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ABSTRACT

This thesis is a study of ozone chemistry and meteorological processes occurring
in the eastern North Pacific stratocumulus regime. This climatological regime is
characterized by widespread, persistent low cloud and an air history that does
not include contact with continents for many days. Since both ozone and stra-
tocumulus are important in the earth-atmosphere energy balance, the processes
studied here are important in the system interactions that govern climate. The
approach is analysis of observational data from the Dynamics and Chemistry of
Marine Stratocumulus (DYCOMS) experiment.

Components of the regional ozone budget are investigated. Measurements of
sea-surface deposition rate are smaller than most previous estimates. A significant
variability of the rate exists. It is partially attributable to wind speed variation but
appears to have other causes as well. Net photochemical production/destruction
rate in the marine boundary layer is estimated using the ozone conservation
relation. This rate, averaged over the flights, results in a small sink for ozone.
This is an important verification of photochemical model predictions. Finally, the
common presence of sharply defined concentration layers in the free troposphere
is documented. These layers are shown to affect boundary layer concentration
through entrainment and their possible origins are discussed.

Dynamical and thermodynamical processes controlling stratocumulus cloud
layers are investigated. The entrainment rate of free tropospheric air into the cloud
layer is calculated using a new method based on ozone conservation. This rate is
compared to thermodynamic fluxes and previous estimates toward parameteriza-
tion of entrainment for mixed-layer models. Layer average thermodynamic energy

budgets are constructed. Divergence of solar radiation is a major component
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for midday cases which complicates traditional mixed-layer model assumptions.
Longwave radiative profiles consistently show good agreement with theoretical
models, but the distribution of flux between inversion and mixed layers is not
decided.

Budgets and mean distributions are also examined for several cases which are
not typical of the generally cloudy conditions. These demonstrate the role of
clouds in determining boundary layer structure and provide examples of cloud
clearing and reformation. These transitions are shown to occur in response to a

number of different perturbations.
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Chapter 1: INTRODUCTION

The climate of the earth is constantly changing. These changes occur on a
wide range of time scales in response to many different perturbations. Climate
response to any imposed forcing depends on an inscrutably complicated interactive
network of natural processes encompassing the atmosphere, oceans, and biosphere.
In order to deal with the effects of climate change we must better understand the
causes and effects. Two of the major role players in this chain are clouds and
trace gases, because of their influence on the net energy balance of the earth-
atmosphere system. This paper is specifically directed to stratocumulus (SC)
clouds and ozone (Os) gas. SC is particularly important for its large areal extent
and long persistence (Schubert et al., 1979a). Os is a radiatively important gas
itself as well as a major reactant in the chemical lifecycles of other trace gases.
The general goal of this research is to achieve a better scientific understanding of
the processes controlling SC and Os in the atmosphere. This research is directly
relevant to understanding earth’s climate as well as to predicting local effects of
SC cloud cover and oxidant concentration.

The basic approach in this paper is an observational one. Measurements
are analyzed within several theoretical frameworks and conclusions are drawn
regarding the nature of the physical processes. The experimental program is
the Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) experiment
(Lenschow et al., 1988a). DYCOMS was an aircraft sampling program using the
NCAR Electra equipped with an extensive array of meteorological and chemical
instrumentation of the highest research quality. The flight mission was an almost

total success providing more than 70 hours of high resolution, mean and fast



response data. Many of these data were unique and they are surely the most
comprehensive reported to date for the SC regime.

The available data lead to the specific goals of this research. These are to
evaluate the contributions of various terms in the O3 budget and to assess the
thermodyﬁamical /dynamical processes controlling the existence of SC. These form
two largely independent topics of study in this paper. The background specific
to these problems is in the respective sections. Generally, these problems have
been studied rather extensively through numerical modeling but observational
analysis has lagged behind. Usually this is due to instrument and sampling .
limitations. The results of DYCOMS should therefore be particularly welcome
both as a primary analysis tool and as a basis for comparison with models. Some
of the results, such as direct measurement of Os deposition and entrainment in
the SC boundary layer are unique.

The outline of this paper is the following. Chapter 2 provides a physical
description of the experimental procedure and the meteorological background. It
has a rather detailed account of the response of some of the instruments and
estimates of how this may affect the data. Ch;pter 3 is a documentation of the
processing of sensor data into physical quantities and derived parameters. Much
of the data needed for analysis in the two succeeding sections is compiled here
along with some other data of potential interest. This data, and the complete set
of soundings in Appendix A, is made available for further use as discussed in the
chapter introduction. Chapter 4 focuses on the O3 budget. Surface deposition,
photochemistry, and mean distribution are addressed in detail. Chapter 5 pertains
to SC thermodynamics and dynamics. The entrainment rate is calculated using Og
measurements and compared among the cases and with previous findings. Layer
average thermodynamic budgets are constructed including turbulent and radiative
fluxes and mean transport. These are used to study the varying influence of the
components and the applicability of mixed-layer concepts. The important findings

of Chapters 4 and 5 are summarized separately in those chapters. Chapter 6 is a



brief overall summary and some suggestions for further research that have grown

out of this study.



Chapter 2: DESCRIPTION OF THE EXPERIMENT

2.1 FLIGHT SUMMARY

There were 10 research flights during the DYCOMS project in 1985. Table 2.1
lists their dates, times, and general characteristics. All of the flights took place
around local solar noon (13:00 Pacific Daylight Time, PDT) except Flight 10 which
began an hour before sunrise. The locations of the flight patterns were chosen for
the best cloud conditions that we wished to study (e.g. a clear region for Flight
8 and solid cloud for 1 to 5, 7 and 10) based on satellite photos, climatology, and
in-flight observations. The locations of the initial flight legs, before advection, are
shown in Fig. 2.1 (Flights 6, 8 and 9 proceeded entirely in the positions shown).

A standard flight pattern consists of a level ferry portion from San Diego to
the research area at an altitude of 3200 m, a descent sounding to near the surface,
a horizontal leg at about 50 m, two legs about halfway between the surface and
cloud base, a leg at cloud base, one in cloud, one at cloud top, three legs at about
100 m above cloud top, and another descent sounding. The set of legs is then
repeated up to cloud top. A descent sounding and an ascent to the return ferry
altitude of 5000 m complete the pattern. Each leg was 15 minutes, or about 100 km
long. The legs of flights called “x-wind” in Table 2.1 were oriented perpendicular
to the mean wind. Those labeled “L’s” had right angle turns in the middle of
the legs and consisted of cross and along wind portions. The legs were flown at
constant aircraft heading and advected along the mean wind except for Flight 8
which was anchored to geographical coordinates. Turns at the leg ends were made

in the upwind direction in order to avoid possible contamination of the chemical



samples by aircraft exhaust. It should be noted here that these turns, as well
as difficulty in maintaining tracks exactly perpendicular to the mean wind, mean
that the flight legs were not always precisely collocated in the Lagrangian frame
of reference. This becomes significant in the presence of horizontal gradients as
discussed in Sec. 4.2.1. Flights 6 and 9 were flown along the direction of the
mean wind at various altitudes, essentially out and back from the starting point.
No budgets are calculated for Flights 6 and 9 since the pattern does not allow

estimation of the vertical derivative terms.

2.2 METEOROLOGY

The synoptic scale meteorology during DYCOMS generally conférmed to the
established climatology for the region (Neiburger, 1960). This climatological
regime is produced by northerly, descending flow on the eastern side of the
subtropical anticyclone which dominates the Pacific during summer. The large
scale circulation is shown schematically in Fig. 2.2 from Danielsen et al. (1987).
Temperature and humidity of the air near the surface are strongly coupled to the
sea surface temperature (SST); its distribution is given in Fig. 2.3 (Schubert et
al. 1979b). A strong inversion usually separates the cool, moist air in contact
with the surface from the dry, adiabatically- warmed free tropospheric air. The
lifting condensation level is often reached within the moist marine boundary layer
(MBL) and clouds are formed. The inversion is an effective lid on cloud growth
and stratocumulus is produced.

While conditions during most DYCOMS flights fit the climatological picture,
the cloud cover was by no means steady state during the 23 days of the experiment.
Examination of satellite photographs reveals major fluctuations in the extent
and uniformity of the SC coverage as well as the cellular nature of the cloud.
To some degree these events can be correlated with synoptic perturbations of

the climatological flow which can be observed on the weather maps. These



changes may be relevant to the detailed analyses in subsequent chapters. A brief
chronology of significant deviations from the general flow pattern follows.

Figure 2.4 shows the 850 mb analysis for the morning of 30 July 1985, Flight 1.
This map is fairly representative of the experimental period except possibly for the
developing short wave between 40° and 50°N near 130°W. Clouci cover in the study
region was solid (Table 1). The baroclinicity of the aforementioned shortwave
appears to be responsible for a general clearing on the following day at 1200 PDT
which extended from about 40°N to almost 30°N and west from the coast to about
130°W. The association of strong cold advection above the MBL with SC clearing
has been discussed by Weaver (1987). The SC was quickly reestablished on 1
Augusi and remained through 4 August, Flight 3. Another general clearing from
the north proceeded on 5 and 6 August. The SC was reformed by Flight 4 on 7
August but less solidly than previous flights. After a brief intrusion of clear air
from the north on 8 August, again probably associated with an 850 mb shortwave,
SC was widespread and uniform for Flight 5 on 9 August through 12 August. On
13 August, Flight 6, the profound influence of a northwestward moving tropical
storm, located at 25°N, 130°W, was felt in the study region. Clearing proceeded
from the south extending to about 35°N on 14 August followed by the appearance
of less stratiform, more cellular clouds which filled the region by Flight 7, 16
August as the tropical system dissipated. Stratus was well established on 17
August but on 18 August a clear area once again propagated from the north.
Flight 8 was flown in this clear region which in fact was surrounded by cloudy
regions except to the north. The clearing continued on 19 August when Flight
9 proceeded from the clear region, through the transition, into the cloudy region
south of 28°N. The SC was fully present again on 20 August through Flight 10
on 21 August.

In summary then, Flights 1 to 5 and 10 may be characterized as typical of the
generally cloudy conditions. Flight 6 sampled conditions influenced fairly directly

by a tropical disturbance with Flight 7 in its aftermath. Flight 8 sampled within



the clear region associated with occasional cold disturbances from the north and

Flight 9 sampled across this frontal-like boundary.

2.3 MEASUREMENT TECHNOLOGY

The measurement platform for DYCOMS was the NCAR Electra research air-
craft which is maintained and operated by the NCAR Research Aviation Facility
(RAF). The meteorological instrumentation package provides mean and turbu-
lence data for wind components, temperature, and humidity, bandwidth limited
at 10 Hz and output at 20 Hz. Og output characteristics are the same. Liquid
water, aerosol, radiation, and complete navigational data were also recorded. A
wide assortment of chemical sampling was carried out by individual investigators
(Lenschow et al., 1988a).

Measurement of atmospheric scalars in a partly cloudy environment can be
very difficult, especially at the high resolution and fast response required for eddy
correlation. In some cases the instrument response characteristics may spuriously
affect the output signal. I have tried very hard to remove the possibility of any
such effects influencing the analysis but sensor limitations should always be kept
in mind when evaluating conclusions. For this reason, and the fact that one
DYCOMS objective was instrument evaluation, a discussion of quality control for
certain data is included here.

Ambient water vapor is measured on the Electra, in the mean, by a cooled
mirror dew-point hygrometer (EG&G Model 137-C3-S3) and, fluctuations, by a
Lyman-alpha hygrometer (NCAR-developed). Neither instrument is satisfactory
for all applications. The virtue of the Lyman-alpha is its very fast response time;
its fault is an uncertain absolute calibration (Buck, 1976; Buck and Hills, 1980).
In addition, the Lyman-alpha output is very sensitive to the presence of cloud
droplets, even in low liquid water. Figure 2.5 shows time series for a segment
of data taken at cloud base level. Greatly increased variance in the calibrated

Lyman-alpha signal can be seen during periods where the aircraft encounters



liquid water, ¢;. This can better be seen by comparing the spectra from cloud base
and subcloud shown in Fig. 2.6. Uncorrelated sensor noise would not be a problem
for flux analysis, but since liquid water is usually correlated with vertical velocity,
we expect that the Lyman-alpha droplet interference will be correlated in some
way with vertical velocity. Indeed this does seem to be the case. The cospectra
for the same segments are shown in Fig. 2.7 and increased covariance peaks are
present on the cloud base leg. The frequency dependence and the net effect of the
droplet interference is not clear however since the difference in covariance may
be due partly to the altitude difference. The fact that the droplet interference is
positively correlated with vertical velocity is seen from the enhancement of flux
at 630 m in Fig. 2.8. The total water flux profile for this case is expected from
mixed layer theory to be very nearly straight. The conclusion is that water vapor
fluxes measured by the Lyman-alpha in cloud are not reliable. The instrument
also was not operational for most of Flight 7.

Use of the thermoelectric (EG&G) hygrometer for flux calculation has been
suggested under certain conditions (Friehe et al., 1986). Comparison of Lyman-
alpha and EG&G derived fluxes in clear air shows very poor agreement for
DYCOMS cases however, probably due to their small magnitudes relative to those
of Friehe et al. (1986, Fig. 7). The effect of cloud droplets on the EG&G signal
appears to be negligible for the liquid water contents of DYCOMS. Figure 2.9
shows that the measured dewpoint Tp is within one-half degree of the ambient
temperature T in cloud where saturation may be assumed. This is within the
published accuracy limits of the instruments and no trend in offset with liquid
water is detectable. The behavior of the Tp profile near cloud top points out
two more of the EG&G’s undesirable characteristics. The first is its tendency to
overshoot and oscillate at sudden increases in humidity typical of the inversion
top. The second is its slow response time as the change in Tp at the inversion
comes slightly after (lower) than T and !. Examination of the calibrated EG&G

time series in Fig. 2.5 shows that it is able to follow humidity fluctuations of



horizontal extent on the order of several hundred meters (several seconds) quite
well. The result of this is that the EG&G has been used for all mean humidity
measurements including soundings, where its occasional overshooting is obvious,
but not for flux calculations.

Water vapor fluctuations in cloudy air may also be obtained from the tem-
perature measurements if saturation is assumed. Figure 2.9 indicates that this
assumption appears good for mean humidity but fluctuations still may deviate.
In practice the humidity fluctuations in this paper are determined from a combi-
nation of these three sensor outputs as discussed in Sec. 3.4.1.

Temperature is measured by two instruments, a Rosemount (Model 102E2AL)
and a K-probe (NCAR-developed). The K-probe has a faster response time but is
sensitive to wetbulb cooling in the presence of cloud droplets. This is apparent in
Fig. 2.5 especially between 13:00 and 13:01 and after 13:06 in comparison to the
Rosemount. The design of the Rosemount is such that its output should not be
sensitive to small liquid water amounts (Brost et al., 1982; Nicholls, 1984; Albrecht
et al., 1985). Comparison of fluxes from the Rosemount and K-probe in clear air
shows very good agreement. Figure 2.10 shows the coherence between them is
high right up to 10 Hz and the phase lag is zero. For these reasons the ambient
temperature measured by the Rosemount is used exclusively in this analysis and
with good confidence. The SST is measured by a radiation thermometer (Barnes
PRT-5) on the 50-m legs and should be accurate to within 1°C (Spyers-Duran
and Winant, 1985).

' Liquid water is measured by two resistance-type probes, the Johnson-Williams
LW4 (J-W) and the Particle Measuring System (PMS) King probe. There are
serious performance problems with the J-W that make using the King probe
preferable (Baumgardner, 1983). The King probe is susceptible to baseline drift-
ing and the intercept must be adjusted frequently over a flight. This is done
during data processing as discussed in Sec. 3.1. As a result the King probe is not

useful for detecting the presence of liquid water amounts below about 0.01 g m=3.
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The accuracy of the mean is expected to be within 10% (King et al., 1985). The
frequency response of the device is inherently fast (Bradley and King, 1979) but
during DYCOMS the instrument electronics were inadvertently set to introduce
a 0.2 s time constant into the response. The effect of this lag on the output can
be evaluated by writing the input/response relationship as the classic differential

equation

d
= +az = f(t)

where z represents the instrument response, 1/a = 0.2 s the time constant, and
f(t) is the liquid water input over time. Assuming a sinusoidally varying input of
frequency w, the response attenuation is a/ va? + w?. This effect becomes greater
than 10% at frequencies above about 2.5 Hz. The liquid water spectrum in cloud
has a peak variance at 0.2 to 0.3 Hz decreasing by an order of magnitude by
2 Hz. Almost all of the wq éospectral energy is at frequencies less than 1 Hz.
The phase lag introduced is well accounted for at these frequencies by simply
advancing the ouput 0.2 s. As a result the calculated liquid water fluxes may be
slightly underestimated but not by more than 10%.

Liquid water may also be estimated by integrating over the droplet spectrum
measured by the PMS Forward Scattering Spectrometer Probe (FSSP) but this
method is generally less accurate than the resistance-type measurements (Baum-
gardner, 1983). Comparison of mean liquid water and flux between the FSSP
and King probes does not show good agreement nor any systematic calibration
difference for DYCOMS. The FSSP does have a constant zero baseline however
and its output is used for determining whether or not liquid water is present down
to small threshold values.

Winds on the Electra are determined from the Litton LTN-51 inertial naviga-
tion system (INS) and the NCAR-developed gust probe (Lenschow, 1972; Kopp,
1985). The gust probe system sometimes encountered problems during DYCOMS
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near cloud edges. Spikes and unexplainable level shifts occur in the output on
these occasions. Consequently, these periods have been edited from the data in
order not to contaminate the flux analysis. This editing is a somewhat subjective
procedure in which time series of attack vane difference, vertical velocity spectra,
and fluxes are examined for evidence of unnatural variations. Generally, I have
included all the data unless something is obviously wrong. The vane problems do
contribute an experimental uncertainty to the flux measurements, especially at
cloud base.

The O3 instrument used during DYCOMS is an improved version of the fast
response chemiluminescent analyzer of Pearson and Stedman (1980). It has an
intrinsic bandwidth of at least 20 Hz which is electronically filtered at 10 Hz
to match the meteorological sensors. It has high sensitivity and stability which
permit O3 measurements accurate to within 0.1 ppbv from 10 to 100 ppbv ambient
mixing ratio (Pearson, 1988). Instrument response is slightly sensitive to the
operating temperature, which was monitored during the program. The calibration
changes have been calculated for DYCOMS operation. They amount to less than
0.1% and have been disregarded in processing. The water vapor sensitivity and
lag time have been taken into account as described in Sec. 3.1.

The upward and downward components of the net radiative flux are available
in three bandwidths: ultraviolet UV (0.295 to 0.385 um) by Eppley TUVR, visible
SW (0.285 to 2.800 um) by Eppley PSP, and infrared LW (4 to 45 um) by Eppley
PIR silicon dome. Temperature correction and calibration of these instruments is
done by RAF. The output is used as reported by them except that portions of data
following abrupt altitude changes are excised to avoid temperature equilibration

problems in the LW instrument.



Table 2.1: DYCOMS Flight Summary

FLIGHT 1 2 3 4 5 6 7 8 9 10

DATE 7/30 8/2 8/4 8/7 8/9 8/13 8/16  8/18 8/19 8/21

TIME 10:56 09:01 09:56  09:54 09:49 10:40 10:16  10:02 10:57 05:25

(PDT) to to to to to to to to to to
17:56 16:04 16:46  17:09 17:00 15:36 17:32  17:00 18:03 12:35

TYPE x-wind  x-wind x-wind x-wind x-wind along-wind L’s L’s  along-wind L’s

CLOUD  solid near solid broken broken near solid scattered broken, clear broken near solid

layered to clear

Al
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Figure 2.1: Locations of flight tracks. Shown are initial positions of the legs which
were subsequently advected downwind. Flights 6 and 9 were simply flown out and
back at various altitudes along the track shown, starting at the east end. Flight

8 “L’s” were flown at a fixed position.
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Figure 2.2: Vertical-meridional thermally direct circulation for a non-rotating
earth and inclined anticyclonic circulation for the rotating earth. From Danielson
et al. (1987).
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Figure 2.3: Mean sea surface temperature for July (°C). After Neiburger et al.
(1961) from Schubert et al. (1979b). Dashed lines located DYCOMS region.



Figure 2.4: Temperature (dashed) and geopotential height (solid) at 850 mb, 12Z, 30 July 1985. Dotted lines locate
DYCOMS region.

91
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Figure 2.5: Time series at cloud base. See text for identification of sensors.
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and 560 m (b).
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Chapter 3: DYCOMS DATABASE AND SCALAR FLUXES

This chapter is intended to help fill the need for more observational data on
the marine SC environment. The compiled data, required to address the scientific
problems discussed in the next two chapters, form an extensive set of measured
quantities and derived parameters. This data set can be used for initialization and
validation of SC numerical models, for input to chemical transport/reaction mod-
els, to improve parameterizations in general circulation models, and for testing
the representativeness of other observations.

The data are collected into a set of tables and figures. The accompanying text

documents how the output variables are derived from measured quantities.
3.1 PREPROCESSING

Most of the preprocessing needed to transform raw sensor output into useful
quantities is done by the RAF before making the data tapes available to users. A
few of the output variables need further refinement to attain the most accurate
measurement value. This process is detailed here.

In preprocessing, the Os data are corrected for water vapor quenching of the
chemiluminescent reaction (Matthews et al., 1977; Lenschow et al., 1981). They
have been advanced 0.2 s relative to the other data to account for the location of
the O3 probe aft of the gust probe and the sample residence time in the detector
plumbing (Lenschow et al., 1982). Spurious electronic spikes are also removed.

The Lyman-alpha output voltage is calibrated by the method suggested by
Friehe et al. (1986). This method uses a linear slope and intercept derived

from comparison of the Lyman-alpha and the EG&G after advancing the EG&G
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output, about 2 s, to account for its slower response time. Here the calibration
coefficients are calculated for each data tape, about two hours of flight time, and
assumed constant over that interval. The regression is performed for flight sections
at several altitudes and averaged so the altitude dependence of the slope observed
by Friehe et al. (1986) is neglected. The intercept is irrelevant for flux calculations.
The resulting absolute humidity (g,) fluxes may be underestimated by about 5%
near the surface although the sensitivity decrease with time (0.5% hr~!; Buck and
Hills, 1980) would tend to offset this effect.

The King liquid water probe output is baselined during this stage of processing.
This is done “by eye” for sections of the flight where liquid is encountered. For
example in Fig. 3.1, 0.08 g m™3 would be added to the measurement for this
period. Also during the preprocessing stage the output of several slow (1 Hz)

sensors is interpolated to 20 Hz for convenience in later calculations.

3.2 SOUNDINGS

The complete set of soundings from DYCOMS is given in Appendix A, Figs.
A.1 to A.24. They are vertical profiles of mean quantities averaged over 5-m
height bins for low level (<2500 m) soundings_ and 10-m bins for deeper ones.
The altitude z is obtained from the high range radio altimeter which may lose
accuracy (+10 m) at less than about 100 m. The aircraft rate of ascent or descent
is about 2 m s~! in the lower part and 5 m s~! above the boundary layer. The

horizontal speed is about 105 m s™!.

Soundings are generally made on a slant
path although are sometimes spiral as noted. A significant amount of horizontal
averaging therefore, goes into the vertical average.

The sounding figures show plots of O3 mixing ratio Og, water vapor mixing
ratio r from the EG&G sensor, and liquid water mixing ratio / from the King

probe. Recall the overshooting value of r at the inversion top (e.g. Fig. A.la)

is an instrument problem, not an ambient phenomenon (Sec. 2.3). This example
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shows a feature common to many of the r soundings above about 3000 m. The
lower detectable limit of the EG&G is apparently about 0.8 g kg™!.
Liquid water potential temperature 0, is calculated (Betts, 1982) as

6, = 0 exp(—Ll/c,T) (3.1)

where potential temperature @ is derived from the Rosemount temperature T,
fuselage pressure p, and dry air values of the gas constant and specific heat ¢,.
The latent heat of vaporization L is assumed constant. The equivalent potential
temperature (0,) is calculated by the method suggested in Bolton (1980) using
T, p, r, and the relative humidity. Note that both 0, and §; may be reasonably
well approximated by their linear forms (Betts, 1982) for DYCOMS conditions.
Wind speed WS and wind direction W D measurements become inaccurate during
aircraft turns so the plots are interpolated over those portions. Winds in a spiral
sounding then are very questionable.

An additional set of profiles showing the variance of these variables over the
height bins is available but are not shown because of their limited usefulness.
They can be useful for determining inversion height when it is not apparent from

the mean sounding.

3.3 MEAN BOUNDARY LAYER QUANTITIES

Table 3.1 gives values of quantities in the marine boundary layer averaged
over the horizontal legs. The T, is radiometric surface temperature, Tsp is air
temperature, and Gy is total water density. Variables T5o, T,, and P;, are averages
from the 50-m legs only. The others are averages over all of the legs within the
marine boundary layer.

The mean height of the subsidence inversion 2; is determined from the set of
soundings from each flight. In most cases this height also defines the mixed layer

depth H. Estimates of z have also been obtained by comparing aircraft altitude
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at the inversion penetrations during the cloud top legs. The estimates are in good
agreement. The individual estimates of z; may vary by as much as 100 m due to

both small-scale and mesoscale variations.
3.4 FLUXES

Fluxes are calculated by the eddy correlation technique. This method relies
on the principle of Reynold’s decomposition of a time series into its mean and
fluctuating components (Panofsky and Dutton, 1984, Chapter 4). The basic flux
averaging period for the analysis is a segment of 225 s of the 20-Hz data. This
is effectively a line average over about 23 km. The fluctuating component of the
time series remains after the mean and linear trend have been subtracted from
the original. The vertical eddy flux is then formed by multiplying the value of
the fluctuating component at each point by the corresponding value of vertical

velocity w and averaging over the segment.

3.4.1 Total Water Eddy Flux

Due to the inability of any single instrument to measure ¢, in all conditions
(Sec. 2.3) a hybrid time series has been constructed consisting of Lyman-alpha,
EG&G, and Rosemount-derived humidities. The Lyman-alpha fluctuating value is
used for sub-cloud legs and in cloud-free portions. In the presence of liquid water
(deduced from the FSSP activity) ¢, is assumed equal to the saturation absolute
humidity ¢,, derived from T and p using the Clausius-Clapeyron relation as
approximated by Bolton (1980). However, since the Lyman-alpha is not calibrated
exactly with the Rosemount, the combined time series is not continuous when
passing in and out of cloud. This calibration switching could be correlated with
vertical velocity and contribute a false flux. To minimize this problem, the means
of the cloud free and saturated portions are separately adjusted to equal the
EG&G-derived mean values for the same portions. The resulting time series is

reasonably continuous in and out of cloud allowing an estimate to be made of
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w'q!. The total water eddy flux is then w'q}, = w'q) + w'q] where the liquid
water flux is calculated from the King probe output advanced 0.2 s (Sec. 2.3).

Also w'@, is obtained using the g, time series as described here.

3.4.2 Drizzle Flux

The liquid water mass flux due to gravitational settling relative to the air
motion, or drizzle flux, is denoted wgq. This is calculated from the drop size
distributions measured by the FSSP and the PMS 200X optical array probe:

I~

@ = ImiNwr; (3.2)

The sum is over the ¢ size bins of the FSSP for mean diameters 5.7 to 75 um
and the 200X for 75 to 187 um. The mass of a spherical drop at the bin mean
diameter is m;, wr, is the terminal velocity, and N; the number concentration in
the bin.

The terminal velocity is approximated (Rogers, 1979) by

wr = —(1.19 x 1 m™s™) ¥ r < 40um (3.3)

wr = —(8 x 10°s7Y)r 40um < r < 600 um

for drops of mean radius r.

The drop size distributions have been used uncorrected although significant
spectral distortions are known to arise in certain conditions (Dye and Baumgard-
ner, 1984). Dead time and coincidence losses in measured concentration will be
negligible for the typically low values observed in DYCOMS (Baumgardner et al.,
1985; Baumgardner, 1986). Distortion due to response time limitations should
also be small since the spectra are relatively narrow and in a band not greatly
affected (Baumgardner, 1987). The measured distributions are expected to be
accurate to about 15 to 20%.
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3.4.3 Flux Profiles

The drizzle and vertical eddy fluxes as functions of normalized height in the
MBL are shown in Fig. 3.2a to 3.2h. These are average values for each flight
and 90% confidence limits on the mean based on a Student ¢ distribution for flux
estimates from each segment at an altitude. The calculation of virtual potential

temperature (0,) includes liquid water loading.

Under mixed layer conservation assumptions the profiles of w'Oj5 and (w'q), + @q)
should be linear. Temperature flux profiles will not be linear if radiative effects are
significant. The idealized flux profile may be fully characterized by specification
of an intercept and slope. These coefficients, the projected value of the flux at z;,
and confidence limits on these values are calculated using a standard analysis of
variance package (Draper and Smith, 1966). Altitude and segment-flux are input
as independent and dependent variables respectively. Figure 3.3 shows an example
scatter plot for the Og flux and the best fit line. The Os flux profile analysis is
done in mixing ratio units which are conserved with height (1 ppbv ~ 2 ug m~3 at
sea level). Since the flux variability is much higher in the upper marine boundary
layer, the best estimate for surface flux is taken from extrapolation of the two
lowest levels only. The values of the flux profile coefficients are given in tables in

the next two chapters as they are used for analysis.

3.4.4 Surface Fluxes And Stability

Near-surface scalar fluxes, friction velocity u, and Monin-Obukhov scaling

length —L are given in Table 3.2. These are averages from the 50-m flight legs.

3.4.5 Radiative Fluxes

The measured upward (1) and downward (]) components of the SW and LW

fluxes have been averaged for each horizontal flight segment. Figure 5.1 shows the



29

average net LW flux at each normalized altitude from each flight and composite
profiles for cloudy and cloud-free cases.

An example set of SW component and net profiles as well as the net LW + SW
is shown in Fig. 5.3. Due to inhomogeneities in the cloud cover the standard
deviations of the SW fluxes are fairly large and the net profiles from other flights
may not be as smooth as the example in Fig. 5.3a. The general features are
the same however for all the cloud-capped cases. Flight 8, the clear case, Fig.
5.3b, is radically different. The measured SW fluxes are normalized to a median
solar zenith angle for each flight (Ackerman and Cox, 1981). The SW| fluxes are
corrected for the tilt of the aircraft relative to a horizontal surface assuming 10%
diffuse above and 90% diffuse radiation below cloud (Kawa, 1986). The UV fluxes
(not shown) follow SW very closely at 5 to 6% of the SW irradiance.
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Table 3.1: Mean Boundary Layer Quantities. See text for definition of symbols.

“FLIGHT 1 2 3 4 5 6 7 8 9
Tso (°C) 175 161 16.1 17.8 17.8 17.1 179 172 19.2
T, (°C) 185 16.7 18.0 19.0 19.0 17.8 193 174 20.5
Pso (mb) 1012 1012 1011 1013 1011 1012 1007 1014 1013

Jw (g m™3) 114 109 11.2 11.0 105 9.8 106 10.7 11.5

8; (K) 289.6 288.4 288.4 290.0 290.2 289.0 291.4 289.5 291.5 289.3

Os (ppbv) 19.7 254 327 235 245 443 50.5 258 274

WS(ms?') 98 90 56 88 75 43 54 70 74

WD (deg) 342 322 321 340 328 276 308 316 357

z; (m) 773 730 588 &880 925 917 1380 1034 —

17.2

19.1

1013

39.3

349

1009

| £5
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Table 3.2: Surface layer fluxes. See text for definition of symbols.

'FLIGHT NUMBER

w'd (mK m s™1)

w'q, (mg m~%s7!)
w0’ (mK m s™?)
u, (ms™!)

—L (m)

1 2 3 4 5 6 7 8 9 10
126 39 103 10.1 85 40 71 1.2 114 11.2
41.7 243 236 428 439 285 147 105 441 225
198 7.9 142 173 158 85 80 29 186 151
0.31 028 0.18 030 0.26 0.5 0.14 0.17 022 0.19
119 205 36 132 87 38 34 212 52 40

Gt



Chapter 4: OZONE BUDGET

Current understanding of the global ozone (O3) budget generally accepts that
three primary processes control tropospheric O3. These are: (1) a source from
exchange of air with the ozone-rich stratosphere, (2) destruction at the earth’s

“surface, and (3) ambient photochemical reactions which may yield either a net
sink or source depending on reactant concentrations. The relative importance of
these processes and their distribution over the globe and through the depth of the
troposphere is, however, largely uncertain. The observational data of DYCOMS
can be used within a suitable theoretical framework to address this uncertainty.
Many of the results, specific to the eastern North Pacific SC regime, should be
applicable to pristine marine areas over the globe including large portions of the
Southern Hemisphere.

Recent advances in measurement technology allow calculation of the vertical
O3 flux in turbulent air by eddy correlation of aircraft data (Lenschow et al.,
1981). Low level measurements of this type constitute a nearly direct estimate
of the surface destruction rate. Combining flux and mean measurements with
micrometeorological theory, values are obtained for surface characteristic variables
which can be used to improve parameterization of Oz surface destruction in
global models. The measurement set is further used to estimate terms in the
Os conservation equation and to diagnose the net chemical source/sink in the
boundary layer. This is compared to photochemical model predictions for similar
background conditions. Finally, the observed Os distributions, meteorological low

fields, and inferences for source regions are discussed.
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4.1 SURFACE DESTRUCTION

Dry deposition at the surface is a major loss of ambient O3 and therefore
needs to be determined accurately for any simulation of tropospheric Os processes.
Due to the complexity of the surface chemistry, theoretical determination of the
deposition rate to seawater has not been satisfactory (Garland et al., 1980) and
empirical methods are required. Several techniques have been employed by a
variety of investigators (Aldaz, 1969; Galbally and Roy, 1980; Lenschow et al.,
1982). The problem is that the measured deposition rates to ocean vary widely.
In general, O3 deposition to sea surfaces is much less than to terrestrial surfaces,
except snow, and has an uncertain dependence on wind speed (Wesely, 1983). But
the range of measured values is so great that Levy et al. (1985) concluded that a
realistic simulation of surface loss was not possible and chose to use a range of O;
deposition velocity that varied by a factor of five in their global transport model.
Part of this variability is due to measurement artifact and the difference between
techniques, and part is natural.

In this section I present measurements of Os surface deposition from the DY-
COMS project. This represents 5 1/2 hours or about 2000 km of eddy correlation
measurements from the aircraft at 50 m above sea level. These are the first
available for the SC regime. The values are discussed in terms of mean and

variability, and recommendations for use in large-scale models are given.

4.1.1 Method of Calculation

Two parameters that will be discussed as characteristic of the Os surface

destruction rate are deposition velocity w; and surface resistance r,. Thus

_ —(w'0%),

wy = m (4.1)

and
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re = wil — 1, (4.2)

where r, is the aerodynamic resistance calculated by the method of Wesely (1983)
for smooth surfaces. The surface flux (w'O%), is obtained by extrapolating flux
values at the two lowest measurement levels to the surface (except Flights 6 and
9 are 50-m means) and Os (50 m) is the mean measured O3 at the lowest level.
Recall that this procedure assumes that no chemical reactions are occuring in
the lowest 50 m on a time scale small enough to be comparable to the turbulent
mixing time (Fitzjarrald and Lenschow, 1983). The statistical uncertainty in wy
and r, comes largely from the variation in w'Oj} since oo, is typically 0.5 ppbv
and r, turns out to be only a small fraction of r,. The confidence intervals on

(w'0%), for each flight are 90% intervals based on a Student ¢ distribution of the

measured flux values.

4.1.2 Discussion

Values for the surface destruction parameters are given in Table 4.1 along with
averages over the entire project. The first thing to note is that most resistance is
contributed by the surface. For any case, r, is less than 5% of the total resistance
to Og transfer. Negligibility of r, may sometimes be a useful approximation, valid
in moderate winds for slowly depositing species. The second notable feature is
the variability of w, and r,; values vary from flight to flight by more than a factor
of two and the individual estimates are uncertain to more than +50% at the 90%
confidence level. Some of the variability may be understood by examining the flux
profiles. For example, the extreme low w; value for Flight 6 may be due to flux
divergence below 50 m. The flux measured at 250 m, though further west along
the track, is greater than the 50-m measurement. Extrapolating these values
would increase wy and decrease r, by at least 10%. The other low w; extreme,

Flight 3, has the largest uncertainty for any 50-m flux in the program.
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There is no apparent close correspondence between variations in O3 deposition
rate and the measured and observed conditions during DYCOMS. Based on Oj
solubility in water, r, should be correlated with T, increasing 3% per °C (Garland
et al., 1980). This is not supported by the mean data (Table 3.1) and would be a
very small signal compared to the observed range. Flight 9, along the T, gradient,
shows this correlation but has the additional complication of decreasing u.. The
correlation between wy (or 1/r,) and u, (Table 3.2) is not strong but does appear
to be significant (R = 0.65). Since increasing u. corresponds to higher @ and thus
increased sea surface roughness, surface area, and sub-surface mixing, resulting
increases in wy or 1/r, are expected. This tendency was reported by Galbally and
Roy (1980). No dependence on % was detected by Wesely et al. (1981) over lake
water however, nor by Lenschow et al. (1982) over ocean. Wesely et al. (1982)
observed increasing CO,; flux with u, and suggested that coated bubbles mixing to
the surface may enhance chemical reactions. The reaction of Os with surfactant
species has been suggested by Garland et al. (1980) to explain the higher rate of O3
deposition to natural sea water than that expected from laboratory measurements
with prepared solutions. All of this suggests that, while wind speed exerts some
control on Og surface resistance, some unmonitored condition of the sea state is
operating as well, with a similar degree of influence. The DYCOMS measurements
indicate that r, might be best selected as 3000 s m™' for 7 < ¥ < 10 ms~! and
5000s m'for4 < ¥ < 7Tms™1.

In contrast to this line of reasoning, if we assume that the above variability
represents random variation of the same phenomenon with a normal distribution,
the mean values of wy and r, for the program (Table 4.1) are accurate to about
+20% at the 90% confidence level. The program-mean r, = 4190 s m~! is about
four times higher than Galbally and Roy (1980) proposed for ocean based on a
compilation of previous measurements. It is also about twice that Lenschow et
al. (1982) found for rather polluted conditions over the Gulf of Mexico and in
high winds (15 to 18 m s™!) over the North Pacific. The mean surface flux agrees
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closely with box measurements of Aldaz (1969) however. In view of this it appears
that the r, estimate of Galbally and Roy (1980) should be revised upward but that
caution and further study are needed to extend these observations to estimates of

the Oj surface sink over ocean areas such as the tropics or Southern Hemisphere.
4.2 BOUNDARY LAYER PHOTOCHEMISTRY

Photochemical processes have been proposed as a significant influence on Og in
the unpolluted troposphere, largely on the basis of expected reactant concentra-
tions (Crutzen, 1973) and the well-documented production of Og in polluted at-
mospheres (Leighton, 1961). Photochemistry has beén proposed to explain several
observed features of Og distributions (Chameides and Walker, 1973; Fishman et
al., 1979; Liu et al., 1983). The impact of photochemistry on the global O3 budget
has been studied with numerical models of photochemical reactions (Fishman and
Crutzen, 1977; Liu et al., 1980; Chameides and Tan, 1981; Logan et al., 1981).
The problem, however, is that measurement of O3 photochemical destruction
and production in situ is very difficult and experimental verification of model
predictions is lacking (Fishman, 1985). Lenschow et al. (1981, 1982), using a
procedure very similar to the one used here, obtained experimental estimates of O3
production over Colorado rangeland and the Gulf of Mexico in air characteristic of
moderate anthropogenic influence. Kawa (1985) found a much greater production
over Texas forest when under advection from the Houston urban plume. In this
section I address the question of estimating Os photochemical processes in the

unpolluted remote marine boundary layer using DYCOMS measurements.

4.2.1 Diagnostic Model

This section details the theoretical framework within which the measured
quantities are used to diagnose the net chemical source/sink of O3 in the planetary

boundary layer. Starting with the conservation relation for a vertically conserved
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scalar, ds/dt = Q,, and performing Reynold’s averaging, a general mixed-layer

budget equation can be written (Lenschow et al., 1981) as

ow's’

dz

where Q, represents the mean internal sources and sinks of the scalar s. This

L
ot oz

=Q, (4.3)

assumes anelastic continuity, horizontal homogeneity of flux terms, negligible
mean vertical advection, and a coordinate system oriented along the direction of
the mean wind %. In a frame of reference following the aircraft motion (denoted
D/Dt) we see, with the aid of Fig. 4.1, that the change in the mean quantity
equals the total derivative plus the change due to the relative motion in the large
scale gradient, D3/Dt = ds/dt + (33/dn)(Dn/Dt). The budget equation,

specifically for O3, now becomes

DO, B 30s Dn ow'O}
Dt an Dt 0z

where Dn /Dt represents the aircraft motion relative to the mean horizontal wind

= Qo, (4.4)

and 80s/dn is the gradient in that direction. Terms on the left hand side of (4.4)
are evaluated from aircraft measurements and Qo, is calculated as the residual.

The DOs/Dt term is the vertical average of the differences measured at each
level between two sets of legs (at points A and B in Fig. 4.1). The flux divergence
term is obtained from a linear regression of the flux measurements versus altitude.
The relative advection term is approximated from the finite differences 6z and 6y
as shown in Fig. 4.1 and the difference in time §¢ between measurement sets A
and B. The gradient 30s/dy is directly measured in all flights but 803/dz is
available only for Flights 7 through 10. Thé z-component of mean advection is
not included in the budgets for Flights 1 to 5 but is in the uncertainty estimates.
The % is averaged over all flight legs in the boundary layer.

During planning for DYCOMS the aircraft flight pattern was intended to be
advected as nearly as possible with the mean wind such that Ds/Dt = ds/dt
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and gradient terms would not be calculated. The horizontal O3 gradients were ex-
pected to be small enough that deviations from an advected flight path would not
be significant. In the field, however, the O3 gradients were found to be significant
in some cases, belying the apparent horizontal homogeneity of the SC. Combined
with deviations in the intended path due to outside turns (to avoid sampling
aircraft exhaust), difficulty determining the exact crosswind direction from the
initial sounding, and different winds above the boundary layer, the gradient terms
became relatively large. Unfortunately, the uncertainty in calculating these terms

contributes a large amount of the uncertainty in the diagnosed value of Qo,.

4.2.2 Results

Results from the eight DYCOMS budget flights are shown in Table 4.2. The
most striking feature of this table is that in the long-term (~ 1 month) mean
the total time derivative, sum of the first two terms, is zero and the vertical flux
divergence is balanced by net chemical destruction. Closer examination of the Qo,
terms reveals that the magnitude of Flight 7 is significantly larger than any others
and may be an anomaly pulling the average too low. There is possible justification
for disregarding Flight 7 since the boundary-layer soundings are decidedly not
well-mixed and thus may violate assumptions regarding homogeneity. If Flight
7 is not included in the average, Qo, is about —0.02 ng m~3s~! and part of the
average flux divergence balances a small increase with time.

The confidence intervals on the individual case values for DOg/Dt are the
uncertainties in the mean at the 90% confidence level based on a Student ¢
distribution of the O3 change with time at each altitude. Flight 8 is larger
because fewer legs were flown. The confidence intervals on (80s/0n) (Dn/Dt)
are determined from the 90% confidence interval on the gradient estimates plus
| (6z/6t)(80s/8y) | where 303/dy is used because 03/dz is not available. The
confidence limits on dw’'O%/3z are from a standard analysis of variance calculation

on the linear regression at the 90% level (Draper and Smith, 1966). The interval
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on Qo, is the sum of intervals on the three measured terms which is clearly
a worst-case interpretation. The confidence intervals on entries in the Average
column are 90% values based on the estimates for each flight entry.

Looking at individual terms we see that in every case the relative advection
term tends to balance the time change, in most cases rather closely, even though
the largest uncertainties reside in the advection terms. This lends confidence to the
assertion that Og is near steady state in the SC. The flux divergence terms are all
less than zero and fairly consistent in magnitude even though the uncertainty for
any given case is comparable to the mean divergence. Taken with the above, this
would indicate that the photochemistry is near steady state on a time scale from
day to day. Whether the fluctuations in Qo, from flight to flight are significant is
questionable given the measurement uncertainties but discussion pointing to their

reliability is included in the next section.

4.2.3 Discussion

Detection of an Og sink in the marine boundary layer by this method is an im-
portant confirmation of photochemical model predictions. Moreover, the average
magnitude of the destruction rate (0.02 to 0.07 ng m3s! ~ 2 to
9 x 10° molec cm™3s7!) agrees closely with predictions for the daytime marine
boundary layer with low background NO (Liu et al., 1983; Logan et al., 1981;
Thompson and Cicerone, 1982). Further understanding of the Os budgets may
be gained by looking at details of the photochemistry.

Very briefly, the Os photochemistry relevant to the remote marine boundary
layer is the following. Ojs is consumed through ultraviolet photolysis and the

occasional collision with a water molecule.

Os + hv(< 320 nm) — O; + O('D) (R1)
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o('D) + H,0 — 20H (R2)

The OH will oxidize a variety of hydrocarbons and CO producing HO,, CH3O,
or RO,, any of which react with NO to regenerate OH. For example

HO, + NO — NO, + OH (R3)

which will generate Os during daytime.

NO, + hv(< 420 nm) - NO + O (R4)

0O+ 0, +M—0s +M (R5)

If NO is low, however, then O3 destruction may occur catalytically.

The strong dependence of net O3 production/destruction on NO is a feature
common to all models.

The equations point out the dependence of Og chemistry on sunlight. This is
especially important to DYCOMS because of the influence of the SC. The cloud
albedo for SW and UV is 40 to 50%, so from (R1) the Os destruction rate for
the cloud-topped boundary layer should be less than for clear skies, all else being
equal. The magnitude of this effect is predicted to be a 30 to 50% reduction in net
O destruction (Thompson, 1984; Chameides et al., 1987). Therefore, we would
expect the mean destruction for DYCOMS to be small compared to the clear sky
models mentioned above, which it is if Flight 7 is excluded. This is not clearly

observable in the case to case variation, however. Flight 8, the cloud-free case,
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and Flight 10, the morning case, have Qo, near the mean. Possibly, variations of
NO in the boundary layer create variations in Qo, large enough to obscure the
effect of clouds. The range of Qo, (excluding Flight 7) in DYCOMS is similar to
that predicted for the marine boundary layer by Chameides et al. (1987) based
on observed NO and Og.

The sink for Flight 7 appears anomalously large, but the strong dependence of
Qo, on the Oj concentration (R1, R6, R7) and the fact that O; is highest of any
flight means that a larger sink in this case may be predictable. For Flight 3 the
observed O3 production may well be the result of higher NO due to the influence of
continental air advecting from California. The typical DYCOMS trajectory shows
no influence of continentality (Lenschow et al., 1988a) but Flight 3 is closer to the
coast (Fig. 2.1) and the 300 K isentrope goes back to 1 km altitude approximately
over Santa Barbara two days earlier.

So although the uncertainty in Qo, for any case is large, there is indication that
the variation between them is meaningful. A most interesting experiment would
be to include measurement of NO,; with this method. This was attempted in
DYCOMS but the instrument failed. As far as using DYCOMS measurements to
estimate Qo, for other remote marine regions, these results indicate that daytime
O3 destruction is in the range —0.02 ng m~3s~! to —0.07 ng m~3s~! or possibly
lower for clear regions. This agrees with the findings of Levy et al. (1985) who
required such a photochemical sink in the tropical and subtropical boundary layer

in order to achieve a realistic simulation of O3 transport.
4.3 LOCAL MEAN DISTRIBUTIONS

Although the O3 measurements of DYCOMS are specific to a rather small
area and shallow altitude range, they are extremely high resolution and can
contribute to our understanding of the global Os distribution, particularly in
terms of variability. In general, DYCOMS Oj distributions conform to established

climatology for remote regions: a tropical minimum increasing toward either
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pole, low concentration in the boundary layer, an increase with height in the
free troposphere and a definite seasonal cycle (Fabian and Pruchniewicz, 1977;
Chatfield and Harrison, 1977; Seiler and Fishman, 1981; Logan, 1985; Piotrowicz
et al., 1986). The most striking feature of the DYCOMS O; data is the large
degree of variability, especially in the vertical profiles above the boundary layer.
Knowledge and understanding of this variability are important for interpreting
O3 datasets, comparing model predictions to measurements, and possibly for
simulating non-linear interactions among chemical species.

Within the marine boundary layer, DYCOMS O; is in the 20 to 30 ppbv
range and vertically well-mixed (Figs. A.1 to A.24). The only notable exceptions
are Flights 6 and 7 which have about twice the DYCOMS median O (Table
3.1). Flight 7 also shows evidence of a layered, unmixed boundary layer. The
meteorology on these days was perturbed by the influence of a tropical storm
(Section 2.2) and the higher Os is probably related to increased entrainment of
free tropospheric air (Section 5.3 below). None of the DYCOMS profiles show
an Og gradient across cloud base supporting the contention that Og is a passive
scalar in cloud processes (Pearson and Weaver, 1988) as well as confirming that the
measurement technique is not sensitive to liquid water. There are no surface layer
vertical gradients of the type observed by Fishman et al. (1987) and attributed
by them to a strong surface sink. In view of the DYCOMS soundings and the
discussion of sinks in the previous two sections, I suspect that the gradients of
Fishman et al. (1987) over ocean are partially horizontal ones, interpreted as
vertical along the aircraft slant path. The importance of horizontal gradients in
the boundary layer to the budget analysis was mentioned in the previous section.
DYCOMS Os gradients have a typical leg-average value of 0.02 ppbv km™! in
no preferred direction and a maximum of 0.07 ppbv km™!. Larger gradients on
a smaller scale were also observed. The boundé:y layer horizontal Og gradients

appear to be in response to entrainment of Os layers from above. In all cases
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except Flight 6, Og is higher above the boundary layer than within, as expected
with a low level sink.

The strongly layered nature of Oj vertical distributions has been observed pre-
viously and associated with stratospheric influx (Routhier et al., 1980). Lenschow
(1982) has demonstrated however, that a purely meteorological explanation of
extremely thin layers is not sufficient. Some lamina of DYCOMS, for example
Flights 4 and 5, (Figs A.8a, A.9b, A.10a, A.11b) are distinguishable in soundings
4 1/2 hours and 80 km apart. High Ogs values are often interspersed vertically
with low concentrations typical of the boundary layer and the gradients can
become almost like step-function changes (e.g. Fig. A.16). Interestingly, the
November profiles of Fishman et al. (1987, Figs. 3 and 5) in the same general
area show relatively little Os variation with height. The origin of these layers
and the mechanism for maintaining the extreme gradients is not clear. Direct
injection from the stratosphere (Danielsen and Mohnen, 1977), photochemical
production in aged continental air (Fishman and Seiler, 1983), production en-
hanced by lightning-generated and/or entrained stratospheric NO (Chameides
et al., 1987) have been proposed to explain high O concentrations in the free
troposphere. A typical DYCOMS trajectory (Lenschow et al., 1988a) traces air
back to about 500 mb in the Gulf of Alaska six days previously. It was possibly
involved in a cyclonic disturbance at that time. Continental influence can be
ruled out for at least eight days and probably longer. In general the O3 layers are
anticorrelated with water vapor fluctuations (e.g. Fig. A.7) supporting an upper
tropospheric or stratospheric Os source. Direct infusion versus production in the
upper troposphere cannot be distinguished from this information. If production
is important though, it must be completed by the time parcels subside into the
boundary layer, as we have seen from the previous section.

Other advection scenarios appear as well. During Flight 6 a layer of charac-
teristically tropical air is seen just above the boundary layer (Fig. A.13). This
moist layer, about 500 m deep, has the lowest O3 and highest 0, of any during
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the project. It appears to have been advected from the tropical disturbance to
the southwest in an elevated wind jet.

Whatever their origin, the Og layers can have a significant effect on near-
surface concentrations. Figure 4.2 shows the increase in Oj in the boundary layer
along a strong gradient in Og above. Downward O3 flux also increases in this
direction. The layering observed in Os may also lead to problems interpreting
measurements of other chemical species for which a significant averaging time is
required. For example, the change in concentration of -a chemical species across
the inversion may be required to close its budget. If this species is correlated
with O3 and measurement of it requires a leg-integrated sample (~15 min) the
measured concentration above the boundary layer will be highly dependent on
location within the vertical gradient and probably not representative of cloud top

conditions.

44 CONCLUDING DISCUSSION

I have made an experimental determination of several aspects of the global
O3 budget. The rate of Og destruction at the ocean surface has been measured
by a nearly direct technique. A significantly higher mean r, than most previous
estimates is found. A time constant for an exponential decrease in boundary
layer Os due to surface deposition can be estimated from 7, = Z/w; =~ 40
days. We have also seen that deposition rates may vary by as much as a factor
of two between cases, in spite of apparently similar sea surface states. Extension
of these measured rates to other ocean areas should therefore be done cautiously
and more experimentation should be done to determine the reasons for variation
in Os deposition.

The aircraft measurements have been used to estimate terms in the Og con-
servation budget. The results show that, in the average, Os in the SC boundary
layer is near steady state and that a small photochemical Og sink is present. The

time constant for destruction by this sink is estimated as 7, = —03/Qo, =~ 10
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to 32 days. This sink is at least comparable to and possibly greater than the
estimated surface sink. This is an important validation of modeling results. Given
the relative uncertainties, it is not known if case-to-case variations in the O,
photochemistry are significant. Further studies of this kind, augmented by sam-
| pling other species, are required to more quantitatively evaluate this apparently
important process.
Finally, the high resolution O; profiles from DYCOMS have been presented as
a contribution to global Og climatology and its spatial variation. The observed
Os layering can affect concentrations at the surface and provides a caution for
interpreting any one-dimensional Os samples (e.g. Gregory et al., 1984). Clearly,
a conceptual model like Fig. 4.3 (from Schubert et al., 1976) is not adequate to
describe the general circulation of O3 in the SC regime. Continued study of Og
lamina while integrating meteorology, tracers, and chemistry can lead to a more
complete model of O3 circulation including the relative importance of stratospheric

flux.



Table 4.1: Ozone Surface Deposition

FLIGHT NUMBER 1 2 3 4 5 6 7 8 9 10 AVE
[@OYo (ng m™%~1) -7.7 —17.7 —108 —17.5 —156 —13.5 —21.0 -10.0 —16.4 -23.8 —154
454 +9.6 +169 482 7.8 462 +163 +10.1 +13.1 +124

05 (ug m™3) 39.3 51.6 664 47.0 49.0 893 1011 536 511 T7.5  62.6
wy (mm s~1) 020 034 016 037 032 015 021 019 032 031 026

+0.05
re (s m™) 94 107 146 98 110 167 177 171 121 139 133
ry (s m™1) 5010 2800 6020 2580 3030 6460 4640 5200 2990 3120 4190

1840

0¢
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Figure 4.1: Schematic of typical DYCOMS crosswind flight pattern and the
difference between Lagrangian and aircraft time derivatives. Points A and B
are loci denoting an average position for each of the leg sets. Segment n is the
difference in position between the aircraft and a parcel advected by %.



Table 4.2: Ozone Budgets (ng m™ s™!)

'FLIGHT NUMBER 1 2 3 4 5 7 8 10 AVE
DO/ Dt 0.50 —0.18 0.21 -—0.36 0.02 —050 —0.65 —0.08 —0.13
+0.09 +0.06 +0.08 +0.07 +0.02 +£0.13 +£0.31 =0.14 —
—(003/0n)(Dn/Dt) —0.51 024 -0.02 051 -0.04 014 0.62 0.09 0.13
4+0.10 +0.58 +0.20 +0.35 +0.02 +0.09 +0.30 =0.28 —
ow'0%/ 0z -0.09 -0.01 -0.07 -0.10 -0.17 —0.03 0.0 —0.07 -0.07
+0.05 +0.05 =+0.09 +0.06 =+0.03 +0.07 +0.05 £0.08 —
Qo. ~0.10 0.05 0.12° 0.05 —0.19 —-0.39 —0.03 —0.06 —0.07
4+0.24 +0.69 +0.37 +0.48 +0.07 +0.29 £0.66 +0.50 £0.11

¢S
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Figure 4.3: Schematic cross section from San Francisco to the Hawaiian Islands
to the Marshall Islands. Three regimes are shown: the stratocumulus regime and
the trade cumuous regime make up the broad descending branch of the Hadley
circulation; the cumulonimbus regime, or ITCZ, makes up the narrow ascending
branch of the Hadley circulation. From Schubert et al. (1976).



Chapter 5: DYNAMICS AND THERMODYNAMICS

Stratocumulus cloud layers play an important role in the earth’s radiation
balance and hence climate. They may likely provide a feedback mechanism
for climate perturbations. In order to assess this role it would be desirable
to accurately include SC formation, maintenance, and dissipation processes in
general circulation model climate studies. Several questions remain before the
dynamics and thermodynamics of the regime are understood well enough to do this
however. SC have been widely studied through numerical models and, to a lesser
extent, through empirical analysis. The essential processes have been identified
as surface fluxes, latent heat release, radiative flux divergence, subsidence to form
a capping inversion, and entrainment. Wind shear, drizzle, and other factors are
important in certain cases. Randall et al. (1984) have identified a number of as
yet unresolved issues that are amendable to observational study. Several of these,
as well as a number of other problems, can be addressed using the DYCOMS
dataset.

In this chapter DYCOMS measurements are used in several applications of
theoretical conservation relationships. We begin with a background discussion
of the problems that are the focus of this chapter. A descriptive analysis of
the local mean conditions is provided to establish the place of this experiment
in SC climatology. Measurement of entrainment into the SC-topped boundary
layer is demonstrated using a new method based on Oj conservation. These
measurements are compared along with previous estimates in a discussion of
entrainment dynamics. The measured components of the layer thermodynamic

energy budgets are presented including turbulent fluxes, radiative flux divergence,



56

and mean transport. These are used to address the questions of the distribution
of longwave (LW) cooling, the importance of shortwave (SW) heating, drizzle,

and mixed-layer assumptions.
5.1 BACKGROUND

The mixed layer model (Lilly, 1968) is a very useful approximation for simu-
lating SC processes, one which has yielded generally good results. The validity
of this approach is supported by large eddy simulation (LES) (Deardorff, 1980a;
Moeng, 1986) and some observations (Hanson, 1984; Albrecht et al., 1985). How-
ever, based on a one-dimensional (1-D) turbulence closure model, Duynkerke and
Driedonks (1987) conclude that it is an oversimplification and obervational studies
by Brost et al. (1982a,b), Nicholls (1984), and Nicholls and Leighton (1986) show
mixed layer assumptions are not justified in all cases. In spite of these, the mixed
layer model is a good tool for understanding SC and further investigation of its
parameterizations is warranted.

A key requirement of mixed layer models is an assumption regarding entrain-
ment rate at the layer top. From theoretical considerations, the entrainment
energy is usually obtained from buoyant production in the turbulence kinetic
energy (TKE) balance within the mixed layer. Various forms of parameterization
have been tested but no concensus has been reached (Schubert, 1976; Deardorff,
1976a; Stage and Businger, 1981a,b). Comparison with observa.tior;s by Nicholls
and Turton (1986) indicates the models generally underestimate measured values.
Brost et al. (1982b) conclude wind shear can be important and Deardorff (1980a)
proposed that entrainment velocity (w,) depends on the Richardson number at
cloud top. Moeng (1987) found neither of the usual partitioning closures (Randall,
1984) are satisfactory.

Closely related to entrainment closure is the issue of how radiative flux di-
vergence is distributed between the inversion and mixed layers (Deardorff, 1981).

Lilly’s (1968) original model specified all LW cooling within the thin inversion
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layer, not contributing to the mixed layer energetics. Deardorff (1976) argued that
some LW divergence should occur within the mixed layer, generating turbulence
and cooling the boundary layer directly. Schubert et al. (1979a), Randall (1980),
and Fravalo et al. (1981) found that model entrainment rate and mixed layer
structure are quite sensitive to this distribution. The occurence of most LW
cooling above the mixed layer is supported by the observational studies of Brost
et al. (1982b) and Rogers and Telford (1986) as well as LES modeling (DeardorfT,
1980a; Moeng, 1987). The contrasting view, that LW divergence occurs largely
within the area-averaged mixed layer, is supported by 1-D second-order closure
modeling (Chen and Cotton, 1987) and observational analyses of Albrecht et al.
(1985), Slingo et al. (1982), Nicholls (1984), and Nicholls and Leighton (1986).
Almost all of these studies agree that this problem needs further investigation.
The effect of SW absorption in cloud is not included in many SC models but it
does appear to be an important component (Fravalo et al., 1981; Nicholls, 1984;
Chen and Cotton, 1987).

Further information toward resolution of these questions as well as questions

regarding the importance of drizzle and the dissipation/reformation cycle will be

. contributed by analysis of the DYCOMS data.

5.2 LOCAL MEAN CONDITIONS

The DYCOMS typical (Flights 1-5, 10) mean profile shows a boundary layer
that is vertically well-mixed in ¢, 8;, and Os about 600 to 1000 m deep. Winds are
generally well-mixed but somewhat more variable. The sea surface temperature
(SST) distribution over the flight locations (Fig. 2.1) matches SST climatology
(Fig. 2.3). With northerly winds and the observation that T, > Ty, (Table
3.1), these cases are all characteristic of boundary layer flow over increasingly
warmer surface. The cloud layer is typically 150 to 300 m deep with ¢; increasing
nearly linearly from cloud base to near cloud top. The liquid water content is

relatively low: g; (top) <0.5 g m™3 for any flight. Droplet spectra indicate that -
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the vertical ¢, gradient is largely due to an increase in drop size and much less to
an increase in number. Significant horizontal inhomogeneities in the cloud were
observed in most flights including small holes, roll structures, and clear areas. No
penetrating convection was observed. Above the boundary layer, large variations
in scalar distributions are found but in every sounding, except Flights 6 and 9,
the decrease in ¢, is large enough that A8, < 0 at cloud top. The Af; is 5 to
10 K. Wind speed generally decreases upward across the boundary layer top but
shear does not appear large.

Flights 6 through 9 are not typical cloud-topped cases. Flight 6 sampled in a
scattered cloud region which shows advection of tropical air above the boundary
layer. Strong positive wind shear is present in this case. Flight 7 is the only cloud-
topped case that is not well-mixed. Compared to typical cases, the inversion
is higher and the cloud more variable, even showing multiple layers in places.
Horizontal inhomogeneity is large and a more cellular structure of the clouds is
observed. Some of these clouds have the highest ¢, measured during the program.
Flight 8 is entirely free of low level cloud. The inversion is not as sharp and
there is a significant surface layer moisture gradient. Wind shear also is more
pronounced. While the bulk of the boundary layer is nearly well-mixed and only
slightly stable, condensation is not present. Flight 9 samples across the boundary
between clear and cloudy regions and shows a complicated series of soundings.
Flux profiles and budgets are not constructed for Flights 6 and 9 due to the flight

architecture.

5.3 ENTRAINMENT

5.3.1 Method of Calculation

The entrainment relationship is derived (Lilly, 1968) by integrating the con-
servation equation (4.3) across a thin layer at the mixed layer capping inversion.

For an arbitrary scalar s
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o0H _OH _ N [Et
(Ft_ + U - wg) A + (W's)g = / Q, dz (5.1)

where H is the height of the mean inversion, wg the mean vertical velocity at H,
AS the change or “jump” in s across the layer, (w's') g is the turbulent flux of s at
H, and Q, is the source/sink term which is integrated across the thin layer from
below to above H. I have retained the horizontal advection term for the case of
an inversion sloping along the direction of the mean wind #. This assumes that
the turbulent flux above H is zero and wind shear is insignificant. Denoting the
first term in parentheses as the entrainment velocity w, and applying it to Og we

have

_ —(w'03)m
~ AOs

since the Oy source/sink vanishes as the layer thickness goes toward zero.

w, (5.2)

Terms on the right of (5.2) are obtained from aircraft measurements with
an estimate for w, as the result. The (w'O})y is from extrapolation of a linear
regression of the flux measurements to height H, and AO; is obtained from the
soundings and legs at cloud top. Since the soundings show that AOjs is not always
a step function, some assumption of a finite mixing depth is made to get AOs.
The AO; estimates have been confirmed with mixing line analysis (Betts, 1982)
by Weaver (1987). The 90% confidence limits on (w'O})y are determined by a
standard analysis of variance program on the flux profile. Standard deviations of

the AOjs estimates, 0, are from the individual point evaluations.

5.3.2 Discussion

The ozone-derived entrainment measurements are shown in Table 5.1 along

with the mean inversion heights. For the cloud cases w, ranges from 1 to 5 mm s™!

1

and averages about 3 mm s~!. The clear case, Flight 8, has no measurable

entrainment. The uncertainties in each case are large. The episodic nature of
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entrainment flux and large cloud-top Og gradients make good statistical estimates
hard to get. I estimate that the w,’s are accurate to at best 50% of the mean
with 90% confidence. Flight 7 is much worse. This makes it hard to conclude that
variations among the flights are significant based solely on these measurements,
but other information may corroborate them.

There is a good correlation (R = 0.75) between H and w, for the cloudy cases.
Since w, is directly related to the rate of change of H this correlation can be

‘expected and confirms that measured‘varia,tions in w, are physical. Correlation
with other measured quantities is weak however. In particular, w,A#8, (not shown
but almost exactly correlated with w,A#8;, Table 5.4) is not apparently correlated
with the buoyancy flux at the surface (Table 3.2) or its vertical integral (Fig. 3.2)
except possibly Flight 10 with the high values.

This lack of correlation is somewhat disappointing as far as recommending an
entrainment closure for mixed layer models but there are a number of reasons for
not expecting good correlation. The first of these is that variations in radiative
flux divergence at cloud top are controlling w,. This can be seen by obtaining the

entrainment relation for w'¢, from

(w’%)g = —w,AO_, + (AF)H (5.3)

and

(wlqlw = —wAg, (5.4)

where (AF)g is the net radiative flux divergence across the entrainment zone.

Following Deardorff (1980b) then

w(—aAl, + 0AT) = (W&)g — a(AF)g (5.5)

where « is a constant depending on temperature. From this we see that w, may

vary depending on (AF)g even if buoyancy flux is specified. We shall see in a
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succeeding section however, that the total radiative flux divergence at cloud top
is very similar for each flight. The problem then becomes one of determining
whether the distribution of the total LW flux divergence varies between flights.
The SW extinction depth in SC is long enough that flux divergence occurs well
within the cloud layer and doesn’t contribute directly to the energy balance in
the entrainment region.

Another possible reason that entrainment flux doesn’t correlate well with
mixed layer flux may be that it depends on the respective production and con-
sumption terms in the TKE balance rather than the net flux (Stage and Businger,
1981a). Further data analysis including conditional sampling (Mahrt and Pau-
mier, 1984) would be required to test this theory. Another possibility would be
the influence of shear-forced entrainment but there is little evidence for this from
the soundings. Possibly numerical modeling with the experimental data as inputs
could be used to sort out the causes for w, variation.

In a further effort to determine the factors driving w,, I attempted to separate
w, into its components (Eq. 5.1). Unfortunately, horizontal variations in H and
the aircraft flight position make dH/dt very hard to determine. For DYCOMS
the slope in H along the crosswind direction, up to the west, seems to dominate.
In some cases dH/dt appears to be less than zero and in no case could a good
estimate for wy be obtained. The range of estimates for wg is about —9.5 to
2.8 mm s~! resulting in boundary layer divergence estimates from 1.2 x 10~°
to —3.8 x 107® s™1, While zero is probably a better estimate for the minimum
divergence in these conditions, the median of these estimates agrees well with

climatology (Neiburger, 1960).

5.3.3 Entrainment From Total Water

The w, for DYCOMS cases has been estimated from total water flux and mean

measurements. This technique is somewhat more complicated than ozone-derived



62

but is a nearly independent check on those estimates. The entrainment relation

from (5.1) for total water substance is

w, Ay =— (W'q, + w'q + ©@)m (5.6)

where w¢q; is the gravitational settling, or drizzle flux of liquid water. The flux
at H is evaluated by linear extrapolation of the the flux profile measured in
the boundary layer (Fig. 3.2). The uncertainty in these measurements due to
instrument limitations is discussed in Secs. 2.3 and 3.4. Nevertheless, w, using
(5.6) .agrees well with (5.2) except for Flight 5 (Table 5.2). This result also
confirms the physical nature of the variation of w, between cases. The agreement is
encouraging for aircraft experiments that do not have O3 measurements available,
however non-linearities in the w'q), profiles mean the measurements are probably
not fully reliable. Aircraft instrumentation for the components of total water flux
needs continued development. Inclusion of drizzle flux is generally not significant

to the extrapolated flux value.

5.3.4 Comparison to Previous Measurements

In comparison to other measurements of w, in the cloud-topped boundary
layer, DYCOMS values are well to the low end. The only other measurement
from the same location is Hanson (1984) whose w, = 3.5 mm s~! agrees well with
DYCOMS. The measurements from further north off the California coast (Brost
et al., 1982a) and the North Sea (Nicholl, 1984; Nicholls and Leighton, 1986) are
about a factor of two higher. These other estimates are all based on total water
flux and mean measurements. Compared to mixed-layer model estimates, the
DYCOMS w, definitely favors values of the “minimum entrainment” hypothesis
(Lilly, 1968; Deardorff, 1976; Stage and Businger, 1981b). DYCOMS w, does not
agree well with results from LES models (Deardorff, 1980a; Moeng, 1986) which

yield w, in the 6 to 20 mm s~! range, but did not include SW.
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54 THERMODYNAMIC BUDGETS

In this section mixed-layer budgets of total water and thermodynamic energy,
including radiative flux components, are discussed. The total water budget bal-
ance is an estimator of the uncertainty of the measurements and a check on the
assumptions and analysis technique. The energy budgets are used to indicate
what the dominant SC processes are and how to approach their parameterization.
They are also used to estimate component terms like SW divergence that are hard

to measure.

5.4.1 Total Water

The conservation relation for total water (b = @ + ¢u) is

dgy + o(w'q, + Wg)
dt 0z

where Q,, the source term for water, is now a residual measure of error. As in

= Q (5.7)

Sec. 4.2.1, the total derivative of the mean is actually the change measured by the
aircraft plus the change due to aircraft position relative to the mean wind (Fig.
4.1). The results are shown in Table 5.3.

As expected for steady-state flow over a warmer surface, dg,, /dt is positive and
the g, increase is supplied by divergence of the turbulent flux. The sign of these
processes is the same in each case and the magnitudes nearly balance. The small
residuals Q, confirm our faith in the measurement and analysis techniques. The
average dg, /dt is about equal to %dq,,/dz expected from Clausius-Clapeyron at
constant relative humidity for the given SST gradient.

The relative magnitude of the components of total water flux is seen in the
flux profiles (Fig. 3.2). The turbulent liquid water flux is positive, increasing
toward cloud top, and usually compa.ré.ble to w'q) but smaller. Drizzle is small

compared to w'q, except for Flight 10, and has only a small effect on the average
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divergence. Perhaps if the scatter in measuring w'q!, were not so large the effect

of drizzle would be more significant to this analysis.

5.4.2 Radiative Fluxes

Composite LW flux profiles formed from the level leg averages are shown in Fig.
5.1. The scatter among the data points for the most part reflects the variations
in SST and cloud top temperature between the flights. While there may be
some contention about the exact shape of the profile below cloud, the data fit
theoretical profiles for a warm surface and solid cloud layer (Slingo et al, 1982;
Fravalo et al., 1981). The sub-cloud heating and total cloud top cooling are
very consistent among the cloudy cases, apparently not sensitive to the variations
in cloud structure or liquid water content found in DYCOMS. This is expected
because of the relatively small LW extinction depth. The clear case is, of course,
quite different. Note also that the sub-cloud heating is a substantial portion of
the total cooling and should not be ignored.

The missing assumption needed to use these LW measurements in an en-
trainment relation (like 5.3) or a mixed layer energy budget (next section) is the
distribution of LW divergence between inversion and mixed layers. Albrecht et
al. (1985) have examined the changes of 8, LW, and ¢, from several soundings in
the inversion region. Using the time series from the cloud top legs we can observe
many instances of inversion crossings. Fig. 5.2 is an example. From this example,
and many others studied, it is clear that the LW cooling occurs almost entirely in
the cloudy region which is within (below) the boundary of the cool region which
defines the instantaneous position of the inversion. Note that there is an indication
of about 10 to 15 W m™2 residual cooling in the inversion only when passing out of
the cloud region. A major portion of this is probably due to instrument response
lag. In any event, at least 70 of the total 80 W m™2 net LW divergence is in
the cloud layer. The full LW cooling is not reached until the aircraft is about
3 km horizontally within the cloud. This confirms the findings of Albrecht et
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al. (1985) that the zone of maximum LW cooling occurs somewhat below the
0 transition. In Fig. 5.2 no subsaturated, cool regions are found; in this case
the 8 and ¢; transition zones are the same. Cloud-free regions in the mixed layer
are occasionally, but not commonly, found in other flights however, in agreement
with the cases of Albrecht et al. (1985). These regions have been proposed as the
mechanism by which cloud layers become metastable to the entrainment process
(Rogers and Telford, 1986).

In the time series of Fig. 5.2 the aircraft flight level is such that it passes
about equally through cloudy and clear areas. From this it appears that the LW
extinction depth is roughly the same as the depth of the cloud top excursions.
This depth can be estimated from data. The ¢; spectra at cloud top peak at about
2 x 10~% Hz so the horizontal wavelength is about 5 km. Assuming the domes
have a half-sinusoidal shape and using an interface slope of 0.06 at 7/4 (Lenschow
et al., 1988b) the typical vertical variation is 70 m. This structure is in reasonable
agreement with LES results of Moeng (1987). If the entrainment zone is defined,
as in that paper, to include the entire depth of cloud top excursions, then most
the LW cooling occurs in this region. If the top of the mixed layer is defined as
the level at which the turbulent fluxes go to zero, then the LW cooling occurs in
the mixed region. It is also quite likely that the distribution of LW divergence is
not a constant ratio but varies depending on the turbulence structure which in
turn affects the amplitude of cloud top fluctuations.

SW measurements in the SC are characterized by large variability, especially
SW 1t above and SW | in and below cloud. This is a reflection of the variation
of cloud structure which is manifest over a wide range of scales. For this reason
measurements from a single aircraft are subject to large uncertainties even when
averaged over tens of kilometers. The example profiles constl_'ucted from leg
averages in Fig. 5.3 point out the effect of SC on SW fluxes. All cloud cases
have a total albedo 0.4 to 0.5 compared to about 0.04 for the sea surface. The
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net flux above the cloud layer is barely half that of the clear case. This is what
makes SC so important to the global radiative balance.

The quantity of interest for SC thermodynamics is the divergence of the net
SW flux, considered positive in the downward direction. All DYCOMS cases have
significant SW divergence (heating) including Flight 8. This apparent heating is
not restricted to the cloud layer but appears fairly linearly through fhe marine
boundary layer (Fig. 5.3). This is a somewhat puzzling observation with respect
to theoretical SW models (Stephens, 1978; Slingo and Schrecker, 1982; Hanson
and Derr, 1987) and previous observations (Stephens et al., 1978; Slingo et al.,
1982). To some degree the SW divergence observations may be due to flight
geometry and a change in cloud thickness with time. Since the lower legs were
flown first, any increase in cloud transmittance with time would be interpreted
as a positive vertical gradient. A scatter plot of the change in net SW between
legs, as a function of altitude (Fig. 5.4) confirms that SW is increasing at all
altitudes below cloud top except for Flight 5 and one leg in Flight 7. The average
change for Flight 8 is also positive but much smaller. The increase in cloud
transmittance must be due to a decrease in cloud depth and/or liquid water
concentration with time. This is consistent with the conceptual model of SC in
transition to tradewind cumulus along the trajectory. An alternate conceptual
explanation is thinning of the cloud in the insolated phase of the diurnal cycle.
Although this is an interesting observation in its own right, it makes it difficult
to extract the vertical component of the net SW divergence since §SW/ét (Fig.
5.4) is not constant. Consequently, the best estimate for SW divergence across
the mixed layer is obtained from the difference between the above-cloud and
subsequent near-surface leg averages. Obviously this is less informative and more
uncertain than a full SW flux profile. . In each case a substantial heating is still
observed and these values are input to the budgets in the next subsection.

None of this explains the measured heating for Flight 8, the case without

low cloud. The temperature and moisture profiles for this case were input to a
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clear-air radiative transfer model (Cox and Griffith, 1979). The model SW profile
showed about one-third the observed divergence. In addition, the modeled SW |
at the boundary layer top exceeded the measurement by about 75 W m~2. This
difference is probably attributable to the presence of high clouds which were noted
during the flight. This is indicated also by excess measured LW | compared to the
model. Thus one possible explanation for the observed SW divergence is decrease
in upper-level cloud creating an effect similar to that described above but of a small
magnitude. Another possibility is absorption by marine aerosol-haze. A dark grey
haze within the marine boundary layer was clearly visible to the flight observers.
Unfortunately, absorption characteristics of the particles are not available to test
this hypothesis. This question is related to the topic of “anomalous absorption”
(Stephens et al., 1978) which has a background in the literature but is beyond the
scope of DYCOMS measurements. While the exact magnitude of the DYCOMS
net SW divergence eludes our measurement technique, the respective estimates
agree fairly well with predictions and contribute to validation of the models (Slingo

and Schrecker, 1982; Liou and Wittman, 1979; Stephens et al., 1978, 1984).

5.4.3 Energetics

The energy conservation relation in the mixed layer may be written in terms
of an arbitrary temperature 8, conserved with respect to phase change as
do, ow'd
—-= —_—z = 5.8
dt + dz Qe. (5.8)
In this section we will concentrate on §; (Betts, 1982; Deardorff, 1976b) since

it does not rely on g, measurement in cloud, a problem discussed in Sec. 2.3.

Specifically then

dg,  ow'dg _ 1 (asw B BLW)

dt 8z  pec, \ 9z 0z
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where SW is net downward and LW net upward radiative flux, and the drizzle
term represents an additional sink of ;. Since the flux profiles can no longer
be assumed linear, as in the case of O3 or ¢, this equation becomes difficult to
evaluate near the mixed layer top using measurements. If, however, we integrate
(5.9) from near the surface through the entrainment zone, the resultant terms can

be estimated from measurements. These are

do, =~ =
_H [.&?'] + w, AT + (8), + ;i-(swg — SW, — LWy + LW,) = R, (5.10)
P

where the total time derivative term is a vertical mixed-layer average combining
the aircraft measured change and the relative position change as in Sec. 4.2.1.
The zero subscripts refer to values measured at the lowest flight level and the H
subscripts to those just above cloud top. The residual R, is a measure of the total
error. In this bulk energy budget the drizzle flux and the distribution of radiative
flux divergence no longer enter, assuming drizzle doesn’t reach the surface. It is
useful to compare the relative importance of the various inputs and their variation
among the cases.

Since the SW estimates are so uncertain, the B, term is assumed to be zero and
(5.10) is used to diagnose the net SW divergence. The results are shown in Table
5.4. In all cases the boundary layer 8; is increasing at a rate corresponding to the
mean SST gradient and the previously noted increase in ¢,. The surface flux is
fairly consistent in the cloudy cases and the turbulent flux divergence contributes
about half the ; increase with time, except for Flight 10. The LW cooling is
consistent among the cloudy cases and the diagnosed SW heating is reasonably
constant for those at midday. In each of these the SW heating exceeds LW cooling
to some degree, balancing the remainder of df;/dt. This finding agrees with North
Sea SC measurements (Slingo et al., 1982; Nicholls, 1984) whose daytime SW
heating balanced or slightly exceeded LW cooling. The Pacific case of Hanson
(1984) shows SW heating exceeds LW cooling by more than a factor of two for



69

relatively high liquid water content. The effect of SW heating in cloud can be
seen in the wTOS flux profiles (Fig. 3.2) which show a positive slope in cloud below
z/z; = 0.95, except Flight 1.

The early morning case, Flight 10, has different energetics. Here the time
increase is entirely balanced by turbulent flux divergence which also balances
the excess LW radiative divergence. This implies that SW divergence inhibits
entrainment, presumably by stabilizing the cloud layer (Fravalo et al., 1981). This
is also reflected in the w'@, profile (Fig. 3.2h) which is higher in cloud for Flight
10 than any other. Radiatively this case is similar to Brost et al. (1982a,b) but
without the wind shear that typified their cases, the flux profiles and w, are quite
different. This is the only case in which drizzle is a significant contribution to the
water flux suggesting SW absorption influences the drop distribution interactively.

The clear case, Flight 8, is almost entirely stabilized as SW heating overcomes
the slight LW cooling, throughout the layer depth here, and drives the time
increase in temperature reducing the air-sea temperature difference (Table 3.1)
and surface flux to near zero. About 60% of the previously discussed observed
SW divergence is diagnosed by the budget. A slight moisture-driven buoyancy
flux persists near the surface, but turbulence is greatly reduced from other cases,
the resulting entrainment is near zero, and the mixed layer shows evidence of
detachment from the surface layer. What is the evolution of this boundary
layer? A meteorological disturbance propagating from the north induced the
SC to dissipate. In the absence of cloud-generated turbulence the Flight 8 case
results. Satellite photos show that the SC did not re-appear in the area on the
following day but did two days later. Simply turning off ASW did not allow the
upper layer to cool to saturation. The northern soundings from Flight 9 (Figs.
A.19a and A.21b), the day following Flight 8, show a surface based mixed layer up
to about 500 m. The mixed layer 8, is the same as Flight 8 but ¢, has increased.
Further south along the trajectory (Figs. A.19b and A.20b), the surface-based

mixed layer deepens and warms, some mixing now extends vertically up to about
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1200 m, and a cloud layer is formed. The cloud-topped mixed-layer has been
re-established from the surface up. Further south still (Fig. A.20a) the mixed
layer deepens to about 1400 m and clouds persist.

The original cause of the dissipation is not apparent from this data. Increased
subsidence has been suggested (Weaver, 1987) but if anything the boundary layer
grew slightly during Flight 8. The 0, profile is slightly unstable to entrainment
into a cloudy layer but less so than many other flights. The relation between
entrainment instability and break-up is not yet clear (Kuo and Schubert, 1988).
How these clearing episodes relate to the break-up into tradewind cumulus is not
clear either. The boundary layer characteristics are entirely different (Schubert,
1976). Finally, an entirely different SC dispersion scenario occurred when a
tropical disturbance affected the region (Sec. 2.2 and 4.3, Figs. A.12 and A.13).

Returning to the budgets, the measured SW divergences (in parentheses) do
not match the diagnosed values for most flights. This is most likely due to the
large uncertainty associated with the measurements. The respective averages for

the cloudy cases match well which is some consolation.
5.5 CONCLUSION

Most of the DYCOMS experimental cases are climatologically typical of east-
ern North Pacific marine SC. In addition, there are a number of atypical or
“disturbed” cases which serves as a valuable comparison. These observational data
contribute directly to our understanding of SC dynamics and thermodynamics.
They also form an excellent basis for testing numerical models and addressing
some of the problems of parameterization.

The w, has been determined using a new technique, based on O3 measure-
ments. This method has an advantage over others due to its lack of assumptions
and the difficulty of making meteorological scalar measurements in cloud. An
- independent estimate for w, is provided which can be used to study its relationship

to mixed layer fluxes in the pursuit of a parameterization for entrainment. The
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w, results will also be used with measurements of other chemical species during
DYCOMS to construct budgets from mean concentrations.

In regard to the use of a mixed-layer type formulation in representing DY-
COMS cases, the data definitely indicate that SW divergence cannot be ignored.
The bulk energy budgets require a relatively large amount of SW heating, sup-
ported by SW flux measurements, of which a significant portion occurs well into
the “mixed” layer. The 6; flux profiles are no longer linear as required by the
model. The magnitude of the observed effect of SW damping entrainment indi-
cates that even a diurnally averaged model should incorporate SW flux divergence
in the mixed layer. Study of the diurnal cloud cycle will be one of the most
interesting results of the FIRE program (Albrecht et al., 1988).

Many other applications of mixed layer assumptions are, however, upheld by
the data. The fact that the advective time rate of change is in equilibrium with
the observed SST gradient means that the time scale for vertical adjustment is
small compared to advection or the diurnal radiative cycle. The impact of drizzle
is generally small. The conserved scalar mean profiles are well-mixed and no
evidence for detached or shear-driven layers is found in the typical cases. These
processes may be important in the disturbed cases however, and merit further
study. These cases provide examples that SC dissipation can be caused by a
number of different perturbations.

The measured LW flux profiles confirm that cooling occurs in a relatively thin,
but finite, layer at cloud top, clearly associated with the liquid water discontinuity.
The difficulty in determining LW distribution between entrainment and mixed
layers is due to the problem of approximating the finite entrainment depth by a
jump condition. Perhaps the development of a fast response net LW instrument
would help. The LW extinction depth could be measured accurately as a function
of cloud physical parameters and correlation between cooling and vertical velocity

could be obtained.



Table 5.1: Entrainment velocity from O3 measurements. Uncertainties on inversion-level flux are 90%
confidence limits on the mean. Uncertainty on the average w, is 90% confidence limit based on the

individual flight values excluding Flight 8.

o

FLIGHT NUMBER _

1

2

3

(wO%)y (ppbv mms™) —29.8 —12.2 -24.7 -55.6 -75.3
+12.1 +10.6 +154 +£17.6 +9.7

AO; (ppbv)

ga

we (mm s™1)

H (m)

15.3
1.4

2.0

733

6.2
2.1

2.0

130

23.9
12.6

1.0

988

4 5 7 8 9 10 AVE
~223 00 — -—442 —37.7
+32.6 +19.4 — 629
23.3  14.9 53 21 — 99 126
110 7.0 113 21 — 47
24 5.0 42 00 — 45 3.0
+1.1
880 925 1380 1034 — 1009 910

GL



Table 5.2: Entrainment velocity from total water measurements. Symbols are defined in text.

o

FLIGHT NUMBER 12 3 4 5 6 7 8 9 10 AVE
(w'¢, + wq)y (mgm=2%~') 104 68 46 125 15.1 — — 24 — 21.2 11.8
A7, (g m™3) -48 -30 -38 -59 -66 — — —-38 — —4.0 -—4.7
w, (mm s™1) 22 23 12 21 23 — — 06 — 53 26

€L



Table 5.3: Total water budgets (mg m~2 s™). Uncertainties are 90% confidence limits on the
average over all flights.

FLIGHT NUMBER 1 2 3 4 5 6 7 8 9 10 AVE
Dgz/ Dt 002 001 003 005 002 — — 002 — 001 0.02
40.01
—(8gz/n)(Dn/Dt) 002 002 00 004 00 — — 002 — 00 00
40.02
oW, + 6§)/0z —0.04 —004 —0.04 —004 —003 — — -002 — -0.01 —003
+0.01
Q, 00 —001 —00l —003 —-001 — — 002 — 0.0 —001

+0.01

bL
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Figure 5.1: Net LW radiative flux from level legs. Numbers locate values from
each flight. Clear refers to the cloud-free case and cloudy is a composite of cases
with cloud-topped boundary layers.
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Figure 5.2: Time series of liquid water mixing ratio, temperature, and net LW
radiative flux for a segment from cloud-top leg. Net LW has been advanced
approximately 1 s to account for its slower response time.
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Table 5.4: Temperature budgets (mK m s~!). Entries in the average
column are for all cases for the first three lines. The average LW term
excludes the clear case, Flight 8, and average SW excludes both Flights
8 and 10. Numbers in parentheses are SW divergence estimates from
observed profiles.

FLIGHT 1 2 3 4 5 6 7 8 9 10 AVE

~H[%] 44 -22 -35 —44 —46 — —55 —31 — -30 -39
w,Af, 12 10 4 10 23 — 20 0 — 24 15
(w'8}), 13 4 10 10 9 — T 1 — 11 9
-=ALW —64 —-60 —57 -55 —49 — —47 -16 — —46 -—54
LASW 8 68 78 T9 63 — 75 46 — 41 T4

PCp

(15) (87) (97) (55) (82) — (112) (76) — (39) (75)



Chapter 6: SUMMARY

The DYCOMS dataset has proven to be a fertile field for nurturing scientific
hypotheses. The intensity, scope, and quality of the data show how much can be
done with modern instrumentation in a carefully planned field program. Hopefully
it will continue to be a valuable resource for years to come. The statistical
uncertainties are often large. No apology is needed for this. Experimentation
in a research mode expects to stretch the limits of its resources. Observational
analysis remains essential to the advancement of atmospheric science.

I believe progress has been made here in understanding the processes that
control SC and Os in the atmosphere. This progress has come in two basic ways:
through direct observations and through comparisons with model predictions.
Direct observations contribute to our knowledge of the mean state of the SC
regime and its variability, for example, the break-up and re-formation cycle of
SC or transport of Os lamina. These phenomena lead to hypotheses about the
driving mechanisms and feedbacks. Direct measurement of important processes
like surface deposition and entrainment are necessary aspects of testing these
hypotheses. Another valuable way of testing hypotheses is through manipulation
of numerical models; in a system as complex as SC it becomes essential. But
models necessarily simplify reality and must be tested continually. Documentation
of model substantiation and disputation has been a major emphasis of this work.

Many possibilities for further research arise from this analysis. A large flux
dataset like this is useful for testing flux parameterizations. Two possibilities

are surface flux (Blanc, 1985) and mixed layer internal circulation (Wang and
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Albrecht, 1986). TKE budgets for the cases could be constructed in a further
effort to parameterize entrainment.

One of the most exciting potentials of this study is to integrate with the
chemical sampling of other DYCOMS investigators to form full meteorological
and chemical case studies. This could be a step toward unraveling that complex
network of processes governing trace gas influence in climate change. Another
possibility is using these data in a photochemical model to deduce concentrations
of species that are difficult to measure.

This study has shown a number of difficulties involved with single aircraft
sampling. Several of these, like SW and inversion height measurement, could
be improved with multiple platforms and/or a variety of sensors. The FIRE
program is such an effort. Hopefully, collaboration between DYCOMS and FIRE

investigators will improve the results of both.
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