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ABSTRACT

SEMIPARAMETRIC REGRESSION IN THE PRESENCE OF COMPLEX VARIANCE

STRUCTURES ARISING FROM SMALL ANGLE X-RAY SCATTERING DATA

An ongoing problem in structural biology is how best to infer structural information for

complex, biological macromolecules from indirect observational data. Molecular shape dic-

tates functionality but is not always directly observable. There exists a wide class of exper-

imental methods whose data can be used for indirectly inferring molecular shape features

with varying degrees of resolution. Of these methods, small angle X-ray scattering (SAXS)

is desirable due to low requirements on the sample of interest. However, SAXS data suf-

fers numerous statistical problems that require the development of novel methodologies. A

primary concern is the impact of radially reducing two-dimensional sensor data to a series

of smooth mean and variance curves. Additionally, pronounced heteroskedasticity is often

observed near sensor boundaries. The work presented here focuses on developing general

model frameworks and implementation methods appropriate for SAXS data.

Semiparametric regression refers to models that combine known parametric structures

with flexible nonparametric components. Three semiparametric regression model frameworks

that are well-suited for handling smooth data are presented. The first model introduced

is the standard semiparametric regression model, described as a mixed model with low

rank penalized splines as random effects. The second model extends the first to the case

of heteroskedastic errors, which violate standard model assumptions. The latent variance

function in the model is estimated through an additional semiparametric regression, allowing

for appropriate uncertainty estimation at the mean level. The final model considers a data

structure unique to SAXS experiments. This model incorporates both radial mean and radial
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variance data in hopes to better infer three-dimensional shape properties and understand

experimental effects by including all available data.

Each of the three model frameworks is structured hierarchically. Bayesian inference is

appealing in this context, as it provides efficient and generalized modeling frameworks in a

unified way. The main statistical contributions of this thesis are from the specific methods

developed to address the computational challenges of Bayesian inference for these models.

The contributions include new Markov Chain Monte Carlo (MCMC) procedures for numer-

ical approximation of posterior distributions and novel variational approximations that are

extremely fast and accurate. For the heteroskedastic semiparametric case, known form pos-

terior conditionals are available for all model parameters save for the regression coefficients

controlling the latent model variance function. A novel implementation of a multivariate de-

layed rejection adaptive Metropolis (DRAM) procedure is used to sample from this posterior

conditional distribution. The joint model for radial mean and radial variance data is shown

to be of comparable structure to the heteroskedastic case and the new DRAM methodology is

extended to handle this case. Simulation studies of all three methods are provided, showing

that these models provide accurate fits of observed data and latent variance functions.

The demands of scientific data processing in the context of SAXS, where large data sets

are rapidly attained, lead to consideration of fast approximations as alternatives to MCMC.

Variational approximations or Variational Bayes describes a class of approximation meth-

ods where the posterior distribution of the parameters is approximated by minimizing the

Kullback-Leibler divergence between the true posterior and a class of distributions under

mild structural constraints. Variational approximations have been shown to be good ap-

proximations of true posteriors in many cases. A novel variational approximation for the

general heteroskedastic semiparametric regression model is derived here. Simulation studies

are provided demonstrating fit and coverage properties comparable to the DRAM results

iii



at a fraction of the computational cost. A variational approximation for the joint model of

radial mean and variance data is also provided but is shown to suffer from poor performance

due to high correlation across a subset of regression parameters.

The heteroskedastic semiparametric regression framework has some strong structural rela-

tionships with a distinct, important problem: spatially adaptive smoothing. A noisy function

with different amounts of smoothness over its domain may be systematically under-smoothed

or over-smoothed if the smoothing is not spatially adaptive. A novel variational approxima-

tion is derived for the problem of spatially adaptive penalized spline regression, and shown

to have excellent performance. This approximation method is shown to be able to fit highly

oscillatory data while not requiring the traditional tuning and computational resources of

standard MCMC implementations.

Potential scientific contribution of the statistical methodology developed here are illumi-

nated with SAXS data examples. Analysis of SAXS data typically has two primary concerns:

description of experimental effects and estimation of physical shape parameters. Formal

statistical procedures for testing the effect of sample concentration and exposure time are

presented as alternatives to current methods, in which data sets are evaluated subjectively

and often combined in ad hoc ways. Additionally, estimation procedures for the scattering

intensity at zero angle, known to be proportional to molecular weight, and the radius of

gyration are described along with appropriate measures of uncertainty. Finally, a brief ex-

ample of the joint radial mean and variance method is provided. Guidelines for extending

the models presented here to more complex SAXS problems are also given.

iv



ACKNOWLEDGEMENTS

I am grateful for the many opportunities that this work and my time at Colorado State

University has presented. First and foremost, I owe the bulk of my success to my advisor

Jay Breidt. His guidance and experience were crucial in my development as a researcher and

statistician. Both in the classroom and outside of it, he is genuinely one of the best teachers

I have ever had.

Throughout the course of my research I have worked closely with Mark van der Woerd

from the Department of Molecular Biology and Biochemistry. His collaborations have been

essential to my work. Additionally, his advice and assistance on career choices have been

quite helpful. I owe special thanks to Jennifer Hoeting who, apart from serving on my

committee, has also provided significant career and statistical guidance over my tenure at

CSU. Additionally I would like to thank Don Estep, Mary Meyer, and Karolin Luger for

serving on my committee.

This work has been partially supported by the Joint NSF/NIGMS Initiative to Support

Research in the Area of Mathematical Biology (R01GM096192). The variational approxima-

tion for heteroskedastic semiparametric regression detailed in Chapter 4 has been submitted

for publication in the Journal of Computational Graphics and Statistics. Preliminary work

on jointly modeling radial mean and variance data (Sections 2.3 and 3.3) was awarded the

Outstanding Student Poster award at the 2013 WNAR/IMS annual meeting and I would

like to thank all those who participated for their feedback.

I am also thankful for the opportunity to participate in the Industrial Mathematical and

Statistical Modeling Workshop for Graduate Students at the Statistical and Applied Mathe-

matical Sciences Institute (SAMSI) during the summer of 2012. This workshop was a great

v



interdisciplinary experience and helped introduce topics that would become important to

the work presented here, notably advanced MCMC methodologies.

I have greatly enjoyed the six years I have spent in Fort Collins and at CSU. This wonderful

town has provided coutless opportunities for both personal and professional growth. I owe

a great deal of my personal accomplishments over this time to Finnie and Tessa McMahon

of McMahon Brazilian Jiu Jitsu for giving me a place to improve myself and find a second

family away from my own. I have had the pleasure of sharing this experience with many

amazing fellow students, particularly Wade Herndon, Grant Weller, and Stacy Edmondson.

I would also like the thank the employees of Mugs Coffee Lounge for providing a caffeinated

oasis where most of this dissertation was written.

Finally, I am most grateful for the love and encouragement provided my my parents Bruce

and Kimm. They have stuck with me through this long journey and never failed to provide

much-needed support. I thank them for instilling the determination and work ethic that got

me to where I am today.

vi



DEDICATION

For Mom and Dad. We did it.

vii



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to Small Angle X-Ray Scattering . . . . . . . . . . . . . . . . . 4

1.3 Introduction to Semiparametric Regression . . . . . . . . . . . . . . . . . . . 6

2 Semiparametric Models for SAXS Data . . . . . . . . . . . . . . . . . . . . 12

2.1 Traditional Semiparametric Regression . . . . . . . . . . . . . . . . . . . . . 12

2.2 Semiparametric Regression with Heteroskedastic Errors . . . . . . . . . . . . 12

2.3 Semiparametric Regression for Joint Mean-Variance Data Structures . . . . . 16

3 Bayesian Inference via Markov Chain Monte Carlo for Semiparametric

Models of SAXS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Semiparametric Regression via Gibbs Sampling . . . . . . . . . . . . . . . . 22

3.2 Heteroskedastic Semiparametric Regression via Hybrid Gibbs Sampling . . . 28

3.3 Joint Mean Variance Semiparametric Model via Hybrid Gibbs Sampling . . . 52

4 Variational Approximations for SAXS Data . . . . . . . . . . . . . . . . . . 71

4.1 Introduction to Variational Approximations . . . . . . . . . . . . . . . . . . 72

4.2 Variational Approximation for Mixed Models . . . . . . . . . . . . . . . . . . 78

4.3 Laplace Variational Approximation for Semiparametric Regression with Het-

eroskedastic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Laplace Variational Approximation for Joint Mean-Variance Model . . . . . 105

4.5 Variational Approximation for Spatially Adaptive Semiparametric Regression 120

5 Case Study of Experimental SAXS Data . . . . . . . . . . . . . . . . . . . . 131

5.1 Inference on Experimental Factors . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Inference on Molecular Properties . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Joint Mean-Variance Example . . . . . . . . . . . . . . . . . . . . . . . . . . 145

viii



5.4 Further Extensions for SAXS Data . . . . . . . . . . . . . . . . . . . . . . . 153

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Variational Density for Heteroskedastic Semiparametric Regression . . . 159

B K-L Lower Bound for Heteroskedastic Semiparametric Regression . . . 162

ix



LIST OF FIGURES

Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 SAXS Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 SAXS Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Semiparametric Regression for Single Curve . . . . . . . . . . . . . . . . . . 25

3.2 Trace Plot for Semiparametric Regression for Single Curve . . . . . . . . . . 26

3.3 Semiparametric Regression for Multiple Curves . . . . . . . . . . . . . . . . 28

3.4 Simulated Heteroskedastic Data . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Heteroskedastic Mean Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Heteroskedastic Variance Fits . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Heteroskedastic Mean Fits for Large Sample . . . . . . . . . . . . . . . . . . 38

3.8 Heteroskedastic Variance Fits for Large Sample . . . . . . . . . . . . . . . . 39

3.9 Trace Plot for θV under m(x), v1(x) . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Trace Plot for v̂1(x) under m(x), v1(x) . . . . . . . . . . . . . . . . . . . . . 42

3.11 Heteroskedastic Variance Fits for Long Run . . . . . . . . . . . . . . . . . . 43

3.12 Vertically Shifted Curves with Common Variance . . . . . . . . . . . . . . . 45

3.13 Interaction Model with Common Variance . . . . . . . . . . . . . . . . . . . 48

3.14 Interaction Model with Damped Variance . . . . . . . . . . . . . . . . . . . . 50

3.15 Simulated Radial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.16 MCMC Fit of Simulated Radial Data . . . . . . . . . . . . . . . . . . . . . . 58

3.17 MCMC Estimates of Model Variance . . . . . . . . . . . . . . . . . . . . . . 60

3.18 MCMC Estimates of Model Variance . . . . . . . . . . . . . . . . . . . . . . 61

3.19 Trace Plot of θV Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.20 Simulated Complex Radial Data . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



3.21 MCMC Fit of Complex Simulated Radial Data . . . . . . . . . . . . . . . . . 68

3.22 MCMC Estimates of Model Variance for Complex Radial Data . . . . . . . . 69

Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 Variational Approximation for Normal Example . . . . . . . . . . . . . . . . 79

4.2 Variational Approximation for Mixed Model Example . . . . . . . . . . . . . 83

4.3 Comparison of Variational Approximation and Gibbs Sampling for Mixed

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Variational Approximation for Heteroskedastic Semiparametric Regression . 93

4.5 Variational Approximation of Underlying Variance Functions . . . . . . . . . 94

4.6 Comparison of Variational Approximation and MCMC for Heteroskedastic

Semiparametric Regerssion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Variational Approximation of Parametric Shift Example . . . . . . . . . . . 100

4.8 Variational Approximation of Semiparametric Interaction Model with Com-

mon Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.9 Variational Approximation for Semiparametric Interaction Model with Damped

Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.10 Variational Approximation for Simulated Radial Data . . . . . . . . . . . . . 112

4.11 Variational Approximation for Model Variance of Simulated Radial Data . . 113

4.12 Variational Approximation for Simulated Radial Data . . . . . . . . . . . . . 114

4.13 Variational Approximation for Model Variance of Simulated Radial Data . . 115

4.14 Variational Approximation for Simulated Radial Data . . . . . . . . . . . . . 117

4.15 Variational Approximation for Model Variance of Simulated Radial Data . . 118

4.16 Variational Approximation for Global Penalty Model . . . . . . . . . . . . . 127

4.17 Variational Approximation for Spatially Adaptive Penalty Model . . . . . . . 129

Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xi



5.1 NAP Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 NAP Model with Constant Shift Interaction . . . . . . . . . . . . . . . . . . 135

5.3 NAP Model with Parametric Interaction . . . . . . . . . . . . . . . . . . . . 136

5.4 NAP Model with Full Interaction . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Consecutive exposures of H2AH2B . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6 Pre- and Post- Long Exposure of H2AH2B . . . . . . . . . . . . . . . . . . . . 138

5.7 MCMC Fit of H2AH2B under M0 . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.8 MCMC Fit of H2AH2B under M1 . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.9 Constant Error MCMC Fit of H2AH2B . . . . . . . . . . . . . . . . . . . . . . 146

5.10 Heteroskedastic MCMC Fits of H2AH2B . . . . . . . . . . . . . . . . . . . . . 147

5.11 Radial Mean and Variance Data for H2AH2B . . . . . . . . . . . . . . . . . . 149

5.12 MCMC Fits of Radial Mean and Variance Data of H2AH2B . . . . . . . . . . 150

5.13 MCMC Estimate of Model Variance of H2AH2B . . . . . . . . . . . . . . . . . 151

5.14 Trace Plot for θV for H2AH2B Data . . . . . . . . . . . . . . . . . . . . . . . 152

xii



CHAPTER 1

INTRODUCTION

1.1 Overview

An ongoing problem in structural biology is how best to infer structural information for

complex, biological macromolecules from indirect observational data. Molecular shape dic-

tates functionality but is not always directly observable. There exists a wide class of experi-

mental methods whose data can be used for indirectly inferring shape features with varying

degrees of resolution. Of these methods, small angle X-ray scattering (SAXS) is desirable

due to low requirements on the sample of interest. However, SAXS data suffers numerous

statistical problems that require the development of novel methodologies. These problems

include multiple sources of stochastic uncertainty as well as the application of ad hoc data

processing procedures at the point of collection. A primary concern is the impact of radi-

ally reducing two-dimensional sensor data to a series of smooth mean and variance curves.

Additionally, pronounced heteroskedasticity is often observed near sensor boundaries. The

work presented here focuses on developing general model frameworks and implementation

methods appropriate for SAXS data. The main statistical contributions of this thesis are

from the specific methods developed to address the computational challenges of Bayesian in-

ference for models appropriate for SAXS data. The contributions include new Markov Chain

Monte Carlo (MCMC) procedures for numerical approximation of posterior distributions and

novel variational approximations that are extremely fast and accurate. In this introductory

chapter, Section 1.2 outlines the SAXS experimental procedure and data collection in detail.

Section 1.3 details the background of treating semiparametric regression models as linear
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mixed models through the use of low-rank penalized spline bases, as detailed in Ruppert

et al. (2003).

Chapter 2 details the application of semiparametric regression models to SAXS data in

the presence of complex variance structures. Semiparametric regression refers to models

that combine known parametric structures with flexible nonparametric components. Three

semiparametric regression model frameworks that are well-suited for handling smooth data

are presented. The first model introduced is the standard semiparametric regression model,

described as a mixed model with low rank penalized splines as random effects. The second

model extends the first to the case of heteroskedastic errors, which violate standard model

assumptions. The latent variance function in the model is estimated through an additional

semiparametric regression, allowing for appropriate uncertainty estimation at the mean level.

The final model considers a data structure unique to SAXS experiments. This model incor-

porates both radial mean and radial variance data in hopes to better infer three-dimensional

shape properties and understand experimental effects by including all available data.

Chapter 3 introduces the computational procedures used to implement the models de-

scribed in Chapter 2. Each of the three model frameworks has a hierarchical structure.

Bayesian inference is appealing in this context, as it provides efficient and generalized mod-

eling frameworks in a unified way. For the heteroskedastic semiparametric case, known

form posterior conditionals are available for all model parameters save for the regression

coefficients controlling the latent model variance function. A novel implementation of a mul-

tivariate delayed rejection adaptive Metropolis (DRAM) procedure is used to sample from

this posterior conditional distribution. The joint model for radial mean and radial variance

data is shown to be of comparable structure to the heteroskedastic case and the new DRAM

methodology is extended to handle this case. Simulation studies of all three methods are pro-
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vided, showing that these models provide accurate fits of observed data and latent variance

functions.

Chapter 4 focuses on the demands of scientific data processing in the context of SAXS,

where large data sets are rapidly, lead to consideration of fast approximations as alternatives

to MCMC. Variational approximations or Variational Bayes describes a class of approxima-

tion methods where the posterior distribution of the parameters is approximated by minimiz-

ing the Kullback-Leibler divergence between the true posterior and a class of distributions

under mild structural constraints. Variational approximations have been shown to be good

approximations of true posteriors in many cases. A novel variational approximation for the

general heteroskedastic semiparametric regression model is derived here. Simulation studies

are provided demonstrating fit and coverage properties comparable to the DRAM results

at a fraction of the computational cost. A variational approximation for the joint model of

radial mean and variance data is also provided but is shown to suffer from poor performance

due to high correlation across a subset of regression parameters.

In addition to work on variational approximation for models of SAXS data, Chapter 4

also details a variational approximation method for a distinct, important problem that has

a strong structural relationship with heteroskedastic semiparametric regression: spatially

adaptive smoothing. A noisy function with different amounts of smoothness over its domain

may be systematically under-smoothed or over-smoothed if the smoothing is not spatially

adaptive. A novel variational approximation is derived in Section 4.5 for the problem of

spatially adaptive penalized spline regression, and shown to have excellent performance. This

approximation method is shown to be able to fit highly oscillatory data while not requiring

the traditional tuning and computational resources of standard MCMC implementations.

Chapter 5 expands on potential scientific contribution of the statistical methodology de-

veloped here with SAXS data examples. Analysis of SAXS data typically has two primary

3



concerns: description of experimental effects and estimation of physical shape parameters.

Formal statistical procedures for testing the effect of sample concentration and exposure

time are presented as alternatives to current methods, in which data sets are evaluated sub-

jectively and often combined in ad hoc ways. Additionally, estimation procedures for the

scattering intensity at zero angle, known to be proportional to molecular weight, and the

radius of gyration are described along with appropriate measures of uncertainty. Finally,

a brief example of the joint radial mean and variance method is provided. Guidelines for

extending the models presented here to more complex SAXS problems are also given.

1.2 Introduction to Small Angle X-Ray Scattering

A motivating problem that is common in structural biology concerns the accurate identi-

fication of structural characteristics of macromolecules. Size and shape properties often are

related to molecular properties and as such are highly interesting to scientists. One exper-

imental method that is popular due to its applicability to a wide class of macromolecules

and conditions is small angle X-ray scattering (SAXS). SAXS experiments provide low res-

olution structural information based on the bombardment of a sample of interest with X-

rays and measurement of the resulting diffraction. Competing, higher-resolution imaging

techniques often have physical constraints that make them ill-suited to complex or flexible

macromolecules. For example, X-ray crystallography requires crystallization of the sam-

ple (?Bergfors, 1999). SAXS experiments are also relatively inexpensive to conduct. The

major drawback to SAXS stems from the method’s seeming inability to estimate high reso-

lution characteristics. Physical inference of molecular structure is generally relegated to low-

resolution characteristics, such as maximum linear dimension or radius of gyration (Glatter

and Kratky, 1982). Compounding the resolution problem, experimental conditions, simpli-

fying assumptions, and “black box” data processing are persistent issues surrounding SAXS

data.
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Figure 1.1 outlines the SAXS experimental procedure. First, a monochromatic beam of

X-rays is fired at a sample of the molecule of interest in solution. The X-rays hit the sample

and are scattered due to interactions with the molecules. These scattered X-rays are recorded

on the detector mechanism, which usually consists of a phosphorescent screen connected to

a CCD sensor (akin to the sensor in a digital camera) via fiber optics. The phosphorescent

screen emits photons that travel down fiber optics and are registered by the CCD. The data

can be thought of in a theoretical sense as a set of Poisson counts where each pixel measures

the number of photons that “arrive”. In Figure 1.1, the scattering angle 2θ is converted to

the measured difference between the vector of incidence and the scattering vector, q, or as s,

which is defined as s = 2πq. Both s and q are proportional to the radial distance observed

on the sensor and as such are often treated as analogous quantities for modeling purposes.

When discussing SAXS data, the term “angle” is traditionally used interchangeably with

radial distance.

One of the simplifying assumptions in the SAXS methodology is the presence of radial

symmetry as a result of the molecule rapidly tumbling in solution. The assumption states

that molecules in solution take on all possible orientations with equal probability. This

tumbling motion causes the SAXS experiment to “see” the time-averaged shell that results

from rapidly rotating a three-dimensional molecule in all directions. Anecdotally, this is

akin to rotating a cube on all axes quickly and observing the resulting great sphere that

encompasses it. This assumption is used to justify the reduction of the data from a two

dimensional sensor image to a set of one dimensional radial means and radial variances about

some defined center. Figure 1.2 is an example of the sensor data with the corresponding radial

mean intensity curve, shown here in log form. The sensor data appears radially symmetric

with the white area representing parts of the experimental setup that block the X-rays from

hitting the sensor. An optical center is determined and the data are radially averaged at fixed

scattering angles to produce the radial mean intensity curve. SAXS experiments generally
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consist of ensembles of concentrations and exposure times, thus producing multiple pairs of

radial mean-variance curves. There does not appear to be a unified methodology to handle

all the data from these ensemble experiments, with typical analyses consisting of ad hoc

exploration of the mean curves.

Figure 1.1: SAXS experiment consisting of an X-ray source, a sample, and a detector
mechanism containing a phosphorescent screen and a CCD sensor for measuring intensity.

A modified version of this figure is included in Breidt et al. (2012).

1.3 Introduction to Semiparametric Regression

The term semiparametric regression is commonly used to describe the class of regression

models that combine traditional parametric regression with flexible nonparametric compo-

nents into a cohesive framework. Parametric models, while sometimes rigid and difficult

to fit, provide easy-to-understand inferential methods that can lead to significant insight

to relationships in the data. Nonparametric models come in many different varieties, most

of which are extremely flexible and able to fit complex relationships in a sensible manner.

However, this flexibility often comes at the cost of parameter interpretability. The seminal

text on semiparametric regression is Ruppert et al. (2003). The results presented here rely

on their general methodology of representing semiparametric regression models as general-
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Figure 1.2: The top panel corresponds to the raw two-dimensional sensor data for a single
SAXS exposure. The bottom panel is the corresponding radially averaged mean intensity

data on the log scale. The arrows correspond to the radial reduction of values about a fixed
annulus in the top panel and their corresponding log mean intensity in the bottom panel.
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izations of linear mixed models. We present a brief introduction to this methodology here

in order to provide context for our results but the reader is directed to Ruppert et al. (2003)

for a more in-depth primer on the topic.

Let yi be the response associated with the ith observation and let xi be the ith value of

some covariate of interest. A basic semiparametric regression model is

yi = XT
i β + f(xi) + εi, (1)

where XT
i β corresponds to a parametric relationship for some set of known covariates XT

i

with unknown regression parameters β. The vector XT
i is ith row vector of a design ma-

trix X. The term f(xi) represents the functional relationship between yi and xi that is not

explained by the parametric terms. The error term εi is assumed to follow a N (0, σ2) dis-

tribution. While there are numerous methodologies for nonparametric smoothing (wavelets,

local methods, series based smoothers, neural networks, etc.), we focus on modeling f(x)

through a low-rank penalized spline basis expansion. This method treats f(x) as a linear

combination of a set of basis functions {Bk(xi)}Kk=1 over fixed, known knots κ1, κ2, . . . κK

where K << N , the overall sample size. Under this expansion, the model becomes

yi = XT
i β +

K∑
k=1

bkBk(xi) + εi. (2)

As described in Ruppert et al. (2003), there is a useful relationship between penalized

spline regression and traditional mixed models. Under this framework, we treat β as a

vector of fixed effect parameters and b = (b1, b2, . . . , bK)T as a vector of random effects with

common variance. This means that for each k,

bk ∼ N
(
0, σ2

b

)
. (3)
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The “penalty” portion of the penalized spline regression is controlled automatically by the

ratio of the model variance to the random effect variance, σ2/σ2
b . Large σ2

b corresponds to

more flexibility in the nonparametric portion of the model. As σ2
b → 0, the regression model

approaches the fixed effect linear model.

Using this representation, we gain access to the well-documented toolset associated with

mixed models for inference, model selection, hypothesis testing, etc. The availability of off-

the-shelf software for both frequentist and Bayesian methodologies make these models very

simple to implement. Additional parametric components are handled through the addition

of new fixed effect parameters to the vector β. New nonparametric terms can be included

through an additional basis expansion controlled by an additional variance parameter. For

example, one may want to build upon the model from (1) to include an additional nonpara-

metric relationship of the form

yi = XT
i β + f(xi) + g(zi) + εi. (4)

Here zi would be an additional covariate which we believe has a functional relationship with

the response yi. The term g(zi) can be expanded according to the basis
{
BZ
l (zi)

}
over

some knot set κ̃1, κ̃2, . . . , κ̃L. This results in the mixed model

yi = XT
i β +

K∑
k=1

bkBk(xi) +
L∑
l=1

clB
Z
l (zi) + εi

bk ∼ N
(
0, σ2

b

)
k = 1, . . . , K

cl ∼ N
(
0, σ2

c

)
l = 1, . . . , L. (5)

The general structure for these models is

yi = XT
i β + ZT

1ib1 + · · ·+ ZT
LibL + εi

9



bl ∼ N
(
0, σ2

bl
IKl
)
∀ l = 1, . . . , L

εi ∼ N
(
0, σ2

)
. (6)

Written in matrix form, this becomes

y = Xβ + Z1b1 + · · ·+ ZLbl + ε

bl ∼ N
(
0, σ2

bl
IKl
)
∀ l = 1, . . . , L

ε ∼ N
(
0, σ2IN

)
. (7)

1.3.1 Basis Functions

The choice of the set of basis functions {Bk(x)} depends on the application at hand and on

subjective choice. There are many notable bases available, including truncated polynomials,

radial basis functions, thin-plate splines, B-splines (Eilers and Marx, 1996), and O’Sullivan

splines (Wand and Ormerod, 2008). The work presented here does not focus on the choice

of basis functions since the mixed model framework allows for flexibility in that regard.

We choose to work primarily with truncated polynomial basis functions given their simple

implementation and conceptual nature. These basis functions take the form

1, x, x2, . . . , xp, (x− κ1)p+ , . . . , (x− κK)p+ (8)

where p is a positive integer representing the degree of the polynomial and

(x− κ1)p+ =


(x− κk)p x > κk

0 x ≤ κk.

(9)
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Under this basis, the nonparametric model y = f(x) + ε is written as

yi = β0 + β1xi + · · ·+ βpx
p
i +

K∑
k=1

bk (xi − κk)p+ + εi, (10)

where 1, x, . . . , xp are fixed effects and the truncated polynomial terms are random effects.

In particular, truncated quadratic splines (p = 2) are used throughout this work to estimate

nonparametric relationships that are believed to have continuous first derivatives and to be

inherently smooth.

The use of these models to describe data arising from SAXS experiments will be briefly

touched upon in Section 2.1. As mentioned earlier, mixed models have convenient rep-

resentations under both frequentist and Bayesian perspectives. While off-the-shelf mixed

model software is sufficient for performing standard semiparametric regression of this type,

a Bayesian implementation via Gibbs sampling is detailed in Section 3.1. This Bayesian

framework better suits our extensions to standard semiparametric regression that are de-

tailed throughout this paper, so it is favored for the sake of consistency.
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CHAPTER 2

SEMIPARAMETRIC MODELS FOR SAXS DATA

2.1 Traditional Semiparametric Regression

Traditional analysis of experimental SAXS data revolves around the fitting of single or

multiple one-dimensional curves consisting of radially averaged log intensity values. As de-

scribed in Section 1.2, these data are often preprocessed through some “black box” mecha-

nism that results in highly smoothed behavior, which can be described with a semiparametric

regression model.

Semiparametric regression is particularly suited for modeling SAXS data because of the

ease of including additional experimental covariates such as exposure time and concentra-

tion while modeling the underlying radial mean curves in a nonparametric fashion. Scientific

knowledge sometimes suggests a known form for including these covariates (e.g. concentra-

tion is believed to have an additive effect on log intensity). Other times, parametric-by-

nonparametric or fully nonparametric interactions are required, both of which can be done

simply in the mixed model framework. The inferential toolbox for mixed models allows for

thorough investigation of these experimental effects as well as estimating physical structural

parameters. Specific examples are found in Chapter 5.

2.2 Semiparametric Regression with Heteroskedastic Errors

One of the main assumptions made in the standard semiparametric model framework

is the presence of homoskedastic errors. In notational terms, this implies σ2 is constant

for all covariate values. This is a standard assumption for regression modeling but can

easily be violated in applications. Heteroskedastic (non-constant) errors can have significant

12



consequences for model inference. It is known that for standard ordinary least squares

(OLS) regression, the estimates of the model coefficients are still unbiased but suffer from

improper variance estimates (Barreto and Howland, 2005, chap. 19). Heteroskedasticity can

have an even greater effect in the penalized spline framework used here since the smoothing

parameter is controlled by the ratio σ2/σ2
b (where σ2

b is the random effects variance).

Heteroskedasticity is a common problem for data arising from SAXS experiments. The

right panel of Figure 1.2 is the log radial mean intensity data associated with a single SAXS

exposure. Figure 1.2 displays clear heteroskedasticity about a smoothly varying underlying

mean function; the variance in intensity increases as s increases. The prevailing explanation

for this behavior is tied to the physical process from which the data are collected. The spatial

covariate s corresponds to the distance from the center of the two-dimensional detector at

which the intensity is measured. The rarity of photon detection emitted from the aligned

phosphorescent screen increases proportionally with s, leading to increased variation further

away from the center.

There are several traditional methods for handling heteroskedastic errors in linear models.

Often nonlinear transformations, such as square root or log, are useful in stabilizing the

variance. However, as pointed out in Carroll and Ruppert (1988), transformations are only

appropriate if Var (Y | X) = h (E[Y | X]) where Y is the response and X is the set of

covariates. Weighted least squares methods can also be used to address the heteroskedastic

variance structure as well (Carroll and Ruppert, 1982a). As an alternative, we consider the

idea of variance function estimation where the log model variance, log(σ2), is modeled as

some smooth function of the covariates. The standard introduction to this idea is found in

Carroll and Ruppert (1988) with the groundwork being laid in Carroll and Ruppert (1982b).

A unified approach to variance function estimation was first presented in Davidian and

Carroll (1987). Variance function estimation is still an active field of investigation. More

13



recent examples of work on this topic can be found in Opsomer et al. (1999) and Crainiceanu

et al. (2007).

Consider the simple regression model that includes a variance function term

yi = f(xi) + εi

εi ∼ N
(
0, σ2

i

)
log(σ2

i ) = g(xi) (i = 1, 2, . . . , N). (11)

Here the log variance function, log(σ2), is modeled as a smooth function g(x). An error term

is omitted at this level since we do not have direct observations of log(σ2(x)). Adopting a

penalized spline formulation as described in Ruppert et al. (2003), the model takes the form

for all i = 1, 2, . . . , N :

yi = [1, xi, . . . , x
p
i , (xi − κ1)p+, . . . , (xi − κK)p+]

β
b

+ εi = Ci
T

β
b

+ εi

b = (b1, b2, . . . , bK)T ∼ NK
(
0, σ2

bIK
)

εi
ind.∼ N (0, σ2

i )

log(σ2
i ) =

[
1, xi, . . . , x

r
i , (xi − κV1 )r+, . . . , (xi − κVKV )r+

] δ
c

 = CVi

T

δ
c


c = (c1, c2, . . . , cKV )T ∼ NKV

(
0, σ2

cIKV
)
, (12)

where β = (β0, β1, . . . , βp)
T and δ = (δ0, δ1, . . . , δr)

T are unknown parameter vectors and

{κk}Kk=1 and
{
κVk
}KV
k=1

are sets of fixed, known knots. The truncated polynomial spline basis

is chosen for convenience. Other common choices of basis functions include radial basis

functions, B-splines, and thin plate splines, depending on the application.
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Define the N × (p + K + 1) and N × (r + KV + 1) design matrices C =
[
Ci

T
]N
i=1

and

CV =
[
CVi

T
]N
i=1

. Let θ = (βT ,bT ) and θV = (δT , cT ). Let Σ = diag(σ2
1, . . . , σ

2
N) and

V = (log(σ2
1), . . . , log(σ2

N))
T

. It is convenient to view (12) as two mixed models with fixed

effects β and δ and random effects b and c. The parameters of interest for the model are

θ,θV , σ
2
b , and σ2

c .

Equation (12) can be considered a submodel of the class of spatially adaptive penalized

spline regressions with heteroskedastic errors described in Crainiceanu et al. (2007). These

models allow for both the error variance (σ2) and the random effects variance (σ2
b ) to be

smoothly varying over some set of covariates. Our model is a simplification that holds σ2
b

as a univariate parameter to be estimated. A limitation of a model of this form is that it

can have trouble fitting data in regions where dramatic increases in variation coincide with

strong changes in curvature. The inclusion of a spatially adaptive random effect variance

improves the ability of the model to respond to changes in the curvature of the underlying

function f(x). The work presented here focuses on cases where the underlying first derivative

of f(x) appears to vary slowly and does not coincide with sharp increases of variation, as is

the case for our motivating application to SAXS data.

It is relatively simple to extend (12) to allow for multiple nonparametric terms at both

the mean and variance levels. This corresponds to the inclusion of additional fixed and

random effect terms with different random effect variance terms. The general heteroskedastic

semiparametric model can be written as

yi = XT
i β + ZT

1ib1 + ZT
2ib2 + · · ·+ ZT

LibL + εi = Ci
T θ + εi

bl ∼ NKl
(
0, σ2

bl
IKl
)
∀ l = 1, 2, . . . L

εi ∼ N (0, σ2
i )

log(σ2
i ) = XT

Vi
δ + ZT

V1i
c1 + ZT

V2i
c2 + · · ·+ ZT

VMi
cM = CT

Vi
θV
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cm ∼ NKVm
(
0, σ2

cmIKVm
)
∀m = 1, 2, . . .M. (13)

Here L and M correspond to the number of unique random effect variances for the mean and

variance levels respectively. The regression parameters are defined as θ =
(
βT ,bT1 , . . . ,b

T
L

)T
and θV =

(
δT , cT1 , . . . , c

T
M

)T
. The fixed effect matrices X and XV have dimension N × p+ 1

and N × r+ 1 respectively. The random effect matrices Zl and ZVm have dimensions N ×Kl

and N×KVm respectively. This results in overall design matrices C and CV with dimensions

N × p+ 1 +
L∑
l=1

Kl and N × r + 1 +
M∑
m=1

KVM .

2.3 Semiparametric Regression for Joint Mean-Variance Data Struc-

tures

We now extend the concept of heteroskedastic semiparametric regression to handle a novel

data structure unique to SAXS experiments. Recall the process of obtaining a SAXS expo-

sure described in Section 1.2. A solution of the sample of interest is bombarded by a high

powered X-ray beam which are scattered onto a two-dimensional detector. Traditional SAXS

data analysis does not consider this two-dimensional response surface. Rather, this surface

is reduced to a one-dimensional collection of the radially averaged intensity values. The left

panel of Figure 1.2 is an example of a two-dimensional response surface from a SAXS ex-

periment. We note that there are some important assumptions that underlie the reduction

of the two dimensional data set to a one dimensional representation, which are not obvi-

ously satisfied, while at the same time, the goal of inferring structural information in three

dimensions is more difficult when the data is one dimensional rather than two dimensional.

Radial dimension reduction often produces in two sets of radial summary statistics. The

first is the radial sample mean intensity data. This is what is traditionally analyzed in SAXS

experiments and is the focus of the models presented in Sections 2.1 and 2.2. Additionally,

we may have a set of radial sample variances corresponding to these radial sample means.
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In other words, for each fixed distance from a defined center, the data-collection mechanism

traverses the corresponding annulus and obtains the response pair
(
Īi, t

2
i

)
. Often there is

a degree of artificially induced smoothness associated with these measures. This at least

partially stems from the “black box” pre-processing of the data that occurs at the source.

The details on these processes are rather vague. Most likely there occurs some 2D smoothing

of the raw sensor data and the observed response pairs are generated using the fitted values.

Since inferring structural information is an inverse problem, reducing the raw data to a one

dimensional representation only makes the ill-posed nature of the problem worse.

2.3.1 Radial Variance Versus Model Variance

Before we propose a modeling paradigm, it is important to understand what exactly we

are investigating. The broad goal of a unified framework that includes both radial mean

and radial variance data is to gain additional insight that leads to better estimation of

physical characteristics of the molecule in question. The established literature for estimating

molecular structural characteristics depends on radial mean data. With the addition of the

radial variance responses, we have two distinct forms of uncertainty which have impact on

this data.

The first source of uncertainty information is the radial variance data themselves. For a

fixed distance si away from the center, let {Iij}Nij=1 be the intensity values that fall on the

corresponding annulus. These values can be thought of as the “original” values from the

two-dimensional response surface. The radial sample mean and radial sample variance pair

are

Īi =
1

Ni

Ni∑
j=1

Iij

t2i =
1

Ni − 1

Ni∑
j=1

(
Iij − Īi

)2
. (14)
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Here t2i describes the amount of variability found across a specific annulus. This can be

thought of as a form of angular variability. Large values of t2i potentially suggest significant

variability in between intensity information about that annulus. That is, intensity curves

taken about different rays emanating from the center could be significantly different from each

other. In this case using the radially averaged intensity data alone may ignore information

about these differences.

The second source of uncertainty information comes from the variability of the radial mean

values across annuli. In Section 2.2 we discussed the implications of observed heteroskedas-

ticity for semiparametric regression. The non-constant variance term, σ2
i , described the

variation of the responses about some underlying smooth mean function tied to a spatial

covariate. In terms of the radial mean intensity data, σ2
i describes the variation of

{
Īi
}N
i=1

as

a function of the distance from center si. The importance of the distinction between t2i and

σ2
i becomes evident in subsequent sections. For convenience, σ2

i is referred to as the model

variance while t2i is referred to as the radial variance.

If the mean-level response yi = Īi, then the relationship between radial and model variances

is the same as that of a population variance and the variance of the sample mean. For

simplicity, let Ai refer to the annulus defined by the radial distance si. Denote T 2
i as the

true population variance of all intensity measures about the Ai. Recall that by definition of

the mean level model found in (13), Var(Īi) = σ2
i . Assuming that the intensity values about

Ai, {Iij}Nij=1, are independent and identically distributed, then

σ2
i =

T 2
i

Ni

log(σ2
i ) = log(T 2

i )− log(Ni). (15)
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We do not have explicit knowledge of the Ni, the samples size about Ai. However, we know

that the Ni is directly proportional to the distance si. This suggests the relationship

log(σ2
i ) = log(T 2

i )− log(si)− log(α), (16)

where α is some constant. Since we have estimates of T 2
i , this suggests a relationship between

t2i and σ2
i of

log(t2i ) = log(α) + log(si) + log(σ2
i ) + ui (17)

where ui corresponds to some error term.

2.3.2 Joint Modeling Framework

For a single set of radial mean and radial variance data, consider a generic model of the

form

yi = f(si) + εi

εi ∼ N
(
0, σ2

i

)
log(σ2

i ) = g(si)

log(t2i ) = h(si, σ
2
i ) + ui

ui ∼ N
(
0, σ2

u

)
. (18)

For now let yi = Īi. In Chapter 5, we discuss the implications of modeling Īi vs. log(Īi). For

the models described in Sections 2.1 and 2.2, we can choose either response based on personal

preference. However, for the model described here, we limit ourselves to the untransformed

radial mean intensity values in order to preserve the structural relationship between σ2 and

t2. Here f(s), g(s), and h(s, σ2) represent smooth functional relationships. If the last two
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lines of (18) are omitted, then this is a heteroskedastic semiparametric regression model as

described in Section 2.2. The functional relationships f(s) and g(s) are represented according

to some basis expansion that will yield fixed and random effects as before.

By including the last two lines of (18), we set forth to jointly model both radial measure-

ments with two explicit aims. First, we treat log(t2i ) as an additional response of interest in

hopes of understanding the effect of experimental conditions on the radial variance processes

associated with the data collection mechanism. Scientific understanding of this process is

sparse and initial investigations have revealed the existence of unexpected experimental ef-

fects that warrant investigation. As with mean intensity measures, experimental factors such

as concentration, exposure time, and sensor calibration can have dramatic effects on data

quality. Detecting these effects is a primary goal of all the methodologies set forth in this

work. Secondly, by treating log(t2i ) as a function of not only radial distance but also model

variance, we hope to better inform the uncertainty estimates associated with the radial mean

portion of the model.

The functional relationship h(s, σ2) in (18) is of particular interest here. A simple h(s, σ2)

motivated by (18) is the fixed effect model

log(t2i ) = η0 + η1 log(si) + η2 log(σ2
i ) + ui

ui ∼ N
(
0, σ2

u

)
. (19)

More flexible nonparametric forms could be implemented for h(s, σ2) using the standard

expansions described here. These could include additive semiparametric models (h(s, σ2) =

h1(s) +h2(σ2)) or a two-dimensional nonparametric fit using an appropriate basis expansion

(e.g., thin plate splines).
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We detail a Bayesian approach for parameter estimation for (18) in Section 3.3. The

method used is an extension of the hybrid Gibbs sampler with delayed rejection adaptive

Metropolis (DRAM) steps used for the heteroskedastic semiparametric regression from Sec-

tion 3.2. Also, we discuss a variational approximation for the joint mean-variance model

when the radial variance level consists of the fixed effect structure from (19) in Section 4.4.
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CHAPTER 3

BAYESIAN INFERENCE VIA MARKOV CHAIN MONTE CARLO FOR

SEMIPARAMETRIC MODELS OF SAXS DATA

3.1 Semiparametric Regression via Gibbs Sampling

We begin this section by detailing a well-known Bayesian framework for mixed models

that is useful in semiparametric regression problems. Recall the general mixed model from

(7), rewritten here for convenience:

y = Xβ + Z1b1 + · · ·+ ZLbl + ε

bl ∼ N
(
0, σ2

bl
IKl
)
∀ l = 1, . . . , L

ε ∼ N
(
0, σ2IN

)
. (20)

The parameters of interest for this model can be classified as regression parameters, β, b1,

. . . , bL, and variance parameters, σ2
b1

, . . . , σ2
bL

, σ2. Prior distribution specification is required

for β as well as all variance parameters. Well-known conjugate prior structures can be used to

allow for the explicit computation of posterior parameter conditional distributions. Consider

the Normal and Inverse Gamma conjugate priors

β ∼ N
(
0, σ2

βIp+1

)
σ2
bl
∼ IG (Abl , Bbl) ∀ l = 1, . . . , L

σ2 ∼ IG (A,B) , (21)
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where the IG (A,B) denotes an Inverse Gamma distribution with density function

f(x) =
BA

Γ(A)
x−A−1 exp

(
−B
x

)
. (22)

Define θ =
(
βT ,bT1 , . . . ,b

T
L

)T
as the vector of all regression parameters. Under this prior

structure, the posterior conditional parameter distributions for θ, σ2
b1

, . . . , σ2
bL

, and σ2 are

θ | · ∼ N
(

1

σ2
MCTY,M

)
M =

(
1/σ2CTC + Σ−1

θ

)−1

Σθ = blockdiag
(
σ2
βIp+1, σ

2
b1
IK1 , . . . , σ

2
bL
IKL

)
σ2
l | · ∼ IG

(
Al +

Kl

2
, Bl +

‖bl‖2

2

)
∀ l = 1, . . . , L

σ2 | · ∼ IG

(
Aε +

N

2
, Bε +

‖Y −Cθ‖2

2

)
. (23)

The notation A | · denotes the conditional distribution of A on all other parameters and

data in the model.

Since we have known forms for the posterior parameter conditional distributions for all

parameters, a MCMC algorithm based on Gibbs sampling is appropriate for posterior sam-

pling (Casella and George, 1992). After initialization, the posterior conditional distributions

are sequentially sampled using the most recent draws for all other parameters. This process

is repeated for some fixed number of iterations. As discussed in Casella and George (1992),

repeatedly sampling from alternating posterior conditional distributions for a sufficiently

large number of iterations will yield an appropriate empirical representation of the poste-

rior parameter distribution. Parameter estimates are constructed from the parameter chains

representing the empirical posterior conditional distributions.
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3.1.1 Single Curve Example

To illustrate semiparametric regression via the Gibbs sampler described above, we consider

data arising from the underlying smooth function

m(x) = 50φ

(
x− 3.5

1.252

)
+ 50φ

(
x− 6.5

1.252

)
, (24)

where φ(z) is the density function of the standard Normal distribution, N (0, 1). We sim-

ulated N = 200 responses over the range of x according to the relationship y = m(x) + ε

where ε ∼ N (0, 1).

As described in (10), we use a truncated quadratic penalized spline basis so that the model

takes the form

yi = β0 + β1xi + β2x
2
i +

K∑
k=1

bk (xi − κk)2
+ (25)

over a set of K = 10 knots at equally spaced quantiles of {xi}, ranging from from 1% to

99%. The Gibbs sampler described above is run for 10, 000 iterations with a burn-in of 1000.

The resulting smooth fit, m̂(x) is shown along with 95% credible bounds in Figure 3.1.

This MCMC method handles the semiparametric regression model quite well. Analysis

of the parameter trace plots in Figure 3.2 indicates appropriate mixing of the posterior

parameter samples and does not raise any red flags regarding these results.

3.1.2 Multiple Curve Example

The flexibility of this regression framework allows for straightforward handling of parametric-

by-nonparametric and fully nonparametric interactions among covariates. Additional model

complexity, through the addition of the necessary fixed and random effects, has minimal
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Figure 3.1: Truncated quadratic spline model for simulated data. The data are simulated
with true mean function m(x) = 50φ

(
x−3.5
1.252

)
+ 50φ

(
x−6.5
1.252

)
and standard Gaussian error.

Shaded regions correspond to 95% pointwise credible bounds generated from the estimated
fits of ŷ. The Gibbs sampler was run for 10, 000 iterations with a 1000 iteration burn-in.
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Figure 3.2: Trace plots of parameter chains of the Gibbs sampler for all elements of θ, σ2
b ,

and σ2. The plots depict the 9000 iterations post burn-in.
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effect on the computational mechanism used to estimate these parameters. We now provide

a multiple curve example that demonstrates this property.

Consider two smooth mean functions over the region [0, 10]

m1(x) = 50φ

(
x− 3.5

1.252

)
+ 50φ

(
x− 6.5

1.252

)
m2(x) = 50φ

(
x− 3.5

1.252

)
+ 50φ

(
x− (6.5 + S))

22

)
. (26)

As before, φ(z) is the standard Normal density function. Here the variable S corresponds to

some shift mechanism in the second Gaussian density function. For the data in Figure 3.3,

we generate 200 responses from equally spaced values of x across the region for each mean

function. Standard Normal error is added to each mean function to simulate our responses.

An appropriate model for this data would include a parametric-by-nonparametric interac-

tion term to describe the relationship between the two mean functions. Define Si as being

0 for data generated from m1(x) and Si = 1.5 otherwise. Let κ1, . . . , κ10 be the same knot

set used in Section 3.1.1. We fit the data using the model

yi = β0 + β1xi + β2x
2
i + β3Si + β4xiSi + β5x

2
iSii

+
K∑
k=1

b1k (xi − κk)2
+ +

K∑
k=1

Sib2k (xi − κk)2
+ + εi

b1k ∼ N
(
0, σ2

b1

)
∀ k = 1, . . . K

b2k ∼ N
(
0, σ2

b2

)
∀ k = 1, . . . K

εi ∼ N
(
0, σ2

)
. (27)

Figure 3.3 shows how well the model fits the data in the presence of this nonlinear interaction

effect. The Gibbs sampler worked quite well in generating acceptable parameter estimates.

Additional diagnostics and trace plots are omitted here for the sake of brevity since, as stated
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before, the behavior of this computational procedure is well understood for standard models

such as the mixed model used here.
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Figure 3.3: MCMC fit of semiparametric interaction model. The data are simulated with
true mean functions m1(x) or m2(x) in (26), both with standard Gaussian error. Shaded

regions correspond to 95% credible bounds. The Gibbs sampler was run for 10, 000
iterations with a 1000 iteration burn-in.

3.2 Heteroskedastic Semiparametric Regression via Hybrid Gibbs

Sampling

The hierarchical nature of the heteroskedastic semiparametric regression model described

in (13) lends itself naturally to a Bayesian approach. As with the model described in

Crainiceanu et al. (2007), we use the conjugate prior structure

β ∼ N
(
0, σ2

βIp+1

)
δ ∼ N

(
0, σ2

δIr+1

)
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σ2
bl
∼ IG (Abl , Bbl) ∀ l = 1, . . . , L

σ2
cm ∼ IG (Acm , Bcm) ∀m = 1, . . . ,M, (28)

where fixed effect coefficient parameters β and δ are modeled with multivariate Gaussians

and random effect variance terms σ2
bl

and σ2
cm are modeled with Inverse Gamma distributions.

Crainiceanu et al. (2007) provides an excellent discussion on the choice of hyperparam-

eters for both the fixed effect parameters as well as for the variance terms. It is standard

practice to use a Gaussian prior structure for the fixed effect parameter vectors β and δ

as well as assuming that the components of each vector are independent. Traditionally σ2
β

and σ2
δ are chosen to correspond to diffuse Gaussian distributions, usually on the order of

106. The rate and scale hyperparameters for the Inverse Gamma priors are also chosen to

correspond to non-informative priors, usually with values on the order 10−4. Crainiceanu

et al. (2007) discusses this choice along with the challenges that can arise as a consequence

of the numerical scale of the underlying spatial covariate x and the reader is referred to that

paper for more in-depth analyses of hyperparameter choice. All models presented in this

work had sensitivity analyses performed to ensure that our estimated posterior distributions

were not being improperly informed by a priori assumptions.

Using the prior structure from (28), the model described in (13) yields the posterior

parameter conditionals

θ | · ∼ N
(
MCTΣ−1y,M

)
M =

(
CTΣ−1C + Σθ

−1
)−1

σ2
bl
| · ∼ IG

(
Ab +

K

2
, Bb +

‖b‖2

2

)
∀ l = 1, . . . , L

σ2
cm | · ∼ IG

(
Ac +

KV

2
, Bb +

‖c‖2

2

)
∀m = 1, . . . ,M
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p(θV | ·) ∝ exp
[
− 1

2

{ N∑
i=1

CVi

T θV +
N∑
i=1

(
Yi −Ci

T θ
)2

exp(−CVi

T θV)

+ θV
TΣθV

−1θV

}]
. (29)

The challenge of fitting this model is due to the non-standard distribution of θV | ·. The

distribution p(θV | ·), while in the exponential family, does not represent a known distribu-

tion. A common way to handle Bayesian models that lack known posterior conditional forms

for a small subset of the parameters is to use some standard MCMC method (Metropolis-

Hastings, rejection sampling, etc.) to generate samples, while Gibbs sampling is performed

for the remaining parameters. However, the dimensionality of θV makes this problematic.

The parameter θV is a r + 1 +
M∑
m=1

KVm-dimensional vector. Even for simple models this

value is often too large for simple methods to adequately explore the posterior parameter

conditional distribution θV | ·. While there are potentially many ways to address this is-

sue, we detail two approaches here. One approach, as done in Baladandayuthapani et al.

(2005) and Crainiceanu et al. (2007), is to introduce a latent error term to the variance

model that allows for the sampling from N univariate posterior conditionals, which can

be accomplished through traditional Metropolis-Hastings schemes. Alternatively, one could

use a more advanced sampling method for drawing from θV | ·. We propose the use of a

delayed rejection adaptive Metropolis (DRAM) algorithm to address the multivariate sam-

pling problem (Haario et al., 2006). We focus on the DRAM approach and present it here

due to considerations for the joint mean-variance models discussed in Section 2.3 and the

variational approximations described in Section 4.3. In addition to these two approaches,

personal correspondence with Dr. Daniel Hernandez-Stumpfhauser has suggested the use of

a multivariate “slice sampling” approach to dealing with the lack of conjugate structure in

θV | · (Damlen et al., 1999). We have not investigated this idea but this approach could

prove interesting for future study.
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3.2.1 Delayed Rejection Adaptive Metropolis

Delayed rejection adaptive Metropolis (DRAM), as the name implies, refers to a class of

sampling methodologies combining two complementary techniques: delayed rejection and

adaptive Metropolis sampling. A brief introduction is provided here to provide appropriate

context to our work. The reader is directed to Haario et al. (2006) for the definitive narrative

on the subject.

Delayed rejection methods are based upon the idea of allowing multiple proposal distri-

butions to be used at each iteration of a Markov chain. In traditional Metropolis-Hastings

procedures, a candidate value y1 is generated from some proposal q1(xt, ·) where xt = Xt,

the current state of the Markov chain. This candidate is accepted with probability

α1(xt, y1) = max

(
1,
π(y1)q1(y1, xt)

π(xt)q1(xt, y1)

)
. (30)

Here π(·) denotes the distribution of interest for our sample (the posterior parameter distri-

bution of θV in our case). The next value in the Markov chain is defined as

Xt+1 =


y1 with probability α1(xt, y1)

xt with probability 1− α1(xt, y1).

(31)

A delayed rejection approach embeds an additional proposal step that is used after the

rejection of y1 and “delays” the chain from moving to the next iteration. Let y2 be a

candidate generated from the proposal distribution q2(xt, y1, ·). This candidate is accepted

with probability

α2(xt, y1, y2) = max

(
1,
π(y2)q1(y2, y1)q2(y2, y1, xt)[1− α1(y2, y1)]

π(xt)q1(xt, y1)q2(xt, y1, y2)[1− α1(xt, y1)]

)
. (32)

31



The next value in the Markov chain is now defined as

Xt+1 =


y1 with probability α1(xt, y1)

y2 with probability α2(xt, y1, y2)

xt with probability 1− α1(xt, y1)− α2(xt, y1, y2).

(33)

The idea behind delayed rejection is to increase the number of accepted candidates by

allowing for multiple proposal distributions to be used. At each level, a different proposal

can be used that can be informed by not only the current state of the chain but also the

rejected candidate values from all subsequent levels. While a two-level proposal scheme

is presented here, it is generalizable to an arbitrary number of proposal distributions. A

common choice is to have Gaussian proposals with covariance scaling as one moves through

the scheme.

Adaptive MCMC methods traditionally aim to leverage on-line information about the

parameter chain in order to tune the proposal distribution to increase chain efficiency (Haario

et al., 2001, 2006). The form implemented in our work tunes the covariance matrix of a

multivariate Gaussian proposal distribution at fixed interval length. After some initialization,

the covariance matrix updates take the form

Σn = sdCov (X1, X2, . . . , Xn−1) + sdeID, (34)

where sd is some scaling factor and e is a small user-defined constant. Adaptation occurs at

predefined intervals. Covariance updating of this form violates the Markovian properties of

the chain but it can be shown that chains following this scheme are ergodic (Haario et al.,

2001, 2006).
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DRAM computational schemes have been shown to be particularly effective at dealing

with multivariate sampling problems, often in cases where the target distribution is far from

a known form. In the context of heteroskedastic semiparametric regression, a two-stage

DRAM step will be used to draw samples from θV | · while samples are drawn from the

other posterior parameter conditional distributions using their known forms.

3.2.2 Single Curve Examples

To illustrate this methodology, we now consider simulated data with a known mean and

variance function. Figure 3.4 shows N = 200 data points simulated from a true mean

function of m(x) = −1
8
(x − 5)3 + x under the variance functions v1(x) =

(
1
4
x+ 1

2

)3
and

v2(x) = exp
{

(x−5)2

5

}
over the region x ∈ [0, 10].

A truncated quadratic spline model of the form found in (12) (p = 2), written as

yi = β0 + β1xi + β2x
2
i +

K∑
k=1

bk(xi − κk)2
+ + εi

log(σ2
i ) = δ0 + δ1xi + δ2x

2
i +

KV∑
k=1

ck(xi − κVk )2
+, (35)

is used to for both data sets. Here we use 10 equally spaced knots over [0, 10] for both the

mean and variance levels (K =10,000KV = 10).

The MCMC procedure described above was run for 10, 000 iterations with a burn-in of

1000 for both data sets. For the DRAM procedure, we used a dual-stage Gaussian proposal

scheme with covariance scaling by a factor of 100 upon first-level rejection. The adaptive

interval length used for updating the proposal covariance is 100 iterations. The defined

scaling factor sd is set to 2.4/
√
Npar, where Npar is the dimension of the parameter θV

(Haario et al., 2006).
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Figure 3.4: Simulated heteroskedastic data with mean function m(x) = −1
8
(x− 5)3 + x.

The top frame corresponds to a true variance function v1(x) =
(

1
4
x+ 1

2

)3
while the bottom

frame corresponds to v2(x) = exp
{

(x−5)2

5

}
.
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Figure 3.5 shows the resulting fits of the simulated observations from m(x) under v1(x)

and v2(x) respectively. The estimated mean functions matches up closely with m(x). The

shaded regions represent 95% credible bounds. These regions better reflect the observed

variance structure of the data than a homoskedastic model.

Apart from the simulated mean data, it may be of interest to study the estimated log

variance function that drives the non-constant variance structure. Note that these variance

functions are implicitly latent and never directly observed. All inference about them comes

from the residual structure of the mean level model. Figure 3.6 contains the estimates of

log(v1(x)) and log(v2(x)). The fits detailed in this figure raise some interesting questions.

While the estimated log variance functions match up with the general structure of log(v1(x))

and log(v2(x)), there are some coverage issues with the 95% credible bounds that are notable.

Most likely, the lack of fit of the log variance functions is tied to lack of direct observations

of log(v(x)) for both simulations. Figures 3.7 and 3.8 show the mean and log variance fits

N = 800 simulated data points as opposed to N = 200. As expected, the increase in sample

size increases the quality of the estimated mean function. This increase in data seems to

improve the estimated log variance function but there are still some minor lack-of-fit problems

that persist.

Alternatively, the difficulties in fitting log(v(x)) could be tied to the computational scheme

used to estimate θV . Even a simple two-stage DRAM method requires manual tuning of

adaptive interval length, start values, covariance scaling factors, etc. Appropriate diagnostic

measures are needed for assessing the appropriateness of our estimate of θV . For the MCMC

procedure for N = 200, we observed acceptance rates after burn-in between 11% and 15%.

Figure 3.9 is the trace plot for θV associated with estimating log(v1(x)). While the overall

acceptance rate is adequate, Figure 3.9 suggests that the marginal chains have not converged.

However, the sluggishness in the marginal chains of θV may be partially due to the fact that
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Figure 3.5: MCMC estimated mean curves from (35). The MCMC procedure was run for
10, 000 iterations iterations with a burn-in of 1000.
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Figure 3.6: MCMC estimated log variance curves from (35). The MCMC procedure was
run for 10, 000 iterations with a burn-in of 1000.
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Figure 3.7: MCMC estimates of mean functions for (35) for large sample case (N = 800).
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Figure 3.8: MCMC estimates of (35) log variance functions for large sample case
(N = 800).
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they are a set of basis coefficients. Analyzing them marginally may not be appropriate for

assessing true convergence of the method. To compare, Figure 3.10 contains pointwise trace

plots for v̂(x), the estimated log variance curve defined as CV θV . These chains seem to

demonstrate better convergence properties than the marginal chains of θV alone. This is not

surprising since it is the variance terms σ2
i = exp

(
CT
Vi
θV
)

that actually have representations

in the mean level model.

The same procedure was repeated for 50000 iterations with a burn-in of 5000 to test the

influence of a longer run-time. The resulting log variance estimates are displayed in Figure

3.11. Dramatic increases of the run length appear to improve the coverage properties of the

v(x) estimates. The estimates of the mean functions are virtually identical to the 10000

iteration example and omitted for brevity. However, there is still evidence that the chain

for θV has not converged. At this time, we see three potential remedies to this convergence

issue. First, modification of the DRAM tuning parameters and/or proposal hierarchy could

potentially lead to better traversal of the posterior parameter space. Secondly, replacing the

truncated polynomial basis functions with an alternative, orthogonal basis (e.g., B-splines)

could allow for the marginal elements of θV to move more freely, speeding up computation.

Finally, extending the model to include a parameter expansion representation of the regres-

sion coefficients may also help Gelman et al. (2013). Resolving this convergence issue will

be a priority for future work.
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Figure 3.9: Trace plots of the parameter chains associated with the elements of θV for
estimating v1(x) via the DRAM procedure described in Section 3.2.1.
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Figure 3.10: Selected pointwise trace plots for the estimate v̂1(x) using the DRAM
procedure described in Section 3.2.1.
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Figure 3.11: Estimated log(v(x)) functions for single curve example after 50000 iterations
with a 5000 iteration burn-in.
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3.2.3 Vertically Shifted Curves with Common Variance Structure

As mentioned previously, a significant advantage of the mixed model framework for semi-

parametric regression is the ease with which one is able to extend models to include in-

teraction effects. For heteroskedastic semiparametric regression, the examples presented up

to now have described only single mean and variance curve scenarios. While this is quite

common, there are many instances where multiple curves relating to additional covariates

or interaction effects are of interest. In this section we continue our simulation study of

the properties of the MCMC procedure when describing more complex multiple curve struc-

tures. For the following examples, all hyperparameters for fixed effect variances are set at

σ2
β = σ2

δ = 105. The rate and scale hyper parameters for the Inverse Gamma priors on the

random effect variance terms are each set at 10−5. We use a truncated quadratic spline basis

evaluated at a set of 15 knots at equally-spaced quantiles ranging from 5% to 95% in each

example at both the levels of the heteroskedastic model.

The first example considers the case where we have two curves whose only apparent differ-

ence is a vertical shift by a constant over the entire range of x ∈ [0, 10]. The true mean curves

correspond to m1(x) = −0.125(x− 5)3 + x and m2(x) = −0.125(x− 5)3 + x+ 10 (plotted in

green and purple respectively). We generate 200 samples from each curve, shown in Figure

3.12. Both mean curves share a common variance function v(x) = exp (−(x− 5)2/5). If we

let Si = 10 for data originating from m2(x) and Si = 0 otherwise, we can model this example

by including an additional fixed effect term to the model found in (35), taking the form

yi = β0 + β1xi + β2x
2
i + β3Si +

K∑
k=1

bk(xi − κk)2
+ + εi

log(σ2
i ) = δ0 + δ1xi + δ2x

2
i +

KV∑
k=1

ck(xi − κVk )2
+. (36)
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Figure 3.12: MCMC estimates of m(x) (top) and log(v(x)) for the parametric shift model
found in (36). The MCMC procedure was run for 10, 000 iterations with a burn-in of 1000.
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Figure 3.12 shows the resulting fits at both the mean and variance level for this model. As

with the single curve examples detailed previously, our heteroskedastic model better portrays

the observed uncertainty associated with the mean level data than a constant-errors version.

The uncertainty estimates represented by the 95% credible bounds on the estimates of m(x)

pick up the increased variation towards the tails of the region of interest. The bottom panel of

Figure 3.12 details the fit of the latent log(v(x)) function. Here we observe similar behavior

as with the single curve examples. The estimate of log(v(x)) takes the general quadratic

shape of the true log(v(x)) but appears to miss the mark at several points across [0, 10].

3.2.4 Interaction Model with Common Variance Structure

Our second example considers a situation where the interaction structure between two

curves is more complex than a simple vertical translation. Data are simulated from mean

curves m1(x) = exp (−x2/12) and m2(x) = exp (−x2/(12 + S)). For the data presented in

Figure 3.13, 200 data points are simulated from m1(x) and m2(x) and S = 8. Both curves

follow a common variance function v(x) = (x/100)2. Let Si = 8 for yi simulated under m2(x)

and 0 otherwise. Here we fit these data using the parametric-by-nonparametric interaction

model

yi = f1(xi) + Sif2(xi) + εi

log(σ2
i ) = g(xi). (37)

Using our truncated quadratic basis, this model expands to

yi = β0 + β1xi + β2x
2
i + β3Si + β4xiSi + β5x

2
iSi

+
K∑
j=1

b1j(xi − κj)2
+ +

K∑
j=1

Sib2j(xi − κj)2
+ + εi

log(σ2
i ) = δ0 + δ1xi + δ2x

2
i +

KV∑
k=1

ck(xi − κk)2
+. (38)
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The inclusion of the parametric-by-nonparametric interaction term, Sif2(xi), is handled

through the additional random effect terms, {b2j}, which have their own distinct variance

term σ2
b2

. Even without knowledge that a single variance function was used in the simulation,

visual inspection of the data would support that while the underlying variance structure

is most definitely non-constant, there is no evidence for dramatic differences across mean

functions.

Figure 3.13 contains the results of our hybrid Gibbs-DRAM MCMC procedure for both

the mean and variance level. The results are much the same as our previous single curve and

multiple curve examples. Even under a more complicated mean structure that included two

distinct random effect variance terms, our model accurately fits the data. The interaction

term captures the nonlinear relationship between the shift covariate S and the underlying

mean function while reflecting the increase in variation as x increases. As observed before,

the underlying fit of log(v(x)) closely tracks the true function but suffers from some fit

difficulties particularly for x in the region [6, 8].

3.2.5 Interaction Model with Dampening Variance

The final simulated example we consider for our heteroskedastic semiparametric regres-

sion MCMC procedure extends the interaction model described in (38) to include an in-

teraction term at the variance level. As with before, 200 data points are simulated from

m1(x) = exp (−x2/(12)) and m2(x) = exp (−x2/(12 + S)) with S = 8. The variance func-

tion associated withm1(x) is v1(x) = (x/100)2, the same as the previous examples. For values

generated from m2(x), we use a damped version of v1(x) defined as v2(x) = 0.05(x/100)2.

Let Di be an indicator variable that takes values 1 for responses generated from m2(x) and

0 otherwise. Using our penalized spline notation, this model is written as

yi = β0 + β1xi + β2x
2
i + β3Si + β4xiSi + β5x

2
iSi
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Figure 3.13: MCMC estimates of the mean and log variance function for the
parametric-by-nonparametric interaction model with constant variance structure described

in (38). The MCMC procedure was ran for 10, 000 iterations with a burn-in of 1000
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+
K∑
j=1

b1j(xi − κj)2
+ +

K∑
j=1

Sib2j(xi − κj)2
+ + εi

log(σ2
i ) = δ0 + δ1xi + δ2x

2
i + δ3Di + δ4xiDi + δ5x

2
iDi

+

KV∑
k=1

c1k(xi − κVk)2
+ +

KV∑
k=1

Dic2k(xi − κVk)2
+. (39)

As with the interaction model with common variance structure from (38), the parametric-

by-nonparametric interaction terms are handled by the inclusion of additional random effect

terms with distinct variance parameters.

Figure 3.14 shows the results from our MCMC procedure for this model. As with previous

iterations, the model accurately fits the nonlinear interaction structure of the mean data

while tracking the general structure of the latent log variance curves, but suffers from lack

of fit issues in higher variance regions. Since this is the most complicated variance structure

presented in our simulation study, it is not surprising that the estimates of log(v1(x)) and

log(v2(x)) suffer the greatest difficulty we have observed so far.

The prevailing conclusion for both the single and multiple curve simulation examples for

the heteroskedastic semiparametric problem is that our method performs quite well for the

modeling of observed mean level data. However, while our model is able to better describe

the underlying variance structure, some issues regarding coverage and lack of fit seem to

plague our estimates of log(v(x)), especially for more complicated variance structures. In

the single curve examples, this lack of fit was partially resolved through an increase in the

overall runtime of the MCMC procedure (10000 to 50000). For the more complicated models,

particularly those that include interaction terms at the mean level, a 50000 length run seemed

to yield only marginal improvements in the log variance estimates. In both the single curve

and more complicated cases, our DRAM method seems to suffer from convergence issues. We

conjecture that much of the difficulty associated with finding appropriate θV comes from this
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Figure 3.14: MCMC estimates of the mean and log variance function for the
parametric-by-nonparametric interaction model with variance dampening described in (38).

The MCMC procedure was run for 10, 000 iterations with a burn-in of 1000.
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latent variable problem. It seems that for data at a given sample size, there is a class of similar

curves that could be responsible for the observed variation. As sample size increases, this

class gets increasingly smaller since we have more empirical variation observations to use in

lieu of direct observations of the true variance function. This latent structure combined with

computational difficulties associated with sampling θV | · potentially limits the quality of

variance function estimates. Additionally, the associated computational issues of traversing

the θV parameter space can have impact on the overall fit of the log variance estimates.

As discussed previously, investigating solutions for this problem in the form of additional

DRAM modification, alternative basis functions, and parameter expansion are priorities for

future work.
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3.3 Joint Mean Variance Semiparametric Model via Hybrid Gibbs

Sampling

As with the heteroskedastic errors model, the hierarchical nature of the joint mean-variance

model detailed in Section 2.3 lends itself to a Bayesian framework. For the sake of clarity we

first present work based on single pairs of radial mean and radial variance data. We primarily

study the implementation of a computational scheme related to the method found in Section

3.2 for the case where the radial variance functional relationship, h(s, σ2) is modeled solely

with fixed effects. Following this, we present the MCMC extension to the general model

where all three levels can treated as generic combinations of parametric, nonparametric, and

interaction terms.

3.3.1 Fixed Effect Radial Variance Model

Let y =
(
Ī1, Ī2, . . . , ĪN

)T
, w = (log(t21), log(t22), . . . , log(t2N))

T
, and v = (log(σ2

1), log(σ2
2),

. . . , log(σ2
N))T . Define x = (x1, x2, . . . , xN)T as the spatial covariate corresponding to radial

distance. For convenience, the functional relationships at the mean and model variance level,

f(x) and g(x) from (18), will be handled through a truncated quadratic spline basis expansion

akin to previous work. Equation (40) describes the element-wise joint mean-variance model

with radial variance fixed effects.

yi = β0 + β1xi + β2x
2
i +

K∑
k=1

bk (xi − κk)2
+ + εi

bk ∼ N
(
0, σ2

b

)
∀ k = 1, . . . K

εi ∼ N
(
0, σ2

i

)
vi = δ0 + δ1xi + δ2x

2
i +

KV∑
k=1

ck
(
xi − κVk

)2

+

ck ∼ N
(
0, σ2

c

)
∀ k = 1, . . . , KV

52



wi = η0 + η1 log(xi) + η2vi + ui

ui ∼ N
(
0, σ2

u

)
. (40)

Written in matrix form, this model is

y = Xβ + Zb + ε

b ∼ N
(
0, σ2

bIK
)

ε ∼ N (0,Σ)

v = XV δ + ZV c

c ∼ N
(
0, σ2

cIKV
)

w = XWη + u

u ∼ N
(
0, σ2

uIN
)
. (41)

As with before, β, δ, and η are vectors of fixed effect parameters and b and c are vectors of

random effects. The matrix Σ correspond to a diagonal covariance matrix where Σii = σ2
i .

For notational convenience, let θ = (β,b)T , θV = (δ, c)T , C = [X,Z], and CV = [XV ,ZV ].

Based on the similarity to the heteroskedastic model, we choose conjugate priors with

distributions

β ∼ N
(
0, σ2

βI3

)
δ ∼ N

(
0, σ2

δI3

)
η ∼ N

(
0, σ2

ηI3

)
σ2
b ∼ IG (Ab, Bb)

σ2
c ∼ IG (Ac, Bc)

σ2
u ∼ IG (Au, Bu) , (42)
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where σ2
β, σ2

δ , σ
2
η, Ab, Bb, Ac, Bc, Au, and Bu are fixed hyperparamters. Under these priors,

the posterior conditional distributions for the parameters of interest are shown in Equation

(43).

θ | · ∼ N
(
MCTΣ−1y,M

)
where M =

(
Σθ
−1 + CTΣ−1C

)−1

η | · ∼ N
(

1

σ2
u

MWXT
Ww,MW

)
where MW =

(
Ση
−1 +

1

σ2
u

XTX

)−1

σ2
b | · ∼ IG

(
Ab +

K

2
, Bb +

‖b‖2

2

)
σ2
c | · ∼ IG

(
Ac +

KV

2
, Bc +

‖c‖2

2

)
p(θV | ·) ∝ exp

[
− 1

2

{ N∑
i=1

CVi

T θV +
N∑
i=1

(
Yi −Ci

T θ
)2

exp(−CVi

T θV)

+ θV
TΣθV

−1θV +
1

σ2
‖w −XWη‖2

}]
.

σ2
u | · ∼ IG

(
Aus+

N

2
, Bu +

‖w −XWη‖2

2

)
(43)

The posterior conditional distributions presented here are quite similar to those found

in the heteroskedastic semiparametric regression model with two main departures. The

first departure is the addition of posterior conditionals for η and σ2
u. Since these have

known forms, it is a simple matter to include them in our Gibbs sampling procedure as

outlined previously. The second departure comes in the additional term in the non-conjugate

distribution for θV | ·. The proportional form of p(θV | ·) here includes the term ‖w −

XWη‖2/σ2
u. Given the fixed effect structure detailed in (40), v is a covariate which embeds

a relationship with θV in the matrix X. As such, this term is included in the derivation of

p(θV | ·).

To sample from these posterior conditionals, we propose to use the same hybrid Gibbs

sampler as the heteroskedsatic semiparametric regression problem detailed in Section 3.2. A

two-stage DRAM step is used to sample from the posterior conditional distribution of θV | ·
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while the other parameters of interest are sampled directly from their known forms. For now

we use the same tuning parameters and Gaussian proposals for the DRAM step as previous

work.

3.3.2 Radial Fixed Effect Simulation Example

To test this joint methodology we consider a simulated data example. Rather than at-

tempting to simulate the physical process that generates radial data of this type, we simu-

lated a heteroskedastic “radial mean” curve with known mean and model variance functions

similar to the simulation examples from Section 3.2.2. Then our “radial variance” data is

simulated with a known form based on spatial covariate x and the true log model variance

v. The data for this example are generated according to

m(x) = 25(e−(x−1)2/10 + 3)

log
(
σ2(x)

)
= log

(
2x2 + 10

20

)
log
(
t2(x, σ2(x))

)
= 10− 4 log(x) + log

(
σ2(x)

)
, (44)

where m(x) is the true “radial mean” function with true model variance σ2(x). The function

log (t2(x, σ2(x))) represents true log “radial variance” function here. For notational sim-

plicity, let w(x, σ2) = log (t2(x, σ2(x))) and v(x) = log (σ2(x)). The observed data in this

example consists of N = 400 response pairs {yi, wi}Ni=1 generated from evenly spaced x values

across the interval [1, 10]. Gaussian noise with variance σ2
u = 0.25 is added to generate the

observed wi values. Figure 3.15 shows the simulated “observed” data.

The data is fit with the hierarchical model described in (40). The mean and model

variance levels consist of nonparametric fits using a truncated quadratic spline basis (p = 2)

of K = KV = 10 quantile spaced knots across the range of x. The radial variance level is

fit via a fixed effects model with both log(x) and v as covariates. All Inverse Gamma hyper
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Figure 3.15: Simulated data meant to mimic the radial mean and variance data arising
from SAXS experiments. The top panel corresponds to radial mean responses simulated

from m(x) = 25(e−(x−1)2/10 + 3) with model log variance function v(x) = log
(

2x2+10
20

)
. The

bottom panel corresponds to the radial variance data simulated according to
10− 4 log(x) + v(x) + u where u ∼ N (0, 0.25).
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parameters are set to 10−8. The variance hyperparameters for the fixed effect terms are

σ2
β = σ2

δ = σ2
η = 105.

Figure 3.16 contains the result of a 50000 iteration run of our MCMC procedure with

a burn-in of 5000. Both radial mean and radial variance data are adequately fit by the

model. The shaded regions correspond to 95% pointwise credible bounds for the smooth

fits and reflect the variance structure of both response sets. The heteroskedastic behavior

observed in the radial mean data is reflected by the increase in the bounds for larger values

of x while the constant error structure of the radial variance data is maintained. Table 3.1

contains the MCMC estimates of the parameters used to generate the radial variance data.

All estimates are very close to their true values. There is indication of slight coverage issues

with the credible bounds associated with the parameter chains however. For this particular

run, the credible bounds for η1, η2, and σ2 barely miss the true value, while still being

quite close. Most likely this has to do with the fact that these estimates are from a model

where one of the covariates is the latent model variance vi. Discrepancy in between the true

model variance and the model estimate could result in the parameters of the radial variance

level having different interpretability than before. In essence, they would be modeling a

different covariate set than the one that generated the data. More detailed investigation

of the implications of including the log model variance as a covariate in these models is an

interesting topic for future work.

Table 3.1: Parameter estimates for simulated radial variance data under fixed effect
structure. The MCMC procedure was ran of 50000 iterations.

Estimate 2.5% 97.5%
η0 9.45 8.57 10.17
η1 -3.22 -3.98 -2.20
η2 0.39 -0.27 0.84
σ2
u 0.31 0.26 0.35
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Figure 3.16: Estimates of the underlying radial mean and radial variance functions for the
radial fixed effect simulation example. The MCMC procedure was ran for 50000 iterations

with a burn-in of 5000
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The top panel of Figure 3.16 compares the estimated log model variance function, v̂(x),

with the true function. For comparison, the bottom panel of Figure 3.16 contains the v̂(x)

from a 50000 iteration run of a heteroskedastic semiparametric regression model, using the

same set up as our joint model where appropriate. As discussed in previous sections, precise

fitting of the log model variance function used to generate the data can be difficult due to

lack of direct observations. The MCMC estimates of v̂(x) in both cases appear to perform

quite well. The only significant difference between the methods with regards to variance

function estimate was observed for chains with smaller run-lengths. Figure 3.18 displays

both fits resulting from a 10000 run iteration. The “short run” estimates of v(x) suggest that

including the radial variance structure may help the DRAM step traverse the multivariate

posterior conditional θV | · and reach acceptable estimates faster than the alternative. It is

unclear how much this improvement is contingent on the proper specification of the radial

variance model. Ideally, improper specification of the radial variance model would result in

MCMC procedure placing more weight on the inference drawn from the residuals of the radial

mean level. Investigating this relationship is an interesting subject for future investigations.

The 50000 iteration run of the joint mean-variance MCMC procedure took approximately

10 minutes on a standard MacBook Pro laptop with a 2.3 GHZ Intel Core i5 processor and

4GB of RAM. Figure 3.19 consists of the element-wise trace plots of θV . The DRAM step

had an overall proposal acceptance rate of approximately 4% for the length of this run,

comparable to similar length runs of the heteroskedastic semiparametric regression DRAM

method. Improved tuning of this sampling step may lead to faster convergence of the θV

chain, reducing the overall number of iterations needed.
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Figure 3.17: Estimates of the log model variance function for the radial fixed effect
simulation example. The top panel is from the MCMC procedure for joint mean-variance
data while the bottom panel corresponds to a heteroskedastic semiparametric regression
model that ignores the radial variance data. Both MCMC procedures were ran for 50000

iterations with a burn-in of 5000.
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Figure 3.18: Log model variance estimates as shown in Figure 3.17 for a 10000 iteration
run.
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Figure 3.19: Trace plots of the θV parameter chain from a 50000 iteration run of the
MCMC procedure for the radial fixed effect simulation example.
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3.3.3 General Joint Model

It is relatively simple to extend the model described in (41) to allow for more complicated

parametric and nonparametric terms at all three levels. In general terms, the joint mean-

variance model is written as:

y = Xβ + Z1b1 + Z2b2 + · · ·+ ZLbL + ε

bl ∼ N
(
0, σ2

bl
IKl
)
∀ l = 1, . . . , L

ε ∼ N (0,Σ)

v = XV δ + ZV1c1 + ZV2c2 + · · ·+ ZVMcM

cm ∼ N
(
0, σ2

cmIKVm
)
∀m = 1, . . . ,M

w = XWη + ZW1d1 + ZW2d2 + · · ·+ ZWR
dR + u

br ∼ N
(
0, σ2

bρIKWρ
)
∀ ρ = 1, . . . , R

u ∼ N
(
0, σ2

uIN
)
. (45)

Recall that Σ is the diagonal covariance matrix with entries σ2
i and v =

(
log(σ2

1), . . . ,

log(σ2
N)
)T

. Generic inclusion of mixed effects at all three levels of the model allow for

both parametric and nonparametric terms to be specified. New random effects d1, d2,

. . . , dR are included for the radial variance level. Define CW = [XW ,ZW1 , . . . ,ZWR
] and

θW =
(
ηT ,dT1 , . . . ,d

T
R

)T
. The generalized conjugate prior structure is

β ∼ N
(
0, σ2

βI3

)
δ ∼ N

(
0, σ2

δI3

)
η ∼ N

(
0, σ2

η.I3

)
σ2
bl
∼ IG (Abl , Bbl) ∀l = 1, . . . , L

σ2
cm ∼ IG (Acm , Bcm) ∀m = 1, . . . ,M
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σ2
dρ ∼ IG

(
Adρ , Bdρ

)
∀ρ = 1, . . . , R

σ2
u ∼ IG (Au, Bu) , (46)

with fixed hyperparameters σ2
β, σ2

δ , σ
2
η, {Abl , Bbl}

L
l=1, {Acm , Bcm}

M
m=1,

{
Adρ , Bdρ

}R
ρ=1

, Au, and

Bu. The posterior conditional distributions for the parameters of interest are

θ | · ∼ N
(
MCTΣ−1y,M

)
where M =

(
Σθ
−1 + CTΣ−1C

)−1

θW | · ∼ N
(

1

σ2
u

MWCT
Ww,MW

)
where MW =

(
ΣθW

−1 +
1

σ2
u

CT
WCW

)−1

σ2
bl
| · ∼ IG

(
Abl +

Kl

2
, Bbl +

‖bl‖2

2

)
∀ l = 1, . . . , L

σ2
cm | · ∼ IG

(
Acm +

KVm

2
, Bcm +

‖cm‖2

2

)
∀m = 1, . . . ,M

σ2
dρ | · ∼ IG

(
Adρ +

KWρ

2
, Bdρ +

‖dρ‖2

2

)
∀ ρ = 1, . . . , R

p(θV | ·) ∝ exp
[
− 1

2

{ N∑
i=1

CVi

T θV +
N∑
i=1

(
Yi −Ci

T θ
)2

exp(−CVi

T θV)

+ θV
TΣθV

−1θV +
1

σ2
‖w −CW θW‖2

}]
.

σ2
u | · ∼ IG

(
Au +

N

2
, Bu +

‖w −CW θW‖2

2

)
. (47)

The notation ΣθW refers to the covariance matrix

ΣθW = blockdiag
(
σ2
ηIq, σ2

d1
IW1 , . . . , σ

2
dR
IWR

)
. (48)

To sample from the posterior conditionals in (47), the same MCMC procedure as the ra-

dial variance fixed effect version is used. All parameters except for θV are drawn directly

from their known forms while a two-stage DRAM step is used to sample from the posterior

conditional distribution of θV | ·.
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3.3.4 General Joint Model Example

As with the preceding methodologies, the mixed model representation of the joint ra-

dial mean and variance model presented here allows for the flexible definition of complex

structures at the radial mean, radial variance, and model variance levels. We now provide

an illustrative simulation example of the general semiparametric methodology. Consider

N = 400 radial mean observations as shown in Figure 3.20 (200 per mean function). The

data are generated according to mean functions

m1(x) = 25(e−(x−1)2/10 + 3)

m2(x) = m1(x) + 15. (49)

The mean functions m1(x) and m2(x) share the log model variance function

v(x) = log

(
2x2 + 10

20

)
. (50)

The log radial variance responses are simulated according to the function

w(x) = 10− 4 log(x) + v(x) + 2v(x) log(x) + u

u ∼ N (0, 0.25) . (51)

Cursory observation of the radial mean data suggests adding a parametric shift component

to the nonparametric model used early. Element-wise, the radial mean is

yi = β0 + β1xi + β2xi + β3Si +
K∑
k=1

bk (xi − κk)2
+ + εi

εi ∼ N
(
0, σ2

i

)
. (52)
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Figure 3.20: The top panel describes radial mean data simulated from
m1(x) = 25(e−(x−1)2/10 + 3) (purple) and m2(x) = m1(x) + 15 (green). Both mean functions

have true log model variance v(x) = log
(

2x2+10
20

)
. The bottom panels shows the simulated

radial variance data. Data here is simulated regardless of generating mean function
following w(x) = 10− 4 log(x) + v(x) + 2v(x) log(x) + u where u ∼ N (0, 0.25).
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The observed variation of the radial mean data suggests the same heteroskedastic behavior

across mean curves. As such, we use the same truncated quadratic model as (40) for the

model variance level.

For this example we choose to model the radial variance data as a general bivariate function

of both x and σ2. Element-wise, the model is

wi = η0 +
R∑
ρ=1

dρBρ (xi, vi) + ui

d ∼ N
(
0, σ2

dIR
)

ui ∼ N
(
0, σ2

u

)
(53)

where the bivariate basis {Bρ(x, v)}Rρ=1 corresponds to a set of thin-plate splines evaluated

over a grid of R = 25 equally spaced knots (Kammann and Wand, 2003). All hyperparameters

are set to the same values as the previous example. The MCMC procedure was ran for 50000

iterations with a 5000 step burn-in time.

Figure 3.21 shows the results of this model for the simulated data. The mean level es-

timates, depicted in the top panel, pick up the parametric shift component while also ap-

propriately reflecting the increased variation at larger values of x. The bottom panel shows

the resulting fit from the bivariate thin-plate splines expansion for the radial variance data.

Figure 3.22 shows the estimate of the log model variance function for both the joint model

presented here as well as a standalone heteroskedastic semiparametric model. While the

bounds associated with the heteroskedastic model are tighter in most places, this estimate

suffers from the same difficulty of fit problem we have observed when estimating latent vari-

ance functions. The estimate associated with the joint model has better coverage properties

of this value, albeit at the price of wider uncertainty bounds.
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Figure 3.21: Estimated radial mean functions (top) and radial variance function (bottom)
for the general joint model example. Shaded regions represent 95% pointwise credible

intervals.
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Figure 3.22: Estimated log model variance functions for both the joint mean-variance
model (top) and the standard heteroskedastic model (bottom).Shaded regions represent

95% pointwise credible intervals.

69



The hierarchical model for radial mean and radial variance data and accompanying MCMC

procedure described here have shown to be useful in describing the observed responses under

various parametric and nonparametric forms. Also, there is anecdotal evidence that the

structural link between radial and model variances can aid in estimating the true model

variance function, particularly when additional effects are added to the radial mean level

of the model. The simulation examples here were limited to cases that mimic behavior

that could reasonably be seen in SAXS experimental data. This hierarchical model could be

used for similar problems, where apart from observed heteroskedasticiy, we have an auxiliary

response which is known to be related to the model variance. Investigate the properties of

this model under more complicated scenarios as well as non-SAXS related problems that

would benefit form this approach is an interesting problem for future work.

Also of future interest is a more in-depth investigation on the effects of including the model

variance as a covariate in the radial variance function. Since v is treated as a function of

x, there may be an issue with identifiability of parameters between with the log(x) term.

Better understanding of this relationship and the potential effect it has on estimation of the

model variance function is needed.
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CHAPTER 4

VARIATIONAL APPROXIMATION FOR SAXS DATA

We now shift our attention to the goal of providing fast estimation procedures for the

models described in previous sections. As with many other complex hierarchical models,

traditional MCMC-type methodologies suffer from requiring significant computational re-

sources in order to assure posterior convergence. This is particularly true for complicated

hierarchical models such as those described in Sections 3.2 and 3.3. Often these models

require both significant run-times and substantial user-specified tuning in order to reach ac-

ceptable convergence. This chapter highlights the use of variational approximations, a class

of deterministic approximation methods, as a means of providing fast, approximate inference

for the models described in Chapter 3.

Variational approximations allow for the approximate computation of posterior parameter

distributions of complex models in a deterministic fashion (Wainwright and Jordan, 2008).

The term mean field variational Bayes (MFVB) refers to a class of variational approxima-

tions to posterior distributions under a nonparametric product density constraint (Ormerod

and Wand, 2010). Applications of MFVB approximations include mixtures (Attias, 2000),

linear mixed models (Ormerod and Wand, 2010), and nonparametric regression with missing

data (Faes et al., 2011). Given the connection between MFVB and full posterior parameter

conditionals, variational approximations can be directly implemented in situations where all

parameters have known posterior conditionals and Gibbs sampling is appropriate (Casella

and George, 1992). This has led to useful software packages such as Infer.NET that al-

low for “black box” computation of variational approximations given fully known posterior

conditionals (Minka et al., 2010; Wang and Wand, 2011).
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In this chapter, Section 4.1 provides background on the theory of variational approxima-

tions, particularly those performed under product-density restrictions. Section 4.2 describes

the variational approximation for traditional mixed models. Section 4.3 introduces a novel

variational approximation of the semiparametric regression model with heteroskedastic errors

described in Section 2.2. Section 4.5 presents a novel variational method for semiparamet-

ric regression via penalized splines with a spatially adaptive penalty term. Finally, Section

4.4 presents work on applying variational approximations to the joint mean-variance model

described in Section 3.3.

4.1 Introduction to Variational Approximations

We first provide a brief background on the theory of variational approximations. Let y be

a response vector and ψ be a vector of parameters. Direct evaluation of p(y) in the posterior

parameter distribution

p(ψ | y) =
p(y,ψ)

p(y)
(54)

may not be analytically or computationally tractable, often requiring high dimensional in-

tegration. A standard approach is to use Markov Chain Monte Carlo (MCMC) methods to

approximate p(ψ | y). However, as models grow in complexity, the computational resources

needed to perform MCMC increase dramatically and thus fast approximations become valu-

able.

Let q(ψ) be an arbitrary density function over the parameter space ψ. Then

log p(y) =

∫
Ψ

q(ψ) log p(y)dψ

=

∫
Ψ

q(ψ) log

(
p(y,ψ)/q(ψ)

p(ψ | y)/q(ψ)

)
dψ

=

∫
Ψ

q(ψ) log

(
p(y,ψ)

q(ψ)

)
dψ +

∫
Ψ

q(ψ) log

(
q(ψ)

p(ψ | y)

)
dψ
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≥
∫

Ψ

q(ψ) log

(
p(y,ψ)

q(ψ)

)
dψ

=: log p(y; q), (55)

where the inequality follows from Kullback and Leibler (1951), who show the Kullback-

Liebler (K-L) divergence
∫
q(ψ) log

(
q(ψ)
p(ψ|y)

)
dψ ≥ 0 with equality if and only if q(ψ) =

p(ψ | y). The closer the choice of q(ψ) is to the true posterior distribution, the smaller the

gap between p(y) and p(y; q). Minimizing the gap between these two quantities is equivalent

to minimizing the K-L divergence. Variational approximations are useful when analysis of

p(y; q) is easier than p(y), which can be achieved by restricting q(ψ) in some manner.

4.1.1 Defining q(ψ)

The most common restriction imposed on the density q(ψ), which we use here, is that for

some partition of the parameter vector ψ = (ψ1,ψ2, . . . ,ψL),

q(ψ) =
L∏
l=1

ql(ψl). (56)

Variational approximations that impose such a product-type density restriction on q(ψ)

are referred to as mean field variational approximations. When this restriction is used in

a Bayesian setting, the term mean field variational Bayes or variational Bayes for short

has become standard. Often there is a somewhat natural partition of the parameter vector

given the structure of the model of interest. Both Titterington (2004) and Ormerod and

Wand (2010) discuss issues regarding the choice of the partition. Improper partitions (e.g.

partitions where there is a high degree of posterior dependence between parameters across

partitions) can lead to poor approximations. Alternative forms of variational approximations

can be achieved by constraining q(ψ) to a class of known parametric density functions but

will not be discussed here.
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Adopting the notation in Ormerod and Wand (2010), the optimal variational densities,

q∗1(ψ1), q∗2(ψ2), . . . , q∗L(ψL), that minimize the K-L divergence described in (55) can be found

using the relationship

q∗l (ψl) ∝ exp {E−ψl [log p(ψl | ·)]} . (57)

Here p(ψl | ·) is the posterior conditional distribution

p(ψl | y,ψ1, . . . ,ψl−1,ψl+1, . . . ,ψL). (58)

The expected value E−ψl is the expectation with respect to all q-densities except for q(ψl).

The dependence of the optimal q-densities on the posterior conditional distributions indicates

a close tie to Gibbs sampling (Casella and George, 1992). When conjugate priors are used

for ψ1, . . . ,ψL, the posterior conditionals and the variational densities will have the same

distributional forms with different parameterizations.

Implementing a variational Bayes approximation under these conditions amounts to deter-

mining a set of variational parameters that fully define each q-density. Once these variational

parameters are determined, the estimates of the model parameters ψ1, . . . , ψL are taken from

the densities q∗1, . . . q
∗
L, usually as the means associated with each density.

The main criticism of variational Bayes methods is the reliance on conjugate forms for the

posterior conditional distributions. This is sometimes seen as a limitation when compared to

other approximation methods, most notably integrated nested Laplace approximations (Rue

et al., 2009) or Expectation-Propagation algorithms (Minka, 2001). Rue et al. (2009) also

highlights potential underestimation of parameter variance in variational approximations

for latent Gaussian models, depending informativeness of the given data. These are valid
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concerns but the simulation studies presented here do not indicate that this a too significant

concern for the approximation methods presented in this work.

4.1.2 Example: Random Sample from Normal Distribution

Before we examine the use of variational Bayes for the models described in previous sec-

tions, we first present a simple example where we derive the variational approximation for

estimating the mean and variance of a normal distribution. This example was presented in

Ormerod and Wand (2010) and provides a good illustration of the underlying mechanics of

these problems.

Let X = (X1, X2, . . . , XN) where

Xi
iid∼ N

(
µ, σ2

)
. (59)

Assign priors to the parameters µ and σ2 of the form

µ ∼ N
(
µµ, σ

2
µ

)
σ2 ∼ IG (Aσ2 , Bσ2) . (60)

Here µµ, σ2
µ, A, and B correspond to fixed hyperparameters. Using standard techniques,

the posterior conditionals for each parameter are derived to be

µ | σ2,X ∼ N

(
nX̄/σ2 + µµ/σ

2
µ

n/σ2 + 1/σ2
µ

,
1

n/σ2 + 1/σ2
µ

)

σ2 | µ,X ∼ IG
(
A+

n

2
, B +

1

2
‖X− µ1N‖

)
, (61)

where X̄ =
∑N

i=1 Xi/N and 1N is a vector of length N with value 1 at each entry.
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In order to build a mean field variational approximation for µ and σ2, we impose the

product-density restriction (as described in (56):

q(µ, σ2) = qµ(µ)qσ2(σ2). (62)

Using the relationship described in (57), the optimal forms of qµ and qσ2 are derived from

the posterior conditionals as

q∗µ(µ) ∝ exp
[
Eσ2

[
log p(µ | σ2,X)

]]
q∗σ2(σ2) ∝ exp

[
Eµ
[
log p(σ2 | µ,X)

]]
. (63)

Using the posterior conditionals from (60), the optimal q-density for σ2 becomes

q∗σ2(σ2) ∝ (σ2)−(A+N/2+1) exp

[
− 1

σ2

(
B +

1

2
Eµ
[
‖X− µ1N‖2])] . (64)

This functional form leads to the optimal variational distribution

σ2 q∗∼ IG
(
A+

N

2
, Bq(σ2)

)
. (65)

Here Bq(σ2) is a variational parameter that can be reduced to the following form using the

identity described in Ormerod and Wand (2010):

Bq(σ2) = B +
1

2
Eµ
[
‖X− µ1N‖2]

= B +
1

2

(∥∥X− µq(µ)1N
∥∥2

+Nσ2
q(µ)

)
. (66)

The variational parameters µq(µ) and σ2
q(µ) refer to the mean and variance of µ under the

corresponding variational distribution.
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Using similar techniques and the posterior conditional of µ from (60), we derive the vari-

ational distribution for µ as

µ
q∗∼ N

NX̄Eσ2 [1/σ2] + µµ/σ
2
µ

NEσ2 [1/σ2] + 1/σ2
µ︸ ︷︷ ︸

µq(µ)

,
1

NEσ2 [1/σ2] + 1/σ2
µ︸ ︷︷ ︸

σ2
q(µ)

 . (67)

Here we denote Eσ2 [1/σ2] = µq(1/σ2). Using the variational distribution of σ2 described

in (65) and the relationship between Gamma and Inverse Gamma random variables

µq(1/σ2) =
A+N/2

Bq(σ2)

. (68)

Using (65) and (67), we now have approximate distributions for our original parameters

of interest µ and σ2, which are controlled by the variational parameters µq(µ), σ
2
q(µ), and

Bq(σ2). As described in Algorithm 1 of Ormerod and Wand (2010), the optimal forms of

the mean field variational approximations derived from (57) can be found via a coordinate-

ascent type approach. It should be remembered that “optimal” in this case refers to the

selection of variational parameters that minimize the K-L divergence described in (55). This

is equivalent to maximizing log p(y; q).

Algorithm 1 Iterative method for determining the optimal variational distributions of µ
and σ2 for the random Normal sample example.

1: Initialize: Bq(σ2) > 0
2: repeat

3: σ2
q(µ) ←

(
N
[
A+N/2
Bq(σ2)

]
+ 1

σ2
µ

)−1

4: µq(µ) ←
(
NX̄

[
A+N/2
Bq(σ2)

]
+ µµ

σ2
µ

)
σ2
q(µ)

5: Bq(σ2) ← B + 1
2

(∥∥x− µq(µ)1N
∥∥2

+Nσ2
q(µ)

)
6: until Convergence is reached. Convergence is assessed by monitoring successive values

of log p(y; q) until the change is negligible.
7: Construct parameter estimates of µ and σ2 using means of optimal variational distribu-

tions.
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Algorithm 1 describes an iterative method for obtaining values of the variational parame-

ters µq(µ), σ
2
q(µ), and Bq(σ2) that minimize the K-L divergence. Convergence of this algorithm

is assessed by monitoring the iterative values of log p(y; q). When the step-wise change in

log p(y; q) becomes negligible (either through absolute or relative terms), µ and σ2 are esti-

mated according to the means of the variational distributions using the converged variational

parameters. Using (55), log p(y; q) is defined as

log p(y; q) =
1

2
− N

2
log(2π) +

1

2
log

(
σ2
q(µ)

σ2
µ

)
−

(µµ − µq(µ))
2 + σ2

q(µ)

2σ2
q(µ)

. (69)

To illustrate this example, a simulated dataset consisting of N = 100 draws from a

N (10, 4) distribution was constructed. Figure 4.1 compares the resulting variational ap-

proximations of µ and σ2 with histograms of the posterior parameter chains from iteratively

sampling from the posterior conditionals via Gibbs sampling. Both methods used hyperpa-

rameter values of µµ = 0, µ2
σ = 104, A = 10−4, and B = 10−4. The Gibbs sampler was

run for 50000 iterations with an initial burn-in of 5000. Convergence of Algorithm 1 for this

example was assessed when log p(y; q) changed by a value less than 10−4 and occurred after

three steps. Both methods adequately estimate µ and σ2 with the variational approxima-

tion requiring considerably less computational resources (three variational steps versus 5000

posterior draws).

4.2 Variational Approximation for Mixed Models

We now move on to discuss the use of variational approximations in semiparametric re-

gression models. Recall the standard mixed model form
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Figure 4.1: Histograms of the Gibbs sampler draws from the posterior conditionals of µ
and σ2 using a run length of 50000 with a burn-in of 5000. The solid black line represents

the associated approximate variational density achieved using Algorithm 1.
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Y = Xβ + Z1b1 + Z2b2 + · · ·+ ZLbL + ε. (70)

Here X, Z1, . . . , ZL are design matrices with dimensions N ×p+1, N ×K1, . . . , N ×KL

respectively where N is the number of observations of Y. Define β as the vector of all

fixed effects. The random effect vectors b1, . . . ,bL are each considered to follow multivariate

Gaussian distributions of the form N
(
0, σ2

bm
I
)
. The error term ε is distributed N (0, σ2

εI).

As discussed in Section 2.1, there exists a useful link between semiparametric regression

and mixed models with Ruppert et al. (2003) providing the standard background on the

topic. Given the well-studied nature of mixed models, there exist both likelihood-based

and Bayesian frameworks for constructing parameter estimates. For now we will look at a

Bayesian version of the linear mixed model in order to construct an appropriate variational

approximation. To construct our variational approximation, we use the conjugate priors

described in (21) which yield the conditional posterior distributions described in (23) (see

Section 3.1 for details).

As with the example shown in Section 4.1.2, the review paper by Ormerod and Wand

(2010) leverages the full conjugate structure of the mixed model to produce a simple vari-

ational approximation based upon a mean-field assumption. Let ψ =
(
θ, σ2

b1
, . . . , σ2

bL
, σ2

ε

)T
.

Assume the variational density q(ψ) has the following product structure:

q(ψ) = q1(θ)q2(σ2
b1
, . . . , σ2

bL
, σ2). (71)

Using the relationship described in (57) and the posterior conditionals in (23), the optimal

variational densities q∗1 and q∗2 are relatively simple to calculate and take the form

θ
q∗∼ N

(
µq(θ),Σq(θ)

)
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(
σ2
b1
, . . . , σ2

bL
, σ2
)T q∗∼ Product of Inverse Gamma densities

= IG
(
Aε +

N

2
, Bq(σ2

ε )

)
× IG

(
A1 +

K1

2
, Bq(σ2

b1
)

)
× · · · × IG

(
AL +

KL

2
, Bq(σ2

bL
)

)
(72)

As with the previous example, these variational densities are defined by a set of variational

parameters

Σq(θ) =

(
Aε +N/2

Bq(σ2
ε )

CTC + blockdiag

(
1

σ2
β

Ip+1,
A1 +K1/2

Bq(σ2
b1

)

IK1 , · · · ,
AL +KL/2

Bq(σ2
bL

)

IKL

))−1

µq(θ) =
Aε +N/2

Bq(σ2
ε )

Σq(θ)C
TY

Bq(σ2
bl

) = Bl +
1

2

(
‖µq(bl)‖

2 + trace
(
Σq(bl)

))
l = 1, . . . , L

Bq(σ2
ε ) = Bε +

1

2

(
‖Y −Cθ‖2 + trace

(
CTCΣq(θ)

))
. (73)

Here the notation µq(bl) and Σq(bl) refers to the portions of the variational mean and co-

variance matrix of θ associated with bl. Algorithm 2 describes the iterative procedure for

obtaining variational approximations for the standard mixed model. We omit the derivation

of log p(y; q) here since it is done explicitly in Ormerod and Wand (2010). A generalized

R script implementing this algorithm for mixed models of any random effect structure was

developed and is available from the author upon request.

To illustrate Algorithm 2, consider 100 data points simulated from a true mean function

m(x) = 10
(

sin
(
π
2
x
)

+ x2

16
− x3

1000

)
with variance σ2 = 9 over the region [0, 2π]. A smooth

function

f(xi) = β0 + β1xi + β2x
2
i +

10∑
k=1

bk (xi − κk)2
+ , (74)
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Algorithm 2 Iterative method for determining the optimal variational distributions for the
parameters of a mixed model.

1: Initialize: Bq(σ2
ε ), Bq(σ2

b1
), . . . , Bq(σ2

bL
) > 0

2: repeat

3: Σq(θ) ←
(
Aε+N/2
B
q(σ2ε )

CTC + blockdiag

(
1
σ2
β
Ip+1,

A1+K1/2
B
q(σ2

b1
)
IK1 , · · · ,

AL+KL/2
B
q(σ2

bL
)
IKL

))−1

4: µq(θ) ← Aε+N/2
B
q(σ2ε )

Σq(θ)C
TY

5: for all l = 1, . . . , L do

6: Bq(σ2
bl

) ← Bl + 1
2

(
‖µq(bl)‖2 + trace

(
Σq(bl)

))
7: end for

8: Bq(σ2
ε ) ← Bε + 1

2

(
‖Y −Cθ‖2 + trace

(
CTCΣq(θ)

))
9: until Convergence is reached. Convergence is assessed by monitoring successive values

of log p(y; q) until the change is negligible.

10: Construct parameter estimates of θ, σ2
ε , σ

2
b1

, . . . , σ2
bL

using means of converged variational

distributions.

was built from a set of truncated quadratic basis functions, with 10 knots {κk}1
k=10 corre-

sponding equally-spaced quantiles of {xi}Ni=1 ranging from 0.1 to 0.9. Convergence for this

variational approximation was achieved in six steps with a run time of approximately 0.09

seconds. Figure 4.3 compares the variational approximation to the fit from a Gibbs sampler

that directly draws from the posterior conditional forms found in (23). The runtime for 1000

draws using this Gibbs sampler was approximately 104 seconds. In addition to the Bayesian

formulation, a fit using standard frequentist mixed model software, specifically the lme func-

tion from the nlme package in R, is also compared. For a standard mixed model, the lme

function’s run time was comparable to the variational approximation. The fit associated

with the variational approximation compares quite well to both the alternative methods,

which are all nearly graphically indistinguishable when plotted together.
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Figure 4.2: This figure shows the result of Algorithm 2 applied to simulated data with true

mean function m(x) = 10
(

sin
(
π
2
x
)

+ x2

16
− x3

1000

)
and variance σ2 = 9 for x ∈ [0, 2π]. Knots

κ1, . . . , κ10, placed at equally spaced quantiles for {xi}Ni=1 ranging from 0.1 to 0.9, are used
for a truncated quadratic basis. The shaded region represents a point-wise 95% credible

region calculated using the variational distribution of θ.
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Figure 4.3: The black solid line represents the difference in fit between the variational
approximation in Figure 4.2 and a Gibbs sampler implementation run for 1000 iterations

with a burn-in of 100. The blue dashed line represents the difference between the
variational approximation and a standard frequentist fit calculated using the lme function

from the nlme package in R. Both differences are very close to 0 over all values of x.
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4.3 Laplace Variational Approximation for Semiparametric Re-

gression with Heteroskedastic Errors

We now approximation method for semiparametric regression in the presence of het-

eroskedastic errors, described in (13), via variational Bayes. Nott et al. (2012) describe a

variational approximation for the standard linear model in the presence of heteroskedasticity

of known parametric form. Our approximation applies more broadly, to linear mixed models

generally and to semiparametric regression under heteroskedasticity specifically. Unlike Nott

et al. (2012), we do not assume a parametric form for the heteroskedasticity, but model it

flexibly with penalized splines.

Let ψ = (θ,θV , σ
2
b1
, . . . , σ2

bL
, σ2

c1
, . . . , σ2

cM
)T be a vector containing all parameters of in-

terest. Recall that θ = (β,b1, . . . ,bL)T and θV = (δ, c1, . . . , cM)T are vectors of model

coefficients for the mean and variance levels respectively. Using the product density con-

straint from (56), we assume that the variational density q(ψ) is of the form

q(ψ) = q1(θ)q2(θV )q3(σ2
b1
, . . . , σ2

bL
)q4(σ2

c1
, . . . , σ2

cM
). (75)

For notational simplicity, the subscript index on each component density of q(ψ) is dropped

in future references (e.g. q1(θ) = q(θ)). The notation
q∗∼ is used to describe the optimal

distributions of a parameter derived using the relationship described in (57).

Under this assumption, the relationship described in (57) yields an optimal variational

density q∗ of the form

θ
q∗∼ N

(
µq(θ),Σq(θ)

)
q∗(σ2

b1
, . . . , σ2

bL
) = Product of IG

(
Abl +

Kl

2
, Bq(σ2

bl
)

)
densities for l = 1, . . . , L

q∗(σ2
c1
, . . . , σ2

cM
) = Product of IG

(
Acl +

KVm

2
, Bq(σ2

cm )

)
densities form = 1, . . . ,M
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q∗(θV ) ∝ exp

(
− 1

2

(
N∑
i=1

[
(yi −CT

i µq(θ))
2 + CT

i Σq(θ)
TCi

]
exp{−CT

Vi
θV }

+
N∑
i=1

CT
Vi
θV + θV

TΩθV

))
. (76)

Let µq(1/σ2
bl

) = E−θ
[
1/σ2

bl

]
and µq(1/σ2

cm ) = E−θV
[
1/σ2

cm

]
. Let

Ω = blockdiag
(
σ−2
δ Ir, σ−2

c1
IKV1 , . . . , σ

−2
cM
IKVM

)
. (77)

The variational covariance matrix associated with θ is

Σq(θ) =
(

blockdiag( 1
σ2
β
Ip, µq(1/σ2

b1
)IK1 , . . . , µq(1/σ2

bL
)IKL) + CTΓC

)−1

, (78)

where Γ is defined as the diagonal matrix

Γ = diag
(
E−θ

[
exp

{
−CT

V1
θV
}]
, . . . , E−θ

[
exp

{
−CT

VN
θV
}] )

. (79)

The variational mean parameter associated with q(θ) is

µq(θ) = Σq(θ)C
TΓy. (80)

It is important to note that the diagonal elements of the matrix Γ,

γi = E−θ
[
exp

{
−CT

Vi
θV
}]
, (81)

correspond to the moment generating function of θV under the distribution described by

q(θV ) evaluated at the row vector −CT
Vi

. This relationship is important since it gives us a

closed form evaluation of this expected value in terms of the variational parameters of q(θV )

for a large class of variational densities.
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For each l = 1, . . . , L and m = 1, . . . ,M , Bq(σ2
bl

) = Bbl + ‖µq(bl)‖2/2 + trace(Σq(bl))/2 and

Bq(σ2
cm

) = Bcm + ‖µq(cm)‖2/2 + trace(Σq(cm))/2 respectively. The notation µq(bl) and µq(cm)

refer to the components the variational means µq(θ) and µq(θV ) associated with bl and cm.

Similar notation applies to the variational covariance matrices Σq(bl) and Σq(cm). Appendix

A contains a detailed derivation of the variational density q for the model described in (13).

The lack of conjugate structure for describing the parameters associated with the smooth

fit of the log(σ2) function, θV , that was a source of difficulty for traditional approaches

for estimating the heteroskedastic semiparametric regression model described in (13), causes

issues for the derivation of a variational approximation as well. The variational distribution of

q(θV ) described in (76) does not have a known form. For traditional computational methods,

this can be handled in a number of ways. As discussed previously, the methods described

in Baladandayuthapani et al. (2005) and Crainiceanu et al. (2007) modify their models by

adding a latent noise parameter to the smooth function described by θV . This allows for

posterior conditional structures that amount to N univariate Metropolis-Hasting steps for

updating each σ2
i . If we attempt to build a variational approximation for this modified

model, we are left with N univariate variational densities q(σ2
1), q(σ2

2), . . . , q(σ2
N), each

with unknown form. Unknown variational forms for univariate parameters can sometimes

be handled through a discretized,“Griddy Gibbs” type method (Pham et al., 2013; Ritter

and Tanner, 1992). However, we are concerned about the ability of this method to scale

with sample size in this case since N discretizations would need to be performed. Because

of this we keep our focus on dealing directly with the multivariate distribution of θV .

A discretization-based strategy for dealing with the unknown multivariate variational den-

sity q(θV ) would be too computationally intensive for a “fast” approximation method, espe-

cially since the dimensionality of θV is tied to the complexity of the model for the variance

structure and the number of knots being used. Instead, we leverage the fact that q(θV ) in
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(76) has a Gaussian structure save for the term

− 1

2

N∑
i=1

[
(yi −CT

i µq(θ))
2 + CT

i Σq(θ)Ci

]
exp

(
−CT

Vi
θV
)
. (82)

We propose to use an approximate form of q∗(θV ), denoted q̃∗(θV ), derived via Laplace

approximation to construct a variational approximation for the model described in (13).

4.3.1 Laplace Approximation for θV

As in Nott et al. (2012) and Wang and Blei (2012), we consider a Laplace approximation

to replace q(θV ) with a multivariate Gaussian density. First, let q∗(θV ) = exp [−h(θV | ·)]

and consider the Taylor approximation of the function h(θV | ·) about some value α:

h(θV | ·) ≈ h(α | ·) + (θV − α)TJθV(α) +
1

2
(θV − α)THθV(α)(θV − α). (83)

Here JθV(α) corresponds to the Jacobian vector of first derivatives of h with respect to θV

evaluated at α and HθV(α) corresponds to the Hessian matrix containing all partial second

derivatives of h evaluated at α. If α = argmin h(θV | ·), then the approximate form of

q∗(θV ), which we denote q̃∗(θV ), becomes

q̃∗(θV ) ∝ exp

[
−1

2
(θV − α)T

1

2
HθV(α)(θV − α)

]
. (84)

This implies that θV has an approximate variational distribution of the form

θV
q̃∗∼ N

(
α,

(
1

2
HθV(α)

)−1
)
. (85)

Using this Gaussian form, the diagonal elements of Γ become

γi = exp
(
−CT

Vi
µq(θV ) + .5CT

Vi
Σq(θV )C

T
Vi

)
, (86)
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and yields fully expressed formulas for µq(θ) and Σq(θ).

4.3.2 Algorithm

Using the q-densities described in (76) and (85), constructing a variational Bayes approxi-

mation of our model consists of updating the parameters associated with each q-density until

q(ψ) has sufficiently approximated p(ψ | ·). As before, this is done via a coordinate ascent

type algorithm (Ormerod and Wand, 2010; Nott et al., 2012; Wang and Blei, 2012). The

variational parameters of interest here are denoted as µq(θ), Σq(θ), µq(θV ), Σq(θV ), Bq(σ2
b1

), . . . ,

Bq(σ2
bL

), Bq(σ2
c1

), . . . , and Bq(σ2
cM

). During each step of the algorithm, the most recent parame-

ters are used and convergence is not assessed until each full cycle has been completed. Given

the Inverse Gamma variational distribution of σ2
bl

and σ2
cm , µq(1/σ2

bl
) = (Abl +Kl/2)Bq(σ

2
bl

)−1

and µq(1/σ2
cm

) = (Acm +KVm/2)Bq(σ
2
cm)−1 for all l = 1, . . . , L and m = 1, . . .M .

Algorithm 3 describes the process of obtaining the variational parameter estimates asso-

ciated with the approximation described in (76).

Similarly to the other algorithms presented here, the updating steps in Algorithm 3 are

completely deterministic. Each iteration through the algorithm requires the determination

of at least a local minimum of h(θV | ·), α. This is currently done through the application

of off-the-shelf numerical optimization algorithms, namely the optim command in R. This

multidimensional minimization problem does cause a slight slow-down for this variational

approximation compared to problems where an approximation for a fully-conjugate model

is being constructed. However, practical implementations of Algorithm 3 show that this is

only of mild concern. This is largely due to the fact that variational approximations tend to

converge quickly and thus only a small number of optimization steps are needed.
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Algorithm 3 Iterative method for determining the optimal variational distributions for the
parameters of a heteroskedastic semiparametric regression via penalized splines model

1: Initialize: µq(θ), Σq(θ), Bq(σ2
b1

),. . . , Bq(σ2
bL

),Bq(σ2
c1

),. . . , Bq(σ2
cM

)

2: repeat

3: Compute α = argmin h(θV | ·), Hq̃(θV )(α)

4: µq̃(θV ) ← α

5: Σq̃(θV ) ←
(

HθV
(α)

2

)−1

6: for all m = 1, . . . ,M do

7: Bq(σ2
cm

) ← Bcm + 1
2
‖µq(cm)‖2 + 1

2
trace(Σq(cm))

8: end for

9: Σq(θ) ←
(

blockdiag( 1
σ2
β
Ip, µq(1/σ2

b )IK) + CTΓC
)−1

10: µq(θ) ← Σq(θ)C
TΓy

11: for all l = 1, . . . , L do

12: Bq(σ2
bl

) ← Bbl + 1
2
‖µq(bl)‖2 + 1

2
trace(Σq(bl))

13: end for

14: until Convergence is Reached (See Section 4.3.3)

15: Construct parameter estimates using mean of variational distributions
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4.3.3 Convergence Monitoring

In fully conjugate variational models such as those in Ormerod and Wand (2010), co-

ordinate ascent algorithms are guaranteed to converge to at least locally optimal values of

the variational parameters. Use of an approximate q-density for θV removes this guarantee.

Since the only assumption being made is that of a quadratic approximation of h(θV | ·)

and h(θV | ·) has the form of quadratic plus an extra term, we conjecture that parame-

ter updates from Algorithm 3 will converge; empirical results described below support this

conjecture. A common objective function to monitor for convergence is log p(y; q) defined

in (55). Wang and Blei (2012) suggest monitoring ‖µq(θV )‖ to assess convergence as well.

Appendix B contains the derivation of log p(y; q). A more in-depth look at the effect of the

Gaussian approximation for q(θV ) on the convergence properties of log p(y; q) is a topic of

future work.

4.3.4 Covariance Matrices

10, 000 iterations The matrices to be inverted in steps 5 and 7 of Algorithm 3 may not

be positive definite, perhaps due to poor initial conditions. If an invalid covariance matrix

is proposed in a step, we use a generalized inverse and a ridge adjustment, adding to each

diagonal entry of the matrix to be inverted the absolute value of its smallest eigenvalue.

Usually this is not needed for most application of the variational approximation to the

heteroskedastic semiparametric regression model. Investigating the effect of these matrix

structures on the underlying uncertainty estimates is an open question. Also of interest

would be potentially including some constraints that ensured the estimated matrices were

both symmetric and positive definite, although the implementation of this is not directly

obvious.
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4.3.5 Single Curve Simulation Examples

To illustrate our methodology, we first consider two simulated datasets of N = 200 both

with a true mean function of m(x) = −1
8
(x − 5)3 + x and with true variance functions

of v1(x) =
(

1
4
x+ 1

2

)3
or v2(x) = exp

{
(x−5)2

5

}
, with x ∈ [0, 10]. We fit a model of the

form described in (13) using a piecewise quadratic basis (p = r = 2). For both the mean

and variance levels, K = KV = 10 knots were placed at equally spaced quantiles of x

(Ruppert et al., 2003). The hyperparameters associated with the priors for σ2
b and σ2

c are

Ab = Bb = Ac = Bc = 10−5. The variance hyperparameters associated with the fixed effects

β and δ are σ2
β = σ2

δ = 105.

Before the algorithm is started, an initial fitting of y under a homoskedastic assumption is

performed using the same model structure. The corresponding θ̂ is used as an initial value

of µq(θ). The matrix Σq(θ) is initialized using a diagonal matrix of appropriate scale for the

data, and Bq(σ
2
b ) and Bq(σ

2
c ) are initialized to 1/100.

Figure 4.4 shows the resulting fit of the simulated data under both variance structures using

our variational approximation. The approximation closely follows the true mean function in

both examples but encounters increased difficulty in areas with higher noise. The shaded

areas represent 95% pointwise credible bounds determined by taking a sample of size 10000

from the converged variational distribution of q∗(θ). This measure of uncertainty reflects

the non-constant variance structure with wider bands being associated with areas of higher

variance. The true mean function m(x) was fully covered by the pointwise credible bounds

associated with each variance function.

Figure 4.5 shows the estimated log variance functions log(v1(x)) and log(v2(x)) associated

with the data simulated from m(x). The estimated curves associated with our variational

approximation (solid lines) closely follow the the true log variance functions (dashed lines).
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Figure 4.4: Variational approximation of simulated data with true mean function

m(x) = −1
8
(x− 5)3 + x (solid line) and variance functions v1(x) =

(
1
4
x+ 1

2

)3
(top) and

v2(x) = exp
{

(x−5)2

5

}
(bottom). The shaded area corresponds to the 95% pointwise credible

bounds calculated from 10000 draws from the variational distribution q∗(θ). The true
mean function is represented by a dashed line in each plot.

93



0 2 4 6 8 10

−
2

0
2

4
6

Approximate Fit of log v1(x)

x

lo
g(

va
r)

0 2 4 6 8 10

−
2

0
2

4
6

Approximate Fit of log v2(x)

x

lo
g(

va
r)

Figure 4.5: Variational approximation fits (solid line) of log v1(x) (top) and log v2(x)
(bottom) associated with simulated data from the true mean function

m(x) = −1
8
(x− 5)3 + x. The shaded area corresponds to the 95% pointwise credible

bounds calculated from 10000 draws from the variational distribution q∗(θV ). The true
variance functions are represented by dashed lines.
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The 95% pointwise credible bounds calculated using 10000 draws from the variational dis-

tribution q∗(θV ) cover the true variance function over the range of x in both cases.

4.3.6 Single Curve Simulation Comparison to MCMC Methods

We are using an approximate form of the optimal variational density associated with θV

and this variational method is itself an approximation. We now consider the quality of our

approximation, as compared to the posterior distribution evaluated using a combination

of Gibbs sampling and an appropriate multivariate posterior sampling algorithm, such as

DRAM (see Section 3.2). Figure 4.6 compares the 95% pointwise credible intervals for

both the mean and log variance curves using a simulated sample of 1000 points with true

curves m(x) and v1(x). The MCMC procedure was run for 10, 000 iterations with a burn-in

length of 10%. The DRAM step consists of two stages of potential proposal acceptance at

each iteration with covariance adaptation every 100 steps. All other model choices (basis

functions, knots, etc.) are the same as the previous simulated results.

When comparing the coverage of the true mean curve, both the variational approximation

and the MCMC method are very close. This is not surprising given the conjugate structure

of the θ parameter which controls the fit estimate of the m(x). The posterior conditional

described in (29) for θ is multivariate Gaussian as is the variational density q∗θ. The coverage

comparison for the log variance curve is more involved. As in Figure 4.5, the credible intervals

from the variational approximation behave smoothly and cover the true function log v1(x).

The credible bounds from the MCMC procedure have a more pronounced curvature and

are narrower in some places. Also, the MCMC bands have some trouble covering log v1(x),

particularly in the region between 0 and 2. This behavior can most likely be attributed to

the difficulty of the multivariate sampling problem for the posterior conditional distribution

p(θV | ·). In this case p(θV | ·) describes a 13-dimensional distribution from which we have

to draw samples. While DRAM performs significantly better than standard Metropolis-
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Hastings for this problem, it can still have difficulty fully covering the parameter space,

especially if the space is complicated and potentially multi-modal. Improvements in fit may

be achievable through considerable tuning (modifying adaption length, covariance scaling,

etc.) or implementing a more sophisticated algorithm to handle the multivariate sampling

problem. These results highlight the additional advantage that variational approximations

provide in that they do not require specification of tuning parameters.

4.3.7 Computational Performance of Single Curve Examples

Convergence of Algorithm 3 is assessed by monitoring the relative change of log p(y; q).

Variational algorithms are known to converge very quickly to appropriate estimates (Ormerod

and Wand, 2010). Table 4.1 contains the run time for the variational approximation associ-

ated with each variance curve at increasing sample sizes. All computations were performed

on a MacBook Pro with a 2.3 GHz Intel Core i5 processor and 4 GB of RAM. For comparison,

the run time for 10, 000 iterations of the MCMC procedure described previously are included

in Table 4.1. Our algorithm is slower than those that operate in fully conjugate situations

since we have a numerical optimization embedded at each step to estimate α from the most

current h(θV | ·). However, there is still a dramatic speed increase compared to the MCMC

method with run times for the simulated cases being approximately 5 to 17 times faster,

depending on sample size, using the variational approximation. This reduction of computa-

tional cost coupled with the lack of manual tuning parameters demonstrate the value of these

variational approximations. Further computational improvements may be achieved through

the use of a custom optimization routine rather than off-the-shelf implementations.

4.3.8 Vertically Shifted Curves with Common Variance Structure

The following sections highlights selected examples that expand on the single curve sim-

ulation problems to include more complicated semiparametric structures at both the mean

and variance level. As before, all hyperparameters for fixed effect variances are set at

96



0 2 4 6 8 10

−
10

−
5

0
5

10
15

20
25

Coverage Comparison for m(x)

x

y

VB
MCMC

0 2 4 6 8 10

−
2

0
2

4
6

Coverage Comparison for log v1(x)

x

lo
g(

va
r)

VB
MCMC

Figure 4.6: The solid light gray regions represent the pointwise 95% credible bounds drawn
from the approximating variational distributions qθ and q̃θV for a simulated data set of

1000 draws with m(x) and v1(x) as the true mean and variance functions. The line shaded
regions correspond to the resulting pointwise posterior 95% credible bounds taken from the
hybrid Gibbs-DRAM MCMC procedure using the posterior conditionals described in (29)

run for 10000 iterations with a 10% burn-in length.
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Table 4.1: Run times (seconds) for both the variational approximations and MCMC
procedures described in Section 4.3.5 for various sample sizes. The MCMC procedure was

run for 10, 000 iterations in each case.

Method
Sample Size (N)

200 400 800 1600
Variational approximation for v1(x) 10.68 20.02 39.35 98.67
Variational approximation for v2(x) 10.73 21.18 42.18 95.30

MCMC for v1(x) 57.89 116.863 315.89 1702.41
MCMC for v2(x) 54.22 124.67 349.96 1386.03

σ2
β = σ2

δ = 105 and the rate and scale (A and B) hyperparameters for the Inverse Gamma

priors associated with the random effect variances are set at 10−5. Truncated quadratic bases

of the form (x− κ)2
+ are used for all nonparametric fits unless otherwise specified. Fifteen

knots, denoted κ1, . . . , κ15, selected using equally spaced quantiles ranging from 5% to 95%

are used to evaluate the truncated quadratic spline basis functions at both the mean and

variance levels.

Our first example considers the case where we have two curves whose only apparent differ-

ence is a vertical shift by a constant over all of x ∈ [0, 10]. A data set of 200 points, plotted in

green in Figure 4.7, is generated following a true mean function of m(x) = −0.125(x−5)3 +x

with a true variance function of v(x) = exp (−(x− 5)2/5). A second set of data (plotted

in purple in Figure 4.7) is simulated from the mean function but also shifted by a constant

S = 10.

We consider the following semiparametric model to describe this data:

yi = β0 + β1xi + β2x
2
i + β3Si +

K∑
j=1

bj (xi − κj)2
+ + εi

log(σ2
i ) = δ0 + δ1xi + δ2x

2
i +

Kv∑
k=1

ck (xi − κvk)
2
+ . (87)
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Here Si is parametric covariate that takes value 10 if xi comes from the shifted data and 0

otherwise. Functionally, this model is equivalent to

yi = β3Si + f(xi) + εi

log(σ2
i ) = g(xi). (88)

Since this model only has a single nonparametric component for each level (f(x) and g(x)),

L = M = 1. The only difference between this model and the single curve cases considered

earlier is the inclusion of the shift variable Si, which adds an additional column to the fixed

effect matrix X. While there is noticeable heteroskedasticity in the data, there does not

appear to be a difference in variance structures of the data sets so the assumption of a single

log variance function g(x) is appropriate.

4.3.9 Semiparametric Interaction Model with Common Variance Structure

For this example the first data set (purple in Figure 4.8) is generated following a true mean

function of m1(x) = exp (−x2/12). The second data set (green in Figure 4.8) is generated

from a related mean curve of the form m2(x) = exp (−x2/(12 + S)) where the shift constant

S = 8. Both data sets are generated according to a true variance function v(x) = (x/100)2.

Data of this type can typically be modeled by including a parametric-by-nonparametric

interaction term in the mean level if one has knowledge of some parametric covariate that

is related to the change between curves. Here, we let Si be an observed covariate that takes

the value 0 if yi is generated from m1(x) and 8 if the response is generated from m2(x).

Functionally, the semiparametric interaction model would be

yi = f1(xi) + Si ∗ f2(xi) + εi

log(σ2
i ) = g(xi). (89)
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Example 1: Two Curves with Constant Shift 
    and Common Variance
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Example 1: Two Curves with Constant Shift 
    and Common Variance
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Figure 4.7: Variational approximation of parametric shift model with common variance.
Green points represent data simulated from a true mean function

m1(x) = −.125(x− 5)3 + x and purple points represent data simulated by a shifted true
mean function m2(x) + 10. The true variance function for both curves is

v(x) = exp (−(x− 5)2/5).
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Using our truncated quadratic basis, this model has the form

yi = β0 + β1xi + β2x
2
i + β3Si + β4xiSi + β5x

2
iSi

+
K∑
j=1

b1j(xi − κj)2
+ +

K∑
j=1

Sib2j(xi − κj)2
+ + εi

log(σ2
i ) = δ0 + δ1xi + δ2x

2
i +

KV∑
k=1

ck(xi − κk)2
+. (90)

Under this formulation, it is apparent that the example described in Section 4.3.8 uses

a submodel of this semiparametric interaction model. The model in (90) contains six fixed

effect terms and two sets of 15 random effect terms. The random effects b11, . . . , b1,15 are

associated with the function f1(x) while the random effects b2,1, . . . , b2,15 are associated with

the interaction function f2(x). The introduction of an interaction term requires two separate

random effect variance terms for the model, σ2
b1

and σ2
b2

(L = 2). As with the example in

Section 4.3.8, there is no evidence of differing variance structures between the two data sets

so assuming a common log-variance function g(x) is founded.

4.3.10 Semiparametric Interaction Model with Dampening Variance

This example is an extension of the one described in Section 4.3.9. Figure 4.9 shows the

simulated data and the resulting variational approximation. Two sets of data are generated

from mean functions m1(x) and m2(x) with shift parameter S = 8. However, the data

sets generated in this example have different variance functions. The variance function

associated with m1(x) (purple in Figure 4.9) is v1(x) = (x/100)2, the same as Section 4.3.9.

The data simulated from m2(x) follows a damped version of this variance function defined

as v2(x) = 0.05(x/100)2.
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Figure 4.8: Variational approximation of semiparametric interaction model with common
variance. Purple points represent data simulated from a true mean function
m1(x) = exp (−x2/12) and green points represent data simulated from

m2(x) = exp (−x2/(12 + S)) with shift parameter S = 8. The true variance function for
both curves is v(x) = (x/100)2.

102



One possible model for this data is to extend (90) to include a semiparametric interaction

at the variance level as well. Functionally, this takes the form

yi = f1(xi) + Si ∗ f2(xi) + εi

log(σ2
i ) = g1(xi) +Di ∗ g2(xi). (91)

The shift covariate Si is defined as before and Di is an indicator variable such that

Di =


0 if generated from m1(xi)

1 if generated from m2(xi).

(92)

Using our truncated quadratic basis, (91) is expressed as

yi = β0 + β1xi + β2x
2
i + β3Si + β4xiSi + β5x

2
iSi

+
K∑
j=1

b1j(xi − κj)2
+ +

K∑
j=1

Sib2j(xi − κj)2
+ + εi

log(σ2
i ) = δ0 + δ1xi + δ2x

2
i + δ3Di + δ4xiDi + δ5x

2
iDi

+

KV∑
k=1

c1k(xi − κVk)2
+ +

KV∑
k=1

Dic2k(xi − κVk)2
+. (93)

4.3.11 Computational Performance of Multiple Curve Models

In Table 4.2, we examine the run times of the three multiple curve examples presented

above. For comparison, run times from the hybrid Gibbs-DRAM MCMC method (Section

3.2) are included in Table 4.2 as well. Increases in model complexity, particularly the inclu-

sion of interaction terms at both the mean and variance levels affect the computation time

for both variational approximation and the MCMC method, as one would expect. In all

cases, the variational approximation still considerably outpaces the MCMC method, with
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Example 3: Semiparametric Interaction   
             and Dampening Variance
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Figure 4.9: Variational approximation of semiparametric interaction model with damped
variance. Purple points represent data simulated from a true mean function
m1(x) = exp (−x2/12) and green points represent data simulated from

m2(x) = exp (−x2/(12 + S)) with shift parameter S = 8. The true variance functions
associated with m1(x) and m2(x) are v1(x) = (x/100)2 and v2(x) = 0.05(x/100)2

respectively.
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improvements ranging from 3 to 10 times faster computation depending on sample size and

model complexity. It should be remembered that the number of total parameters in even rel-

atively simple models grow rapidly as interaction terms are added. For reference, the θ and

θV parameters in the semiparametric interaction model with dampening variance are both

33-dimensional parameter vectors. Additional model complexity would highlight the use-

fulness of these variational approximations, particularly if the MCMC procedure required

more than 10, 000 iterations to reach an appropriate sampling of the posterior parameter

distribution.

Table 4.2: Run times (seconds) for the variational approximation described in Algorithm 3
for the constant shift model (Model 1), semiparametric interaction model with common
variance (Model 2), and the semiparametric interaction model with dampening variance
(Model 3) examples. For comparison, the run-times for a hybrid Gibbs-DRAM MCMC

method are included akin to the results found in Table 4.1. The MCMC methods were ran
for 10, 000 iterations with a burn-in of 1000. Sample sizes correspond to total number of

simulated values split equally across curves.

Method
Sample Size (N)

200 400 800 1600
Variational approximation for Model 1 18.64 37.11 63.50 161.27
Variational approximation for Model 2 15.76 29.37 60.34 136.99
Variational approximation for Model 3 29.17 55.96 118.47 305.10

MCMC for Model 1 64.19 140.04 404.83 1641.53
MCMC for Model 2 63.32 157.54 550.19 1926.43
MCMC for Model 3 84.47 183.69 581.16 2186.63

4.4 Laplace Variational Approximation for Joint Mean-Variance

Model

Following the derivation of variational Bayes methods for the first two models presented in

Chapter 2, we now present preliminary work on implementing a variational approximation

for the joint mean-variance (JMV) model motivated by the radial reduction process that

occurs in SAXS experiments. For illustrative convenience, we limit our focus to the simple
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radial variance fixed effect model presented in (40). In this section we detail our first efforts

on this problem, particularly focusing on the difficulties arising from the relationship between

the radial and model variances.

Recall the posterior parameter conditionals for the radial fixed effects JMV model, rewrit-

ten in (94) for convenience.

θ | · ∼ N
(
MCTΣ−1y,M

)
where M =

(
Σθ
−1 + CTΣ−1C

)−1

η | · ∼ N
(

1

σ2
u

MWXT
Ww,MW

)
where MW =

(
Ση
−1 +

1

σ2
u

XT
WXW

)−1

σ2
b | · ∼ IG

(
Ab +

K

2
, Bb +

‖b‖2

2

)
σ2
c | · ∼ IG

(
Ac +

KV

2
, Bc +

‖c‖2

2

)
p(θV | ·) ∝ exp

[
− 1

2

{ N∑
i=1

CVi

T θV +
N∑
i=1

(
Yi −Ci

T θ
)2

exp(−CVi

T θV)

+ θV
TΣθV

−1θV +
1

σ2
‖w −XWη‖2

}]
σ2
u | · ∼ IG

(
Aus+

N

2
, Bu +

‖w −XWη‖2

2

)
. (94)

A running theme throughout this dissertation is the similarities between the JMV model

and the heteroskedastic semiparametric regression model. As such, our first attempt at a

variational approximation is based on an extension of the method detailed in Section 4.2.

Let χ = (θ,θV ,η, σ
2
b , σ

2
c , σ

2
u). Assume the variational density q(χ) has the product density

form

q(χ) = q1(θ)q2(θV )q3(η)q4(σ2
b )q4(σ2

c )q5(σ2
u). (95)

From this assumption, one can use (57) to determine the optimal variational density of a

particular parameter based on the variational expectation of the log posterior parameter
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conditional. As before, the numbered notation on the variational densities will be dropped

for convenience (e.g. q1(θ) = q(θ)).

The derivations of the optimal variational densities for θ, σ2
b , and σ2

c are simple and follow

from the same methods used in Section 4.3. These densities are

θ
q∗∼ N

(
µq(θ),Σq(θ)

)
σ2
b

q∗∼ IG
(
Ab +

K

2
, Bq(σ2

b )

)
σ2
c

q∗∼ IG
(
Ac +

KV

2
, Bq(σ2

c )

)
, (96)

with variational parameters

Σq(θ) =

(
blockdiag(

1

σ2
β

Ip, µq(1/σ2
b1

)IK1 , . . . , µq(1/σ2
bL

)IKL) + CTΓC

)−1

µq(θ) = Σq(θ)C
TΓy

Bq(σ2
b ) = Bb +

1

2

(
µ2
q(b) + trace(Σq(b))

)
Bq(σ2

c ) = Bc +
1

2

(
µ2
q(c) + trace(Σq(c))

)
(97)

where

Γ = diag
(
E−θ

[
exp

{
−CT

V1
θV
}]
, . . . , E−θ

[
exp

{
−CT

VN
θV
}] )

. (98)

The elements of Γ correspond to the moment generating function associated with q(θV )

evaluated at the vector −CT
Vi

for all i = 1, . . . , N .

The derivation of the optimal variational density for the regression coefficients of the

radial variance model, η, is more complex than that of θ, despite having a similar posterior

conditional structure. This is because of the use of the log model variance as a covariate in
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the fixed effect design matrix XW . Consider

E−η [log p(η | ·)] = E−η

[
− N

2
log(2π)− 1

2
log(|MW |)

− 1

2

(
η − 1

σ2
u

MWXT
Ww

)T
M−1

W

(
η − 1

σ2
u

MWXT
Ww

)]
(99)

The first two terms inside the expectation can be dropped for now since we are ultimately

interested in the proportional form of q(η). Since the log model variance, which is directly a

function of θV , is a covariate in XW , explicit knowledge of the model structure is a prerequi-

site for any variational approximation implementation. That is, the form of XW , particularly

how v is included, is required for deriving the forms of the variational parameters of q(η).

This is the main reason why we limit our initial investigation to the fixed effect radial variance

model.

Since the third term in (99) is quadratic with respect to η regardless of choice of XW , the

optimal variational density for η will be Gaussian with variational mean µq(η) and covariance

matrix Σq(η). Under the fixed effect radial variance model, these variational parameters are

Σq(η) =

(
µq(1/σ2

u)Q +
1

σ2
η

I3

)−1

µq(η) = µq(1/σ2
u)Σ

T
q(η)Ψ

Tw, (100)

where the matrix Q is

Q =

(
µTq(θV )X

T
WXWµq(θV ) +

N∑
i=1

CT
Vi

Σq(θV )CVi

)
(101)

and Ψ is the N × 3 matrix
[
1,x,CV µq(θV )

]
.

The derivation of q(σ2
u) also depends on the radial variance model structure. Using the

posterior conditional from (94), the optimal variational density for σ2
u corresponds to an
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IG
(
Au +N/2, Bq(σ2

u)

)
. The variational parameter Bq(σ2

u) is

Bq(σ2
u) = Bu +

1

2
E−σ2

u

[
‖w −XWη‖2

]
. (102)

The expectation term here can be written in terms of the variational parameters for q(θV )

and q(η).

The nonconjugacy of the posterior conditional distribution θV | · yields the variational

density

q∗(θV ) ∝ exp

{
− 1

2

(
N∑
i=1

[
(yi −CT

i µq(θ))
2 + CT

i Σq(θ)
TCi

]
exp{−CT

Vi
θV }

+
N∑
i=1

CT
Vi
θV + θV

TΩθV + µq(1/σ2
u)E−θV

[
‖w −XWη‖2

])}
, (103)

where Ω = blockdiag
(
σ−2
δ Ir, σ−2

c IKV
)
. Since the last term is the expectation with respect

to all parameters save θV , this can be written as

E−θV
[
‖w −XWη‖2

]
=
∥∥w −XWµq(η)

∥∥2
+

N∑
i=1

XT
Wi

Σq(η)XWi
. (104)

Following from Section 4.3.1, we can use a Laplace approximation approach to approximate

this variational density with a Gaussian distribution denoted q̃(θV ). Let h(θV | ·) be the

function such that q∗(θV ) ∝ exp {−h(θV | ·)} and α = argmin h(θV | ·) . Recall that under

the Laplace approximation, the variational parameters for q(θV ) are defined as

µq̃(θV ) = α

Σq̃(θV ) =

(
HθV (α)

2

)−1

, (105)

where HθV (α) is the Hessian matrix of h(θV | ·) evaluated at α.
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Algorithm 4 details an iterative approach to determining the appropriate variational pa-

rameters for this approximation. As with previous methods, convergence is monitored

through successive values of log p(y; q), as defined in (55). Once converged, the final pa-

rameter estimates are taken as the mean of their corresponding variational densities.

Algorithm 4 Iterative method for determining the optimal variational distributions for the
parameters of the joint radial mean-variance model with fixed effect radial variance structure.

1: Initialize: µq(θ), Σq(θ), µq(θV ), Σq(θV ), Bq(σ2
b ),Bq(σ2

c ), Bq(σ2
u)

2: repeat

3: Q←
(
µTq(θV )X

T
WXWµq(θV ) +

∑N
i=1 CT

Vi
Σq(θV )CVi

)
4: Σq(η) ←

(
µq(1/σ2

u)Q + 1
σ2
η
I3

)−1

5: Ψ←
[
1,x,CV µq(θV )

]
6: µq(η) ← µq(1/σ2

u)Σ
T
q(η)Ψ

Tw

7: Bq(σ2
u) ← Bu + 1

2
E−σ2

u
[‖w −XWη‖2]

8: Compute α = argmin h(θV | ·), HθV (α)

9: µq̃(θV ) ← α

10: Σq̃(θV ) ←
(

HθV
(α)

2

)−1

11: Bq(σ2
c ) ← Bc + 1

2
‖µq(c)‖2 + 1

2
trace(Σq(c))

12: Σq(θ) ←
(

blockdiag( 1
σ2
β
Ip, µq(1/σ2

b )IK) + CTΓC
)−1

13: µq(θ) ← Σq(θ)C
TΓy

14: Bq(σ2
b ) ← Bb + 1

2

(
µ2
q(b) + trace(Σq(b))

)
15: until Convergence is Reached

16: Construct parameter estimates using mean of variational distributions

4.4.1 Simulation Example

Consider the simulated radial mean and variance data from Section 3.3.2. Algorithm ??

is used to fit the data, displayed in Figure 4.10. The top panel shows that the approximate

radial mean fit appropriately describes the underlying true mean as well as reflecting the
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heteroskedasticity of the simulated data. The bottom panel shows a very good fit of the

simulated radial variance data generated under the fixed effect model w = 10−4 log(x)+v.

Figure 4.11 depicts the approximate estimate of the log model variance function. While

the uncertainty bounds cover the true log model variance, the estimated fit appears to have

difficulty matching the concavity of the true function. This may partially be explained

as an artifact of the embedded Gaussian approximation used to estimate the variational

density q∗(θV ). However further investigation indicates that the “naive” product density

assumption made in (95) may lead to inappropriate model variance estimates. This problem

hinges on the relationship between θV and η. Under the current product density for q(χ),

the assumption that q(θV ,η) = q(θV )q(η) may in fact be too strong. This could lead to

false inference in cases where the relative importance of the log model variance to the radial

variance model is particularly high.

To explore this effect, the simulated data above is modified to have two different generating

radial variance functions. The modified data, denoted w2 and w3 are

w2i = 10− 4 log(xi) + 10vi + ui

w3i = 10− 10 log(xi) + vi

ui ∼ N
(
0, σ2

u

)
, (106)

with σ2
u = 0.25 as before. Figures 4.12 and 4.13 show the variational approximation for

the w2 case. This is a case where the influence of v over the log radial variance has been

increased relative to the influence of log(x). Most surprisingly, Figure 4.13 indicates that this

approximation completely misses the mark for describing the log model variance function for

small values of x. This overestimation leads to incorrect uncertainty bounds at the radial

mean level.
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Figure 4.10: Approximate fits for the simulated radial mean and variance data using the
variational method described in Algorithm 4. The shaded regions repesent 95% credible

regions using the converged variational parameters for q(θ) and q(η).
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Figure 4.11: Approximate fit of the log model variance function for the simulated radial
mean and variance data using Algorithm 4. The shaded region represents a 95% credible

region using the converged variational parameters of q̃(θV )
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Figure 4.12: Approximate fits for the simulated radial mean and variance data when the
radial variance function is w2(x, v). The shaded regions repesent 95% credible regions using

the converged variational parameters for q(θ) and q(η).
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Figure 4.13: Approximate fit of the log model variance function when the radial variance
function is w2(x, v). The shaded region represents a 95% credible region using the

converged variational parameters of q̃(θV )
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Figures 4.14 and 4.15 show the variational approximation for the case where the relative

impact of the log model variance function is decreased. Under this scenario, we observe

behavior much like the original simulation example. The radial mean data is well fit and

comparable to the original simulation example. The radial variance data is fit as before, but

with significantly tighter uncertainty bounds. Figure 4.15 is virtually indistinguishable from

the estimate in the original simulation example.

The anecdotal evidence presented with these three simulation examples suggests that sim-

ply extending the variational approximation of the heteroskedastic semiparametric regression

model, detailed in Algorithm 3, may not be sufficient. A potential alternative would be to

assume the variational density q(χ) expands to

q(χ) = q(θ)q(σ2
b )q(σ

2
c )q(σ

2
u)q(η,θV ). (107)

Here the parameters η and θV would be approximated jointly. Most likely this would result

in a nonconjugate form similar to that of q(θV ) in (103). Future work will focus on the

implementation of a variational approximation using this product density structure, partic-

ularly on the appropriateness of imposing a Gaussian form on the noncojugate variational

density by using the Laplace approximation method described throughout this work.

4.4.2 Extensions to Semiparametric Radial Variance Models

The variational approximation presented in Algorithm 4 is specifically limited to models

where the radial variance data is a three-term fixed effect model. This is primarily done to

ease derivation of the optimal q densities. If one were to consider models where the log model

variance, v, is treated nonparametrically, the form of the basis functions must be considered.

For example, if a truncated polynomial basis of degree p is used, the variational expectations

E
[
(vi − κVk )j+

]
∀j = 1, . . . , 2p (108)
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Figure 4.14: Approximate fits for the simulated radial mean and variance data when the
radial variance function is w2(x, v). The shaded regions repesent 95% credible regions using

the converged variational parameters for q(θ) and q(η).
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Figure 4.15: Approximate fit of the log model variance function when the radial variance
function is w3(x, v). The shaded region represents a 95% credible region using the

converged variational parameters of q̃(θV )
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would need to be calculated. When q(θV ) is assumed to be Gaussian, this is equivalent

to calculating the first 2p moments of a truncated Normal random variable, which can be

directly computed. More complicated basis functions or interaction models could potentially

lead to expectations that are not analytically available, making a variational approximation

difficult. Future work will focus on implementing a variational approximation for a more

general class of models that allows for both nonparametric representations based on the log

model variance as well as interaction effects.
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4.5 Variational Approximation for Spatially Adaptive Semipara-

metric Regression

We now detour from examining variational approximations for the models described in

Chapter 2 in order to describe a novel result pertaining to the problem of semiparametric

regression with a spatially adaptive penalty term. Our work in designing a variational

Bayes approach to heteroskedastic semiparametric regression (Section 4.3) actually lends

itself directly to this problem.

For standard semiparametric regression based on a mixed model framework, penalization

of the spline basis functions is controlled by a global penalty term based on the ratio of

random effect variance to error variance (Ruppert et al., 2003, chap. 4). However, the

appropriateness of a global penalty approach can be called into question when the data

suffers from rapid changes in curvature, heteroskedasticty, or a combination of the two. The

model described in (13) can be thought of as having a form of spatially adaptivity since

the error variance, σ2, is allowed to be a smooth function of a covariate x. Depending on

the model, this form of spatial adaptivity tends to affect the uncertainty bounds more than

underlying fit of the mean function. This is somewhat expected given knowledge of the

properties of mean estimates for fixed effect models under heteroskedasticity, namely that

they are still unbiased (Barreto and Howland, 2005, chap. 19). However, a different spatially

adaptive penalty structure is needed for cases where errors appear to be constant but there

are dramatic changes in the underlying curvature of the model.

Consider the model set forth by Baladandayuthapani et al. (2005) for spatially adaptive

penalized spline regression, restricted in this case to a single curve relationship:

yi = XT
i β + ZT

i b + εi = CT
i θ + εi

εi ∼ N (0, σ2)
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b ∼ N
(
0, σ2

bk

)
∀k = 1, . . . , K

log(σ2
bk

) ∼ XT
Bk
η + ZT

Bk
d = CT

Bk
θB.

d ∼ N
(
0, σ2

d

)
(109)

Here we assume a homoskedastic variance term, σ2, but allow for the random effect variance

σ2
b to vary smoothly. Baladandayuthapani et al. (2005) show that models of this form are

better able to handle oscillatory behavior and curvature changes than models with a global

penalty. Examples of such data where a model like this would be appropriate can be found

in Figure 4.16.

While the variance structure of this model is different from the heteroskedastic model

in (13), the posterior conditional structure for the model parameters is strikingly similar.

Assume priors of the form:

β ∼ N
(
0, σ2

βIp+1

)
η ∼ N

(
0, σ2

ηIr+1

)
σ2 ∼ IG (A,B)

σ2
d ∼ IG (Ad, Bd) . (110)

Let p + 1 and r + 1 denote the number of columns of X and XB. Here K and KB are

the column dimension of the random effect matrices Z and ZB. For illustrative purposes,

consider our models to consist of two penalized spline fits of the form:

yi = β0 + β1xi + · · ·+ βpx
p
i +

K∑
k=1

bk (xi − κk)p+ + εi

log(σ2
bk

) = η0 + η1xi + · · ·+ ηrx
r
i +

KB∑
l=1

dl
(
xi − κBl

)r
+
. (111)
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Under these priors, the posterior conditionals for θ, θB, σ2, and σ2
d are

θ | · ∼ N
(
MCTy,M

)
M =

(
1

σ2
CTC + blockdiag

(
1

σ2
β

Ip+1, D(σ2
bk

)−1

))−1

D(σ2
bk

)−1 = diag

(
1

σ2
b1

,
1

σ2
b2

, . . . ,
1

σ2
bK

)
σ2 | · ∼ IG

(
A+

N

2
, B +

1

2
‖y −Cθ‖2

)
σ2
d | · ∼ IG

(
Ad +

KB

2
, Bd +

1

2
‖d‖2

)
p(θB | ·) ∝ exp

(
− 1

2

( K∑
k=1

CT
Bk
θB +

K∑
k=1

bk exp(−CT
Bk
θB)

+ θB
TΣ−1

θB
θB

))
. (112)

As with the posterior conditionals in (29), we have near-full conjugate structure with the

exception of the posterior conditional associated with the second level of the semiparametric

regression model (θB in this case). However, the form of p(θB | ·) is structurally the same

as p(θV | ·) from (29). This suggests that we can use the same variational approximation

techniques described in Section 4.3 to construct an appropriate variational update algorithm

for (110).

4.5.1 Variational Bayes Approximation

Let ψ =
(
θT ,θB

T , σ2, σ2
d

)T
be the vector of parameters of interest. Assume a product

density restriction, described in (56), such that

q(ψ) = q1(θ)q2(θB)q3(σ2)q4(σ2
d). (113)

As before, we will drop the numerical subscript describing these variational densities for no-

tational simplicity (q1(θ) = q(θ)). Using the relationship from (57), the optimal variational
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densities are

θ
q∗∼ N

(
Σq(θ)C

Ty,Σq(θ)

)
σ2 q∗∼ IG

(
A+

N

2
, B +

1

2

(∥∥y −Cµq(θ
∥∥2

+ trace
(
CTCΣq(θ)

)))
σ2
d

q∗∼ IG
(
Ad +

KB

2
, Bd +

1

2

(∥∥µq(d)

∥∥2
+ trace

(
Σq(d)

)))
q∗(θB) ∝ exp

(
− 1

2

( K∑
k=1

CT
Bk
θB +

K∑
k=1

(
µ2
q(bk) + σ2

q(bk)

)
exp

(
−CT

Bk
θB
)

+ θB
Tblockdiag

(
1

σ2
η

Ir+1, µq(1/σ2
d)IKB

)
θB

))
. (114)

Here, the variational covariance matrix associated with q(θ) is

Σq(θ) =

(
µq(1/σ2)C

TC + blockdiag

(
1

σ2
β

Ip+1,∆

))−1

∆ = diag
(
E−θ[exp(−CT

B1
θB)], . . . , E−θ[exp(−CT

BK
θB)]

)
.

Denote

Bq(σ2) = B +
1

2

(∥∥y −Cµq(θ)

∥∥2
+ trace

(
CTCΣq(θ)

))
Bq(σ2

d) = Bd +
1

2

(∥∥µq(d)

∥∥2
+ trace

(
Σq(d)

))
. (115)

In order to deal with the non-conjugate structure associated with θB, we use the same

Laplace approximation technique described in Section 4.3.1. Define h(θB | ·) as

h(θB | ·) =
1

2

(
K∑
k=1

CT
Bk
θB +

K∑
k=1

(
µ2
q(bk) + σ2

q(bk)

)
exp

(
−CT

Bk
θB
)

+ θB
Tblockdiag

(
1

σ2
η

Ir+1, µq(1/σ2
d)IKB

)
θB

)
. (116)
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Let α = argmin h(θB | ·). It follows that the variational distribution of θB can be approxi-

mated by a multivariate Gaussian distribution of the form

θB
q̃∼ N

(
α,

(
HθB(α)

2

)−1
)
, (117)

where HθV(α) corresponds to the matrix of partial second derivatives of h(θB | ·) evaluated

at α. Under this approximate Gaussian form, the diagonal elements of the matrix ∆, denoted

δk can be expressed as

δk = exp

(
−CT

Bk
µq(θB) +

1

2
CT
Bk

Σq(θB)CBk

)
. (118)

Using the variational densities described in (114) and the approximate form from (117) we

construct the iterative method approximating spatially adaptive semiparametric regression

found in Algorithm 5. As with the other algorithms presented here, convergence is assessed

by monitoring the K-L divergence, log p(y; q), as defined by (55) as well as relative change

in ‖µq(θ)‖2 and ‖µq(θB)‖2. The explicit formula for the K-L divergence of this model is

log p(y; q) =

∫
Ψ

q(ψ) (log(p(y | ψ)p(ψ))− log(q(ψ))) dψ

= −N
2

log(2π)− p+ 1

2
log(σ2

β)− r + 1

2
log(σ2

η)

− 1

2
µq(1/σ2)

(
‖y −Cµq(θ)‖2 + trace

(
CTCΣq(θ)

))
− 1

2

K∑
k=1

CT
Bk
µq(θB) −

1

2σ2
β

(
‖µq(β)‖2 + trace(Σq(β))

)
− 1

2

K∑
k=1

(
µ2
q(bk) + σ2

q(bk)

)
exp

(
−CT

Bk
µq(θB) +

1

2
CT
Bk

Σq(θB)CBk

)
− 1

2σ2
η

(
‖µq(η)‖2 + trace(Σq(η))

)
− 1

2
µq(1/σ2

d)

(
‖µq(d)‖2 + trace(Σq(d))

)
+ Ad log(Bd)− log(Γ(Ad))− µq(1/σ2

d)Bd +
p+K + 1

2

+ A log(B)− log(Γ(A))− µq(1/σ2)B +
r +KB + 1

2
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+
1

2
log
(∣∣Σq(θ)

∣∣)+
1

2
log
(∣∣Σq(θB)

∣∣)
− (A+

N

2
) log(Bq(σ2)) + log

(
Γ

(
A+

N

2

))
+Bq(σ2)µq(1/σ2)

− (Ad +
KB

2
) log(Bq(σ2

d)) + log

(
Γ

(
Ad +

KB

2

))
+Bq(σ2

d)µq(1/σ2
d).

Algorithm 5 Iterative method for determining the optimal variational distributions for the
parameters of a spatially adaptive semiparametric regression via penalized splines model

1: Initialize: µq(θ), Σq(θ), Bq(σ2
d),Bq(σ2)

2: repeat

3: Compute α = argmin h(θB | ·), HθB(α)

4: µq̃(θB) ← α

5: Σq̃(θB) ←
(

HθV
(α)

2

)−1

6: Bq(σ2
d) ← Bd + 1

2
‖µq(d)‖2 + 1

2
trace(Σq(d))

7: Σq(θ) ←
(
µq(1/σ2)C

TC + blockdiag
(

1
σ2
β
Ip+1,∆

))−1

8: µq(θ) ← Σq(θ)C
Ty

9: Bq(σ2) ← B + 1
2

(∥∥y −Cµq(θ
∥∥2

+ trace
(
CTCΣq(θ)

))
10: until Convergence is Reached

11: Construct parameter estimates using mean of variational distributions

4.5.2 Spatially Adaptive Example

To illustrate the method described in Algorithm 5, we consider a simulated data example

akin to the one presented in Baladandayuthapani et al. (2005). Consider a true mean function

mj(x) =
√
x(1− x) sin

(
2π(1 + 2(9−4j)/5)

x+ 2(9−4j)/5

)
, (119)

over the region x ∈ [0, 1] where j controls spatial variability and oscillatory behavior of the

function. Higher values of j will lead to increased oscillation towards 0. Simulated datasets

125



of the form yi = mj(xi) + εi are created for both a low spatial variability (j = 3) and a high

spatial variability (j = 6). Each example consists of 800 data points evaluated at equally

spaced values of x across [0, 1]. The error term ε is distributed N (0, 0.04).

Figure 4.16 contains the simulated data for both j = 3 and j = 6 cases. A semiparametric,

global penalty model of the form

yi = β0 + β1xi + β2x
2
i +

K∑
k=1

bk(xi − κk)2
+ + εi, (120)

is fit via the variational approximation algorithm described in Algorithm 2. Equally spaced

knots from 0.01 to 0.99 are used with K = 30 and K = 90 for the low-variability and the

high-variability cases (j = 3 and j = 6) respectively. Oscillatory data of this type highlight

the difficulty that global penalty models can have with rapid changes in curvature. For the

low-variability case, the global penalty model appears to fit relatively well. For the high-

variability case, the global penalty has great difficulty fitting the data at the low regions of x

where the oscillation is heaviest. Also, the fit associated with the higher region of x appears

to suffer from under-smoothing given the local behavior.

Figure 4.17 shows the corresponding variational approximations of the spatially adaptive

semiparametric model fits for the simulated data presented here. In addition to the model

above, the penalized spline model associated with the σ2 term is also fit using a truncated

quadratic spline basis with KB = 5 and KB = 15 for the low and high variability cases

respectably. For the low-variability case, the spatially adaptive model is comparable to the

global penalty model, as one would expect. In the high variability case, the spatially adaptive

variational approximation does a considerably better job at dealing with the high oscillation

region near x = 0. Granted, there are limits to how well penalized splines can fit a rapidly

changing structure like this due to knot choices and sample size, but the credible regions

associated with this approximation appears to provide adequate coverage throughout this
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Figure 4.16: Variational approximations for a standard penalized spline model using a
global penalty term fit via a mixed model framework for low and high oscillation scenarios.
The top figure corresponds to data generated from m3(x) while the bottom corresponds to
m6(x). The fit for j = 3 used K = 30 equally spaced knots while j = 6 used K = 90.
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example. Also, the fit associated with the smoother portions of the data better reflect the

local behavior of the underlying mean function and do not appear to suffer from the same

under smoothing present in the global version. These finding are consistent with the more

exact implementations found in Baladandayuthapani et al. (2005).

4.5.3 Extensions

The work presented here follows in the footsteps of Baladandayuthapani et al. (2005) and

only considers a spatially adaptive model with a single penalty term. This corresponds to

adding an additional level of the model to describe the smooth behavior of log(σ2
b ). One of

the advantages of the mixed model representation of penalized splines is that multiple non-

parametric components and thus multiple penalty terms are allowed in the model. These

are controlled through the addition of new random effects with a separate variance param-

eter. The spatially adaptive framework discussed here can easily be extended to consider

multiple penalties, some of which may be modeled as spatially varying. Operating under the

assumption that the distinct random effect variances are independent, this would result in

multiple log(σ2
bl

) structures. Each of theses levels would contain their own model parameters

θBl which may include additional random effect variances (akin to the σ2
d term presented

previously). Deriving the posterior conditional structures of this extended model would be

relatively straightforward using standard methods.

Each of the θBl would result in a non-conjugate posterior distribution, θBl | ·. Using

the variational approximation method presented here, these would be handled through an

additional step of an embedded Laplace approximation. Care needs to be exercised here since

the effect of the inclusion of multiple Laplace approximations of this form on the convergence

and computational properties of the variational approximation has not been studied. This

is an open question that will be investigated further in future work.
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Figure 4.17: Variational approximations for a penalized spline model using a spatially
adaptive penalty term fit via a mixed model framework for low and high oscillation

scenarios. The top figure corresponds to data generated from m3(x) while the bottom
corresponds to m6(x). The fit for j = 3 used K = 30 and KB = 5 while j = 6 used K = 90

and KB = 15.
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A natural extension of the work presented here and in Section 4.3 would be to construct

a variational method for approximating spatially adaptive penalized spline models with het-

eroskedastic errors as described in Crainiceanu et al. (2007). These models describe the

smooth structure of both log(σ2) and log(σ2
b ). This requires the inclusion of model parame-

ters θV and θB that induce non-conjugate posterior conditional forms, θV | · and θB | ·. Our

variational methods seem appropriate for constructing a fast approximation of this model.

However, care needs to be taken since this would require at least two embedded Laplace

approximations and careful study of the effects on the convergence and computational prop-

erties of the approximation would need to be conducted.
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CHAPTER 5

CASE STUDY OF EXPERIMENTAL SAXS DATA

We showcase the various methodologies presented here in the context of SAXS experi-

mental data. SAXS presents a variety of interesting statistical problems. One example is

investigating the correlation structure of pixels on the two-dimensional sensor (Breidt et al.,

2012). The motivating goal of the work presented here has been to create well-documented

frameworks that can be used to address two classes of inferential questions. The first class is

concerned with “data quality”. These questions typically center on the effect of experimental

covariates such as concentration and exposure time on the SAXS data. The second class

concerns inference on actual physical characteristics of the molecule of interest. This chapter

will provide multiple examples to illustrate the use of our work for real SAXS problems. This

is by no means comprehensive but rather should be considered a primer on analyzing SAXS

data.

5.1 Inference on Experimental Factors

Experimental factors often have unforseen consequences to the quality of SAXS data.

Since the end goal is measurement of a directly unobservable quantity (the sample molecule’s

shape), degradation of the data quality can lead to improper inference about the true shape

of the molecule. These issues can include improper calibration, sensor failure, overexposure,

particle aggregation, and radiation damage. In the presence of multiple exposures under

known experimental conditions, the frameworks presented here can be tailored to answer

questions regarding these issues. For basic illustration, we present two common cases and

discuss briefly how they can be addressed within the model frameworks presented in this
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work. Full, in-depth analyses of specific SAXS data are omitted for now as the goal of this

section is to illustrate rather than investigate.

5.1.1 Detection of Concentration Effects

SAXS experiments typically consist of exposures taken across multiple concentrations.

This is typically done in an effort to reduce noise in the measurements, particularly at high

angles. Ideally, the shape inference about the molecule of interest should be the same regard-

less of concentration. Theoretically, concentration has an additive effect to the log intensity

data (multiplicative on the original scale). However the complex macromolecules that are

often the subject of these experiments do not always behave ideally under concentration

changes. One possible problem is that increases in concentration can cause aggregation of

particles, inherently changing the shape that the experiment “sees”. Concentration changes

can also potentially cause violations of the assumption that all molecules are tumbling freely

in solution and thus interact with each other. Detection of this behavior is important to

ensure valid inference is being drawn across concentrations.

Consider sampled versions of two 7-second exposures of a nucleosome assembly protein

(NAP), displayed in Figure 5.1. The top curve (purple) is taken at 20 mg/ml and the bottom

curve (green) is taken at 5 mg/ml. The dramatic smoothness of the data can be attributed to

the radial smoothing and processing that occurs at the point of collection. To the naked eye,

the curves only seem to differ by a constant shift with some potential deviation at low angles

(s ≤ 0.05). While there is slight evidence of heteroskedasticiy for the low concentration data,

we consider a homoskedastic model here to ease illustration.
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Figure 5.1: Data corresponding to two exposures of a sample of nucleosome assembly
protein. The top curve was taken at 20 mg/ml and the bottom was taken at 5 mg/ml.

Both data sets were exposed to high-intensity X-rays for 7-seconds.
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Testing for non-standard concentration effects can be posed as a model selection problem.

Consider the models

M0 : yi = β0 + β1si + β2s
2
i + β3Conci +

K∑
k=1

b1k (si − κk)2
+ + εi

M1 : yi = β0 + β1si + β2s
2
i + β3Conci + β4Concisi + β5Concis

2
i

+
K∑
k=1

b1k (si − κk)2
+ + εi

M2 : yi = β0 + β1si + β2s
2
i + β3Conci + β4Concisi + β5Concis

2
i

+
K∑
k=1

b1k (si − κk)2
+ +

K∑
k=1

b2kConci (si − κk)2
+ + εi. (121)

Here {b1k}Kk=1 and {b2k}Kk=1 correspond to sets of random effects with common variance. The

parameter Conci is the concentration of the ith measurement. Model M0 can be considered

the null model for the NAP case where the concentration only has an additive effect on

log intensity. Models M1 and M2 represent expanded interaction models with the latter

corresponding to a full parametric-by-nonparametric interaction.

Figures 5.2, 5.3, and 5.4 display the fits of each model to the NAP data. For each model,

a 10000 iteration Gibbs sampler was used (Section 3.1) with a 1000 iteration burn-in period.

Through graphical inspection alone, both the null model and the fixed effect interaction

model are unable to fully fit the data, particularly given the smooth nature at small values

of s. M0’s lack of fit for s in the regions [0, 0.05] and [0.20, 0.30] suggests a nonstandard

concentration effect in the data. Figure 5.3 shows that M1 is better able to fit the data for

both concentrations at high values of s but still suffers from dramatic lack of fit near the

origin. Figure 5.4 shows that the full parametric-by-nonparametric interaction model, M2,

is able to best fit the data for all values of s across both concentrations.
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For this example, there is enough evidence to suggest the presence of a nonstandard

concentration effect that may warrant scientific investigation. More rigorous model selection

can be used to better answer this question. Under the Bayesian representations used in

the paper, techniques such as Bayes factor or DIC can be used here to decide between the

models in question (Gelman et al., 2013, chap. 4). For this example, the DIC for M0 is

-817.9219, the DIC for M1 is -1065.45, and the DIC for M2 is -1152.061. Lower values

of DIC suggest stronger evidence for that model, implying that the fully parametric-by-

nonparametric interaction model of M2 is appropriate.
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Figure 5.2: MCMC estimate via Gibbs sampling of the model M0 for two exposures of a
nucelosome assembly protein.

5.1.2 Detection of Exposure Effects

Another common experimental condition that carries strong influence over the quality of

SAXS data is the amount of time each sample is bombarded by X-rays. The main concern

is that repeated exposures, particularly long exposures, can cause damage to the sample
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Figure 5.3: MCMC estimate via Gibbs sampling of the model M1 for two exposures of a
nucelosome assembly protein.
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Figure 5.4: MCMC estimate via Gibbs sampling of the model M2 for two exposures of a
nucelosome assembly protein.
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in question. This could change the molecular structure of interest, leading experimental

scientists to make incorrect inference. As with the effect of concentration, testing for exposure

time effects and radiation damage can be easily framed as a model selection problem under

the frameworks presented here.

Consider a set of four SAXS exposures of the H2AH2B complex taken sequentially. The

exposures are all taken at 11.8 mg/ml with exposure times of 7-seconds, 7-seconds, 70-

seconds, and 7-seconds. The four exposures are plotted separately in Figure 5.5. The typical

purpose of a long exposure is to obtain better “high angle information”, referring to the

variance dampening effect seen in the bottom left panel of Figure 5.5. This is done at the

cost of erratic low angle behavior, which is often due to physical limitations of the pixels of

the sensor plate associated with small s. Comparing SAXS exposures sequentially typically

carries concerns for of radiation damage which are compounded following a long exposure.

Figure 5.6 plots the 7-second exposures that directly precede and follow the 70-second case.

Ideally, these data would line up perfectly since nothing has change except their order in the

series. However, there appears to be structural difference of the two data sources for values

of s > 0.15.

As with the concentration effect example of the preceding section, inferring the presence

of a significant exposure effect can be viewed as a model selection problem. Consider the

models

M0 : yi = β0 + β1si + β2s
2
i +

K∑
k=1

bk (si − κk)2
+ + ε

M1 : yi = β0 + β1si + β2si + IPost
i

(
β3 + β4si + β5s

2
i

)
+

K∑
k=1

b1k (si − κk)2
+ +

K∑
k=1

b2kI
Post
i (si − κk)2

+ + εi, (122)
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Figure 5.5: Data from a 7-7-70-7 exposure series of the H2AH2B complex. The exposures are
taken sequentially moving from right to left, top to bottom.
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Figure 5.6: The SAXS data in this figure corresponds to 7-second exposures taken before
the 70-second exposure (circle) and after (asterisk).
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where IPost
i is an indicator function that takes values of 1 if the ith measurement is from

the post long exposure data. Model M1 is equivalent to fitting two separate functions

to the data depending on which source they arose from. Model M0 assumes there is no

relevant information to be gained by knowing from which source each data point came.

There are many models that could serve as alternatives to M0 that are not as dramatic in

their separation as M1, possibly by allowing the exposure effect to only “kick in” for the

large s regions. However M0 and M1 are more illustrative than practical in this example.

The MCMC procedure for handling heteroskedastic semiparametric regression (Section

3.2) is used for both M0 and M1. For both the mean and variance levels, K = KV = 10

knots placed at equally spaced quantiles of {si}Ni=1 ranging from 0.1 to 0.9 are used for a

truncated quadratic polynomial basis. The procedures are run for 10000 iterations with a

burn-in of 1000. Figure 5.7 contains the resulting fit for the null model M0. As expected,

the null model essentially splits the difference between pre- and post- long exposure data

for large values of s. Figure 5.8 shows the fit for the alternative model M1. Graphically,

we see that M1 fits both data sets quite well. This is to be expected since M1 generically

allows for separate nonparametric functions. Whether the gain in goodness-of-fit is worth the

additional model complexity can be determined by more rigorous model selection methods

(Bayes factor, DIC, etc.) as described in the concentration effect example. For this case,

the DIC for M0 is −1586.027 while the DIC for M1 is −1853.532, supporting the exposure

order interaction model.

5.2 Inference on Molecular Properties

The ultimate goal of SAXS experiments is to reconstruct structural shape information

about complex macromolecules from one-dimensional intensity curves. This traditionally

focuses on low-resolution information that describes general shape characteristics. Two such
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Figure 5.7: The null model M0 is fit to the H2AH2B data. The heteroskedastic MCMC
procedure was run for 10000 iterations with a burn-in of 1000.The shaded region

corresponds to the 95% credible region of the fit of the mean level data.
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Figure 5.8: The null model M1 is fit to the H2AH2B data. The heteroskedastic MCMC
procedure was run for 10000 iterations with a burn-in of 1000.The shaded region

corresponds to the 95% credible region of the fit of the mean level data.
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physical parameters that we will focus on are log(I(0)), the log intensity intercept and Rg,

the radius of gyration.

The log intensity intercept, log(I(0)), is of interest as a measure of a molecule’s molecular

weight. Given fixed concentration and experimental conditions, log(I(0)) is proportional up

to a known constant to molecular weight (Fischer et al., 2009). Including this parameter in

any of the frameworks presented here is automatic. The regression models used to handle log

intensity data include the standard intercept term β0. Inference and uncertainty estimates

about β0 are obtainable through standard methods. Non-distance related effects, such as a

concentration fixed effect, can be included. In this case, depending on the model specification,

log(I(0)) for a specific set of experimental conditions would be some linear combination of

parameter estimates.

The radius of gyration, Rg, is defined as the square root of the ratio of the particle’s

moment of inertia and mass. Conceptually, the radius of gyration is representative of the

radius of the time-averaged “shell” that would encompass the particle as it rotates freely.

Standard Guinier analysis defines the squared radius of gyration over a small neighborhood

near the origin as

I(s) = I(0) exp

(
−1

3
s2R2

g

)
(123)

where s is the measure of radial distance (angle in SAXS terminology) and I(s) is the intensity

function Guinier (1939). To estimate R2
g for a single SAXS exposure in our framework, one

has two options. The first is to use a truncated quadratic spline basis while removing the s

fixed effect. That is, the mean level model for log intensity data would be

log(I)i = β0 + β2s
2
i +

K∑
k=1

bk(si − κk)2
+. (124)
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While losing the flexibility of the linear function in the basis, there is theoretical justification

for the locally quadratic structure β0 + β2s
2 (Guinier, 1939). Alternatively, one could model

log(I) vs s2 and use a fully defined truncated linear spline basis.

For either case, estimation of R2
g becomes contingent on the span of the local neighborhood

over which the Guinier relationship is appropriate. Using low-rank penalized splines, this

is equivalent to selecting the location of the knot κ1. In the work presented here, κ1 is

generally chosen to best fit the data rather than meeting any “optimal window” criteria in

a scientific sense. Selecting the best window for estimating the radius gyration is currently

being studied by Cody Alasker, a fellow PhD student at Colorado State University, with Jay

Breidt and Mark van der Woerd.

5.2.1 H2AH2B Example

To illustrate the estimation of physical characteristics, we consider a sampled single ex-

posure of the H2AH2B complex (Isenberg, 1979). This experiment consists of a 4 mg/ml

sample of the H2AH2B complex irradiated for 7-seconds. This data displays pronounced het-

eroskedasticity for larger values of s. We present results from both the MCMC (Section 3.2)

and variational approximation (Section 4.3) of a heterokedastic semiparametric regression

model for this data. For comparison, we also present the homoskedastic versions as well

(Sections 3.1 and 4.2). The Gibbs sampler for the constant errors model was run for 20000

iterations with a burn-in of 2000 for both models. The hybrid Gibbs-DRAM procedure was

run for 40000 iterations with a burn-in of 4000.

For both error cases, we treat the mean-level responses under the model

yi = β0 + β2s
2
i +

K∑
k=1

bk (si − κk)2
+ + εi, (125)
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where εi ∼ N (0, σ2) or εi ∼ N (0, σ2
i ). For this example we use K = 10 knots at equally

spaced quantiles of s ranging from 0.1 to 0.99. For the heteroskedastic version, the log model

variance is modeled as

log(σ2
i ) = δ0 + δ1si + δ2s

2
i +

KV∑
k=1

ck (si − κVk)
2
+ . (126)

The same knots are used for the variance level as the mean level. All hyperparameter values

are the same as previous examples.

Constant Errors Heteroskedastic

β̂0

Estimate 6.17 6.16
95% Credible Bounds [5.95, 6.38] [6.15, 6.18]

Interval Width 0.43 0.03

R̂2
g

Estimate 564.04 528.15
95% Credible Bounds [206.72, 920.42] [493.51, 563.30]

Interval Width 713.69 69.80

Table 5.1: Estimated intercept (β̂0) and and squared radius of gyration (R̂2
g) of the log

intensity curve for the complex H2AH2B arising from the hybrid Gibbs-DRAM MCMC
procedure of both constant-error and heteroskedastic models. The credible bounds are

calculated using the empirical quantiles of the appropriate linear transformations of the θ
parameter chain.

Constant Errors Heteroskedastic

β̂0

Estimate 6.16 6.16
95% Credible Bounds [5.96, 6.37] [6.15, 6.17]

Interval Width 0.41 0.02

R̂2
g

Estimate 556.12 532.85
95% Credible Bounds [234.67, 877.58] [503.02, 562.67]

Interval Width 642.92 59.65

Table 5.2: Estimated intercept (β̂0) and and squared radius of gyration (R̂2
g) of the log

intensity curve for the complex H2AH2B arising from variational approximations of both
constant-error and heteroskedastic models. The credible bounds are derived using the
appropriate linear transformation of the θ under a Gaussian variational distribution
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Table 5.1 contains the estimates of β0 and R2
g for the MCMC procedure and Table 5.2

contains the corresponding estimates from the variational approximation. The point esti-

mates for both β0 and R2
g in all cases are fairly close. Appropriately accounting for the

heteroskedastic nature of the data leads to more-appropriate uncertanity estimates on the

physical parameters. In this case that means tighter bounds. Figures 5.9 and 5.10 show the

fits of the MCMC procedure for the H2AH2B data.

A curious result was observed when applying the heteroskedastic models to H2AH2B data.

For some cases, differences in magnitude of the covariates associated with θV could cause

erratic behavior of the resulting estimates. To address this, a mild scaling factor of 10 was

applied to all values s. The corresponding R2
g and β0 estimates account for this scaling.

Crainiceanu et al. (2007) discuss issues with the scale of the spatial covariate in the context

of the spatially adaptive heteroskedastic model and it is likely that similar convergence issues

can be seen here. Investigating the effect of the spatial covariate scale, particularly on the

multivariate sampling mechanism of the MCMC procedure for θV , is of interest for future

work.

5.3 Joint Mean-Variance Example

The final portion of our case study of SAXS data is to analyze the hierarchical model

developed in Section 2.3 for jointly modeling radial mean and variance data with experi-

mental data. Once again, we consider a sampled subset of a 7-second exposure of H2AH2B

complex taken at 4 mg/ml. However, this time we include the radial variance along with

the radial mean intensity data. Figure 5.11 displays the data. While the log radial variance

data displays an overall smooth behavior, there are a subset of points that appear to be

gross outliers that occur in the region [0.10, 0.20]. These points are displayed as “X” in

Figure 5.11. The corresponding radial mean values do not appear to be outliers. This raises

a curious question as to the nature of these data. Most likely, this is tied to some sort of
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Figure 5.9: MCMC estimate via Gibbs sampling of a truncated quadratic penalized spline
regression model with the linear fixed effect removed for the H2AH2B data. The procedure is

run for 20000 iterations with a burn-in of 2000.
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Figure 5.10: MCMC estimate via the hybrid Gibbs-DRAM procedure of a heteroskedastic
truncated quadratic penalized spline regression model with the linear fixed effect removed

for the H2AH2B data. The procedure is run for 40000 iterations with a burn-in of 4000.
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detector failure in which dead pixels inflate those observed radial variance values. For now

we remove these values from both responses.

To model both responses jointly, we consider the fixed effect radial variance model de-

scribed in (40). For both the mean and model variance levels, a truncated quadratic basis is

used, evaluated over K = KV = 10 equally spaced quantiles from 0.1 to 0.99. For the radial

variance level, a fixed effect model with covariates corresponding to an intercept, log(s),

and the log model variance v is used. The MCMC procedure described in Section 3.3 is

run for 75000 iterations with a 10% burn-in period. The resulting fits of the observed data

are displayed in Figure 5.12 with the estimated log model variance function displayed in

Figure 5.13

As with the simulated data example of Section 3.3.2, both the log radial mean intensity

and radial variance data are fit quite well by the MCMC procedure. Surprisingly, the fixed

effect model appears to do quite well for describing the log radial variance function. This is

of note because the derived relationship of σ2 and t2 described in (17) is for the case where σ2

describes the model variance of the intensity data, not the log intensity data. Table 5.3 shows

the estimates for the fixed effect model used for the radial variance data. While the evidence

suggests that η2, the parameter for the log model variance covaraiate, is significantly different

from 0, it is two orders of magnitude smaller than the log(s) parameter. This suggests that

there may not be much auxiliary model variance information to be gleaned from the radial

variance data.

Estimate 2.5% 97.5%
η0 0.756 0.692 0.823
η1 -1.022 -1.074 -0.971
η2 0.042 0.030 0.053
σ2
u 0.013 0.010 0.017

Table 5.3: Parameter estimates for radial variance data of H2AH2B data.

148



●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●●
●●

●●●●●

●
●●●

●●●
●●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

0.05 0.10 0.15 0.20 0.25

−2
0

2
4

6

Log Radial Mean Intensity 
Data for H2AH2B

Data$x

lo
g(

I)

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●
●●

●

●

●

●

●

●●

●

●●
●

●
●●

●●
●

●
●●

● ●

●
●●●●

●

●

●

●●
●

●

●
●

●
●●●

●

●

●

●
●

●
● ●

●

●
●

●●
●

●
●

●● ●●
●

●
●

●
●

0.05 0.10 0.15 0.20 0.25

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Log Radial Variance 
Data for H2AH2B

10s

lo
g(

I)

Figure 5.11: A sampled set of radial mean and variance data from a 7-second exposure of
H2AH2B complex taken at 4 mg/ml. Data values denoted with an “X” represent outlier

values on the log radial variance curves. Both the radial mean and radial variance
responses associated with these values are removed for future analysis.
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Figure 5.12: MCMC estimates of observed radial mean and variance data for a H2AH2B

complex. The shaded regions correspond to 95% credible bounds for the estimated fits.
The procedure was run for 75000 iterations with a 10% burn-in period.
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Figure 5.13: MCMC estimate of the log model variance function for the H2AH2B complex
data. The shaded regions correspond to 95% credible bounds for the estimated fits. The

procedure was run for 75000 iterations with stand-alonea 10% burn-in period.
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The heteroskedastic nature of the radial mean data is reflected by the associated credible

bounds in Figure 5.12. The estimated log model variance in Figure 5.13 is comparable to the

estimate from the the purely heteroskedastic model in Figure 5.10. Figure 5.14 shows the

post burn-in marginal trace plots of the θV parameter chain. The overall acceptance rate of

the DRAM step was approximately 13.6 percent. Some parameters in the chain appear to

be converging rather slowly which could be addressed through further tuning of the DRAM

procedure. Since these parameters represent coefficients of basis functions, it is unclear how

slow convergence of the marginal chains affects the overall linear combination that fits the

data.
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Figure 5.14: Post burn-in marginal trace plots of the θV chain.

The inclusion of radial variance information in a model for SAXS data is an attempt to

leverage as much information as possible to yield the most appropriate inference for both

experimental effects and physical characteristics. The joint framework presented here is
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able to fit both the simulation studies as well as experimental SAXS data accurately. After

studying both types of examples, it is unclear as to the true effect of the radial variance data

on the inference at the mean level, especially versus a stand-alone heteroskedastic model.

However, radial variance data may serve a purpose for detecting experimental effects that

are not obvious with mean level observation alone. Specifically, the radial variance data may

be more sensitive to departures from the radial symmetry assumption that is made at the

point of data collection. Building a cohesive framework that incorporates all available data

for SAXS inference would allow for better understanding of both the experimental process

and the physical molecule of interest.

5.4 Further Extensions for SAXS Data

The SAXS examples presented in this chapter have been relatively simple, considering no

more than one or two exposures at a time. In these cases, the illustrative examples for all

the models presented here can appear to be somewhat textbook. It is common for SAXS

data to be more complicated, with exposures taken over multiple combinations of exposures

times, concentrations, and other experimental conditions. Also, we have limited ourselves to

presenting well understood, localized structural parameter estimates in the form of log(I(0))

and R2
g. Higher resolution structural information is a sought after goal of scientists and

determining the relationship between shape parameters and model parameters quickly be-

comes challenging. Finally, as multiple exposures are considered, including radial variance

data can provide an additional for avenue for the detection of “odd” data behavior such as

sensor malfunction. Data arising from SAXS experiments is a rich source for future questions

of both statistical and scientific interest.
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CHAPTER 6

CONCLUSION

The prevailing theme of this work has been to study statistical problems arising in the mod-

eling of data produced by small angle X-ray scattering (SAXS) experiments. SAXS provides

a method for inferring low-resolution structural information for a wide class of complex and

scientifically interesting macromolecules. Often times, the nature of these molecules make

them ill-suited for analysis under competing experimental methodologies. However, numer-

ous statistical challenges arise from SAXS data. In this work, we presented three Bayesian

frameworks of increasing complexity for the fitting of semiparametric models to SAXS data.

While motivated by problems in biochemistry, these methods are general and can be ap-

plied to many problems of similar nature. Also presented are fast, variational approximation

methods for reducing the computational cost of these methods. Often times approximate

inference is sufficient for initial analysis or is the only way to deal with large data issues

in a feasible manner. Novel variational approximations for semiparametric regression in the

presence of heteroskedastic errors as well as spatially adaptive semiparametric regression are

described here. Finally, we detail how the methods presented in this dissertation can be used

to investigate the effect of experimental conditions on SAXS data quality as well as estimate

physical characteristics. Successfully implementing flexible and rigorous modeling method-

ologies that can be applied to SAXS data is of continuing interests to both statisticians

and experimental scientists in the hopes of better understanding the structure of complex

macromolecules.

Future research related to the work presented here will focus on three areas. The first area

will be solving the computational problems associated with the heteroskedastic semipara-
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metric regression and joint mean-variance models, primarily the slow convergence of the θV

chain. The second area will be continued investigation on the usage of the variational ap-

proximations presented here for semiparametric regression models under complex variance

structures. This will include extending the work presented here to consider the spatially

adaptive heteroskedastic regression model of Crainiceanu et al. (2007). Finally, we will con-

tinue exploring the practical applications of our methodologies for SAXS data, including

the estimation of more informative physical parameters such as maximum linear dimension

and the pairwise distance function of the molecule of interest. The research presented here

provides a solid foundation for addressing all three of these areas of interest.
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APPENDICES

A Derivation of q for Heteroskedastic Semiparametric

Regression

The following section contains the derivation of the q-densities described in (76).

Derivation of qθ

Using the form of p(θ | ·) from (29), we can derive qθ:

qθ ∝ exp [E−θ [log p(θ|·)]]

∝ exp

[
E−θ

[
−1

2

(
θ −MCTΣ−1y

)T
M−1

(
θ −MCTΣ−1y

)]]
∝ exp

[
E−θ

[
−1

2

(
θ −MCTΣ−1y

)T
M−1

(
θ −MCTΣ−1y

)]]
∝ exp

[
−1

2
E−θ

[
θTM−1θ − yTΣ−1Cθ − θTCTΣ−1y

]]
.

The quadratic term is

E−θ
[
θTM−1θ

]
= E−θ

[
θT
(
Σ−1
θ + CTΣ−1C

)
θ
]

= βTβ
1

σ2
β

+ bTbE−θ

[
1

σ2
b

]
︸ ︷︷ ︸
µ
q(1/σ2

b
)

+E−θ
[
θTCTΣ−1Cθ

]

= βTβ
1

σ2
β

+ bTbµq(1/σ2
b ) +

N∑
i=1

(CT
i θ)

2E−θ [exp {−CviθV}]︸ ︷︷ ︸
γi

= θT

(
blockdiag(

1

σ2
β

Ip, µq(1/σ2
b )IK) + CTΓC

)
θ.
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Define Σq(θ) =
(

blockdiag( 1
σ2
β
Ip, µq(1/σ2

b )IK) + CTΓC
)−1

. Here Γ = diag(γ1, γ2, . . . , γN). In

this context γi = E−θ
[
exp{−CVi

T θV}
]

corresponds to the moment generating function of

qθV evaluated at the vector −CVi
.

The expected value of the terms linear in θ is

E−θ
[
yTΣ−1Cθ

]
= E−θ

[
N∑
i=1

yi(Ci
T θ)

1

σ2
i

]

=
N∑
i=1

yi(Ci
T θ)E−θi

[
−CVi

T θV

]
= yTΓCθ.

By symmetry, we also have

E−θ
[
θTCTΣ−1y

]
= θTCTΓy.

Using these results and completing the square, we arrive at the form of the optimal qθ:

qθ ∝ exp

{
−1

2

(
θ −Σq(θ)C

TΓy
)T

Σq(θ)
−1
(
θ −Σq(θ)C

TΓy
)}

θ
q∼ N

Σq(θ)C
TΓy︸ ︷︷ ︸

µq(θ)

,Σq(θ)

 .

Derivation of qσ2
b

The variational density for σ2
b is

qσ2
b
∝ exp

[
E−σ2

b

[
log(p(σ2

b | ·)
]]

∝ exp

[
E−σ2

b

[
−
(
Ab +

K

2

)
log(σ2

b )−
1

σ2
b

(
Bb + ‖b‖2

)]]
∝
(
σ2
b

)−Ab−K/2 exp

[
− 1

σ2
b

[
Bb + E−σ2

b
[‖b‖2]

]]
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∝
(
σ2
b

)−Ab−K/2 exp

− 1

σ2
b

Bb + ‖E−σ2
b
[b]︸ ︷︷ ︸

µq(b)

‖2 + trace(Var−σ2
b
(b)︸ ︷︷ ︸

Σq(b)

)




σ2
b

q∼ IG

Ab +
KV

2
, Bb +

1

2

(
‖µq(b)‖2 + trace(Σq(b))

)︸ ︷︷ ︸
B
q(σ2

b
)

 .

Here µq(b) and Σq(b) refer to the portion of µq(θ) and Σq(θ) associated with the random effects

parameters. Given the inverse Gamma distribution of qσ2
b

Eq

[
1

σ2
b

]
=
Ab +K/2

Bq(σ2
b )

.

Derivation of qσ2
c

Given the similar structure between p(σ2
b | ·) and p(σ2

c | ·), the derivation of qσ2
c

is the

same.

qσ2
c
∝
(
σ2
c

)−Ac−KV /2 exp

− 1

σ2
c

Bc + ‖E−σ2
c
[c]︸ ︷︷ ︸

µq(c)

‖2 + trace(Var−σ2
b
(c)︸ ︷︷ ︸

Σq(c)

)




σ2
c

q∼ IG

Ac +
KV

2
, Bc +

1

2

(
‖µq(c)‖2 + trace(Σq(c))

)︸ ︷︷ ︸
B
q(σ2c )


As before, µq(c) and Σq(c) refer to the portion of µq(θV) and Σq(θV) associated with the random

effects parameters. As with 1/σ2
b ,

Eq

[
1

σ2
c

]
=
Ac +KV /2

Bq(σ2
c )

.
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Derivation of qθV

As highlighted in (29), the posterior conditional p(θV | ·) does not take known form. Using

(57), the optimal q-density for θV is

qθV ∝ exp [E−θV {log p(θV | ·}]

∝ exp

[
E−θV

{
−1

2

(
N∑
i=1

CViθV +
N∑
i=1

(yi −Ci
T θ)2 exp(−CVi

T θV) + θT
VΣ−1

θV
θV

)}]

∝ exp

[
−1

2

{
N∑
i=1

CVi

T θV +
N∑
i=1

E−θV
[
(yi −Ci

T θ)2
]

exp(−CVi

T θV) + E−θV
[
θT

VΣ−1
θV
θV

]}]

∝ exp

[
− 1

2

{
N∑
i=1

CVi

T θV +
N∑
i=1

(
(yi −Ci

Tµq(θ))
2 + Ci

TΣq(θ)Ci

)
exp(−CVi

T θV)

+ θV
Tblockdiag

(
1

σ2
η

Ir, µq(1/σ2
c )IKV

)
θV

}]
.

B Derivation of K-L Lower Bound for Heteroskedastic

Semiparametric Regression

Let Γ represent the gamma function arising from the density of the inverse gamma dis-

tribution. Recall that the density q(ψ) is assumed to have the product density structure

described in Section 4.3. Then

log p(y; q) =

∫
Ψ

q(ψ) [log p(y,ψ)− log q(ψ)] dψ

=

∫
Ψ

q(ψ) [log p(y | ψ) + log p(ψ)− log q(ψ)] dψ

=

∫
Ψ

q(ψ)
[
log p(y | ψ) + log p(θ) + log p(σ2

b ) + log p(θV ) + log p(σ2
c )− log q(ψ)

]
dψ

= −1

2
log(2π)N − p

2
log(σ2

β)− r

2
log(σ2

δ ) + Ab log(Bb)− log(Γ(Ab))
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+ Ac log(Bc)− log(Γ(Ac)) +
1

2
log(|Σq(θ)|) +

1

2
log(|Σq(θV )|)

−
(
Ab +

K

2

)
log(Bq(σ

2
b ))−

(
Ac +

KV

2

)
log(Bq(σ2

c ))

+ log
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Γ

(
AC +

KV

2
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+ log

(
Γ

(
Ab +

K

2

))
+

1

2σ2
β

(
‖µq(β)‖2 + trace(Σq(β))

)
+

1

2σ2
η

(
‖µq(δ)‖2 + trace(Σq(η))

)
− 1

2

N∑
i=1

[(
Yi −CT

i µq(θ)

)2
+ CT

i Σq(θ)Ci

]
exp

{
−CT

Vi
µq(θ) +

1

2
CT
Vi

Σq(θ)CVi

}
+
p+K

2
+
r +KV

2
.
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