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Abstract

On Approximating Transitivity and Tractability of Graphs

In the general case, in a simple, undirected graph, the problems of finding the largest

clique, minimum colouring, maximum independent set and minimum vertex cover are NP-

hard. But, there exists some families of graphs, called perfect graphs, where these problems

become tractable. One particular class of perfect graphs are the the underlying undirected

graphs of transitive digraphs- called comparability graphs. We define a new parameter β

to approximate the intransitivity of a given graph. We also use β to give a measure of

complexity of finding the largest clique. As β gets worse, the complexity of finding the

largest clique quickly grows to exponential times. We also give approximation algorithms

that scale with β for all our NP-hard problems. The β measure of a graph can be computed

in O(mn), therefore, β can be considered a measure of how tractable these problems are in

a graph.
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CHAPTER 1

Introduction

Graph theory is said to have its origins with Leonhard Euler in the early 1700s with the

“The Seven Bridges of Konigsberg” problem. Since then, graph theory has developed into

a popular and highly useful branch of mathematics and computer science. Many seemingly

unrelated problems that come up in a variety of fields can be reduced to graphs and solved

using graph algorithms.

However, many problems of practical importance like k-colour were shown to be NP-

Complete, which is widely believed to be the same as proving computational intractability.

Many of these problems become polynomial-time solvable when restricted to certain graph

classes. Interval graphs and comparability graphs are two such graph classes and have a wide

variety of applications in the design of fast algorithms for problems that frequently come up

in many real-world applications like analysis of genetic structure, synchronization problems,

certain scheduling problems.

In 1960, Claude Berge defined the notion of the perfect graph and posited that there was

a deep underlying reason for the tractability of optimization problems on perfect graphs, and

not mere coincidence. These conjectures were later shown to be true and became theorems.

Since then many more graph classes have been shown to be perfect and tractable.

However, when a graph vary even slightly from perfection, it immediately become un-

tractable. A graph can be put into one of two broad buckets of perfect and non-perfect,

making optimization problems polynomial time solvable or NP-Complete respectively. This

behaviour is clearly undesirable since the graph may still have a certain exploitable structure
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to help compute the optimization problems. The main thrust of this work is to address this

sharp drop in tractability.

We choose comparability graphs (transitive DAGs) and incrementally relax the transi-

tivity constraint in a way such that the DAG falls in one of an infinite hierarchy of DAGs

ranging from transitive DAGs to an arbitrary DAG. We define a new parameter β to ap-

proximate the transitivity of a DAG and show that β is closely related to the complexity of

solving the maximum clique, minimum colouring, maximum independent set and minimum

clique cover problems.

1.1. Preliminaries

A graph G = (V,E) is an ordered pair, where V (G) is a non-empty finite set of vertices

and E(G) is a (possibly empty) set of directed edges, which are ordered pairs of vertices. An

edge e ∈ E(G) where e = {(u, v)|u, v ∈ V (G)}. The ordered pair (u, v) is a directed edge.

When this edge exists, we say that v is adjacent to u. The directed edge (u, v) is said to be

outgoing edge on u and incoming edge on v. Also, the shorthand V and E are used V (G)

and E(G) respectively, when G is understood. Both E and V are finite sets. We let n denote

|V |, and m denote |E|.

When (u, v) and (v, u) are both edges, we let uv = {(u, v), (v, u)} denote an undirected

edge. If, whenever (u, v) is an edge, (v, u) is an edge, the graph is an undirected graph.

For a graph G, all vertices adjacent to a vertex x in G is denoted by N(x), called the

open neighbourhood of x. The vertices adjacent to x are called the neighbours of x. The

vertex x is not included in this set. We can also define N [x], called the closed neighbourhood

of x, by including x along with all its neighbours.
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An undirected graph G is complete if every pair of distinct vertices shares an edge. The

underlying undirected graph of a directed graph G is obtained by adding an edge (v, u) for

every directed edge (u, v), if it is not already present.

A walk is a sequence ((v1, v2), (v2, v3), . . . , (vk−1, vk)) of edges, and we can denote it

(v1, v2, . . . , vk). A path is a walk in which no vertex appears twice, and a cycle is a path

(v1, v2, . . . , vk) followed by an edge from vk to v1. The length of a cycle or walk is the num-

ber of edges in it, k − 1 for a path, and k for a cycle. In an undirected graph, a cycle is

assumed to have at least three vertices, to exclude the cycle formed by the directed edges of

an undirected edge.

A directed acyclic graph (DAG) is a directed graph that has no cycles. There is a way to

order the vertices of the DAG such that for every direct edge (u, v), vertex u comes before

vertex v in the ordering. Such an ordering is called a topological ordering of the DAG. In

general, this is not a unique ordering. We can find a topological ordering in O(|V | + |E|)

time [1].

The complement of a graph G = (V,E) is a graph G = (V,E), where

E = {(u, v) ∈ V X V |u 6= v and (u, v) /∈ E}

An induced subgraph H, of a graph G is a graph obtained by using a subset S of the

vertices of V (G) and only choosing the edges from E(G) both of whose endpoints appear in

S.

A hereditary property of a graph G is a property which also holds for all its induced

subgraphs.

definition 1.1. A clique of an undirected graph G = (V,E) is a set of vertices that

induces a complete subgraph. The clique number of G denoted ω(G), is the size of a clique

of maximum size.

3



definition 1.2. The chromatic number of a graph G is the smallest number of colours

needed to assign a colour to each vertex, such that no two adjacent vertices share the same

colour. The smallest possible such number is denoted by χ(G).

For any graph G, ω(G) ≤ χ(G). This is because no two vertices of a clique can be

assigned the same colour. The equality is not always strict: For example, if G is an odd

cycle of size greater than three has a ω(G) = 2 and χ(G) = 3.

definition 1.3. An independent set of a graph G is a subset of the vertices such that no

two of them are adjacent. The size of a maximum independent set of G is called the stability

number of the graph G and is denoted by α(G).

definition 1.4. The clique cover number of G, denoted k(G), is the fewest number of

cliques the vertices of the graph G can be partitioned into. The clique cover number of a

graph is denoted by k(G).

Note that ω(G) = α(G) and χ(G) = k(G), since an independent set in G is a complete

graph in G and vice versa. The intersection of a maximum independent set with a clique

has at most one vertex. Therefore, α(G) ≤ k(G). Similarly, ω(G) ≤ χ(G).

By a clique, independent set, colouring or clique cover of a directed graph G, we mean a

clique, independent set, colouring or clique cover respectively of G’s underlying undirected

graph.
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1.2. NP-hard graph problems

A problem can be solved in polynomial time if there exists an O(nk) algorithm for it,

for some fixed k. Algorithms that do not run in polynomial time are impractical for all

but the smallest instances of a problem. While many problems in the fields of chemistry,

social sciences, computer science can be solved by graph-theoretic algorithms, there are some

problems for which no polynomial-time algorithm is known.

A decision problem is one where the solution is either “yes” or “no.” The class P of

decision problems are those that can be solved in polynomial time. The class NP of decision

problems are ones where a “yes” answer can be verified in polynomial time, possibly given

some supplementary information, known as a certificate, that may be difficult to find in

polynomial time. Supplementary information may not be necessary, so P ⊆ NP . An

example of a problem that is in NP but is not known to be in P is INDEPENDENT-SET,

which is the problem of determining whether a given graph G has an independent set of a

given size k. It is not known how to find such an independent set in polynomial time, but

when the answer is “yes,” a list of the vertices of the independent set of size k serves as a

certificate. No certificate is known for a “no” answer.

It remains unproven but is widely believed that P is a proper subset of NP . A decision

problem is NP-complete if every problem in NP reduces to it in polynomial time. Thus, a

polynomial-time algorithm for an NP-complete problem would mean that P = NP , which is

evidence that no polynomial-time algorithm exists for it, though the possibility that P = NP

has not been ruled out. INDEPENDENT-SET is an example of an NP-complete problem.

An optimization problem is the problem of finding a solution that maximizes (or min-

imizes) an objective function from a set of all possible solutions. A problem is NP-hard

if a polynomial-time solution would imply that P = NP . An NP-hard problem need not
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be NP-complete, since it is not required to be a decision problem. An example of an NP-

hard problem is the optimization problem of finding a maximum independent set in a given

graph; if a polynomial algorithm existed for it, it could be used to solve INDEPENDENT-

SET, which would imply P = NP . Problems in P are called tractable or easy problems,

and NP -hard problems are considered intractable.

An approximation algorithm for an optimization problem is one that finds a solution

such that the objective function is within a certain ratio of the optimum. Many intractable

problems have polynomial-time approximation algorithms. For instance, finding a minimum-

length tour of a set of points in a plane is NP-hard, but it is possible to get within a factor

of 1.5 of the optimum length in polynomial time.

It is NP-hard to compute α(G), ω(G), χ(G), or k(G) for an arbitrary graph G. These

problems were among 21 problems shown to be NP-hard by Richard Karp in his famous

1972 paper: “Reducibility Among Combinatorial Problems”[2]. Since then, thousands of

optimization problems that have great industrial interest have been shown to be NP-hard.

In addition, these problems are not known to have good approximation bounds[3]. The

best known approximation bound for ω(G) is O(n(loglog n)2/log3n)[4], α(G) is (∆ + 2)/3

where ∆ is the maximum number of edges incident to any vertex[5] and χ(G) is

O(n(logn)3(loglog n)2)[6].

In this work, we study subclasses of graphs on which theses problems are tractable, and

ones for which the problems have good approximation bounds.
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CHAPTER 2

Graphs Classes

2.1. Interval Graphs

An interval graph G is obtained to model intersections among a set of of intervals. This

is done by creating a node for each interval and creating an edge between two nodes if and

only if their corresponding intervals intersect.

Figure 2.1. An interval graph and its corresponding interval model

Interval graphs are a hereditary class of graphs, which is seen as follows. Let G be an

interval graph and G′ be an induced subgraph of G. Since G is an interval graph, there

exists an interval model for it; removing intervals corresponding to vertices that are not in

G′ gives an interval model of G′, so G′ is also an interval graph.

A chord on a cycle C is an edge not on C but whose endpoints are both on C. A chordless

cycle is a cycle of length greater than three that has no chord. In other words, it is an induced

cycle.

theorem 2.1. An interval graph cannot have a chordless cycle.

Proof. LetG be an interval graph, and suppose it has a chordless cycle C = (v1, v2, . . . , vk).

Let R be an interval model of G, and suppose without loss of generality that v1 is the vertex
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Figure 2.2. Interval graphs cannot contain Ck for k > 3

of C representing interval [r1, r2], whose right endpoint r2 is leftmost in R. Since C has non-

adjacent pairs, the vertex vj with interval [r3, r4] whose left endpoint is rightmost. Since C is

not a clique, r2 < r3. The path (v1, v2, . . . , vj) corresponds to a set of intervals whose union

contains [r2, r3]. Similarly for the path (v1, vk, vk−1, . . . , vj). Let x be a point in (r2, r3). An

interval from the first path intersects an interval from the second path at x, implying that

C has a chord, a contradiction.

Now, by Lemma 2.1, any induced subgraph of an interval graph is also an interval graph.

Therefore, if we select vertices which induce a cycle of length greater than 3, that graph

cannot be an interval graph. �

2.2. Chordal Graphs

definition 2.1. A graph G is chordal if and only if every induced cycle of length greater

than 3 has a chord edge.

Every induced subgraph of a chordal graph is also chordal, since a graph on a subset of

the vertices of G cannot have a chord. Therefore, graph chordality is a hereditary property.

By Theorem 2.1, all interval graphs are chordal. However, the converse is not true,

i.e., not all chordal graphs are interval graphs. This can be seen from figure 2.3. Suppose,

without loss of generality, interval a is placed to the left of interval e since they do not

8



Figure 2.3. This tree is not an interval graph despite being chordal

intersect. Now, there is only one way to place the intervals b, c and d obeying the interval

graph. Now, interval f must be placed such that it intersects c. There is no way for interval

g to be placed such that it intersects f but not c. The graph is chordal, but it is not an

interval graph.

definition 2.2. A Simplicial Vertex of a graph G is a vertex v, such that N [v] induces

a clique.

definition 2.3. A perfect elimination ordering of a graph G is an ordering of its vertices

σ = (v1, v2, ..., vn), such that the each vi is simplicial in a subgraph induced by vi, vi+1, ..., vn.

In the rest of this section we prove the following theorem:

theorem 2.2. A graph G is chordal if and only if it has a perfect elimination ordering.

lemma 2.1. If a graph has a perfect elimination ordering, then it is chordal.

Proof. Assume a graph G has a chordless cycle C = (v1, v2, . . . , vk) and a perfect elim-

ination ordering. Without loss of generality, v1 is first in the perfect elimination ordering.

Then v2 and vk are neighbours of v1 to its right, so they are adjacent to each other. The

edge between them is a chord of C, a contradiction. �
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To finish the proof of Theorem 2.2, it remains to show the converse of this, which is that

if G is chordal, it has a perfect elimination ordering.

definition 2.4. A (a, b)-separator S of a graph G is a subset of the vertices of G, such

that removal of S separates a and b into two separate connected components.

Clearly, such a separator always exists for any two non-adjacent vertices a, b. For example,

set V - {a, b} is such a separator. A minimal a-b separator S is a separator such that no

subset of S is also an a-b separator.

lemma 2.2. In a chordal graph, every a− b separator is a clique.

Proof. Let S be a minimal separator in a chordal graph, and let x, y ∈ S be arbitrary

distinct vertices of S. Since S is a minimum separator, both x and y must have an edge to a

vertex in A and another vertex in B. Therefore, there exists a shortest path PA x to y whose

internal vertices are in A. Similarly, let PB be a shortest path whose internal vertices are in

B. Together, A and B define a cycle of size at least 4. Let cd be a chord, which must exist,

since G is chordal. It cannot be the case that c ∈ A and d ∈ B, since S is a separator. It

cannot be the case that one or both of c and d are internal to PA or PB, because they would

result in shorter paths meeting their definitions. Thus, cd = xy, hence x and y are adjacent.

Since x and y are arbitrary elements of S, every pair of elements of S is adjacent. �

lemma 2.3. Any chordal graph G has a simplicial vertex. Moreover, if G is not a complete

graph, it has two non-adjacent simplicial vertices.

Proof. Because a subgraph induced from a chordal graph is also chordal, this result can

be proved using recursion. Begin by showing the base cases.

10



If G is a clique, then any vertex is simplicial and we are done.

So assume G is not complete. Therefore, there must be two vertices, say a, b, that are

non-adjacent.

Let S be the minimal (a, b)-separator. Now, by definition, graph G has at least two

connected components: one containing a(denoted A), the other containing b(denoted B).

It is sufficient to show that both A and B contains a simplicial vertex to prove the

theorem. Because A and B are symmetric, we can focus on only one case and the other is

proved by symmetry. For A, we have two cases:

1) If A∪S induced a complete graph, a is clearly simplicial.

2) If A∪S is not complete, we recurse on A∪S. This is a strictly smaller vertex set than

the original because b cannot be in it, so the recursion ends. Let this yield two non-adjacent

simplicial vertices (x, y)

Now, if either of x(or y) is in A, then the neighbourhood of x(or y) is in the graph induced

by A ∪ S, therefore x is also simplicial in G.

By Lemma 2.2, S has to be a clique. Therefore, both x and y cannot be in S and we

have found a simplicial vertex. �

lemma 2.4. If a graph is chordal, it has a perfect elimination ordering.

Let G be a chordal graph. Then by Lemma 2.3, we can select a simplicial vertex vi which

goes first in a possible perfect elimination ordering. Since the graph obtained by deleting

vertex vi is also chordal, we invoke lemma 2.3 again, to keep finding simplicial vertices which

results in a perfect elimination ordering.

Theorem 2.2 now follows from Lemma 2.1 and Lemma 2.4
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Figure 2.4. Chordal graphs have simplicial vertices

2.3. Algorithms on chordal graphs

In 1976, Rose, Lueker and Tarjan[7] gave a linear-time algorithm to find the perfect

elimination ordering of a graph G if it is chordal. However, if G is not chordal, the algorithm

returns an arbitrary ordering of the vertices. Given an alleged perfect elimination ordering

σ for G, it remains to check if it is indeed a perfect elimination ordering.

Given an ordering of the vertices σ, let Nσ(v) be the set of all vertices adjacent to v that

are to the right of v in σ Also, let Nσ[v] be the set obtained by adding v to Nσ(v).

To test if σ is a perfect elimination ordering, consider each vertex in the presented order:

σ = (u1, u2, ...un). For each vertex ui, verify that Nσ[ui] is a clique in O(n2) time. This takes

O(n3) time overall.

To get a linear bound, process each vertex in left to right order of σ. When ui is reached,

let uj be the earliest vertex in Nσ(ui). Check only that Nσ(ui) ⊆ Nσ[uj]. If this is not the

case, there must exist some vertex uk in Nσ(ui), but not in Nσ[uj]. So, Nσ[ui] is not a clique

and the algorithm returns “false”. The algorithm returns “true” if this condition holds for

all ui in σ, which is seen as follows.
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Suppose σ is not a perfect elimination ordering and the algorithm returns “true”. With-

out loss of generality, let ui be the rightmost vertex in σ for which Nσ[ui] is not complete.

Now, let uj be the first vertex in Nσ(ui). Since, the algorithm did not return “false” at this

iteration, uj has an edge to all vertices in Nσ[ui]. Also, since ui is the rightmost vertex in σ

for which Nσ[u] is not complete, Nσ[uj] must be complete. These two condition force Nσ[ui]

to be complete. This contradicts the assumption that Nσ[ui] is not complete. Therefore σ

must be a perfect elimination ordering.

This algorithm looks at all the edges incident on each vertex v once and thus runs in

O(n+m) time.

Using these results we can solve our optimization problems on chordal graphs.

theorem 2.3. For a chordal graph G, a minimum colouring and a maximum clique can

be computed in linear time. Also, ω(G) = χ(G).

Proof. We use non-negative integers to colour the vertices. Given a perfect elimination

ordering σ = (u1, u2, ... un) for a graph G, process each vertex in the right-to-left order of σ.

We colour each vertex ui with the lowest colour not used in Nσ(ui).

This is a proper colouring because no vertex ui gets the same colour as a neighbour to

its right in σ. Suppose the algorithm uses k colours (1, 2, ...k) to colour the graph G, and

let ui be the vertex that gets the colour k. The members of Nσ(ui) must be coloured with

1, 2, ...(k − 1). This gives us a colouring of size k. Since this is a proper colouring, any

minimum colouring must use at most k colours. Therefore, χ(G) ≤ k Also, Nσ[ui] is a clique

of size k, so a maximum clique must have a size of at least k. Therefore, ω(G) ≥ k But,

we know that ω(G) ≤ χ(G) for any graph G. Therefore, ω(G) = χ(G) = k, and Nσ[ui] is a

maximum clique. �
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theorem 2.4. For a chordal graphs G, a maximum independent set and a minimum

clique cover can be computed in linear time. Also, α(G) = k(G)

Proof. Given a perfect elimination ordering σ = (u1, ..un) of a graph G, process each

vertex in order. When vertex ui is reached add it to the set S, create a new set Ki and

add Nσ(ui) to Ki. Delete the vertices in Ki from G and recurse on the resultant induced

subgraph. Let (K1, K2, ...Kh) be the cliques returned by the algorithm.

Clearly, S is an independent set, because no vertex is selected for S if it is a neighbour of

a vertex that is selected earlier. We can see that it is a maximum one as follows: Let |S| = h

. Now, any maximum independent set must have at least h vertices. Therefore, α(G) ≥ h.

Also, all the cliques K1 ∪ ..Kh form a clique cover. Since this is a valid clique cover, any

minimum clique cover must contain at most h clique. Therefore, k(G) ≤ h

But for any arbitrary graph, α(G) ≤ k(G).

Therefore, α(G) = k(G) = h �

2.4. Comparability Graphs

definition 2.5. A strict partial order P = (S,≺) is a binary relation “≺” over a set S,

such that all a, b, c ∈ S, satisfy:

1) a 6≺ a for all a ∈ S

2) if a ≺ b then b 6≺ a (anti-symmetry)

3) if a ≺ b and b ≺ c, then a ≺ c (transitivity)

We can model a partial order with a graph G by representing each element in S as a

vertex in G and creating a directed edge from a to b if a ≺ b.
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Due to the anti-symmetry and transitivity properties, the graph is acyclic, and due to

the transitivity property, the graph is transitive, that is, (a, c) is an edge whenever (a, b) and

(b, c) are edges in G. It is therefore a DAG.

definition 2.6. We say that u and v are comparable in a partial order P if u ≺ v or

v ≺ u. A graph G = (V,E) is a comparability graph if there exists a partial order P ′ =

(V,≺) such that uv ∈ E if and only if u and v are comparable in P ′.

A transitive orientation of an undirected graph G is an assignment of directions to the

edges of a graph such that the resulting graph is transitive. Clearly, a graph G is a compa-

rability graph if and only if there exists a transitive orientation of G.

A graph representing a partial order can be converted to a comparability graph by ignor-

ing the edge direction, and a comparability graph can be converted to a graph representing

a partial order by assigning it a transitive orientation.

lemma 2.5. The complement of an interval graph is a comparability graph.

Proof. Consider an interval graph G and its corresponding interval model R. Let G

be G’s complement. For each pair ab ∈ E(G), let (a, b) be the orientation if a’s interval

precedes b’s, and (b, a) be the orientation of b’s interval precedes a’s. Since ab is an edge

of G, their intervals do not intersect, so this orientation is uniquely defined by R. It is a

transitive orientation because if (a, b) and (b, c) are edges of the orientation, then a’s interval

precedes b’s, which precedes c, which means that a’s interval does not intersect c’s and that

it precedes it. �

The complement of an interval graph is a comparability graph, but the complement of a

comparability graph is not always an interval graph. As an example, a cycle with size four

is a comparability graph but not an interval graph.
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2.5. Algorithms on Partial Orders

The underlying undirected graph G′ = (V,E ′) of a directed graph G = (V,E) is the graph

obtained by replacing each directed edge in E by a corresponding undirected edge in E ′. In

other words, we ignore the edge directions. When refering to clique, independent set or

colouring of a digraph, we mean the the clique, independent set or colouring respectively of

the underlying undirected graph of the digraph.

We will use the following lemmas to solve our optimization problems on partial orders:

lemma 2.6. The subgraph of a DAG G induced by a clique of size k has a directed path

of length (k − 1).

Proof. Let (v1, v2, ...vk) be the vertices of a clique of size k. Now, direct all edges from vi

to vj where i < j. Then there is a path of length (k − 1) from v1 to vk which is built up by

taking the edge from v1 to v2, v2 to v3 and so on upto vk. �

The converse of Lemma 2.6 applies if G is transitive:

lemma 2.7. If G is transitive, a directed path induces a clique.

Proof. Let P be a directed path in G. The last vertex in P must have incoming trasitive

edges from all vertices that precede it in P . Iterating this argument, the directed path must

induce a clique. �

lemma 2.8. In a DAG G, it takes linear time to find the longest directed path in G.

Proof. We begin by dividing the graph into layers using algorithm 1. This is done by

assigning a weight of negative one to each edge and relaxing all edges as described in step

six of algorithm 1. Vertices returned with weight i are assigned to layer i. This algorithm
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Algorithm 1 Computing graph layers

1: procedure Graph –Layers

2: Assign a weight of -1 to all edges.
3: Assign a weight of 0 to each vertex.
4: for Each vertex u in topological order of G do

5: for Each neighbour v of u do

6: wt(v) < min(wt(v), wt(u)− 1)
7: end for

8: end for

9: end procedure

Figure 2.5. Stretching out the graph divides it into layers

also gives us a set of directed paths beginning at vertices without any incoming edges (called

sources), and ending at vertices without any outgoing edges(called sinks). Note that the

number of layers is one more than the longest path obtained in the graph.

Since we relax in topological order, this algorithm runs in O(n+m) time.

theorem 2.5. For a transitive DAG G, a maximum clique and a minimum colouring

can be found in linear time. Also, ω(G) = χ(G)

Proof. It follows from Lemma 2.8 that it takes linear time to compute the longest path

in G. Let k be the length of the longest path of G and (k + 1) the number of layers.

We assign the colour i to all vertices which belong to the layer i. This is a valid colouring

because no edges can go between two vertices on the same layer. Since this is a valid colouring

of size k+1, any minimum colouring must be of size at most k+1. Therefore, χ(G) ≤ k+1.

17



Figure 2.6. A maximum indepedent set of six is marked but the layers only
have four vertices.

From Lemma 2.7, the path of length k induces a clique of size k + 1. Therefore, the

maximum clique must be of size at least k + 1, that is ω(G) ≥ k + 1 But we know that

ω(G) ≤ χ(G) for any graph G. Therefore, ω(G) = χ(G) = k + 1. �

Unfortunately, a similar layering approach does not suffice to produce a maximum inde-

pendent set. This can be seen with figure 2.6, which has a maximum independent set of six,

but the layers have four nodes each.

Figure 2.6 is also an example of a bipartite graph. A bipartite graph G = (V,E) is a

graph whose vertices can be partitioned into two disjoint subsets V = V1 ∪ V2 such that

every edge e ∈ E is of the form e = (a, b), where a ∈ V1 and b ∈ V2. All bipartite graphs are

comparability graphs because a transitive orientation can be trivially found by orienting all

edges from the first to the second partition class.

A matching M in a graph G is a set of edges such that no two edges share a common

vertex. It takes O(mn) time to find a maximum matching in a bipartite graph[1].

18



A vertex cover of a graph G is a set of vertices S such that all edges of G are incident to

at least one vertex in S. Note that it is NP-Complete to find a minimum vertex cover of a

graph in general, but it takes O(n3) time to find one in a bipartite graph using a max flow

algorithm [1].

Also, Konig[8] showed that in a bipartite graph, the size of a maximum matching is equal

to the size of a minimum vertex cover.

We leverage these properties of bipartite graphs and the following lemmas to arrive at a

polynomial time algorithm for maximum independent set for a comparability graph.

An antichain of a partial order P is a set of mutually incomparable elements; while a

chain is a set of mutually comparable ones.

lemma 2.9. In a finite partial order P ′, the size of a maximum antichain is equal to the

minimum number of chains needed to cover all elements of the partial order[9].

A chain in a partial order is P is a clique in its underlying comparability graph G.

Therfore, partitioning a partial order into chains is equivalent to finding a clique cover.

This is called the chain partition of the partial order. Similarly, an antichain in P is an

independent set in G.

Now, lemma 2.9 can be restated as α(G) = k(G) for a comparability graph G.

lemma 2.10. It takes polynomial time to find a minimum chain partition of a partial

order P = (S,≺).

Proof. We begin by converting P into a bipartite graph G = (V,E) as follows. For each

s ∈ S, create two vertices s′, s′′ ∈ V . Now, create an edge (u′, v′′) ∈ E whenever u ≺ v in P.

A matching M in G corresponds to a chain partition of P into |S| − |M | chains. This

is seen as follows: begin by creating |S| one element chains. For each edge (u′, v′′) ∈ M ,
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combine the chains ending with u and beginning with v, thereby reducing the number of

chains to |S| − |M | by the time the algorithm is done.

Every vertex in G is matched to a unique predecessor in a chain, except the first vertex

of the chain. Therefore, the number of chains is equal to the number of unmatched vertices.

Since M is a maximum matching, |S| − |M | must be a minimum chain partition.

Finding the maximum matching takes O(mn) time and the subsequent contractions take

at most O(m) time. �

theorem 2.6. For a transitive DAG G, a maximum independent set can be found in

polynomial time. Also, α(G) = k(G).

Proof. This follows from lemma 2.9 and 2.10 as follows:

Let P = (S,≺) be a partial order and G be its underlying comparability graph. We

begin by constructing a bipartite graph G′ from P and computing the chain partition of P

as described in lemma 2.10.

Now, all that is left is to pick one element from each chain in the chain partition to find

a maximum independent set.

Let U be the minimum vertex cover of the bipartite graph G′. Let AP = {s ∈ S : s′, s′′ /∈

U}. We claim that Ap is then a maximum independent set. This is because there cannot be

an edge between any two vertices in AP otherwise we have found an edge not covered by U ,

but since U is a vertex cover this results in a contradiction.

Due the transitivity relation in P , at most one vertex from each chain can be in Ap.

Also, no two vertices from the same chain can be missing from U , otherwise the transitive

edge between the two vertices will not be covered by U , a contradiction. Therefore, |Ap| =

|S| − |U |. Since the vertex cover is a minimum one, a larger independent set is not possible.
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Also, from Lemma 2.10, k(G) = |S| − |M |, where M is the maximum matching. But we

know that for a bipartite graph |M | = |U |. Therefore, α(G) = k(G) = |S| − |M |.

Clearly, it takes O(n3) to find the maximum independent set, and O(mn) time to find

the minimum clique cover for a partial order. �

2.6. Perfect Graphs

Perfect graphs serve to unify these graph classes and provide polynomial time algorithms

for our NP-Complete problems for these graphs. For the graph classes we have examined,

ω(G) = χ(G) for any graph G in the class, and since the classes are heredity, ω(H) = χ(H)

for every induced subgraph H of G.

definition 2.7. A graph G is perfect if for every induced subgraph, H, ω(H) = χ(H).

By Theorems 2.3 and 2.5 and the fact that interval, chordal and comparability graphs are

hereditary, they are perfect. By Theorems 2.4 and 2.6 the complements of these graphs are

also perfect. In fact, the perfect graph conjecture was that the complement of every perfect

graph was perfect; no counterexample was known, but no reason why it should always be

true had been discovered for some time. In 1972 Fulkerson had been working intensively on

trying to prove it for months when he received word that an undergraduate, Laslo Lovasz,

had proved it. Spurred on by this knowledge, he found his own proof the next day[10]. The

perfect graph conjecture had become the perfect graph theorem:

theorem 2.7. An undirected graph is perfect if and only if its complement is perfect.

Every hereditary class of graphs is known to have a characterization in terms of the set

of those graphs that are not in the class, but whose proper induced subgraphs are all in the

class. These are known as minimal obstructions for the class, since a graph is in the class
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if and only if it does not have one of the them as an induced subgraph. For example, the

set of minimal obstructions for the chordal graphs are the cycles of length greater than or

equal to four. The minimal obstructions for interval graphs and comparability graphs have

also been characterized.

An obvious question was, therefore, characterizing the perfect graphs in terms of their

minimal obstructions. Berge conjectured in 1961 that they are the odd-length cycles of

length greater than or equal to five, and their complements. [11]. This became known as the

strong perfect graph conjecture.

The truth of the strong perfect graph conjecture remained one of the most important

open problems in graph theory until it was finally proven in 2002 by Chudnowsky et. al.:

theorem 2.8. [12] A graph G is a perfect graph if and only if neither the graph nor its

complement has an induced chordless cycle of odd length.

This is now known as the strong perfect graph theorem. Many results about subclasses of

perfect graphs that had been proved in the intervening decades are trivial consequences of

it. For example, the fact that chordal graphs are perfect is immediate from their definition

as having no induced cycle of size greater than or equal to four, since the presence of one of

the obstructions for perfect graphs implies such a cycle.

2.7. k-extendible orderings

For an ordering π = (v1, v2, . . . , vn) of vertices of a graph, then for two vertices u = vi

and w = vj, we will let u <π w denote that i < j, that is, that u comes before w in the

ordering. When π is understood, we may write this as u < w.

In [13], k-clique extendible orderings was introduced as follows:
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definition 2.8. [13] An ordering π = (v1, v2, . . . , vn) of the vertices of an undirected

graph is k-clique extendible if, for every k-clique {x1, x2, . . . , xk}, where x1 <π x2 <π

. . . , xk−1 <π xk and u <π x1 such that {x1, x2, . . . , xk−1} are all neighbors of u, then xk

is also a neighbor of u.

The authors of [13] applied k-clique extendibility to orderings of certain classes of undi-

rected graphs such as visibility graphs and used a dynamic programming algorithm to find

the maximum clique in a visibility graph in O(n3) time. Generalizing to k we get the fol-

lowing theorem:

theorem 2.9. Given a k-clique extendible ordering of an undirected graph, a maximum

clique can be found in O(knk) time.

Proof. Let π = (v1, v2, . . . , vk) be a k-clique extendible ordering of a graph G. We begin

by computing all cliques of size (k−1) in G. We then reverse the sequences of each clique by

arranging them in right-to-left order of π, and make a list L of all the (k− 1)-cliques, sorted

in lexicographic order of their reverse sequences. For a (k − 1)-clique K, let M(K) denote

the size of a maximum clique whose rightmost (k − 1) members are K. Next we create a

table and insert each (k − 1)-clique K and M(K) in it in the order L.

We now process each vertex in the left-to-right order of π. Assume by induction on i,

when vi is reached, M(K ′) is known for each (k − 1)-clique K ′ whose rightmost member

precedes vi. The algorithm must find M(K) for each (k − 1)-clique K whose rightmost

member is vi to make the induction go through.

Let (vi, wk−1, wk−2 . . . , w2) be the vertices of K, and let (wk−1, wk−2, . . . , w2, w1) be a

clique K ′ such that vi is adjacent to w1. Then the members of M(K ′) and vi is a clique by

definition of k-extendibility. Further, M(K ′)+1 is a lower bound on M(K). The table entry
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for K is then updated with largest of these M(K ′) + 1, and we install a back pointer from

K to K ′ in the table. If there is no such clique K ′, M(K) is trivially (k − 1), and the back

pointer in null.

After all vertices have been processed, we scan through the table to find the largest value

of M(K). This is the size of the maximum clique in G. Let this be maximum for some clique

K. We recover the vertices in the maximum clique as follows:

If the back pointer associated with K is null, the maximum clique is just K. Otherwise,

the vertices of K are the (k − 1) rightmost elements of the maximum clique, and we follow

the backpointer to some clique K ′. K/K ′ and removing the leftmost vertex from K gives

us a single vertex which goes to the left of the elements of the maximum clique recovered so

far. Now, we recurse on K ′ to recover all the elements of the maximum clique.

This algorithm runs in polynomial time as follows. It takes O(k2nk−1) time to find all

the (k−1)-cliques of G. For the induction step at vi, all the cliques whose rightmost vertices

are vi are consecutive in the table. Also, removing vi from this clique gives a clique of size

(k− 2), say k′. All the (k− 1)-cliques with k′ as its rightmost vertices are consecutive in the

table. Let (k1, k2, . . . kj) be all these (k− 2) cliques. All this can be done in by scanning the

table in O(knk−1) time.

It takes O(n) time to find a subset of the (k − 2)-cliques whose leftmost vertices are

adjacent to vi. Therefore, over all O(nk−1) cliques, it takes O(nk) time to complete the

inductive step.

Since, the maximum size of the table is nk−1 it takes O(nk−1) time to find the clique K

that maximizes M(K). It takes O(n) to list the elements of the maximum clique.

Therefore, overall it takes O(k2nk−1) = O(knk) time to find a maximum clique. �
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The question of finding the minimum k such that a ordering is k-clique extendible in

polynomial time was left open by the authors of [13].
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CHAPTER 3

Approximating transitivity in DAGs

As we have seen, the otherwise NP-hard problems of finding a maximum clique, min-

imum coloring, maximum independent set and minimum clique cover are polynomial for

the underlying graph of a transitive DAG. They are NP-hard for the underlying graphs of

arbitrary DAGs, which is seen as follows. Given an arbitrary graph G, we can find a DAG D

that has G as its underlying graph by assigning an arbitrary ordering (v1, v2, . . . , vn) of the

vertices of G and orienting the edges from left to right in the ordering, that is, ordering each

edge vivj as (vi, vj) if i < j. A polynomial-time algorithm for solving any of the optimization

problems on a DAG would give one for an arbitrary graph G, implying P = NP.

In this work, we derive a measure β of the intransitivity of a DAG that measures the

degree to which it departs from a transitive DAG, and show that this measure is closely tied

to the complexity of solving the four optimization problems on its underlying undirected

graph, using the DAG. The value of β is at least 1 and at most n− 1. It is equal to 1 if the

DAG is transitive. Finding a maximum clique takes O(β2nβ+1), time, which is polynomial

for fixed β. For the other optimization problems, we give polynomial-time approximation

algorithms with approximation bounds of ⌈β + 1⌉ or ⌈(β + 1)/2⌉.

Thus, the new measure imposes a nested hierarchy of DAGs, each more computation-

ally complex with respect to the optimization problems than its predecessor, spanning the

extreme cases of a transitive DAG and an arbitrary DAG.

This work was done jointly with Mmanu Chaturvedi and Xu Zhisheng.
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3.1. A measure of the degree of departure of a DAG from transitivity

A graph is transitive if and only if for every directed path P , there is a directed edge

from the first to the last vertex of P . Reframing transitivity in this way gives an approach to

incrementally relaxing the constraint as follows, to obtain a measure of the degree to which

an arbitrary DAG departs from transitivity.

definition 3.1. For a DAG G = (V,E), let β(G) be the length of the longest directed

path P of G such that there is no directed edge from the first to the last vertex of P . If there

is no such path, that is, if G is transitive, let β(G) = 1.

If G is a DAG that is not transitive, then β(G) ≥ 2, so a DAG is transitive if and only

if β(G) = 1.

theorem 3.1. It takes O(nm) time to compute β(G) for a DAG G.

Proof. We can compute β(G) for a DAG G by exploiting the topological sort and running

a series of breadth first searches (BFS)[1] on the vertices of G. Running a BFS from a vertex

u gives us the shortest path to all the other vertices reachable from u.

Let (u1, u2, . . . , un) be a topological sort of G. We proceed to run a BFS from each vertex

in topological order. Running a BFS from ui gives us the furthest distance vertex reachable

from ui, βi(G). The vertex that maximizes this value over all ui gives us the desired value

for β(G).

It takes O(n + m) time to topologically sort the vertices of G. BFS and subsequent

calculations take O(n+m) time for each vertex and therefore O(nm) total over n vertices. �

Note that β(G) is a hereditary property for a DAG G. This defines a hierarchy of graph

classes with transitive DAGs at the base, and increasingly complex graph classes above it.

We now show that β(G) is a measure of intractability of the optimization problems on G.
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In [13] k-extendible orderings are defined for undirected graphs. Borrowing from this

idea, we note that a DAG is transitive if and only if any given topological sort is two-clique

extendible.

theorem 3.2. For a DAG G and given k, either all topological sorts of G are k-clique

extendible or none are.

Proof. Suppose some topological sort π = (v1, v2, . . . , vk) of G is k-clique extendible.

Then for each k-clique {x1, x2, . . . , xk}, where x1 <π x2 <π . . . , xk−1 <π xk and each u <π x1

such that x1 is a neighbor of u, then for any topological sort τ , x1 <τ x2 <τ . . . , xk−1 <τ xk

and u <π x1. The conditions that must be met for k-extendibility of π and τ are the

same. �

Thus, k-clique extendibility of a topological sort is a property of a DAG, independently

of the choice of any particular topological sort. The question of whether a DAG is k-clique

extendible does not need to reference a topological sort, and we define a DAG to be k-clique

extendible if its topological sorts are such.

Now, since k-clique extendibility is a property of a DAG and not a particular topological

sort we claim the following theorem:

theorem 3.3. A graph with β(G) = k is (k + 1)-clique extendible.

Proof. Let a DAG G have a β(G) = k. Let vertex vi precede a clique K of size k and vj

be adjacent to all members of K and occur after K.

From lemma 2.6, the longest path from vi to vj is of length (k+1) as follow: vi and clique

K form a clique of size k+1 and has a longest path of size k from vi to the rightmost vertex

of K. Again, K forms a clique with vj, therefore there must be an edge from the rightmost
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Figure 3.1. A graph with β(G) = k is also (k+1)-clique extendible.

vertex in K to vj. Therefore, there is a path of length k+ 1 from vi to vj. But by definition

of β(G), there must exist an edge from vi to vj. Therefore, the graph is (k + 1)-clique

extendible. �

However, a graph G, with value β(G) = k is at least (k + 1)-clique extendible, but this

is not a tight bound. This is an approximation of the k for which the graph is (k+1) clique

extendible. This can be seen with a simple directed path, say P . P is vacuously 3-clique

extendible, but its β value varies with the length of the path.

3.2. Algorithms with β measure

Now that we have a way to quickly approximate the departure from transitivity of a

graph G, we focus on solving our optimization problems on G. By a clique, independent set,

coloring, and clique cover of a DAG, we mean a clique, independent set, coloring, and clique

cover of the underlying undirected graph. The problem of finding the maximum clique is

solvable in time polynomial in β(G), but the other problems prove more difficult and remain

NP-Complete. We give fast approximation algorithms for these NP-Complete problems.
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3.2.1. Maximum Clique.

Corollary 1. It take O((k + 1)nk+1) time to find the maximum clique of a DAG G

with β(G) = k.

Proof. Immediate from Theorem 3.3 and Theorem 2.9. �

theorem 3.4. There is a linear-time (β(G) + 1)-approximation algorithm for maximum

clique of a DAG.

Proof. By Lemma 2.8 it takes linear time to find a longest directed path in a DAG.

Let l be the number of vertices in a longest directed path P . By Lemma 2.6, l is an upper

bound on the size of a maximum clique. Let X be the set of vertices obtained by taking

every (k+1)th vertex of P , starting with the first. Since β(G) = k, X is a clique, and it has

⌈l/(k + 1)⌉ vertices. �

3.2.2. Maximum Independent Set.

theorem 3.5. It is NP-complete to decide if a DAG G has an independent set of size k

even for a graph with β(G) = 2.

We know that it is NP-complete to decide if there exists an independent set of size k in

a tripartite graph(3-Colourable Graph with a 3-colouing given). Let a tripartite graph G′

be coloured with (C1, C2, C3). Now, direct all edges from a lower colour to a higher colour.

This gives a DAG, with the longest path length of two. Therefore, β(G′) of this graph is no

worse than two. Now, given an algorithm to decide if there exists an independent set of size

k in a DAG G with β(G) = 2, we can decide if there is an independent set of size k in G′.

Also, given a possible independent set of size k, we can verify in polynomial time if this

is a valid solution. Therefore, the problem is NP-Complete. �
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However, it is possible to get a polynomial time approximation algorithm for independent

set. We first define the following:

The path cover of a graph G = (V,E) is a set of paths such that every vertex v ∈ V

belongs to exactly one path. In general, it is NP-Complete to find a minimum path cover for

G. However, it takes polynomial time to compute the minimum path cover if G is a DAG

using the max flow algorithm[1].

The transitive closure of a DAG G = (V,E) is another DAG G′ = (V,E ′) such that

(i, j) ∈ E ′ if and only if there is a path from i to j in G. The transitive closure essentially

fills in all the missing transitive edges of G. Therefore, G′ is a partial order.

theorem 3.6. For a DAG G with β(G) = k, there is a polynomial time ⌈(k + 1)/2⌉-

approximation algorithm for maximum independent set.

Proof. We proceed by first finding the transitive closure G′ of the DAG G. We can then

find an independent set for G′ using the algorithm for finding the maximum independent set

for partial order graphs. This takes polynomial time.

If X is a maximum independent set of the DAG G, and Y is the independent set for G′

returned by our algorithm, we claim that the number of elements in X is at most ⌈(k+1)/2⌉

times the number of elements of Y .

To see this, we first divide our DAG into a minimum path cover (P1, P2, ..Pk).

Now, consider each of these path individually. Because the β(G) of the entire graph is

equal to k, the β of the subgraphs induced by the vertices of each of these paths must be

less than or equal to k. The number of vertices that can be added to X from each path Pi

is at most ⌈(k + 1)/2⌉, when every other vertex can be added to the independent set. If we

choose only one vertex from Pi to add to Y , |Y | is no worse than ⌈(k + 1)/2⌉ times |X|.
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Similarly, we pick one vertex from each of these paths and arrive at a ⌈(k + 1)/2⌉ ap-

proximation ratio for the independent set. �

3.2.3. Minimum Clique Cover.

theorem 3.7. For a DAG G with β(G) = k, there is a linear time (k+1)-approximation

algorithm for minimum clique covering.

Proof. Minimum Clique cover follows from the partitioning of the graph into its minimum

path cover and the approximation algorithm for maximum clique. We begin by dividing the

G into the minimum path cover (P1, P2, ..Pk). On each of these paths Pi, it follows from The-

orem 3.4 (v0, vk+1, v2k+2...) vertices form a clique. Therefore, on each path (v0, vk+1, v2k+2...),

(v1, vk+2, v2k+3...), (v2, vk+3, v2k+4...) .. are all cliques, and over all paths form a clique cover

of the DAG G.

Let X be the the set of minimum clique cover for the DAG G, and Y be the clique cover

returned by our algorithm. In the worst case, the entire path is a clique and the set of paths

is a minimum clique cover. The set Y has a maximum of (k+1) cliques for each of the paths

in X. Therefore, over all paths and in the worst case, set Y is no bigger than (k + 1) times

the size of X. �

3.2.4. Minimum Colouring.

theorem 3.8. For a DAG G with β(G) = k, there is a linear time (k+1)-approximation

algorithm for minimum colouring.

Proof. For minimum colouring, we first create a source vertex s′ and create outgoing

edges from s′ to all the sources of the DAG. Assign a weight of -1 to all edges of the DAG,

then relax all the edges in topological order, finding the maximum distance to all the vertices
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from the source s′. All vertices at a distance i from the s′ form a level Li. We can colour all

vertices in each level Li with the colour i.

We claim this is a valid colouring. Let us assume for contradiction that this is not a valid

colouring, but all vertices are at a maximum distance from s′. Since edges between different

labels have different colours at its end points, the only edges spoiling the colouring must

have the end points on the same level.

Assume, without loss of generality, there exists an edge directed from x to y in some level

Li. Now, we can take the path to vertex x, and take the edge from (x, y) which has a weight

of -1. This gives y a higher distance than x, so it is not a maximum distance from source s′,

which is a contradiction.

If X is the minimum colouring of DAG G, and Y is the colouring returned by our

algorithm, we claim that the set Y is at most (k + 1) times the size of X.

It is sufficient to show this holds for the maximum length path, because all shorter paths

can be coloured in less than the number of colours needed for the longest path. On the

maximum length path, consider vertex vi. Even in an optimal colouring, all vertices at a

distance of (k + 1) or more from vi must have a separate colour. Therefore, the optimal

colouring is confined in a distance of (k + 1) on the path.

Our algorithm returns (k+1) colours for this section, while an optimal colouring can be

possibly done in just one colour. Therefore, set Y is no bigger than (k+ 1)-times the size of

set X. �
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