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ABSTRACT OF THESIS 

WHAT CONTROLS THE VARIABILITY OF OXYGEN  

IN THE SUBPOLAR NORTH PACIFIC? 

 

 Dissolved oxygen is a widely observed chemical quantity in the oceans along with 

temperature and salinity. Changes in the dissolved oxygen have been observed over the 

world oceans. Observed oxygen in the Ocean Station Papa (OSP, 50°N, 145°W) in the 

Gulf of Alaska exhibits strong variability over interannual and decadal timescales, 

however, the mechanisms driving the observed variability are not yet fully understood. 

Furthermore, irregular sampling frequency and relatively short record length make it 

difficult to detect a low-frequency variability. Motivated by these observations, we 

investigate the mechanisms driving the low-frequency variability of oxygen in the 

subpolar North Pacific. The specific purposes of this study are 1) to evaluate the 

robustness of the observed low-frequency variability of dissolved oxygen and 2) to 

determine the mechanisms driving the observed variability using statistical data analysis 

and numerical simulations. 

To evaluate the robustness of the low-frequency variability, we conducted 

spectral analyses on the observed oxygen at OSP. To address the irregular sampling 

frequency we randomly sub-sampled the raw data to form 500 ensemble members with a 

regular time interval, and then performed spectral analyses. The resulting power spectrum 
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of oxygen exhibits a robust low-frequency variability and a statistically significant 

spectral peak is identified at a timescale of 15-20 years. 

The wintertime oceanic barotropic streamfunction is significantly correlated with 

the observed oxygen anomaly at OSP with a north-south dipole structure over the North 

Pacific.  We hypothesize that the observed low-frequency variability is primarily driven 

by the variability of large-scale ocean circulation in the North Pacific. To test this 

hypothesis, we simulate the three-dimensional distribution of oxygen anomaly between 

1952 to 2001 using data-constrained circulation fields. The simulated oxygen anomaly 

shows an outstanding variability in the Gulf of Alaska, showing that this region is a 

hotspot of oxygen fluctuation. Anomalous advection acting on the climatological mean 

oxygen gradient is the source of oxygen variability in this simulation. Empirical 

Orthogonal Function (EOF) analyses of the simulated oxygen show that the two 

dominant modes of the oxygen anomaly explains more than 50% of oxygen variance over 

the North Pacific, that are closely related to the dominant modes of climate variability in 

the North Pacific (Pacific Decadal Oscillation and North Pacific Oscillation). Our results 

imply the important link between large-scale climate fluctuations, ocean circulation and 

biogeochemical tracers in the North Pacific.   
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CHAPTER 1.  INTRODUCTION 
 
 
1-1. Background: Dissolved Oxygen in the Oceans 
 
 

Dissolved oxygen in the ocean is the third most frequently observed ocean tracer 

following temperature and salinity. Oxygen reflects both physical and biological 

processes in the oceans and can be measured accurately from the in situ water samples. 

Oxygen is essential for life, and various organisms adapt to a wide range of oxic 

conditions. Some organisms require well-oxygenated conditions (for their rapid 

metabolism), while others tolerate brief periods of low-oxygen conditions (Davis, 1975; 

Gray et al., 2002). Hypoxic (O2 < 60 µmol/kg) and anoxic (O2 ~ 0 µmol/kg) events can 

substantially impact on ecosystem and fisheries. Oxygen concentration controls a suite of 

chemical reactions and biological activity (such as remineralization, transformations of 

organic molecules to inorganic forms) in the seawater and sediment. The volume of 

hypoxic water impacts on the nitrogen budget and the global nutrient inventory.  

Furthermore, the oceanic oxygen budget influences the interpretation of atmospheric 

oxygen and the partitioning of carbon uptake between lands and oceans. Changes in 

dissolved oxygen can also be used to detect and interpret the response of ocean 

circulation and biogeochemistry to climate change. 

Oxygen distribution in the oceans is mainly controlled by three mechanisms: 1) 

air-sea gas exchange, 2) transport by ocean circulation, and 3) biological sources and 

sinks as shown in the schematic diagram below (Figure 1-1). 
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Figure 1-1. Schematic diagram of processes how oxygen variability is controlled. 

 

1) Oxygen accounts for approximately 20% of atmospheric composition, and 

air-sea gas exchange tends to keep surface waters very close to saturation with overlying 

atmospheric oxygen. Surface oxygen can be controlled by the saturated oxygen 

concentration at local temperature and salinity, and by the degree of equilibration attained 

through gas-exchange with the atmosphere (Ito et al., 2004). The oxygen-rich surface 

water can then be physically transported into the interior ocean.   

 2) Transport by ocean circulation includes both horizontal circulation and 

ventilation (vertical transport). Horizontal circulation (such as gyre circulation) can re-

distribute oxygen over long distances. Ventilation (subduction) of water masses carries 

the oxygen-rich surface waters down into the interior ocean. 
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3) Photosynthesis by phytoplankton produces oxygen in the surface ocean, 

which tends to supersaturate surface oxygen concentration. Subduction of the oxygen-

rich surface water brings oxygen from the surface to the interior ocean.  As the water 

travels in the interior thermocline, oxygen is slowly consumed by the decomposition of 

organic material, and thus the deep waters are relatively depleted in oxygen.  These 

biological processes tend to generate a vertical gradient of oxygen.   

First we will glance the climatology of oxygen distribution over the North Pacific. 

Figure 1-2 shows the climatological distribution of oxygen along the three constant 

density surfaces (isopycnal), potential density ( ) = 26.0, 26.5 and 27.0 based on World 

Ocean Atlas 2005 (Garcia et al., 2006). There is a large (O (1)) spatial gradient of oxygen 

in the mean state.  Fluctuations in ocean circulation can act on this background oxygen 

gradient to generate significant variability. In the deepest specific density layer (  = 

27.0), newly ventilated waters in the Sea of Okhotsk are enriched in oxygen, and the high 

oxygen spreads from the western to central Pacific. There is a general north-south 

gradient of oxygen at all density levels contrasting the well-ventilated subtropical waters 

and poorly ventilated tropical thermocline. Oxygen concentration is also higher near the 

surface, and it decreases downward in the top several hundreds of meters of the upper 

ocean.   
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Figure 1-2. Annual mean climatology of oxygen concentration (from World Ocean Atlas 
2005) over the North Pacific three isopycnal surfaces at  = (a) 26.0 (b) 26.5 and (c) 
27.0. The locations of the Ocean Station Papa are shown in black box. The regions where 
isopycnal layer depth less than 5m are extracted. Units are in [µmol/kg]. 
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1-2. Observed Oxygen and Climate Variability of the North Pacific 

 

Changes in dissolved oxygen concentration have been observed across major 

ocean basins (Keeling and Garcia, 2002; Keeling et al., 2010), which may be due to the 

responses of ocean circulation and biology to climate variability.  Oxygen concentration 

can be sensitive to anthropogenic climate change, as the heating of the oceans decreases 

the solubility of oxygen, and increasing thermal stratification may prevent the oxygen-

rich surface waters to subduct into the thermocline. Oxygen variability in the North 

Pacific has been analyzed using observations and numerical models (Ono et al., 2001; 

Emerson et al., 2004; Deutsch et al., 2005, 2006; Watanabe et al., 2008).   

The subarctic North Pacific contains two of the longest time series of oxygen 

measurements in the western (Oyashio region) and eastern (Gulf of Alaska) part of the 

basin (Ono et al., 2001; Whitney et al., 2007).  Analyzing 30-year time series of 

observational data in the Oyashio region, Ono et al., (2001) showed a decreasing, long-

term trend in oxygen superimposed with more energetic decadal variability.  Observed 

low-frequency variability in the subsurface oxygen is correlated with the Aleutian Low 

activity (correlation coefficient is -0.88, Ono et al., 2001).  Watanabe et al., (2008) 

analyzed additional time series data in the subpolar North Pacific, and suggested that 

variability of oxygen and nutrients in the eastern (Gulf of Alaska) and western (Oyashio) 

time series are related. Linear trends as well as decadal variability are significant in the 

observed oxygen and nutrients, and the observed decadal variability is of opposite phases 

between the western and eastern part of the basin (see figure 1-3).  
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Figure 1-3.  Observed time series of dissolved oxygen (black circle), PO4 (blue triangle) 
temperature (red diamond) and N (green triangle) in the subsurface ocean cited from 
Watanabe et al., (2008). Solid and dashed line indicates fitted curves and linear trends. (a) 
Time series on  = 26.8 at Gulf of Alaska and (b) Western Subarctic Gyre.  
 

Deutsch et al., (2005, 2006) investigated the temporal variability of oxygen in the 

upper water column of the North Pacific using an isopycnal circulation model including a 

simple parameterization of biogeochemical cycle (Najjar et al, 1992). In consistency with 

the observation, the simulation reproduced a decreasing oxygen trend in the lower 

ventilated thermocline at subpolar latitudes, and increasing oxygen in much of the 

subtropics over the time period of 1980s and 1990s.  Sensitivity experiments show that 

physical transport of oxygen is the dominant cause of simulated oxygen variability in the 
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North Pacific, indicating that oxygen could be used as a tracer of physical circulation 

variability in the region (see figure 1-4).   

 

 

 

Figure 1-4.  Difference between decadal mean O2 (µmol/kg) in the 1990s and the 1980s 
along the isopycnal surface (  = 26.8) from Deutsch et al., (2006).  The (a) total O2 
difference is the sum of O2 anomalies due to (b) biological changes, (c) ventilation 
changes and (d) changes in circulation. 
 

What controls the decadal variability of oxygen and other biogeochemical tracers 

in the North Pacific?  Recently Di Lorenzo et al., (2008) defined a regional mode of 

variability in the northeastern Pacific, the North Pacific Gyre Oscillation (NPGO) based 

on the Empirical Orthogonal Function (EOF) of the dynamic sea-surface height 

anomalies (SSHa) in the northeastern Pacific (180°W-110°W; 25°N-62°N).  The first 

principal component (PC) is the regional representation of the Pacific Decadal Oscillation 
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(PDO, Mantua et al., 1997), and the second PC is the NPGO mode.  The PDO mode 

shows a single large gyre north of 25°N and an anomalously strong poleward flow along 

the entire coast from 25°N to 55°N (see figure 1-5 left panels). In contrast, the NPGO 

mode in its positive phase shows a pair of counter-rotating gyres that reflect the gyre-

scale mean geostrophic circulation (see figure 1-5 right panels).  

The NPGO variability is significantly correlated with observed sea surface 

temperature (SSTa), salinity (SSSa), nutrients, chlorophyll (Chl-a) and oxygen of the 

northeastern Pacific along the coast of California (see Table 1-1). While the sea surface 

temperature is more strongly correlated with the PDO mode, sea surface salinity and 

other biogeochemical tracers including oxygen are more strongly correlated with the 

NPGO mode.  The associated changes in the wind forcing and sea level pressure pattern 

with PDO mode and NPGO mode are shown in figure 1-6.  When the NPGO is positive, 

the associated changes in wind forcing create upwelling-favorable conditions in the 

California current and Alaskan Gyre, but downwelling condition in the Subtropical Gyre 

and the Alaskan Coastal Current (Di Lorenzo et al., 2008). The anomalous upwelling 

associated with the NPGO mode can bring up oxygen-depleted and nutrient-enriched 

thermocline waters in the California coast.   

 

 

 

 

 

 



9 

Table 1-1 

 

 
Correlations of the Model PDO and NPGO indices with CalCOFI (California 

Cooperative Oceanic Fisheries Investigation) data cited from Di Lorenzo et al., (2008). 
The time series of SSTa, SSSa and Chl-a are averages of surface observations from the 
CalCOFI program in the Southern California Current. The nutrient time series are spatial 
averages of samples from 150m depth. Bold numbers indicate correlation significant at 
the 95% level or higher.   
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Figure 1-5.  PDO and NPGO patterns in sea surface height field based on model and data 
(from Di Lorenzo et al., 2008). Left panels show the PDO pattern and right panels show 
the NPGO pattern. 
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Figure 1-6.  Regression maps of (a) PDO and (b) NPGO indices with NCEP windstress 
vectors and sea level pressure (color scale) (cited from Di Lorenzo et al., 2008). 
 

The spatial structure of the wind stress anomalies associated with NPGO is 

similar to the positive phase of the North Pacific Oscillation (NPO) / West Pacific (WP) 

pattern (Walker and Bliss, 1932; Linkin and Nigam, 2008), which is the second PC of the 

atmospheric sea level pressure and geopotential height in the extratropical North Pacific 

(figure 1-7). Associated SST and surface wind pattern are shown in figure 1-8. The SST 

signal is apparently wind driven: In the tropics, the NPO/WP wind anomalies, especially 

anticyclonic flow around the southern cell, intensifies the trades in the central/eastern 
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basin and weakens westerlies in the subtropical western basin, while cyclonic flow about 

the northern cell strengthens the midlatitude westerlies. The resulting wind speed and 

surface fluxes - stronger in the trade wind zone and weaker in the subtropics - lead to 

SST changes (Linkin and Nigam, 2008).  However, the NPO/WP influence on SST is not 

very strong based on the correlation map (maximum correlations are ~ 0.3).  

 

 

 
Figure 1-7. Regression maps of NPO/WP index with winter SLP in the Pacific sector 
(cited from Linkin and Nigam, 2008). Solid (dashed) contours denote positive (negative) 
values: the contour lines with zeros are suppressed.   
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Figure 1-8.  NPO/WP SST correlations and 1000-hPa wind regressions during 1958-
2001 winter months (cited from Linkin and Nigam, 2008). SST is from HadISST dataset 
while winds are from ERA-40. Solid (dashed) contours denote positive (negative) values.   
 

1-3. Ocean Station Papa 

 

The longest record of dissolved oxygen in the subpolar North Pacific comes from 

the Gulf of Alaska, Ocean Station Papa (OSP, 50°N, 145°W, see figure 1-9). OSP 

measurements were initially established by a weathership in December 1949, and then 

routine oceanographic measurements have been continuously performed until today with 

varying sampling frequency (Ocean Station Papa website: 

http://www.pmel.noaa.gov/stnP/overview.html).   
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Figure 1-9.  Map of the North Pacific Ocean showing major currents (cited from 
Whitney et al., 2007).  Label P shows the location of Ocean Station Papa (P) at 50°N, 
145°W. 
 

Over fifty years of time series measurements of oceanic physical properties are 

available at OSP. Cummins and Lagerloef, [2002] examined the low-frequency 

variability of the depth of the main pycnocline (a layer where the density increases 

rapidly with depth), demonstrating that a large fraction (about 50%) of the low-frequency 

variability in the depth of the pycnocline at OSP could be well explained by the local 

Ekman pumping.  Through this mechanism, the PDO and associated wind stress curl 

have a large influence on the pycnocline variability at OSP.   

Based on the observed hydrographic and oxygen data between 1956 and 2006, 

Whitney et al., [2007] found waters below the ocean mixed layer depth to at least 1000m 

have been warming and losing oxygen over the last 50 years.  However, decadal 

fluctuations are much stronger than the long-term trend in the oxygen data as shown in 

figure 1-10, and it is not yet clear what controls this variability.   
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Figure 1-10.  Observed isopycnal (  = 27.0) dissolved oxygen at OSP. Triangle shows 
the raw data of dissolved oxygen. 
 

Motivated by the outstanding low-frequency variability of oxygen at OSP, Ito and 

Deutsch, (2010) developed a conceptual model to illustrate mechanisms controlling the 

low-frequency variability of thermocline oxygen.  The model is analogous to the 

stochastic climate model of Hasselmann (1976) where the negative feedback of air-sea 

heat fluxes is replaced by the flushing effect of thermocline ventilation. The ventilation of 

thermocline naturally integrates the effects of anomalous respiration and advection over 

the decadal timescales, so short-lived oxygen perturbations are strongly damped, 

producing a red spectrum of oxygen variance.  The model was then applied to the 
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observed thermocline oxygen at OSP, and found a statistically significant spectral peak at 

the 15-20 year timescale. While their analysis shows the significance of the low-

frequency variability in this region, it is not clear what physical and biogeochemical 

processes can cause the decadal timescale fluctuation of oxygen.   

 

1-4.  Objectives of this Thesis 

 

 Figure 1-10 clearly demonstrates the dynamic variability of dissolved oxygen in 

the subpolar Pacific.  Observed oxygen variability is correlated with the NPGO in 

interannual and decadal timescales (correlation coefficient is -0.64, significant at 95% 

level), however, the mechanistic links between physical climate variability and 

biogeochemical tracers are not yet understood.  Previous studies identified the increased 

variance of oxygen in the 15-20 year timescale, but it is not clear what sets this timescale.  

Furthermore, the irregular sampling frequency and relatively short length of the time 

series data make it difficult to detect the low-frequency variability in a robust way.    

The main objective of this study is to better understand the mechanisms 

controlling the observed oxygen variability in the main thermocline of the subpolar North 

Pacific.  In particular, we focus on the density range of North Pacific Intermediate Water 

(NPIW, isopycnal layer at  = 27.0).  This isopycnal layer is below the base of the 

euphotic zone and winter mixed-layer, so there is no direct influence from the surface 

processes.  The following two questions are addressed in this thesis: 
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1) How robust is the low-frequency variability of thermocline oxygen at 

OSP? 

2) What causes the observed thermocline oxygen variability? 

 

These two questions are addressed in the following two chapters.  Chapter 2 focuses on 

the time-series analysis of oxygen observation at OSP.  In order to quantify and establish 

the robustness of the low frequency variability, detailed statistical analyses are 

performed.  Chapter 3 focuses on the mechanism of oxygen variability in the subpolar 

North Pacific, employing two complementary approaches.  First, correlation and 

regression analyses are performed to indentify links between observed oxygen and 

physical properties.  Then, a numerical ocean model is used to simulate the oxygen 

variability.  The model fields are first tested against the observational data, and EOF 

analyses are performed to extract the modes of oxygen variability.   
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CHAPTER 2. TIME SERIES ANALYSIS OF OBSERVED OXYGEN 

 

2-1.  Background 

 

 Dissolved oxygen in the thermocline of the subpolar North Pacific shows a strong 

decadal variability.  The low-frequency variability of oxygen is particularly interesting as 

it may reflect the effect of low frequency variability in physical and biogeochemical 

processes. One of the longest ocean time series observations of dissolved oxygen comes 

from the North Pacific.  Time series measurements at Ocean Station Papa (OSP, 50°N, 

145°W) and the ocean transect Line P (Figure 9, in Chapter 1) has been operating since 

1949.  Ito and Deutsch, (2010) have analyzed 51-year long (between 1956 – 2006) 

oxygen time series data at OSP below the base of winter mixed layer on the isopycnal 

surface  = 27.0 which is about 350 – 400m depth.  Below the base of winter mixed 

layer, the seawater cannot directly interact with overlying atmosphere through seasonal 

convection. Therefore the variability of oxygen at this density level is likely influenced 

by processes occurring in the interior ocean including ocean circulation and biological 

respiration.  

Taking advantage of the relatively long time series at OSP, Ito and Deutsch 

(2010) performed a spectral analysis, finding a low-frequency variability with a 

statistically significant spectral peak at the 15-20 year timescale.  As they discussed, there 

are some caveats in this study.  First, the timescale of 15-20 years is comparable to the 
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length of the time series data itself, only allowing 2 to 3 cycles of this variability, making 

it difficult to determine the statistical significance of the signal.  Secondly, the sampling 

frequency has changed significantly before and after 1981.  Between December 1949 and 

June 1981, OSP has been operating as an ocean weather station where large number of 

water samples has been taken until the end of 1970s.  During this period, the water 

samples are taken on weekly timescale. After 1981, observations are continued by the 

Institute of Ocean Science (IOS) and the number of water samples dramatically decreased 

to about 3-6 samples per year (Whitney and Freeland, 1999,Whitney et al., 2007).  This 

sudden decrease in sampling density is concerning as we interpret the spectral analysis of 

Ito and Deutsch (2010) in which the Fourier analysis is applied to the annually binned 

time series data without specific treatment for the shift in sampling frequency. Thirdly, 

based on the limited data before 1980s, there is a significant intra-annual and inter-annual 

variability of oxygen at OSP.  This is unlikely a simple artifact of sampling error, and this 

high-frequency variability may not be well sampled enough after 1980s. Even though 

these measurements are taken below the base of the winter mixed layer, there could be 

episodic export of organic material, mesoscale eddy variability and other processes that 

can introduce such high-frequency variability, which is not taken into account in the 

previous studies where the data is simply averaged annually.  These outstanding issues 

motivate further investigations to address several scientific questions.   

 

• How can we establish the statistics of oxygen time series with 

irregular sampling frequency? 

• How robust is the low-frequency variability of oxygen at OSP? 
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• Can we determine statistical significance of the spectral peak in the 

15-20 year timescale? 

 

In this chapter, we revisit the time series analysis of dissolved oxygen at OSP to resolve 

above questions. The organization of the chapter is as follows.  In the following section 

we will describe the method of time series analysis.  To address the irregular sampling 

frequency and to clarify the low-frequency variability, we analyzed the time series data at 

OSP with an improved statistical methods.  As we discuss below, our analysis includes 

random sampling of the raw data with minimal averaging before performing spectral 

analysis.  This approach is applied not only to oxygen but also temperature and salinity of 

the isopycnal surface (  = 27.0). In section 2-3, fundamental statistical properties are 

briefly explained. In section 2-4, results from spectral analysis based on ensemble 

members are described and finally in section 2-5, we summarize and discuss the 

implication of our results. 

 

2-2.  Methods 

 

 In this section, we describe the improved method of time series analysis, which 

addresses the issues of irregular sampling. Observed oxygen data at OSP on the isopycnal 

surface,  = 27.0, has a total of 1037 data points between 1956 and 2006. However, 

these data points are not distributed uniformly in time.  Before 1981, there are over 30 

data points per year.  After 1981, the sampling frequency becomes about 5 data points per 
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year.  Previous study of Ito and Deutsch (2010) simply binned the data annually and 

made an annual mean time series.   

A new approach is developed to perform time series analyses of the OSP data 

without making excessive averaging of the raw data.  To achieve this goal, we first 

randomly sample 200 data points from all the data, including 120 samples from the 

period of 1956 – 1980 and 80 samples from the period of 1981 – 2006.  This sub-

sampling of the data is separately performed between the two periods due to the different 

data density. While this operation reduces the total number of data points in the sub-

sampled time series, the irregularity in the data density is effectively removed. Then the 

200 data points are binned annually to form an annual time series over the 51-year period.  

On average, there are about 4 data points per year, and we discard cases with a missing 

year. This sampling scheme is repeated numerous times by a computer program to 

generate 500 ensemble members. This operation is also carried out for the temperature, 

and salinity on the isopycnal surface. This new approach enables us to retain information 

in the original dataset as much as possible while effectively removing the irregular data 

density.  

Once the ensemble members are established, we performed the basic statistical 

analysis including the mean, standard deviation and effective sample size of each 

ensemble members.  The effective sample size is calculated following the method 

developed by Bretherton et al., (1999).   

€ 

N* = N
1− r2

1+ r2
   (2-1) 

N is the number of the samples and r is the lag-one auto-correlation for the time series. 

The e-folding timescales are also calculated from the lag-one autocorrelation.  
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2-3. Result: Fundamental Statistical Properties 

 

 In this section, basic statistical properties are presented from the ensemble 

members.  Figure 2-1 shows the annually binned time series data using all the 

observations.  Similar plot is generated based on the ensemble mean time series in figure 

2-2.  The three panels show oxygen, temperature and salinity data. Ensemble means are 

calculated from simply taking an average of 500 ensemble members for each year.  The 

shaded areas in Figure 2-1 and 2-2 show the spread of data with two standard deviations. 

Correlation coefficients between annually binned and ensemble mean data are 0.99  for 

all tracers indicating that annually binned and ensemble mean time series are essentially 

the same. Basic statistics are identical between annually binned and ensemble mean data 

because they come from the same time series, and large enough ensemble members have 

been included.  

 Visual inspection of the time series data suggest that the annually binned and 

ensemble mean data contain some low-frequency (decadal) variability. Also salinity data 

seems to contain significant high-frequency (interannual) variability relative to the 

oxygen concentration and temperature. Linear trend lines are also plotted where moderate 

long-term trends are found in all data.  Temperature is warming, and oxygen is declining 

in the thermocline as previously discussed in Whitney et al., (2007). Temperature 

increased about 0.25 °C while dissolved oxygen decreased about 10 µmol/kg between 

1956 - 2001. The effect of temperature increase on the solubility of oxygen can explain 

about 1.5 µmol/kg decrease in the oxygen concentration, which is only about 15% of the 

observed long-term change.  The direct effect of heating alone cannot explain the long-
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term trend in the dissolved oxygen during this period. The salinity increased about 0.05 

psu during this period, which has almost no impact on the solubility of oxygen. This 

indicates that some other mechanism must play the dominant role in the long-term loss of 

oxygen from this region.   

 

 

 

 

Figure 2-1.  The annual mean isopycnal (  = 27.0) dissolved oxygen concentration, 
temperature and salinity at OSP from 1956 -2006. Annual means are calculated from all 
the observational data. The linear trend lines are also plotted in the same figures. 
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Figure 2-2.  The same as in figure 2-1 except for ensemble mean isopycnal oxygen 
concentration, temperature, salinity and isopycnal depth. Ensemble means are calculated 
from simply taking an average of 500 ensemble members for each year. 
 

 Correlation coefficients between annual mean indices and linear trend lines are 

0.43(for oxygen), 0.67(for temperature) and 0.52(for salinity) respectively, indicating that 

16-36% of the variance of the observed physical properties at OSP could be explained by 

the trend. The strongest trend is in the temperature variability (about 36% of the 

variance). For oxygen, about 16% of variance is explained by the linear trend.  This 

indicates that the long-term trend in oxygen concentration is relatively weak compared to 
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the interannual and decadal variability. This motivates us to examine the interannual and 

decadal variability, which will be the focus of the rest of this study.   

 Detrended time series data are also plotted in figure 2-3 based on the ensemble 

mean.  Linear trend is removed from the original time series focusing on the variability, 

leaving the interannual and decadal variability. The variability in the dissolved oxygen 

and temperature are similar (contains low-frequency variability) compared to the salinity 

(contains high-frequency variability).  
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Figure 2-3. Detrended time series data based on the ensemble mean of the oxygen 
concentration, temperature, salinity and isopycnal depth at OSP from 1956 -2006 on the 
density surface σθ = 27.0.   
 

 Standard deviation and lag-autocorrelation are essentially identical between 

annually binned data and ensemble mean data. Mean and standard deviation is calculated 

for the 51-year long time series as shown in Table 2-1.  Standard deviation of temperature 

and salinity are small (approximately 4% of the mean temperature, 0.07% of the mean 

salinity) compared to oxygen concentration (approximately 20% of the mean oxygen). 

The oxygen variability is larger compared to temperature and salinity. Why is the oxygen 
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variability much more significant compared to temperature and salinity?  This question is 

will be addressed later in chapter 3.   

 Lag-one autocorrelation coefficients and e-folding time scales for each variable are 

shown in table 2-2. Lag one auto-correlation coefficients are similar between oxygen and 

temperature (0.76 for oxygen, 0.79 for temperature). The oxygen and thermal anomalies 

are much more persistent than the salinity anomalies as shown by the e-folding time 

scales. The timescales are much shorter for salinity (1.3 year) compared to the oxygen 

and temperature (3.7 -4.3 years). These results indicate that oxygen and temperature have 

resemblance in lag-one autocorrelation and e-folding timescale. Even though the time 

scale between oxygen and temperature are similar, there is only small correlation 

between oxygen and temperature variability where cross-correlation coefficients is -0.07. 

However, the cross-correlation coefficient increases to 0.32 for the detrended time series.  

 

Table 2-1 
 Average (50 years)  S.D. (50 years) 

Oxygen 57.3 11.04 
Temperature 3.87 0.15 

Salinity 33.99 0.023 
 
 51 years average and standard deviation (S.D.) of ensemble member time series for 
oxygen in units of µmol/kg, temperature in units of K and salinity in units of psu at OSP 
(  = 27.0) 
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Table 2-2 
 Lag 1 auto-correlation  e-folding timescale 

Oxygen 0.76 3.7 year 
Temperature 0.79 4.3 year 

Salinity 0.46 1.3 year 
 

 Lag one auto-correlation and e-folding timescale calculated from lag auto-
correlation. Auto-correlation and e-folding timescale are calculated from ensemble mean 
oxygen, temperature, salinity and isopycnal depth time series.   
 

 Ensemble members can provide additional information about the statistics of the 

time series at OSP. Figure 2-4 and 2-5 show the histograms of the mean, standard 

deviation and effective sample size for ensemble members for oxygen, temperature, 

salinity and isopycnal depth. The histogram of the mean and standard deviation in all the 

quantities are close to normal distribution. For oxygen concentration, peak of the 

histogram for mean and standard deviation are in the interval between 57-57.5 and 11.5-

12.5. This is close to annual mean results in table 2-1. Similar features are seen in 

temperature, salinity and isopycnal depth (the interval of the mean and standard deviation 

peak are close to the annual mean results, see figures 2-4 and 2-5). The histogram of the 

effective sample sizes shows significantly different structure between 

oxygen/temperature and salinity. The effective sample size of the salinity is much larger 

than that of oxygen/temperature due to the lag-one autocorrelation (table 2-2).  The 

skewness in the effective sample size in the salinity comes from the shorter de-correlation 

timescale which saturates at the record length of 50 years.   
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Figure 2-4. Histogram of mean, standard deviation and effective sample size calculated 
from 500 randomly sampled annual mean oxygen and temperature indices. 
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Figure 2-5. Same as in figure 2-4 except for salinity. 
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2-4. Results: Spectral Analysis 

 

 Figure 2-6 shows lag autocorrelation indices for ensemble mean time series data, 

indicating a unique structure in the oxygen data.  Low-frequency variability of oxygen is 

revealed by a negative peak around 7-8 year lag and a positive peak in 16-17 year.  This 

structure is absent in the temperature time series. While lag-one autocorrelation is similar 

between temperature and oxygen, the variability in the decadal timescale is significantly 

different between them.   

 Here we use two ways to compute the power spectrum of the time series.  A 

periodogram can be constructed by calculating the Fourier transform of annually binned 

data as in Ito and Deutsch (2010).  The algorithm used in spectral analysis is the discrete 

Fast Fourier Transform (FFT) routine in MATLAB.  

 Alternatively, ensemble of periodograms can be constructed by performing Fourier 

transform for individual ensemble members.  This approach effectively removes the 

effect of averaging data with different sampling densities, and the resulting spectral 

density estimates have a simpler interpretation. Furthermore, the statistics of ensemble 

spectra can be used to test the robustness of the conclusions drawn from the previous 

study using the annually binned data.   
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Figure 2-6. Lag-auto correlations for ensemble mean oxygen (blue solid), temperature 
(blue dash), salinity (red solid) and isopycnal depth (red dash). Ensemble means are 
calculated from simply taking an average of 500 ensemble members for each year. 
 

 First, the periodogram of annually binned data is shown in figure 2-7.  The three 

panels show the periodograms of oxygen, temperature and salinity respectively.   In the 

periodogram of oxygen, there is a significant spectral peak at 17-1 cycles/year.  The 

statistical significance is tested with the 95% confidence interval determined from the 

theoretical red noise spectrum with one-tail test using F-distribution. This red noise 

spectrum represents the low-frequency variability explained by the integration of random 
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physical and biogeochemical variability by the slow, oceanic ventilation as discussed by 

Ito and Deutsch (2010). This stochastic model, in principle, applies to the variability of 

other passive tracers such as nutrients and carbon.   

 Similar peak is also found in temperature and salinity, however the peak is not 

statistically significant for temperature.  The oxygen and temperature data contains 

significant low-frequency variability. Comparing the periodogram, there are resemblance 

in timescales between oxygen and temperature. 75% of the variance of oxygen is 

contained on the decadal and longer timescales. Similarly, 73% of the variance of 

temperature is contained on the decadal and longer timescales. The periodogram of 

salinity shows different features. There is a spectral peak at 2-1 cycles/year, and there is 

no statistically significant peak in the decadal timescale. In the frequency range higher 

than approximately 5-1 cycles/year, interannual variability contains 45% of salinity 

variance.  

 Spectral density is calculated for each ensemble member first. Then the average of 

spectral density estimates is determined as shown in figure 2-8. The two dash lines 

indicate the range containing 95% of ensemble members. Comparing figure 2-7 and 2-8, 

estimates of power spectra from both approaches show similar structures indicating low-

frequency (decadal) variability of oxygen and temperature. Regarding the 15-20 year 

timescale variability of oxygen, almost all of the ensemble spectral density estimates 

exceed the 95% confidence interval of the theoretical red noise spectrum.  This clearly 

demonstrates the robustness of low-frequency oxygen variability. Regardless of details in 

sampling, the observed oxygen time series data at OSP has increased power in the 15-20 

year timescale. Furthermore, this ensemble approach brings additional information about 
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the oxygen spectrum. Focusing on the interannual timescales, some fraction of ensemble 

members exhibit statistically significant variability for the timescale of 5 years and 

shorter, and this also applies to the spectral density estimates of temperature and salinity. 

This indicates that depending on how data is sampled, interannual variability could also 

become significant in the OSP data.   
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Figure 2-7. Power spectrum for annual mean observed data of oxygen, temperature and 
salinity in semi-log plot. Red lines are the red noise spectra calculated from the e-folding 
timescale and dashed black line shows the 95% significance threshold (based on a one-
tailed test using the F-distribution).  
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Figure 2-8. Power spectrum for ensemble mean observed data of oxygen, temperature, 
and salinity in semi-log plot. Red lines are the red noise spectra calculated from the e-
folding timescale and dashed black line shows the 95% significance threshold (based on a 
one-tailed test using the F-distribution). Shading shows the range of the 95% of the 
ensemble member distribution.  
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2-5. Summary and Discussion 

 

 We analyzed the time series observation of temperature, salinity and oxygen on the 

density surface σθ=27.0 at OSP motivated by the previous work of Ito and Deutsch 

(2010) where significant low-frequency variability is identified from the annually binned 

time series data. A new approach is introduced in this study where a subset of data is 

randomly sampled from the raw data to account for the varying sampling intervals in the 

original raw data. A robust statistics is developed based on the large number of ensemble 

members.  In summary, we found: 

 

• A statistically significant spectral peak in the timescale of 15-20 years 

in almost all of the ensemble oxygen time series data 

• Significant fraction of ensemble members also include statistically 

significant spectral peaks on the interannual timescales with periods 

shorter than 5 years 

 

Timescale inferred from the lag-one autocorrelation of oxygen data is similar to that of 

temperature and but not salinity. Salinity variability shows a stronger high-frequency 

variability (less than 5-years) indicating that there might be a separate mechanism driving 

the variability of salinity on the interannual timescales.   

 These new results indicate that the 15-20 year variability of dissolved oxygen in the 

Gulf of Alaska is robust, whose driving mechanisms are yet to be determined. 

Temperature and salinity data also show increased power density in this timescale, 
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however the spectral peak in temperature is not statistically significant at 95% confidence 

interval. Because the temperature and salinity also show increased low-frequency 

variability there could be a common mechanism driving the variability of oxygen, 

temperature and salinity. Furthermore, there are smaller but potentially significant 

variability on the interannual timescales, which was not detected in the previous studies 

using annually binned data.  

 We have not yet examined the statistics over the seasonal timescale due to the 

sparse sampling density after 1980s. It may be possible to separate the data into warm 

and cold seasons and conduct statistical analysis to examine the role of seasonality, which 

is left for future study. Extracting low-frequency and high-frequency component of the 

time series using some filtering method may also be another approach to see the detailed 

features of low and high frequency variability.   

 These results motivate further investigation to better understand mechanisms 

driving the variability of dissolved oxygen in the subpolar North Pacific. What are the 

causes of the strong variability on the 15-20 year timescale? What are the link between 

oxygen and physical parameters such as salinity and temperature? So far, our 

investigation focused on the analysis of existing observational data. It is difficult to 

address these questions based on observational data analysis alone, and in the next 

chapter, a new modeling approach is developed to formulate and to test hypotheses for 

the causes of the observed oxygen variability.   
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CHAPTER 3. MODELING THE LOW FREQUENCY VARIABILITY OF 

OXYGEN IN THE NORTH PACIFIC 

 

3-1. Background 

 

 In the previous chapter, we identified a robust low-frequency variability on the 

timescale of 15-20 years in the observed thermocline oxygen time-series data at Ocean 

Station Papa (OSP). What controls the low-frequency variability of the thermocline 

oxygen in the subpolar North Pacific? It is known that the low-frequency variability of 

oxygen is also found in the western Pacific (Ono et al., 2001). Furthermore there is a 

known anti-correlation of thermocline oxygen between the eastern and western subpolar 

North Pacific (Watanabe et al., 2008). These previous results indicate the potential role of 

large-scale climate processes in controlling the variability of biogeochemical tracers in 

the entire subpolar North Pacific region. Ito and Deutsch (2010) also noted a significant 

correlation between the thermocline oxygen at OSP and the North Pacific Gyre 

Oscillation index (Di Lorenzo et al., 2008) between 1980 and 2007 (correlation 

coefficient is 0.64, 95% confidence interval). While there are accumulating evidences for 

the existence of the large-scale, low frequency variability of oxygen in the North Pacific, 

the mechanisms driving this variability is poorly understood. In this chapter, we will use 

the combination of statistical analysis and numerical modeling to better understand the 
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primary factor controlling this variability and to offer a consistent interpretation of 

previous observations.   

In section 3-2, we first investigate the empirical relationship between oxygen 

variability at OSP and ocean circulation fields over the North Pacific, revealing a large-

scale pattern of barotropic stream function associated with the thermocline oxygen 

anomaly at OSP. In section 3-3, we will present a hypothesis based on the results from 

the statistical analysis, suggesting the characteristics of the ocean circulation fields that 

are connected to the oxygen variability. In section 3-4, we describe a new numerical 

model of transport-driven oxygen anomaly, which is used as a tool to test the hypothesis. 

The model captures many aspects of the observed oxygen variability at OSP.  In section 

3-5, we perform empirical orthogonal function (EOF) analysis of the simulated oxygen 

field, revealing the link between the basin-scale oxygen variability and the modes of 

climate variability in the North Pacific. In section 3-6, we summarize and discuss the 

implication of our results.    

 

3-2. North Pacific Circulation and Thermocline Oxygen 

 

Physical circulation fields from the Estimating the Climate and Circulation of the 

Oceans (ECCO) project are extensively used in this study.  The ECCO project is an 

international effort to constrain three dimensional physical ocean circulation fields using 

a suite of in-situ and remotely sensed oceanic observations including temperature (T) and 

salinity (S) from historic hydrographic measurements and buoys, satellite sea surface 

temperature, sea surface height and T and S from autonomous floats. The specific dataset 
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used in this study comes from the German part of the ECCO effort (GECCO) to estimate 

the ocean circulation over the period 1952-2001 paralleling the 50-year NCEP/NCAR 

reanalysis. We use the monthly-mean ocean circulation fields from the GECCO dataset 

(Köhl., et al, 2007) where the Massachusetts Institute of Technology ocean general 

circulation model (MITgcm; Marshall et al., 1997a, b) is brought into consistency with 

observations using the adjoint method (Marotzke et al., 1999; Wunsch and Heimbach 

2007). The estimation effort covers the 50-year period from 1952 January through 2001 

December, and the detailed procedures of data assimilation are documented in Köhl et al., 

(2007). We have used the GECCO dataset including potential temperature, salinity, and 

zonal (u) and meridional velocity (v) fields.   

First, using the monthly mean velocity field, we calculated the barotropic 

streamfunction.  We first vertically integrated the zonal velocity as follows.   

 (3-1) 

where -H is the depth of the bottom topography. Then we meridionally integrated the 

vertically integrated zonal velocity (U) from north to south as follows.   

       (3-2)                  

where y2 is the latitude of the northern topographic boundary of the North Pacific basin 

and y is the arbitrary latitude. The topography of the model does not include the open 

channel at the Bering Strait, so there is no mass exchange between the Pacific and Arctic 

Ocean. While the equation (3-2) is written in Cartesian coordinate, the actual calculation 
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was performed in the spherical coordinate.  The resulting Ψ(x,y,t) is the monthly 

barotropic streamfunction field in units of volume flux, m3/s.   

 We statistically analyzed the monthly mean barotropic stream function to find 

relationships between the observed oxygen variability at OSP and the ocean circulation 

over the North Pacific. The statistical significance of the correlation coefficients field is 

estimated by testing whether the correlation coefficients are significantly different from 

zero based on t-test. Linear correlation and regression analysis are based on winter mean 

(December-January-February mean: hereafter DJF mean) barotropic stream function 

since the atmospheric variability over the North Pacific is the strongest in winter. 
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Figure 3-1.  Lag-correlation coefficients between dissolved oxygen time series at OSP 
(  = 27.0) and the DJF mean barotropic stream function over the North Pacific. (a-f) 
Simultaneous to lag 10-year correlation maps are shown. Red shading shows the positive 
correlation coefficients and the blue shading shows the negative correlation coefficients 
respectively. Areas exceeding significance levels of 95% based on t-test are shaded. The 
StaP in the figure is the approximate location of OSP. 
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Figure 3-2.  Lag-regression coefficients between dissolved oxygen time series at OSP 
(  = 27.0) and the DJF mean barotropic streamfunction over the North Pacific. (a-f) 
Simultaneous to lag 10-year regression maps are shown. Red shading shows the positive 
regression coefficients and the blue shading shows the negative regression coefficients 
respectively. Units are in Sverdrup [Sv].  
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Figure 3-3.  Climatological oxygen distribution in the thermocline (300m depth) over the 
North Pacific, and simultaneous regression coefficients between dissolved oxygen time 
and barotropic streamfunction (in contour (positive values in thick line), same as in figure 
3-2a). Barotropic streamfunction is in the units of Sv (106 m3/s). The StaP in the figure is 
the location of OSP.  
 
 

Figure 3-1 and 3-2 show the simultaneous and lag correlation and regression 

coefficients between observed annual mean oxygen index at OSP (  = 27.0) and the 

DJF mean barotropic stream function. First, we focus on the simultaneous correlation and 

regression (figure 3-1a and 3-2a).  The correlation and regression coefficients show a 

north-south dipole pattern including a negative anomaly in the Kuroshio extension region 

and positive anomaly at the south of this region.  The negative value in the north 

corresponds to a cyclonic circulation, and the positive value in the south is an anti-

cyclonic circulation. Thus, this pattern indicates the intensification of eastward flow at 

about 30ºN and associated spin-up of the double gyres, positively correlated with the 
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thermocline oxygen at OSP.   

Furthermore, lag-correlation/regression coefficients indicate that this pattern is 

persistent for about a year before it decays away. With the lag (oxygen lagging behind the 

barotropic stream function) of between 5 and 8 years, the sign of the dipole pattern 

reverses.  The sign reversal of the dipole pattern and associated spin-down of the double 

gyre could be the key to understand the quasi-periodic behavior of the thermocline 

oxygen over the decadal timescales. The dipole pattern of the correlation and regression 

coefficients has a direct implication for the generation of oxygen anomaly in the subpolar 

North Pacific.  Figure 3-3 shows the background, climatological distribution of oxygen in 

color shading based on the World Ocean Atlas 2005 (Garcia et al., 2006) The well-

ventilated, subtropical thermocline is well oxygenated due to the subduction (downward 

transport) of surface waters by the mean gyre circulation. In contrast, the upwelling 

regions of subpolar and tropical North Pacific are depleted in oxygen due to the lack of 

oxygen supply from the surface. Thus there is a strong north-south gradient in the mean 

oxygen concentration at the subtropical-subpolar boundary at approximately at 45ºN.  

The dipole pattern of barotropic stream function (taken from the regression 

coefficients plotted in figure 3-2) is superimposed as contour lines over the background 

mean oxygen distribution in figure 3-3. While the barotropic stream function reflects the 

vertically integrated volume transport, much of the transport occurs in the upper ocean. 

The cross-gradient advection of mean oxygen is clearly depicted in figure 3-3. The 

northern, cyclonic cell of the double gyres drives the northward advection of high-O2 

water into the eastern subpolar North Pacific and the southward advection of low-O2 

water into the western subpolar North Pacific.  Thus, the advective transport of 
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background mean oxygen driven by this basin-scale, subpolar circulation can explain the 

higher oxygen concentration at OSP and the lower oxygen in the western North Pacific 

by modulating the subtropical-subpolar boundary as marked by the strong north-south 

gradient of the mean oxygen concentration.  

The sign reversal of the dipole pattern over the 5-8 year timescale can explain the 

oscillatory behavior of the zonal dipole of oxygen in the subpolar thermocline.  When the 

subpolar circulation reverses its sign, the advection of mean oxygen also reverses its sign.  

This leads to a negative tendency of anomalous oxygen in the east and a positive 

tendency in the west. The anticipated anomalies are anti-correlated between the eastern 

and western North Pacific consistent with the previous observations. This mechanism can 

potentially explain the quasi-periodic behavior of the thermocline oxygen at OSP where 

the sign reversal of the double gyre pattern in every 5-8 years can translate into the 

alternating oxygen anomalies on the decadal timescales.   

 

3-3. Hypothesis 

 

 Empirical relationship between observed thermocline oxygen anomalies and the 

vertically integrated ocean circulation fields imply an important role of basin-scale 

circulation variability driving the low-frequency variability of oxygen in the North 

Pacific.  Here is the summary of the empirical analyses so far.   

 

• The north-south dipole pattern of barotropic stream function is significantly 

correlated with the thermocline oxygen at OSP.   
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• The northern cell of the dipole crosses the strong north-south gradient of 

background mean oxygen.   

• The dipole pattern reverses sign over the timescale of 5-8 years.   

 

Thermocline oxygen at OSP is most strongly influenced by the northern cell due 

to its location. The advection by the northern cell crosses the background mean gradient 

of oxygen at the subtropical-subpolar boundary, which can generate the observed east-

west anti-correlation of thermocline oxygen anomalies identified in the previous studies 

(Watanabe et al., 2008). The reversal of the dipole pattern can potentially force the 

reversal of the oxygen anomalies on the 5-8 year timescales, leading to the quasi-periodic 

oxygen variability on the timescales overlapping the observed spectral peak of the 

thermocline oxygen at OSP.   

We hypothesize that the low-frequency variability of thermocline oxygen in the 

subpolar North Pacific is primarily caused by the large-scale circulation variability acting 

on the strong subtropical-subpolar gradient of mean oxygen concentration. Due to the 

configuration of mean oxygen gradient, the circulation variability is likely to generate 

opposite-sign oxygen anomalies between the eastern and western subpolar North Pacific.  

To test the above hypothesis, we construct a three-dimensional numerical model 

of oxygen anomaly driven by the data-constrained circulation fields from the GECCO 

dataset. In the calculation, the effect of air-sea gas exchange and biological variability is 

suppressed such that the simulated oxygen anomaly is solely driven by the circulation 

variability. The simulated oxygen anomalies are tested against the observed thermocline 

oxygen at OSP, and the spatial-temporal variability will be analyzed in detail.   
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3-4.  A Three-dimensional Simulation of Oxygen Anomaly 

 

Three-dimensional distribution of oxygen anomaly is simulated using the 

MITgcm in the global ocean configuration with the lateral resolution of 1ºx1º in 

longitude-latitude grid and the 23 vertical layers.  The pre-determined circulation fields 

are used to advect the oxygen anomaly as a passive tracer.  First, the linearized tracer 

continuity equation for oxygen anomaly can be written as follows.   

 

  (3-3) 

 

where the diffusion tensor K includes the parameterization of sub-grid scale eddies 

following Gent and McWilliams (1990), KPP mixed layer scheme (Large et al., 1994) 

and a small background turbulent diffusion with the vertical diffusivity of 10-5 m2/s.  The 

oxygen anomaly is transported by the time-mean circulation as determined by the long-

term mean circulation fields of the GECCO product. On the RHS of the equation (3-3) 

there is a source term of oxygen anomaly driven by the anomalous circulation 

transporting the climatological mean oxygen concentration as determined by the World 

Ocean Atlas 2005 (Garcia et al., 2006). In this model, air-sea gas exchange process and 

biology effects are turned off so it is purely driven by the physical transport, and the 

boundary condition at the surface is O2’ = 0.  

Initializing with the globally uniform oxygen anomaly of zero, we integrate the 

oxygen anomaly model from 1952 January through 2001 December, and the monthly 

mean oxygen anomaly fields are archived for the simulation period. The model generates 
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the three-dimensional, global distribution of transport-driven oxygen anomaly, and this 

study focuses on the North Pacific region.  

Figure 3-4 shows the detrended oxygen anomaly from the observation and the 

model at the location of OSP on isopycnal layer (  = 27.0). Model captures many aspect 

of the observed oxygen at OSP. The correlation coefficient between observed and 

modeled oxygen anomaly at OSP is 0.75 (significant at the 95% level). Figure 3-5 shows 

the standard deviation of modeled oxygen on two isopycnal layers (  = 26.5 and 27.0). 

The Gulf of Alaska shows an elevated standard deviation in both isopycnal layers. The 

magnitude of standard deviation field is higher on shallower layer, and it also shows a 

strongly variability in the subpolar Pacific relative to the subtropics.    
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Figure 3-4.  Dissolved oxygen anomaly at OSP (on isopycnal layer,  = 27.0) from 
observational data and model output data. Observational oxygen is anomaly from the 
climatology. Both indices are detrended. 
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a)   

b)   

 

Figure 3-5.  Standard deviation of oxygen anomaly field on two isopycnal layer, (a)  = 
26.0, (b)  = 27.0 from model output.  
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3-5.  Climate-driven Oxygen Anomaly 

 

To investigate the dominant pattern of the transport-driven oxygen anomaly on 

isopycnal layer (  = 27.0), we conducted an Empirical Orthogonal Function (EOF) 

analysis on the simulated thermocline oxygen anomaly over the North Pacific (the 

domain is 20ºN-70ºN, 120ºE-100ºW). The EOF analysis is applied to the deseasonalized 

model output weighted by the square root of the cosine of latitude.  Figure 3-6 shows the 

first and second EOF spatial pattern (correlation coefficients between principal 

component (PC) time series and model oxygen anomaly, upper panels) and the PC time 

series (lower panels). The first EOF pattern shows a strong positive oxygen anomaly 

from western subtropical Pacific extending into the Gulf of Alaska region, and both the 

first and second EOF show a strong east-west dipole pattern (opposite phase between the 

Gulf of Alaska and the western subpolar region). The explained variances of first and 

second EOF are 33% and 17.9% respectively. This spatial pattern indicates that the both 

first and second EOFs are important explaining the oxygen variability over the Gulf of 

Alaska including the location of the OSP. Temporal variability of the first EOF (PC1 

time series) shows positive trend from 1950s to 2000s. Both PC1 and PC2 time series 

show low-frequency variability but a stronger decadal variability is found in the PC2 time 

series. There is a major phase shift in PC2 before and after 1970s. This shift might be 

related to the climate shift in 1970s as we discuss below.   

To better understand the relationship between the climate variability and the 

dominant modes of the thermocline oxygen, we conducted an EOF analysis on the sea 

surface temperature (SST) from the GECCO data. Figure 3-7 shows the same EOF 
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pattern and PC time series as in figure 3-6 except for SST. PC time series in figure 3-7 

(lower panels) are superimposed with the oxygen PC time series. Spatial pattern of the 

first EOF of SST shows a PDO-like pattern, and the second EOF of SST shows a pattern 

that is related to the North Pacific Oscillation (NPO) (Linkin and Nigam, 2008). The 

explained variances of first and second EOF of SST are 20.9% and 9.3% respectively. 

Comparing the results from EOF analysis on model oxygen and SST, the first EOF of 

oxygen anomaly is strongly correlated with the second EOF of SST (correlation 

coefficient is 0.72) and the second EOF of oxygen anomaly is strongly correlated with 

the first EOF of SST (correlation coefficient is 0.5).  These results indicate that the 

dominant pattern of thermocline oxygen variability can be well explained by the leading 

modes of SST.   
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Figure 3-6.  The first and second EOF spatial pattern and principal component based on 
model oxygen anomaly from 1952 - 2001. The spatial patterns are the correlation 
coefficients between principal component indices and model oxygen anomaly fields. The 
principal component indices are standardized by mean and standard deviation. 
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Figure 3-7. The first and second EOF spatial pattern and principal component based on 
GECCO sea surface temperature from 1952 - 2001. The spatial patterns are the 
correlation coefficients between principal component indices and GECCO sea surface 
temperature. The principal component indices of SST and corresponding oxygen modes 
are plotted in the lower panels. The principal component indices are standardized by 
mean and standard deviation. 
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Based on the model anomaly fields, we diagnosed the transport divergence of 

oxygen anomaly for the region around the OSP (defined as a box bounded by 140°W-

150°W, 45°N-55°N, 223m-610m depth) evaluating the dominant component of oxygen 

tendency (horizontal or vertical advection). Figure 3-8 shows two panels for the time 

series of oxygen transport divergence in the Gulf of Alaska including (top) the advection 

of mean oxygen by the anomalous circulation and (bottom) the advection of anomalous 

oxygen by the mean circulation. The transport divergence driven by the anomalous 

circulation (Figure 3-8a) contains more high frequency variability compared to that 

driven by the mean circulation (Figure 3-8b). Then the transport divergence is separated 

into the zonal, meridional and vertical components, showing that horizontal transport is 

the dominant driver of the transport divergence. For the mean advection, the magnitudes 

of meridional and vertical components are significantly smaller compared to the zonal 

component. These results show an important role of lateral advection: zonal component is 

dominant for the transport of anomalous oxygen by the mean flow (correlation coefficient 

between transport of anomalous oxygen and zonal transport is 0.98), and the meridional 

component is dominant for the transport of background-mean oxygen by the anomalous 

flow (correlation coefficient between transport of mean oxygen and meridional transport 

is 0.6).  

These results are in consistency with our hypothesis that the horizontal circulation 

variability is the primary driver of the oxygen variability in the subpolar North Pacific.  

For the location of the OSP, both the advection of mean oxygen and anomalous oxygen 

are both important in controlling the time-evolution of the oxygen in the region.   
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a)  

b)  

 

Figure 3-8.  Oxygen transport budget over the Gulf of Alaska (box-region 140W-150W, 
45N-55N, 223m-610m depth).  Figure 8a shows the transport budget for mean oxygen 
driven by anomalous current and 8b shows the transport budget for anomalous oxygen 
driven by mean circulation. 
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3-6. Summary and Discussion 

 

 Motivated by the significant correlation between the thermocline oxygen at OSP 

and the basin-scale barotropic stream function, we performed a three-dimensional 

numerical simulation of the transport-driven oxygen variability for the period of 1952 to 

2001.  We found that the significant fraction of observed oxygen variability (correlation 

coefficient is 0.75, 95% confidence interval) over the Gulf of Alaska is captured by the 

model. Here are the summaries of the key results.   

 

• More than 50% of variance of thermocline oxygen is explained by the first 

two EOF in the extratropical North Pacific.   

• The first PC of thermocline oxygen is significantly correlated with the second 

PC of SST (R= 0.7) associated with the North Pacific Oscillation.   

• The second PC of thermocline oxygen is significantly correlated with the first 

PC of SST (R=0.5) associated with the Pacific Decadal Oscillation 

• Diagnosis of oxygen transport divergence indicate the important role of 

horizontal advection 

 

The circulation pattern associated with oxygen variability involves the north-south 

dipole pattern in the barotropic streamfucntion. The EOF analysis of the simulated 

oxygen anomaly shows that the dominant mode of the oxygen anomaly over the North 

Pacific can be well explained by the basin-scale SST variability (PDO and NPO). The 

PCs of SST includes significant high-frequency component which is missing in the 
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thermocline oxygen because the relatively slow circulation of the thermocline waters tend 

to average out the effect of rapidly varying fluctuations relative to the ventilation 

timescale of the thermocline waters (Ito and Deutsch, 2010), making a natural low-pass 

filter of the climate signals in the oceans.   

 While the model can capture overall structure of the oceanic oxygen variability in 

the North Pacific, there are several limitations in this model.  First, the model 

intentionally removes the effect of air-sea gas exchange and biological variability, which 

can be an important driver of oxygen variability in certain regions.  Thus our estimates of 

oxygen variability may deviate from the true variability in some regions.  These 

limitations can be overcome by including the representation of air-sea gas exchange and 

biology, which is left for the future study. Secondly, there could be errors in the 

circulation fields used in this study, which can introduce errors in our estimates of the 

oxygen anomalies.  Even though the data-constrained physical circulation fields from the 

GECCO project is among the best estimates of the state of the oceans, oceanographic 

observations are sparse especially before the satellite era.   

This study identified links between the thermocline oxygen and the modes of 

surface climate variability such as the NPO and PDO modes and the crucial role of the 

lateral transport. The ultimate cause of the low-frequency variability of thermocline 

oxygen is dependent on the behavior of the physical climate variability including the 

coupled ocean-atmosphere climate variability and its impact on the marine 

biogeochemistry.   
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CHAPTER 4. CONCLUSIONS 

 

 This study aims to better understand the variability of thermocline oxygen in the 

subpolar North Pacific.  We first analyzed the observed thermocline oxygen in the Gulf 

of Alaska where the longest time series data is available in this region. We examined the 

robustness of its low-frequency variability, and then investigated the mechanism 

controlling this low-frequency variability.  

 We performed an improved time series analyses without making excessive 

averaging of the raw data by randomly sub-sampling the data and generated ensemble 

time series. Even though the data is irregular in sampling frequency, and the 50-year long 

record length can only capture several cycles of decadal fluctuations, we were able to test 

the robustness of the low-frequency variability.  A statistically significant spectral peak in 

the timescale of 15-20 years is found in almost all of ensemble members, and significant 

fraction of ensemble members also include statistically significant spectral peaks on the 

interannual timescale with periods shorter than 5 years. Spectral analysis shows similar 

timescale between dissolved oxygen and temperature but however, these two are not 

strongly related.   

 We investigated the causes of the strong variability on the 15-20 year timescale 

and the link between oxygen and physical circulation fields. There is a statistically 

significant relationship between observed oxygen at OSP and the barotropic stream 

function of the North Pacific basin based on the GECCO data.  The north-south dipole 
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pattern of barotropic stream function is significantly correlated with the thermocline 

oxygen at OSP and the northern cell of the dipole crosses the strong north-south gradient 

of background mean oxygen.  This dipole pattern reverses sign with the lag timescale of 

5-8 years. Thermocline oxygen at OSP is most strongly influenced by the northern cell 

due to its location. The advection by the northern cell crosses the background mean 

gradient of oxygen at the subtropical-subpolar boundary, which can generate the 

observed east-west anti-correlation of thermocline oxygen anomalies identified in the 

previous studies.  Based on these analyses, we hypothesize that physical circulation 

variability acting on the background mean oxygen gradient could be the key in 

controlling the low frequency in the dissolved oxygen.  

 A new modeling approach was developed to test the hypothesis for the causes of 

the observed oxygen variability.  We constructed a three-dimensional numerical model of 

oxygen anomaly driven by the data-constrained circulation fields from the GECCO 

dataset. In the calculation, the effect of air-sea gas exchange and biological variability is 

suppressed such that the simulated oxygen anomaly is solely driven by the circulation 

variability. Simulated oxygen variability captures many aspect of the observed oxygen at 

OSP (correlation coefficient between model and observation is 0.75).  The Gulf of Alaska 

is a hot spot of oxygen variability with an elevated standard deviation. We conducted an 

EOF analysis on simulated oxygen over the North Pacific, and found that more than 50% 

of variance of thermocline oxygen is explained by the first two EOF in the extratropical 

North Pacific. The first PC of thermocline oxygen is significantly correlated with the 

second PC of SST (correlation coefficient is 0.7) associated with the North Pacific 

Oscillation (NPO) and the second PC of thermocline oxygen is significantly correlated 
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with the first PC of SST (correlation coefficient is 0.5) associated with the Pacific 

Decadal Oscillation (PDO). The circulation pattern associated with oxygen variability 

involves the north-south dipole in the barotropic streamfucntion. Thus the dominant 

mode of the oxygen anomaly over the North Pacific can be well explained by the modes 

of climate variability in the North Pacific, namely PDO and NPO. The oxygen budget 

analysis for region around the OSP shows the importance of the role of horizontal 

advection. In summary, the large-scale climate variability and associated ocean 

circulation fluctuations can generate oxygen anomalies in the thermocline.  Our analysis 

revealed that this climate-driven oxygen anomaly can explain significant fraction of 

observed oxygen changes in the subpolar North Pacific. There is a clear and strong link 

between the leading EOFs of thermocline oxygen and the dominant modes of SST 

variability.   

There are many caveats and remaining questions left for future study. We have 

not yet examined the statistics over the seasonal timescale due to the sparse sampling 

density after 1980s. It may be possible to separate the data into warm and cold seasons 

and conduct statistical analysis to examine the role of seasonality, which is left for future 

study. Extracting low-frequency and high-frequency component of the time series using 

some filtering method may also be another approach to see the detailed features of low 

and high frequency variability. Further study is necessary to systematically understand 

the mechanism where climate variability influences biogeochemical tracers through 

modulating air-sea interaction, biological productivity as well as circulation changes. 

This will require model refinements in both physical circulation as well as 

parameterization of marine ecosystem, generation and remineralization of particulate 
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organic matter and cycling of elements in the upper ocean, which are active areas of 

research. Due to its strong sensitivity of climate, dissolved oxygen in the ocean 

thermocline can be a useful tracer to test the performance of future generations of ocean 

circulation and biogeochemistry models.   
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