.064 0054  0.056

30 510952 0959 0971 0.963 0.958 | 0.048 0.049 0.051 0.049  0.048
310919 00955 0988 00978 0985 | 0.199 0234 0324 0248 0304

5 50958 0982 00978 0970 0971 |0.192 0227 0216 0199  0.201
095 15 2| 0935 0949 0990 0976 0950 |0100 0104 0.143 0115 0124
5 | 0959 0967 0977 0967 0965 | 0.099 0.103 0109 0101  0.101

2 | 0914 0921 0988 0969 0967 | 0.080 0081 0.103 0087  0.091

30 5 1095 0963 0974 0962 0961 | 0.079 0080 0084 0.080  0.080

2 10917 0951 0990 0079 00985 | 0340 0391 049 0393 0473

5 510950 0976 0973 0967 0965 | 0.310 0359 0337 0314 0317
090 15 2| 0925 0940 0989 0971 0976 0194 0200 0263 0215 0233
5 | 0955 0967 0975 0965 0960 | 0.189 0.195 0204 0.191  0.190

2 | 0927 0937 0992 0972 0972 | 0158 0.160 0.199 0171 0.178

30 5 10951 0958 0976 0962 0957 | 0.154 0.156 0.163 0.156  0.155

2 0916 0950 0990 0078 00980 | 0530 0602 0712 0577 0675

5 510953 0983 0977 0968 0969 | 0.509 0572 0530 0499  0.507
080 15 2| 0924 0937 0988 0972 0975 | 0358 0369 0453 0384 0412
5 10960 0970 0977 0966 0963 | 0.346 0.356 0.364 0.345  0.345

2 10919 0926 0989 0967 0972 | 0.299 0.302 0359 0314 0328

30 5 | 0959 0966 0.975 0967 0963 | 0.293 0.296 0306 0294  0.293

2 10025 0958 0093 0079 0088 | 0.677 0738 0844 0692 0793

5 50962 0987 0979 0970 0972 | 0.645 0.713 0.656 0.622  0.633
070 15 2| 0943 0951 0903 0978 0982 {0502 0516 060 0520 0558
5 0952 0960 0969 00957 0953 | 0471 0.483 0487 0466  0.467

2 10929 0937 0985 0966 0968 | 0.431 0.435 0.499 0444  0.463

30 5 100962 0966 0978 0963 0963 | 0.417 0420 0429 0416 0415

2 10028 0960 00986 0070 0981 | 0.847 0892 1.002 0833 0017

5 510969 0988 0975 0968 0968 | 0.828 0.882 0.820 0.786  0.801
050 15 2 | 0938 0953 0991 0969 0979 | 0741 0756 0819 0732 0780
5 | 0966 0973 0976 0964 0963 | 0.694 0.707 0.699 0.678  0.681

2 | 0.941 00948 0987 0967 0975 | 0.666 0.672 0.725 0.666  0.691

30 5 10059 0965 0970 0958 0957 | 0.634 0.638 0641 0627 0628
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Table C.4: Empirical Coverage Probabilities and Average Lengths of Nominally 95% One-
sided Confidence Intervals (Lower Bound) for CCC under the Model without Method and
Subject Interaction (Model (4.2) in Section 4.2); p1 — pp = 2, 02, = 1.25 and 02, = 1.

Parameter Empirical Coverage Average Confidence Interval Length
p n m| ZTl ZT2 MRM FGCIl FGCI2 | ZT1 2ZT2 MRM TFGCIl FGCI2
2 0951 0960 0982 0966 0973 |0.123 0.145 0155 0.128 0142

> 5 |0958 0982 0966 0960 0954 | 0112 0.134 0113 0.109  0.107
099 15 2 |0954 0960 0983 0963 0963 |0058 0.060 0.066 0.059  0.060
5 10963 0970 0965 0958 0955 | 0.057 0.059 0057 0.056  0.055

2 10955 0959 0979 00960 0959 | 0.046 0.046 0.050 0.046  0.046

30 5| 00958 0964 0961 0954 0949 | 0.044 0.045 0045 0044  0.043

2 10046 0973 0080 0064 0975 | 0281 0323 0336 0283 0313

5 510064 0983 0966 0960 0959 | 0.268 0312 0264 0255 0.253
097 15 2 |0950 0960 0976 0955 0958 | 0157 0162 0174 0.158  0.160
5 | 0961 0972 0962 0957 0954 | 0152 0.157 0.151 0.149  0.147

2 | 0950 0954 0976 0955 0955 | 0.127 0.129 0.137 0128  0.128

30 5 | 0056 0962 0959 0953 0945 | 0.124 0.126 0124 0.123  0.122

2 10056 0982 0988 0070 0081 | 0.395 0448 0453 0390 0427

5 51095 098 0963 0954 0952 | 0.379 0432 0369 0357  0.355
095 15 20957 0965 0975 0961 0062 | 0244 0252 0267 0244 0247
5 0966 0974 0967 0960 0955 | 0.235 0.242 0233 0228  0.226

2 10949 0953 0972 0954 0953 | 0.199 0.201 0212 0.199  0.200

30 5 10066 0970 0966 0964 0959 | 0.196 0.198 0.195 0.193  0.191

2 10044 0963 0081 0056 0970 | 0.562 0623 0619 0544 0590

5 510965 0987 0966 0953 0951 | 0.549 0612 0.527 0512  0.512
090 15 2 |0963 0970 0982 0963 0968 | 0406 0416 0433 0399 0406
510971 0978 0969 0963 0959 | 0.394 0.404 0387 0381 0378

2 | 0953 0958 0978 0951 0958 | 0.347 0.350 0.365 0.344  0.346

30 5 | 0064 0970 0963 0955 0953 | 0338 0342 0336 0333  0.330

2 [0.054 0981 0984 0060 0976 | 0.766 0823 0807 0.722  0.779

5 5 |0966 0989 0964 0954 0954 |0.742 0.803 0705 0.689  0.691
050 15 2| 0961 0972 0983 0956 0965 | 0610 0.622 0634 0592 0605
5 10967 0973 0962 0953 0948 | 0.593 0.605 0.579 0.571  0.569

2 10963 0967 0982 0962 0960 | 0.551 0.555 0.568 0.542  0.547

30 5 100973 0976 0969 00965 0962 | 0.541 0545 0535 0530  0.528

2 10069 0080 0090 0065 0982 | 0.865 0.011 0899 . 0.814  0.868

5 510970 0991 0960 0955 0953 | 0.845 0.897 0.803 0.787  0.792
070 15 2| 0964 0973 0977 0959  0.963 | 0743 0755 0760 0717 0734
5 | 0974 098 0965 0959 0957 |0.722 0.733 0.704 0.696  0.695

2 | 0967 0970 0979 0958 0.963 | 0.685 0.689 0.700 0.672  0.678

30 5 0969 0972 0960 0956 0951 | 0.670 0.673 0.661 0.656  0.654

2 10065 0086 0082 0047 0970 | 0.955 0.977 0097 0908 0953

5 5 |0981 00995 0961 0946 0951 |0.943 0973 0905 0.890  0.896
050 15 2 |0972 0978 0982 0955 0965 |0897 0906 0.905 0865 0336
5 | 0982 0988 0962 0953 0951 | 0.872 0.880 0.852 0.845  0.846

2 | 0969 0973 00981 0949 0960 | 0.851 0.854 0.859 0.833  0.842

30 5 | 0082 0984 0965 0958 0950 | 0.834 0837 0.824 0819 0.819
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Table C.5: Empirical Coverage Probabilities and Average Lengths of Nominally 95% One-
sided Confidence Intervals (Lower Bound) for CCC under the Model with Method and
Subject Interaction (Model (4.26) in Section 4.3); 02, = 1.

Parameter Empirical Coverage Average Confidence Interval Length

p o2 mn m|ZT1 ZT2 MRM FGCIl FGCI2 | ZT1 ZT2 MRM FGCIl FGCI2
210962 0.985 0.978 0.967 0.974 |[0.192 0.225 0.207 0.188 0.198

5 510964 0.988 0962 0959 0954 |0.187 0.220 0.178 0.177 0.174

0.99 0.1 15 210953 0.958 0.960 0.949 0.950 |0.102 0.105 0.105 0.100 0.100
510967 0974 0956 0.956 0.950 |0.100 0.103 0.097 0.096 0.095

2 10960 0.963 0966 0.958 0956 |0.081 0.082 0.083 0.080 0.080

30 510963 0967 0.957 0959 0.950 |0.080 0.081 0.078 0078 0.077
210945 0.972 0964 0.948 0954 |0.187 0.219 0.202 0.179 0.193

5 5 0965 0982 0.960 0.958 0.955 [0.188 0.221 0.179 0.175 0.174

0.99 1.0 15 2 10962 0.969 0.967 0.962 0.961 |0.102 0.106 0.106 0.100 0.101
510962 0.971 0953 0954 0.948 |0.098 0.102 0.095 0.095 0.094

2 {0959 0964 0.966 0.958 0.955 |0.081 0.082 0.083 0.081 0.080

30 510960 0963 0956 0955 0952 |0.079 0.080 0.078 0.078 0.077
210954 0975 0965 0.954 0960 [0.192 0.225 0.207 0.181 0.198

5 510967 0984 0.962 0.960 0.959 [0.192 0.226 0.182 0.179 0.178

0.99 5.0 15 210960 0.969 0.970 0.959 0959 |0.102 0.105 0.105 0.099 0.101
510965 0.974 0.953 0.954 0.950 |0.099 0.103 0.096 0.099 0.095

2 (0958 0.961 0.964 0.953 0.955 |0.082 0.083 0.083 0.081 0.081

30 510965 0.960 0.959 0961 0.954 |0.080 0.081 0.079 0.079 0.078

2 10955 0.979 0.968 0.953 0.962 |[0.194 0.226 0.209 0.183 0.200

5 510961 0985 0958 0.957 0.954 {0.186 0.219 0.177 0.174 0.173

0.99 10.015 2 10963 0.970 0.969 0.962 0.959 |0.102 0.105 0.105 0.099 0.101
510953 0964 0945 0.944 0.940 [0.099 0.103 0.096 0.096 0.095

210950 0956 0959 0.954 0.946 |0.081 0.082 0.083 0.080 0.080

30 50961 0967 0952 0952 0948 |0.081 0082 0.079 0.079 0.078
210936 0965 0990 0975 0.985 [0.199 0.231 0.287 0.222 0.256

5 5 (0955 0982 0.976 0962 0959 |0.192 0.225 0.205 0.190 0.188

0.97 01 15 210941 0.949 0.989 0.965 0961 |0.104 0.108 0.132 0.110 0.114
510959 0964 0.969 0.957 0.954 {0.100 0.103 0.104 0.099 0.098

210953 0.956 0.990 0.969 0.971 |0.084 0.085 0.098 0.087 0.088

30 510956 0.962 0968 0954 0954 |0.079 0.080 0.082 0.079 0.078
210928 0953 0.982 0.967 0975 |0.201 0.234 0.288 0.212 0.261

5 510958 0980 0974 0965 0961 |0.191 0.225 0.206 0.186 0,190

0.97 1.0 15 210933 0946 0986 0.963 0966 |{0.105 0.109 0.133 0.109 0.118
510964 0971 0974 0964 0.961 {0.102 0.105 0.106 0.101 0.100

210933 0939 0982 0.959 0960 |0.084 0.085 0.099 0.08 0.090

30 510954 0957 0969 0956 0951 |0.081 0.082 0.084 0.081 0.080
210925 0.950 0.980 0.960 0.967 |0.204 0.237 0.280 0.208 0.264

5 500949 0971 0966 0953 0954 |0.184 0.217 0.198 0.179 0.183

0.97 50 15 210927 0936 0981 0.956 0964 |0.106 0.110 0.134 0.109 0.119
510961 0969 0974 0.961 0958 |[0.100 0.104 0.105 0.099 0.099

210926 0932 0980 0.951 0.954 [0.082 0.083 0.096 0.084 0.088

30 5 10.958 0.963 0.969 0.960 0.958 [0.080 0.081 0.083 0.080 0.080

2 {0910 0.945 0.978 0.962 0.969 [0.203 0.235 0.288 0.207 0.263

S 510960 0979 0974 00963 0964 |0.192 0.225 0.206 0.186 0.191

0.97 10.015 210923 0935 0979 0961 0961 [0.107 0.110 0.134 0110 0.120
510951 0962 0967 0952 0.951 [0.100 0.104 0.105 0.099 0.099

210930 0937 0975 0.951 0.957 [0.083 0.084 0.097 0.084 0.089

30 510953 0957 0.964 0957 0.951 |0.081 0.082 0.083 0.080 0.080
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Table C.6: Empirical Coverage Probabilities and Average Lengths of Nominally 95% One-
sided Confidence Intervals (Lower Bound) for CCC under the Model with Method and
Subject Interaction (Model (4.26) in Section 4.3); 02, = 2.

Parameter Empirical Coverage Average Confidence Interval Length

p o2 n m|ZT1 ZT2 MRM FGCIl FGCI2| ZT1 ZT2 MRM FGCIl1 FGCI2
2 {0956 0.980 0.972 0.958 0.965 {0.196 0.229 0.211 0.190 0.203

5 500967 0990 0965 0962 0960 |0.187 0.220 0.178 0.176 0.174

0.99 01 15 2 (0963 0972 0971 0.961 0.960 [0.101 0.105 0.105 0.099 0.100
5 10.966 0.973 0.960 0.956 0.954 |0.101 0.104 0.098 0.098 0.096

2 10955 0.962 0.967 0.956 0.951 | 0.081 0.082 0.082 0.080 0.080

30 510961 0.965 0.954 0.957 0.950 | 0.080 0.081 0.079 0.079 0.078
210959 0981 0974 0.963 0.966 |0.199 0.232 0.214 0.195 0.204

5 510965 0.989 0.961 0.957 0.953 [0.184 0.217 0.175 0.174 0.171

0.99 1.0 15 2 10960 0.967 0967 0.958 0.959 |0.102 0.106 0.106 0.160 0.100
510.968 0976 0.960 0.959 0.954 | 0.101 0.105 0.098 0.098 0.096

2 10960 0.961 0.964 0.959 0.954 [0.082 0.083 0.084 0.081 0.081

30 510966 0969 0961 0.960 0.956 |0.080 0.081 0.079 0.079 0.078
210960 0982 0977 0965 0.969 |[0.193 0.225 0.207 0.187 0.198

5 510964 0985 0.956 0.954 0.950 | 0.188 0.221 0.178 0.176 0.174

0.99 5.0 15 2 10.957 0965 0969 0.960 0954 |[0.101 0.105 0.105 0.099 0.100
5 (0964 0972 0960 0958 0.954 [0.100 0.103 0.096 0.096 0.095

2 10963 0969 0974 0965 0.958 | 0.082 0.083 0.084 0.081 0.081

30 510972 0975 0969 0967 0.964 |0.081 0.082 0.079 0.079 0.078

2 10958 0.982 0975 0963 0.967 [0.202 0.235 0.215 0.193 0.206

5 510957 0.985 0.951 0.953 0.947 [0.190 0.223 0.180 0.178 0.176

0.99 10.0 15 210958 0964 0.966 0.953 0.953 [0.103 0.107 0.106 0.101 0.101
510968 0.975 0.957 0.957 0.953 }0.100 0.104 0.097 0.097 0.095

2 10964 0.968 0.969 - 0.962 0.958 | 0.081 0.082 0.083 0.080 0.080

30 5 (0961 0.966 0.955 0.954 0.948 | 0.079 0.081 0.078 0.078 0.077

2 (0920 0.948 0.979 0.970 0.966 | 0.203 0.236 0.288 0.223  0.263

5 510954 0977 0971 0.962 0.960 |0.185 0.218 0.199 0.184 0.184

0.97 0.1 15 210938 0.950 0.982 0.963 0.964 |0.106 0.109 0.134 0.110 0.119
510954 0964 0.967 0.958 0.954 |0.101 0.104 0.105 0.100 0.100

210927 0934 0980 0.950 0.955 |0.082 0.083 0.096 0.085 0.088

30 5 [0.960 0.962 0967 0.961 0.958 |0.081 0.082 0.084¢ 0.081 0.080

2 10933 0961 0992 0974 0.984 [0.204 0.237 0.293 0.227 0.262

3 510.957 0.981 0976 0.965 0.963 [0.190° 0.224 0.204 0.189 0.188

097 1.0 15 210934 0944 0.982 0.964 0.962 |0.102 0.106 0.129 0.108 0.112
5 (0.955 0.966 0971 0958 0.953 [0.102 0.105 0.106 0.101 0.100

2 (0941 0948 0.986 0.962 0.961 [0.082 0.083 0.096 0.085 0.086

30 5 10.955 0.960 0.969 0.957 0.950 [0.079 0.080 0.082 0.079 0.078

2 10933 0959 0.988 0975 0.981 | 0.205 '0.238 0.293 0.223 . 0.263

S 5 10962 0984 0.983 0969 0.965 |0.196 0.230 0.209 0.192 0.193

0.97 50 15 2 (0935 0.944 0986 0954 0.959 [0.104 0.108 0.132 0.109 0.115
510.958 0.965 0971 0959 0.955 [0.099 0.103 0.104 0.098 0.098

2 [0.938 0.941 0988 0.960 0.957 | 0.083 0.084 0.097 0.085 0.087

30 510961 0963 0971 0.959 0.956 | 0.080 0.081 0.083 0.080 0.079

2 10913 0944 0.977 0.958 0.969 | 0.204 0.237 0.293 0.218 0.264

S 510958 0978 0.974 0.964 0964 |0.195 0.229 0.209 0.190 0.193

0.97 10.0 15 210932 0942 0.981 0.952 0.960 |0.104 0.107 0.131 0.108 0.115
’ 510960 0.969 0971 0.963 0.957 {0.101 0.105 0.106 0.100 0.100
2 10945 0.947 0982 0.963 . 0.962 | 0.082 0.083 0.096 0.084 0.087

30 510957 0964 0972 0960 0.956 |0.081 0.082 0.083 0.080 0.080

109



Table C.7: Empirical Coverage Probabilities and Average Lengths of Nominally 95% One-
sided Confidence Intervals (Lower Bound) for CCC under the Model with Method and
Subject Interaction (Model (4.26) in Section 4.3); p1 — p2 = 0 and o2 = 20.

Parameter CP CL Parameter CP CL

p o2 o} n m| ZT FGCI| ZT FGCI p o2 o2 n m| ZT FGCI| ZT FGCI
. 2[0.960 0997|0237 0.392 . 20925 09910651 0.805

5 0.977 0.990 |0.223 0.277 50918 0.984 |0.643 0.786

2 [0.954 0.9810.112 0.132 2 [0.942 0975 |0.421 0.484

0.951.0 20015 510973 978 [0.105 0.108 08010 20015 15048 0078 {0412 0.469
4 20957 0.979 0087 0.094 5 20957 0977 0339 0.367

5 [0.965 0.969 |0.082 0.083 50,946 0.970 |0.331 0.355

. 20945 0.992[0.245 0.405 . 20908 0983 [0.664 0.801

5 [0.963 0.990 |0.234 0318 5 0.927 0.985|0.643 0.794

2 10.950 0.982 [0.119 0.140 2 [0.947 0.977 | 0.422 0.4826

0.951.0 25015 51964 0.979 |0.110 0.118 OBV 10 25015 15048 0.081 |0.416 0.472
5 2 [0:951 0.977(0092 0.099 5 2[0944 0974|0342 0.369

5 |0.963 0.971 |0.088 0.090 5 [0.949 0.971|0.337 0.361

o 20957 0.99 0238 0.381 . 2 (0928 0.991[065] 0805

5 0.982 0.986 [0.227 0.250 5 [0.920 0.987|0.636 0.781

2 [0.959 0.988 [0.111 0.129 2 10,951 0.980 |0.422 0.484
0.951.2520015 o 15974 0.973 [0.106 0106 03012520015 16007 0076 |0.408 0.464
5 210954 09720085 0.091 4 2]0950 0974|0342 0.369

5 0.969 0.968 [0.082 0.081 5 [0.957 0.974 0331 0.355

. 20950 0.993 [0.235 0.385 . 20913 0.98 [0.641 0.798

5 [0.967 0.986 |0.224 0.279 510926 0.9850.643 0.785

2 10.959 0.982 [0.119 0.139 2 [0.948 0980 |0.424 0.485
09512525015 ¢ 1970 0978 |0.100 0114 08012525015 oyos0 0964|0408 0.463
5 2[0961 0.981/0.093 0.100 50 20941 0965 0341 0.368

5 [0.968 0.975 |0.088 0.089 50946 0.972|0.337 0.361

. 2 (0948 0.991[0.407 0.620 - 20916 0.978 [0.835 0883

5 [0.955 0.990 [0.384 0.563 50919 0.987 |0.838 0.885

2 [0.945 0.984 [0.224 0.267 2 10.941 0.975 |0.587 0.647

0.9010 20015 ¢ 1957 0983 0214 0247 O7OLO 20015 o ocs 934 |0.581 0.638
5 20942 09740172 0.189 50 20937 0965 0486 0517

5 0.963 0.980 |0.169 0.181 5 [0.936 0.967 (0.480 0.509

. 2[0.928 0994]0408 0.615 . 20908 0985 [0.840 0.885

5 0.940 0.986 [0.393 0.571 50917 0.983|0.830 0.878

2 [0.951 0.984 |0.226 0.270 2 [0.935 0.9810.591 0.648

09010 25015 415950 0.975 0219 0252 O7OLO 25015 514640 09740580 0.636
s 2 [0:945 0972|0180 0.197 5 20942 0.965|0.490 0.520

5 (0952 0.976 |0.174 0.187 50943 0970 |0.482 0.510

- 2[0.954 09920393 0.5% . 20906 0.98 0.837 0877

5 [0.957 0.990 |0.380 0.552 5 0.926 0.987 |0.816 0.878

2 [0.953 0.982 {0.221 0.264 2 [0.941 0.976 |0:589 0.647

0.0 1.25 20015 511951 0.973 [0.210 0.2a0 O7012520015 10037 968 {0571 0.628
5 2[0:946 09710173 0.189 5 2 (0947 0.973|0487 0.518

5 [0.956 0.971|0.166 0.177 5 0951 0.973]0.485 0.514

. 2[0.935 0993]0415 0.613 . 20909 0987 [0.832 0.883

50955 0.989 |0.409 0.587 50920 0.987|0.835 0.882

2 [0.943 0.980 [0.229 0.271 2 [0.941 0970 |0.594 0.650
0.901.2525.015 o\ 945 0.978 |0.215 0.2a6 07012525015 1046 0,973 |0.580 0.636
5 2 [0:952 0975 0180 0.196 4 20949 0971 0488 0518

5 0.955 0.972 |0.175 0.186 5 0.952 0.975 |0.485 0513
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Table C.8: Empirical Coverage Probabilities and Average Lengths of Nominally 95% One-
sided Confidence Intervals (Lower Bound) for CCC under the Model with Method and
Subject Interaction (Model (4.26) in Section 4.3); u; — pz = 2 and o2 = 20.

Parameter Cp CL Parameter CP CL

p o2 of n m| ZT FGCI| ZT FGCI p o2 of n m| ZT FGCI| ZT FGCI
. 20973 0.083 |0.455 0.499 . 2 (0035 0987 |0.745 0.8%

50984 0978 [0.433 0.400 5 [0.928 0.981 [0.736 0.815

2 0.966 0.967 [0.259 0.258 2 [0.949 0.976 [0.511 0.546

0.951.0 20.015 ¢ 15968 0.058 |0.254 0242 0BOLO 20015 1045 (970 |0.497 0.528
5 2 (0973 0972 [0.212 0210 s 210957 0.973[0.425 0440

5 [0.963 0.949 |0.205 0.199 5 [0.958 0.971 [0.419 0.432

5 2[0.960 0984 [0.437 0.492 . 20930 0987 [0.748 0.827

510976 0975 |0.444 0.441 510.926 0.984 [0.714 0.808"

210.954 0960 |0.253 0.254 2 [0.953 0.981 [0.506 0.543

0.951.0 25015 41966 0958 |0.246 0237 O8O0 25015 oy ocs 0979|0497 0.529
5 2 [0:963 0965 [0.207 0207 4 2|0951 0972 0423 0438

5 [0.960 0.964 |0.200 0.196 5 [0.957 0.975 [0.423 0.436

. 20970 0986 |0.452 0.489 . 20937 09830740 0.8%

50987 0976 [0.435 0.303 50,932 0.980 [0.726 0.807

2 [0.973 0.972 |0.260 0.258 2 [0.950 0.976 [0.504 0.538

0.951.25 20015 1975 0.962 |0.247 0.233 08012520015 o1 ocs 976 [0.498 0.528
5 2|0-969 0.969 (0210 0.208 g 20954 0.968 |0.424 0439

510965 0952 [0.202 0.195 5 [0.956 0.970 [0.421 0.433

. 2[0.969 0985 0.435 0487 . 20926 0.98 |0.742 0823

5 [0.980 0.977 |0.426 0.410 5 [0.931 0.979 [0.709 0.802

2 [0.971 0975 [0.255 0.255 2 10.947 0.971 [0.505 0.541
0.951.2525015 o | 973 0962 |0.245 0.23¢ 08012525015 o1 g46 0969 |0.493 0.526
4 20978 0962 |0.245 0234 4 20946 0968|0421 0.436

5 [0.966 0.961 |0.200 0.195 5 [0.956 0.971 [0.416 0.429

. 2[0.942 0.989 [0.557 0.664 . 2[09%5 0.081 0886 0.897

510959 0.979 |0.551 0.632 5 [0.926 0.978 |0.878 0.890

2 10.962 0.9789|0.357 0.373 2 [0.945 0.974 [0.645 0.682

0901.0 20.015 15950 0.974 |0.344 0.352 070 L0 20015 hyoee 0975 [0.645 0.680
50 20958 0.966 |0.288 0294 4 20947 0967|0552 0.571

50964 0967 [0.280 0.282 5 [0.938 0.960 |0.544 0.561

. 2[0941 0985 [0.562 0670 . 20914 09780865 0.887

50952 0.980 |0.545 0.635 510.919 0.985 |0.868 0.890

2 [0.957 0.973 |0.348 0.366 2 10.936 0.966 |0.643 0.680

0.901.0 25015 o958 0970 |0.338 0.349 07010 25015 o040 0975 |0.633 0.670
5 2 [0.960 0969 [0.282 0.288 5 20948 0.965 [0.553 0.573

5 0.956 0.962 [0.275 0.279 5 10.952 0.966 |0.552 0.570

. 2[0952 0989 [0.563 0667 . 20923 0,983 |0.873 089

5 [0.962 0.980 |0.545 0.621 5 10.928 0.976 |0.870 0.888

2 [0.960 0.977 |0.349 0.364 9 [0.948 0.976 [0.644 0.681
0.901.2520015 ¢ 1057 0966 |0.343 0.349 7012920015 Sy 040 0069 |0.641 0.674
s 2 |0:964 0.971 (0287 0.292 5 2|0948 0.961 0548 0.567

5 (0950 0.962 |0.280 0.282 5 0.048 0.968 |0.547 0.565

. 2 (0944 0987 [0.554 0.666 . 2 [0.931 0.052 0874 0.893

5 [0.952 0.980 0535 0.624 5 [0.931 0.985 |0.866 0.891

2 [0.955 0.970 |0.347 0.365 2 [0.037 0973 |0.647 0.685

0.90 12525015 1 ocs 0.969 |0.330 0.340 O 7012025015 604 0071 {0.642 0.678
5 2[0.949 0962 [0.280 0.285 4 2|0940 0963|0548 0.567

5 10.952 0.958 |0.275 0.278 5 10.955 0.970 |0.544 0.562
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Appendix D

SIMULATION RESULTS FOR SIMULTANEOUS FIDUCIAL
GENERALIZED CONFIDENCE INTERVALS FOR RATIOS OF MEANS
OF THREE LOGNORMAL DISTRIBUTIONS

For a discussion of results see Section 5.3.



Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

o7 =0.01 of=0.1 o =1
05 03 m mny nz CP o5 02 n1 ny ng CP 02 02 n, ne ng CP
0.01 0.01 5 5 5 0.979 0.1 01 5 5 5 0.986 5 5 5 0.999
0.01 0.01 5 5 25 0.970 0.1 0.1 5 5 25 0.974 5 5 25 0.993
0.01 0.01 5 5 125 0.958 0.1 0.1 5 5 125 0.970 5 5 125 0.978
0.01 0.01 5 25 125 0.952 0.1 0.1 5 25 125 0.961 5 25 125 0.960
0.01 0.01 5 25 25 0.956 0.1 0.1 5 25 25 0.967 5 25 25 0.974

5 125 125 0.959
25 25 25 0974
25 25 125 0.965
25 125 125 0.962

125 125 125 0.955

5 5 5 0998

0.01 0.01 5 125 125 0.959 0.1 01 5 125 125 0.951
0.01 001 25 25 25 0954 (0.1 01 25 25 25 0.956
0.01 0.00 25 25 125 0.950 01 01 25 25 125 0.954
0.01 0.01 25 125 125 0.952 01 01 25 125 125 0.953
0.01 0.01 125 125 125 0.953 0.1 0.1 125 125 125 0.956
001 002 5 5 5 098 |01 02 5 5 5 098

001 002 5 5 25 0972 01 02 5 5 25 0978 5 5 25 0.99
001 002 5 5 125 0.962 01 02 5 5 125 0.968 5 5 125 0.985
0.01 002 5 25 25 0.961 061 02 5 25 25 0964 5 25 25 0.979
0.01 002 5 25 125 0.954 01 02 5 25 125 0.959 5 25 125 0.970

5 125 125 0.963
25 25 25 0.980
25 25 125 0.976
25 25 5 0.967
25 125 125 0.957
25 125 5 0.960
25 5 5 0.987

125 125 125 0.959
125 125 25 0.955
125 125 5 0.955
125 25 25 0.970
125 25 5 0.963
125 5 5 0.981

5 5 5 0.997

0.01 0.02 5 125 125 0.951 01 0.2 5 125 125 0.948
001 002 25 25 25 0.956 01 02 25 25 25 0.958
0.01 0.02 25 25 125 0.953 0.1 02 25 25 125 0.956
0.01 002 25 25 5 0.957 01 02 25 25 5 0.957
0.01 0.02 25 125 125 0.953 0.1 0.2 25 125 125 0.954
001 002 25 125 5 0.950 0.1 0.2 25 125 5 0.963
0.01 0.02 25 5 5 0.962 01 02 25 5 5 0.976
0.01 0.02 125 125 125 0.950 0.1 0.2 125 125 125 0.952
0.01 0.02 125 125 25 0.950 0.1 0.2 125 125 25 0.952
0.01 0.02 125 125 5 0.952 0.1 0.2 125 125 5 0.956
0.01 0.02 125 25 25 0.954 0.1 0.2 125 25 25 0.955
001 0.02 125 25 5 0.952 0.1 0.2 125 25 5 0.962
001 002 125 5 5 0.954 0.1 0.2 125 5 5 0.967
0.01 0.04 5 5 5 0.980 01 04 5 5 5 0.991

0.01 0.04 5 5 25 097 01 04 5 5 25 0.986 5 5 25 0.997
001 004 5 5 125 0.960 01 04 5 5 125 0.976 5 5 125 0.994
001 004 5 25 25 0.963 01 04 5 25 25 0972 5 25 25 0.982
0.01 004 5 25 125 0.959 01 04 5 25 125 0.966 5 25 125 0.974

5 125 125 0.961
25 25 25 0971
25 25 125 0.975
25 25 5 0.957
25 125 125 0.961
25 125 5 0.957
25 5 5 0.982

125 125 125 0.956
125 125 25 0.954
125 125 5 0.958
125 25 25 0.956
125 25 5 0.958
125 5 5 0.974
continued on next page

001 004 5 125 125 0.958 01 04 5 125 125 0.95%
001 0.04 25 25 25 0.953 0.1 04 25 25 25 0.959
0.01 0.04 25 25 125 0.957 0.1 0.4 25 25 125 0.957
0.01 0.04 25 25 5 0.949 01 04 25 25 5 0.964
0.01 0.04 25 125 125 0.953 0.1 04 25 125 125 0.958
001 0.04 25 125 5 0.954 01 04 25 125 5 0.952
001 004 25 5 5 0.963 01 04 25 5 5 0.975
0.01 0.04 125 125 125 0.953 0.1 0.4 125 125 125 0.944
0.01 004 125 125 25 0.949 0.1 04 125 125 25 0.950
0.01 0.04 125 125 5 0.949 01 04 125 125 5 0953
0.01 0.04 125 25 25 0.947 0.1 04 125 25 25 0.957
0.01 0.04 125 25 5 0.953 0.1 04 125 25 5 0.960
0.01 0.04 125 5 5 0.956 0.1 0.4 125 5 5 0.971
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Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

ot =0.01 0l =01 gi=1
o5 o5 m mny nz CP o5 03 m nz nzg CP n, mny ng CP
0.01 0.08 5 5 5 0.972 0.1 0.8 5 5 5 0.985 5 5 5 0.984
0.01 0.08 5 5 25 0.976 0.1 0.8 5 5 25 0.987 5 5 25 0.998
0.01 0.08 5 5 125 0.972 0.1 0.8 5 5 125 0.982 5 5 125 0.997
0.01 0.08 5 25 25 0.956 0.1 0.8 5 25 25 0.966 5 25 25 0974
0.01 0.08 5 25 125 0.962 0.1 0.8 5 25 125 0.961 5 25 125 0974
0.01 0.08 5 125 125 0.945 0.1 0.8 5 125 125 0.959 5 125 125 0.960

25 25 25 0.958

25 25 125 0.966

25 25 5 0958

25 125 125 0.964

25 125 5 0.959

25 5 5 0971

125 125 125 0.953
125 125 25 0.954
125 125 5 0.960
125 25 25 0.954
125 25 5 0.954
125 5 5 0.968
5 5 5 0.999

0.01 008 25 25 25 0960| (0.1 0.8 25 25 25 0.964
0.01 008 25 25 125 0.955 0.1 0.8 25 25 125 0.956
0.01 008 25 25 5 0.960 01 0.8 25 25 5 0.963
0.01 0.08 25 125 125 0.957( |0.1 0.8 25 125 125 0.960
001 008 25 125 5 0956| (0.1 0.8 25 125 5 0.960
001 008 25 5 5 0.963 0108 25 &5 5 097N
0.01 0.08 125 125 125 0.953 0.1 0.8 125 125 125 0.943
0.01 0.08 125 125 25 0.949 0.1 0.8 125 125 25 0.950
0.01 0.08 125 125 5 0954 {0.1 0.8 125 125 5 0.953
0.01 0.08 125 25 25 0.954 0.1 0.8 125 25 25 0.962
001 008 125 25 5 0.950 0.1 0.8 125 25 5 0.963
001 008 125 5 5 0962 0.1 0.8 125 5 5 0.973
002 002 5 5 5 0977| (02 02 5 5 5 0.988

0.02 0.02 5 5 25 0971 02 02 5 5 25 0.981 5 5 25 0.995
002 002 5 5 125 0.961 02 02 5 5 125 0.965 5 5 125 0.979
0.02 0.02 5 25 25 0.962 0.2 0.2 5 25 25 0.968 5 25 25 0991
0.02 0.02 5 25 125 0.957 02 0.2 5 25 125 0.966 5 25 125 0.970

5 125 125 0.965
25 25 25 0974
25 25 125 0.969
25 25 5 0.967
25 125 125 0.961
25 125 5 0.966
25 5 5 0.991

125 125 125 0.960
125 125 25 0.955
125 125 5 0.958
125 25 25 0.963
125 25 5 0.960
125 5 5 0978

) 5 5 0997

0.02 0.02 5 125 125 0.957 0.2 0.2 125 125 0.960
002 002 25 25 25 0.955 02 02 25 25 25 0.957
002 002 25 25 125 0.952 02 02 25 25 125 0.961
0.02 0.02 25 25 5 0.954 02 02 25 25 5 0.966
0.02 0.02 25 125 125 0.954 0.2 0.2 25 125 125 0.957
002 0.02 25 125 5 0.958 0.2 0.2 25 125 5 0.959
0.02 002 25 5 5 0.967 02 02 25 5 5 0.975
0.02 0.02 125 125 125 0.952 0.2 0.2 125 125 125 0.954
0.02 0.02 125 125 25 0.947 0.2 02 125 125 25 0.954
0.02 0.02 125 125 5 0.951 0.2 0.2 125 125 5 0.955
0.02 0.02 125 25 25 0.949 02 02 125 25 25 0.963
0.02 0.02 125 25 5 0.952 02 02 125 25 5 0.954
002 002 125 5 5 0.957 0.2 0.2 125 5 5 0.964
002 004 5 5 5 0.975 02 04 5 5 5 0.988

[

002 004 5 5 25 0974 02 04 5 5 25 0.983 5 5 25 0.99
002 004 5 5 125 0.963 02 04 5 5 125 0.974 5 5 125 0.993
002 004 5 25 5 0969| (02 04 5 25 5 0979 5 25 5 0.986
002 004 5 25 25 0.95 02 04 5 25 25 0974 5 25 25 0.993
002 004 5 25 125 0.951 02 04 5 25 125 0.966 5 25 125 0.987

5 125 5 0.979
5 125 25 0.977
5 125 125 0.968
25 25 25 0.962
continued on next page

002 004 5 125 5 0.955 0.2 04 5 125 5 0.967
0.02 004 5 125 25 0.953 02 04 5 125 25 0.965
002 004 5 125 125 0.957 02 04 5 125 125 0.957
002 004 25 25 25 0.957 02 04 25 25 25 0.959
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Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

o3 = 0.01 o7 =01 oi=1
1 o n3 CP
25 25 125 0.979
25 25 5 0.960
25 125 25 0.956
25 125 125 0.966
25 125 5 .0.958
25 5 25 0.973
25 5 125 0.969
25 5 5 0.985
125 125 125 0.957
125 125 25 0.962
125 125 5 0.953
125 25 125 0.958
125 25 25 0.961
125 25 5 0.957
125 5 125 0.958

of o m ny ng CP o2 03 mi ny nz CP

002 004 25 25 125 0.950 02 04 25 25 125 0.957
0.02 004 25 25 5 0.959 02 04 25 25 5 0959
0.02 004 25 125 25 0.954 02 04 25 125 25 0.958
0.02 004 25 125 125 0.956 0.2 04 25 125 125 0.957
0.02 0.04 25 125 5 0.957 02 04 25 125 5 0.961
0.02 004 25 5 25 0.964 02 04 25 5 26 0.963
0.02 004 25 5 125 0.959 02 04 25 5 125 0.960
0.02 004 25 5 &5 0.962 02 04 25 5 5 0977
0.02 0.04 125 125 125 0.953 0.2 04 125 125 125 0.952
0.02 0.04 125 125 25 0.946 0.2 04 125 125 25 0.956
0.02 0.04 125 125 5 0.955 02 04 125 125 5 0.957
0.02 004 125 25 125 0.948 02 04 125 25 125 0.956
0.02 0.04 125 25 25 0.947 02 04 125 25 25 0.957
0.02 004 125 25 5 0.946 02 04 125 25 5 0.9622
0.02 004 125 5 125 0.950 0.2 04 125 5 125 0.958

Q
L
Q
oy

0.02 004 125 5 25 0.958 02 04 125 5 25 0.963 125 5 25 0.960
002 004 125 5 5 0.954 0.2 04 125 5 5 0974 125 5 5 0.975
0.02 008 5 5 5 0972 02 08 3 5 5 0985 5 5 5 0.990
0.02 0.08 5 5 25 0977 02 08 5 5 25 0.984 5 5 25 0.997
002 008 5 5 125 0.967 02 08 5 5 125 0.979 5 5 125 0.995
0.02 0.08 5 25 5 0.967 02 08 5 25 5 00977 5 25 5 0.975
0.02 0.08 5 25 25 0.968 02 08 5 25 25 0.976 5 25 25 0.988
0.02 008 5 25 125 0.96 02 08 5 25 125 0.969 5 25 125 0.985
0.02 008 5 125 5 0.960 02 08 5 125 5 0.973 5 125 5 0.974
0.02 0.08 5 125 25 0.958 02 0.8 5 125 25 0.963 5 125 25 0.972

5 125 125 0.971
25 25 25 0.968
25 25 125 0.966
25 25 5 0.952
25 125 25 0.964
25 125 125 0.965
25 125 5 0.956
25 5 25 0.967
25 5 125 0.967
25 5 5 0979

125 125 125 0.950
125 125 25 0.961
125 125 5 0.952
125 25 125 0.959
126 25 25 0.957
125 25 5 0.948
125 5 125 0.969

0.02 008 5 125 125 0.954 02 08 5 125 125 0.957
0.02 0.08 25 25 25 0.955 02 08 25 25 25 0.959
0.02 0.08 25 25 125 0954| |02 0.8 25 25 125 0.959
0.02 0.08 25 25 5 0.953 02 08 25 25 5 0.960
0.02 008 25 125 25 0.953 02 08 25 125 25 0.961
0.02 0.08 25 125 125 0.958 0.2 0.8 25 125 125 0.957
0.02 008 25 125 5 0.953 02 08 25 125 5 0.957
002 008 25 5 25 0.954 02 08 25 5 25 0.965
0.02 008 25 5 125 0.958 02 08 25 5 125 0.966
002 008 25 5 5 0961 02 08 25 5 5 097
0.02 0.08 125 125 125 0.946 0.2 0.8 125 125 125 0.952
0.02 0.08 125 125 25 0.946 0.2 08 125 125 25 0.962
0.02 0.08 125 125 5 0.948 02 08 125 125 5 0.957
0.02 0.08 125 25 125 0.949 02 0.8 125 25 125 0.954
0.02 0.08 125 25 25 0.948 02 0.8 125 25 25 0.956
0.02 008 125 25 5 0.951 02 08 125 25 5 0.958
0.02 0.08 125 5 125 0.957| |0.2 0.8 125 5 125 0.963

BB NN NNNDNNDNNNNNDNNDNDNDNDNDNINDNNDDNDDNDNDND N DN DN DN DNDNDNNDNDNDNND NN NN NN N
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0.02 0.08 125 5 25 0.949 02 08 125 5 25 0.965 125 5 25 0.965
002 008 125 5 5 0.956 0.2 0.8 1256 5 5 0.974 125, 5 5 0.969
004 004 5 5 5 0976 04 04 5 5 5 0.988 5 5 5 0.99%
0.04 004 5 5 25 0.972 04 04 5 5 25 0.978 5 5 25 0.990

continued on next page
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Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

o7 =0.01 a3 =0.1 o2 =1
n T2 T3 CP
5 5 125 0.985
5 25 25 0.997
5 25 125 0.982
5 125 125 0.976
25 25 25 0.965
25 25 125 0.970
25 25 5 0.955
25 125 125 0.969
25 125 5 0.956
25 5 5 0.978
125 125 125 0.959
125 125 25 0.959
125 125 5 0.956
125 25 25 0.960
125 25 5 0.961
125 5 5 0.976
5 5 5 0.992

65 03 mp nz nz CP g5 05 m1 na nzg CP

0.04 004 5 5 125 0.961 04 04 5 5 125 0.973
0.04 0,04 S5 25 25 0.965 04 04 5 25 25 0977
0.04 004 5 25 125 0.961 04 04 5 25 125 0.966
0.04 004 5 125 125 0.956 04 04 5 125 125 0.965
004 004 25 25 25 0.958 04 04 25 25 25 0.961
0.04 004 25 25 125 0.955 04 04 25 25 125 0.953
0.04 004 25 25 5 0.954 04 04 25 25 5 0.964
0:.04 004 25 125 125 0.953 04 04 25 125 125 0.951
0.04 004 25 125 5 0.955 04 04 25 125 5 0.964
0.04 004 25 5 5 0957 04 04 25 5 5 0976
0.04 0.04 125 125 125 0.949 04 0.4 125 125 125 0.946
0.04 0.04 125 125 25 0.952 04 04 125 125 25 0.953
0.04 0.04 125 125 5 0.949 04 04 125 125 5 0.960
0.04 004 125 25 25 0.957 04 04 125 25 25 0.959
0.04 0.04 125 25 5 0.953 04 04 125 25 5 0.960
0.04 004 125 5 5 0.956 04 04 125 5 5 0.969
0.04 008 5 5 5 0974 04 08 5 5 5 0989

004 008 5 5 25 0971 04 08 5 5 25 0.983 5 5 25 0.988
004 008 5 5 125 0.972 04 08 5 5 1256 0.974 5 5 125 0.991
004 008 5 25 5 0.972 04 0.8 5 25 5 0.978 5 25 5 0.980
0.04 008 5 25 25 0.962 04 08 5 25 25 0981 5 256 25 0.993
0.04 008 5 25 125 0.964 04 08 5 25 125 0.974 5 25 125 0.993
0.04 008 5 1256 5 0.962 04 08 5 125 5 0.972 5 125 5 0.979
0.04 008 5 125 25 0.960 04 08 5 125 25 0.967 5 125 25 0.982

5 125 125 0.980
25 25 25 0.961
25 25 125 0.969
25 25 5 0.955
25 125 25 0.958
25 125 125 0.968
25 125 5 0.953
25 5 25 0.959
25 5 125 0.959
25 5 5 0972

125 125 125 0.951
125 125 25 0.952
125 125 5 0.956
125 25 125 0.958
125 25 25 0.958
125 25 5 0.955
125 5 125 0.961

0.04 0.08 5 125 125 0.956 04 08 5 1256 125 0.961
0.04 008 25 25 25 0.953 04 08 25 25 25 0.956
0.04 0.08 25 25 125 0.960 04 08 25 25 125 0.957
004 008 25 25 5 0.962 04 08 25 25 5 0.967
0.04 008 25 125 25 0.952 04 0.8 25 125 25 0.958
0.04 0.08 25 125 125 0.950 04 0.8 25 125 125 0.954
0.04 008 25 125 5 0.955 04 08 25 125 5 0.957
004 008 25 5 25 0.960 04 08 25 5 25 0.967
004 008 25 5 125 0.957| (04 0.8 25 5 125 0.958
0.04 008 25 5 5 0959 04 08 25 5 5 0977
0.04 0.08 125 125 125 0.944 04 0.8 125 125 125 0.951
0.04 0.08 125 125 25 0.957 04 08 125 125 25 0.955
0.04 008 125 125 5 0.954 04 08 125 125 5 0.958
0.04 008 125 25 125 0.952 04 0.8 125 25 125 0.955
0.04 0.08 125 25 25 0.955 04 0.8 125 25 25 0.960
0.04 008 125 25 5 0.955 04 0.8 125 25 5 0.966
0.04 008 125 5 125 0.954 04 0.8 125 5 125 0.957

OOOOOO%.&%&»B-&ﬁ-&-r&dk#»hA»&vbobububrb-r&s&%»&bbo&Q%%&%h%%%%%bh%&&%&a\?
mOOOOQJOOOO0000@OOOOOOOOOOOOOOOOOOOOOO(X)OOWGJOOOOOO@OOOO»&-»P%%#&&%%%Ah%%ﬁ%‘aﬂ

004 008 125 5 25 0.953 04 0.8 125 5 25 0.956 125 5 25 0.955
0.04 008 125 5 5 0.959 04 08 1256 5 5 0.968 125 5 5 0971
008 008 5 5 5 0.976 08 08 5 5 5 0.989 5 5 5 0989
008 008 5 5 25 0.969 08 08 5 5 25 0974 5 5 25 09714
008 008 5 5 125 0.965 08 08 5 5 125 0.972 5 5 125 0.974

continued on next page
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Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

o2 =0.01 g1 =0.1 of=1
o o5 m1 na nz CP 65 05 m mny nz CP 65 02 n1 ny nz CP
0.08 0.08 5 25 25 0.970 0.8 0.8 5 25 25 0978 8 8 5 25 25 0.990
0.08 0.08 5 25 125 0.959 0.8 0.8 5 25 125 0.971 8 8 5 25 125 0.989
0.08 0.08 5 125 125 0.955 0.8 0.8 5 125 125 0.968 8 8 5 125 125 0.990
0.08 0.08 25 25 25 0.959 0.8 0.8 25 25 25 0.963 8 8 25 25 25 0958
0.08 0.08 25 25 125 0.953 08 0.8 25 25 125 0.960 8 8 25 25 125 0.948
0.08 0.08 25 25 5 0.954 08 08 25 25 5 0.964 8 8 25 25 5 0.954
0.08 0.08 25 125 125 0.950 0.8 0.8 25 125 125 0.956 8 8 25 125 125 0.963
0.08 0.08 25 125 5 0.957 0.8 0.8 25 125 5 0.958 8§ 8 25 125 5 0.954
0.08 0.08 25 ) 5 0.968 0.8 0.8 25 5 5 0.975 8 8 25 5 5 0.970
0.08 0.08 125 125 125 0.947 0.8 0.8 125 125 125 0.946 8 8 125 125 125 0.960
0.08 0.08 125 125 25 0.953 0.8 0.8 125 125 25 0.961 8 8 125 125 25 0.956
0.08 0.08 125 125 5 0.955 0.8 0.8 125 125 5 0.961 8 8 125 125 5 0.958
0.08 0.08 125 25 25 0.955 0.8 0.8 125 25 25 0.959 8 8 125 25 25 0.960
0.08 0.08 125 25 5 0.950 0.8 0.8 125 25 5 0.961 8§ 8 125 25 5 0.958
0.08 0.08 125 5 5 0.966 0.8 0.8 125 5 5 0.976 8 8 125 5 5 0.966
o2 =10 o7 = 100

o5 02 n1 na nz CP o5 0% m1 na na CP

10 10 5 5 5 1.000 100 100 5 5 5 1.000

10 10 5 5 25 0.999 100 100 5 5 25 1.000

10 10 5 5 125 0.984 100 100 5 5 125 0.987

10 10 5 25 25 0.984 100 100 5 25 25 0.99

10 10 5 25 125 0.954 100 100 5 25 125 0.951

10 10 5 125 125 0.951 100 100 5 1256 125 0.956
10 10 25 25 25 0.999 100 100 25 25 25 1.000
10 10 25 25 125 0.966 100 100 25 25 125 0.968
10 10 25 125 125 0.964 100 100 25 125 125 0.960
10 10 125 125 125 0.965 100 100 125 125 125 0.971
10 20 5 - 5 5 0.999 100 200 5 5 5 1.000
10 20 5 5 25 1.000 100 200 5 5 25 1.000
10 20 5 5 125 0.999 100 200 5 5 125 1.000
10 20 5 25 25 0.989 100 200 5 25 25 0.994
10 20 5 25 125 0.977 100 200 5 25 125 0.974
10 20 5 125 125 0.952 100 200 5 125 125 0.957
10 20 25 25 25 0.987 100 200 25 25 25 0.992
10 20 25 25 125 0.989 100 200 25 25 125 0.990
10 20 25 25 5 0.965 100 200 25 25 5 0.965
10 20 25 125 125 0.960 100 200 25 125 125 0.961
10 20 25 125 5 0.952 100 200 25 125 5 0.956
10 20 25 5 5 0.996 100 200 25 5 5 0.995
10 20 125 125 125 0.963 100 200 125 125 125 0.966
10 20 125 125 25 0.956 100 200 125 125 25 0.957
10 20 125 125 5 0.950 100 200 125 125 5 0.940
10 20 125 25 25 0.963 100 200 125 25 25 0.960
10 20 125 25 5 0.955 100 200 125 25 5 0.956
10 20 125 5 5 0.978 100 200 125 5 5 0.972
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Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

or =10 o7 = 100
o5 02 m1 ng ng CP o2 07 my ny n3 CP
10 40 5 5 5 0.997 100 400 5 5 5 0.995
10 40 5 5 25 1.000 100 400 5 5 25 1.000
10 40 5 5 125 1.000 100 400 5 5 125 1.000
10 40 5 25 25 0.985 100 400 5 25 25 0.987
10 40 5 25 125 0.978 100 400 5 25 125 0.981

10 40 5 125 125 0.954 100 400 5 125 125 0.956
10 40 25 25 25 0.971 100 400 25 25 25 0.973
10 40 25 25 125 0.990 100 400 25 25 125 0.993
10 40 25 25 5 0.938 100 400 25 25 5 0.956
10 40 25 125 125 0.962 100 400 25 125 125 0.965
10 40 25 125 5 0.949 100 400 25 125 5 0.946
10 40 25 5- 5 0975 100 400 25 5 5 0.976
10 40 125 125 125 0.950 100 400 125 125 125 0.960
10 40 125 125 25 0.955 100 400 125 125 25 0.951
10 40 125 125 5 0.944 100 400 125 125 5 0.948
10 40 125 25 25 0.955 100 400 125 25 25 0.957
10 40 125 25 5 0.956 100 400 125 25 5 0.952
10 40 125 5 5 0.969 100 400 125 5 5 0971
10 80 ) 5 5 0.982 100 800 5 5 5 0.987

10 80 5 5 25 0.999 100 800 5 5 25 1.000
10 80 5 5 125 1.000 100 800 5 5 125 1.000
10 80 5 25 25 0.982 100 800 5 25 25 0.991
10 80 5 25 125 0.982 100 800 5 25 125 0.982

10 80 5 125 125 0.949 100 800 5 125 125 0.953
10 80 25 25 25 0.968 100 800 25 25 25 0.970
10 80 25 25 125 0.986 100 800 25 25 125 0.983
10 80 25 25 5 0.954 100 800 25 25 5 0.953
10 80 25 125 125 0.958 100 800 25 125 125 0.954
10 80 25 125 5 0.954 100 800 25 125 5 0.950
10 80 25 5 5 0971 100 800 25 5 &5 0.976
10 80 125 125 125 0.954 100 800 125 125 125 0.961
10 80 125 125 25 0.962 100 800 125 125 25 0.950
10 80 125 125 5 0.945 100 800 125 125 5 0.949
10 80 125 25 25 0.955 100 800 125 25 25 0.962
10 80 125 25 5 0.947 100 800 125 25 5 0.949
10 80 125 5 5 0.965 100 800 125 5 5 0.972
20 20 5 5 5 1.000 200 200 5 5 5 1.000
20 20 5 5 25 0.999 200 200 5 5 25 0.999
20 20 5 5 125 0.988 200 200 5 5 125 0.992
20 20 5 25 25 1.000 200 200 5 25 25 1.000
20 20 5 25 1256 0.977 200 200 5 25 125 0.974
20 20 5 125 125 0.962 200 200 5 125 125 0.962
20 20 25 25 25 0.983 200 200 25 25 25 0.986
20 20 25 25 125 0.974 200 200 25 25 125 0.975
20 20 25 25 5 0.960 200 200 25 25 5 0.961
20 20 25 125 125 0.979 200 200 25 125 125 0.979
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Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

o7 =10 % =100

g2 02 m np ng CP g 03 m mny ng CP

20 20 25 125 5 0.962 200 200 25 125 5 0.953
20 20 25 5 5 0.993 200 200 25 5 5 0.992
20 20 125 125 125 0.962 200 200 125 125 125 0.958
20 20 125 125 25 0.955 200 200 125 125 25 0.955
20 20 125 125 5 0.962 200 200 125 125 5 0.952
20 20 125 25 25 0.961 200 200 125 25 25 0.959
20 20 125 25 5 0.955 200 200 125 25 5 0.952
20 20 125 5 5 0.968 200 200 125 5 5 0.967
20 40 5 5 5 0.998 200 400 5 5 5 0.997

20 40 5 5 25 0.999 200 400 5 5 25 0.999
20 40 5 5 125 0.999 200 400 S5 5 125 1.000
20 40 5 25 5 0.990 200 400 5 25 5 0.990
20 46 S5 25 25 1.000 200 400 S5 25 25 1.000
20 40 5 25 125 0.995 200 400 5 25 125 0.998
20 40 5 125 5 0.977 200 400 5 126 5 0.977
20 40 5 125 25 0.977 200 400 5 125 25 0.978
20 40 5 125 125 0.965 200 400 5 125 125 0.964

20 40 25 25 25 0.969 200 400 25 25 25 0.969
20 40 25 25 125 0.980 200 400 25 25 125 0.979
20 40 25 25 5 0.949 200 400 25 25 5 0.952
20 40 25 125 25 0.968 200 400 25 125 25 0.966
20 40 25 125 125 0.971 200 400 25 125 125 0.975
20 40 25 125 5 0.955 200 400 25 125 5 0.952
20 40 25 5 25 0.962 200 400 25 5 25 0.956
20 40 25 5 125 0.962 200 400 25 5 125 0.953
20 40 25 5 5 0.982 200 400 25 5 5 0.976
20 40 125 125 125 0.933 200 400 125 125 125 0.960
20 40 125 125 25 0.935 200 400 125 125 25 0.952
20 40 125 125 5 0.949 200 400 125 125 5 0.951
20 40 125 25 125 0.957 200 400 125 25 125 0.957
20 40 125 25 25 0.955 200 400 125 25 25 0.951
20 40 125 25 5 0.946 200 400 125 25 5 0.956
20 40 125 5 125 0.952 200 400 125 5 125 0.957

20 40 125 5 25 0.948 200 400 125 5 25 0.952
20 40 125 5 5 0.965 200 400 125 5 5 0.956
20 80 5 5 5 0993 200 800 5 5 5 0.986
20 80 5 5 25 1.000 200 800 5 5 25 0.999
20 80 5 5 125 0.999 200 800 5 5 125 0.999
20 80 5 25 5 097 200 800 5 25 5 0.970
20 80 5 25 25 0.994 200 800 5 25 25 0.995
20 80 5 25 125 1.000 200 80 5 25 125 1.000
20 80 5 125 5 0977 200 800 5 125 5 0.973
20 80 5 125 25 0.975 200 800 5 125 25 0.975
20 8 5 125 125 0.963| (200 800 5 125 125 0.963
20 80 25 25 25 0.966 200 800 25 25 25 0.964
20 80 25 25 125 0.976 200 800 25 25 125 0.978
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Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

7=10 o7 =100

g2 02 ny no ng CP o5 02 m1 na nzg CP

20 80 25 25 5 0.952 200 800 25 25 5 0.952
20 80 25 125 25 0.958 200 800 25 125 25 0.958
20 80 25 125 125 0.974 200 800 25 125 125 0.970
20 80 25 1285 5 0.950 200 800 25 125 5 0.944
20 80 25 5 25 0.961 200 800 25 5 25 0.963
20 80 25 5 125 0.953 200 800 25 5 125 0.952
20 80 25 5 5 0.969 200 800 25 5 5 0.968
20 80 125 125 125 0.954 200 800 125 125 125 0.957
20 80 125 125 25 0.953 200 800 125 125 25 0.951
20 80 125 125 5 0.951 200 800 125 125 5 0.949
20 80 125 25 125 0.955 200 800 125 25 125 0.956
20 80 125 25 25 0.950 200 800 125 25 25 0.955
20 80 125 25 5 0.947 200 800 125 25 5 0.953
20 80 125 5 125 0.957 200 800 125 5 125 0.946

20 80 125 5 25 0.947 200 800 125 5 25 0.950
20 80 125 5 5 0.959 200 800 125 5 5 0.958
40 40 5 5 5 0.997 400 400 5 5 5 0.997
40 40 5 5 25 0.988 400 400 5 5 25 0.993
40 40 5 5 125 0.985 400 400 5 5 125 0.988
40 40 5 25 25 0.998 400 400 5 25 25 0.999
40 40 5 25 125 0.995 400 400 5 25 125 0.995°
40 40 5 125 125 0.987 400 400 5 125 125 0.986

40 40 25 25 25 0.958 400 400 25 25 25 0.954
40 40 25 25 125 0.957| [400 400 25 25 125 0.965
40 40 25 25 5 0.952 400 400 25 25 5 0.954
40 40 25 125 125 0.980 400 400 25 125 125 0.981
40 40 25 126 5 0.951 400 400 25 125 5 0.955
40 40 25 5 5 0.962 400 400 25 5 5 0.966
40 40 125 125 125 0.951 400 400 125 125 125 0.947
40 40 125 125 25 0.956 400 400 125 125 25 0.952
40 40 125 125 5 0.956 400 400 125 125 5 0.948
40 40 125 25 25 0.951 400 400 125 25 25 0.945
40 40 125 25 5 0.949 400 400 125 25 5 0.951
40 40 125 5 5 0.954 400 400 125 5 5 0.953
40 80 5 5 5 0.989 400 800 5 5 5 0.988

40 8 5 5 25 0.993 400 80 5 5 25 0991
40 80 5 5 125 0.992 400 800 5 5 125 0.992
40 80 5 25 5 0971 400 800 5 25 5 0.976
40 80 5 25 25 0.994 400 800. 5 25 25 0.993
40 80 5 25 125 0.999 400 800 5 25 125 0.998
40 80 5 125 5 0.975 400 800 5 125 5 0971
40 80 5 1256 25 0.990 400 800 5 125 25 0.991
40 80 5 125 125 0.989 400 800 5 125 125 0.992

40 80 25 25 25 0.951 400 800 25 25 25 0.949
40 80 25 25 125 0.964 400 800 25 25 125 0.960
40 80 25 25 5 0.949 400 800 25 25 5 0.949
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Table D.1: Empirical Coverage Probabilities of Nominally 95% Two-sided Simultaneous
Fiducial Generalized Confidence Intervals for Ratios of Means of Three Lognormal Distri-
butions.

02 =10 o2 =100

o5 05 nm1 ng ng CP o5 03 m1 ny ng CP

40 80 25 125 25 0.964| |400 800 25 125 25 0.958
40 80 25 125 125 0.967 |400 800 25 125 125 0.968
40 80 25 125 5 0.947| |400 800 25 125 5 0.933
40 80 25 5 25 0.956| |400 800 25 5 25 0.948
40 80 25 5 125 0.944| |400 800 25 5 125 0.951
40 80 25 5 5 0.962| |400 800 25 5 5 0.960
40 80 125 125 125 0.954 400 800 125 125 125 0.949
40 80 125 125 25 0.952 400 800 125 125 25 0.956
40 80 125 125 5 0.947 400 800 125 125 5 0.955
40 80 125 25 125 0.945| |400 800 125 25 125 0.950
40 80 125 25 25 0.949 400 800 125 25 25 0.952
40 80 125 25 5 0.945 400 800 125 25 5 0.947
40 80 125 5 125 0.951| |400 800 125 5 125 0.957

40 80 125 5 25 0.956 400 800 125 5 25 0.956
40 8 125 5 5 0.953 400 800 125 5 5 0.954
80 8 5 5 5 0.980 800 80 5 5 5 0.981
80 8 5 5 25 0.975 800 80 5 5 25 0.973
8 80 5 5 125 0.973 800 800 5 5 125 0.978
80 8 5 25 25 0.990 800 800 5 25 25 0.990
80 80 5 25 125 0.994 800 800 5 25 125 0.993

80 8 5 125 125 0.995 800 800 5 125 125 0.995
80 80 25 25 25 0.949 800 800 25 25 25 0.948
80 80 25 25 125 0.949 800 800 25 25 125 0.952
8 80 25 25 5 0.951 800 800 25 25 5 0.952
80 80 25 125 125 0.963 800 800 25 125 125 0.961
80 80 25 125 5 0.948 800 800 25 125 5 0.952
80 8 25 5 5 0.956 800 800 25 5 5 0.955
80 80 125 125 125 0.950 800 800 125 125 125 0.950
80 80 125 125 25 0.948 800 800 125 125 25 0.948
80 80 125 125 5 0.958 800 800 125 125 5 0.944
80 80 125 25 25 0.948 800 800 125 25 25 0.955
80 80 125 25 5 0.942 800 800 125 25 5 0.950
80 80 125 5 5 0.950 800 800 125 5 5 0.950
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