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ABSTRACT 

Several methods of testing for mUltivariate trend have 

been discussed in the statistical and water quality 

literature. We review both parametric and nonparametric 

approaches and compare their performance using synthetic 

data. A new method, based on a robust estimation and 

testing approach suggested by Sen and Puri, performed very 

well for serially independent observations. A modified 

version of the covariance inversion approach presented by 

Dietz and Killeen also performed well for serially 

independent observations. For serially correlated 

observations, the covariance eigenvalue method suggested by 

Lettenmaier was the best performer. 



MULTIVARIATE METHODS FOR DETECTING WATER QUALITY TRENDS 

INTRODUCTION 

One of the major goals of long-term fixed station 

monitoring for water quality and other environmental 

variables is the detection of trends. Statistical methods 

for trend analysis of the resulting data series are well 

developed and fairly routinely applied (Smith and Alexander, 

1987). Applications of statistical tests for trend have 

generally been univariate, i.e., have considered only a 

single water quality variable at a single monitoring 

location. However, routine monitoring programs typically 

measure several variables at several locations, and water 

quality processes are perhaps more logically viewed as 

mUltivariate. 

Multivariate methods for trend analysis (defined for 

present purposes as statistical tests for trend) have been 

developed for a variety of applications and have recently 

been modified with an eye specifically toward water quality 

(Lettenmaier, 1988). We review the available methods, both 

parametric and nonparametric, and present a new approach 

which applies the work of Sen and Puri (1977) and combines 

some aspects of both parametric and nonparametric 

approaches. Monte Carlo simulation results, focusing on 

quarterly sampling, compare performance of the tests. Our 

discussion is limited to gradual, monotonic changes in 
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water quality as opposed to sudden (step) changes or changes 

which include both increases and decreases over the period 

of interest. We also concentrate on testing for 

significance of linear trend and touch upon the subject of 

estimating trend magnitudes only peripherally. 

BACKGROUND 

Trend detection methods for water quality time series 

have been extensively discussed in the literature. 

Montgomery and Reckhow (1984), and more recently Berryman 

et al. (1988) present good overviews of available 

techniques. Both parametric and nonparametric methods of 

trend analysis are important, although the latter class is 

certainly more widely applicable in water quality and has, 

therefore, received much more attention. Nevertheless, 

classical methods, and in particular robust extensions 

thereof, should not be forgotten as useful tools in water 

quality data analysis. 

Parametric Methods 

Parametric approaches are frequently based on linear 

models and normal theory. Transformations of the data are 

sometimes used to achieve resemblance of normality (McLeod 

£! al., 1983). In both parametric and nonparametric 

approaches, seasonal transformations are sometimes used as 

well to achieve stationarity in the mean and/or variance. 
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Seasonal patterns in the mean may be handled more 

directly by the use of indicator variables in the analysis 

of covariance model (Neter and Wasserman, 1974). Taylor and 

Loftis (1989) found that analysis of covariance on the ranks 

of data (an approach suggested by Conover, 1980) compared 

favorably with other nonparametric methods of trend 

detection when data were lognormally distributed. Analysis 

of covariance on ranks, however, does not provide an 

estimate of the trend slope of the original data. 

Multivariate extensions of analysis of covariance are 

relatively straightforward (Anderson, 1984). In particular, 

estimates of the trend slope are the same as the individual 

univariate estimates. Tests of significance, based 

on estimates of the covariance matrices, will be discussed 

in the methods section. 

The field of robust estimation occupies a significant 

share of the statistical literature, and several methods 

appear to have promise for applications in water quality. 

We chose to explore an avenue suggested by Sen and Puri 

(1977). This method is based on the classical linear model, 

but uses an asymptotically distribution free aligned rank 

order method of estimating the parameters and testing their 

significance. Although Sen and Puri showed that their 

method was asymptotically distribution free, it remained to 

show that the method was robust (and powerful) with real or 

synthetic data records of moderate or even finite length. 
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Nonparametric Methods 

Lettenmeier (1988) and Taylor and Loftis (1989) review 

the details of current nonparametric methods of trend 

analysis. Briefly, however, the most useful procedures are 

based on the Mann-Kendall test for trend (Mann, 1945 and 

Kendall, 1975). The popular Seasonal Kendall test (Hirsch 

~ ~., 1982) is a mUltivariate extension of the test in 

which each season is treated as a separate and independent 

variable. 

Another mUltivariate version of the Mann-Kendall test, 

which accounts for covariance between variables, was 

presented by Dietz and Killeen (1981). This test was 

modified by Hirsch and Slack (1984) to produce a version of 

the Seasonal Kendall test which accounts for correlation 

between seasons. Lettenmaier (1988) developed a version of 

the test which was better suited to the analysis of multiple 

water quality variables and/or locations. Although the 

Mann-Kendall tests do not provide estimates of trend 

magnitude, a Seasonal Kendall slope estimator (Hirsch 

et ~., 1982) is appropriate for application in parallel 

with the testing procedures. 

Our study compares the last three tests above, based on 

the Mann-Kendall test, with two linear model based tests-­

classical mUltivariate analysis of variance (MANOVA) and the 

aligned rank order method of Sen and Puri. We attempt to 
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define situations in which tests of both groups--linear 

models and Mann-Kendall based tests--would be useful. 

Our simulation study, like those of Hirsch and Slack 

(1984) and Lettenmaier (1988), includes only linear trends. 

While trends which are "nearly linear" are important in 

practice, they represent only a small subset of a broader 

class of general monotonic trends and of a still broader 

class of general changes of unspecified form. Furthermore, 

since a linear trend assumption should favor the linear 

models group, our comparison should not be extended to the 

more general situation. Our simulation study was also 

limited to "nice" data sets with no missing or censored 

values, complications common in real water quality records. 

(See Hughes and Millard, 1988, for a discussion of multiple 

censoring levels.) 

STATISTICAL MODELS FOR ESTIMATION AND TESTING 

Before discussing the actual trend estimation and 

testing procedures, it is useful to first discuss 

appropriate models for the problem. The models are then 

used to precisely specify the hypotheses to be tested. 

Let us assume that 0 water quality constituents are 

measured for n years at A locations during w seasons per 

year. The most general model would, therefore, have WOA 

dependent (response) variables, one for each season by 

constituent by location combination. To simplify this 

discussion we limit consideration to multiple water quality 
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variables at a single monitoring location. Thus there are 

WQ response variables. However, extension to the more 

general model is straightforward. 

The dependent variables are not necessarily 

independently distributed. In other words, there may be 

correlation between constituents and between seasons, as 

well as cross correlations. 

Our primary interest is to determine whether any of the 

dependent variables have a nonzero monotone trend over 

time. Estimates of trend magnitude are also desired. 

We now discuss two different models as possibilities 

for estimation and testing of a trend in the joint 

distribution of the dependent variables. The first and most 

general model has a large number of parameters and would be 

unwieldy for practical application to short time series. 

However, to obtain maximum flexibility, we used this model 

to generate synthetic data for evaluating the alternative 

trend testing procedures. The second, reduced model forms 

the basis of our two linear model-based procedures and has 

similarities to the structure assumed by the three 

Mann-Kendall based procedures. 

Model 1: 

In the first model, each water quality constituent in 

each season represents an individual dependent variable. 

Each of the WQ dependent variables may be correlated with 

every other in an arbitrary fashion. This model is, 
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therefore, the more relaxed in terms of assumptions on the 

covariance structure. 

The model for observations made during year i(i=I(I)n) 

may be written as 

(1 ) 

If 

j = 1, ••• , w is the season index, and 

k = 1, ... , e is the constitutent index and 

Y i = [y i 11' ••• , Y i j k ' •.. , y iwJ T (2) 

is a vector of we dependent variables. Similarly, 

1.1 = [1.111 '...' 1.1 j k ' • • • , J..IwJ T (3) 

is a vector of we intercept terms; 

(4) 

is a vector of we slopes (trend magnitudes) over time. 

The vector of we random erros, 

€ = [€ill'···'€ijk'···'€iwJ
T

, (5) 

has a zero mean and a general covariance matrix 11' which is 

assumed to be constant from year to year. This model makes 

no assumptions about the covariance structure of the 

observations made on different constituents or in different 

seasons. (Except that 11 must be non-negative definite.) 
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In scalar notation, we may represent a single 

observation of water quality constituent k during season j 

of year i as 

(6) 

Thus each constituent, by season combination is represented 

by a separate straight line with a slope of Bjk units per 

year. The random error E •• k has zero mean and variance 
IJ 

given by the corresponding diagonal element of Ll . 

Furthermore this error is correlated with E • ., k' where j'1 j 
IJ 

and/or k I k'. The covariance between E·· k and E •• 'k' is 
IJ IJ 

given by the appropriate off-diagonal element of 2
1

, Note 

that E·. k and E •• 'k' occur during the same year. However, 
IJ IJ 

for generating data, we also consider specific correlation 

between error terms in different years. 

Testing for trend in this model is equivalent to 

testing the null hypothesis that Bjk = 0 for all k = l(l)w, 

j = 1(1)0. Rejection of this null hypothesis is evidence 

that a nonzero trend exists for at least one of the 

constituent by season combinations. 

As we mentioned earlier, this model has a large number 

of parameters. Suppose that two water quality constituents 

are measured in two seasons (w = 0 = 2). The complete model 

is represented by four equations of the form shown in 

Equation 6. There are four dependent variables, and the 

model parameter set consists of four intercept terms, four 

slopes, four variances, and 4(~-1) = 6 intervariable 
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correlations for a total of 18 parameters. As the number of 

constituents and seasons increase, the number of parameters 

becomes very large very quickly. (For w = 0 = 4 there are 

168 parameters, 136 of which are in L1 .) 

Model 2: 

The second model reduces the number of dependent 

variables by modeling the seasonal effect using a seasonal 

adjustment to the intercept term rather than separate 

dependent variables. Thus in this case there are only 0 

individual dependent variables and 0 trend slopes. 

Observations made during the jth season of the ith year 

are represented by Model 2 as 

y.. = 11 + Si + r. + e: •• 
IJ'" J IJ 

where the indices i,j,k are as previously defined and 

where y. . [ ~ T 
IJ = y. ·1'···'Y· ·k'···'Y·· IJ IJ IJ 

is a vector of 0 dependent variables. 

is a vector of 0 intercept terms 

is a vector of 0 slopes. The vector 

(7 ) 

(8 ) 

(9) 

(10) 

( 11 ) 
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represent 0 seasonal adjustments to the intercept vector. 

Since ~ represents the global intercept term from averaging 

over seasons, only w-1 independent seasonal adjustments are 

needed for each constituent. (The w seasonal adjustments 

for a given constituent must sum to zero.) Also the vector, 

consists of 0 random error terms with zero means and 

covariance matrix 22 . 

(12) 

Model 2 assumes that the covariance matrix 22 has a 

more rigid structure than that in the previous model. 

Speci fically we assume that the covariance between E:. 'k and 
IJ 

E:. 'k' is the same for all i = 1(1)n and j = l(1)w (i.e., 
IJ 

inter variable correlations are the same for all seasons and 

years). 

Using scalar notation we can write for a single 

dependent variable 

(13) 

The slope Bk and overall intercept, ~k' depend only on the 

constituent. Since the rjk adjust the intercept terms for 

each season, this model in effect includes w different 

parallel lines for each constituent, all having the same 

slope Bk . The error term E: ijk is assumed to be independent 

of error terms corresponding to observations on the same 

dependent variable from different seasons and different 

years, but the remaining possible correlations may be 

nonzero. 
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It again follows that the variance of E. 'k is the 
IJ 

corresponding diagonal element of 12 , and the covariance 

between E" k and E. 'k' is the corresponding off-diagonal 
IJ IJ 

element of 12 . Note that Eijk and Eijk , correspond to 

measurements during the same year and season but on 

different constituents. 

As mentioned earlier, Model 2 is applied directly in 

both of our linear model based tests. Of course, the 

Mann-Kendall based tests do not assume a linear model. 

However, it is appropriate to point out that our treatment 

of seasonal effects in the Mann-Kendall tests will more 

closely resemble Model 2 than Model 1. It is also 

appropriate to note that in the Mann-Kendall based tests, a 

more relaxed structure of 12 is assumed in which covariance 

between error terms of different seasons in the same year is 

permitted. 

Testing for trend in Model 2 is equivalent to testing 

the null hypothesis Bk = 0 for k = 1, •.• ,0. Rejection of 

this null hypothesis would support the alternative that a 

nonzero trend, averaged over all seasons, exists for at 

least one of the constituents~ leading to a different 

conclusion than in Modell which differentiates between 

seasons. In applying Model 2, we effectively assume that a 

trend affects all seasons equally. This assumption could be 

relaxed by including an interaction term to adjust the slope 

for each season in the same manner that r jk adjusts the 

intercept. For simplicity we chose not to include such a 

term in the present study. 
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To compare the complexity of models 1 and 2, recall the 

example with two constituents and two seasons. Model 2 is 

then represented by two equations of the form of Equation 3. 

This model has two dependent variables and 9 parameters 

(2 intercepts, 2 slopes, 1 seasonal adjustment for each 

constituent, and 3 distinct elements of 22). One might not 

view this as parsimonious; still, the number of parameters 

does not "blow up" as rapidly with increasing wand 6 as for 

Model 1. For example, if w = 6 = 4, the total number of 

parameters is 30 (10 or which are in 22) compared with 168 

in Model 1. 

THEORY 

The MANOVA Procedure 

Suppose each of n independent random vectors 

{Yi Ii = l(1)n} (each of length p) is assumed to be normally 

distributed with a mean ax. and a variance covariance matrix 
1 

2. The v components of the design vector xi are known. 

However the elements of the p x v matrix a are unknown as 

are the elements of the p x p matrix 2. The mUltivariate 

analysis Qf variance (MANOVA) procedure estimates these 

unknowns, and tests whether certain submatrices of a are 

zero. 

Since this method is described in detail by Chapter 8 

of Anderson (1984), only a brief description of the 

associated testing procedure as it pertains to our specific 

problem is in order. To be consistent with model two, 
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redefine the observation vectors and the design vectors as 

{y .. I i = 1, ••• , n, j = 1, .•. ,w} and {x .. I i = 1, ••• , n j = lJ lJ 
1, •.. ,w,} respectively, consequently, the observation vector 

y .. corresponds to the jth season of the ith year. 
lJ 

Furthermore index the 0 elements (where each element 

corresponds to a constituent) of the vector y .. as in Model 
lJ 

2, E qua t ion 8. I n add i t ion par tit ion 8 as 8 = [81 I 8;) 

where 81 and 82 have dimensions 0 x wand 0 x 1, 

respectively. Similarly, partition the design vector 

x .. into 
lJ 

The first element of 

T T T 
x. . = [x .. 1 I x .. 1 lJ lJ lJ~ 

xij1 is one. However element r = 

2, ... ,w of xij1 is a one only if j = r - l. Otherwise 

element r is zero (i.e., the rth element is one only if 

(14) 

the 

observation was made during season r-l. Also, if the eason 

is w, then elements 2, •.• ,w of x .. 1 are zero.) The single lJ 
element of x .. 2 is set equal to i. As a resul t, the k, 1 lJ 
element of 81 represents an intercept term (~k from Equation 

9) for observations of constituent variable k made during 

season w. Element k,s (s = 2(1)w) represents the difference 

in the intercept term between that for variable k during 

season j = s-l and that for variable k during season w. 

These elements are the seasonal adjustments rj,k from 

Equation 11. Element k of 82 represents a linear trend in 

variable k over years. 
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The objective is to test the null hypothesis HO: B2 

= O. As in the univariate regression case, this is 

accomplished by comparing the estimate of the covariance 

matrix I under the assumption that the null hypothesis holds 

to the case where this assumption is relaxed. First 

estimate I without the assumption of the null hypothesis as 

where 

i,j 

T 
y .. x .. 
IJ IJ 

(with dimensions 0 x (w +1)) and 

(with dimensions 

hypothesis, I is 

I T 
AB = x .. x .. 

IJ IJ 
i , j 

(w + 1) x (w + 1)). Under 

estimated as 

T -1 

L y .. y .. - CoAo 
i,j IJ IJ 

nw 

(15) 

(16) 

(17 ) 

the null 

(18) 
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where 

Co 
_- \ Y X

T 
L ij ijl i,j 

(with dimension 0 x w) and 

where 

Ao = 1 x. 'lx'~l i,j IJ IJ 

(with dimension w x w). 

Define, 

U = 

(19) 

(20) 

(21) 

Then, the test statistic for testing this null hypothesis 

against the alternative that at least one element of 62 is 

not equal to zero is 

1T = (1 - U)(nw - w - 0) 
Uo (22) 

which has an F distribution with 0 and nw - w - 0 degrees of 

freedom. Therefore the HO is rejected if 1T is too large 

when compared to its critical value. We refer to the test 

using this statistic as the MAN OVA method. 
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The Sen and Puri Procedure 

Consider a set of w independent random vectors 

{Yi I i=1(l)v} of length p. Each of these vectors is assumed 

to have an unknown cumulative distribution function 

F . (y .) = P ( y. < y.) = F ( y. - a - 8x.) 
11 1- 1 1 1 

where a is a vector of length p, 8 is a p x q matrix and 

x. is a vector of length q with known elements. The 
1 

elements of a and 8 are assumed to be unknown. 

If we partion the matrix 8 into 

where 81 and 82 have dimensions p x ql and p x 

(23) 

(24) 

q2 respectively, then Sen and Puri (1977) suggest a 

procedure for estimating 8 and testing the null hypothesis, 

HO:82 = O. Note that in the particular problem treated in 

this paper, w = nw, p = 0, q1 = w-l, and q2 = 1. In 

addition, the observation sectors have the same form as 

described in the preceding section on MANOVA. Except for 

the removal of the first element (corresponding to the 

intercept term), the design vectors have the same form. In 

other words, q = v-l where v is defined in the MANOVA 

section, and the present design vector consists of elements 

2 through v of the former design vector. 

A general discussion of this method is not available as 

it is for MANOVA. Therefore, in order to describe the 
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method in general terms, we use a single index on y. and 
1 

x. for the remainder of this section. (Instead of indexing 
1 

the time of an observation with year and season, i and j, we 

simply use a time i, with i = 1, n, where n = the total 

number of observations. 

This procedure first estimates B under the null 

hypothesis (i.e., with B2 = 0). The actual computations 

were not discussed in Sen and Puri (1977), but their 

estimators may be described in terms of separate univariate 

estimates of the p rows of B. (Note that the pth row of B 

corresponds to the pth element of y .. ) Consequently, 
1 

results from other papers which discussed the univariate 

rank based estimators are used. 

Since the estimation procedure may also be used to 

estimate B without the restrictions of HO' the process will 

be described for a general B. Let Yik be the kth element of 

the ith observation. (This could correspond to water 

quality constituent k at time i.) For some estimate bk of 

Bk (the kth row of B which corresponds to the univariate 

linear model 

(25) 

where £i is a random error) the residual corresponding to 

Yik is denoted as yik(bk ) where 

(26) 
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In addition define 

n 

(27) 

where 

1 if z > 0 

ll(Z) = (28) 
o if otherwise 

Thus Rik(bk ) is the rank of Yik(b k ) among the Ysk(b k ). Now 
k 

for each k = 1, ..• ,p, a set of scores, {an( t ) I £ = 1, •.. ,n} 

is generated by a score function ~k (£) (which is square 

integrable and non-decreasing on [O,IJ) as 

For the present work we chose ~j ( ) as the identity 

function. Many other score functions are possible. 

For a given estimate, B of S, the Sen and Puri 

estimation process first calculates 

i=1 

n 

where xr 

(29) 
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and then 
p q 

* (B) 5 = 2 2 1 Sr (bk)1 • (30) 

j=1 r=1 

The best estimate of a is the B which minimizes * 5 (B). 

* However the set {B I 5 (B) = minimum} may contain an 

uncountable number of elements, since S*(B) is a step 

function. Thus the Sen and Puri estimate is actually the 

center of mass of this set. 

Note however that minimizing S*(B) is equivalent to 

separately minimizing with respect to each of the prows, 

{b k I k = 1(l)p}, of B. But each I Sr(b k) I is a step 

function of q variables which makes the minimization 

procedure difficult. However, Jaeckel (1972) indicated 

during a univariate discussion, that the q x 1 vector 

is essentially the gradient of 

n 

(31) 

(32) 

Furthermore, since D(b k ) is a continuous convex function of 

bk whose minimum occurs in a bounded region, a point 

bk which minimizes D(bk ) will approximately solve S(bk ) = 0 

which is equivalent to minimizing 
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Consequently, our estimate of 6 is derived from the 

minimization of D(b k ) for each k. 

The actual procedure used for this minimization is 

suggested by Aubuchon and Hettmansperger (1984). The 

mechanics of this procedure are based on an asymptotic 

approximation of D(b k ) by the quadratic function 

(where 6k is the true value and T is a scalar quantity) 

which attains a minimum at 

(33) 

This leads to an iterative method of estimating 6k • At 

the mth step, the m + 1 estimate of 6k is 

where bk (1) is the least squares estimator of 6k (other 

starting estimates, such as those arrived at by LAD may also 

be used). But, the obvious question is the optimal value of 

scalar step, t(m). 
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The derivative of 

D(bj(m) + t(X TX)-l S(b k(m))) with respect to t is 

G(t) = -a(bk(m))TX (X TX)-lxTa (b
k

(m))+ t(X TX)-l S (b
k

(m))) (36) 

where a(bk(m)) is a vector of length n containing the scores 

arising from the estimate bk(m) This derivative is a 

non-decreasing step function. Therefore, the Illinois 

version of false position (Dowell and Jarratt, 1971) is used 

to find the optimal value of t(m). This two stage iteration 

is repeated until the percentage change in the deviance, 

D(b k ) is arbitrarily small. 

To test the null hypothesis, partition each bk into 

b1k and b2k which have dimensions 1 x ql and 1 x q2 

respectively. The estimation procedure described above 

is carried out under the restriction that all b2k must be 

equal to O. Denote the best estimates of Bk under this 

* restriction by B k and calculate the following matrices: 

and 

1. Mn (of dimension p x p) where the k,k' element is 

defined as 

(38) 



The test statistics 

q 

L = 2 
q 

2 
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p p 

2 2 
r=1 r'=1 k=1 k'=1 

kk' , -1) (where m is the k, k element of Mn has an 

asympotitic chi-squared distribution with q2P degrees 

(39) 

of freedom under the null hypothesis. We refer to the test 

using this statistic as the Sen and Puri (SP) method. 

Mann-Kendall Based Procedures 

Before describing mUltivariate procedures, a brief 

description of the univariate Mann-Kendall test for trend is 

in order. Suppose that {Yi Ii = 1(l)n} represents a 

sequence of observations. Under the null hypothesis, of no 

trend, the Mann-Kendall procedure assumes that each of the 

n! possible arrangements of of these n observations in time 

is equally likely to occur. 

Define 
1 if x > 0 

sign(x) = 0 if x = 0 
-1 if x < 0 

Under the null hypothesis 

K = 2 sign (y . - y.) 
J 1 

i<j 

is asymptotically distributed normal with a mean of zero 

and a variance 

(40) 

(41) 
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0
2 = n(n - 1)(2n + 5)/18 (42) 

Dietz and Killeen (1981) extended these results to the 

mUltivariate case. Specifically, they considered a sequence 

of P - variate observations of the form {(Y1.' ••. 'Y .) 
1 pI 

i = 1(1)n}. They were interested in testing the null 

hypothesis of all p sequences being randomly ordered against 

the alternative of a monotonic trend in at least one of 

these sequences. If K. represents the Mann-Kendall 
J 

statistic K calculated for sequence j, then let 

represent the vector of such statistics. It was shown that 

K is asymptotically normally distributed with a zero mean 

and a variance-covariance matrix 1 with elements 

if g = h 

(44) 
if g "I h 

where 

tgh = 1 sign[(Xgj - X .)(Xh . - Xhi )] (45) gl J 
i<j 

and 

r gh = 1 sign([x . - X .)(X h . -Xhk )]· (46) gJ gl J 
i , j , k 
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To put this into the context of the problem considered 

in this paper, suppose we calculate a Mann-Kendall statistic 

K for each of the consituent by season combinations. These 

results give the asymptotic joint distribution of the 

p = ow Mann-Kendall statistics. 

Hirsch and Slack (1984) used these results to create a 

test for univariate trends. If only a single variable is 

considered at a single lake for w seasons, then the sum of 

the w Mann-Kendall statistics is normally distributed with a 

zero mean and a variance equal to the sum of all of the 

elements of the corresponding 2. Since the effect of a 

negative trend in one season may be cancelled by a positive 

trend in another season, this test looks for overall trends 

across years. 

The above results lead to three different extensions of 

univariate Seasonal Kendall statistics to mUltivariate 

cases. The asymptotic joint distribution of the 

Mann-Kendall statistics leads to an asymptotic joint 

distribution of the Seasonal Kendall statistics for each 

constituent. Specifically, arrange the ow Mann-Kendall 

statistics of the vector K so that the statistic 

corresponding to jth season and kth constitutent is the 

fth element of K where 

f = j + (k-1)w (47) 

In a corresponding fashion arrange the elements of 2. In 

addition define the matrix C with dimensions 0 x ow. 
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Define the i,j element of C as 

1 if (i - 1 ) w + 1 < j < i w - -C .. = IJ 0 if otherwise 
(48) 

As a result 

S = C K (49) 

is a vector of Seasonal Kendall statistics (one for each 

constituent, summed over seasons). Furthermore, r is the 

variance covariance matrix of these statistics where 

(50) 

Covariance Sum Test 

The first of three Mann-Kendall based test statistics 

is an extension of the univariate Seasonal Kendall test. 

Under the null hypothesis, S is normally distributed with a 

zero mean and a variance covariance matrix r. Hence, under 

the null hypothesis ITS (1 indicates a vector with each 

element equal to one) is normally distributed with a zero 

mean and a variance of 1Tri. Thus, the null hypothesis may 

be rejected if 

z = 1 T S/1 T ri (51) 

is large when compared to a standard normal distribution. 

Lettenmaier (1988) referred to this test as the "covariance 

sum" (CS) method and pointed out that the obvious problem 
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with this procedure is lack of power when the trends are of 

different signs. 

Covariance Inversion Test 

The second method is based on the work of Dietz and 

Killeen (1981) who suggested that 

(52) 

is asymptotically distributed chi-squared with ~ degrees of 

freedom provided r is of full rank. Otherwise, if the rank 

of r is q < ~, then 

(53) 

is asymptotically chi-squared distributed with q degrees of 

freedom where r- 1 is a generalized inverse of r. 

Consequently, the null hypothesis may be rejected if ~ is 

large when compared to the appropriate chi-squared 

distribution. We shall follow Lettenmaier (1988) in 

referring to this test as the "covariance inversion" (CI) 

method. 

Covariance Eigenvalue Test 

The final method is due to Lettermaier (1988) who 

suggested that the step of inverting the matrix r as 

required in the CI test resulted in a test of low power. 

The method is derived again here for the sake of 

completeness. Here the distribution of 
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(54) 

is considered. Johnson and Kotz (1970) show that the 

distribution of Q is equivalent to the distribution of 

(55) 

v 

where the {Tv I v = l( 1)O} are the eigenvalues of r and the 

{lv I v = l(l)O} are standard normal random variables. 

Although the distribution of Q*, is not known, the cumulants 

of Q* are given in Johnson and Kotz (1970). Specifically, 

the sth cumulant of Q* is given by 

~s = 2s - 1 (s - l)!trace(~) (56) 

(Actually, this is an asymptotic result since r is an 

asymptotic approximation of the variance-covariance matrix 

of S.) 

These cumulants may be used to approximate the 

* distribution of Q and therefore, Q. Johnson and Kotz 

(1970) suggested approximating Q* by BX 2 (v,n) where x2(v,n) 

represents a non-central chi-square distribution with v 

degrees of freedom and a non-centrality parameter n whenever 

(57) 

where ~1 indicates the first moment and ~2 and ~3 indicate 

the second and third central moments, respectively. Note 
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that 111 = ~ 1 ' 112 = ~2 and 113 = ~3' and as a result an 

equivalent expression of (57) is 

2 [~~ 2 _ sl~3 > 0 (58) 

This approximation is accomplished by equating the first 

* 2 three moments of Q with those of 8X (v,n) and solving for 

the values of 8, v and n. This gives 

8 = 1/2s3(2~2 + 14F,2 - 2~lS3)-1 (59) 

v = 1 
28 (4~1 - s2/8 ) (60) 

(61) 

If (57) does not hold, then it is suggested that the 

distribution of Q* should be approximated by a + 8X 2 (v) 

where X2(v) is a central chi-square distribution and the 

values of a, 8 and v are determined by equating the first 

* . three moments of Q wIth those of a random variable with a 

a + 8X 2 (v) distribution. This leads to 

S3 
8 = 4s2 

2 
a = sl - 2t,;2/~3 

3 2 
v = 8~2/~3 

(62) 

(63) 

(64) 

We shall again follow Lettenmaier (1988) and refer to 

this method as the covariance eigenvalue (CE) test. 
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Modified Mann-Kendall Tests 

All three of the Mann-Kendall based tests (CS, Cl and 

CE) account for between-season correlation via the 

variance-covariance matrix 2 in Equation 44. However our 

formulations of the MANOVA and SP methods assume 

independence between seasons by using Model 2 instead of 

Model 1. We can, however, easily construct modified 

versions of the Mann-Kendall based tests which effectively 

assume independence between seasons and, therefore, more 

closely parallel the MANOVA and SP methods. We would, of 

course, expect these tests to have difficulty maintaining 

their nominal significance levels when observations are 

serially correlated. 

The modified tests are performed simply by setting the 

appropriate off-diagonal elements of 2 equal to zero and 

proceeding as in the original test. The "appropriate" 

elements are those corresponding to between season covariances. 

The elements corresponding to between constituent covariance 

for the same season are left as is. We denote modified 

versions of the covariance eigenvalue and covariance 

inversion tests as MCE and MCl, respectively. We do not 

explore a modified version of the CS test due to its limitations 

as mentioned above. 
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MONTE CARLO STUDY 

Our Monte Carlo study of the candidate trend tests 

simulated three water quality variables, each observed four 

times per year at a single location. Data were generated 

using Modell (Equation 1) discussed earlier. Trend slopes, 

given by the vector B, were set equal across seasons for a 

given water quality variable but could differ across water 

quality variables. Five combinations of trend slopes among 

the three variables were considered as follows: 

1:1:1, 1:0:0, 1:-1:0, 1:1:-1, 1:~:0 

The first combination consists of all slopes equal in 

magnitude and in the same direction. The second combination 

consists of one positive slope and two zero slopes and so 

on. 

Random Error Generation 

Normally distributed error vectors, €, were generated 

for the eight correlation structures shown in Table 1. 

Log normal error vectors were generated using only 

correlation structures 1, 2 and 5. 

The random error generator model had the following 

mUltivariate AR(1) form: 

(65) 
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where €i is the vector of the twelve error terms for year i 

and Zi is a vector of twelve independent random errors with 

unit variance and zero mean. The matrices D and B are both 

of dimension 12 x 12 and contain fixed elements which depend 

on the covariance and cross-covariance matrices of €i as 

follows (Salas et a1., 1980). 

Let 

and 

MO = E[€. ,€.J T 
1 1 

Ml = E[€. l'€.J T 
1- 1 

(66) 

(67) 

The matrix MO defines covariances between observations 

in the same year while Ml defines covariances between 

observations one year apart. Now equations (65), (66) and 

(67) yield the following 

and 

D = M TM -1 
1 0 ( 68) 

(69) 

Since MO is a covariance matrix it must be positive definite 

. T -1 t b f t d· t th d t f and Slnce MO-Ml MO Ml mus e ac ore 1n 0 e pro uc 0 

a matrix and its transpose, it must be non-negative. These 

conditions impose limitations on our chosen combinations of 

intervariable correlations for the same season and lag-one 
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autocorrelation. The value of p = 0.34 in Table 1 

represents the upper limit for the case of intervariable 

correlations = 0.50. 

Comparison of Empirical Powers 

Empirical power curves, showing rejection of the null 

hypothesis versus trend slope, were constructed by 

performing each test on 500 synthetic data sequences, each 

10 or 20 years in length, for each slope. For each slope 

combination, the plotted slope is the largest of the three. 

For each curve, slopes ranged from zero (providing an 

empirical significance level) to that which produced a power 

of at least 90 percent for the most powerful test. 

Preliminary trials were used to determine the desired range 

of slopes. 

In nearly all cases, the power curves did not cross, 

i.e., the same tests had higher powers over the entire range 

of slopes. The power differences between tests were often 

quite large. However, for those cases where differences 

were less obvious, we needed a consistent, if hueristic, 

means of comparing test performance and compiling tables of 

results over the range of situations studied. 

We concluded, somewhat subjectively, that 80 percent 

power is a point at which a trend test becomes useful in a 

practical sense and that a difference in power of 5 percent 

between tests could be important to users. 
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Consequently, we visually compared power curves at the 

point where the more powerful of two tests being compared 

crossed 80 percent power (400 rejections). We recorded a 

significant difference between tests only if the two curves 

differed by 25 or more rejections (5 percent power). 

The "critical" difference of 25 rejections corresponds 

to two standard deviations of the difference (PI - P2) 

between binomial proportions, each estimated from 500 

independent trials when the true value of p is 0.80. More 

rigorous tests for comparing proportions would be possible 

at specific slopes (Snedecor and Cochran, 1980). However, 

different sets of slopes were used in the various trials. 

Our heuristic method provides comparisons in the same power 

range for all cases and is adequate for identifying general 

patterns in relative performance of the tests. 

Normal Independent Errors 

Table 2 presents a comparison of four alternative tests 

using normal independent observations and correlation 

structures 1 and 2 from Table 1. The SP, Mcr and MCE tests 

were each compared to MANOVA, the test which would logically 

perform best since it most closely matches the model used in 

the simulations. With a few exceptions, the Mann-Kendall 

based tests were less powerful than MANOVA. The SP test, 

however, was very near in power to MANOVA over the entire 

range of slopes. All four tests were conservative with 
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regard to significance level in every case. Four examples 

of the ten sets of power curves are shown in Figure 1. 

Lognormal Independent Errors 

Table 3 presents a comparison of the same four tests 

under lognormal independent observations. Now we use the 

MCI test as a standard of comparison since MANOVA no longer 

matches the simulation model. Under these conditions, 

MANOVA has low power compared to the Mann-Kendall based 

tests. However, the SP test performed as well or better 

than MCI and MCE. The MCI and MCE tests were comparable. 

Although the MCE test was better in the 1:1:1 cases, the 

simpler MCI test was slightly better overall. All four 

tests were again conservative with regard to significance 

level. Figure 2 presents four sets of power curves 

paralleling those in Figure 1. 

Serially Correlated Errors 

Table 4 compares the two Mann-Kendall tests, CI and CE, 

which consider between-season correlation. Six of the 

correlation structures shown in Table 1 were used with 

normally distributed errors. Intervariable correlations 

were 0.0, 0.2 and 0.5, and lag-one correlations were 0.0, 

0.2 and 0.34. For lognormal errors only correlation 

structure 5 was used with intervariable correlations set at 

0.5 and lag-one correlation of 0.20. 
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Our evaluation of the CI and CE tests was somewhat 

different from that of Lettenmaier (1988) in which equal 

between-season correlations were used rather than an AR(l) 

structure. As noted before the CI and CE tests do not 

account for correlation between observations in different 

years. However, Hirsch and Slack (1984) showed that in the 

univariate case, accounting for between-season correlation 

within a year could also cope with moderate levels of 

ARMA(l,l) serial dependence. 

In all cases displayed in Table 4, the CE test was 

more powerful than the CI test for ten year data records, 

but the two tests performed about the same overall for 

20-year records. 

Figure 3 contains power curves for four example 

situations including one, 3b, where the CI test was 

significantly more powerful than the CE test. This 

situation was encountered infrequently, however. Thus our 

results tend to confirm Lettenmaier's (1988) assertion that 

the CE test represents a general improvement over CI. 

The covariance sum (CS) or Seasonal Kendall test is 

included in the plots to reinforce the point made earlier 

that the test has very little power when trends of the 

individual variables are in opposing directions. Thus the 

test would be useful only in testing for homogeneous trends. 

The SP test was also included in Figure 3 to illustrate 

that, as expected, its empirical signifiance level is much 

larger than the nominal level when the error vectors are 
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serially correlated. Both the CI and CE tests are 

conservative at the levels of serial correlation studied 

(p ~ 0.34). 

Usefulness of Tests Assuming Serial Independence 

Since even quarterly water quality data can be serially 

correlated, especially for ground water and lakes, it would 

be convenient to use only tests, such as CI and CE, which 

account for between-season correlation. However, there is a 

significant loss in power associated with these tests 

compared to these which assume independence across seasons. 

This is especially true for short data records. To 

illustrate this point, in Figure 4 we present selected 

comparisons of SP and MCI tests with CI and CE, all applied 

to serially independent data. Similar power differences are 

observed in most other situations. 

Hirsch and Slack (1984) discuss this issue for the 

univariate case. They recommend that the original Seasonal 

Kendall test, which assumes independence across seasons, be 

used as a screening tool and that the corrected (for 

between-season correlation) test would be most useful for 

long records. 

A similar philosophy might be appropriate in the 

multivarate case. Data records could initially be tested 

with the SP, MCI or MCE test. If the null hypothesis were 

rejected, then the CE test could be used. If the null 

hypothesis were accepted in the CE test, the "trend" 
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detected by the first test might be the result of serial 

correlation rather than a deterministic change in the mean. 

However, this is only one of many possible data analysis 

strategies, and we wish to reserve further discussion of 

such applications-oriented issues for the future. 

Multiple Tests 

When multiple constituents are observed during several 

seasons, the object may be to identify a trend in at least 

one of the constituents for at least one of the seasons. 

Individual hypothesis tests of trend are characterized by 

their size (significance level) and power for testing their 

particular hypothesis, and their interpretation is dependent 

on those characteristics. When multiple hypothesis tests 

are performed, the size and power of the combination of 

tests is usually indeterminate; therefore, conclusions 

formed from a combination of tests no longer carry the same 

interpretation as conclusions from the individual tests. 

Multivariate tests provide a framework for combining 

information from multiple tests. The mUltivariate test of 

no trend in any variable for any season has identifiable 

size and power, but does not specify a particular 

constituent or season as having a trend. A significant 

result in the mUltivariate test may be followed by 

individual tests to identify trends in constituents and/or 

seasons. The size of the individual tests will then be 

controlled by the fact they are contingent on the 
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mUltivariate test. This procedure has the advantage of 

providing some overall control to the individual tests. 

However, it must be recognized that power of those 

individual tests is reduced, because a trend in one 

constituent may be obscured by its inclusion with others 

having no trend. Also, if a large number of constituents 

are considered, a large trend in one constituent may cause a 

significant result in the mUltivariate test, effectively 

removing error control provided by the mUltivariate test to 

the other constituents. 

SUMMARY AND CONCLUSIONS 

A number of methods are available for testing water 

quality time series for mUltivariate trend. We examined 

several of these and compared their performance under a 

Monte Carlo testing program, simulating linear trends. Two 

of the alternatives, the Sen and Puri (Sp) and MANOVA tests, 

are based on linear models. The SP test is an aligned rank 

order method of estimation and testing for linear models 

based on Sen and Puri (1977). The test is asymptotically 

distribution free. We also considered three mUltivariate 

extensions of the Mann-Kendall test--the covariance sum 

(CS), covariance inversion (Cl), and covariance eigenvalue 

(CE) tests discussed by Lettenmaier (1988)--along with 

"modified" versions of the CI and CE tests which assume 

independence across seasons. The CI, CE and CS tests 
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account for between-season correlation, providing a means to 

at least partially account for serial correlation. 

The SP and MAN OVA procedures provide estimates of trend 

slope directly while the other procedures do not. However, 

we did not explore the properties of these slope estimators. 

For independent observations we found that the SP test 

was robust and efficient for 10 and 20 year data records. 

SP performed as well as MANOVA for normal data and as well 

as the Mann-Kendall based tests, Mcr and MCE, for log normal 

data. Of the latter, Mcr is the logical choice since it is 

simpler than MCE and has a slight edge in overall power 

performance. 

For serially correlated series, the CE test appears to 

be the best choice all around, although its power advantage 

over cr disappeared for 20 year data records. The CE and cr 

tests were conservative under the correlation structures 

studied. rt remains, however, to investigate the empirical 

significance levels of these tests under stronger levels of 

serial dependence than our "worst" case of AR(l) with 

parameter p = 0.34. The covariance sum test is, again, 

useful only for detecting homogeneous trends. 
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TABLE 1. Alternative correlation structures for error 
vectors Ei in Monte Carlo study of trend detection 
powers. 

Correlation 
structure 

number 

1 • 

2. 

3. 

4. 

5. 

Description 
(all correlations are zero unless stated 

otherwise) 

corr between all variables within a season = 
0.2 (lognormal and normal) 

corr between all variables within a season = 
0.5 (lognormal and normal) 

corr between all variables within a season = 
0.5 
AR(I) lag 1 autocorrelation between seasons = 
0.2 

corr between all variables within a season = 
0.2 
AR(I) lag 1 autocorrelation between seasons = 
0.2 

corr between all variables within a season = 
0.5 
AR(I) lag 1 autocorrelation between seasons = 
0.34 

6. corr between all variables within a season = 
0.2 
AR(I) lag 1 autocorrelation between seasons = 
0.34 
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TABLE 2. Power comparison of Sen and Puri (SP), modified 
covariance inversion (MCr), and modified 
covariance eigenvalue (MCE) tests relative to 
MANOVA. A (+) or (-) indicates that a given test 
produced at least 25 more (+) or fewer (-) 
rejections than MANOVA at 80 percent power. A (0) 
indicates that the test differed from MAN OVA by 
fewer than 25 rejections. All trials were for 
normal, independent data using correlation 
structures land 2 from Table 1 and 500 
replications. 

Record 
length Corr. Slope combination 
(yrs) str. Test 1: 1 Ii 1:0:0 1:-1:0 1 Ii:-l 1·!.·0 • 2 • 

10 1 SP 0 0 0 0 0 
MCr 0 
MCE 0 

20 1 SP 0 0 0 0 0 
MCr 0 0 
MCE 0 0 

10 2 SP 0 0 0 0 0 
MCr 0 0 
MCE + 

20 2 SP 0 0 0 0 0 
MCr 0 0 
MCE + 
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TABLE 3. Power comparison of Sen and Puri (SP), modified 
covariance eigenvalue (MCE), and MANOVA relative 
to modified covariance inversion (MCr). A (+) or 
(-) indicates that a given test produced at least 
25 more (+) or fewer (-) rejections than Mcr at 80 
percent power. A (0) indicates that the test 
differed from Mcr by fewer than 25 rejections. 

Record 
length 
(yrs) 

10 

20 

10 

20 

All trials were for lognormal independent 
observations using correlation structures 1 and 2 
from Table 1 and 500 replications. 

Slope combinatons 
Corr. 
str. Test 1:1: 1 1:0:0 1:-1:0 1:1:-1 1·!.·0 • 2 • 

1 SP 0 0 0 0 0 
MCE + 0 0 0 0 

MANOVA 

1 SP 0 0 0 0 0 
MCE + 

MAN OVA 

2 SP 0 0 0 0 0 
MCE + 0 

MANOVA 

2 SP 0 0 0 0 0 
MCE + 

MANOVA 
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TABLE 4. Power comparison of covariance eigenvalue (CE), 
test relative to covariance inversion (Cl) test. 

Record 
length 
(yrs) 

10 
20 

10 
20 

10 
20 

10 
20 

10 
20 

10 
20 

10 
20 

A (+) or (-) indicates that the CE test produced 
at least 25 more (+) or fewer (-) rejections than 
Cl of 80 percent power. A (0) indicates that Cl 
and CE differed by fewer than 25 rejections. Both 
normal (N) and lognormal (LN) errors were 
evaluated. Correlation structures indicated 
correspond to those listed in Table 1. 

Slope combinatons 
Carr. 
str. Test 1: 1 : 1 1:0:0 1:-1:0 1:1:-1 1·!.·0 • 2 • 

1 N + + + + + 
1 N + 0 0 0 0 

2 N + + + + + 
2 N + 0 

5 N + + + + + 
5 N + 0 0 0 

6 N + + + + + 
6 N + 0 0 0 + 

7 N + + + + + 
7 N 0 0 0 

8 N + + + + + 
8 N + 0 0 0 + 

5 LN + + + + + 
5 LN + 0 0 0 0 



- 46 -

LIST OF FIGURES 

FIGURE 1. Example power curves from 500 trials using 
normal, serially independent observations. 
Intervariable correlations are all 0.20. Sets 
(a) and (c) represent 10-year records, and sets 
(b) and Cd) represent 20-year records. Trend 
slopes of the four patterns indicated are in 
units per year. 

FIGURE 2. Example power curves from 500 trials using 
lognormal, serially independent observations. 
Intervariable correlations within a season are 
all 0.20. Sets (a) and (c) represent 10-year 
records, and sets (b) and (d) represent 20-year 
records. Trend slopes of the four patterns 
indicated are in units per year. 

FIGURE 3. Example power curves from 500 trials using normal 
errors with AR(l) serial dependence as follows: 
(a) 10-year series with rho = 0.00 and 
intervariable correlations = 0.20, (b) 20-year 
series with rho = 0.34 and intervariable 
correlations = 0.50, (c) and (d) 10-year series 
with rho = 0.20 and intervariable correlations = 
0.50. Trend slopes of the four patterns 
indicated are in units per year. 

FIGURE 4. Example power curves from 500 trials using both 
normal and lognormal serially independent errors. 
Tests assuming independence between seasons (Sp 
and MCI) are compared with tests accounting for 
between season correlation (CI and CE). Sets (a) 
and (b) represent 10- and 20-year series, 
respectively of lognormal observations with 
intervariable correlations = 0.20. Set (c) 
represents 10-year series of normal observations 
with intervariable correlations = 0.20. Set (d) 
represents 10-year series of normal observations 
with intervariable correlations = 0.50. Trend 
slopes of the four patterns indicated are in 
units per year. 
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Figure 3. 
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Figure 4. 
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