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A Temporally Adaptive Classifier for
Multispectral Imagery

Jianqi Wang, Mahmood R. Azimi-Sadjadi, and Donald Reinke

Abstract—This paper presents a new temporally adaptive classi-
fication system for multispectral images. A spatial–temporal adap-
tation mechanism is devised to account for the changes in the fea-
ture space as a result of environmental variations. Classification
based upon spatial features is performed using Bayesian frame-
work or probabilistic neural networks (PNNs) while the temporal
updating takes place using a spatial–temporal predictor. A simple
iterative updating mechanism is also introduced for adjusting the
parameters of these systems. The proposed methodology is used to
develop a pixel-based cloud classification system. Experimental re-
sults on cloud classification from satellite imagery are provided to
show the usefulness of this system.

Index Terms—Bayes classification, cloud classification, multi-
spectral imaging, prediction.

I. INTRODUCTION

MULTISPECTRAL meteorological satellite imaging sys-
tems generally provide frequent, high-resolution (0.5–5

km), visible, and infrared (IR) images over large areas. They
play an important role in remote sensing, weather analysis and
forecasting, and military applications [1]–[7]. However, due to
the large volume of data received every day, manual inspection
becomes impractical. Thus, automated and efficient detection
and classification systems are needed.

The major challenge in designing classification systems for
multispectral imaging, besides the large volume and frequency
of the data, is that as time elapses the temperature variations can
cause substantial changes in the IR channel features. Addition-
ally, owing to sun angle changes over time, the reflectivity in
the visible channel will also change, leading to the variations
in the visible channel features. Furthermore, the overlap among
features of different areas of interests (e.g., land, clouds, water)
can drastically deteriorate the classification performance of the
system over time. To address these issues an adaptive classifi-
cation system that can adjust its parameters to account for the
temporal and environmental changes in multispectral images is
needed. In [8], Tian et. al. developed a new temporal updating
algorithm to address this issue for cloud classification from Geo-
stationary Operational Environment Satellite (GOES)-8 data. A
PNN was used as the classifier. To perform temporal updating,
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a context-based predictor is introduced to classify the current
image frame based on the classification results in the previous
frame. The PNN classifier, updated to the previous frame, is
also used to classify the current frame. A supervised learning
algorithm is used to fine-tune the PNN classifier based on those
blocks for which the labels of the predictor and classifier match.
An unsupervised learning algorithm is used for the rest of the
blocks. This method achieved very promising results for coping
with feature changes in the IR and visible channels of GOES-8
data.

This paper presents a generalization of the temporal adapta-
tion method in [8] by providing a theoretical framework for spa-
tial–temporal updating idea that encompasses decoupled classi-
fication and prediction methodologies using Bayesian classifi-
cation and Markov-based prediction. Multispectral imaging ap-
plication is selected here though the methodology can be applied
to any problem that involves spatial–temporal feature changes.
Based upon this framework a simple pixel-based cloud classifi-
cation system is developed. Experimental results are presented
that show the usefulness of the proposed algorithm for classi-
fying GOES-8 satellite imagery data into five specific classes,
namely high-level cloud, middle-level cloud, low-level cloud,
land, and water.

II. SPATIAL–TEMPORAL ADAPTIVE CLASSIFICATION

As explained earlier, the temperature and reflectivity changes
make the feature space highly variable over time. Neverthe-
less, the classifier trained on the previous image frame, can
still classify the current frame relatively well as the environ-
mental changes between two consecutive frames (20 minutes
apart) are relatively small. Additionally, a large number of pixels
keep their class types between two consecutive frames owing
to the fact that most clouds do not evolve and/or move very
rapidly. These properties are exploited to develop a new tem-
porally adaptive classification system.

A. Decoupled Multispectral Classification Problem

Let be the spatial–temporal “state” for
a block (or pixel) at location at frame (or time) with mul-
tispectral feature set , where

, is the feature vector for spectral band . It
is very important to note that different ways of combining (or
fusing) the feature vectors of the spectral bands yield different
classification/fusion methodologies. For instance, if we had de-
fined , i.e., all the spectral
band feature vectors are lumped into one multispectral feature
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vector, this would have required only one classifier for the aug-
mented feature vector; whereas the former arrangement neces-
sitates using a classifier for every spectral band feature vector

. Now, let denote the a posteriori class con-
ditional probability, then the class label of among

possible classes is decided based upon the maximum a pos-
teriori (MAP) method as

(1)

Using the Bayes rule and the fact that is not
class-dependent, (1) can be written as

(2)

It is reasonable to assume that
i.e., the multispectral feature vector given a

class is independent of the location of a specific block/pixel.
Then (2) becomes

(3)

where it is assumed that the a priori probabilities are equal i.e.,
, , , and further

is the same for all classes.
The spatial–temporal MAP condition in (3) requires com-

puting two separate the a posteriori conditional probabilities,
namely that is not dependent on the spectral
features, and , which is location independent.
The latter probability can be generated using any neural
network that implements Bayes classification e.g., PNN [8].
On the other hand, estimating the former probability calls for a
spatial–temporal prediction that is considered next.

B. Prediction

For two images with high spatial–temporal correlations, the
task of the predictor is to predict the classification result in
one image based on the results in the previous images. Clearly,
there is rich temporal contextual correlation in two consecutive
frames of multispectral images since the short-term changes,
e.g., movement, formation and dissipation of clouds, is typically
not significant. This property could be exploited to build a pre-
dictor that utilizes the spatial–temporal correlation between two
consecutive frames to estimate . The temporal con-
textual correlation between two highly correlated images can be
modeled by a Markov chain. For the sake of computational sim-
plicity, first-order Markov chain is considered here. The Markov
assumption of the predictor implies that the label of block/pixel

is solely determined by the labels of those pixels in its spa-
tial–temporal neighborhood in frame .

For a block/pixel at location , let be its
spatial–temporal neighborhood in frame with support re-
gion geometry with constituent members , i.e.,
where stands for union operation. Now, let be the
class label of block/pixel and define as the set of
the class labels of all the blocks/pixels in , i.e.,

. Thus, the problem

of finding is equivalent to that of computing
that can be generated using the predictor.

The derivation is given here.
Using and the fact that s are mutually exclusive,

the conditional probability can be written
as

where is the size of the neighborhood (i.e., the number
of bixels/blocks), and denotes the class
transition probability from pixel to the
pixel and can be interpreted as the contribution of
pixel to the determination of the class label of .
If denotes the number of classes, the former probability can
be written as

(4)

which implies that pixel imposes its class label on
with probability while other classes have probability

. The other factor that affects the probability
is the relation of with or ,

which can be given by

(5)

where , is a constant that should satisfy
, and is the Hamming

distance between and . Hence, the farther the pixel
is from pixel , the less effect it has on its label. Thus, the
predictor decides the class label of pixel using

(6)

In practice, however, a threshold is chosen and those pixels
satisfying are not la-

beled (’no label’ class). Note that if we choose to be the
upper limit of and let , then this
predictor becomes one for which the following rule applies: if
and only if all the pixels in the spatial–temporal neighborhood

belong to class , then . This property
is similar to the erosion in morphological operations with the
neighborhood being the structuring element. This will be used
in Section III.

C. Iterative Updating

Having defined the classification and prediction processes, a
simple iterative temporal updating mechanism is given to up-
date the parameters of the classifier(s). The temporal updating
method involves forming two subsets and iteratively using
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the results of the classifier and predictor, respectively. These
subsets are defined as

where represents the class label of . Additionally, let us
define set

which includes those blocks/pixels whose labels have high con-
fidence. Clearly, the set can be used to retrain the
whole system at every new frame. To accomplish this, an iter-
ative updating process is devised here. The process starts with
initial subsets and where is obtained by applying the
erosion operation performed by the predictor using the classi-
fication results of the previous frame, and is generated by
applying the classifier built from the last frame to the current
frame. To determine , we use the fact that between two con-
secutive frames, the variations of are not significant
and thus the estimated distribution for the last frame can give a
good initial value for the current frame. Then, for any frame the
process at iteration involves:

1) Use samples in to retrain all the classifiers.
Note that sufficient number of correctly classified sam-
ples for each class are needed to reestimate the parame-
ters of each classifier.

2) Use the updated classifiers to classify the current frame
and form .

3) Use the predictor to get from .
4) Iterate several times until the changes of parameters of

the system do not exceed a preselected limit or until no
further improvement is gained.

After the updating is completed, we use the updated system
to classify the multispectral image and get the final results for
the current image frames.

III. A HIERARCHICAL PIXEL-BASED CLOUD CLASSIFICATION

SYSTEM

The applicability of the proposed spatial–temporal updating
method is tested on a cloud classification problem from GOES8
satellite images. Normally, in cloud classification, two-channel
data, namely visible and IR channels are used. The visible
channel provides reflectivity as well as textural information in
different cloud and noncloud areas. IR channel, on the other
hand, gives temperature and some texture information where
the temperature is directly related to the cloud height infor-
mation. In the visible channel, Land and Water will generally
appear darker than clouds. In the IR channel, different cloud
heights are correlated with temperature which is directly related
to the digital count value.

The proposed method is applied to develop a multistage pixel-
based temporally adaptive system for cloud classification. This
multistage system is shown in Fig. 1. The visible and IR channel
images are first applied to the “cloud detector” to differentiate

between cloud and no-cloud pixels. The IR data is applied to
this system only to detect the presence of thin and/or shad-
owed clouds that are hard to see in the visible channel. For the
no-cloud pixels, a binary geographical map of land and water
is used to label these pixels. Those pixels classified as clouds
are subsequently applied to the IR classifier in order to classify
them into low, middle and high-level clouds. In this hierarchical
cloud classification system, a texture-based classifier may also
be added to classify each of the three types of clouds into their
associated subclasses, e.g., middle-level clouds can further be
classified into Altostratus or Altocumulus classes. However, in
this paper, this option is not implemented.

This pixel-based approach has several advantages over the
block-based schemes [8], [9]. These advantages include: much
higher resolution in the final images, no boundary effect prob-
lems (a large portion of boundary blocks lie on the boundary of
the cloud types that have different heights or on the boundary
of Cloud and Land, or Cloud and Water), and most importantly
the simplicity of the classifiers (scalar-input). The latter prop-
erty makes the updating process less difficult to implement. The
price paid for these advantages is that this pixel-based system is
only capable of classifying clouds into three cloud classes de-
pending on their heights. However, as mentioned before, these
three cloud types can further be classified into more specific
cloud types based upon block-based classification systems that
account for textural as well as spectral features.

This system could be made temporally adaptive by adjusting
the parameters of the two classifiers in response to the sun
angle variations and diurnal temperature changes of the land
and water. The predictor uses the spatial–temporal correlations
between two adjacent frames to provide the results of the
current frame from the classification results of the previous
frame. The iterative updating method in Section II can be
used to adjust the parameters of the two classifiers. These
two classifiers are designed using the Bayesian framework
and initially trained using images labeled by meteorologists.
The design of Bayesian classifiers involve the specification of
appropriate decision thresholds.

A. Cloud Detector

For the first classifier (cloud detector) that differentiates be-
tween cloud and no-cloud pixels two decision thresholds need
to be specified, one for the visible channel, and the other for the
IR channel. In the visible image, Land typically has a greater
intensity than Water. Nonetheless, if the Water is very rough, it
will reflect more sunlight and can be almost as bright as Land.
On the other hand, Clouds are almost always brighter than both
(the exception is snow-covered Land or bright white sand or salt
flats). Consequently, determining the right threshold between
Land and Cloud is sufficient to differentiate between Cloud and
Water. Thus, the task is reduced to that of determining the right
threshold between Land and Cloud.

The difficulty in building this classifier is that most of the
low-level clouds (e.g., Cumulus) appear in the image as iso-
lated spots whereas meteorologists generally label images into
areas. As a result, the labeled low-level cloud areas are most
likely mixtures of low-level cloud and land pixels, or generally
clouds and land as we can combine the three cloud types into one
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Fig. 1. Block diagram of the pixel-based cloud classification system.

“cloud” class. On the other hand, for those labeled land areas,
the confidence in labeling is very high. Thus, two training data
sets, one exclusively for “land” class (denoted by ) and one
composed of mixture of “land” and “cloud” classes (denoted by

) can be used to construct a simple Bayesian cloud detector.
Our experimental studies of the histograms of these two data
sets indicated that the histogram of can be approximated by a
unimodal normal PDF while that of exhibits a bimodal PDF.
Now, if we let the PDFs (normal) of land and cloud pixels be

and , respectively, the PDFs of
and can be expressed as

(7)

(8)

where represents intensity of the pixels in the visible channel,
, is the parameter set of the th distribution

with and being the mean and variance of the Gaussian,
and is the augmented set of parameters
and and are the a priori probabilities of land and clouds,
respectively. Since contains much more reliable information
about the distribution of the intensity of land, we include it in
estimating the PDFs of the two classes and keep it separate from

.
The log likelihood function can be written as:

(9)

By maximizing the log likelihood function, we can get the
parameter set . The well-known Expectation-Maximization
(EM) approach is an efficient way to solve this problem [10],
[11]. The EM equations for this problem are given in the Ap-
pendix . Note that if we assume that cloud and land pixels have
the same a priori probabilities, the threshold can be decided by
solving . As pointed out before, since in
daytime, the intensity of the land is not less than that of water,
this threshold can also be used to differentiate cloud and water
pixels. In other words, this threshold is suitable for differenti-
ating cloud and no-cloud pixels.

(a)

(b)

Fig. 2. Original image pair at 15:45 UTC. (a) Infrared. (b) Visible.

B. IR Classifier

The design of the IR-channel classifier is quite straight-
forward. The PDF of each cloud type, i.e., low-level cloud,
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(a)

(b)

Fig. 3. Original image pair at 22:45 UTC. (a) Infrared. (b) Visible.

middle-level cloud and high-level cloud, can be approximated
by a unimodal normal PDF with parameters that can be directly
calculated from the labeled images. The classifier is then
designed using the Bayesian framework and letting the a priori
probability of each type be equal among all the three classes.
There are two points that need to be clarified here. First, the
training of the IR-channel classifier follows that of the cloud
detection system, which determines the threshold between
cloud and land pixels. Thus, we can use this threshold to
remove the land and water pixels from the labeled low-level
cloud areas. Second, since most of the thin cloud and cloud
shadow belong to middle-level or high-level clouds, once the
IR-channel classifier is trained, the threshold between the
low-level cloud and middle-level cloud is fed back to the cloud
detection system. If the intensity of a pixel in the IR image
is higher than the threshold, we classify it as a cloud pixel,
irrespective of its intensity in the visible image.

IV. EXPERIMENTAL RESULTS

To test the pixel-based system on real cloud images, a
GOES 8 satellite imagery database was used. GOES 8 satellite

(a) (b)

Fig. 4. Classification result of the pixel-based method (15:45 UTC).

(a) (b)

Fig. 5. Classification results of the pixel-based method (22:45 UTC).

carries one visible and four infrared channel sensors. However,
only the data from channel 1 (visible) and channel 4 (IR)
are used because these two channels are the only two that
are currently common among all global imaging systems.
The image sequence on July 24th, 1998 during 15:45 to
22:45 UTC (Universal Time Coordinate) at one hour interval
was employed in this study. These images of size 512 512
pixels (spatial resolution of 5 km/pixel) cover the Midwest
and most of the Eastern part of the U.S. Lake Michigan
is in the upper right corner and Florida is located in the
lower right, with Gulf of Mexico in the lower center of the
image. The images were labeled by two meteorologists and
only those areas in which their labeling agreed were used
for training and validation purpose. Figs. 2(a) and (b) and
3(a) and (b) show the first (15:45 UTC) and last (22:45
UTC) image pairs in the sequence, respectively.

The system is initially trained based upon the labeled pixels
in the first image at 15:45 UTC and then continuously updated
using the spatial–temporal updating mechanism. Table I shows
the classification accuracies when this approach is applied to
this image sequence (15:45 to 22:45 UTC). The performance
of the system on the low-level clouds is not available owing
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TABLE I
THE CLASSIFICATION ACCURACY IN REAL CLOUD IMAGES

to low confidence in the labeling of low-level cloud areas.
Additionally, we also notice a drastic decline in the accuracy
of the middle-level clouds from 17:45 to 18:45 UTC and in
the subsequent frames. This is probably due to the fact that
the cloud top temperatures are very close to the temperature
used as the cut-off between Middle and High-level cloud
classification by the expert who did the manual analysis.
This appears to be due the fact that the significant amount
of convective cloud growth is occurring which causes the
same cloud element to pass from middle to high class. It is
interesting to note that this discrepancy did not deteriorate the
performance on the high-level clouds. Figs. 4 and 5 show the
color-coded classification results of the first hour (at 15:45
UTC) and the last hour (at 22:45 UTC) in this sequence,
respectively. The color assignment is shown in the color-bar
in Fig. 4(b). The results demonstrate the effectiveness of the
proposed spatial–temporal updating scheme. Also notice that
in Fig. 3, the black line in the visible channel, is a data
drop that was totally removed in the results of Fig. 5(b).

The plot of the decision threshold for separating between
cloud and no-cloud pixels versus time in Fig. 6 is very insightful.
As can be observed, this threshold is first increasing and reaches
its peak around 20:45 UTC and then it starts to go down. This
variation in the decision threshold follows the same trend as the
diurnal sunlight intensity change. This is due to the fact that the
intensities of land (and to some extent cloud) pixels change as
the sunlight varies during the day. Hence, the decision threshold
used to differentiate between land and clouds also needs to have
the same trend.

V. CONCLUSION

This paper proposes a new framework for spatial–temporal
updating for multispectral image classification. It was shown
that the problem can be decoupled into the design of a spatial
classifier and a spatial–temporal predictor. A Markov-based pre-
dictor was introduced that exploits spatial–temporal correlations
in two consecutive frames. A simple iterative updating mech-
anism was also proposed for adjusting the parameters of the
classifier(s) and the predictor. The spatial–temporal updating
was used to develop a new adaptive pixel-based cloud classi-
fication system for GOES-8 satellite imagery. The system uses
a cloud detector, to differentiate between cloud and no-cloud
pixels, and a cloud classifier system using Bayesian method-
ology to classify the cloud detected areas into three possible

Fig. 6. The variation of the threshold between cloud and land.

classes depending on the cloud heights. The results on a se-
quence of GOES-8 images indicated the usefulness of the tem-
poral updating scheme. Future work should include the exten-
sion of this system to handle more specific cloud classes, the in-
clusion of surface observations in the training of the classifiers,
and the addition of corrections for solar zenith angle (visible)
and limb-darkening (IR).

APPENDIX

EM Algorithm for (9)

Using EM algorithm to maximize the log likelihood function
in (9) involves two steps. In the expectation (E) stage, the
function [11] is

(A.1)
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In the maximization (M) stage, the parameters that maximize
function are:

(A.2)

where , for ,
is the number of samples in and is the number of samples
in .
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