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ABSTRACT 

 

ENVIRONMENTAL STRESS RECOVERY OF HORNED POPPY (GLAUCIUM SPP.)USING 

GROWTH REGULATOR TREATMENTS 

 
Plant species and cultivars within a species vary in their recovery from salinity and drought 

stresses when conditions become more favorable. Water conservation, especially in arid and 

semiarid regions of the world, is a necessity. Plant species, and cultivars within a species, vary in 

their salinity and drought tolerance. These variations are the result of variations in genes relating 

to drought tolerance mechanisms and their interaction with the environment. In order to reduce 

water usage, it is important to understand the mechanisms of plant adaptation to salinity and 

drought stresses. Many reports have confirmed the internal modification in growth regulator in 

terms of types and concentrations under stress conditions. Externally applied growth regulator 

amendments affect the internal balance of growth regulator and can help the plant to regrow and 

recover from stress. Horned Poppies (Glaucium SPP.) are members of the Poppy family, 

Papaveraceae, that are native to the Mediterranean and Middle East regions. All horned poppies 

have blue-green foliage that is deeply pinnatified to pinnatisect and typically grow 30-50 cm long. 

The leaf have varying degrees of texture from glaucous to villous. All leaves are lyrate to sublyrate 

shaped and have a rosette growth habit. They have solitary blooms on flower stalks that grow 

above the foliage. All species have four petals in their corolla and their pistil is completely 

surrounded by stamens. They all develop long horned-shaped seed siliquiforms with the stigma 

remaining to cap off the top of the fruit. Species of interest in this study were G. flavum, G. 

grandiflorum, G. acutidentatum and G. corniculatum. G. flavum Crantz is the most widely spread 

species in the genus.  It’s distinguished from other species studied by several characteristics. The 
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sepals have crisp, pilose hairs on the surface and the petals can be solid yellow, red or reddish 

mauve.  G. flavum is most often recognized for the yellow petals and is commonly referred to as 

the Yellow Horned Poppy. G. acutidentatum is the most glabrous species with smooth sepals and 

ovaries. Although the ovary is smooth, the resulting siliquae is subtorulose. The petals are solid 

orange-buff in color. G. grandiflorum has only one main flower stem while other species have 

multiple flower stalks growing from the base of the rosette.  The sepals have short, stiff hairs 

making the surface hirsute. The petals are dark orange to crimson red with a black spot at the base 

of the petal. G. corniculatum (L.) J.H. Rudolph has some unique characteristics. Its leaf have a 

soft, villous texture and its sepals are scabrous to hirsute. The petals are yellow, orange or red.  

The objectives of this study were to 1) determine whether applications of Abscisic acid 

(ABA), salicylic acid (SA), fusicoccin (FC), and ethephon (E) could promote Glacium spp.  

Growth and recovery from salinity stress; 2) determine whether applications of (ABA), (SA), 

(FC), and (E) could promote Glacium spp.  growth and recovery from drought stress; 3) 

determine the most effective concentrations of each growth regulator in the recovery of the 

stressed plants; 4) evaluate the recovery degree from salinity and drought stresses among the 

common Horned Poppy species that are available at Denver Botanic Gardens, G. flavum, G. 

corniculatum, G. grandiflorum and G. acutidentatums ; 5) determine which evaluation criteria 

are associated with superior recovery rate; 6) confirm selection criteria for evaluation of salinity  

and drought tolerance in Horned Poppy species; 7) test the change in the concentration of the 

internal growth regulator under stress conditions and during recovery in those Horned Poppy 

species studied.  Lysimeter columns were used in this study which was replicated twice in the 

CSU Plant Science greenhouse. Four Growth regulator treatments were used and were applied 

weekly with irrigation water. Three levels of each regulator were used. Treatments continued for 
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two months. Data were collected weekly on leaf color (using color chart), leaf size (using Image 

J software), and the quality and general attractiveness of the plant using personal visual 

estimation (using a scale of 0 to 9 where 9 is the optimum quality; a rating of 6.0 or higher 

indicated acceptable quality). Samples were collected for TNC, RSC, proline and tissue Na+ and 

K+ content analysis for each treatment at the end of the experiemnt. Evapotranspiration (ET) 

measurements were collected every 2 to 3 days during the four month growth period. Five 

weight readings per pot were made during each measurement and the average value was used for 

ET calculation. ET was calculated by mass difference and expressed as mm d-1. Internal growth 

regulator content of plants were assessed before applying the initial treatment and at the end of 

the experiment. Plant growth regulator concentrations changed over time were quantified using a 

protocol in which a 50 mg plant material only is needed to quantify most major plant hormones 

by HPLC–ESI–MS/MS. This method was the best in current study since sampling was done 

every 2 weeks over the course of the experiment. Sample solutions (50 μl) were injected into the 

reverse-phase C18 Gemini HPLC column for HPLC–ESI–MS/MS analysis. G. flavum was found 

to recovery more quickly compared to G. acutidenatum, G. grandflorum and G. corniculatum. 

Also, the treatment of 2 mM ABA was the most effective followed by 2 mM SA, 20 mM E and 

0.03 mM FC in enhancing salinity stressed Glaucium spp. recovery. Glaucium spp. under 

salinity stress exhibited a positive response to growth regulator treatments in terms of improved 

leaf characteristics, plant height, overall plant quality (attractiveness), TNC, and K+/Na+ ratio. G. 

flavum showed greater tendency to recover from salinity stress at all growth regulator treatments 

when compared to the other species tested. The treatment of 2 mM ABA is recommended to 

improve the recovery rate of Glaucium spp. under salinity stress. On the basis of the number of 

times in the best statistical category for leaf characteristics, overall plant quality (attractiveness), 
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water use, TNC, RSC, and proline, G. flavum was found to have the greatest recovery rate from 

drought stress when compared to G. acutidentatum, G. grandiflorum and G. corniculatum. Also, 

the treatment of 2 mM ABA was the most effective followed by 2 mM SA, 20 mM E and 0.03 

mM FC in enhancing drought stressed Glaucium spp. recovery. Growth regulator treatments 

could affect proline accumulation throught their effect on the overall growth of the plant that 

affect all plant activities especially different growth regulator concentrations and interactions. 

Comparisons of internal individual growth regulator content among species, growth regulator 

treatments, sampling dates and their interactions clearly showed significant differences. During 

the two month course of the recovery, the concentrations of both IAA and IBA increased 

gradually. There was slight significant increase overtime in IAA and IBA concentration under 

the control treatment over the course of the two month recovery period. The treatment of 2 mM 

ABA achieved the highest increase in both IAA and IBA in all tested species, followed by 20 

mM ethephon, 2 mM SA and 0.03 mM fusiccocin. There was slight significant increase overtime 

in GA3 concentration under the control treatment. The treatment of 2 mM ABA achieved the 

highest increase in GA3 in all tested species, followed by 20 mM ethephon, 2 mM SA and 0.03 

mM fusiccocin. The concentrations of zeatin increased gradually in all tested species during 

recovery. Zeatin concentration increased slightly overtime under the control treatment. The 

treatment of 2 mM ABA achieved the highest increase in zeatin in all tested species, followed by 

20 mM ethephon, 2 mM SA and 0.03 mM fusiccocin. The highest increase was in G. flavum, 

where zeatin increased from 8.0 to 29.0 ng/g Dwt (263%) under control treatment, while the 

increase was 2422, 2196, 2050 and 1174% under the treatments of 2 mM ABA, 20 mM 

ethephon, 2 mM SA and 0.03 Fusiccocin respectively. Even under control treatment, there was a 

slight increase in SA content. The treatment of 2 mM ABA achieved the highest increase in SA 
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in all tested species, followed by 20 mM ethephon, 0.03 mM Fusiccocin and 2 mM SA. In G. 

flavum, SA increased from 0.4 to 0.9 ng/g Dwt (125%) under control treatment, while the 

increase was 720,600, 533 and 300% under the treatments of 2 mM ABA, 20 mM ethephon, 0.03 

Fusiccocin and 2 mM SA respectively. On the other hand, and during the course of the recovery, 

the concentrations of the internal ABA decreased gradually over time. Under the control 

treatment, there was a slight significant decrease overtime in ABA concentration during the 

recovery period. The treatment of 2 mM ABA achieved the highest decrease in ABA in all tested 

species, followed by 20 mM ethephon, 2 mM SA and 0.03 mM fusiccocin. In G. flavum, ABA 

decreased from 2.6 to 1.4 ng/g Dwt (-46 %) under control treatment, while the decrease was -88,-

85, -76 and -68% under the treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 

Fusiccocin respectively. In summary, Glaucium spp. under salinity and drought stress exhibited a 

positive response to growth regulator treatments in terms of improving leaf characteristics, plant 

height, overall plant quality (attractiveness), TNC, and water use efficiency. G. flavum showed 

greater tendency to recover from drought stress at all growth regulator treatments when 

compared to the other species tested. The treatment of 2 mM ABA is recommended to improve 

the recovery rate of Glaucium spp. under salinity and drought stress. During stress, internal ABA 

accumulation was evident to cope with stress conditions. During recovery, when the 

circumstances were favorable for growth, other groups of growth regulator that are needed for 

accelerated cell division, enlargement and growth such as auxins, gibberellins, and cytokinnins 

were abundant. 
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CHAPTER 1 
 

RECOVERY OF GLAUCIUM SPP. FROM SALINITY STRESS USING GROWTH 

REGULATOR TREATMENTS 

SUMMARY 

Plant species and cultivars within a species vary in their recovery from salinity stress 

when conditions become more favorable. These variations are associated with genes relating to 

stress tolerance mechanisms and their interaction with the environment. Horned Poppies 

(Glaucium spp.) are members of the Poppy family, Papaveraceae and are native to the 

Mediterranean and Middle East. The objectives of this study were to 1) determine whether 

applications of Abscisic acid (ABA), salicylic acid (SA), fusicoccin (FC), and ethephon (E) 

could promote Glacium spp.  growth and recovery from salinity stress; 2) determine the most 

effective concentrations of each growth regulator in the recovery of the stressed plants; 3) 

evaluate the recovery degree from salinity stress among the common Horned Poppy species that 

are available at Denver Botanic Gardens, G. flavum, G. corniculatum, G. grandiflorum and G. 

acutidentatums; 4) determine which evaluation criteria are associated with superior recovery 

rate; 5) confirm selection criteria for evaluation of salinity tolerance in Horned Poppy species. 

Lysimeter columns were used in this study which was replicated twice in the CSU Plant Science 

greenhouse. Four Growth regulator treatments were used and were applied weekly with 

irrigation water. Three levels of each regulator were used. Treatments continued for two months.  

Data were collected weekly on leaf color (using color chart), leaf size (using Image J software), 

and the quality and general attractiveness of the plant using personal visual estimation (using a 

scale of 0 to 9 where 9 is the optimum quality, with a rating of 6.0 or higher indicating 

acceptable quality). Samples were collected for TNC, RSC, proline and tissue Na+ and K+ 
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content analysis for each treatment at the end of the experiemnt. G. flavum was found to have 

higher recovery rate when compared to G. acutidenatum, G. grandflorum and G. corniculatum. 

Also, the treatment of 2 mM ABA was the most effective followed by 2 mM SA, 20 mM 

ethephon and 0.03 mM Fusicoccin in enhancing salinity stressed Glaucium spp. recovery. 

Glaucium spp. under salinity stress exhibited a positive response to growth regulator treatments 

in terms of improving leaf characteristics, plant height, overall plant quality (attractiveness), 

TNC, and K+/Na+ ratio. G. flavum showed greater tendency to recover from salinity stress at all 

growth regulator treatments when compared to the other species tested. The treatment of 2 mM 

ABA is recommended to improve the recovery rate of Glaucium spp. under salinity stress. 

INTRODUCTION 

Plant species and cultivars within a species vary in their stress tolerance (Epstein et al., 

1980; Pasternark, 1987; Saranga et al., 1992). These variations are due to variations in genes 

relating to stress tolerance mechanisms and their interaction with the environments (Shanon, 1985; 

Bohnert et al., 1995; Igartua, 1995; Duncan and Carrow, 1999). Stress-inducible genes can be 

functional or regulatory. Functional genes control water channels and other transporters, 

detoxification enzymes, protection molecules such as late embryogenesis abundant (LEA) 

proteins, key enzymes for osmolyte biosynthesis, or different proteases. Regulatory genes regulate 

the expression of the functional genes and include, among others, transcription factors, protein 

kinases and phosphatases, and those involved in abscisic acid biosynthesis (Shinozaki and 

Yamaguchi-Shinozaki (2007). 

Horned Poppies (Glaucium spp.) are members of the Poppy family, Papaveraceae and are 

native to the Mediterranean and Middle East regions. All horned poppies have blue-green foliage 

that is deeply pinnatified to pinnatisect and typically grow 30-50 cm long. The leaf have varying 
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degrees of texture from glaucous to villous. All leaf are lyrate to sublyrate shaped and have a 

rosette growth habit. They have solitary blooms on flower stalks that grow above the foliage. All 

species have four petals in their corolla and their pistil is completely surrounded by stamens. They 

all develop long horned-shaped seed siliquiforms with the stigma remaining to cap off the top of 

the fruit. Species of interest in this study are G. flavum, G. grandiflorum, G. acutidentatum and G. 

corniculatum.  

G. flavum Crantz is the most widely distributed species in the genus.  It’s found in the 

coasts of Britain and the Atlantic Islands to the coasts of the Mediterranean Basin and the Black 

Sea (Grey-Wilson, 2000). It grows predominantly on sandy beaches and as a result it is commonly 

known as the Sea Horned Poppy. This likely indicates that G. flavum is salt tolerant. According to 

Davis (1965), G. flavum is distinguished from other species by several characteristics. The sepals 

have crisp, pilose hairs on the surface and the petals can be solid yellow, red or reddish mauve.  G. 

flavum is most often recognized for the yellow petals and is commonly referred to as the Yellow 

Horned Poppy. The ovary is densely papillose to tuberculate, basically a bumpy surface. The 

siliquae will retain the papillose to tuberculate texture. In Turkey, G. flavum normally flowers from 

May through the summer and even though it is most often found at sea level, it does grow into 

river valleys as well (Davis, 1965). 

G. grandiflorum Boiss & É. Huet is native to Turkey in the southern part of the Caucasus 

Mountains but it is also found in Syria, Iran and the Sinai (Grey-Wilson, 2000).  G. grandiflorum 

has only one main flower stem while other species have multiple flower stalks growing from the 

base of the rosette (Davis, 1965).  The sepals have short, stiff hairs making the surface hirsute. The 

petals are dark orange to crimson red with a black spot at the base of the petal. The pedicle of the 

flower exceeds the subtending leaf, which differs from the other Glaucium species. There are two 
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varieties of G. grandiflorum var. grandiflorum and var. torquatum.  G. grandiflorum var. 

torquatum has red petals with a black blotch and can be found in calcareous hillsides. G. 

grandiflorum var. grandiflorum is found in fields, banks and rocky slopes.   

G. acutidentatum is the most glabrous species with smooth sepals and ovaries. Although 

the ovary is smooth, the resulting siliquae is subtorulose. The petals are solid orange-buff in color. 

G. acutidentatum is found at elevations of 950-1400 m on dry hills (Davis, 1965). 

G. corniculatum (L.) J.H. Rudolph is native to the Mediterranean basin, Atlantic Islands, 

Caucasus Mountains, Bulgaria, Romania, northern Iraq and northwestern Iran (Grey-Wilson, 

2000; Davis, 1965).  G. corniculatum also has some unique characteristics. Its leaf have a soft, 

villous texture and its sepals are scabrous to hirsute. There is some conflicting information about 

G. corniculatum’s corolla. The petals are yellow, orange or red (Davis, 1965) with a black basal 

spot (Grey-Wilson, 2000).  

Saline environments affect plant growth in different ways including reduction in water 

uptake, gradual accumulation of ions to toxic levels, and reduction of nutrient accessibility 

(Rameeh et al., 2012). The detrimental effects of salinity on plant growth include osmotic stress, 

ion toxicity, nutritional disturbances (Greenway and Munns, 1980; Lauchli, 1986; Cheeseman, 

1988), damage to photosynthetic systems by excessive energy (Brugnoli and Bjorkman, 1992), 

and structural disorganization (Flowers et al., 1985; Delfine et al., 1998; Romero-Aranda et al., 

1998). Plants respond to salinity stress through a number of physiological changes including 

lowered leaf osmotic potential and/or a loss of turgor potential which can cause growth suppression 

(Levitt, 1980). Salt tolerant plants often mediate stress by osmotic adjustment, therefore 

minimizing changes in turgor potential which affect plant growth responses linked to carbon 

dioxide assimilation and cell elongation (Harivandi et al., 1992). Some growth regulator are known 
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to help in stress tolerance such as abscisic acid. Many of the plant responses to stress occur via 

chemical signals such as the phytohormone abscisic acid (ABA) (Wilkinson and Davies, 2002) 

and it is well known that the endogenous levels of ABA in vegetative plant tissues rise in response 

to stresses that cause plant water deficit (Taylor et al., 2000; Bray, 2002; Zhang et al., 2008). 

Moreover, a clear relationship between plant ABA content and plant tolerance to water deficit has 

been described (Kulkarni et al., 2000; Liu et al., 2005). The protective effect of ABA is based on 

the fact that ABA primarily promotes stomatal closure to minimize transpirational water loss and 

it mitigates stress damage through the activation of many stress-responsive genes, which 

collectively increase the plant stress tolerance (Bray, 1997, 2002; Zhang et al., 2008). However, 

there are no studies dealing with the effects of exogenous ABA on the expression of stress-related 

genes and on the physiology of plants except for Aroca et al. (2008) who evaluated the influence 

of exogenous ABA application on plant development, physiology, and expression of several stress 

related genes after both drought and a recovery period. Their results showed that the application 

of exogenous ABA had contrasting effects on Lactuca sativa plants.  

The balance between carbohydrate production and consumption will impact the ability of 

a plant species to cope with salinity stress (Huang and Fry, 1999; Lee et al., 2008a, 2008b). The 

decline in salinity tolerance in some species can be associated with reduced carbohydrate 

availability and reduced effectiveness of Na+ exclusion and K+ active uptake and transport (Qian 

and Fu, 2005; Lee et al., 2007; Shahba, 2010b, Shahba, 2012). Accordingly, fluctuations in these 

osmoregualtors are expected during the recovery from stress. 

Proline accumulates in larger amounts than other amino acids in salt stressed plants (Lee 

et al., 2008b). Proline accumulation is the first response of plants exposed to salt stress and water-

deficit stress and is though to reduce injury to cells (Ashraf and Foolad 2007). Maggio et al. (2002) 
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suggested that proline may act as a signaling/regulatory molecule able to activate multiple 

responses that participate in the adaptation process to elevated salinity levels. Rapid accumulation 

of proline in tissues of many plant species in response to salt, drought or temperature stress has 

been attributed to enzyme stabilization and/or osmoregulation (Flowers et al., 1977; Levit, 1980). 

Ahmad et al. (1981) measured proline content fluctuations under high salinity levels in salt tolerant 

and sensitive ecotypes of creeping bentgrass (Agrostis stolonifera L.) and concluded that the salt 

tolerant ecotype accumulated more proline in response to high salinity levels. Lee et al. (2008b) 

concluded that proline was the primary organic osmolyte for osmotic adjustment and its 

accumulation was higher in salt tolerant seashore paspalum genotypes. However, other reports 

have indicated a negative effect of proline on salinity tolerance. Marcum (2002) has reported that 

proline accumulates in grasses under salinity stress at insufficient levels to achieve osmotic 

adjustment. Torello and Rice (1986) concluded that proline accumulation has no significant 

osmoregulatory role in salt tolerance of five turfgrass species ['Fults' alkaligrass (Puccinellia 

distans L. Parl.), 'Dawson' red fescue (Festuca rubra L. var trichophylla Gaud.), 'Jamestown' red 

fescue (Festuca rubra L. var commutata Gaud.), 'Adelphi' and 'Ram I' Kentucky bluegrass (Poa 

pratensis L.)] following their exposure to 170 mM NaC1 salinity stress. Because of these 

contrasting reports on the role of proline in salt tolerance, its use as a selection criterion for salt 

tolerance has been questioned (Ashraf and Harris, 2004). Thus proper testing is required before 

making any conclusion regarding proline role in salinity tolerance in specific species. Accordingly, 

fluctuations in proline content are expected during the recovery from stress. 

Many studies discussed plant responses to stress via internal chemical signals and growth 

regulator adjustments. However, few studies have dealt with the effects of exogenous growth 

regulator applications on the expression of stress-related genes and/or on the physiology of 
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plants under stress such as Aroca et al. (2008) who evaluated the influence of exogenous ABA 

application on plant development, physiology, and expression of several stress related genes after 

both drought and recovery. The objectives of this study, therefore, are to (1) determine whether 

applications of abscisic acid (ABA), salicylic acid (SA), fusicoccin (FC), and ethephon (E) could 

promote Glacium spp.  growth and recovery from salinity stress; (2) determine the most effective 

concentrations of each growth regulator in the recovery of the stressed plants; (3) evaluate the 

recovery degree from salinity stress among the common Horned Poppy species that are available 

at Denver Botanic Gardens, G. flavum, G. corniculatum, G. grandiflorum and G. acutidentatums 

; (4) determine which evaluation criteria are associated with superior recovery rate; (5) confirm 

selection criteria for evaluation of salinity tolerance in Horned Poppy species. 

MATERIALS AND METHODS 

Lysimeter columns were used for these experiments. Columns were placed in the green 

house. Sixty plants of each species that were planted in 15 cm in diameter and 50 cm long PVC 

tubes containing potting mix were used. These plants were previously used for salinity tolerance 

strees screening and already suffered different degrees of stress. Salinity treatments that were 

previously applied were control (Tap water), EC = 5, EC = 15 and EC = 25 dS m–1. Saline 

solutions were prepared using instant ocean salt mixture added to the irrigation water. 

Experimental design was randomized complete Block (RCB). Each block represented one of the 

replications and contains 48 tubes. Four blocks were used. Used plants in each tube were 

selected of similar size and height, hold the same number of leaf and suffered similar degree of 

stress. Four Growth regulator treatments were used and were applied weekly with irrigation 

water. Three levels of each regulator were used. Evapotranspiration was measured weekly to 

monitor the change in the evapotranspiration. Four representative tubes for each species were 
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used as lysimeters and were watered with enough water and left to drain for 2 h, after which the 

weight of each tube was recorded. Each tube was then re-weighed every 24 hours. The daily 

changes in weight represent the daily evapotranspiration for each species. Treatments continued 

for two months.  

Data Collection. During the course of the experiment data were collected weekly on plant leaf 

color (using leaf color chart), leaf size (using Image J software), and general attractiveness of the 

plant using personal visual estimation (using a scale of 0 to 10 where 10 is the optimum quality, 

with a rating of 6.0 or higher indicating acceptable quality).  

Samples were collected for TNC, RSC, proline and tissue Na+ and K+ content analysis for 

each treatment. Total nonstructural carbohydrate content, RSC, tissue Na+ and K+ and proline 

content were determined at the termination of the experiment. Shoot tissue at the termination of 

the experiment was harvested and washed with cold distilled water to remove plant debris for 

carbohydrate analysis. Approximately 5 g samples from the treatments were freeze-dried 

(Genesis 25 LL Lyophilizer, Virtis, Gardiner, NY). After freeze-drying, samples were ground 

with a Wiley mill, sieved though a screen with 425 µm openings, and kept in airtight vials at –20 

oC.  TNC was measured using the method described by (Chatterton et al. (1987).  In brief, 25 mg 

freeze-dried samples were transferred to 5 ml of 0.1% clarase solution and incubated at 38°C for 

24 h.  Then, 0.5 ml of hydrochloric acid (50%, v/v) was added to the incubation solution. After 

the solution was incubated at room temperature for 18 h, the pH value of the solution was 

adjusted to between 5 and 7 with 10 and 1 N NaOH. This resulting solution was used to 

determine TNC content using a spectrophotometer at 515 nm wavelength (model DU 640; 

Beckman). 
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To measure the free reducing sugar, 25 mg of the freeze dried, ground, and sieved sample 

was extracted with 10 ml of 0.1 M phosphate buffer (pH = 5.4) for 24 h at room temperature. An 

extracted aliquot (0.2 mL) was used to determine the reducing sugar content by using the same 

method as was used to measure TNC.   

To measure ion content, about 5 g of shoots were harvested, washed with deionized water, 

and dried at 70 oC for 24 h.  Dried shoots were ground in a Wiley mill and passed through a screen 

with 425 µm openings.  Approximately 1 g of dried and screened sample was weighed and ashed 

for 7 h at 500 oC.  Ash was dissolved in 10 ml of 1N HCl and diluted with deionized water.  

Solution aliquots were analyzed for Na+and K+ by inductively-coupled plasma atomic emission 

spectrophotometry (ICP-AES) (Model 975 plasma Atomcomp, Thermo Jarrell Ash Corp., 

Franklin, Mass.). 

Actual proline tissue accumulation levels were determined according to the method of 

Bates et al. (1973) as modified by Torello and Rice (1986) with approximately 0.5g fresh weight 

of tissue. Samples were ground with liquid nitrogen in a mortar. Each sample was homogenized 

in 10 ml of 3% aqueous sulfosalicylic acid followed by agitation for 1h prior to filtration through 

#2 Whatman filter paper. After filtration 2 ml of extract from each sample was reacted with 2 ml 

of ninhydrin reagent (1.25 mg of ninhydrin in 30 mL of glacial acetic acid and 20 mL of 6 M 

H3PO4) and 2 ml of glacial acetic acid followed by 1 h of heating at 100 oC in an enclosed water 

bath. Samples were then quickly cooled by immersion in an ice bath and total proline was 

determined spectrophotometrically at 520 nm. Actual proline tissue accumulation levels were 

determined by subtracting mean control data from growth regulator treatment data for all cultivars 

during the entire experimental period. 
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Data analysis. Effects of species, growth regulator, and growth regulator levels and their 

interactions were determined by analysis of variance (SAS Institute, 2007). Monitored 

parameters (leaf color, leaf area, plant quality, K+/Na+, TNC, RSC and proline contents of 

shoots) were analyzed on individual measurement dates to examine the differences in the 

recovery rate among different treatment. Means were separated by least significant difference at 

the 0.05 level of probability.    

RESULTS AND DISCUSSION 

Leaf characteristics: 

Leaf color. Comparisons of leaf color among species and growth regulator treatments clearly 

showed significant differences. Species and growth regulator interaction was also significant 

(Table 1.1). Comparison of species within each treatment indicated that G. flavum had a superior 

recovery rate (Fig. 1.1).  Under control treatment, G. flavum, subjected to stress had an 

acceptable rating of 6.0 and showed reasonable recovery rate. G. acutidentatum, G. grandiflorun, 

and G. corniculatum leaf color did not recover to the acceptable level by the end of the 

experiment (Fig. 1.1). The treatment of 2.0 mM ABA resulted in the highest recovery in leaf 

color followed by 20.0 mM ethephon, 2.0 mM SA and 0.03 mM fusicoccin (Fig. 1.1). G. 

conrniculatum did not show acceptable leaf color ratings under any treatments while G. 

grandiflorum showed acceptable leaf color only under the treatment of 2 mM ABA (Fig.1.1). 

There was no significant difference among species in the rate of improvement or change 

compeared with control treatment. 
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Table 1.1. Analysis of variance with mean squares and treatment significant of leaf color, leaf area, 
plant quality, shoot K+/Na+, total non-structure carbohydrate content (TNC), shoot reducing sugar 

content (RSC), and proline content in Glaucium spp. during the recovery from salinity stress. 

  
 Parameter Species PGR S x G     
 Leaf color 7.3** 95.8** 55.5*     
 Leaf area 1.5** 605** 4.6*     
 Plant quality 7.5** 608** 4.5*     
 K+ / Na+ 166.0** 34.0** 155.0*     
 TNC 1210.0** 1195.0** 1910.0*     
 RSC. 56.0** 685.0** 412.0*     
 Proline 1240.0** 1688.0** 1650.0*     
 *significant at P ≤ 0.05, ** Significant at P ≤ 0.01       

 

 
 
 
 
     

 
Fig. 1.1. Effect of different growth regulator on leaf color during the recovery from salinity stress of four  
Glacium spp. Columns labeled with different letters are significantly different at P = 0.05 among growth  
regulator treatments. Columns labeled with an asterisk are significantly the highest among species within  
each treatment. 
 

Generally salinity affects leaf color quality to different degrees. As soon as growth 
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conditions. Many studies reported the effect of salinity on leaf color and quality.A decrease in 

chlorophyll index was reported by Bayat et al. (2012) due to salinity in Petunia hybrida. Salinity 

affected butterhead lettuce leaf differently. Choi and Lee (1999) documented salinity effect on 

lettuce lower and upper leaf. It is well known that the negative effect of salinity on leaf color is 

due to the effect on chlorophyll formation processes (Kubis et al., 2004; Murkute et al., 2006; 

Levitt, 1980; Jaleel et al., 2008; Parida and Das, 2005; El-Desouky and Atawia, 1998; Aggarwal, 

et al., 2012; Enteshari and Hajbagheri, 2011; Jaleel et al., 2008). Getlawi (2013) indicated a 

negative effect of salinity on Glaucium spp. leaf color at different degrees. Applying exogenous 

compounds is one way to reduce destructive effects of abiotic stresses (Yuan and Lin 2008). 

Leaf area. Analysis of variance indicated significant differences among species and among 

growth regulator and their interactions (Table 1.1). Comparison among species indicated that 

G.flavum achieved the highest leaf area under all treatments including control treatment followed 

by G. acutidentatum, G. grandiflorum and G. corniculatum. The treatment of 2.0 mM ABA 

resulted in the highest leaf area followed by 20.0 mM ethephon, 2.0 mM SA and 0.03 mM 

fusicoccin (Fig. 1.2). Under control treatment, G. flavum acheived an average leaf area of 9.5 

cm2 while G. acutidentatum had an averge leaf area of 7.5 cm2, G. grandiflorum 6.5 cm2 and G. 

corniculatum 4.5 cm2 (Fig.1.2). Leaf area increased from 9.5 to 20.5 cm2 in G. flavum, from 7.5 

to 19.0, G. acutidentatum, from 6.5 to17.5 cm2 in G. grandiflorum, and from 4.5 to 16.0 cm2 in 

G. corniculatum under the treatment of 2mM ABA (Fig. 1.2). There was no significant 

difference among species in the rate of improvement or change compeared with control 

treatment. Leaf area followed a similar trend as leaf color. Leaf that were able to recover healthy 

color generally have a greater leaf area. Previous work indicated similar salinity effects on leaf 

area in other species (Abdul Jaleel et al., 2009). Prolonged exposure to high salinity levels 

12 

 



decreased leaf size (Munns et al., 1988; Volkmar et al., 1998, Getlawi, 2013). Usually, leaf area 

decrease is the first sign of salinity stress (Munns and Termaat, 1986; Chartzoulakis  

 

Fig. 1.2. Effect of different growth regulator on leaf area during the recovery from  
salinity stress of four Glacium spp. Columns labeled with different letters are 
 significantly different at P = 0.05 among growth regulator treatments. Columns  
labeled with an asterisk are significantly the highest among species within each 
treatment. 
 

and Klapaki, 2000). Energy saving by reducing leaf area is the first adaptation mechanism to be 

adopted by plants to cope with salinity stress (Jaleel et al., 2008). This may be a direct effect of 

salt on rate of cell division, to a slower rate of cell expansion, or a decrease in the duration of cell 

expansion. If cell division was affected, even if cell growth potential was not affected, final leaf 

size would be limited due to reduced cell number, (Volkmar et al., 1998). The rapid response to 

the increase in salinity is mainly osmotic and resulted in inhibition of leaf formation. The long 

term response is a result of ionic toxicity that accelerates senescence of mature leaf (Munns and 
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Tester, 2008). Applying growth regulator seemed to enhance Glaucium spp. recovery by 

reducing the negative effects of salinity. 

Plant Quality (attractiveness). Plant quality (attractiveness) varied significantly among species 

and growth regulator treatments. The interaction between species and growth regulator 

treatments was significant too (Table 1.1). Increasing salinity decreased the attractiveness of all 

Glaucium spp. to different degrees (Fig. 1.3). Without the addition of any growth regulator, G. 

flavum achieved the highest recovery and recorded a quality rate of 5.5, followed by G. 

acutidentatum (4.5), G. grandiflorum (3) and G. corniculatum (2.2) (Fig. 1.3). The treatment of 2 

mM ABA had the most significant recovery effect on all tested species. All species were 

positively affected at this treatment, where, G.flavum had its highest quality of 9, followed by G. 

acutidetutum (7.9), G. grandiflorum (6.5) and G. corniculatum (5.7) (Fig. 1-3). The treatment of 

2mM SA followed the treatment of 2mM ABA and achieved a quality of 7.5 in G. flavum, 

followed by G. acutidetutum (6.9), G. grandiflorum (5.3) and G. corniclatum (4.5) (Fig. 1-3). 

The effect of 20 mM ethephon was the least among treatment and the treatment of 0.03 mM 

fucicoccin was intermediate. There was no significant difference among species in the rate of 

improvement or change compeared with control treatment. 

In general, plant growth may be affected by either the absence of or excessive presence of 

NaCl in the substrate (Downton 1982; Clough 1984; Burchett et al. 1989; Pezeshki et al. 1990; 

Ball and Pidsley 1995; N. Su´arez and E. Medina, 2005). The ability to limit Na+ transport into 

the shoots, and to reduce the Na+ accumulation in the rapidly growing shoot tissues, is critically 

important for maintenance of high growth rates and protection of the metabolic procees in 

elongating cells from the toxic effects of Na+ (Razmjoo et al., 2008). Many reports have 

confirmed the internal changes in growth regulator in terms of types and concentrations under 
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salinity stress (Wilkinson and Davies, 2010; Zhang et al., 2006; Aswath et al., 2005; McCann 

and Huang, 2008; Qin and Zeevaart, 2002). 

 

Fig. 1.3. Effect of different growth regulator on plant quality during the recovery from salinity  
stress of four Glacium spp. Columns labeled with different letters are significantly different  
at P = 0.05.         
        

Shoot K+/Na+ Ratio:  

Shoot K+ and Na+ varied significantly among species, growth regulator treatments and 

their interaction (Table 1-1). There was no significant difference among species in the rate of 

improvement or change compeared with control treatment. Generally, increasing salinity 

decreased shoot K+/Na+ ratio. As salinity increased, Na+ content increased and K+ content 

decreased and as a result plants show salinity stress symptoms. Wyn Jones et al. (1979) 

suggested a threshold K+/Na+ ratio of 1 for normal growth of plants subjected to salinity. Results 

with horned poppy indicated that K+/Na+ ratio was ≥ 1 in all species with the ttreatments of 2 

mM ABA, 2 mM SA, and 20 mM ethephon while it was less than 1 in G. corniculatum at the 

treatment of 0.03 mM Fusicoccin.  
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Table 1.2.  Effect of 2mM Abscsic acid (ABA), 2 mM salicylic acid (SA), 0.03 mM 
fusicoccin (FC), and 20 mM ethephon (E) on K+/Na+ ratio of Glaucium spp. during the 

recovery from salinity stress. 
 

†Values followed by the same letters within a column for each cultivar are not significantly different 
(P = 0.05) based on Fisher’s LSD test. Values labeled with an asterisk are significantly the highest 
(P = 0.05) among different growth regulator treatments within each species. 

 

Results indicated that growth regulator treatments influenced K+/Na+ ratios during the 

recovery from salinity stress. Potassium ions and growth regulator play a significant role in 

stomatal closure, which is necessary for plant survival under stress. Under stress conditions the 

changes in guard cell ion transport which are responsible for stomatal opening and closure through 

controlling the turger pressure of guard cells are initiated by the ‘drought’ hormone abscisic acid 

(ABA).   

Total Nonstructural Carbohydrates (TNC) and Total Reducing Sugar Content (RSC): 

Shoot TNC (Table 1.3) and RSC (Tabe 1.4) varied significantly among species, growth 

regulator treatments and their interaction. Generally, salinity stress decreases shoot TNC and 

increases RSC of Glaucium spp. (Getlawi 2013). Growth regulator treatments significantly 

affected the recovery rate and TNC vs RSC dynamics. The treatment of 2 mM ABA was the most 

effective followed by 2 mM SA, 20 mM ethephon and 0.03 mM fusicoccin (Tables 1.3 and 1.4). 

G. flavum achieved the highest recovery rate and as a result the highest level of TNC and the lowest 

level of RSC (Tables 1. 3 and 1.4). At the treatment of 2 mM ABA, average TNC increased by 

                                                                            K+/Na+ ratios  
                                                   PGR treatment  

Species Control 
2 mM 
ABA 

2 mM 
SA 

0.03 mM 
FC 

20 mM 
E 

G. flavum 0.8a† 2.2a* 2.0a 1.2a 1.5a 
G. acutidentatum 0.5b 2.0b* 1.7b 1.1b 1.3b 
G. grandiflorum 0.4c 1.8c* 1.5c 1.0c 1.2c 
G. corniculatum 0.2d 1.4d* 1.2d 0.9d 1.1d 
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92.0, 100.0, 118.0 and 110.0% in G. flavum, G. acutidentatum, G. grandiflorum and G. 

corniculatum respectively (Table 1.3) while RSC decreased by 30, 53, 37.5 and 27.0% in G. 

flavum, G. acutidentatum, G. grandiflorum and G. corniculatum respectively (Table 1.4). An 

increase in TNC was expected due to observed improvement in leaf color, area and quality that 

added to the photosynthetic tissues. Recovery from stress escalated the increase in TNC which 

resulted from the recovery of the leaves. 

Table 1.3. Effect of 2 mM Abscsic acid (ABA), 2 mM salicylic acid (SA), 0.03 mM fusicoccin (FC), 
and 20 mM ethephon (E) on total non-structural carbohydrates (TNC) in shoots of Glaucium spp. 

measured at the end of the recovery from salinity stress. 
 
      TNC (mg g-1 dry weight)   
  PGR treatment    
Species Control 2 mM ABA 2 mM SA 0.03 mM FC 20 mM E 
G. flavum 66.5a† 128.0a 108.5a 88.0a 95.0a  
G. acutidentatums 58.5b 119.0bc 101.0b 83.0b 89.0b  
G. grandiflorum 48.0c 105.0c 95.0c 74.0c 81.0c  
G. corniculatum 42.2d 89.0da 83.0d 68.0d 73.0d  

† Values followed by the same letters within a column for each species are not significantly 
different (P = 0.05) based on a Fisher’s LSD test. 
 
Table 1.4. Effect of 2 mM Abscsic acid (ABA), 2 mM salicylic acid (SA), 0.03 mM fusicoccin (FC), and 
20 mM ethephon (E) on total reducing sugar content (RSC) in shoots of Glaucium spp. measured at the 

end of the recovery from salinity stress. 
  

      RSC (mg g-1 dry weight)   
  PGR treatment    
Species Control 2 mM ABA 2 mM SA 0.03 mM FC 20 mM E 
G. flavum 45.0a† 15.0d 18.0d 22.0d 20.0d  
G. acutidentatums 36.0b 17.0c 20.0c 24.0c 22.0c  
G. grandiflorum 32.0c 20.0b 23.0b 26.0b 24.0b  
G. corniculatum 22.0d 26.0a 28.0a 30.0a 28.0a  

† Values followed by the same letters within a column for each species are not significantly different     
(P = 0.05) based on a Fisher’s test.  
 
As was expected, RSC responded differently (Table 1.4). Reducing sugars in plants mainly 

consists of glucose and fructose (Ball et al., 2002; Shahba et al., 2003). While nonstructural 

carbohydrates are energy reserves in plants, soluble reducing sugars are thought to play an 
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important role in stress tolerance as osmoregulator and as protectants as they prevent cell 

desiccation (Popp and Smirnoff, 1995). Shahba (2010b) found an increase in RSC and a decrease 

in TNC when subjected increases in salinity in bermudagrass species (Tifgreen, Tifdwarf and 

(Tifway) and seashore paspalum cultivars (Shahba et al., 2012). In this study, it was  therefore 

observe the opposite trend during recovery from salinity stress. Carbon reduction during stress 

could be related to the stress resistance mechanisms that are energy dependent. In general, previous 

results and our results suggested that carbohydrate availability is a limiting factor for shoot growth 

under high salinity stress and during recovery from stress.  

Growth regulator treatments could affect the dynamics of carbohydrates usage and 

accumulation throught their effect on the overall growth of the plant that in turn affects all plant 

activities. TNC serves as the resource for the increased RSC under increased stress conditions i.e. 

the relationship between TNC and RSC is a source sink relation and this is obvious if we compare 

their dynamics in Tables (1.3) and (1.4). 

Shoot Proline Content:  

Shoot proline content varied significantly among species, growth regulator treatments 

and their interaction (Table 1.5). It is well known that proline content increases in response to 

salinity (Getlawi 2013; Shahba et al. 2012). During the recovery from salinity stress, the 

processes of proline accumulation was reversed. Growth regulator treatments significantly 

affected the recovery rate and Proline content. The treatment of 2 mM ABA was the most 

effective followed by 2 mM SA, 20 mM ethephon and 0.03 mM Fusicoccin (Table 1.5). G. 

flavum achieved the highest recovery rate and as a result proline content was the lowest in when 

compared to different growth regulator treatments. At the treatment of 2 mM ABA, proline 

content decreased by 72.8, 63.5, 61.4 and 57.5 % in G. flavum, G. acutidentatum, G. 
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grandiflorum and G. corniculatum respectively (Table 1.5). Although the role of proline 

accumulation in salinity tolerance is well illustrated in this study, it has been questioned by 

others (Ashraf and Harris, 2004). These results suggested a positive role for proline in Glaucium 

species salinity tolerance. A positive effect of proline accumulation in salinity tolerance was also 

reported in Glaucium spp. (Getlawi 2013) and in seashore paspalum cultivars (Shahba et al., 

2012). Accumulation of proline in plant tissues in response to salinity stress has been attributed 

to enzyme stabilization and/or osmoregulation (Flowers et al., 1977; Levitt, 1980). The decline 

of proline content during the recovery of salinity stress indicates its relative importance to coping 

with stress conditions. It likely enhances membrane stability and mitigates the effect of NaCl on 

cell membrane disruption and protein structure, act as a sink for carbon and nitrogen for stress 

recovery, and can buffer cellular redox potential under salinity stress (Ashraf and Foolad, 2007; 

Maggio et al., 2002). In some cases, the effect of stomatal conductance on water potential is 

higher than that of proline accumulation. Indeed, proline has been demonstrated to confer abiotic 

stress tolerance either by increasing the antioxidant system or by increasing osmotic adjustment 

(Vendruscolo et al. 2007; Cvikrová et al. 2012; Rai et al. 2012). Photosynthetic rate is affected 

by many factors, including stomatal conduction, CO2 assimilation, photosynthetic enzyme 

activities, inhibition of PSII activity, and stability of photosynthetic apparatus (Camejo et al. 

2005; Silva et al. 2010).  
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Table 1.5. Effect of 2 mM Abscsic acid (ABA), 2 mM salicylic acid (SA), 0.03 mM fusicoccin (FC), and 
20 mM ethephon (E) on Proline content (P) in shoots of Glaucium spp. measured at the end of the 

recovery from salinity stress. 
 Proline content (mg g-1 dry Wight)   
  PGR treatment    

Species Control 
2 mM 
ABA 

2 mM    
SA 

0.03 mM      
FC 

20 mM 
    E 

G. flavum 1250.0d† 340.0d 485.0d   590.0d 525.0d  
G. acutidentatum 1150.0c 420.0c 595.0c   620.0c 505.0c  
G. grandiflorum 1400.0b 540.0b 680.0b   720.0b 610.0b  
G. corniculatum 1600.0a 680.0a 740.0a   800.0a 760.0a  

† Values followed by the same letters within a column for each species are not significantly different     
(P = 0.05) based on Fisher’s LSD test.  
 
 

The role of abscisic acid in stress physiology has received much attention, and there is 

now considerable experimental evidence that the physiological effects induced by salinity might 

be modulated by ABA. It has been shown that saline stress is accompanied by an increased in 

ABA content (Aspinall and Paleg 1981).  In addition, P. vulgaris plants adapted to salinity had 

ABA concentrations substantially higher than those in non-adapted plants (Montero and others 

1998). An exogenous ABA treatment reduces leaf abscission and increases salt tolerance in 

citrus plants (Go´mez-Cardenas et al.2003), but it also decreases total biomass and increases the 

root to shoot ratio in poplar species (Yin et al. 2004). Abscisic acid (ABA) selectively affects ion 

transport processes (van Steveninck, 1976). ABA appears to increase the permeability of roots to 

water and to inhibit excretion of ions into the xylem but not to affect uptake of ions by the root. 

The effectiveness of ABA may depend on environmental factors such as temperature (Pitman et 

al., 1974; Pitman and Wellfare, 1978). 

Khadri et al. (2006) studied the effect of abscisic acid (ABA) and 100 mM NaCl on 

common bean (Phaseolus vulgaris var. Coco) growth, nitrogenase activity, and nodule 

metabolism in a controlled environmental chamber. Results revealed that plant dry weight, 

nodule dry weight, nitrogen fixation, and most enzymes of ammonium and ureides metabolism 
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were affected by both ABA and NaCl. The addition of one l M ABA to the nutrient solution 

before the exposure to salt stress reduced the negative effect of NaCl. They suggested that ABA 

application improves the response of Phaseolus vulgaris symbiosis under saline stress 

conditions, including the nitrogen fixation process and enzymes of ammonium assimilation and 

purine catabolism. The exogenous application of ABA caused an alteration of zeatin riboside 

(ZR) content in lucerne under different stress conditions (Dobra et al. 2010).  

Jung and Luttge (1980)  mentioned that fusicoccin (FC) inhibited net excretion of Cl by 

the glands of the pitchers of the carnivorous plant Nepenthes hookeriana ; of Na+ and Cl- by the 

salt glands of the halophytes Limonium vulgare and L. pectinatum and of K+ in the nectar of Acer 

platanoides flowers. It had no effect on K+ elimination with nectar of Impatiens walleriana 

(extrafloral nectaries) and Abutilón striatum, Abscisic acid (ABA) stimulated net excretion of K+ 

and Cl- in Nepenthes and of Na+ and CI- in Limonium but had no effects on K+ in nectar. Thus, 

FC and ABA had opposing effects on ion excretion by the salt eliminating glands of Limonium 

and Nepenthes. Both compounds, however, had similar effects on sugar secretion of nectary 

glands which was either inhibited or unaffected by FC and ABA. It is suggested that the effects 

of FC and ABA on ion excretion by gland cells could be reconciled with literature showing FC-

stimulation and possible ABA-inhibition of proton pumps at the plasmalemma of plant cells.  

Fusicoccin was initially suggested to activate the plasma membrane H+-ATPase by direct 

interaction with the enzyme (Marrè, 1979). Later, fusicoccin was demonstrated to bind to a 

“receptor” belonging to a family of proteins designated 14–3–3 proteins (Korthout and de Boer, 

1994; Marra et al., 1994; Oecking et al., 1994). The 14–3–3 proteins constitute a highly 

conserved family of eukaryotic proteins with multiple regulatory functions (Aitken, 1996). 

Recently, it was shown that 14–3–3 proteins bind directly to the C-terminal region of the H+-
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ATPase and that fusicoccin stabilizes the H+-ATPase/14–3–3 complex formed, rendering the 

association irreversible (Jahn et al., 1997;Oecking et al., 1997;Baunsgaard et al., 1998). This 

explains earlier observations that plasma membranes isolated from fusicoccin-treated material 

contained several times more 14–3–3 than plasma membranes isolated from the corresponding 

controls (Korthout and de Boer, 1994; Oecking et al., 1994). The strong interaction induced by 

fusicoccin also allowed the H+-ATPase/14–3–3 complex to be solubilized and purified from 

isolated plasma membranes (Jahn et al., 1997; Oecking et al., 1997). Binding of 14–3–3 proteins 

to the C-terminal region of the H+-ATPase was also shown to occur in the absence of fusicoccin, 

and it was suggested that 14–3–3 proteins are natural ligands of the H+-ATPase, regulating 

H+ pumping by displacing the autoinhibitory domain of the enzyme (Jahn et al., 1997; Oecking 

et al., 1997; Baunsgaard et al., 1998). It is known to stimulate the proton pump at the plasma- 

lemma of cells in a large variety of plant materials; a multiplicity of other effects on transport 

processes and cell physiology seem to be secondary consequences thereof (Marré, 1977). FC and 

ABA have antagonistic effects on movements of stomatal guard cells. FC causes stomata to open 

and prevents closure; this is probably due to enhanced H+ extrusion from the guard cells (Marré, 

1977), which then affects malate and K+ accumulation, thus providing the basis for turgor 

increase and stomatal opening at least in some cases (Raschke, 1975, 1977; Hsiao, 1976).  

Bayat et al. (2012) evaluated the effects of SA on growth and ornamental characteristics 

of Persian petunia under salt stress and concluded that foliar application of SA improved growth 

and ornamental characteristics of Persian petunia under saline and non-saline conditions. 

Salicylic acid controls photosynthesis system, photosynthesis amount, pigment content and 

stomatal conductivity and regulates these procedures for appropriate growth and development 

(Popova et al., 2009, Steven et al., 2006, El-Tayeb, 2005, Kormkaz et al., 2007). Environmental 
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stresses, such as cold, heat, salinity, and drought, induce ethylene production and oxidative stress 

and cause damage in plants. Ethylene is produced either chemically through the incomplete 

combustion of hydrocarbons or biologically by almost all living organisms (Wang et al. 2002, 

Pech et al. 2004). There is a lot of evidence showing that ethylene is an essential component of a 

wide range of responses to biotic and abiotic environmental stresses Shinozaki et al. 1999, Wang 

et al. 2002, Guo and Ecker 2004, El-Tayeb 2005). Further, many of these stress responses 

integrate ethylene signaling into more complex circuitry involving salicylate and jasmonate 

signaling (Wang et al. 2002). The effects of ethylene on plants are regulated both at the level of 

its synthesis and perception of the hormone (Caren 2007, Wang et al. 2002). Tirani et al. (2013) 

studied the effects of ethylene on chlorophyll (Chl), carotenoid (Car), anthocyanin, flavonoids, 

ascorbic acid, dehydroascorbic acid, total ascorbate, lipid peroxidation, and ethylene production 

in leaf of canola pretreated with SA. Their results showed that the ethylene treatments induced 

lipid peroxidation, lowered significantly Chl and Carotenoids contents and anthocyanin 

accumulation. 

On the basis of the number of times in the best statistical category for leaf characteristics, 

overall plant quality (attractiveness), TNC, RSC, proline content and K+/Na+ ratio, G. flavum was 

found to have higher recovery rate when compared to G. acutidenatum, G. grandflorum and G. 

corniculatum. Also, the treatment of 2 mM ABA was the most effective followed by 2 mM SA, 

20 mM ethephon and 0.03 mM Fusicoccin in enhancing salinity stressed Glaucium SPP. recovery. 

In summary, Glaucium spp. under salinity stress exhibited a positive response to growth regulator 

treatments in terms of improving leaf characteristics, plant height, overall plant quality 

(attractiveness), TNC, and K+/Na+ ratio. G. flavum showed a greater tendency to recover from 

salinity stress at all growth regulator treatments when compared to the other species tested. The 
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treatment of 2 mM ABA is recommended to improve the recovery rate of Glaucium spp. under 

salinity stress. 
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CHAPTER 2 
 

RECOVERY OF GLAUCIUM SPP. FROM DROUGHT STRESS USING GROWTH 

REGULATOR TREATMENTS 

SUMMARY 

Water conservation especially in arid and semiarid regions of the world is a necessity. Plant 

species, and cultivars within a species, vary in their drought tolerance. These variations are the 

result of variations in genes relating to drought tolerance mechanisms and their interaction with 

the environment. In order to reduce water usage, it is important to understand the mechanisms of 

plant adaptation to drought stress. Horned Poppies (Glaucium spp.) are members of the Poppy 

family, Papaveraceae, that are native to the Mediterranean and Middle East regions. The objectives 

of this study were to (1) determine whether applications of Abscisic acid (ABA), salicylic acid 

(SA), fusicoccin, and ethephon could promote Glacium spp.  growth and recovery from drought 

stress; (2) determine the most effective concentrations of each growth regulator in the recovery of 

the stressed plants; (3) evaluate the recovery degree from drought stress among the common 

Horned Poppy species that are available at Denver Botanic Gardens, G. flavum, G. corniculatum, 

G. grandiflorum and G. acutidentatums; (4) determine which evaluation criteria are associated 

with superior recovery rate; (5) confirm selection criteria for evaluation of drought tolerance in 

Horned Poppy species. Lysimeter columns were used in this study which was replicated twice in 

the CSU Plant Science greenhouse. Four Growth regulator treatments were used and were applied 

weekly with irrigation water. Three levels of each regulator were used. Treatments continued for 

two months. Data were collected weekly on leaf color (using color chart), leaf size (using Image J 

software), and the quality and general attractiveness of the plant using personal visual estimation 

(using a scale of 0 to 9 where 9 is the optimum quality, with a rating of 6.0 or higher indicating 
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acceptable quality). Samples were collected for TNC, RSC and proline content analysis for each 

treatment at the end of the experiemnt. Evapotranspiration (ET) measurements were collected 

every 2 to 3 days during the four month growth period. Five weight readings per pot were made 

during each measurement and the average value was used for ET calculation. ET was calculated 

by mass difference and expressed as mm d-1. On the basis of the number of times in the best 

statistical category for leaf characteristics, overall plant quality (attractiveness), water use 

efficiency, TNC, RSC, and proline, G. flavum was found to have the greatest recovery rate from 

drought stress when compared to G. acutidentatum, G. grandiflorum and G. corniculatum. Also, 

the treatment of 2 mM ABA was the most effective followed by 2 mM SA, 20 mM ethephon and 

0.03 mM fusicoccin in enhancing drought stressed Glaucium spp. recovery. Growth regulator 

treatments could affect proline accumulation through their effect on the overall growth of the plant 

that affect all plant activities especially different growth regulator concentrations and interactions 

as it will be indicated in the next Chapter. In summary, Glaucium spp. under drought stress 

exhibited a positive response to growth regulator treatments in terms of improving leaf 

characteristics, plant height, overall plant quality (attractiveness), TNC, and water use efficiency. 

G. flavum showed greater tendency to recover from drought stress at all growth regulator 

treatments when compared to the other species tested. The treatment of 2 mM ABA is 

recommended to improve the recovery rate of Glaucium spp. under salinity stress. 

INTRODUCTION 

Water is a limiting factor in arid and semiarid regions and as a result of drastic water 

conservation methods are greatly needed. Because of the immense water usage and the diminishing 

water resources, many arid states have implemented water conservation programs (Soeder and 

Kappel, 2009). The demand for water has led to an inadequate water supply for landscapes and as 
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a result negative impacts on the aesthetics and functionality. Therefore, the development of 

efficient irrigation management programs as well as the selection and improvement of drought 

tolerant landscape plants has become extremely important in order to maintain landscapes at 

acceptable quality.  

Plant species and cultivars within a species, vary in their drought tolerance. These 

variations are mainly genetic and could be due to environmental adaptations (Duncan and Carrow, 

1999). Usually evaluations for drought tolerance of plants depend on shoot growth, as reported in 

crop yield response curves proposed by Maas and Hoffman (Igartua, 1995; Maas and Hoffman, 

1977).   

In arid and semiarid regions, climate and soil can make it difficult for many ornamental 

plants to grow.  Therefore, nurseries are always interested in new plants that will survive well in 

such climates and satisfy the customer’s desire for new beautiful plants. Horned Poppies 

(Glaucium spp.) are members of the Poppy family, Papaveraceae. Glaucium spps. are species that 

have originated in the Mediterranean and Middle East regions. Some species have a wider 

distribution than others. Horned poppies require full sun and well-drained soils for optimum 

growth. They should be spaced between 30 and 60 cm apart, and are best grown by seeding in the 

fall where they are to bloom and thinning to the desired spacing as they germinate in the spring. 

The roots of the horned poppy are considered poisonous. 

All horned poppies have blue-green foliage that is deeply pinnatifid to pinnatisect and 

typically grow 30-50 cm long. The leaf have varying degrees of texture from glaucous to villous. 

All leaf are lyrate to sublyrate shaped and have a rosette growth habit. They have solitary blooms 

on flower stalks that grow above the foliage. All species have four petals in their corolla and their 

pistil is completely surrounded by stamens. They all develop long horned-shaped seed siliquiforms 
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with the stigma remaining to cap off the top of the fruit. Species of interest in this study were G. 

flavum, G. grandiflorum, G. acutidentatum and G. corniculatum.  

Glaucium flavum Crantz is the most widely spread species in the genus.  It is found from 

the coasts of Britain and the Atlantic Islands to the coasts of the Mediterranean Basin and the Black 

Sea (Grey-Wilson, 2000). It grows predominantly on sandy beaches and as a result it is commonly 

known as the Sea Horned Poppy. According to Davis (1965), G. flavum is distinguished from other 

species by several characteristics. The sepals have crisp, pilose hairs on the surface and the petals 

can be solid yellow, red or reddish mauve.  Glaucium flavum is most often recognized for the 

yellow petals and is commonly referred to as the Yellow Horned Poppy. The ovary is densely 

papillose to tuberculate, basically a bumpy surface. The siliquae will retain the papillose to 

tuberculate texture.  

Glaucium grandiflorum Boiss & É. Huet is native to the southern part of the Caucasus 

Mountains but it is also found in Syria, Iran and the Sinai (Grey-Wilson, 2000).  Turkey is situated 

between the Mediterranean Sea and the Black Sea, where the precipitation ranges from 580 to 

1300 mm/year. However, in the mountain ranges of the country there are great differences in 

climate changes with harsh winters and drier conditions with low precipitation of 400 mm/year. 

Glaucium grandiflorum has features that distinguish it from other Glaucium species. It has only 

one main flower stem while other species have multiple flower stalks growing from the base of 

the rosette (Davis, 1965).  The sepals have short, stiff hairs making the surface hirsute. The petals 

are dark orange to crimson red with a black spot at the base of the petal. The pedicle of the flower 

exceeds the subtending leaf, which differs from the other Glaucium species. There are two varieties 

of G. grandiflorum: var. grandiflorum and var. torquatum. Glaucium grandiflorum var. torquatum  
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has red petals with a black blotch and can be found in calcareous hillsides. Glaucium grandiflorum 

var. grandiflorum is found in fields, banks and rocky slopes.   

Glaucium acutidentatum Hausskn & Bornm is endemic to Turkey where it is found on dry 

hillslopes and rocky places (Grey-Wilson, 2000).  G. acutidentatum is the most glabrous species 

with smooth sepals and ovaries. Although the ovary is smooth, the resulting siliquae is subtorulose. 

The petals are solid orange-buff color. G. acutidentatum is found at elevations of 950-1400 m on 

dry hills (Davis, 1965). 

Glaucium corniculatum (L.) J.H. Rudolph is native to the Mediterranean basin, Atlantic 

islands, Caucasus Mountains, Bulgaria, Romania, northern Iraq and northwestern Iran (Grey-

Wilson, 2000; Davis, 1965).  G. corniculatum also has some unique characteristics. Its leaf have a 

soft, villous texture and its sepals are scabrous to hirsute. The petals are yellow, orange or red 

(Davis, 1965) with a black basal spot (Grey-Wilson, 2000).  

In order to reduce water usage, it is important to understand the mechanisms of plant 

adaptation to drought stress. Drought resistance includes a range of mechanisms employed by 

plants to withstand periods of drought (Beard, 1989). Strategic mechanisms include drought 

escape, drought avoidance, and drought tolerance (Turner, 1986). The significance of each of these 

strategies is related to drought duration and severity in addition to the plant species. These 

mechanisms are associated with anatomical, morphological, physiological, and biochemical 

changes. The reduction in the evapotranspiration (ET) rate and the ability of a species to maintain 

transpiration as the soil dries are example of drought tolerance mechanisms as the reduction in ET 

indicates a better water use efficiency. Changes in leaf that facilitate drought tolerance include 

reduced leaf growth and area, increased pubescence, rolling or folding, and fewer stomates 

(Duncan and Carrow, 1999). The balance between carbohydrate production and consumption will 
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impact the ability of plant species to cope with stresses (Huang and Fry, 1999; Lee et al., 2008a, 

2008b; Shahba, 2010b, Shahba et al., 2012). Amino acids, especially proline, accumulate in larger 

amounts to cope with increasing stress in plants (Lee et al., 2008b). Proline accumulation is one 

of the first responses of plants exposed to water-deficit stress and serves to reduce injury to cells 

(Ashraf and Foolad 2007). Rapid accumulation of proline in tissues of many plant species in 

response to drought, salt or temperature stresses has been attributed to osmoregulation (Flowers et 

al., 1977; Levitt, 1980). However, because of contrasting reports related to proline accumulation 

effect on stress tolerance (Marcum, 2002; Torello and Rice, 1986), its use as selection criterion for 

stress tolerance has been questioned (Ashraf and Harris, 2004). Thus it is critical that tests be made 

before making any conclusion regarding the role of proline in stress tolerance of any specific 

species. 

 In a previous study (Getlawi 2013), it was shown that drought tolerance of Glaucium spp. 

is dependent on the internal osmoregulator content. Many studies discussed the plant responses to 

stress via internal chemical signals and growth regulator adjustments. However, few studies dealt 

with the effects of exogenous growth regulator applications on the physiology of plants under 

stress such as Aroca et al. (2008) who evaluated the influence of exogenous ABA application on 

plant development, physiology, and expression of several stress related genes after both drought 

and a recovery period. The objectives of this study, therefore, are to (1) determine whether 

applications of  Abscisic acid (ABA), salicylic acid (SA), fusicoccin, and ethephon could promote 

Glacium spp. growth and recovery from drought stress; (2) determine the most effective 

concentrations of each growth regulator in the recovery of the stressed plants; (3) evaluate the 

recovery degree from drought stress among the common Horned Poppy species that are available 

at Denver Botanic Gardens, G. flavum, G. corniculatum, G. grandiflorum and G. acutidentatums; 
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(4) determine which evaluation criteria are associated with superior recovery rate; (5) confirm 

selection criteria for evaluation of drought tolerance in Horned Poppy species. 

MATERIALS AND METHODS 

Lysimeter columns were used for these experiments. Columns were placed in the green 

house. Sixty plants of each species that were planted in 15 cm in diameter and 50 cm long PVC 

tube containing potting mix were used. These plants were previously used for drought tolerance 

strees screening and already suffered different degrees of stress. Stress treatments that were 

applied included control (100% of the total evapotranspiration), 75%, 50 % and 25% of the total 

ET. Experimental design was randomized complete Block (RCB). Each block represented one of 

the replications and contains sixty tubes. Four blocks were used. Used plants in each tube were 

selected of similar size and height, hold the same number of leaf and suffered similar degree of 

stress. Four Growth regulator treatments were used and were applied weekly with irrigation 

water. Three levels of each regulator were used. Evapotranspiration was measured weekly to 

monitor the change in the evapotranspiration. Four representative tubes for each species were 

used as lysimeters and were watered with enough water and left to drain for 2 h, after which the 

weight of each tube was recorded. Each tube was then re-weighed every 24 hours. The daily 

changes in weight represent the daily evapotranspiration for each species. Treatments continued 

for two months.  

Data Collection. During the course of the experiment data were collected weekly on plant leaf 

color (using leaf color chart), leaf size (using Image J software), and general attractiveness of the 

plant using personal visual estimation (using a scale of 0 to 9 where 9 is the optimum quality, 

with a rating of 6.0 or higher indicating acceptable quality).  
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ET measurements were collected every 2 to 3 days during the four month growth period. 

Five weight readings per pot were made during each measurement and the average value was used 

for ET calculation. ET was calculated by mass difference and expressed as mm d-1. 

Samples were collected for TNC, RSC, proline and tissue Na+ and K+ content analysis for 

each treatment. Total nonstructural carbohydrate content, RSC, tissue Na+ and K+ and proline 

content were determined at the termination of the experiment. Shoot tissue at the termination of 

the experiment was harvested and washed with cold distilled water to remove plant debris for 

carbohydrate analysis. Approximately 5 g samples from the treatments were freeze-dried 

(Genesis 25 LL Lyophilizer, Virtis, Gardiner, NY). After freeze-drying, samples were ground 

with a Wiley mill, sieved thought a screen with 425 µm openings, and kept in airtight vials at –

20 oC.  TNC was measured using the method described by Chatterton et al. (1987).  In brief, 25 

mg freeze-dried samples were transferred to 5 ml of 0.1% clarase solution and incubated at 38°C 

for 24 h.  Then, 0.5 ml of hydrochloric acid (50%, v/v) was added to the incubation solution. 

After the solution was incubated at room temperature for 18 h, the pH value of the solution was 

adjusted to between 5 and 7 with 10 and 1 N NaOH. This resulting solution was used to 

determine TNC content using a spectrophotometer at 515 nm wavelength (model DU640; 

Beckman). 

To measure the free reducing sugar, 25 mg of the freeze dried, ground, and sieved sample 

was extracted with 10 ml of 0.1 M phosphate buffer (pH = 5.4) for 24 h at room temperature. An 

extracted aliquot (0.2 mL) was used to determine the reducing sugar content by using the same 

method as was used to measure TNC.   

Actual proline tissue accumulation levels were determined according to the method of 

Bates et al. (1973) as modified by Torello and Rice (1986) with approximately 0.5g fresh weight 
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of tissue. Samples were ground with liquid nitrogen in a mortar. Each sample was homogenized 

in 10 ml of 3% aqueous sulfosalicylic acid followed by agitation for 1h prior to filtration through 

#2 Whatman filter paper. After filtration 2 ml of extract from each sample was reacted with 2 ml 

of ninhydrin reagent (1.25 mg of ninhydrin in 30 mL of glacial acetic acid and 20 mL of 6 M 

H3PO4) and 2 ml of glacial acetic acid followed by 1 h of heating at 100 oC in an enclosed water 

bath. Samples were then quickly cooled by immersion in an ice bath and total proline was 

determined spectrophotometrically at 520 nm. Actual proline tissue accumulation levels were 

determined by subtracting mean control data from growth regulator treatment data for all cultivars 

during the entire experimental period. 

Data analysis. Effects of species, growth regulator, and growth regulator levels and their 

interactions were determined by analysis of variance (SAS Institute, 2007). Monitored 

parameters (leaf color, leaf area, plant quality, K+/Na+, TNC, RSC and Proline contents of 

shoots) were analyzed on individual measurement dates to examine the differences in the 

recovery rate among different treatment. Means will be separated by least significant difference 

at the 0.05 level of probability.    

RESULTS AND DISCUSSION 

Leaf characteristics: 

Leaf color. Comparisons of leaf color among species and growth regulator treatments clearly 

showed significant differences. Species and growth regulator interaction was also significant 

(Table 2.1). Comparison of species within each treatment indicated that G. flavum had a superior 

recovery rate (Fig. 2.1). Even under control treatment, G. flavum leaf color was not below the 

acceptable rating of 6.0 and showed reasonable recovery rate. G. acutidentatum showed 

acceptable color under the treatments of 2.0 mM ABA, 2.0 mM SA, and 20.0 mM ethephon and 
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was below 6 only at the treatment of 0.03 mM fusicoccin. G. grandiflorun showed acceptable 

quality only with treatment of 2.0 mM ABA. G. corniculatum leaf color did not recover to the 

acceptable level at the end of the experiment with any treatment. The treatment of 2.0 mM ABA 

resulted in the highest recovery in leaf color followed by 20.0 mM ethephon, 2.0 mM SA and 

0.03 mM fusicoccin (Fig. 2.1). There was no significant difference among species in the rate of 

improvement or change compeared with control treatment. 

Generally drought affects leaf color quality in different degress. As soon as growth 

conditions improve, recovery expected at different degress too based on the species and growth 

conditions. Many studies reported the effect of drought on leaf color and quality. Leaf greenness 

decreased under drought conditions almond genotypes (Yadollahia, 2011). Flexas and Medrano 

(2002) reported a reduction in leaf greenness in C3 plant leaf under water stress and associated 

that to degradation in chlorophyll content. The retention of leaf or  the observation of ‘stay 

green’ under water stress conditions has been reported in some cassava lines and has correlated 

well with drought tolerance and improved yields (Lenis et al. 2006). The decrease in relative 

greenness of the leaf under drought conditions is likely due to a decrease in chlorophyll content 

(Gibon et al., 2000).  There was a 38% reduction in chlorophyll content when compared to full 

irrigation of plants (Din et al., 2011). Increasing water stress reduced the (Chl a) and the (Chl a: 

b) significantly (Liu, et al, 2011). The pigment content generally decreased due to low synthesis 

rate and rapid degradation under water stress (Mihailovie et al., 1997; Lei et al., 2006; 

Yadollahia, 2011). Getlawi (2013) indicated a negative effect of drought on Glaucium spp. leave 

color at different degrees. Applying exogenous compounds is one way to reduce destructive 

effects of abiotic stresses (Yuan and Lin 2008). Growth regulator act simulatenously in direct 

and idirect ways to improve the leaf color during recovery.  
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Table 2.1. Analysis of variance with mean squares and treatment significant of leaf color, leaf area, plant 
quality, shoot K+/Na+, total non-structure carbohydrate content (TNC), shoot reducing sugar content 
(RSC), and Proline contents in Glaucium spp. during the recovery from salinity stress.   

 
Parameter Species (S) PGR S xPGR  
Leaf color (0-10) 6.5** 82.0** 70.5*  
Leaf Area (cm2) 2.2** 4.9** 3.1*  
plant quality (0-10 scale) 6.7** 6.9** 6.4*  
TNC (mg g-1 dry Wight) 990.0** 1010.0** 750.0*  
RSC (mg g-1 dry Wight) 44.0** 540.0** 33.0*  
Proline content (mg g-1 dry Wight) 980.0** 1211.0** 1050.0*  
Total ET (mmd-1) 1.2** 3.0** 2.5*  

*significant at P ≤ 0.05, ** Significant at P ≤ 0.01  
 
 

 
Fig. 2.1. Effect of different growth regulator on leaf color during the recovery from drought 
 stress of four Glacium spp. Columns labeled with different letters are significantly different  
at P = 0.05 among growth regulator treatments. Columns labeled with an asterisk are  
significantly the highest among species within each treatment. 
 
 
 

Leaf area. Analysis of variance indicated significant differences among species and among 

growth regulator and their interactions (Fig. 2.2). Comparison among species indicated that 

G.flavum achieved the highest leaf area under all treatments including control treatment followed 
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by G. acutidentatum, G. grandiflorum and G. corniculatum. The treatment of 2.0 mM ABA 

resulted in the highest leaf area followed by 20.0 mM ethephon, 2.0 mM SA and 0.03 mM 

fusicoccin (Fig. 2.2). Under control treatment, G. flavum acheived an average leaf area of 9.5 

cm2 while G. acutidentatum achieved an averge leaf area of 7.5 cm2, G. grandiflorum achieved 

6.0 cm2 and G. corniculatum achieved 4.5 cm2 (Fig. 2.2). Leaf area increased from 9.5 to 20.5 

cm2 in G. flavum, from 7.5 to 19.0 in G. acutidentatum, from 6.0 to17.5 cm2 in G. grandiflorum, 

and from 4.5 to 16.0 cm2 in G. corniculatum under the treatment of 2mM ABA (Fig. 2.2). Leaf 

area followed the similar trend of leaf color. Leaf that were able to recover healthy color 

generally have a greater leaf area. There was no significant difference among species in the rate 

of improvement or change compeared with control treatment.  

It is logic that the leaf area followed the trend of leaf color since healthy leaf should have 

a greater leaf area.  Although there was considerable decrease in overall leaf area in G.flavum, it 

appeared to be the most drought tolerant species. Water stress is one of the most common 

environmental factors affecting plant growth and productivity. Reduced water availability induces 

numerous physiological and biochemical changes in all plant organs. Gas exchange in leaf is 

limited, which in turn reduces carbon assimilation. Changes in the distribution of photo-assimilates 

can reduce vegetative growth (Boyer, 1970; Gehrmann, 1985; Singer et al., 2003) as well. The 

reduction of leaf area is principally explained by a lower leaf unfolding rate which results in 

smaller leaf size (Lecoeur et al., 1995; Lecoeur and Guilioni, 1998). The reduction in leaf area 

could be an adapting mechanism to water stress. The mechanism, by which plant leaf area is 

reduced under water stress, is thought to be the reduction of cell elongation, which leads to 

reduction of cell size and therefore a reduction of leaf area (Schuppler et al., 1998). Prolonged 

exposure to drought decreased leaf size (Munns et al., 1986; Volkmar et al., 1998, Getlawi, 2013). 
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Getlawi (2013) indicated a negative effect of drought on Glaucium spp. leave area. Applying 

growth regulator seemed to enhance Glaucium spp. recovery by reducing the destructive effects 

of drought and the enhancement of cell division and enlargement due to reestablishing the balance 

between different types of growth regulator. 

 

 
Fig. 2.2. Effect of different growth regulator on leaf area during the recovery from drought  
stress of four Glacium spp. Columns labeled with different letters are significantly different 
 at P = 0.05 among growth regulator treatments. Columns labeled with an asterisk are  
significantly the highest among species within each treatment. 
 
 

Plant Quality (attractiveness): 

Plant quality (attractiveness) varied significantly among species and growth regulator 

treatments. The interaction between species and growth regulator treatments was significant too 

(Fig 2.3). Drought decreased the attractiveness of all Glaucium spp. at different degrees (Fig. 
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2.3). Without the addition of any growth regulator, G. flavum achieved the highest recovery and 

recorded a quality rate of 5.5, followed by G. acutidentatum (4.5), G. grandiflorum (3) and G. 

corniculatum (2.2) (Fig. 1.3). The treatment of 2 mM ABA had the most significant recovery 

effect on all tested species. At 2 mM ABA Glaucim flavum had its highest quality of 9, followed  

 

 

 Fig. 2.3. Effect of different growth regulator on plant quality during the recovery 
 from drought stress of four Glacium spp. Columns labeled with different letters are 
 significantly different at P = 0.05.  
 

by G. acutidetutum (7.9), G. grandiflorum (6.5) and G. corniclatum (5.7) (Fig. 2-3). The 

treatment of 20 mM ethephon achieved a quality of 8 in G. flavum, followed by G. acutidetutum 

(7.2), G. grandiflorum (5.5) and G. corniclatum (4.7) (Fig. 2.3). The effect of 0.03 mM  
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fucicoccin was the least among treatments. There was no significant difference among species in 

the rate of improvement or change compeared with control treatment. 

Strategies that include both morphological and physiological modifications. These 

modifications may affect plant leaf greenness, leaf size and shape, plant height (shoot to root ratio) 

and flowering quality. Water stress has been shown to significantly reduce plant size 

(Champolivier and Merrien, 1996). Studies have also shown that drought stress can affect the 

growth of plant organs differently (Spollen et al., 1993) which may result in the alteration of 

morphology (French and Turner, 1991). Putievsky et al. (1990) reported that water stress had a 

negative impact on green tissue yield of Geranium. Drought caused reduction in all growth 

parameters of Matricaria chamomile (Razmjoo et al., 2008). Furthermore, a study by Flexas and 

Medrano (2002) showed that moisture deficiency affects various physiological and metabolic 

responses such as stomatal closure, decline in growth rate and photosynthesis. Also, Baher et al. 

(2002) showed that greater soil water stress decreased plant height and total fresh and dry weight 

of Satureja hortensis. Colom and Vazzana (2002) showed that the number of branches per plant 

and total plant dry weight was negatively affected by water stress in Eragrostis curvula. The range 

of drought in which the plant is able to survive varies according to the species (Ball 1988). The 

ability to limit Na+ transport into the shoots, and to reduce the Na+ accumulation in the rapidly 

growing shoot tissues, is critically important for maintenance of high growth rates and protection 

of the metabolic process in elongating cells from the toxic effects of Na+ (Razmjoo et al., 2008) 

which is a process that requires sufficient water in plant cells. Also, drought may directly or 

indirectly inhibit cell division and enlargement and finally the growth of the whole plant. Drought 

caused a decline in the quality of bermudagrass cultivars (Shahba, 2010b) and seashore paspalum 

cultivars (Shahba et al., 2014). In addition, elevated drought may adversely affect photosynthesis 
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and as a result adversely affect plant biomass production through reduced accumulation of carbon 

products (Munns and Termaat, 1986). The reduction in the number of flowers usually is more 

drastic than other growth parameters under high drought as it is a cumulative effect (Razmjoo et 

al., 2008). Fewer flowers and reduced size of flowers adversely affect the attractiveness of 

landscape plants. 

Many reports confirmed the internal modification in growth regulator in termes of types 

and concentrations under drought stress (Wilkinson and Davies, 2010; Zhang et al., 2008; Aswath 

et al., 2005; McCann and Huang, 2008; Qin and Zeevaart, 2002). Externally growth regulatots 

amendments affect the internal balance of growth regulator that can help the plant to regrow and 

recover from stress (Yuan and Lin 2008). 

Water use: 

Drought avoidance is an important drought resistance strategy. Drought avoidance can be 

achieved through the reduction in water use or water loss through the canopy and increasing 

water uptake of roots from deeper soils. ET is a measure of water use and is an indicator of plant 

vigor. ET varied significantly (P < 0.05) among species, among growth regulator and their 

interaction (Table 2.1). The decline in ET rate under drought stress was expected. G. flavum 

showed lower ET rates under drought conditions compared to G. acutidentatum, G. grandiflorum 

and G. corniculatum. G. corniculatum had the highest ET rates at the control treatment (Table 

2.2). The treatment of 2.0 mM ABA resulted in the highest recovery rate and as a result the 

highest ET rate in all species followed by, 2.0 mM SA, 20.0 mM ethephon and 0.03 mM 

fusicoccin. G. flavum showed the highest ET rates under all growth regulator treatments 

compared to G. acutidentatum, G. grandiflorum and G. corniculatum. (Table 2.2).  
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Many species have shown considerable interspecific diversity for various environmental 

stresses, including drought (Duncan and Carrow, 1999; Trenholm et al., 1999; Lee et al., 2004c). 

Kim and Beard (1988) found that species/cultivar differences in ET rates under non-limiting soil 

moisture conditions were associated with canopy resistance and total leaf area. High canopy 

resistance and/or a low leaf area resulted in lower ET. Arunyanark et al. (2008) reported a 

reduction in transpiration rate as a result of drought while the transpiration efficiency, as 

indicated by total dry matter production, was increased in peanut (Arachis 

hypogaea L.). Baranyiova et al. (2014) concluded that, the use of growth regulator is 

accompanied with a number of positive effects, especially in the conditions of water deficit. By 

applying growth regulator we can reach a partial elimination of environmental stress effect. 

Growth regulator can improve water use efficiency. They also have influence on increase of 

roots: above ground biomass ratio and can also influence the accumulation of antioxidants that 

protect plants.  According to their results, growth regulator treatments increased the CO2 

assimilation rate and stomatal conductance in winter wheat under drought conditions 

(Baranyiova et al. 2014). 

Table 2.2. Effect of different growth regulator treatment Total ET (mmd-1) on Glacium spp. during the 
recovery from drought stress. Linear regression of different total ET (mmd-1) of measured at the end of 
the experiment vs. growth regulator treatment (control, 2 mM Abscsic acid, ABA, 2 mM salicylic acid, 
SA, 0.03 mM fusicoccin, FC, and 20 Mm ethephon, E. 

  Total ET (mmd1)    
  PGR treatment    

Species Control 2 mM ABA 2 mM SA 0.03 mM           FC 
20 mM  
  E 

      
G. flavum 1.1d† 4.5a 4.0a 3.5a 3.6a  
G. acutidentatum 1.6c 4.0b 3.6b 3.2b 3.3b  
G. grandiflorum 2.1b 3.5c 3.3c 3.0b 3.2b  
G. corniculatum 2.4a 3.0d 2.8d 2.5c 2.7c  
       

† Values followed by the same letters within a column for each cultivar are not significantly different  
(P = 0.05) based on a Fisher’s test.  
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Osmotic adjustment: 

Osmotic adjustment facilitates water uptake and limits water loss from cells. Thus tissues 

may sustain metabolic and physiological functions under drought stress in addition to the stability 

of cell membrane. Tested osmotic adjustment parameters included shoot total nonstructural 

carbohydrates, total reducing sugar content and shoot proline content. Osmoregulator 

accumulation is a way of coping with drought stress. At favorable conditions, when plants start to 

recover, osmoregulator content decrease. 

Total Nonstructural Carbohydrates and Total Reducing Sugar Content: 

 Shoot TNC and RSC varied significantly among species, growth regulator treatments and 

their interaction (Table 2.1). Generally, drought stress decreases shoot TNC and increases RSC of 

Glaucium spp. (Getlawi 2013). Growth regulator treatments significantly affected the recovery 

rate and the dynamic balance between TNC and RSC. The treatment of 2 mM ABA was the most 

effective followed by 2 mM SA, 20 mM ethephon and 0.03 mM Fusicoccin (Tables 2.3 and 2.4). 

G. flavum achieved the highest recovery rate and as a result the highest level of TNC and the lowest 

level of RSC (Tables 2.3 and 4). At the treatment of 2 mM ABA, average TNC increased by 109.9, 

142.4, 138.5 and 164.5% in G. flavum, G. acutidentatum, G. grandiflorum and G. corniculatum 

respectively (Table 2.3) while RSC decreased by 72.7, 55.6, 32.6 and 6.7% in G. flavum, G. 

acutidentatum, G. grandiflorum and G. corniculatum respectively (Table 2.4). An increase in TNC 

was expected due to continued improvement in leaf color, area and quality that add to the 

photosynthetic tissues. Reovery from stress escalated the increase in TNC which resulted from the 

recovery of the shoot system.  

Reducing sugars in plants mainly consists of glucose and fructose (Ball et al., 2002; 

Shahba et al., 2003). While nonstructural carbohydrates are energy reserves in plants, soluble 
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reducing sugars are thought to play an important role in drought tolerance as osmoregulator 

(Popp and Smirnoff, 1995). 

 
Table 2.3. Effect of 2 mM Abscsic acid (ABA), 2 mM salicylic acid (SA), 0.03 mM fusicoccin (FC), and 
20 mM ethephon (E) on total non-structural carbohydrates (TNC) in shoots of Glaucium spp. measured at 
the end of the recovery from drought stress. 
  

   
TNC (mg g-1 dry weight) 

  
  PGR treatment    

Species Control 
2mM 

ABA 
2mM SA 

0.03mM 
FC 

20mM 
E 

G. flavum 55.5a† 116.5a 112.4a 98.0a 104.0a  
G. acutidentatums 46.0b 111.5b 107.0b 92.0b 95.0b  
G. grandiflorum 39.0c 93.0c 88.0c 82.0c 84.0c  
G. corniculatum 31.0d 82.0d 76.0d 68.0d 71.0d  

† Values followed by the same letters within a column for each cultivar are not significantly different (P 
= 0.05) based on a Fisher LSD test.  
 

 
 
 

 
 
 
 

 
 
Table 2.4. Effect of 2 mM Abscsic acid (ABA), 2 mM salicylic acid (SA), 0.03 mM fusicoccin (FC), and 
20 mM ethephon (E) on total reducing sugar content (RSC) in shoots of Glaucium spp. measured at the 
end of the recovery from drought stress. 
                                        

   RSC (mg g-1 dry weight)   
   PGRtreatment    

 Species Control 
2mM 
ABA 

2mM 
SA 

0.03mM 
 FC 

20mM 
 E 

 G. flavum 44.0a† 12.0d 15.0d 19.0d 17.0d  
 G. acutidentatums 36.0b 16.0c 19.0c 23.0c 20.0c  
 G. grandiflorum 27.0c 18.2b 22.0b 26.0b 24.0b  
 G. corniculatum 24.4d 22.4a 25.0a 29.0a 27.0a  

† Values followed by the same letters within a column for each cultivar are not significantly 
different (P = 0.05) based on a Fisher LSD test. 
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Carbon reduction could be related to the drought resistance mechanisms that are energy 

dependent. The results suggested that carbohydrate availability was a limiting factor for shoot 

growth under high drought stress. Shahba (2010b) found an increase in RSC and a decrease in 

TNC with drought increase in bermudagrass species (Tifgreen, Tifdwarf and Tifway) and seashore 

paspalum cultivars (Shahba et al., 2012, 2014). 

Soluble carbohydrates may interact with membrane phospholipids and proteins to stabilize 

their structures and prevent desiccation under drought stress (Popp and Smirnoff, 1995). TNC 

serves as the resource for the increased RSC under drought conditions. The balance between 

carbohydrate production and consumption impacts the ability of plants to cope with stresses 

(Huang and Fry, 1999; Lee et al., 2008a, 2008b; Shahba, 2010b, Shahba et al., 2012). 

In this study, it was logic to obtain an opposite trend during recovery from drought stress. 

In general, previous results and our results suggested that carbohydrate availability is a limiting 

factor for shoot growth under drought stress and during recovery from stress.  

Growth regulator treatments affected the dynamics of carbohydrates usage and 

accumulation throught their effect on the overall growth of the plant that affect all plant activities. 

TNC serves as the resource for the increased RSC under increased stress conditions i.e. the 

relationship between TNC and RSC is a source sink relation and this is obvious if we compare 

their dynamics in Tables (2.3) and (2.4). 

Shoot Proline Content:  

Shoot proline content varied significantly among species, growth regulator treatments 

and their interaction (Table 2.5). It is well known that Proline content increases in response to 

drought (Getlawi 2013; Shahba et al. 2014). During the recovery from drought stress, the 

processes of Proline accumulation was reversed. Growth regulator treatments significantly 
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affected the recovery rate and Proline content. The treatment of 2 mM ABA was the most 

effective followed by 2 mM SA, 20 mM ethephon and 0.03 mM fusicoccin (Table 2.5). G. 

flavum achieved the highest recovery rate and as a result proline content was the lowest in 

response to different growth regulator treatments. At the treatment of 2 mM ABA, Proline 

content decreased by 59.5, 50.0, 36.9 and 19.7 % in G. flavum, G. acutidentatum, G. 

grandiflorum and G. corniculatum respectively (Table 2.5). Zhang et al. (2007) recorded that a 

gradual degradation of ABA was observed when drought stress was removed. 

Table 2.5. Effect of 2 mM Abscsic acid (ABA), 2 mM salicylic acid (SA), 0.03 mM fusicoccin (FC), and 20 mM 
ethephon (E) on Proline content (P) in shoots of Glaucium spp. measured at the end of the recovery from drought 

stress. 

 Proline content (mg g-1 dry weight)   
  PGR treatment    

Species Control 
2mM 
ABA 

2mM 
SA 

0.03mM 
FC 

20mM  
E 

G. flavum 1110.0a† 450.0d 510.0d 580.0d 530.0d  
G. acutidentatum 950.0b 475.0c 565.0c 620.0c 590.0c  
G. grandiflorum 840.0c 530.0b 587.0b 672.0b 620.0b  
G. corniculatum 710.0d 570.0a 620.0a 700.0a 655.0a  

† Values followed by the same letters within a column for each cultivar are not significantly different (P = 0.05) 
based on Fisher’s test.  

 
Although the role of proline accumulation in drought tolerance was proven in this study, 

it has been questioned by others (Ashraf and Harris, 2004). These results suggested a positive 

role for proline in Glaucium species salinity tolerance. A positive effect of proline accumulation 

in drought tolerance was also reported in Glaucium spp. (Getlawi 2013) and in seashore 

paspalum cultivars (Shahba et al., 2014). Accumulation of proline in plant tissues in response to 

salinity stress has been attributed to enzyme stabilization and/or osmoregulation (Flowers et al., 

1977; Levitt, 1980; Vendruscolo et al. 2007; Cvikrová et al. 2012; Rai et al. 2012). The decline 

of proline content during the recovery of drought stress indicates its importance to cope with the 

stress conditions. It likely enhances membrane stability and act as a sink for carbon and nitrogen 

for stress recovery, and can buffer cellular redox potential under stress conditions (Ashraf and 
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Foolad, 2007; Maggio et al., 2002). Photosynthetic rate is affected by many factors, including 

stomatal conduction, CO2 assimilation, photosynthetic enzyme activities, inhibition of PSII 

activity, and stability of photosynthetic apparatus (Camejo et al. 2005; Silva et al. 2010).  

Osmoregulation is one of drought resistance mechanisms of plants (Izadi et al., 2009). 

Applying exogenous compounds is one way to reduce destructive effects of abiotic stresses 

(Yuan and Lin 2008). The role of abscisic acid in stress physiology has received much attention, 

and there is now considerable experimental evidence that the physiological effects induced by 

drought might be modulated by ABA. Abscisic acid (ABA) selectively affects ion transport 

processes (van Steveninck, 1976). ABA appears to increase the permeability of roots to water 

and to inhibit excretion of ions into the xylem but not to affect uptake of ions by the root. The 

effectiveness of ABA may depend on environmental factors such as temperature (Pitman et al., 

1974; Pitman and Wellfare, 1978). In water stress conditions the changes in guard cell ion 

transport which are responsible are initiated by the ‘drought’ hormone abscisic acid (ABA). The 

effect of ABA on cytoplasm and vacuole is more important in stomatal closure where ions are 

released across the tonoplast, from vacuole to cytoplasm (Hetherington, 2001; Schroeder et al., 

2001; Fan et al., 2004; Roelfsema & Hedrich, 2005). Increased ABA accumulation was 

consistent with a putative role in regulation of proline accumulation in the leaf of Cassava 

(Manihot esculenta) and tobacco in response to drought conditions (Alves and Setter 2004; 

Dobra et al. 2010). Proline accumulation under drought was related to an increase in ABA 

content and the subsequent reduction in Proline during rehydration was related to a decrease in 

ABA content (Trotel-Aziz et al. 2000). An et al. (2014) tested the effects of exogenous 

application of abscisic acid on membrane stability, osmotic adjustment, photosynthesis and 

hormonal status of two lucerne (Medicago sativa L.) genotypes under high temperature stress 
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and drought stress and indicated that foliar application of ABA to stressed plants significantly 

decreased electrolyte leakage and stomatal conductance, and increased recovery in growth and 

leaf water potential in the two genotypes under drought conditions. Dobra et al. (2010) found 

that combined heat and drought stress resulted in a decrease in ABA in upper leaf of tobacco, 

accompanied by more serious damage than in lower and middle leaf and contributed to Zeatin 

Riboside (ZR) accumulations in the roots of drought-stressed tobacco plants to its higher stress 

tolerance. It has been proposed that ABA exerts a regulatory effect on Proline accumulation and 

its subsequent mobilization in response to environmental stresses (Trotel-Aziz et al. 2000; 

Nayyar and Walia 2004; Gomes et al. 2009).  

Salicylic acid (SA) is a messenger molecule which plays a nonenzymatic anti-oxidant 

role in regulating plant physiological mechanisms during stress occurrence (Arfan et al., 2007). 

Fresh and dry weight of root and shoot, stem diameter and leaf number of cucumber plant 

increased by spraying salicylic acid at drought condition (Bayat et al., 2012; Yildirim et al., 

2008). Morphological characteristics like leaf area, plant height, root and shoot dry weight, 

biomass, flower number and diameter and primary and secondary shoot numbers enhanced by 

applying SA compared to no SA application, at drought condition (Martin-Mexand and Larqué-

Saavedra, 2001). Salicylic acid controls photosynthesis system, photosynthesis amount, pigment 

content and stomatal conductivity and regulates these procedures for appropriate growth and 

development (Popova et al., 2009, Steven et al., 2006, El-Tayeb, 2005, Kormkaz et al., 2007). 

Zarghami et al. (2014) investigated the effect of salicylic acid in enhancing stress tolerance in 

Petunia plants and found a reduction in drought negative effects of drought stress on Petunia.  
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Also, morphological and ornamental characteristics of flowers improved by higher doses of 

salicylic acid and electrolyte leakage decreased using 2 mM of salicylic acid.  

Environmental stresses, such as cold, heat, salinity, and drought, induce ethylene 

production and oxidative stress and cause damage in plants. Ethylene is produced either 

chemically through the incomplete combustion of hydrocarbons or biologically by almost all 

living organisms (Wang et al. 2002, Pech et al. 2005). There is a lot of evidence showing that 

ethylene is an essential component of a wide range of responses to biotic and abiotic 

environmental stresses (Shinozaki et al. 1999, Wang et al. 2002, Guo and Ecker 2004, El-Tayeb 

2005). Further, many of these stress responses integrate ethylene signaling into more complex 

circuitry involving salicylate and jasmonate signaling (Wang et al. 2002). The effects of ethylene 

on plants are regulated both at the level of its synthesis and perception of the hormone (Caren et 

al. 2007, Wang et al. 2002). Tirani et al. (2013) studied the effects of ethylene on chlorophyll 

(Chl), carotenoid (Car), anthocyanin, flavonoids, ascorbic acid, dehydroascorbic acid, total 

ascorbate, lipid peroxidation, and ethylene production in leaf of canola pretreated with SA. Their 

results showed that the ethylene treatments induced lipid peroxidation, lowered significantly Chl 

and Carotenoids contents and anthocyanin accumulation. 

Jung and Luttge (1980)  mentioned that fusicoccin (FC) inhibited net excretion of Cl by 

the glands of the pitchers of the carnivorous plant Nepenthes hookeriana ; of Na+ and Cl- by the 

salt glands of the halophytes Limonium vulgare and L. pectinatum and of K+ in the nectar of Acer 

platanoides flowers. It had no effect on K+ elimination with nectar of Impatiens walleriana 

(extrafloral nectaries) and Abutilón striatum, Abscisic acid (ABA) stimulated net excretion of K+ 

and Cl- in Nepenthes and of Na+ and CI- in Limonium but had no effects on K+ in nectar. Thus, 

FC and ABA had opposing effects on ion excretion by the salt eliminating glands of Limonium 
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and Nepenthes. Both compounds, however, had similar effects on sugar secretion of nectary 

glands which was either inhibited or unaffected by FC and ABA. It is suggested that the effects 

of FC and ABA on ion excretion by gland cells could be reconciled with literature showing FC-

stimulation and possible ABA-inhibition of proton pumps at the plasmalemma of plant cells.  

Fusicoccin was initially suggested to activate the plasma membrane H+-ATPase by direct 

interaction with the enzyme (Marrè, 1979). Later, fusicoccin was demonstrated to bind to a 

“receptor” belonging to a family of proteins designated 14–3–3 proteins (Korthout and de Boer, 

1994; Marra et al., 1994; Oecking et al., 1994). These proteins constitute a highly conserved 

family of eukaryotic proteins with multiple regulatory functions (Aitken, 1996). Recently, it was 

shown that 14–3–3 proteins bind directly to the C-terminal region of the H+-ATPase and that 

fusicoccin stabilizes the H+-ATPase/14–3–3 complex formed, rendering the association 

irreversible (Jahn et al., 1997; Oecking et al., 1997; Baunsgaard et al., 1998). It is known to 

stimulate the proton pump at the plasma- lemma of cells in a large variety of plant materials; a 

multiplicity of other effects on transport processes and cell physiology seem to be secondary 

consequences thereof (Marré, 1977). FC and ABA have antago- nistic effects on movements of 

stomatal guard cells. FC causes stomata to open and prevents closure; this is probably due to 

enhanced H+ extrusion from the guard cells (Marré, 1977), which then affects malate and K+ 

accumulation, thus providing the basis for turgor increase and stomatal opening at least in some 

cases (Raschke, 1975, 1977; Hsiao, 1976). Moreover, Clint & Blatt (1989) indicated that the 

fusicoccin-induced increase in K+ influx should be attributed to energy-linked transport, and this 

would predict cytoplasmic acidification by fusicoccin in Vicia, with consequent inhibition of the 

efflux at the plasmalemma. It is also worth noting that comparison of the effects of fusicoccin on  
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cation and anion influx in C. communis suggests malate rather than chloride as the balancing 

anion in the stimulated influx (Clint, 1987).  

On the basis of the number of times in the best statistical category for leaf characteristics, 

overall plant quality (attractiveness), water use efficiency, TNC, RSC, and proline, G. flavum was 

found to have the greatest recovery rate from drought stress when compared to G. acutidentatum, 

G. grandiflorum and G. corniculatum. Also, the treatment of 2 mM ABA was the most effective 

followed by 2 mM SA, 20 mM ethephon and 0.03 mM fusicoccin in enhancing drought stressed 

Glaucium spp. recovery. Growth regulator treatments could affect proline accumulation throught 

their effect on the overall growth of the plant that affect all plant activities especially different 

growth regulator concentratiions and interactions as it will be indicated in the next Chapter. In 

summary, Glaucium spp. under drought stress exhibited a positive response to growth regulator 

treatments in terms of improving leaf characteristics, plant height, overall plant quality 

(attractiveness), TNC, and water use efficiency. G. flavum showed greater tendency to recover 

from drought stress at all growth regulator treatments when compared to the other species tested. 

The treatment of 2 mM ABA is recommended to improve the recovery rate of Glaucium spp. under 

drought stress. 
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CHAPTER 3 
 

GROWTH REGULATOR DYNAMICS DURING THE RECOVERY OF GLAUCIUM 

SPP. FROM SALINITY AND DROUGHT STRESSES 

SUMMARY 

Many reports confirmed the internal modification in growth regulator in terms of types 

and concentrations under stress conditions. Externally growth regulator amendments affect the 

internal balance of growth regulator that can help the plant to regrow and recover from stress.  

The objective of this study was to test the change in the concentration of the internal growth 

regulator under stress conditions and during recovery in the common Horned Poppy species that 

were available from Denver Botanic Gardens, G. flavum, G. corniculatum, G. grandiflorum and 

G. acutidentatums. Internal growth regulator content of plants were assessed before applying 

first treatment and at the end of the experiment. Plant growth regulator concentrations change 

over time were quantified using a protocol in which a 50 mg plant material only is needed to 

quantify most major plant hormones by HPLC–ESI–MS/MS. This method was the best in 

current study since sampling was done every 2 weeks over the course of the experiment. Samples 

solutions (50 μl) were injected into the reverse-phase C18 Gemini HPLC column for HPLC–

ESI–MS/MS analysis. Comparisons of internal individual growth regulator content among 

species, growth regulator treatments, sampling dates and their interactions clearly showed 

significant differences. During the two month course of the recovery, the concentrations of both 

IAA and IBA increased gradually. There was slight significant increase overtime in IAA and 

IBA concentration under the control treatment over the course of the two month recovery period. 

The treatment of 2 mM ABA achieved the highest increase in both IAA and IBA in all tested 

species, followed by 20 mM ethephon, 2 mM SA and 0.03 mM fusiccocin. There was slight 
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significant increase overtime in GA3 concentration under the control treatment. The treatment of 

2 mM ABA achieved the highest increase in GA3 in all tested species, followed by 20 mM 

ethephon, 2 mM SA and 0.03 mM fusiccocin. The concentrations of zeatin increased gradually 

in all tested species during recovery. Zeatin concentration increased slightly overtime under the 

control treatment. The treatment of 2 mM ABA achieved the highest increase in zeatin in all 

tested species, followed by 20 mM ethephon, 2 mM SA and 0.03 mM fusiccocin. The highest 

increase was in G. flavum, where zeatin increased from 8.0 to 29.0 ng/g Dwt (263%) under 

control treatment, while the increase was 2422, 2196, 2050 and 1174% under the treatments of 2 

mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively. Even under control 

treatment, there was a slight increase in SA content. The treatment of 2 mM ABA achieved the 

highest increase in SA in all tested species, followed by 20 mM ethephon, 0.03 mM Fusiccocin 

and 2 mM SA. In G. flavum, SA increased from 0.4 to 0.9 ng/g Dwt (125%) under control 

treatment, while the increase was 720,600, 533 and 300% under the treatments of 2 mM ABA, 

20 mM ethephon, 0.03 Fusiccocin and 2 mM SA respectively. On the other hand, and during the 

course of the recovery, the concentrations of the internal ABA decreased gradually over time. 

Under the control treatment, there was a slight significant decrease overtime in ABA  

concentration during the recovery period. The treatment of 2 mM ABA achieved the highest 

decrease in ABA in all tested species, followed by 20 mM ethephon, 2 mM SA and 0.03 mM 

fusiccocin. In G. flavum, ABA decreased from 2.6 to 1.4 ng/g Dwt (-46 %) under control 

treatment, while the decrease was -88,-85, -76 and -68% under the treatments of 2 mM ABA, 20 

mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively. During stress, internal ABA 

accumulation was evident to cope with stress conditions. During recovery, when the 

circumstances were favorable for growth, other groups of growth regulator that are needed for 
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accelerated cell division, enlargement and growth such as auxins, gibberellins, and cytokinnins 

were abundant. 

INTRODUCTION 

Many reports confirmed the internal modification in growth regulator in termes of types 

and concentrations under stress conditions (Wilkinson and Davies, 2010; Zhang et al., 2007; 

Aswath et al., 2005; McCann and Huang, 2008; Qin and Zeevaart, 2002). External growth 

regulator amendments affect the internal balance of growth regulator that can help the plant to 

regrow and recover from stress. Water deficit due to either drought or salinity results in various 

physiological and bio-chemical changes in plants (Farooq et al. 2009). Responses of the plants to 

water deficit stress include changes in osmolyte accumulation, stomatal conductance, growth, 

and expression of specific genes. Accumulation of the osmolytes under water stress contributes 

to osmotic adjustment by maintaining cell turgor (Mahajan and Tuteja 2005; Seki et al. 2007). 

For plant defense against various stresses, some growth regulator play a role in the signaling 

pathways (Overmyer et al. 2003). Also, growth regulator can stabilize cell membranes against 

stress conditions by interacting with membrane phospholipids (Guschina et al. 2002).  

Plant species and cultivars within a species vary in their drought and salinity response 

and tolerance (Epstein et al., 1980; Pasternark, 1987; Saranga et al., 1992). These variations 

probably result from the genetic variations especially in genes relating to stress tolerance 

mechanisms and their interaction with environments (Shannon, 1985; Bohnert et al., 1995; 

Igartua, 1995; Duncan and Carrow, 1999). Usually evaluations for drought and salt tolerance of 

plants depend on shoot (aboveground) growth, as reported in crop yield response curves 

proposed by Maas and Hoffman (Igartua, 1995; Maas, 1987; Maas and Hoffman, 1977).   
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Plant hormones play a major role in plant growth, development and response to biotic 

and abiotic stresses (Davies 1995; Crozier et al. 2000). Different hormones play different 

characteristic biological effects. To understand plant growth and development as affected by 

plant hormones, accurate and efficient measurements of each of these hormones at different 

levels (whole plant, organ, cellular and sub-cellular) are required. Simultaneous quantitative 

profiling of multiple classes of hormones provides a basis for defining additive, synergistic or 

antagonistic hormone activities and identifying hormone networks regulating plant functions in 

addition to their dynamics under different environmental conditions (Aloni et al., 2006; Ho et al., 

2003; Nemhauser, et al., 2006; Gazzarina and McCourt, 2001). In most analysis methods, crude 

plant extracts are fractionated and purified by solid-phase extraction, liquid–liquid extraction, 

gas or liquid chromatography to increase hormone concentration, and the plant hormones are 

detected by radioimmunoassay, enzyme-linked immunosorbent assays (ELISAs), flame 

ionization, UV, fluorescence or electrochemical detection (River and Crozier, 1987; Hedden, 

1993; Brenner, 1981; Reeve and Crozier, 1980; Weiler, 1984; Reinhold et al., 1981; Davis, 1987; 

Linskens and Jackson, 1986; Pan and Wang, 2009; Birkemeyer, 2003; Müller; 2002). These 

procedures usually require significant amounts of solvent, time and labor and not highly sensitive 

or specific. The sensitivity and specificity of high-performance liquid chromatography (HPLC) 

with electrochemical detection can limit its application for the measurement of a variety of 

endogenous plant hormones at physiological levels in plant samples (River and Crozier, 1987; 

Reinhold et al., 1981; Davis, 1987; Linskens and Jackson, 1986). The use of a mass spectrometer 

(MS) as a detector for profiling and quantification of plant hormones and metabolites provides 

high sensitivity and selectivity (Birkemeyer et al., 2003; Müller et al., 2002; Kowalczyk and 

Sandberg, 2001; weber et al., 2001). Gas chromatography–mass spectrometry (GC–MS) has 
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been used successfully to specifically identify and quantify plant hormones at high sensitivity. 

For quantitative measurement of endogenous plant hormones in crude plant extracts, HPLC–

MS/MS provides high sensitivity, specificity, accuracy and reproducibility (Gomez-Cadenas et 

al., 2002; Durgbanshi et al.2005; Chiwocha et al., 2003; Lopez-Carbonell and Jauegui, 2005; 

Matsuda et al., 2005, Ross et al., 2004; Wilbert, 1998; Zhou et al., 2003).  

In the previous chapters, it was shown that salinity and drought tolerance of Glaucium 

spp. are dependent on the internal osmoregulator content. Many studies discussed the plant 

responses to stress via internal chemical signals and growth regulator adjustments. However, 

there is no published information that addresses the dynamics of internal growth regulator during 

recovery from salinity and drought stresses. The objective of this study was to test the change in 

the concentration of the internal growth regulator under stress conditions and during recovery in 

the common Horned Poppy species that were available from Denver Botanic Gardens, G. flavum, 

G. corniculatum, G. grandiflorum and G. acutidentatums. 

MATERIALS AND METHODS 

Data Collection. Internal growth regulator content of plants were assessed before applying first 

treatment and at the end of the experiment.Plant growth regulator concentrations change over 

time were quantified using the protocol adopted by Pan et al. (2010) and adopted Liu et al. 

(2013), in which a 50 mg plant material only is needed to quantify most major plant hormones by 

HPLC–ESI–MS/MS. This method was the best in current study since sampling was done every 2 

weeks over the course of the experiment. Leaf were collected randomly from different heights 

and sides of plants. Samples were frozen with liquid nitrogen in mortar, ground into powder. 

Each sample (50 mg) was transferred to 2 ml screw-cap tubes and kept in liquid nitrogen. To 

each 2 ml tube containing the frozen plant materials, 50 μl of the working solution of internal 
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standards was added. Also, 500 μl extraction solvent, 2-propanol/H2O/concentrated HCl 

(2:1:0.002, vol/vol/vol) were added to each tube. Tubes were shaken at a speed of 100 r.p.m. for 

30 min at 4 °C, then 1 ml dichloromethane was added to each sample and shaken for additional 

30 min in a cold room at 4 °C. Samples were put into a refrigerated microcentrifuge at 4°C and 

centrifuged at 13,000g for 5 min. After centrifugation, two phases were formed with some plant 

debris between the two layers. About 900 μl of the solvent from the lower phase was transferred 

using a Pasteur pipette into a screw-cap vial and concentrated (not completely dry) using a 

nitrogen evaporator with nitrogen flow. The samples were redissolved in 0.1 ml methanol. 

Samples solutions (50 μl) were injected into the reverse-phase C18 Gemini HPLC column for 

HPLC–ESI–MS/MS analysis. The MS conditions that was used, using a 4000 QTRAP MS, 

were: turbo spray; ion polarity: negative or positive; needle voltage: − 4,500V or 5,500 V; source 

temperature: 500 °C; gas: nitrogen; curtain gas: 25 psi; nebulizing gas (GS1): 45 psi; focusing 

gas (GS2): 30 psi; interface heater: on; collision activated dissociation gas pressure: medium; 

scan type: MRM; Q1 resolution: unit; Q3 resolution: unit. Tuning and routine maintenance of the 

4000 QTRAP liquid chromatography (LC)–MS/MS, as well as the specific use of the Analyst 1.5 

software, was performed in accordance with the instructions in the manufacturer’s operation 

manual. To optimize the MS for quantitative analysis, authentic compounds in 50% (vol/vol) 

methanol with 0.1% (vol/vol) formic acid at 0.2 ng ml−1, prepared by fivefold dilution of 

working solutions, were directly infused into the electrospray source of a triple quadrupole MS 

using a syringe pump at 1.2 ml h−1. The needle temperature in the 4000 QTRAP LC–MS/MS 

was 350 °C.  
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Quantitative analysis of each plant hormone was performed. The molar amounts of plant 

hormones in the samples were determined by calculating the ‘correction factor’ (i.e., response 

factor) of each authentic plant hormone in comparison with its corresponding internal standard. 

Correction factors are the ratio of the signal intensity ratio of the internal standard to the 

corresponding authentic plant hormone on a mole-for-mole basis, as determined by analysis of 

the calibration standards. The molar amount of each authentic plant hormone = (signal of the 

plant hormone × the molar amount of corresponding internal standard) × (correction factor) / 

(signal of the corresponding internal standard in that sample). The hormone amounts were then 

normalized to the mass of fresh plant tissue determined by weighing before extraction. The 

calibration curves for each of the plant hormones and internal standards were linear over a 1,000-

fold concentration range with linear regression-correlation coefficients more than 0.9. The 

variations of the retention times were typically ± 0.3 min. When measuring plant hormones in 

relation to the mass spectral signals of corresponding isotopically labeled internal standards, the 

mole-for-mole signal intensities of hormones and internal standards were nearly identical, i.e., 

the correction factors were very close to 1.0.  

Reagents and equipments setup. For extraction solvent mixture preparation, 100 μl of 

concentrated hydrochloric acid was added to 100 ml of 2-propanol and 50 ml of distilled H2O to 

make the extraction solvent, i.e., 2-propanol: H2O: concentrated HCl (2:1:0.002, vol/vol/vol). 

The stock solutions were stable for about 3 months. The stock solutions of authentic plant 

hormones and internal standards were prepared as 50 μg ml−1 stock solution by dissolving 2 mg 

of each authentic plant hormone and internal standard (weighed in powder form) in a final 

volume of 40 ml methanol at room temperature (25 °C), then were stored at -20 °C. The stock 

solutions were also stable for about 3 months. The working solution of internal standards was 
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prepared by combining the stock solutions of the compounds designated as internal standards 

and diluting the combined stocks with methanol. The final working solution of internal standards 

contains 1μg ml −1 (1 ng μl −1) of each internal standard compound. When 50 μl of the working 

internal standard solution is added to each tissue sample, the amount of each internal standard in 

the sample is 50 ng. Working solution of authentic plant hormones was prepared by combining 

the stock solutions of these compounds and diluting the mixture with methanol. The final 

working solution of authentic plant hormone standards contains 1 μg ml −1 (1 ng μl − 1) of each 

plant hormone. Samples were calibrated with authentic plant hormones and internal standards to 

determine the ‘correction factor’ (i.e., response factor) for each authentic compound in 

comparison with its internal standard and to assess the linearity of the analysis. For 

determination of the correction factor, calibration samples containing three concentrations (10, 

100 and 500 ng ml −1 each of hormones and internal standards; were prepared in triplicate: (a) 10 

μl each of working solutions of authentic plant hormones and internal standards plus 980 μl 

methanol; (b) 100 μl each of working solutions of authentic plant hormones and internal 

standards plus 800 μl methanol; and (c) 500 μl working solution of authentic plant hormones 

plus 500 μl working solution of internal standards. For determination of the linearity of the 

analysis, calibration samples at five concentrations (0, 1, 10, 100 and 500 ng ml −1 hormones 

with a constant concentration of 50 ng ml −1 internal standards; a–e) were prepared in triplicate: 

(a) 50 μl of the internal standard working solution plus 950 μl methanol; (b) 1 μl of the working 

solution of authentic plant hormones and 50 μl of the internal standard working solution plus 949 

μl methanol; (c) 10 μl of the working solution of the authentic plant hormones and 50 μl of the 

internal standard working solution plus 940 μl methanol; (d) 100 μl of the working solution of 

the authentic plant hormones and 50 μl of the internal standard working solution plus 850 μl 
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methanol; and (e) 500 μl working solution of authentic plant hormones plus 50 μl of the internal 

standard working solution plus 450 μl methanol. The binary solvent system used water with 

0.1% (vol/vol) formic acid (A) and methanol with 0.1% (vol/vol) formic acid (B) as mobile 

phases.  

Reverse-phase (RP-C18) HPLC Set up an HPLC was set by setting the oven (holding 

HPLC column) temperature to 40 °C and the solvent flow rate to 0.3 ml min -1. The settings for 

MS/MS multiple reaction monitoring (MRM) should be optimized on each user’s instrument. 

The MS conditions that were used, using a 4000 QTRAP MS, were as follows: source: turbo 

spray; ion polarity: negative or positive; needle voltage: − 4,500V or 5,500 V; source 

temperature: 500 °C; gas: nitrogen; curtain gas: 25 psi; nebulizing gas (GS1): 45 psi; focusing 

gas (GS2): 30 psi; interface heater: on; collision activated dissociation gas pressure: medium; 

scan type: MRM; Q1 resolution: unit; Q3 resolution: unit. Tuning and routine maintenance of the 

4000 QTRAP liquid chromatography (LC)–MS/MS, as well as the specific use of the Analyst 1.5 

software, is performed in accordance with the instructions in the manufacturer’s operation 

manual. To optimize the MS for quantitative analysis, authentic compounds in 50% (vol/vol) 

methanol with 0.1% (vol/vol) formic acid at 0.2 ng ml-1, prepared by five-fold dilution of 

working solutions, were directly infused into the electrospray source of a triple quadrupole MS 

using a syringe pump at 1.2 ml h-1. The needle temperature in the 4000 QTRAP LC–MS/MS was 

350 °C; this would need to be optimized in other triple quadrupole MSs. 

 

Data Analysis: 

Internal growth regulator contents were analyzed on individual measurement dates to 

examine the effect of different species, different growth regulator treatments and sampling date 

during the recovery of four Glacium spp. from salinity and drought on internal growth regulator 
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dynamics. The data of both salinity and drought were subjected to ANOVA to test the stress type 

(salinity vs drought) effect. There was no significant different between the internal growth 

regulator data during the recovery from drought and salinity stresses. Therefore, data were 

pooled over both of them to test the effects of recovery on the internal growth regulator contents. 

Means separation were performed at P = 0.05 by Fisher’s LSD test when significant differences 

were found (SAS Institute, 2007).  

RESULTS AND DISCUSSION 

Plant growth regulator are used to modify the rate or pattern of growth, or both, of its 

response to the internal and external factors that govern development from germination through 

vegetative growth, reproductive development, maturity, and senescence or aging. Abscisic acid 

(ABA), is well known to inhibit fruit ripening, responsible for seed dormancy by inhibiting cell 

growth, inhibits seed germination, down regulates enzymes needed for photosynthesis, 

stimulates the closure of stomata, inhibits shoot growth but will not have as much effect on roots 

or may even promote growth of roots, has some effect on induction and maintenance of 

dormancy and induce common responses such as enhancement of plant hormones. ABA is 

considered a plant stress hormone. It regulates several important aspects of plant growth and 

development. Recent studies have demonstrated a pivotal role for ABA in modulation at the gene 

level of adaptative responses for plants in adverse environmental conditions. Salt stress, drought 

stress, mechanical leaf injury and wounds resulted in an increase in ABA levels. Exogenous 

application of ABA was able to increase plant adaptive response to various environmental 

conditions. Most reports have demonstrated that the application of exogenous ABA provides 

tolerance to various stress conditions. However, endogenously produced ABA may not show the  
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same effects as elicited by exogenously applied hormones; and, of course, correlated variations 

may not reflect the cause. 

It is logical to expect an increase in stress hormones during stress time and an increase in 

other growth regulator during the recovery from stress. Comparisons of internal individual 

growth regulator content among species, growth regulator treatments, sampling dates and their 

interactions clearly showed significant differences.  

Auxins. Auxins are compounds that stimulate cell elongation, stimulate cell division, stimulate 

differentiation, stimulate root initiation, delay leaf senescence, can induce fruit setting and 

growth in some plants and promotes flowering. Auxins tested were Indole Acetic Acid (IAA) 

and Indole Butyric Acid (IBA). During the two month course of recovery, the concentrations of 

both IAA and IBA increased gradually (Figures 3.1, 3.2, 3.3, and 3.4). There was slight 

significant increase overtime in IAA and IBA concentration under the control treatment over the 

course of the two month recovery period. The treatment of 2 mM ABA achieved the highest 

increase in both IAA and IBA in all tested species, followed by 20 mM ethephon, 2 mM SA and 

0.03 mM fusiccocin. In G. flavum, IAA increased from 40 to 60 ng /g Dwt (50%) under control 

treatment, while the increase was 400, 377, 280 and 177% under the treatments of 2 mM ABA, 

20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.1 top). IBA increased from 

40 to 52 ng /g Dwt (30%) under control treatment, while the increase was 388, 311, 242 and 

207% under the treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin 

respectively (Fig. 3.1 bottom).  
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Fig. 3. 1. Effect of recovery duration on the internal contents of IAA (top) and IBA 
(bottom) during the recovery of G. flavum from salinity and drought stresses. Columns 
labeled with different letters are significantly different at P = 0.05 for comparison among 
different sampling dates within each growth regulator treatment. Columns labeled with an 
asterisk are significantly the highest among different treatments within each sampling date. 
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In G. acutidentatum, IAA increased from 40 to 65 ng/g Dwt (63%) under control 

treatment, while the increase was 396, 346, 268 and 160% under the treatments of 2 mM ABA, 

20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.2 top). IBA increased from 

40 to 47 ng/g Dwt (18%) under control treatment, while the increase was 361, 277, 213 and 

188% under the treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin 

respectively (Fig. 3.2 bottom). In G. grandiflorum, IAA increased from 38 to 55 ng/g Dwt (45%) 

under control treatment, while the increase was 372, 297, 224 and 105% under the treatments of 

2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.3 top). IBA 

increased from 32 to 46 ng/g Dwt (44%) under control treatment, while the increase was 391, 

309, 135 and 100% under the treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 

Fusiccocin respectively (Fig. 3.3 bottom). In G. corniculatum, IAA increased from 34 to 49 ng/g 

Dwt (44%) under control treatment, while the increase was 361, 340, 221 and 78% under the 

treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 

3.4 top). IBA increased from 31 to 41 ng/g Dwt (32%) under control treatment, while the 

increase was 372, 281, 112 and 59% under the treatments of 2 mM ABA, 20 mM ethephon, 2 

mM SA and 0.03 Fusiccocin respectively (Fig. 3.4 bottom).  

Gibberellins. Gibberellins (GA3) are compounds that stimulate stem elongation by stimulating 

cell division and elongation, stimulate bolting/flowering in response to long days, stimulate 

enzyme production (a-amylase) in germinating cereal grains for mobilization of seed reserves, 

can delay senescence in leaf and fruits, promote extra length and fast growth of cells between the 

plant’s nodes and in the leaf and drive the plant rapidly upwards. During the two month course of 

the recovery, the concentrations of GA3 increased gradually (Figures 3.5, 3.6, 3.7 and 3.8). There 

was slight significant increase overtime in GA3 concentration under the control  
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Fig. 3. 2. Effect of recovery duration on the internal contents of IAA (top) and 
 IBA (bottom) during the recovery of G. acutidentatum from salinity and drought 
 stresses. Columns labeled with different letters are significantly different at  
P = 0.05 for comparison among different sampling dates within each growth  
regulator treatment. Columns labeled with an asterisk are significantly the  
highest among different treatments within each sampling date. 
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Fig. 3. 3. Effect of recovery duration on the internal contents of IAA (top) and IBA (bottom) 
during the recovery of G. grandiflorum from salinity and drought stresses. Columns labeled with 
different letters are significantly different at P = 0.05 for comparison among different sampling 
dates within each growth regulator treatment. Columns labeled with an asterisk are significantly 
the highest among different treatments within each sampling date. 
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Fig. 3. 4. Effect of recovery duration on the internal contents of IAA (top)  
and IBA (bottom) during the recovery of G. corniculatum from salinity and  
drought stresses. Columns labeled with different letters are significantly  
different at P = 0.05 for comparison among different sampling dates within 
 each growth regulator treatment. Columns labeled with an asterisk are  
significantly the highest among different treatments within each sampling date. 
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achieved the highest increase in GA3 in all tested species, followed by 20 mM ethephon, 2 mM 

SA and 0.03 mM fusiccocin. In G. flavum, GA3 increased from 1.0 to 2.2 ng/g Dwt (120%) 

under control treatment, while the increase was 2445,1900, 1567 and 1500% under the 
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treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 

3.5). In G. acutidentatum, GA3 increased from 0.9 to 2 ng /g Dwt (122%) under control 

treatment, while the increase was 2300, 1800, 1316 and 1233% under the treatments of 2 mM 

ABA, 20 mM ethephon,  

 

 
Fig. 3. 5. Effect of recovery duration on the internal contents of Gibberellic acid (GA)  
during the recovery of G. flavum from salinity and drought stresses. Columns 
 labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns  
labeled with an asterisk are significantly the highest among different treatments 
 within each sampling date. 
 

2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.6). In G. grandiflorum, GA3 increased from 

0.7 to 1.6 ng/g Dwt (129%) under control treatment, while the increase was 2000, 1566, 1344 

and 1150% under the treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 

Fusiccocin respectively (Fig. 3.7). In G. corniculatum, GA3 increased from 0.6 to 0.9 ng/g Dwt 

(50%) under control treatment, while the increase was 1890, 1471, 1043 and 650% under the 
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treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 

3.8).  

Cytokinins. Cytokinins stimulate cell division, morphogenesis, the growth of lateral buds-

release of apical dominance, leaf expansion resulting from cell enlargement, and may enhance 

stomatal opening in some species and promotes the conversion of etioplasts into chloroplasts via 

stimulation of chlorophyll synthesis. We tested zeatin as a representative of cytokinins. During 

recovery, the concentrations of zeatin increased gradually in all tested species (Figures 3.9, 3.10,  

 
Fig. 3. 6. Effect of recovery duration on the internal contents of Gibberellic acid (GA) 
 during the recovery of G. acutidentatum from salinity and drought stresses. Columns  
labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns 
 labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
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all tested species, followed by 20 mM ethephon, 2 mM SA and 0.03 mM fusiccocin. The highest 

increase was in G. flavum, where zeatin increased from 8.0 to 29.0 ng/g Dwt (263%) under 

control treatment, while the increase was 2422, 2196, 2050 and 1174% under the treatments of 2 

mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.9). In G. 

acutidentatum, zeatin increased from 8 to 25 ng/g Dwt (213%) under control treatment, while the 

increase was 2244, 2077, 1900 and 1072% under the treatments of 2 mM ABA, 20 mM 

ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.10). In G. grandiflorum, zeatin 

increased from 6.0 to 22.0 ng/g Dwt (267%) under control treatment, while the increase was 

2329, 2069, 1546  

 
 

 
Fig. 3. 7. Effect of recovery duration on the internal contents of Gibberellic acid (GA)  
during the recovery of G. grandiflora from salinity and drought stresses. Columns 
 labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns  
labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
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and 957% under the treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin 

respectively (Fig. 3.11). Zeatin increased in G. corniculatum from 5 to 18 ng/g Dwt (260%) 

under control treatment, while the increase was 2617, 1977, 1423 and 843% under the treatments 

of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.12).  

Internal salicylic acid (SA) dynamics. SA enhances cell division and plant growth indirectly by 

prohibiting auxin and cytokinin losses in plants. During recovery, the concentrations of SA 

increased gradually (Figures 3.13, 3.14, 3.15 and 3.16). Even under control treatment, there was 

a slight increase in SA content. The treatment of 2 mM ABA achieved the highest increase in SA 

in all tested species, followed by 20 mM ethephon, 0.03 mM Fusiccocin and 2 mM SA. In G. 

flavum, SA increased from 0.4 to 0.9 ng/g Dwt (125%) under control treatment, while the 

increase was 720,600, 533 and 300% under the treatments of 2 mM ABA, 20 mM ethephon, 0.03  

 

 
Fig. 3. 8. Effect of recovery duration on the internal contents of Gibberellic acid (GA)  
during the recovery of G. corniculatum from salinity and drought stresses. Columns  
labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns  
labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
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Fusiccocin and 2 mM SA respectively (Fig. 3.13). In G. acutidentatum, 20 mM ethephon 

treatment was more effective than 2 mM ABA that had similar effect to 0.03 Fusiccocin. Internal 

SA content increased from 0.4 to 0.8 ng/g Dwt (100%) under control treatment, while the 

increase was 650, 600, 600 and 300% under the treatments of 20 mM ethephon, 2 mM ABA, 

0.03 Fusiccocin, and 2 mM SA respectively (Fig. 3.14). In G. grandiflorum, SA increased from 

0.3 to 0.6 ng/g Dwt (100%) under control treatment, while the increase was 700, 500, 433 and 

200% under the treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin 

respectively (Fig. 3.15). In G. corniculatum, SA increased from 0.2 to 0.5 ng/g Dwt (150%) 

under control treatment, while the increase was 867, 500, 233 and 50% under the treatments of 2 

mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.16).  

 

 
Fig. 3. 9. Effect of recovery duration on the internal contents of Zeatin during the recovery 
 of G. flavum from salinity and drought stresses. Columns labeled with different letters are 
significantly different at P = 0.05 for comparison among different sampling dates within  
each growth regulator treatment. Columns labeled with an asterisk are significantly the 
 highest among different treatments within each sampling date. 
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Internal abscisic acid (ABA) dynamics.  It is well known that endogenous ABA content 

increased rapidly under stress conditions and improves stress tolerance in plants. During the 

course of the recovery, the concentrations of the internal ABA decreased gradually (Figures 3.17, 

3.18, 3.19 and 3.20). Under the control treatment, there was a slight significant decrease 

overtime in ABA concentration during the recovery period. The treatment of 2 mM ABA 

achieved the highest decrease in ABA in all tested species, followed by 20 mM ethephon, 2 mM 

SA and 0.03 mM fusiccocin. In G. flavum, ABA decreased from 2.6 to 1.4 ng/g Dwt (-46 %) 

under control treatment, while the decrease was -88,-85, -76 and -68% under the treatments of 2 

mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.17). In G. 

acutidentatum, ABA decreased from 2.7 to 1.6 ng/g Dwt (-41%) under control treatment, while 

the decrease was -79, -78, -67 and -62 under the treatments of 2 mM ABA, 20 mM ethephon, 2 

mM SA and 0.03 Fusiccocin respectively (Fig. 3.18). In G. grandiflorum, ABA decreased from 

 
Fig. 3. 10. Effect of recovery duration on the internal contents of Zeatin during therecovery 
 of G. acutidentatum from salinity and drought stresses. Columns labeled with different letters 
 are significantly different at P = 0.05 for comparison among different sampling dates within  
each growth regulator treatment. Columns labeled with an asterisk are significantly the highest  
among different treatments within each sampling date. 
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2.8 to 1.1 ng/g Dwt (129%) under control treatment, while the decrease was -72, -68, -58 and -

50% under the treatments of 2 mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin 

respectively (Fig. 3.19). In G. corniculatum, ABA decreased from 3 to 1.6 ng/g Dwt (-47%) 

under control treatment, while the decrease was -82, -78, -72 and -66% under the treatments of 2 

mM ABA, 20 mM ethephon, 2 mM SA and 0.03 Fusiccocin respectively (Fig. 3.20).  

 

 
 
Fig. 3. 11. Effect of recovery duration on the internal contents of Zeatin during the  
recovery of G. grandiflorum from salinity and drought stresses. Columns labeled with  
different letters are significantly different at P = 0.05 for comparison among different  
sampling dates within each growth regulator treatment. Columns labeled with an 
 asterisk are significantly the highest among different treatments within each 
 sampling date. 
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Fig. 3. 12. Effect of recovery duration on the internal contents of Zeatin during the recovery of G. 
corniculatum from salinity and drought stresses. Columns labeled with different letters are significantly 
different at P = 0.05 for comparison among different sampling dates within each growth regulator 
treatment. Columns labeled with an asterisk are significantly the highest among different treatments 
within each sampling date. 
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Fig. 3. 13. Effect of recovery duration on the internal contents of Salicylic acid (SA)  
during the recovery of G. flavum from salinity and drought stresses. Columns  
labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns  
labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
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Fig. 3. 14. Effect of recovery duration on the internal contents of Salicylic acid (SA) 
 during the recovery of G. acutidentatum from salinity and drought stresses. Columns  
labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns 
 labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
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Fig. 3. 15. Effect of recovery duration on the internal contents of Salicylic acid (SA) 
 during the recovery of G. grandiflorum from salinity and drought stresses. Columns  
labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns  
labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d
c c

b
a

e

d*

c*

b*

a*

e
d

c

b

a

d
e

b
a

a

e
d

c

b

a

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8

S
A

 (
n

g 
/ 

g 
D

 w
t)

Sampling duration (weeks)

Salicylic acid (SA)  
Control

2 mM ABA

2 mM SA

0.03 mM FC

20 mM E

91 

 



 
Fig. 3. 16. Effect of recovery duration on the internal contents of Salicylic acid (SA) 
 during the recovery of G. corniculatum from salinity and drought stresses. Columns 
 labeled with different letters are significantly different at P = 0.05 for comparison 
 among different sampling dates within each growth regulator treatment. Columns 
 labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c
b b

a a
c

d*

c*

b*

a*

c
b

b

a a

b b
a

a a

d
c

b

a
a

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8

S
A

 (
n

g 
/ 

g 
D

 w
t)

Sampling duration (weeks)

Salicylic acid (SA)  
Control

2 mM ABA

2 mM SA

0.03 mM FC

20 mM E

92 

 



 
Fig. 3. 17. Effect of recovery duration on the internal contents of Abscisic acid (ABA) 
 during the recovery of G. flavum from salinity and drought stresses. Columns  
labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns 
 labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
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Fig. 3. 18. Effect of recovery duration on the internal contents of Abscisic acid (ABA)  
during the recovery of G. acutidentatum from salinity and drought stresses. Columns  
labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns  
labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
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Fig. 3. 19. Effect of recovery duration on the internal contents of Abscisic acid (ABA)  
during the recovery of G. grandiflorum from salinity and drought stresses. Columns  
labeled with different letters are significantly different at P = 0.05 for comparison 
 among different sampling dates within each growth regulator treatment. Columns  
labeled with an asterisk are significantly the highest among different treatments  
within each sampling date. 
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Fig. 3. 20. Effect of recovery duration on the internal contents of Abscisic acid (ABA) 
 during the recovery of G. corniculatum from salinity and drought stresses. Columns 
 labeled with different letters are significantly different at P = 0.05 for comparison  
among different sampling dates within each growth regulator treatment. Columns  
labeled with an asterisk are significantly the highest among different treatments 
 within each sampling date. 
 

 

Exogenous application of plant growth regulator or fertilizers is considered to induce 

abiotic stress tolerance in some plants (Khan et al., 2006; Waseem et al., 2006; Hamdia and 

Shaddad, 2010). Plants exposed to environmental stresses can accumulate various metabolites to 

cope with the stressed conditions. Again, protection against drought is provided by ABA, which 

is accepted as a major phytohormone that participates in the responses of plants to abiotic 

stresses (Mahajan and Tuteja, 2005). Osmotic stress raised the content of ABA in the leaf of 

maize seedlings, while other growth homone types went down in their concentrations and 

activities. As expected, at favorable conditions, recovery from stress took place and hormone 

concentrations started to change to cope with the newly required biological functions and needs. 

Many studies showed that endogenous ABA content increased rapidly under water stress, 

which improved drought tolerance in plants (Zhang et al., 2006). The role of abscisic acid in 
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stress physiology has received much attention, and there is now considerable experimental 

evidence that the physiological effects induced by salinity might be modulated by ABA. It has 

been shown that saline stress is accompanied by an increased in ABA content (Aspinall and 

Paleg, 1981). In addition, P. vulgaris plants adapted to salinity had ABA concentrations 

substantially higher than those in non-adapted plants (Montero et al., 1998). An exogenous ABA 

treatment reduces leaf abscission and increases salt tolerance in citrus plants (Go´mez-Cardenas 

et al., 2002), but it also decreases total biomass and increases the root to shoot ratio in poplar 

species (Yin et al., 2004). Abscisic acid (ABA) selectively affects ion transport processes (van 

Steveninck, 1976). ABA appears to increase the permeability of roots to water and to inhibit 

excretion of ions into the xylem but not to affect uptake of ions by the root. The effectiveness of 

ABA may depend on environmental factors such as temperature (Pitman et al., 1974; Pitman and 

Wellfare, 1978). Khadri et al. (2007) suggested that ABA application improves the response of 

Phaseolus vulgaris symbiosis under saline stress conditions, including the nitrogen fixation 

process and enzymes of ammonium assimilation and purine catabolism. The exogenous 

application of ABA caused an alteration of Zeatin Riboside (ZR) content in lucerne under 

different stress conditions (Dobra et al., 2010).  

Salicylic acid prohibits auxin and cytokinin loss in plants and thus enhances cell division 

and plant growth. SA keeps photosynthetic aspects like chlorophyll content, at proper level and 

thus helps plants to well growth and develop (Hayat et al., 2010). Morphological characteristics 

like leaf area, plant height, root and shoot dry weight, biomass, flower number and diameter and 

primary and secondary shoot numbers enhanced by applying SA under drought condition 

(Martin-Mexand and Larqué-Saavedra, 2005). Applying foliar spray of SA resulted in higher 

root and shoot fresh weight, root and shoot dry weight, stem diameter and leaf number of 
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cucumber (Yildirim et al., 2008) and maize (Moussa and Khodary, 2003) under saline 

conditions. Stem diameter, biomass, plant height and leaf number of cucumber enhanced using 

SA at drought condition (Bayat et al., 2012). SA regulate plant growth and cell division via other 

hormones like auxin, cytokinin, gibberellin and ABA. SA results in higher cell division in 

meristems and enhances root length (Shakirova et al., 2007). Salicylic acid controls 

photosynthesis system, photosynthesis amount, pigment content and stomatal conductivity and 

regulates these procedures for appropriate growth and development (Popova et al., 2009, Steven 

et al., 2006, El-Tayeb, 2005, Kormkaz et al., 2007). 

Jung and Luttge (1980) mentioned that Fusicoccin (FC) inhibited net excretion of Cl by 

the glands of the pitchers of the carnivorous plant Nepenthes hookeriana; of Na+ and Cl- by the 

salt glands of the halophytes Limonium vulgare and L. pectinatum and of K+ in the nectar of Acer 

platanoides flowers. It is suggested that the effects of FC and ABA on ion excretion by gland 

cells could be reconciled with literature showing FC-stimulation and possible ABA-inhibition of 

proton pumps at the plasmalemma of plant cells. Fusicoccin was initially suggested to activate 

the plasma membrane H+-ATPase by direct interaction with the enzyme (Marrè, 1979). Later, 

fusicoccin was demonstrated to bind to a “receptor” belonging to a certain family of proteins. 

(Korthout and de Boer, 1994; Marra et al., 1994; Oecking et al., 1994). FC and ABA have 

antago- nistic effects on movements of stomatal guard cells. FC causes stomata to open and 

prevents closure; this is probably due to enhanced H+ extrusion from the guard cells (Marré, 

1979), which then affects malate and K+ accumulation, thus providing the basis for turgor 

increase and stomatal opening at least in some cases (Raschke, 1976, 1977; Hsiao, 1976). 

Moreover, Clint & Blatt (1989) indicated that the fusicoccin-induced increase in K+ influx 

should be attributed to energy-linked transport, and this would predict cytoplasmic acidification 
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by fusicoccin in Vicia, with consequent inhibition of the efflux at the plasmalemma. It is also 

worth noting that comparison of the effects of fusicoccin on cation and anion influx in C. 

communis suggests malate rather than chloride as the balancing anion in the stimulated influx 

(Clint, 1987).  

Bayat et al. (2012) evaluated the effects of SA on growth and ornamental characteristics 

of Persian petunia under salt stress and concluded that foliar application of SA improved growth 

and ornamental characteristics of Persian petunia under saline and non-saline conditions. 

Salicylic acid controls photosynthesis system, photosynthesis amount, pigment content and 

stomatal conductivity and regulates these procedures for appropriate growth and development 

(Popova et al., 2009, Steven et al., 2006, El-Tayeb, 2005, Kormkaz et al., 2007). 

Ethylene is known to stimulate the release of dormancy, stimulates shoot and root growth 

and differentiation, stimulates flower induction, stimulates flower opening and may have a role 

in adventitious root formation. Environmental stresses, such as cold, heat, salinity, and drought, 

induce ethylene production and oxidative stress and cause damage in plants. Ethylene is 

produced either chemically through the incomplete combustion of hydrocarbons or biologically 

by almost all living organisms (Wang et al. 2002). There is a lot of evidence showing that 

ethylene is an essential component of a wide range of responses to biotic and abiotic 

environmental stresses Wang et al. 2002, Guo and Ecker 2004, El-Tayeb 2005). Further, many of 

these stress responses integrate ethylene signaling into more complex circuitry involving 

salicylate and jasmonate signaling (Wang et al. 2002). The effects of ethylene on plants are 

regulated both at the level of its synthesis and perception of the hormone (Wang et al. 2002). 

Tirani et al. (2013) studied the effects of ethylene on chlorophyll (Chl), carotenoid (Car), 

anthocyanin, flavonoids, ascorbic acid, dehydroascorbic acid, total ascorbate, lipid peroxidation, 

99 

 



and ethylene production in leaf of canola pretreated with SA. Their results showed that the 

ethylene treatments induced lipid peroxidation, lowered significantly Chl and Carotenoids 

contents and anthocyanin accumulation. 

In conclusion, during stress, internal ABA accumulation was evident to cope with stress 

conditions. During recovery, when the circumstances were favorable for growth, other groups of 

growth regulator that are needed for accelerated cell division, enlargement and growth such as 

auxins, gibberellins, and cytokinnins were abundant, and stress signal hormones dissapeared. 
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