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ABSTRACT

FACE DETECTION USING CORRELATION FILTERS

Cameras are ubiquitous and available all around us. As a result, images and videos are posted

online in huge numbers. These images often need to be stored and analyzed. This requires the use

of various computer vision applications that includes detection of human faces in these images and

videos. The emphasis on face detection is evident from the applications found in everyday point

and shoot cameras for a better focus, on social networking sites for tagging friends and family and

for security situations which subsequently require face recognition or verification.

This thesis focuses on detecting human faces in still images and video frames using correlation

filters. These correlation filters are trained using a recent technique called Minimum Output Sum

of Squared Error (MOSSE) developed by Bolme et al. [BBDL10]. Since correlation filters identify

only a peak location, it only helps in localizing a single target point. In this thesis, I develop

techniques to use this localization for detection of human faces of different scales and poses in

uncontrolled background, location and lighting conditions.

The goal of this research is to extend correlation filters for face detection and identify the sce-

narios where its potential is the most. The specific contributions of this work are the development

of a novel face detector using correlation filters and the identification of the strengths and weak-

nesses of this approach.

This approach is applied to an easy dataset and a hard dataset to emphasize the efficacy of

correlations filters for face detection. This technique shows 95.6% accuracy in finding the exact

location of the faces in images with controlled background and lighting. Although, the results on

a hard dataset were not better than the OpenCV Viola and Jones face detector, it showed much

better results, 81.5% detection rate compared to 69.43% detection rate by the Viola and Jones face

detector, when tested on a customized dataset that was controlled for location change between

training and test datasets. This result signifies the strength of a correlation based face detector in a

specific scenario with uniform setting, such as a building entrance or an airport security gate.
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Chapter 1

Introduction
One of the tools to enable human-computer interaction (HCI) is cameras. The images captured

through cameras ( still or video frames ) can be analyzed through various computer vision tech-

niques. Many biometric and HCI applications involve performing some analysis on human faces

such as in face alignment, 3D modeling, recognition, verification and authentication. Before any

such analysis can occur, faces must be detected in these images [ZZ10b].

Yang et al. [YKA02] defined face detection as: ”given an image, the face detection algorithm

should determine whether or not there are any faces in that image and if there are, locate all

the faces in that image”. Yang et al. surveyed the early face detection work and divided it into

four main categories: knowledge-based methods, feature invariant approaches, template matching

methods, and appearance based methods. A lot of work has been done in this direction resulting

in the development of many face detectors. One of the seminal papers in face detection is by Viola

and Jones [VJ01]. This face detector is very commonly used. However, it has some limitations

such as a high false positive rate and difficulty in training. I will discuss this technique and many

others in detail in our chapter on face detection. In this research I propose to develop a novel

face detector based on a recent technique for training correlation filters, Minimum Output Sum of

Squared Error (MOSSE) filter by Bolme et al. [BBDL10].

The contribution of this work is three-fold:

• To the best of my knowledge it is the first face detector based on correlation filters. I have

explored the efficacy of using a correlation based filter to detect faces in still images and

video frames.

• I present the scenarios where such a face detector would be successful and where it may not

be an approach of choice.

• This work presents the first study to detect faces in a newly released dataset, The Point-and-

Shoot Face Recognition Challenge (PaSC) [BPB+13], since its release to the public .
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1.1 Face Detection is not a Solved Problem

Face detection is an important challenge because of its many applications such as face tracking,

particularly if it is efficient and fast. It may be used to initialize tracking, for e.g., when a face enters

frame or appears from an occluded position. It is also a challenging case of the more general

problem of object detection, which has many applications [Kin03]. Due to its importance face

detection has been one of the most popular areas of computer vision research and the community

has been very successful in detecting faces in images taken under controlled conditions.

Consider an image like the one shown in Figure 1.1 where it is very easy to detect the face.

Figure 1.1: Easy to detect face. Figure 1.2: Difficult to detect face.

Most of the state of the art algorithm like Viola and Jones cascade detector [VJ01] are easily able

to locate the face. This face is frontal, centered and the lighting is uniform. In images like these

detecting faces is a trivial task. However, I can’t say the same about images, such as in Figure 1.2,

taken under unconstrained settings. Unconstrained settings include uncontrolled lighting, back-

ground, pose, age, race, gender, clothing, etc. Some examples of the images from the Labeled

Faces in the Wild (LFW) [HRBLM07] dataset are taken under unconstrained settings are pre-

sented in Figure 1.3. According to Jain and Learned-Miller [JLM10], face detection in completely

unconstrained settings remains a very challenging task due to the significant pose and lighting vari-

2



Figure 1.3: Examples of Labeled Faces in the Wild Images

ations. In general some of the reasons that make it difficult to detect faces in images taken under

uncontrolled settings can be ascribed to the following reasons: 1) different pose such as frontal, 45

degrees, profile and upside down, 2) presence or absence of beards, glasses, moustache and occlu-

sions because the appearance of a person is directly influenced by the facial expressions which can

be varied, and finally, 3) lighting conditions and camera characteristics.

Recently Zhang and Zhang [ZZ10a] presented the results of the state-of-the-art face detectors

and reported a detection rate of 50-70% with about 0.5-3% of the detected faces being false pos-

itive. From these results they believe that face detection requires a lot more work. Degtyarev

and Seredin [DS10] presented an objective comparison of seven face detection algorithms. These

algorithms were tested on 9 different face databases. Degtyarev and Seredin show that 64% of

the images, referred to as the easy images, were correctly processed by all the algorithms. There

was still a 5-6% False Rejection Rate (FRR) although only 0.14% of the images are referred to

as challenging images by the authors. With such a small number of challenging examples we

should expect a higher true detection and a much lower false rejection rate. This indicates there is

a potential to improve face detection algorithms.

While there is clearly a need to improve face detection for purely scientific reasons which

fuels the interest of researchers, there is also a commercial reason to improve face detection. The

commercial importance is boosted by the interest of the world’s leading camera manufacturers

through their interest in including it as one of the features of their products.

The computer vision community in general acknowledges the role and importance of face de-

3



tection which is displayed in the need for organizing a workshop on face detection1 in conjunction

with the European Conference on Computer Vision (ECCV), 2010. The two main objectives of

this workshop were to establish the current state-of-the-art in face detection and identify new fron-

tiers of research in that direction. This workshop emphasized that face detection in unconstrained

settings is still a challenging problem and needs to be addressed. In line with this interest, face

detection on hard datasets is also a focus of the competition involving Face Detection on Hard

Datasets2 organized in conjunction with the International Joint Conference on Biometrics (IJCB)

2011. The motivation for this competition was that although face detection algorithms do well

on many applications, they often fail or return false positives when presented with a challenging

image taken from a distance or in low light. I took part in this competition using a correlation filter

based face detector. However, before I get into the details of my face detector and the motivation

of using this approach I will begin by presenting the theory behind correlation.

1.2 Correlation

Correlation is a single number that describes the degree of relationship between two variables.

In signal processing, cross correlation is a measure of similarity of two signals as a function of a

time-lag applied to one of them. This is also known as a sliding dot product or inner-product. It

can be represented as:

(g ∗ h)(t) =
∫ ∞
−∞

g∗(τ)h(t+ τ)dτ, (1.1)

where g and h are continuous functions and g∗ is the complex conjugate of g. It seems pertinent

here to present a relation between cross-correlation and convolution since the two are very similar

concepts. However, the difference is that while convolution requires signal reversal followed by

shifting and multiplication with another signal, correlation only requires shifting a signal and mul-

tiplying without reversing it. As such, cross correlation of functions g(t) and h(t) is equivalent to

1http://vis-www.cs.umass.edu/fdWorkshop

2http://vast.uccs.edu/FDHD
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the convolution of g(−t) and h(t), i.e.,

fcorr = g(t) ∗ h(t), fconv = g(−t) ∗ h(t) (1.2)

where fconv of Equation 1.2 is the expression of convolution equivalent of the correlation opera-

tion, fcorr. At this stage it is also important to point out that when symmetric masks / images are

used, reversal does not matter and therefore image processing descriptions often ignore the distinc-

tion between correlation and convolution and use convolution for operations such as smoothing.

Both convolution and correlation have two key features: shift invariance and linearity. Shift invari-

ance means that the same operation is performed at every point in the image and linearity means

that every pixel is replaced with a linear combination of its neighbors. Mathematically, linearity is

represented as: g ∗ kh = k(g ∗ h) and g ∗ (h1 + h2) = g ∗ h1 + g ∗ h2.

In order to demonstrate correlation through a simple example, consider a row of pixel values.

This row of pixels can be regarded as a 1D image. One of the simplest convolution operations is

local averaging. In this operation every pixel in a 1D image is replaced with the average of that

pixel and its two neighbors. For example, consider an image I with the following pixel values:

2 3 6 5 5 1 8 9 7

Value in cell 2, I(2) = 3, is replaced with the average of values in cells 1, 2 and 3 such that the

value 3 changes to I(2) = (2+3+6)
3

= 11
3

and therefore image I changes to the output of step 2 of

Figure 1.4. Similarly, steps 6 and 8 are shown in the same figure with their outputs. Other cells

2 3 6 5 5 1 8 9 7Input

1/3 1/3 1/3filter

Output 2 11/3 6 5 5 1 8 9 7

2 3 6 5 5 1 8 9 7

1/3 1/3 1/3

2 11/314/3 16/311/314/3 8 9 7

2 3 6 5 5 1 8 9 7

1/3 1/3 1/3

2 11/3 14/316/3 11/3 14/3 6 8 7

Step 2 Step 6 Step 8

Figure 1.4: Correlation by Averaging Filter

are also modified by a similar averaging operation. However, it doesn’t work on the edges such
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as cells 1 and 9 and therefore their outputs haven’t changed in Figure 1.4 . One of the ways to

get around that problem is to assume a cell 0 with a value 0 to find the average value for cell 1

and a value 0 in cell 10 to find the averaged value of cell 9. Therefore, I(1) = (0+2+3)
3

= 5
3

and

I(9) = (9+7+0)
3

= 16
3

. Steps 1 and 9 are presented after these modifications in Figure 1.5 with the

latter output being the final output.

2 3 6 5 5 1 8 9 7Input

1/3 1/3 1/3filter

Output 5/3 3 6 5 5 1 8 9 7

2 3 6 5 5 1 8 9 7

1/3 1/3 1/3

5/3 11/3 14/316/3 11/3 14/3 6 8 16/3

Step 1 Step 9

0 0

Figure 1.5: Correlation by Averaging Filter on the edges.

This can also be viewed as a sliding window operation such that each pixel value and its neigh-

bors are multiplied by 1
3

each and then the three numbers are added up to find the output. The

numbers I multiply, (1
3
, 1
3
, 1
3
) form a filter as shown in Figures 1.4 and 1.5. At each pixel I multiply

the pixel value with the filter values and add the result up, to get the new value for the pixel. This

forms a very simple correlation filter. Averaging like this makes this operation shift invariant since

the same operation is performed at every pixel.

One of the more important and popular image smoothing functions that are used as a filter is a

Gaussian filter. A one-dimensional Gaussian is defined as:

G(x) =
1

σ
√
2π
e
−(x−µ)2

2σ2 (1.3)

where µ is the mean value and σ is the variance. Figure 1.6 shows an example of a Gaussian plot.

Instead of using the averaging to determine the pixel value as previously discussed the Gaussian,

is better for smoothing since there is a continuous drop-off in the effect of the pixels on the result,

rather than a sudden change. However, when the Gaussian is used for smoothing the mean is set

to, µ = 0 such that the pixel has the biggest effect on its smoothed value. The variance factor
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Figure 1.6: Gaussian Distribution

σ determines the neighborhood used to smooth out an image. The bigger the σ, the more we

smooth the image. This is demonstrated with three different radii of the Gaussian and their output

in Figure 1.7.

One of the important benefits of correlation is that it can be used to find parts of an image

that match a template (or filter). Since correlation gives a measure of the similarity, as the filter

is slid across the image it results into a high similarity value where the filter matches the image,

the most. However, there is a disadvantage to using correlation for matching because it can give a

high value where the image intensity is high even though the image location and the filter may not

be as similar as at some other location. This can be overcome by using sum of square differences

between the signals instead of simple averaging. One needs to keep in mind that using correlation

involves normalizing each signal through zero mean and unit length.

The relationship between the sum of squared differences and the correlation can be described

starting with the definition for correlation in equation 1.4,

corr =
1
N

∑
(xi − µx)(yi − µy)

σxσy
(1.4)

where N is the length, µx and µy the means, and σx and σy the standard deviations of the vectors x

and y, respectively. Since each signal is normalized to have zero mean and unit standard deviation,
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(a) Input Image (b) σ = 1 (c) Smoothed Image

(d) Input Image (e) σ = 2 (f) Smoothed Image

(g) Input Image (h) σ = 3 (i) Smoothed Image

Figure 1.7: The effect of Gaussian smoothing of an image using different σ.
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the correlation equation 1.4 gets reduced to equation 1.5.

corr =
1

N

∑
xiyi (1.5)

The sum of squared differences is represented by the equation 1.6.

ssd =
∑

(xi − yi)2

=
∑

xi
2 +

∑
yi

2 + 2
∑

xiyi
(1.6)

With zero mean and unit standard deviation the first two summations of equation 1.6 are both equal

to N , and the third term is N × correlation. Therefore, combining equations 1.5 and 1.6, I get

the relationship between the sum of squared differences and correlation.

ssd = N +N − 2N × corr

corr = 1− ssd
2N

(1.7)

Until now this approach has been explained using 1D images and filters. However, images

are 2D and so are the filters used here. Computationally, 2D correlation is more expensive than

1D correlation. For a filter of size M × M and an image of size N × N , the total number of

multiplications that must be performed isN2M2. However, this complexity can be greatly reduced

if the computation is carried out in the Fourier domain instead of the spatial domain. In the Fourier

domain the correlation is simply a multiplication between an image and a template, after taking

their Discrete Fourier Transform (DFT). In this research the DFT of an image and a template is

computed using the Fast Fourier Transform (FFT) algorithm. As a result of such a transformation,

the number of operations gets reduced to N logN , which leads to a significant decrease in the

computation time.

1.2.1 Correlation and Discrete Fourier Transform

Convolution, correlation and autocorrelation are operations commonly made much faster through

the application of the Fast Fourier Transform (FFT) algorithm. The correlation theorem like the

convolution theorem says that DFT of the correlation (or convolution) of two functions is equal

to the element wise product of the Discrete Fourier transform of one function with the complex
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conjugate of the Discrete Fourier transform of the other as shown below.

Corr(g, h)↔ G(f)H∗(f) (1.8)

where G(f) and H∗(f) are the Discrete Fourier Transform of g(t) and the complex conjugate of

the Discrete Fourier Transform of h(t), respectively.

This process can also be explained as follows: Take a DFT of two datasets, multiply one

resulting transform by the complex conjugate of the other, and inverse transform the product. Since

a Gaussian filter was discussed earlier I would like to point out that the Discrete Fourier Transform

of a Gaussian is also a Gaussian. Smoothing with a Gaussian reduces high frequency components

of a signal.

1.3 Face Detection and Correlation Filters

The computational efficiency of using correlation filters in the frequency domain makes it a

viable solution for face detection particularly in real time applications. It is also very easy to train

correlation filters, unlike the Viola and Jones cascade face detector which is tedious to train and

takes a long time. In addition, Viola and Jones face detector results in a lot of false positives.

Although speed and ease of training are very good features to have in a face detector, those are not

the only reasons for us to invest in this research for a correlation filters based face detector. It is

also an exploration of the performance of a correlation based approach on images in unconstrained

settings. The results on the FERET dataset are very competitive. I will present these results in

detail in later chapters. Here I want to show the promise of success that these filters display when

tested on hard datasets.

Recently I participated in a competition to detect faces in hard datasets organized as part of the

International Joint Conference on Biometrics3 [PWH+11]. There were eight academic and four

commercial participants that submitted their results to this competition. On the hardest dataset of

this competition my solution was regarded as the most practical approach. An example image of

3http://vast.uccs.edu/FDHD
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this dataset is shown in Figure 1.8. Although I only got 27 true positives in 200 images and the

Figure 1.8: Example of an image from a hard dataset with the face marked by the yellow circle.

best method got 100 and the second best method 80, my approach is encouraging because not only

did it perform better than 9 other submissions but also had only 147 false positives compared to

505 and 280 in the first two performers [PWH+11]. It is important to point out that both of these

methods use cascade detectors for face detection and the training is cumbersome.

1.4 Research Goals

In this thesis I propose to develop a novel face detector based on correlation filters. My goal

is to have a face detector which is very easy to train on any new dataset and is very fast in testing

new images. The approach is based on identifying a point that corresponds to a face. This point

is chosen to be the peak of a Gaussian function centered on a face during training such that the

values around this point drop off gradually. It makes it easier to associate the peak with a face

whenever the algorithm finds one in a test image. This requires creating a Gaussian filter for each
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training image and centering the Gaussian at the point that is identified as a target location. This

is followed by finding a Discrete Fourier Transform using the FFT algorithm of each image and

its Gaussian filter and element-wise product of the two to give a resulting correlation surface. The

goal is that in this correlation surface I get a peak at the location identified to be the target location

and the peak identifies the face in the image.

There are many challenges to this approach. One of the biggest is the scale of the face in an

image. In this approach the size of the filter is the same as the size of the image. In order to get

around the scale issue I use a bank of filters of different scales to identify faces of different sizes

in the test images. Each image is correlated with a bank of filters, and the filter that gives the best

correlation output identifies the location of the face in the image. The methodology to identify the

best filter will be discussed in detail in the later chapters.

The other important challenge is pose. This also requires training filters with multiple poses for

each scale so that I get a better match at the right scale of the face. The other important challenge

is the number of faces in an image. In this research I will restrict our approach to images having a

single face because the focus is on datasets of images and video frames where the ultimate goal is

face recognition. This means that very often the goal will be to match only one detected face with

another for the next step of recognizing that face.

1.5 Dissertation Outline

The rest of the dissertation is organized as follows: Correlation filters will be discussed in the

second chapter followed by a detailed account of the MOSSE filter in the third chapter. In the

fourth chapter I discuss face detection research. The fifth chapter will explore the approach to

determine the size of the face and present results on FERET database. In Chapter 6 I will present

face detection results in still images and videos in the recently released Point-and-Shoot Challenge

(PaSC) dataset [BPB+13]. Chapter 7 presents a case study of filters tested on a specific scenario

where the location is held constant between the training and the test images. Finally, this document

ends with a conclusion chapter.
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Chapter 2

Correlation Filters
Correlation Filters [Kum92] have been used in face verification [MSK02], face recognition [KSX07],

target detection, and noise and clutter rejection [Goo96]. The process of using correlation filters

in computer vision applications is demonstrated in Figure 2.1. The peak in the correlation output

Fourier
Transform

Test 
Image, f

Correlation
Filter
Design

F

Filter, H

Inverse
Fourier
Transform

Correlation 
Output

Training Images
I1, I2, ... , In

Figure 2.1: Correlation Filter Process

is used to determine the target location. This is a general approach in the use of correlation filters

which is similar to how I use it, except for some missing details that will be elaborated on in the

subsequent chapters. It needs to be pointed out here that the correlation filters approach described

here is based on a Fourier approach. There are advantages to working in the Fourier domain such

as shift-invariance, graceful degradation, and closed form solutions [KSX07]. Some of these filters

can be described as follows:
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2.1 Matched Filter

A matched filter [Nor63] is an optimized linear filter that maximizes the Signal to Noise Ratio

(SNR) in the presence of additive stochastic noise. It is obtained as a result of correlating a known

signal with an unknown signal to determine whether a template exists in the unknown signal. It

involves convolving the unknown signal with the conjugated time reversed copy of the template.

It is commonly used in RADAR. One of its applications in image processing is to improve SNR

in X-rays. Its role in other image processing applications such as face recognition is very limited.

Since a test face image will differ from the reference image in expression, pose, age, illumination

etc., optimal matched filter solution would be to create a filter for each one of these variations.

This renders it unusable due to the huge number of filters that would be required [KSX07]. This

also means that when these variables match or the two images differ only in white additive noise,

one can get a good response using matched filters.

2.2 Synthetic Discriminant Function (SDF) Filters

In order to overcome the explosion of the number of matched filters that are required to be used,

Hester and Casseant introduced Synthetic Discriminant Function (SDF) filters [HC80]. They are

based on a concept of setting a correlation value of 1 at the origin for a set of training images

corresponding to an authentic subject and a zero value at the origin of the impostor subject. This

approach requires a training set of images and the SDF filter is the weighted sum of matched

filters where the weights are chosen so that the correlation outputs corresponding to the training

images would yield a pre-specified correlation value at the origin. As such, in face verification

applications, it is expected that the resulting correlation filter has a peak value close to one for

authentic images and close to zero for impostor images. In face recognition application of SDF,

the approach is similar to the one described in Figure 2.1. The correlation output peak is used to

determine whether there is a match or not depending on its value.

SDF is a linear combination of a set of matched filters [D.84] [Kum92]. The SDF filter func-

tion h(x, y) can be expressed as a linear combination of the set of reference images fi(x, y), i =

14



1, 2, ..., N [GFDRKAB05], such that,

h(x, y) =
N∑
i=1

aifi(x, y) (2.1)

where ai are weighting coefficients chosen to satisfy the following conditions:

fi ◦ h = ui (2.2)

where ◦ denotes correlation and ui is a pre-specified value in the correlation output at the origin

for each training image. Let R denote a matrix with N columns and d rows (number of pixels in

each training image), where its ith column is given by the vector version of fi(x, y). Let a and u

represent column vectors of the elements ai and ui, respectively. The equations 2.1 and 2.2 can be

rewritten as:

h = aR, (2.3)

u = R+h (2.4)

where R+ is a complex conjugate transpose of R. By substituting equation 2.3 into equation 2.4,

one obtains

u = (R+R)a. (2.5)

The element (i,j) of the matrix S = R+R is the value at the origin of the cross correlation between

the images fi(x, y) and fj(x, y). If the matrix S is non-singular, the solution of the equation system

is

a = (R+R)−1u, (2.6)

and the filter, expressed as a vector is given by

h = R(R+R)−1u. (2.7)

However, one of the drawbacks of SDF filters is that they control the output at the origin only.

Also, they require the training images be centered on the target of interest. Since the test images

are not necessarily centered one will have no idea where the controlled values in the output are

located, unless one can control the rest of the values to be very small [KSX07].
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2.3 Minimum-Variance Synthetic Discriminant Functions
(MVSDF) Filter

One of the requirements of SDF filters [HC80] is a linear combination of the training images

such that they satisfy some deterministic constraints. Kumar introduced an MVSDF filter [Kum86]

such that the deterministic constraints are still satisfied but at the same time the output variance due

to white noise is minimized. Kumar suggested an approach to minimize this noise by removing

the condition of linear combination of training images in the design of SDF filters.

In SDF design it is assumed that the correlation value of the origin will be a pre-specified value

whenever the input image is a training image. This may not always be true and if the input image

is a noisy training image, the output would differ from the pre-specified value. In the design of

MVSDF, Kumar [Kum86] report the minimization of any such variance.

In order to design an MVSDF let us assume that a training image is corrupted by a zero-mean,

additive, stationary noise vector n. The constraint equation 2.4 of SDF is replaced by

|u|2 = |R+h|2 (2.8)

In the absence of noise, the |R+h| term will yield the constraint vector u. However, because of the

noise n, the cross-correlation output will have an additional random contribution y = h+n. One

can show that:

E{y} = 0 (2.9)

and

V ar{y} =E{h+nn+h}

=h+E{nn+h}

=h+Ch,

(2.10)

where E{.} and V ar{.} denote the expected value and the variance, respectively, and C is the

d× d covariance matrix of the noise vector n. The goal of MVSDF is to minimize the variance. In

order to minimize variance, Kumar introduces a function φ, such that

φ = h+Ch− 2λ1(h
+x1 − u1)− . . .− 2λN(h

+xN − uN), (2.11)
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where λ1, . . . , λN are Lagrange multipliers introduced for the constrained minimization. Taking a

derivative of φ w.r.t. h and setting it to zero one gets,

Chopt = λ1x1 + . . .+ λNxN , (2.12)

where hopt is the optimal filter. It is assumed that the covariance matrixC is invertible and therefore

hopt can be rewritten as

hopt =C
−1

N∑
i=1

λixi

=
N∑
i=1

λiC
−1xi,

(2.13)

2.4 Minimum Average Correlation Energy (MACE) Filter

A MACE filter [MKC87] minimizes the average energy of the correlation outputs due to the

training images. It is designed such that the correlation value is the highest at the object location

in the training images and zero everywhere else. The peaks of the correlation output are very

distinguishable because of their sharpness. In order to construct a MACE filter one needs to min-

imize average correlation energy, Eav, and this can be done directly in the frequency domain by

averaging the correlation plane energies Ei [MKC87] as follows:

Eav =(
1

N
)

N∑
i=1

Ei

=(
1

N
)

N∑
i=1

H+DiH

=(
1

N
)H+(

N∑
i=1

Di)H,

(2.14)

The variables in the equations can be explained as follows: N is the number of training images,

each of size d× d, H is the Fourier transform of the filter, H+ is its complex conjugate transpose

and Di is a diagonal matrix of size d2 × d2 whose diagonal elements are the magnitude square of

the associated elements of Xi, a column of a complex valued matrix X which is formed by taking
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the 2-D FFT of the training images followed by vectorizing them to form the columns of X whose

size is d2 ×N . We can define D as

D =
N∑
i=1

αiDi, (2.15)

where αi are all constants. If all αi = 1, we may rewrite equation 2.14 as

Eav = (
1

N
)H+DH, αi = 1, i = 1, 2, . . . , N. (2.16)

Therefore, αi = 1, makes sure that all correlation planes get equal weight. The average energy

is now represented by equation 2.16. In order to create a filter with minimum energy one needs

to minimize H+DH subject to the linear constraints, X+H = u, where u is the constraint vec-

tor containing the pre-specified correlation values. This problem can be solved using Lagrange

multipliers and the final filter, H , is given by

H = D−1X(X+D−1X)−1u. (2.17)

A detailed proof of this result can be found in the paper that introduced MACE filters [MKC87].

MACE filters are very sensitive to input noise and deviation from the training images because

such filters emphasize high spatial frequencies for sharp correlation peaks [KSX07]. It is important

to point out, however, that a MACE filter is preprocessing invariant. This implies that even if the

training images are linearly pre-processed, the correlation energies Ei do not change. Therefore,

the use of a high, low or a band pass filter on the data does not influence the outcome [MKC87].

These filters have been successfully used in applications like face recognition and face verifica-

tion [SVVK03] [SVK03] [MSK02] [VSVX02].

2.5 Optimal Trade-off Filters (OTF)

Most of the filters discussed thus far try to focus on one performance measure, for example,

minimization of noise sensitivity in MVSDF and maximization of peak sharpness in MACE [Kum92].

When focus is on one factor, a filter may not be able to provide better performance on other

factors, therefore, it would be desirable to obtain filters that optimize a combination of factors.

Refregier [Ref91] designed the optimal trade-off filter in order to detect an undistorted image.
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The goal is to improve three performance measures: SNR to measure noise tolerance, the peak-

to-correlation energy to measure peak sharpness, and the Horner efficiency [Hor82] [Cau82] to

measure the light-throughput eficiency of the filter. Refregier demonstrated that we can optimize

any one of these three measures while holding the other two at specific values. The filter is said

to be optimal because no other filter can be designed to yield a smaller value of the performance

measure while holding the other two at specified levels.

In the correlation output, the variance of the noise is given by equation 2.10. Minimizing this

output variance h+Ch for the MVSDF filter results in a filter emphasizing low spatial frequencies

while minimizing h+Dh (Section 2.4) for the MACE filter results in a new filter emphasizing

high spatial frequencies [KSX07]. While satisfying the constraints of equation 2.4, and optimally

trading off between h+Ch and h+Dh, Refregier [Ref91] designed the following Optimal Trade-

Off filter:

h = T−1X(X+T−1X)−1u (2.18)

where T = (αD +
√
1− α2C), and 0 ≤ α ≤ 1 is a parameter that controls the tradeoff. When

α = 0, we get a maximally noise tolerant filter, and α = 1 results in a MACE filter, producing very

sharp correlation peaks.

2.6 Unconstrained Minimum Average Correlation Energy
(UMACE) Filter

Most of the filters described thus far assume a pre-specified correlation value at the origin.

Mahalanobis et al. [MKS+94] removed that constraint and developed UMACE filters to optimize

distortion tolerance. These filters are designed to yield good performance in the presence of noise

and background clutter and at the same time result in sharp correlation peaks for easy output

detection. In order to present a design for UMACE filters, let us assume the training set consists

of N images, of two classes called a true and a false class, which don’t have to be of the same

size. Each image is assumed to be of size d1 × d2. The ith training image for the true class is

denoted by xi(m.n) and is represented in the frequency domain by a d×1 vector xi. The false

class training images, yi(m,n) are represented in vector notation in the frequency domain as yi.
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The filter is represented by H , of size d×1. The correlation of the ith training image and the filter

can be represented as

gi = XiH, (2.19)

whereXi is a d×d diagonal matrix containing the elements xi and gi denotes the Fourier transform

of the ith correlation output. Mahalanobis et al. quantify the deviation of a correlation plane from

some ideal vector f using Average Squared Error (ASE), represented as

ASE =
1

N

N∑
i=1

(gi − f)+(gi − f). (2.20)

Therefore, ASE is a measure of distortion with respect to the reference shape f . One is interested

in an f that minimizes ASE. Therefore, the optimum shape fopt, is obtained by dividing ASE with

respect to f and setting it to zero and one gets,

fopt =
1

N

N∑
i=1

gi = g (2.21)

where

g =
1

N

N∑
i=1

gi =
1

N

N∑
i=1

Xih = Xh (2.22)

is the average correlation plane and X = 1
N

∑N
i=1Xi is the average training image expressed as a

diagonal matrix. Therefore, the minimal ASE is obtained by using the average correlation plane

g, resulting in the least distortion. Substituting f = g in the ASE expression defines the Average

Similarity Measure (ASM), as

ASM =
1

N

N∑
i=1

(gi − g)+(gi − g)

=
1

N

N∑
i=1

(Xih−Xh)+(Xih−Xh)

=h+

[
1

N

N∑
i=1

(Xi −X)∗(Xi −X)

]
h

=h+

(
1

N

N∑
i=1

XiX
∗
i

)
h− h+XX∗h

=h+Dxh− h+XX∗h.

(2.23)
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where h+Dxh is called the Average Correlation Energy (ACE) for the true class with Dx =

( 1
N
)
∑N

i=1XiX
∗
i . SImilarly Dy = ( 1

N
)
∑N

i=1 YiY
∗
i is the diagonal matrix containing the aver-

age power spectrum of the false class. It is used to define a filter called the Maximum Average

Correlation Height (MACH) filter, defined as

h = c(Dy + Sx)
−1x, (2.24)

where c = α
λ

and Sx = 1
N

∑N
i=1(Xi−X)∗(Xi−X). A MACH filter maximizes the relative height

of the average correlation peak with respect to the expected distortions. If the correlation energy

term Dy is deleted from the MACH filter equation, we get

hmach = S−1x x. (2.25)

This special MACH filter without the correlation energy is called unconstrained Mean Squared-

Error Synthetic Discriminant Function (MSE SDF). Now representing the correlation energy of

the X data, the special MACH filter can be represented as,

hmach = D−1x x. (2.26)

It is obtained by dropping the ASM term from the MACE filter (section 2.4) expression and is

referred to as the unconstrained MACE (UMACE) filter. A detailed analysis of this approach can

be found in the paper on UMACE [MKS+94].

2.7 Other Correlation Filters

As just illustrated, there have been different approaches to correlation filter design, while some

of them have been designed with the constraint of a pre-specified value at the origin, there are

others designed to maximize the average correlation height [MKS+94]. A set of filters called the

Distance Classifier Correlation Filter (DCCF) [MKS96] are aimed at designing a filter such that

the training images from different classes are mapped to well-separated clusters. Mahalanobis and

Kumar [MK97] presented Polynomial correlation filters, which use the original image and its non-

linear versions as input. A correlation filter is designed for each non-linear version and are then
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fused together. Recently, Kerekes and Kumar [RK06] extended the correlation filter designs using

Mellin radial harmonic functions [RS89].
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Chapter 3

Average of Synthetic Exact Filters (ASEF)
and Minimum Output Sum of Squared Er-
ror (MOSSE) Filter

In the Computer Vision lab at Colorado State University, my friend and colleague, David

Bolme, invented two correlation filters, ASEF [BDB09] and MOSSE [BBDL10] . This chapter

presents the details of these correlation filters, particularly MOSSE, which forms the core of the

face detector introduced in this dissertation.

3.1 Average of Synthetic Exact Filters (ASEF)

Bolme et al. [BDB09] proposed a new class of filters called the Average of Synthetic Exact

Filters (ASEF) that have two main differences from the previous methods, discussed in Chapter

2: firstly, for each training instance, an entire correlation response surface is specified during filter

construction, and secondly, the resulting filters, one per training image, are then simply averaged.

According to the authors, ASEF filters are less susceptible to over-fitting the training data and can

therefore be trained over more inclusive and larger training sets [BBD10].

In ASEF filters the convolution theorem is simplified to map the input training image and

the output correlation plane. As previously explained, the correlation operation in the Fourier

domain becomes an element-wise multiplication. ASEF filters are trained using response images

specifying the ideal correlation output for an image. This target correlation surface specifies a

desired response at every location. This approach differs from SDF, since SDF specifies only a

single correlation value per training image. In the ASEF approach, for each training image there is

an exact filter. This results in a balance between constraints and degrees of freedom. The final filter

is an average of the exact filters. This averaging of filters avoids over-fitting [BDB09]. UMACE

filters also average to avoid over-fitting, but they differ from the ASEF filters because the averaging

is done over the training images and not over the filters.
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ASEF has performed well at both eye localization [BDB09] and pedestrian detection [BLDB09],

however, it has not been as successful in visual tracking, because it requires a large number of

training images [BBDL10]. This is overcome by using fewer images in Minimum Output Sum

of Squared Error (MOSSE) [BBDL10] filters, which are ASEF-like filters constructed from fewer

training images.

3.2 Minimum Output Sum of Squared Error (MOSSE) Filter

MOSSE [BBDL10] filters are like ASEF filters but can be trained with very few images. They

are more robust with respect to changes in the appearance of a foreground object and discriminate

well between the target and the background. Bolme et al. successfully used these filters for track-

ing. Such a tracker is robust to changes in lighting, scale, pose and non-rigid deformations and

operates at 669 frames per second [BBDL10]. The design of the filter is carried out in the Fourier

domain to exploit the convolution theorem. According to this theorem correlation in the Fourier

domain is an element-wise multiplication. Therefore correlation is defined as:

G = F �H∗ (3.1)

where � denotes the element-wise multiplication and ∗ is the complex conjugate. G, H and F are

the Fourier transform of the Gaussian distribution g, image f and filter, h. The correlation output is

transformed back into the spatial domain using the inverse FFT. In this process the time complexity

bottleneck is forward and the inverse FFT and the complexity of the entire process is O(N logN),

where N is the number of pixels in the tracking window. I will now describe the design of the

MOSSE filter starting with the pre-processing of the images.

3.2.1 Preprocessing

The use of FFT in convolution greatly enhances the speed of computation, however, it comes

with some challenges that need to be overcome. One of them being the mapping of the images

and the filter to the torus topological structure. This means the image left is connected to the

image right and the image top is connected to the image bottom. The reason for this is because
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during the convolution process the images rotate through toroidal space rather than translating like

they would, in the spatial domain. This artificial connection of image edges affects the correlation

output. This can be avoided by following the preprocessing steps in [BDB09]. First, the pixel

values are transformed using the natural log function to help with low contrast lighting situations.

In order to avoid taking the log of a pixel with an intensity value of zero, all such pixels are added

a value of one before applying the log function. The second step is to normalize the pixel values

such that the image has a mean of zero and a unit norm. In the final step, the image is multiplied by

a cosine window. Such a window gradually reduces the pixel values near the edges to zero, putting

more emphasis on the center of the target. An example of such a cosine window is displayed in

Figure 3.1.

(a) Input Image (b) Cosine Window (c) Processed Image

Figure 3.1: Cosine Window and a Processed Image after multiplying an image with a cosine
window.

3.2.2 MOSSE Filter Design

A MOSSE filter is constructed such that the output sum of squared error is minimized. Fig-

ure 3.2 displays the process of creating such a filter.

The pairs fi, gi are the training images and the desired correlation output, respectively. This

desired output image gi is synthetically generated such that the point between the eyes in the

training image fi has the largest value and the rest of the pixels have very small values. More

specifically, gi is generated using a 2D Gaussian centered at the target point (xi,yi) between the
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Figure 3.2: MOSSE Filter Process
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eyes with radius σ, such that

gi(x, y) = e−
(x−xi)

2+(y−yi)
2

σ2 (3.2)

The construction of the filter requires transformation of the input images and the Gaussian images

into the Fourier domain to take advantage of the simple element-wise relationship between the

input and the output. Let Fi, Gi be the Fourier transform of the lower case counterparts, then the

exact filter Hi is defined as,

H∗i =
Gi

Fi
(3.3)

where the division is performed element-wise. The filters like the ones shown in Figure 3.2 such as

h1, h2 and h3 are specific to their corresponding images f1, f2 and f3, respectively. In order to find

a filter that generalizes across the dataset, the MOSSE filter H , is generated such that it minimizes

the sum of squared error between the actual output of the convolution and the desired output of the

convolution. This minimization problem is represented as:

minH∗
∑
i

|Fi �H∗ −Gi|2, (3.4)

where Fi and Gi are the input images and the corresponding desired outputs in the Fourier domain.

This equation can be solved to get a closed form solution for the final filter H [BBDL10]. Since

the operation involves element-wise multiplication, each element of the filter H can be optimized

independently. Therefore, the equation 3.4 can be re-written as

Hwv = minHwv
∑
i

|FiwvH∗wv −Giwv|2 (3.5)

wherew and v index the elements ofH . This function is real valued, positive, and convex implying

the presence of a single optimum. This optimum is obtained by taking the partial derivative of Hwv

w.r.t. H∗wv and setting it to 0. Therefore, the equation becomes,

0 =
∂

∂H∗wv

∑
i

|FiwvH∗wv −Giwv|2 (3.6)

By solving for H∗ a closed form expression for the MOSSE filter is

H∗ =

∑
iGi � F ∗i∑
i Fi � F ∗i

(3.7)
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where H∗ is the complex conjugate of the final filter H in the Fourier domain. A more complete

derivation of this expression is in the appendix of the MOSSE paper [BBDL10]. The terms in

equation 3.7 can be interpreted as the correlation between the input and the desired output in the

numerator and the energy spectrum of the input in the denominator. It is useful to mention here

that ASEF filter has a similar expression except for the averaging, which can be represented as

H∗asef =
1

N

∑
iGi � F ∗i∑
i Fi � F ∗i

. (3.8)

In the case of using only one image for training both MOSSE and ASEF produce an exact filter. It

is also worth noting that the MOSSE filter is in the Fourier domain and needs to be converted back

to the spatial domain through an inverse Fourier transform.

28



Chapter 4

Face Detection Background
The first step of a face processing system is to detect faces. Face detection aims to identify

whether a face exists or not in an image and if it does, report the location of each face [YKA02].

We will now describe some of the techniques in face detection research.

4.1 Overview and Early Work in Face Detection

According to Yang et al. [YKA02], face detection can be divided into four broad categories

based on their approach: knowledge-based, feature invariant, template matching and appearance-

based method. Knowledge-based methods are based on rules that encode a typical face. They have

been primarily used for face localization. Yang and Huang [YH94], used this approach to locate

human faces in a complex background. Their approach consists of three knowledge based levels.

At level 1, the whole image is scanned to locate all the faces and in the next level, 8 × 8 cell

window screens locate faces obtained in the first level. At level 3 further screening is done and if

eye and mouth regions match with the established characteristics then the presence of the face is

established.

Feature invariant approaches use structural features to identify faces in an image. This approach

makes them robust to variations in pose, viewpoint, or lighting conditions. Leung et al. [LBP95]

used this approach to locate faces in cluttered scenes. They used a set of local feature detectors

and coupled them with a statistical model of the mutual distances between the facial features. This

approach is robust to variations in scale, translation, rotation (in the plane) and can handle partial

occlusions.

Yow and Cipolla [YC97] proposed a feature based algorithm that detects feature points from

the image using spatial filters and groups them into face candidates using geometric and gray

level constraints. In order to establish the presence of a face, they use a probabilistic framework.

Dai and Nakano [DN96] developed a method to detect faces in cluttered color scenes. They de-
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rived a set of inequalities to form a face-texture model based on the feature parameters present in

a Space Gray-level Dependence matrix (SGLD). These inequalities helped define the face loca-

tion. They enhanced face areas by utilizing the I component of the YIQ color system. Yang and

Waibel [YW96] developed a real-time face tracker. They characterized human faces using a skin

color model in chromatic color space. They also proposed a motion model to track head motion

and a camera model to predict camera motion. McKenna et al. [MGR98] used Gaussian mixture

models to detect human faces.

Template matching methods use correlation between an image and stored patterns for detection

as well as localization. Craw et al. [CTB92] presented a method to locate individual face features

like the eyes and mouth in a gray scale face image. Face detection is carried out in two steps

beginning with general localization of the faces in the image followed by further refinement and

assessment to find the face. Lanitis et al. [LTC95] present a model based representation of the

shape and grey-level appearance of human faces. These models are subsequently used to classify

images.

Appearance-based methods are primarily designed for face detection. The models are gen-

erated from the images to capture their variability. Turk and Pentland [TP91] carried out face

recognition and detection using principal component analysis. Principal Component Analysis is

used to generate eigen faces that span a subspace. After projecting these images to the subspace,

they are clustered. The face images do not change radically when projected to the subspace while

the non-faces appear differently when projected onto the subspace. The distance between each

location in the image and the face space is computed to detect the presence of a face. The distance

from the face space is used as a measure of closeness to a face and the result of this distance is a

face map. A face can then be detected from the local minima of the face map.

Sung and Poggio [SP98] presented a system to learn about the image patterns of a class from

the positive and the negative examples of that class. They use a two component approach to

distinguish between faces and non faces. The first component consists of distribution-based models

for face/nonface patterns and the second component is a multilayer perceptron classifier.

Rowley et al. [RBK98] have done the most significant work in face detection using neural
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networks. They use a multilayer neural network to differentiate between the face and nonface

patterns from the face and nonface images. However, they can only detect upright frontal faces.

One of the most widely used face detection databases has been created by Rowley et al.1. Osuna

et al. [OFG97] were the first to use an SVM for face detection. Their system has lower error rates

and runs 30 times faster than the system by Sung and Poggio.

Schneiderman and Kanade [SK98] developed an approach using a naive Bayes classifier to

compute the joint probability of local appearance and position of the subregions of the face at

different resolutions. The emphasis on local patterns or subregions is because they may be more

distinctive. For example, there is a clear difference between the patterns around the eyes and those

around the cheeks. In this procedure a face is divided into four rectangular subregions at each

scale. These subregions are projected to a lower dimensional space using PCA and quantized into

a finite set of patterns. The statistics from each subregion are used to encode local appearance.

Therefore, they report the presence of a face when the likelihood ratio is larger than the ratio of

the prior probabilities. This approach is able to detect some rotated and profile faces. This work

was later extended by Schneiderman and Kanade [SK00] using wavelet representations to detect

profile faces and cars.

Rajagopalan et al. [RKK+98] proposed two probabilistic methods for face detection. In the

first method they use higher order statistics (HOS) for density estimation. In the second method

faces and nonfaces in an image are defined through the use of a Hidden Markov Model(HMM).

Although these approaches have a high detection rate, there are also some false positives.

Lew [Lew96] carried out face detection by associating a probability function p(x) to the event

that the template is a face and q(x) to the event that the template is not a face. A face training

database consisting of nine views of 100 individuals is used to estimate the face distribution and a

set of 143,000 nonface templates is used to estimate the nonface probability density function.

One of the seminal papers in face detection that has made a huge impact is by Viola and

1http://vasc.ri.cmu.edu/NNFaceDetector
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Jones [VJ01] [VJ04]. I will now describe this face detector in the next section.

4.2 Viola and Jones Face Detector

Viola and Jones [VJ01] presented a face detection framework that can detect faces at 15 frames

per second. The authors distinguished their work through three key contributions in the devel-

opment of this face detector: An image representation based on the integral image presented by

Crow [Cro84], a learning algorithm, based on AdaBoost and combining complex classifiers in a

cascade. These key components of this face detector will now be described.

4.2.1 Integral Image

An integral image is based on Haar like features [POP98] which are shown in Figure 4.1.

These are the three kinds of features that Viola and Jones used in their research. The value of a

A

C

B

D

Figure 4.1: Integral Image Features: A and B: Two-rectangle features, C: Three rectangle features,
D: Four rectangle features

two-rectangle feature is the difference between the sum of the pixels within the two rectangular

regions. These regions are horizontally or vertically adjacent and of the same size. The three-

rectangle feature computes the difference between the sum of the two outside regions and the

center rectangle. The four-rectangle features find the difference between the diagonal rectangle
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pairs. The base resolution of the detector is 24 × 24 which makes the number of rectangular

features to be 160,000.

In order to find these rectangular features, Viola and Jones [VJ04] used an intermediate image

representation which they called an integral image. At a location x,y an integral image contains

the sum of the pixels above and to the left of x,y, inclusive:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (4.1)

where ii(x,y) is the integral image of the original image i.

Rectangular features are somewhat primitive and sensitive to the presence of edges, bars, and

other simple image structure. At the same time they are quite coarse. Viola and Jones generated

a very large and varied set of rectangular features. This set of overcomplete rectangular features

provide a rich image representation supporting effective learning. Therefore the limitations of the

rectangle features are largely overcome by their extreme computational efficiency.

This face detector scans an input image at many scales, starting at the base scale in which faces

are detected at a size of 24 × 24 pixels, a 384 × 288 pixel image is scanned at 12 scales, each a

factor of 1.25 larger than the last. In practice, however, a pyramid of 12 images, each 1.25 times

smaller than the previous image is computed. A fixed scale detector is then used to scan across

each of these images.

4.2.2 AdaBoost Learning

Viola and Jones use a variant of AdaBoost [FS95] learning to train the classifier and select the

features. AdaBoost is a greedy selection process. A weighting system is used to associate weights

to classifiers with large weight associated with each good classification function and a small weight

with poor functions.

AdaBoost is an effective technique to select a small set of good functions. The goal is to sep-

arate positive and negative examples such that a minimum number of examples are misclassified.

In order to achieve this, a weak learning algorithm is designed to select a single rectangular feature

that best achieves this separation between the positive and the negative examples. This weak clas-

sifier determines the optimal threshold function to minimize misclassification. A weak classifier

33



can be presented as

h(x, f, p, θ) =

{
1 if pf(x) < pθ

0 otherwise.
(4.2)

where (h(x, f, p, θ)) is a weak classifier consisting of feature f , a threshold θ and a polarity p and

a 24 × 24 pixel sub-window, x, of an image.

The number of weak classifiers is in the order of K × N , where K is the number of features

and N is the number of examples. In order to get an idea about the number of distinct weak

classifiers we will cite an example from Viola and Jones [VJ04]. Given a task with N = 20000

and K = 160000 there are 3.2 billion distinct binary weak classifiers. Despite this extraordinarily

large set of classifiers, AdaBoost is really very efficient and fast. A 200 feature classifier can

be learned in O(MNK) or about 1011 operations. In each stage the dependence on previously

selected features are efficiently encoded using example weights which can then be used to evaluate

a given weak classifier in constant time.

The process of generating a weak classifier can be explained as follows. The examples are

sorted on the basis of each feature value for each feature. The optimal threshold for AdaBoost

for a feature can be computed in a single pass over this sorted list. For each element in the sorted

list , the following four sums are maintained and evaluated: the total sum of positive example

weights T+, the total sum of negative example weights T−, the sum of positive weights below the

current example S+ and the sum of negative weights below the current example S−. The error for

a threshold which splits the range between the current and previous example in the sorted list is:

e = min(S+ + (T− − S−), S− + (T+ − S+)), (4.3)

or the minimum of the error of labeling all examples below the current example negative and

labeling the examples above positive versus the error of the converse. These sums are easily

updated as the search proceeds.

The initial features selected by AdaBoost are very useful for face detection. It establishes that

the region of the eyes is often darker than the region of the nose and the cheeks. However, this

feature is not sensitive to the location and the size of the face. The second feature is slightly more

specific and relies on the property that the eyes are darker than the bridge of the nose. Therefore,
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the features become an effective tool in the process of face detection.

4.2.3 Cascade of Classifiers

The goal of building a cascade of filters is more efficiency and so a reduction in computation

time. Viola and Jones suggested that a smaller number of efficient and boosted classifiers can

be constructed. These boosted classifiers will be more efficient in rejecting many of the negative

sub-windows while detecting almost all positive instances. The majority of the sub-windows are

rejected by simpler classifiers, and the reduction in false positive rate is achieved by using more

complex classifiers.

AdaBoost is used to create stages for training classifiers. The first stage is comprised of a

strong two-feature classifier. In order to build an effective face filter the strong classifier threshold

is adjusted to minimize false negatives. A lower error rate on the training data is obtained by using

the initial AdaBoost threshold, 1
2

∑T
t=1 αt. This lower threshold yields higher detection rates and

higher false positive rates. Viola and Jones obtained an accuracy of 100% with a false positive rate

of 50% using the two-feature classifier. A cascade of filters works such that a positive result from

the first classifier triggers a second classifier and a positive result from the second classifier triggers

a third classifier, and so on. A negative result at any stage leads to the rejection of the sub-window.

This process is described in the Figure 4.2. Therefore, a cascade is designed such that more and

All 
Sub-

Windows
1 2 3

Further
Processing

T T T

F F F

Reject Sub-window

Figure 4.2: An example of a cascade of classifiers used by Viola and Jones

more negative examples are rejected and the positive examples pass through subsequent classifiers.

Viola and Jones based the design of this cascade of filters on an optimization framework such that

the number of classifier stages, the number of features in each stage and the threshold of each stage,
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are traded off to minimize the expected number of evaluated features. Viola and Jones used a total

of 38 stages with over 6000 features in their cascade detector and still had fast average detection

times.

4.3 Recent Face Detection Techniques

In section 4.1, we discussed the face detection techniques prior to the year 2002 followed by

the Viola and Jones face detector because of its influence in face detection research. I will now

discuss recent face detection research in the context of some of the challenges, including changes

in pose, occlusion, facial expressions, speed, image orientation and image conditions as listed by

Yang et al. [YKA02].

4.3.1 Pose and Image Orientation

Detecting frontal poses under controlled conditions is more or less a solved problem. However,

variations in image conditions make face detection much harder. As a result many researchers have

been pushing different techniques to overcome such challenges. Viola and Jones extended the

frontal face detection framework to handle profile and rotated faces [JV03]. They trained different

detectors for different views of the face and used a decision tree to determine the profile and the

rotation. However, they got a lot of false rejects and false positives.

Wu et al. [WAHL04] used a parallel cascade for multi-view face detection. They learned a

classifier for each view. Although the performance was good, the set up is too slow for practical

use. Li et al. [LZZ+06] used a 3-level pyramid cascade to improve the design of Wu et al. for

better speed and performance. In the pyramid, the first level works on all poses, the second level

detects left profiles between -90◦ and -30◦, between -30◦ and +30◦ for the frontal views and the

right profiles between +30◦ and +90◦. The third level of the pyramids detects faces at 7 finer angles.

Although this design shows much better performance, it still requires a lot of improvement.

Huang et al. [HALL05] designed an efficient tree-structured Multi-View Face Detector (MVFD),

that divides the entire face space into smaller and smaller subspaces. Using this approach they can

deal with pose changes that cover ±45◦ rotation in plane (RIP) and ±90◦ rotation off plane. This
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approach requires only four such detectors to take care of a rotation independent MVFD. However,

this method requires manual categorization of the training data and can be a tedious task.

Anoop et al. [AARK08] presented an approach for multi-view face detection in videos. They

performed this multiview face detection at certain key positions in the video instead of at every

position in a frame. These key positions are based on statistical samples drawn from a density

function whose estimation is based on color cues, past detection results, meanshift tracker results

and a temporal continuity model.

4.3.2 Image Conditions and Facial Expressions

As has been previously discussed in Chapter 1, face detection under uncontrolled lighting is

very difficult. On top of that, changes in expressions further complicate detection. Although the

major focus of the face detection research has been on pose invariance, some work has been carried

out to reduce the impact of the image lighting conditions and incorporate different facial expres-

sions. Hsu et al. [HAMJ02] proposed a face detector using a novel lighting compensation technique

and a nonlinear color transformation to detect skin regions over the entire image. This was fol-

lowed by generating face candidates based on the spatial arrangement of these skin patches. The

skin color is modeled using a parametric ellipse in a two dimensional transformed color space and

facial features are extracted by constructing feature maps for the eyes, mouth and face boundary.

However, the number of false positives using this approach is high.

Xiao et al. [XLZ04] used a three step approach to detect faces in images with complex back-

grounds, views, illuminations and facial expressions. They use a linear-filtering algorithm to re-

move most of the non-faces, followed by a chain boosting algorithm to enhance efficiency. Finally,

they use image preprocessing, SVM-filter and color filter to refine the final prediction. They also

used an in-plane pose estimator for this real-time system for multiview face detection in photos.

Although these approaches do very well on certain aspects of face detection, most of the sys-

tems fail when all these challenges are presented in the same database resulting in lots of false

positives and a high number of false rejects. Even if such challenges are overcome, the result is

often a system with large computational demands that limit real-time application.
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4.3.3 Further Work on Cascade Based Face Detectors

After the success of the Viola and Jones’ cascade based face detector many researchers have

pushed the idea in different directions. Li and Zhang [LZ04] introduced a new procedure called

FloatBoost for learning a boosted classifier for achieving the minimum error rate. FloatBoost is

used to bridge the gap between the goal of a conventional boosting algorithm (maximizing the

margin) and that of many applications (minimizing the error rate) by incorporating floating search

into AdaBoost. This technique allows deletions of weak classifiers that are ineffective in terms

of the error rate. It is then effectively used for achieving real-time multiview face detection by

incorporating the idea of the detector pyramid learned using FloatBoost.

However, one of the disadvantages of cascading methods is that reducing false positives re-

quires training new stages which reduces the detection rate. In order to overcome such weaknesses

of the cascade based systems, Bourdev and Brandt [BB05] proposed a new cascade based system

called the ”soft cascade”. According to the authors cascade systems have several disadvantages

that their system addresses. Some of these disadvantages have been reported to be as follows:

firstly, at each stage a decision to accept or reject an instance is taken without considering how

well the instance performed in the prior stages; secondly, there is a severe training requirement at

each stage. A positive classification is required to pass every stage and the final detection rate is

the product of the detection rates of all stages, for example, in a cascade with 10 stages, a final

detection rate of 90% requires that at each stage the face detection rate should be 99%. This makes

it very difficult for the later stages; thirdly, the training parameters such as target detection and

false positive rates provide only an indirect control over total execution speed, which requires us to

retrain the cascade to test different parameters; and finally, there is no way to pick the parameters

like the number of stages, the ordering, the target detection rate and the false positive rate at each

stage.

Bourdev and Brandt used a two step approach to overcome some of these disadvantages of

the cascade detectors. Firstly, they generalized the decision making function for each stage to be

scalar-valued, rather than binary-valued. Secondly, the decision whether a positive instance passes

a given stage depends on the values of each of the prior stages, rather than just the value of the
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stage under consideration. In this approach, instead of training a sequence of consecutive stages

like in the Viola and Jones’ approach, Bourdev and Brandt trained a single, potentially very long

stage consisting of T features. The resulting classifier can be represented as:

H(x) =
∑

t=1,...,T

ct(x), (4.4)

where ct(x) = αtht(x) are the set of thresholded Haar based classifiers selected during AdaBoost

training scaled by the associated weights. However, in order to reduce the number of false nega-

tives, Bourdev and Brandt proposed a solution that uses a parameterized curve. In an attempt to

reduce the number of false negatives this solution also gives up on the positive examples [ZV08].

Mita et al. [MKH05] introduced a new Haar-like feature for face detection. In this approach

AdaBoost is used to learn a face detector through stagewise selection of the joint Haar-like features.

The authors claim that this detector yields higher classification performance than the Viola and

Jones’ detector. This detector is 2.6 times faster than Viola and Jones face detector. However, this

algorithm has been tested only on the MIT-CMU dataset [RBK98].

Heisele et al. [HSP07] developed a part-based framework by looking for prominent facial com-

ponents such as eyes, nose etc., and then using their spatial relationship to detect faces. This

method is very robust to image deformations and occlusions. However, the choice of feature repre-

sentations and accurate characterization of the relationships between the facial components is still

a challenge.

Nilsson et al. [NNC07] use the local Successive Mean Quantization Transform (SMQT) tech-

nique for face detection. Local SMQT is robust to changes in illumination. This approach is an

extended version of the Sparse Network of Winnows (SNoW) [FE04] classifier. SNoW is a sparse

network of linear units over the feature space [RMA00]. One of the drawbacks of the SNoW-based

methods is that they require a large number of face and non-face patches during training.

Jang and Kim [JK08] used an AdaBoost-based cascade detector for face detection. They used

an evolutionary pruning to reduce the number of weak classifiers. In order to construct a multiview

face detector the authors incorporated frontal, left profile and a right profile face detector. However,

they only tested it on the CMU-MIT face dataset and they also suffer from the same problems with
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more false positives as other cascade detector based approaches. For such detectors, Brubaker et

al. [BWS+08] presented a way to determine the number of hypotheses to include in an ensemble

and the appropriate balance of detection and false positive rates in the individual stages. Pakazad

et al. [PHF11] use a cascade based face detector on the pattern of the Viola and Jones face detector.

At each stage of the cascade a best minimal set of features are selected using a feature selection

algorithm. This approach reduces the average number of operations per location. The features that

they used are Central Geometrical Moments (CGMs) of face components and their horizontal and

vertical gradients. These features were calculated using the Kahan [Kah71] summation algorithm

to decrease the effects of round-off error.

4.3.4 Some Other Approaches to Detect Faces

Sznitman and Jedynak [SJ10] used an information theory based approach for face detection

and localization. In this approach, general and specific questions are asked to determine the face

pose while spanning different face spaces. This approach strictly focuses on frontal faces only.

Tsao et al. [TLL+10] applied a database based approach to face detection. The face detector

consists of three cascaded classifiers to prune non faces. It involves data mining the feature patterns

of human faces automatically and efficiently. Each training image is converted to an edge image

through the application of Sobel edge detection operator, a morphological operator and a threshold.

From these edge images they obtain the positive feature pattern by mining the maximal frequent

patterns using a database approach called the MAFIA [BCG01] algorithm. This approach not only

pays attention to the positive patterns like eyes and mouth but also some of the negative features

like the cheeks that do not contain any facial feature patterns.

Wang et al. [WQXL10] used a combination of Haar features and features of skin colors for face

detection. This combination approach helps the two methods to draw on each others strengths. In

addition, this enables not only an increase in the speed of detection but also enhances its accuracy

and minimization of false positives.

Paisitkriangkrai et al. [PSZ11] suggest that instead of using Haar like features, as used in most

of the cascade based face detectors, they can use simpler features and still obtain discriminative
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information in a more efficient way. They create a feature set using sparse least square regression

by simplifying a combination of Histograms of Oriented Gradients (HOG) and Local Binary Pat-

tern (LBP) proposed by Wang et al. [WHY09]. This new block descriptor retains the properties

of HOG and LBP descriptors, such as, robustness to illumination changes and image noise, in ad-

dition to computational simplicity. Their results are comparable to the ones obtained using Haar

features with the advantage that the new features are simpler.
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Chapter 5

Batch of Filters Approach to Face Detection
In this chapter I am addressing two challenges of face detection using correlation filters. The

first challenge is due to the way correlation works. The output of a correlation between any two

images results in a correlation surface and each pixel value in this surface is a correlation value. In

this correlation surface there is no inherent information about the location of a face. We start from

the location in the correlation surface that has the highest correlation value and because of the way

the correlation filters are designed (see Chapter 3), I expect this peak to be the point between the

eyes. However, correctly locating the peak only localizes a face. We are interested in detecting a

face which entails finding the coordinates of a rectangle that encompasses a face. The correlation

peak does not give us any idea about the size of a face rectangle (and hence the scale of the face).

The challenge is to go from face localization to face detection.

This challenge of face detection starting from the target localization to face detection is related

to our second challenge. The challenge of determining the size of the face. Even though we

are experimenting with images containing only a single face, face size varies between images.

Therefore, we not only need to find the location of the face in the image but also the scale of the

face from one image to another. Rest of the chapter presents the experiments to localize a face and

find the scale of the face in the image.

5.1 Face Localization

Face localization is defined as the process of finding a target location in an image. In this

dissertation this target is identified as the point between the eyes of a face and its localization acts

as a first step for face detection using correlation filters. This approach begins with the convolution

of an image with a face and a filter in the Fourier domain. The result of this convolution is a

correlation surface in which we identify the coordinates of the highest correlation value i.e., peak.

The goal is to obtain a correlation surface that has a high peak value at the target location on the
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face and low values everywhere else. Figure 5.1 displays convolution between an image and a

filter. This results in a correlation output surface displayed in the last graphic of this figure. It is

FilterImage Correlation 
Surface

Figure 5.1: Face Localization using convolution of an image with a filter.

clear that there is a bright spot in the correlation surface and the rest of the image is darker than

this location. In order to understand this result, I will start with the graphic labeled, Image, in this

figure. The target is the location between the eyes. For demonstration, this target is identified by a

white dot in the Image. The dimensions of the input image, filter and the output correlation surface

are the same. Therefore, if the coordinates of this white spot in the input image matches with the

bright spot in the correlation surface, we can confirm that the target has been localized. However,

they may not always correspond to exactly the same location. For example, in Figure 5.1, the

bright spot location of the correlation surface corresponds to the black spot in the Image which is

very close to the targeted white spot. In my experiments if the actual location identified by the

black spot in the image lies within a certain range of pixels from the target location it can still be

considered a successful localization. I will discuss this in more detail in the experiment design

section.

5.2 Experimental Setup

As previously discussed, the correspondence of identifying the target and the actual location is

localization of a part of the face that I am trying to detect. This target identification is the first step
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to detect a face. The next step is to get the coordinates of a rectangle that contains the face. This

transition from localization to face detection, identified by the face rectangle, is not straightforward

because the width and the height of a face cannot be determined directly from the peak correlation

value. The reason being, there could be multiple rectangles encompassing the face fully or partially

as displayed in Figure 5.2. The question is, starting from the target location, which is correct, the

Figure 5.2: Different rectangles that could represent a face after locating the target point between
the eyes.

red rectangle, the blue rectangle or the green rectangle. In order to answer this question I will have

to find the size of the face which may also be referred to as the scale of the face. While answering

this question I am trying to handle just the scale of a face among many other challenges in detecting

faces, like pose, lighting, complex background etc. In order to tackle just the face scale issue I will

begin with considering only frontal face images with a controlled background.

5.3 Dataset

The images for the scale experiments are taken from the FERET [PMRR00] database. All the

images in this database have been taken in the same physical setup controlling for background and

lighting. There are 2413 still facial images representing 856 individuals. I control for the pose and

only include the images with frontal face views with different expressions. This is done so that

we have a controlled experiment to study the effect of scale variation between the images without
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having to worry about other factors. Some of the representative pictures from the database are

displayed in Figure 5.3.

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5 (f) Image 6

Figure 5.3: Representative images from the FERET database.

I have used 250 training and 250 test images with no overlap for people between these two

datasets. These two datasets consist of images with faces of different scales determined by the

interocular width. These two datasets will be referred to as the unprocessed training set and the

unprocessed test set, respectively. As described in Section 3.2.2, training involves the generation

of an exact filter for each training image and minimizing the sum of squared error to obtain the

final filter. This correlation filter is used to correlate with the test images, one at a time in the

frequency domain, while exploiting the convolution theorem. The coordinates of the eyes, nose

and the mouth for each image are known. I begin with localizing a target on the face and in all
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the experiments this target is the point between the eyes. The goal is that correlation surface has

the highest peak in each of the test images. We can compare the coordinates of this located point

with the ground truth coordinates of the point between the eyes to measure accuracy of this target

localization. The target is accurately located if it lies within five pixels from the ground truth

coordinates in both directions.

5.4 Experiments

In order to understand the effect of scale on the accuracy of finding the target point in an image

I have designed three different experiments which are described in this section. The results of these

experiments eventually lead from face localization to the face detection.

5.4.1 Same Interocular Width Between the Test and the Training Datasets.

My first experiment is very simple. The training and the test datasets have the same scale

defined by the interocular width. This means the interocular width between the training and the

test images is the same. The goal of this experiment is to test the filters trained on images with the

same interocular width. The hypothesis is that if the training and the test images have the same

face sizes, we will have a high accuracy.

5.4.1.1 Training and Test Datasets

To be more specific I use the 250 training images from the unprocessed training set. Since the

images in this dataset have different interocular widths, I process them to create new datasets of

specific scales. More specifically I created six new training sets with 16, 32, 48, 64, 80 and 96

pixels between the eyes. These training sets were created from the unprocessed training set and as

such each of them had the same number of images, 250.

The way to create each of these datasets is by sampling each image such that the number of

pixels corresponds to a given pixel width. For e.g., the training dataset consisting of images with

16 pixels between the eyes is created from the same unprocessed training dataset of 250 images

such that the pixel width of each of these 250 images is 16 pixels between the eyes. The same
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procedure is repeated to create datasets for 32, 48, 64, 80 and 96 pixels between the eyes. The

filters trained from these datasets are presented in Figure 5.4. The filter labeled unprocessed is the

(a) 16 (b) 32 (c) 48 (d) 64

(e) 80 (f) 96 (g) Unprocessed

Figure 5.4: Each filter is labeled as the number of pixels between the eyes in the training dataset .

one trained on the images in the unprocessed training dataset.

5.4.1.2 Results

The results of Experiment 1 are presented in Table 5.1. In each of these tests a target is consid-

ered to be accurately located if the difference between the target and the actual location is within

five pixels in both x and y coordinates. As we can see each of these numbers in column 2 of

Table 5.1 display good accuracy. However, this simple experiment confirms my hypothesis that

correlation filters trained and tested on images of similar interocular widths will yield good accu-

racy results. This also means that if the scale of faces between the test and the training images is
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Table 5.1: Accuracy of locating point between the eyes with filters trained and tested on the images
with the same number of pixels between the eyes.

Pixels between Eyes % Accuracy (within 5 pixels)
16 78.8
32 72.4
48 87.6
64 95.2
80 96.4
96 97.2

Unprocessed 84

the same there is always a very good chance of localizing a face accurately. After localizing a face,

the scale of the face can be easily determined because the filters have been trained for a particular

scale. However, having verified the hypothesis it is highly unlikely that a test dataset will have

images with the same number of pixels between the eyes as the ones in the training set. Therefore,

it would be useful to determine the response of the filters that are tested on a dataset which could

have any number of pixels between the eyes. However, before I proceed with that experiment, it

is important to determine how far can a single filter stretch. I will discuss this in detail in the next

experiment.

5.4.2 Single Filter is not Enough

In the previous experiment it has been established that a single filter is good when the training

and the test face scales are the same. However, since that situation is not likely, I want to run an

experiment to determine the range of scales over which a single filter would correctly localize a

face and hence provide its scale. This is being done for two reasons: firstly, to determine whether

a single filter can be used across a dataset containing a range of interocular widths, and secondly,

if it can’t be used, how many filters do we really need for a test set to cover a range of face sizes.

The process of creating datasets that we are using for this experiment are created in the same

manner as the ones in the previous experiment. The accuracy of the results are still computed based

on the difference between the target and the actual located point and for a correct localization this

difference in both directions should still lie within 5 pixels. In line with the scale space theory of
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the linear filters [FP02], the scale of the images in my experiments will be represented as octaves.

Each octave is a power of 2 and hence a filter trained on a dataset with each image having 16 pixels

between the eyes will be referred to as an octave 4 (=24) filter.

5.4.2.1 Training and Test Datasets

In order to study the range of face sizes that a particular filter trained for given scale can handle

with an accuracy of over 90%. I have used six different training sets, comprising of octaves 4, 5,

5.58, 6, 6.32, and 6.58. Each of these training sets is trained on 250 images. The interocular width

between the six training sets is different but the images have the same interocular width within a

training dataset. Each of these filters is tested on a range of octaves around the training octave.

For example, an octave 4 trained filter is tested on 13 different datasets corresponding to octaves

around the training octave. Each of these 13 test datasets have the same number of images, 250.

The range of octaves tested using an octave 4 filter varies from octave 3.32 (10 pixel) interocular

width to octave 4.46 (22 pixel) interocular width. Each test octave has images that have the same

interocular width. The same approach of training and testing is applied to rest of the octaves.

5.4.2.2 Results

The results for various training and test set ups using a single training filter are presented

in 6 tables and 6 figures. Each table and figure corresponds to a given training set and 13 test

sets around the training set interocular width. The tables present the numbers corresponding to

the graphs showing the visual changes in the accuracy results. I will start with Table 5.2 and

Figure 5.5. The latter clearly displays that for a filter trained for octave 4 (see Filter in 5.4(a))

interocular width, the range of test image interocular widths over which it can get an accuracy

greater than 90% is limited to the test images of the same interocular width. That does not make it

very useful. So that can’t be our single filter of choice for the entire range of scales.

Now, let me consider the filter trained for octave 5(see filter in Figure 5.4(b)) interocular width

training dataset. It is tested over test datasets ranging between octaves 4.7 and 5.25. Table 5.3

represents the empirical accuracy values of the test sets and Figure 5.6 displays these results graph-

ically.
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Table 5.2: Accuracy of locating point between the eyes around octave 4 interocularwidth.

Test Octave % Accuracy (within 5 pixels)
3.32 2
3.45 3.6
3.58 16
3.70 28.4
3.80 52.8
3.90 70.8
4.0 91.2
4.08 72
4.16 62.8
4.24 40.8
4.32 28.8
4.39 14.8
4.46 5.2

InterOcular Width in Octaves of Test Images.
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Figure 5.5: Accuracy of locating the target within 5 pixels when a filter is trained on 4 octave and
tested on 7 datasets containing images between octaves 3.45 and 4.46.
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The accuracy results are not high but that is not what I am interested in this experiment. The

most important aspect that I want the readers to look at, is the change in accuracy values that

happens as the scale of the faces changes from the training dataset scale. Contrary to the rate of

change of accuracy for octave 4 results, here one can notice that the accuracy values for octave 5

filter does not drop so drastically and there seems to be somewhat gradual drop. Neverthless, the

change is still drastic enough to continue with the same story line that even this filter cannot be

used over a large range of scales. One can argue that we could use it to test datasets for a scale

change of 0.05 octaves from the training octave, but it is still not large enough to justify the use of

a single filter over a larger range of scale change.

Table 5.3: Accuracy of locating point between the eyes around octave 5 interocularwidth.

Test Octave % Accuracy (within 5 pixels)
4.7 10.4
4.75 18.8
4.8 34.4
4.85 51.2
4.9 62
4.95 71.2

5 77.6
5.04 69.2
5.08 64.8
5.13 59.2
5.17 48.4
5.2 40
5.25 28

The next transition for the training dataset to study the effect of scale is not one octave like

we did by going from octave 4 to octave 5. This training filter (see Figure 5.4(c)) is trained using

images of octave 5.58 interocular width. The reason is that the trained filters don’t show good

results over even small change of scale in the test images. The results for test datasets with scales

between the range of 5.39 and 5.75 octaves are presented in Table 5.4 and Figure 5.7. It becomes

quite apparent that although the range of scales over which the same filter can be used without a

drastic drop in the accuracy values, this range of scales is still not large enough that it would be
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InterOcular Width in Octaves of Test Images.
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Figure 5.6: Accuracy of locating the target within 5 pixels when a filter is trained on 5 octave and
tested on 13 datasets containing images between octaves 4.7 and 5.25.
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used for the entire dataset.

Table 5.4: Accuracy of locating point between the eyes around octave 5.58 interocularwidth.

Test Octave % Accuracy (within 5 pixels)
5.39 41.2
5.42 58.4
5.45 66
5.49 76.4
5.52 83.2
5.55 86
5.58 87.6
5.61 86
5.64 84.4
5.67 78.4
5.70 74
5.72 66
5.75 61.2

That brings us to filter trained on a dataset with octave 6 (see Figure 5.4(d)) interocular width

images. It is used on test datasets ranging between 5.85 and 6.13. Between octave 5.90 and 6.13,

which is presented in Table 5.5 and Figure 5.8, there is a drop of 8% in accuracy which is not a

significant drop over a quarter octave. This also means that I could use a single filter to test images

within a scale of quarter octave of the training dataset.

For images trained on octave 6.32 (see Figure 5.4(e)), the test datasets are spread over a scale

of 6.20 to 6.42 octaves. The results for these datasets are presented in Table 5.6 and graphically

represented in Figure 5.9. In almost a quarter of an octave in the change of scale between the test

sets and the trained filter there is only a drop of 2.8% in accuracy. This result also confirms that a

filter can be used over a quarter of scale change. This kind of result helps determine the number of

filter that should be used to cover the entire range of test datasets.

For my final filter trained on images with 6.58 octave (see Figure 5.4(f)) interocular width the

results are presented in Table 5.7 and Figure 5.10. The drop in accuracy is only about 2 % over

one sixth of an octave. This confirms the use of the same filter over a range of scales around the

training dataset scale.
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InterOcular Width in Octaves of Test Images.

%
 A

cc
ur

at
e 

w
ith

in
 5

 p
ix

el
s 

fr
om

 th
e 

ta
rg

et

5.39 5.45 5.49 5.55 5.61 5.67 5.72

40
50

60
70

80

Figure 5.7: Accuracy of locating the target within 5 pixels when a filter is trained on 5.58 octave
and tested on 13 datasets containing images between octaves 5.39 and 5.75.

Table 5.5: Accuracy of locating point between the eyes around octave 6 interocularwidth.

Test Octave % Accuracy (within 5 pixels)
5.85 73.2
5.88 80.8
5.90 87.2
5.93 91.2
5.95 92.8
5.97 93.6
6.0 95.2
6.02 95.2
6.04 94.4
6.06 93.2
6.08 91.6
6.10 90
6.13 87.6
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InterOcular Width in Octaves of Test Images.
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Figure 5.8: Accuracy of locating the target within 5 pixels when a filter is trained on 6 octave and
tested on 13 datasets containing images between octaves 5.85 and 6.13.

Table 5.6: Accuracy of locating point between the eyes around octave 6.32 interocularwidth.

Test Octave % Accuracy (within 5 pixels)
6.2 93.6
6.22 94.8
6.24 95.6
6.26 96
6.28 96.4
6.30 96
6.32 96.4
6.34 95.6
6.35 95.6
6.37 95.2
6.39 94
6.40 94.4
6.42 94
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InterOcular Width in Octaves of Test Images.
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Figure 5.9: Accuracy of locating the target within 5 pixels when a filter is trained on 6.32 octave
and tested on 13 datasets containing images between octaves 6.2 and 6.42.

Table 5.7: Accuracy of locating point between the eyes around octave 6.58 interocular width.

Test Number of Pixels % Accuracy (within 5 pixels)
6.49 94.8
6.5 96

6.52 97.2
6.54 96.4
6.55 97.2
6.57 97.2
6.58 97.2
6.60 96.8
6.61 96.8
6.63 96.4
6.64 96
6.65 96.8
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InterOcular Width in Octaves of Test Images.

%
 A

cc
ur

at
e 

w
ith

in
 5

 p
ix

el
s 

fr
om

 th
e 

ta
rg

et

6.5 6.52 6.54 6.57 6.6 6.63

96
.0

96
.4

96
.8

97
.2

Figure 5.10: Accuracy of locating the target within 5 pixels when a filter is trained on 6.58 octave
and tested on 13 datasets containing images between octaves 6.5 and 6.64.
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5.4.2.3 Conclusion

All the plots in Figures 5.2 to 5.7 show a drop in the accuracy as the interocular width in

the test images drops beyond a certain scale. Smaller scales show a big drop in the accuracy

when testing images within a quarter of an octave while the larger ones show a smaller change.

However, that is not the most important learning from the experiment. These experiments were

conducted over many scales to verify the hypothesis that no single filter is good enough to maintain

a consistent accuracy over a large range of scales in the test dataset. As such there is no single filter

that can be used across a dataset. We will need more than one filter. The study of the results for

the scales does indicate that the filters trained over larger scales can be used over test scales of a

quarter of an octave around the training interocular width but we will need to train more filters for

smaller scales.

5.4.3 Test Images of Unprocessed Test Data

From the previous experiment it has been established that more than one filter is needed to

cover all the scales of a test dataset. It also became clear that we need more filters for test images

containing faces of smaller scales for e.g., 4 to 5.25 octave and slightly fewer for the larger scales

for which a filter could be trained to scale a quarter of an octave change in the test images. However,

using more than one filter for a particular image poses another challenge. Out of many filters that

we use on an image, how do we pick the one that best matches a test image and hence find the scale

of the face in an image. In this section my first goal is to establish a methodology to pick a single

best match filter among many filters that will help determine the scale of the face in an image. The

second goal of this system is to test filters on an unprocessed dataset where I will not control the

interocular width of the images, unlike in my previous two experiments.

5.4.3.1 Training and Test Datasets

Having noticed that filters cover a limited range of scales in the test datasets, I will be using

filters trained on datasets whose interocular width ranges between 3 and 6.7 octaves. There are a

total of 13 filters being used, which are listed in the first column of Table 5.10. Each of these filters
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is trained on a corresponding dataset having all the images of the same interocular width just like

the way we have used them in the previous experiments. Some of the trained filters are presented

in Figure 5.4. The test dataset for this experiment is different from the previous experiments. I use

the unprocessed test dataset. Just to reiterate, this dataset contains 250 images between interocular

widths of 5.32 to 6.7 octave.

5.4.3.2 Peak-to-Sidelobe-Ratio (PSR)

In order to find a filter that best matches an image we use PSR [SKK02] as an evaluation metric.

Before getting into the details of this metric let me use an example to explain its need. Consider

the results presented in Table 5.8. In this table the test dataset is unprocessed which means we

Table 5.8: Accuracy of locating point between the eyes with filters trained on images with different
octaves of pixels between the eyes and tested on a dataset with random number of pixels between
the eyes.

Training Pixel Octave % Accuracy (within 5 pixels)
4 0.4
5 2.8

5.58 9.2
6 81.2

6.32 62.4
6.58 29.2

do not control the interocular width. Using filters between octave 4 and 6.58 the accuracy values

Table 5.9: Accuracy of locating point between the eyes with filters trained on images with different
number of pixels between the eyes and tested on a dataset with random number of pixels between
the eyes.

Training Number Pixels % Accuracy (within 5 pixels)
Unprocessed 84

Best 92.4

vary from 0.4% for filter trained on images with 4 octave pixels between the eyes and 62.4% for

the filter trained on unprocessed dataset. If I use filter 5.4(g) trained on images that have not been
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controlled for a specific interocular width the accuracy is 84% as shown in Table 5.9. However, the

most interesting row in this table is the one called the ’Best’ with an accuracy of 92.4%. In order

to determine the best filter one has to understand that each image is tested using a batch of filters.

This implies that each test image is tested against all the trained filters that have different octave

pixels between the eyes and they are listed in the first column of Table 5.8 plus the unprocessed

filter from Table 5.9. Out of this batch of filters the filter that has the highest Peak-to-Side-lobe

Ratio (PSR) is picked to be the best filter and as such gives better accuracy than any of the filters

used individually across the whole test set.

PSR measures the peak to the sharpness of the image and can be demonstrated using Fig-

ure 5.11. The procedure to compute PSR of the correlation output is to first find the peak value

Peak Value
Mean of the

Rest of the Image

Figure 5.11: Peak to Side Lobe Ratio

and its coordinates in the correlation output image between a filter and the test image. Secondly,

compute the mean and the standard deviation of the rest of the image leaving a window of 5×5

pixels around the peak and then determine the Peak-to-Sidelobe (PSR) to be defined as:

PSR =
peak −mean

σ
, (5.1)

where peak is the maximum value in the correlation surface, mean and σ are the mean and the

standard deviation of the correlation surface image when a 5×5 pixel window around the maximum

value is left out. The 5×5 pixel window around the peak value is shown to be the dark rectangle in
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Figure 5.11. It is pertinent to mention here that the authors in [SKK02] did not use the entire image

outside of the central window to measure the mean and the standard deviation to compute the PSR

value. Rather, they used another window around the central window of 64×64 pixels, while still

not using the central 5×5 pixel to compute the mean and the standard deviation. In this research,

I tried the approach of [SKK02] , but the accuracy results were better when the full image is used

instead of just the 64×64 pixel window. The 5×5 pixel window around the correlation peak is still

not used for the computation of mean and standard deviation.

5.4.3.3 Results

Having established the metric to find the best filter for an image out of a batch of filters, I

now used some more filters to find whether it has any affect on the accuracy results. These re-

sults are presented in Figure 5.10. While the first and the second column have been used before

the third column gives an idea about the percentage of images in the dataset that have the same

interocular width as the corresponding training dataset. It turns out that only 16.8% of the 250 test

images actually have an interocular width that matches the interocular width of any of the training

datasets.The rest of the images, 83.2%, in the test dataset have an interocular width between these

octaves. In this example, interocular width of the trained filters varies from 3 to 6.7 octaves.

Using PSR values to determine the filter that gives the best match from among the batch of

filters in Table 5.10 and the unprocessed filter from Table 5.11, I can get an accuracy of 95.2% up

from 92.4% using the filters from Tables 5.8 and 5.9.

5.4.3.4 Discussion

So one of the filters used in this experiment finds the target correctly in 95.2% of the images.

This is the location of the peak value resulting from the correlation between an image and the best

filter.For some of the images this accuracy of localization is shown in Figure 5.12. Figures 5.12(a)

- 5.12(c) show the annotated images displaying the actual target to be located and the located point

as a result of convolution. My target is the point between the eyes represented by a white dot in

each of these images. The point that is located through correlation between the test image and the

best filter is identified by the black dot in these images. As can be seen these two dots are very
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Table 5.10: Accuracy of locating point between the eyes with filters trained on images with differ-
ent number of pixels between the eyes and tested on unprocessed dataset.

Training Pixel Octave % Accuracy (within 5 pixels) % k
N(=250)

3 0.0 0
4 0.4 0

4.58 8.8 0
5 2.8 0

5.32 2.4 0
5.58 9.2 0
5.8 38.8 1.6
6 81.2 6.0

6.17 85.2 7.6
6.32 62.4 1.6
6.46 38.4 0
6.58 29.2 0
6.7 18.8 0

Table 5.11: Accuracy of locating point between the eyes with filters trained on images with differ-
ent number of pixels between the eyes and tested on unprocessed dataset.

Training Pixel Octave % Accuracy (within 5 pixels)
Unprocessed 84

Best 95.2
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(a) Annotated Image 1 (b) Annotated Image 2 (c) Annotated Image 3

(d) Correlation Output 1 (e) Correlation Output 2 (f) Correlation Output 3

Figure 5.12: Images showing results displaying the annotated images in the top row along with the
correlation surfaces for the corresponding image.
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close to each other in these images which implies a good accuracy. The second row of Figure 5.12

displays the correlation surfaces when the corresponding image in the top row is correlated with

the best trained filter. The bright spots in Figures 5.12(d) - 5.12(f) identify the peak value and

hence the located point represented as the black dot in the corresponding images in the top row.

Once a point is localized in the image, the next step is to find the coordinates of the face

rectangle in that image. This requires the scale of the face be computed. The scale is obtained as

a result of the process being used. I use a batch of filters and the best filter match corresponds to

the scale of the face. This implies that if a filter trained with images of six octave interocular width

results to be the best filter than it is more likely that the pixels between the eyes in the test image

can be assumed to be six octave wide (=64 pixels). This width can then be used to obtain the width

of the face rectangle which has been empirically determined to be 1.25×scale (interocular width).

The height of the face is usually between 1.50 and 1.75 × scale.

5.4.3.5 Conclusion

A filter trained on images of larger interocular width has better chances of giving good accuracy

around a larger range of interocular widths in the test images. However, there still is no single filter

that can consistently give good accuracy over a wide variation in the interocular width in the test

sets. Therefore, there is a need for a batch of filters. This requirement gives rise to the need of

identifying a filter that yields the best results for a particular image from this bank of filters. I have

used PSR to find the best filter from a batch.

5.5 Batch of Filters Versus Rescaling Images

One of the unanswered questions so far has been the choice of using a batch of filters rather

than using a single filter and rescaling the images instead. Since I have discussed a batch of filters

approach in detail in the previous experiments, in this section I will explain the rescaling of the

images approach and the reasons for preferring the former approach over the latter.

These two approaches are presented side by side in Figure 5.13. The approach on the left

shows our approach that I have been pursuing. The approach on the right is the one where I can
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Figure 5.13: Batch of filters versus rescaling images.
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train a single filter and rescale the image to locate faces of different scales. The rescaling of the

images requires that whenever I want to test a different scale I need to first rescale the image in the

spatial domain and then compute DFT on the rescaled image. This will increase the computation

time complexity of the system. Contrary to this approach using a batch of filters requires me to

compute DFT only once on the test image. It is pertinent to mention here that correlation in the

Fourier domain requires that the filter and the image be of the same size. Therefore, if the image

after rescaling is smaller than the filter, I will need to pad the image with zeros to make it the same

size as the filter. On the other hand I will not need to pad the filters when using a batch of filters

on a test image because all the filters are trained on the same size images after the transformation

to customize the number of pixels between the eyes.

5.6 Face Detection on Hard Datasets

As previously mentioned in Chapter1, I participated in a face detection competition [PWH+11]

organized in conjunction with the International Joint Conference on Biometrics (IJCB ’11). Twelve

participants participated in this competition out of which four algorithms were commercial and one

being Viola Jones face detector. Rest of the algorithms came from universities.

The dataset for this competition was divided into 4 subsets. Some of the images were repho-

tographed and some were semi-synthetic. These images were taken under low light, some had

atmospheric blur and were captured at the distances of 3m, 50m, 80m, and 200 m. A single repre-

sentative image of each of these datasets is shown in Figure 5.14. The labels under each image in

this figure represents the distance in meters from which these images or the synthetic heads were

rephotographed. The reason for introducing this dataset is to present the results of using a correla-

tion based face detector on a contemporary dataset and compare the performance with other face

detectors in a very formal setting. This dataset also contained non-face images. The scales of the

images within a dataset did not vary much and an approximate face width of each of these datasets

was provided as part of the competition.
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(a) 200m (b) 80m

(c) Dark-3m (d) 200m

Figure 5.14: Images from IJCB ’11 Face Detection Competition [PWH+11].
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5.6.1 Training and Test Datasets

The organizers picked 4 labeled training datasets belong to each of the subsets. Each training

contained 50 randomly picked images. I started with training filters the provided images, how-

ever, the these images were not enough to train a correlation based filter. Therefore, I used PIE

database [SBB03] because of the wide range of images present in this dataset. It has 41,638 images

of 68 different people, with each person having an image under 13 different poses, 43 different il-

lumination conditions, and with 4 different expressions. This seemed ideal to train filters with

enough variation so that they could be used to test the images of the competition. Some of the fil-

ters that were trained have been shown in Figure 5.15. All the images for a particular subset have

approximately the same face scale. Therefore, I did not have to train for more than the four scales

corresponding to each subset. The four test sets were randomly chosen containing 200 images each

and these images were randomized. I used a batch of filters approach to test each image using the

trained filters, in the same manner as discussed in Section 5.4.3. The procedure to find the scale of

the face was again based on the PSR value when an image is convolved with a batch of filters.

5.6.2 Results

The results of each algorithm have been evaluated on the basis of an F-score which is defined

in Parris et al. [PWH+11] as,

F (precision, recall) =
2× precision× recall
precision+ recall

, (5.2)

and higher the F-score, better the performance of the algorithm. On two datasets represented by

5.14(a) and 5.14(b), my algorithm performed the worst, and on the dark dataset 5.14(c), only 3

algorithms had a lower F-score than my algorithm. Since these results were not very competitive,

I am not going to talk much about them here. However, I will duplicate the results of the paper for

the last dataset whose representative image is shown in Figure 5.14(d). These results are shown

in Table 5.12. In this table it is quite clear that actually none of the algorithms do well. However,

if I look at the performance of my approach in finding the faces in this subset, considered to be

the most difficult in the competition, the F-score is higher than nine out of twelve participants.
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(a) Frontal

(b) Right Profile

(c) Left Profile

Figure 5.15: Filters Trained Using PIE database.
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Table 5.12: This table has been duplicated from the paper [PWH+11]. It displays contributor
results for True Positives (TP), False Positives (FP), False Images(FP’), False Rejects (FR), F-
Score(F). For details please refer to the paper [PWH+11].

Algorithm TP FP FP’ FR F
CBED 100 505 184 8 0.248

DEALTE FD 0.4.3 11 120 81 115 0.066
MBMCT 1 45 31 168 0.008

My Approach 27 147 147 26 0.144
PittPatt 0 0 0 200 0
RSFFD 0 1 1 199 0
SIANI 0 98 98 102 0

UCSD MPLab 5 8 8 187 0.047
Comercial A (2005) 5 6 6 189 0.047

Commercial A (2011) 0 0 0 200 0
Comemrcial B 6 156 156 38 0.033
OpenCV 2.1 80 280 152 26 0.286

CBED algorithm and the OpenCV 2.1 have a higher F-score than my correlation based approach,

however, my algorithm has fewer false positives than both of them. Because of these numbers

my correlation based face detector has been regarded as the most pragmatic on this subset in the

competition [PWH+11].

5.7 Conclusion

This section summarizes three learnings of this chapter, such as: the transition from target

localization to face detection, procedure and the need to use the peak-to-sidelobe ratio to determine

the face rectangle and finally, the reason why a batch of filters is a preferred approach over a

pyramid of different scale images.

I used FERET database to study the process to go from face localization to face detection.

The images in the FERET database that were used have a controlled pose (primarily frontal) ,

and controlled background, but the faces are of different scales from image to image. There is no

single filter that can be used to find the scales of all the faces in this test dataset. To accomplish

this task of finding the face scales we require a batch of filters and a peak-to-sidelobe ratio metric.
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Every image of the test set is convolved with this batch of filters and the filter-image convolution

that gives the highest peak-to-sidelobe ratio around the peak value in the correlation surface is

considered to be the best match. As such, the scale of the filter that corresponds to this best match

is the scale of the face in the test image.

This approach proved very effective on FERET images. However, it was not very successful

when tested on the datasets of the IJCB face detection competition in general. Notwithstanding

those failures, there are images, like the ones shown in Figure 5.14(d), a subset of this competition,

on which face detection using correlation filters proved to be competitive with the best in the world.

I will end this chapter by summarizing the reason for using batch of filters over image rescaling.

It is important to understand that unlike batch of filters approach, image rescaling requires an extra

Fourier transform every time an image requires to be rescaled. I would like to reiterate that Fast

Fourier Transform has a time complexity of O(NlogN). In the batch of filters approach since the

size of the image remains constant during the testing process and all the filters of various scales

are the same size as the image, we require the FFT of an image only once. The only operation that

needs to be carried out in the Fourier domain is an element wise multiplication of an image and a

filter, which is a linear operation with a time complexity of O(N). Therefore, the batch of filters

approach reduces the time complexity from O(NlogN) to O(N) when compared to the rescaling

of the images approach.
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Chapter 6

Face Detection in Still Images and Videos
As mentioned in Chapter 1 of this dissertation, images are all around us. These images are

often captured using hand held cameras and cell phones. Very often we would like to analyze

these images, whether it be for social network websites, security scenarios or for organizing family

albums. This analysis requires the application of computer vision algorithms. The most important

step in this analysis often involves face detection, be it for face recognition, verification or any

other biometric task.

The images obtained through the use of hand held cameras and cell phones are not controlled

for face scales, pose, lighting and location. All these factors make face detection challenging. In

Chapter 5, I addressed one of these challenges, viz., face scale. An approach was presented to find

the scale of a face in an image using a batch of filters. Since the purpose was to determine just the

scale of the face, this technique was applied to the FERET database because of its controlled pose

(primarily frontal) and controlled background. The same approach can be applied to find the scale

of a face in other datasets as well .

My goal in this chapter is to address other challenges in face detection, such as, pose, uncon-

trolled lighting and location. All these variations are present in a recent dataset called the Point and

Shoot Challenge (PaSC) [BPB+13]. This dataset is distinctive in that not only does it contain all

the factors that make face detection a challenging task but also because all the images have been

captured using hand held digital point and shoot cameras. I will begin by explaining this dataset

in detail followed by the experiments to address the challenges of face detection using correlation

filters and the results thereof.

6.1 Point and Shoot Challenge (PaSC) Dataset

Most of the images that are captured by people everywhere and stored are primarily captured

using handheld cameras that include point and shoot and HD cameras. These images require anal-

72



ysis using computer vision algorithms for applications such as face recognition, however, before

that can be accomplished we need to detect faces in an image.

PaSC is a dataset that has been collected to capture the challenges introduced by these popular

cameras and cellphones [BPB+13]. These challenges include blurry images, uncontrolled pose,

expressions, lighting and location. This dataset contains 9,376 still images of 293 people. These

images have been captured to include variations in distance from the cameras, different cameras,

locations and poses varying from frontal to non-frontal. This dataset also contains 2,802 videos

of 265 people. All the people in the videos are a subset of the still image data set. Some images

from the still dataset to display the data variation in terms of scale, pose, lighting and location are

presented in Figure 6.1 and some of the frames of the videos of video dataset displaying similar

characteristics as that of the still dataset are presented in Figure 6.2.

In this specific sample of images and frames it is quite evident that there are different scales of

faces, complex and varied backgrounds, and lighting, and poses. In order to be able to detect faces

in these images, I will first address the scale issue using the batch of filters approach. Every dataset

has a different range of face sizes, therefore, I will first need to figure out the number of filters

appropriate for this type of dataset to find all the scale variations. The details of an experiment to

figure out an optimum number of filters and its details are described in the next section.

6.2 Optimum Number of Filters

In line with the batch of filters approach, there is a need to determine a fixed number of filters

that can be trained for a test dataset. The goal is that each filter in a batch can be used for a fixed

range of scales and together these filters of a batch, cover the entire scale range of the test dataset.

In order to do that I ran a set of experiments on PaSC dataset by training filters between octaves

4(=24=16 pixels) and 7(= 27 =128 pixels), for specific interocular widths. All of these experiments

led to similar conclusions, therefore, I am not presenting the results of all of them, except one, viz.,

octave 6.

I ran a controlled experiment to train a filter on a set of images, resampled to have exactly 64

pixels (octave 6) between the eyes. The resampling was done from the PaSC dataset on images
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(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6

Figure 6.1: Representative images from the PaSC still dataset displaying some attributes of the
dataset, like, pose, scale, lighting and location.
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(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6

Figure 6.2: Representative frames from the PaSC Video dataset displaying some attributes of the
dataset, like, pose, scale, lighting and location.
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that have an interocular width greater than or equal to 64 pixels. Having a filter trained for octave

6, it was successfully used to test twenty one different test sets between octaves 5.5 and 6.5 in steps

of 0.05 octaves so that the filter is tested not only on a dataset with images of octave 6 interocular

width but also half an octave on either side.

All of these test sets were created in the same manner as described in Chapter 5, by sampling

images for a particular test set from the images with an interocular width greater than or equal to

the desired interocular width. For e.g., for the test set of octave 5.5 all the images had an interocular

width of octave 5.5(= 25.5 = 45.25 pixels). These images were created to have the same interocular

width by subsampling images from the test dataset that had an interocular width greater than or

equal to 5.5 octaves.

Reiterating the purpose of this experiment, the goal is to determine a range of the face scales in

the test images that could be recognized using a single filter. The results are reported in the form

of a figure showing the accuracy of localizing a target within 10% of the interocular width in both

x and y directions. Specifically, the results of a filter trained for images of octave 6 interocular

width when tested on 21 different datasets whose interocular widths range between 5.5 octaves

and 6.5 octaves, are displayed in Figure 6.3. The x-axis in Figure 6.3 shows the octaves centered

around octave 6 which means 26(=64) pixels between the eyes and y-axis shows the accuracy

corresponding to each of these octaves. To explain these results, let us consider the marker 5.75

on the x-axis and its accuracy on the y-axis equal to 60%. It means, for a dataset consisting of test

images having octave 5.75 (= 25.75 = 53.81) interocular width, when a filter trained on a dataset

containing images with octave 6 interocular width is used, I am able to locate the target (point

between the eyes) within 10%(= 5.38 pixels for this test set) in either x or y direction from the

target coordinates, in 60% of the images.

Analyzing this figure further, let us now consider a range of test octaves in this figure, specifi-

cally, a quarter octave between 5.85 and 6.10. The accuracies corresponding to these test octaves,

stays between 70% and 75% which is not a big variation. This consistency of accuracy is very

important to understand the range of scales we can test using a given filter. It is apparent that for

an octave of 0.25 (5.85 to 6.10) around octave 6 the accuracy is fairly uniform. I ran several other
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Accuracy within 10% of the eye−width from the target location vs. 
 Eye width in octave.
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Figure 6.3: The percentage accurate is defined as the number of images which locate the face
within 10% of the eye width from the target (point between the eyes) location.
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experiments for filters trained on datasets of other octaves between 4 and 7 interocular width. The

underlying result remains consistent across all the tests, that a filter trained for a given scale can be

used to test image data sets around a quarter of an octave of the training dataset interocular width.

Therefore, based on these results, I trained filters for each quarter octave between octave 4 and 7,

as a result of which 13 filters were trained, corresponding to 13 scales.

6.3 Account for Pose in Face Detection

In Section 6.2, an approach was presented to find the best number of filters to train for PaSC

dataset. However, in addition to faces of different scales, PaSC dataset also contains faces of

different poses and needs to be addressed. Figures 6.1 and 6.2 give an idea about the variation in

pose in the still and the video datasets. In this section, I will discuss an approach to address the

challenge of different poses for face detection using correlation filters.

Finding the pose of the face can be very difficult owing to the various angles at which an

image could be taken, particularly when it is not being controlled. The determination of the pose

becomes more challenging also because, for each pose, we still have to account for different scales.

Therefore, each pose is restricted by a corresponding scale of the face or vice versa. For example,

for a face scale of octave 4, there could be a wide range of poses in the dataset. However, since

I have already determined the range of scales required for the PaSC dataset, the pose range is

restricted not just by the dataset but also by the scales. .

I ran a pilot experiment to determine the range of pose variation, and found that there are

three different ranges within the PaSC training dataset: less than -12◦ (left side facing the camera),

between -12◦ and +12◦ (in and around frontal pose) and greater than +12◦(right side facing the

camera). So, we have frontal or near frontal pose, left profile or between frontal and left profile

pose and right profile or between right profile and near frontal pose. These three poses combined

with the optimal scales that I found in the dataset (see Section 6.2), helped partition the dataset for

training. In the next section I will discuss the set up for training filters for the PaSC dataset within

the limitations of pose and scale variations in the training dataset.
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6.4 Training Filters for PaSC

As determined by the experiments of Sections 6.2 and 6.3, filters need to be trained for a scale

of a quarter of an octave for three different poses. This means between octave 4 ( 16 pixels between

the eyes) and 7 (128 pixels between the eyes), 13 filters need to be trained. In order to account for

the variation in pose in the test images, at each of these 13 scales I have to train for three different

poses. This all adds up to 39 different filters.

Training 39 different filters requires a large number of images. I had to use 999 videos with

255,835 frames for training to account for all poses and scales. Nine of those trained filters are

displayed in Figures 6.4, 6.5 and 6.6. The three filters in each figure have the same scale but three

different poses. To be more precise, in Figure 6.4, the top filter 6.4(a) has been trained on an image

dataset containing images with 32 pixels between the eyes and a pose of greater than 12◦ or the

right profile. Similarly, the filter in Figure 6.4(b) is trained on a dataset with images that have 32

pixels between the eyes and a frontal or near frontal pose. Finally, Figure 6.4(c) shows a filter

trained on a dataset having images that have 32 pixels between the eyes and a pose of less than 12◦

or near left profile. Figures 6.5 and 6.6 can be explained in a similar fashion. The filters for other

scales not shown in these figures also have similar definitions.

6.5 Testing PaSC

Our test sets consist of 9,376 still images and 38,999 video frames. The first approach to find

faces in this test dataset was the same as the bank of filters approach of Section 5.4.3. However,

after many experiments it started to become clear that the convolution of the filters with a test

image in the Fourier domain showed very poor accuracy results. On the contrary, using spatial

convolution to match just the faces with the test image proved to be a better option as is discussed

in the next section.
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(a) pose >12◦

(b) pose between -12◦ and +12◦

(c) pose <12◦

Figure 6.4: Three different poses for a scale of 32 pixels between the eyes.
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(a) pose >12◦

(b) pose between -12◦ and +12◦

(c) pose <12◦

Figure 6.5: Three different poses for a scale of 64 pixels between the eyes.
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(a) pose >12◦

(b) pose between -12◦ and +12◦

(c) pose <12◦

Figure 6.6: Three different poses for a scale of 90 pixels between the eyes.
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6.5.1 Convolution Using Spatial Correlation

In this section, I present a case for using a bank of filters approach in the spatial domain

instead of the bank of filters approach in the Fourier domain because the former approach is more

effective on the PaSC dataset than the latter one. Although it seems contrary to some of my earlier

approaches, a set of careful experiments clearly made it an approach of choice for this dataset. One

of the preprocessing steps before the convolution in the Fourier domain involves normalization

of the full image. This increases the likelihood of a higher correlation value at a location other

than on the face, for example, near a light source. On the contrary, normalization in the case of

spatial correlation is applied for each specific location separately, corresponding to the size of the

template, which is usually much smaller than the image size. This approach gives a better chance

of a correct match.

In order to explain the difference between the two approaches a little more, I will now use a

toy example. Consider Figure 6.7 to be an input image and Figure 6.8 to be the filter (or template).

I am interested in finding this template in the input image. The first step is to normalize the

Figure 6.7: Input Image

Figure 6.8: Template Image

input test image before convolving it with the template in the Fourier domain. Secondly, since the

template is not the same size as the test image, the template needs to be padded with zeros to make

it the same size as the test image. The template with the padded zeros is shown in Figure 6.9.

Convolution of the template and the test image results in a correlation surface with a maximum at

coordinates (0, 0). This correlation surface is displayed in Figure 6.10. On the contrary, spatial

correlation using OpenCV template matching results in the correct identification of the peak at
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Figure 6.9: Template Image of Figure 6.8 with Padded zeros

Figure 6.10: Correlation Output after convolving template Image of Figure 6.9 with Padded zeros
and Figure 6.7.

coordinates (8, 0). Having presented an example of how spatial filtering yields a better result, for

the rest of this chapter I will follow the spatial template matching approach.

Specifically, the testing of PaSC datasets was carried out by using OpenCV template match-

ing [Bra00]. It is basically spatial correlation of templates with the test images. In particular, I used

the normalized cross correlation coefficient of OpenCV template matching. It is mathematically

represented by the equation 6.1.

NCC(x, y) =

∑W
i=1

∑H
j=1 I(x+ i, y + j) · T (i, j)√∑W

i=1

∑H
j=1 I(x+ i, y + j)2 ·

√∑W
i=1

∑H
j=1 T (i, j)

2

, (6.1)

where I is a source image, T is a matching template of size W ×H , and (x, y) is the location on

the image, I where the template is centered for matching.

For our experiments on the PaSC dataset, the templates to match were created by cropping out

the faces from the trained filters. Since there are 39 filters corresponding to 13 scales and 3 poses

for each scale, there are as many face templates. Some of these templates are displayed below in

Figures 6.11 through 6.15 for scales of 16 through 32 pixels(4-5 octave in quarter steps) between

eyes display a pyramid of filters of different scales between these octaves.

The approach to detect faces in still images and the frames in videos is carried out using each

of these filter templates, called the bank of filters, to match with a test image. Each of these

templates is matched with a given test image using OpenCV template matching. The location of

the peak correlation value is recorded. This location combined with the filter width and height

forms a rectangle representing the detected face in the test image. A match is considered to be

found between the returned face rectangle and the ground truth face rectangle if there is an overlap
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(a) >12◦ (b) >-12◦

and <+12◦
(c) <-12

Figure 6.11: filter templates for 16 pixels (octave 4) between the eyes.

(a) >12◦ (b) >-12◦

and <+12◦
(c) <-12

Figure 6.12: filter templates for 19 pixels (octave 4.25) between the eyes.

(a) >12◦ (b) >-12◦ and
<+12◦

(c) <-12

Figure 6.13: filter templates for 22 pixels (octave 4.5) between the eyes.

(a) >12◦ (b) >-12◦ and
<+12◦

(c) <-12

Figure 6.14: filter templates for 26 pixels (octave 4.75) between the eyes.

(a) >12◦ (b) >-12◦ and
<+12◦

(c) <-12

Figure 6.15: Filter templates for 32 pixels (octave 5) between the eyes.
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of 25% between the two rectangles. The ground truth face rectangles were obtained using the SDK

5.2.2 version of an algorithm developed by Pittsburgh Pattern Recognition (PittPatt) [BPB+13].

6.5.2 Results on PaSC Still Images

For the 9376 still images I have recorded the locations of the correlation peaks when each test

image is spatially correlated with the filter templates. This peak location is the top left corner

of the face rectangle whose width and height is the same as the width and height of the filter.

Spatial correlation of these thirty-nine filters returns thirty-nine face rectangles. Each of these face

rectangles is associated with a correlation peak. Ideally, the face rectangle associated with the

highest peak is considered to be the detected face for an image. In order to determine whether this

face rectangle is really a face or not, I compare it with the ground truth face rectangle. If their is an

overlap of at least 25% between the two rectangles, a face is considered to be detected. However,

the face rectangle with the highest correlation peak is not always the right one, and many times

there is at least one of the thirty-nine filters that does find a face but the associated peak may not

have the highest correlation value.

In this section, I will present two types of results: one where only the accuracy associated with

the highest correlation peak filter is reported and second, the accuracy associated with different sets

of filters between one and thirty nine. Figure 6.16 displays results when different numbers of filters

are used. The x-axis in this figure represents the number of filters being used on the test dataset

in the decreasing order of the correlation peak value and the y-axis, the percentage of images that

detected the face in the location agreeing with the ground truth. There are two lines in this figure, a

blue line and a green line. The blue line represents the face detection accuracy for the actual faces

detected in the test images using the bank of thirty-nine templates and the green line represents the

results of detecting faces when filters are randomly assigned a location in a given image.

A random face detection experiment is conducted by randomly ordering the bank of templates

to represent the correlation peaks from the highest to the lowest. It is followed by randomly picking

an x and y location representing the peak in an image to be associated with each of these filters.

For each image I have recorded a random peak location and a random filter combination, for all
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Figure 6.16: Accuracy of detecting face vs. the number of filters in still images.
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the thirty-nine filters. These results together with the actual face detection results are presented in

Figure 6.16.

I will describe this plot with some examples. Let me begin with an x-axis value equal to one

which means I only use one filter. This filter is associated with the highest correlation value and

it is able to detect a face correctly only in 2.62% of the images. It is shown on the blue line. The

corresponding random experiment accuracy value shown on the green line for a randomly picked

single filter is only 0.05%. This means, if I pick a random location on an image and combine it

with a randomly picked filter for the face width and height, then the percentage of times a face is

correctly detected in our test dataset is 0.05%. Similarly, when x is equal to 20, it means twenty

filters are used corresponding to the top twenty peak correlation values and 48.04% of the time,

at least one of those twenty filters correctly detects a face. This case is shown with the blue line.

The corresponding random accuracy shown on the green line when twenty random filters are used

is 1.37%. Finally, when the x-axis value is 39, it means all the filters are being used and the

percentage of times at least one of those correctly detects the face is 70.54%, compared to 3.19%

in the random experiment, shown with the green line.

6.5.2.1 Comparison of Correlation Filter Results with OpenCV Viola and Jones Face De-
tector

In this section, I am presenting bar plots to compare the face detection results using correlation

filters, with OpenCV Viola and Jones face detector [VJ01]. These results are shown in Figure 6.17.

This plot can be interpreted as follows: the x-axis represents two sets of filters and the y-axis shows

the accuracy of correctly detecting a face. The x-axis label, ’Peak Correlation Filter’, shows results

when only a single filter is used to determine the accuracy of face detection. This filter is the one

that returns the highest correlation value. For the Viola and Jones Face detector, out of the multiple

face detection results that it returns, I pick the one that is associated with the largest number of

neighbors. Therefore, using my correlation filter based face detector, the number of test images

whose detected face rectangles will have at least 25% overlap with the ground truth face rectangle,

is 2.62% which is 245 images out of 9,376. In comparison, the OpenCV Viola and Jones face

detector correctly detects 76.64% i.e., 7186 out of 9376 faces.
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Figure 6.17: Accuracy of detecting a face in still images vs. the number of filters.

The second set of bar plots labeled as, ’Atleast one of 39 Filters’, shows accuracy results

when multiple filters are used to find faces and at least one of them correctly detects a face. For

correlation filter based approach, I use all thirty-nine filters and if at least one of the detected face

rectangles overlaps the ground truth face rectangle by 25% or more, it is considered to be a success.

In the case of OpenCV, I find the overlap of all returned face rectangles with the ground truth and

if at least one of them correctly detects a face, it is considered to be a successful detection. Using

my approach a face was correctly detected in 70.54% i.e., 6614 out of 9376 images by at least one

of the thirty-nine filters being used. In comparison, the accuracy of correctly detecting a face by at

least one of the face rectangles returned by Viola and Jones face detector is 87.31%, i.e., 8187 faces

out of 9376 images. Clearly, OpenCV is far better than my correlation filter based face detector on

the PaSC still images dataset.

6.5.3 Results on PaSC Video Frames

My video test dataset consists of 38999 frames in 403 videos on which I test thirty-nine face

templates filters. Just like for the still test dataset, for each of the template matchings between

the filters and the video frames, I have a face rectangle corresponding to each of the correlation

outputs. These resulting rectangles are compared with the ground truth face rectangles of the
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frames and if there is a 25% overlap or more, like in the still images, I refer to it as a detected face.

In addition to this filter matching, a random experiment has been carried out just like the one on

the still dataset. This experiment involves randomly organizing the set of filters in a decreasing

order of the correlation value followed by obtaining a random location for the correlation peak in

the test frame. Each of these locations combined with the corresponding filter width and height

give a face rectangle for each image. Since the number of filters is thirty-nine, I have thirty-nine

locations for each image.

Again, in order to report these results, I present the accuracy of face detections corresponding

to the number of filters being used in Figure 6.18. This figure also contains results of the random

experiment on the video frames. The blue line represents the actual face detection experiment

results and the green line shows the random experiment results.

These two lines are to be interpreted in the same manner as the ones in Figure 6.16. For

example, if a single filter is used to detect faces, 14.59% of the detected face rectangles have at

least 25% overlap with the ground truth face rectangle, which is 5690 out of 38999 frames. In a

randomized experiment when a single random location is chosen with a randomly filter, the face

detection accuracy is only 0.42%. Similarly, when all thirty-nine filters are used, the accuracy of at

least one of the returned face rectangles successfully detecting a face is 84.07% which is 32786 out

of 38999 frames. On the contrary if thirty-nine random locations are picked in the same dataset,

the accuracy of correctly detecting a face is 6.39%.

6.5.3.1 Comparison of Correlation Filter Results with OpenCV Viola and Jones Face De-
tector

In order to determine how well my correlation filter based face detector performs vis-a-vis the

OpenCV Viola and Jones face detector, I compared results on the video dataset, just like in the

case of still images. This comparison is presented in the form of bar plots in Figure 6.19. The blue

bars represent the results using my correlation based face detector. There are two cases, firstly,

when a single filter corresponding to the highest correlation value is used and, secondly, when

all thirty-nine filters are used for face detection. The criteria for accuracy remains the same for

the two cases: if atleast one filter correctly detects a face it is counted as a successful detection.
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Figure 6.18: Accuracy of detecting face vs. the number of filters in video frames.
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Figure 6.19: Accuracy of detecting a face in video images vs. the number of filters.

The performance for my face detector varies from 14.59% for a single filter to 84.07% when all

thirty-nine filters are used.

The red bars represent the results for the OpenCV Viola and Jones face detector. There are two

cases for this algorithm too. The first case is, when I consider a single face rectangle out of one or

more face rectangles returned by the face detector. The single face rectangle that is chosen is the

one with the highest number of neighbors associated with it. The second case for this algorithm is

the one, where accuracy is measured if at least one of the returned face rectangles correctly detects

a face. The accuracy for these two cases varies from 76.98% to 86.24%.

6.6 Analysis of a Case of Failure

As shown in the last section, the accuracy of finding a face in PaSC still image dataset using

only a single filter, is just 2.62%. This single filter is the one that gives the highest correlation peak.

In contrast, when all the thirty-nine face rectangles returned by template matching an image and

the filters, are considered to determine a possible face detection, one can detect a face correctly in

70.54% of the images. Because at least one of those thirty-nine faces finds a match. This implies

that in the majority of the cases the location of the highest correlation value is not well correlated

with the location of the true face.

The goal of this section is to study one of the cases of a failed face detection in detail when
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none of the thirty-nine filters actually found the face correctly. Such an image with the associated

filters is shown in Figure 6.20. In this figure, the image labeled ’Best Match’ identifies the portion

Best Match

Filter Corresponding 
to the best match

Actual Filter

Match corresponding to 
Actual Filter

Figure 6.20: A test image showing the best detected face along with the filter and the expected
filter to detect the face correctly.

of the image corresponding to the falsely detected face. This detected face is based on the highest

correlation value returned, when all the filters are spatially correlated with the test image using

OpenCV. The filter that yields this highest correlation value is labeled as, ’Filter Corresponding to

the best match’. It is clear from the Figure 6.20 that the face is not detected correctly.

In contrast, the template that matches the scale and pose of the face and that should have found

the face correctly (but did not) has been labeled, ’Actual Filter‘, in the figure. It is one of the

thirty-nine filters correlated with the test image. When this filter is used as a template for the test

image, a totally different location of the image is identified to be a face, which is labeled, ’Match

corresponding to Actual Filter’ in the Figure 6.20. This is not the correct face either.

The result of spatial template matching between the test image and the two filters, labeled,

93



’Best Match’ filter and the ’Actual Filter‘, result in correlation values of 0.60 and 0.29, respectively.

Neither one detects the face correctly.

In order to test spatial correlation, using a perfect template, I cropped the face (see Fig-

ure 6.21(b)), from the test image 6.21(a)(resized to fit) and spatially correlate the two. The result is

a perfect match. However, if this cropped face is used as an image and correlated with the ’Actual

(a) Test Image (b) Cropped Face

Figure 6.21: Test image and face cropped from it to use as a template for Spatial correlation using
OpenCV.

filter’ of Figure 6.20, shown separately in Figure 6.22, the correlation value is very low. It is a poor

match. Therefore, even when using a seemingly perfect template, sometimes, it may still not be a

good match for an image. I will discuss the reasons for this in detail in the concluding chapter.
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Figure 6.22: Filter expected to detect the face in the test image.

6.7 Conclusion

In this chapter, I presented the correlation based face detection results on the PaSC still images

and video frames. These datasets represent a careful combination of uncontrolled scale, pose, light-

ing, and location along with the sensors used to capture it, just like numerous, handheld cameras

and cellphones that people around the world use to take pictures.

The results have been compared with the random results as well as OpenCV Viola and Jones

face detector. It turns out that although my approach does much better than random experiment,

it is not at all competitive with the Viola and Jones Face detector when a single filter is used.

However, when all thirty-nine filters covering thirteen different scales and three poses for each

scale, are used, the accuracy of face detection by at least one of those filters comes very close to

the Viola and Jones face detections. To be precise it is 70.54% accuracy for my approach versus

87.31% accuracy using Viola and Jones face detector, on the still image dataset. On the video

dataset, the accuracy is 84.07% versus 86.24%, for correlation filter based face detector and Viola

and Jones face detector, respectively.

The reason for presenting and comparing the results when all filters are being used is that even

though, the filter that gives the top correlation value does not always find the right face, there is at
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least one filter in the set, that detects the face correctly with a high accuracy. This gives rise to two

areas of research, one, that the metric, peak correlation value, for finding the right match may not

be the right one, and second, correlation based face detection might not be an approach of choice

for so many variations (scale, pose, background etc.,) in the dataset. In the conclusion chapter,

I will delve more into the details pertaining to a metric for the best match. In the next chapter,

however, I will study the impact of using a dataset with a limited variation in pose, scale, lighting

and location, on face detection using correlation filters.
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Chapter 7

Setting Specific Face Detection
In this research, while designing different filters and studying their impact in finding faces in

still images and video frames, it started to become apparent that the more specific the filters to a

particular scenario the better match they can find in the test images in that scenario. As a result,

I hypothesize that if a filter is designed for a specific setting, the correlation filters can be very

successful in face detection. The goal of this chapter is to test this hypothesis.

7.1 Experimental Setup

This experiment is setup to test the hypothesis presented above. I have controlled for location

and as a result created a customized dataset of video frames. In this dataset the location is the same

between the training and the test datasets but there is no overlap of people between the two datasets.

All the videos have been shot in an indoor location. Some of the frames from six different videos

are presented in Figure 7.1. These frames are a representative of this dataset displaying some of

the variations in scale and slight pose, in a specific setting. The training set consists of 256 videos

with 18,966 frames. The filters trained for this particular location, and two closely related poses,

and two different scales are shown in Figure 7.2.

The faces in the video frames for this setting have an interocular width of 16 to 32 pixels

and two closely related poses near the left profile. Therefore, I created two different datasets for

training. One set consisted of images having greater than or equal to 16, but less than 24 pixels

between eyes. This training set was used to train the filter shown in Figure 7.2(a). The second

training set consisted of images that had an interocular width between 24 and 32 pixels. The filter

trained on this dataset is presented in Figure 7.2(c).

Even though the filters are trained on the full frames to get rid of the clutter in the background,

smaller face templates, shown in Figures 7.2(b) and 7.2(d), have been cropped from these trained

filters to do a spatial template matching using OpenCV. This ensures that the normalization is taken
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(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6

Figure 7.1: Representative frames from the custom Video dataset at a particular location.
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(a) Filter with scale of 16 pixels between the eyes. (b) Template
(filter) cropped
from 7.2(a).

(c) Filter with a scale of 24 pixels between the eyes. (d) Template (filter)
cropped from
7.2(c).

Figure 7.2: Filters trained on 256 videos with 18966 frames for a particular location and two
different scales.
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at each location of an image corresponding to the size of the face template and not the entire image.

This approach is similar to the one used for testing the PaSC dataset in Chapter 6.

These two face templates have been spatially correlated, using OpenCV, with the frames of a

test set consisting of 73 videos, containing 1,865 frames. Each of these videos has been shot at the

same location and the interocular width varies between 18 and 33 pixels. It may be reiterated that

in my setup two filters have been trained on images with an interocular range of 16 to 32 pixels. If

we take a look at Figure 6.3, one may notice that there is a range of test images that would give a

good detection accuracy for a filter trained on images that are closer to the interocular width in the

test dataset. Since the interocular widths of the images in the training and test datasets lie in the

same range, the filter design choices in terms of interocular distance are appropriate.

7.2 Results

Each frame in the test dataset is matched with the face templates of Figures 7.2(b) and 7.2(d),

and the coordinates of the location that returns the highest correlation value for these two matches

is recorded. To choose between these two results, the coordinates of the one that has a higher

correlation value is selected. This coordinate identifies the top left corner of the detected face

rectangle. The width and the height of the face template determines the width and the height of

the face rectangle. These face rectangle coordinates for each test image are recorded. These face

rectangles are eventually used to determine the performance of the experiment.

The performance measure used in this experiment is based on an overlap of the face rectangle

obtained by template matching of the face filters and the test images, as described above, and the

face rectangle of the faces from the ground truth for each of these images. If there is an overlap of

25% or more between the two rectangles, the face in an image is recorded as detected. Based on

this criteria for accuracy, the algorithm was able to find a face match in 1,520 frames out of 1,865

frames which equates to an 81.5% detection rate.

This result has been compared with face detection results obtained from OpenCV Viola and

Jones face detector, which achieved an accuracy of 69.43% or 1,295 out of 1,865 frames. The

criteria of accuracy for this face detector is the same as for the correlation filter based face detector.
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These two results are displayed side-by-side in Figure 7.3. It is clear that the correlation based face

detector outperforms OpenCV Viola and Jones face detector in a specific scenario and it validates

the hypothesis presented in the beginning of this chapter.
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Figure 7.3: Comparison of Face detection accuracy between Correlation Filter approach and
OpenCV Viola and Jones face detector.

7.3 Conclusion

In this chapter, I hypothesized that the more specific a filter, the better the accuracy in detecting

faces in an image. As such, a controlled experiment was devised in which the location in both

training and test datasets was restricted. The interocular widths between the training and the test

datasets are also in the same range. The correlation filter based face detector was used to test the

dataset and compared with the OpenCV Viola and Jones face detector. The results presented in

Figure 7.3 clearly indicate that the correlation based approach is doing better for such a dataset and

hence confirms the hypothesis.

This is one of the most significant face detection results obtained using correlation filters so

far. A constant background setting gives an advantage to the approach because the correlation filter

training appears to learn this setting and returns a filter suited for a similar background. Because

of this learning, the filters ignore the background clutter during the testing process and avoid false
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positives. Therefore, one of the most important application of a correlation based face detection

approach is to use it in specific situations. For example, people walking into a building through a

specific door where the setting remains mostly constant. This chapter is an important case study

to establish the significance of face detection using correlation filters that are trained for specific

scenarios and is an attempt to lead this research in that direction.

102



Chapter 8

The Conclusion
The purpose of this chapter is to highlight some of the more important findings of this re-

search. I will begin with a detailed discussion of the major findings of this dissertation. Then I will

summarize how these findings may be seen as useful in terms of guiding future work.

8.1 Discussion

I have presented a novel face detector based on correlation filters to detect faces in still images

and video frames. Each of these images and frames contains only a single face. This algorithm

is easy to train and fast. However, like any other face detector this one also has to deal with

many complexities associated with face detection. Some of these complexities are associated with

faces of different sizes or scales, pose, uncontrolled lighting, background and location, while some

others arise out of the basic principles on which such a face detector is based.

Any correlation operation returns a peak value and hence by design it is suited to locate one

face in an image associated with the highest peak. Since my goal is to work on datasets with a

single face in each image, it is not a problem. My technique in general works very well for images

with single faces and simpler backgrounds like the ones shown in Figure 8.1(a). It may be apparent

in the correlation surface in Figure 8.1(b) resulting from the correlation of this image with a filter.

The bright spot corresponding to the point between the eyes helps correctly localize a face followed

by detection as discussed in this dissertation. This example displays a successful case of finding

a single face required to be located for an application, such as, face recognition. Therefore, for

images like these, the correlation based approach would certainly be an approach of choice.

Also, this technique can be very effective if one is interested in a single face in an image with

multiple faces. This is clearly true for an image such as the one shown in Figure 8.2. If one is

interested in finding just a single face in this image, even though there are more, the correlation

surface peak location often corresponds to at least one true face and therefore, the algorithm is still
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(a) Image (b) Correlation Surface

Figure 8.1: An image and its correlation surface showing the location of the peak between the eyes.

(a) Image (b) Correlation Surface

Figure 8.2: An image with multiple faces and its correlation surface showing the location of the
peak between the eyes for a single face.

104



of value.

However, if there are several faces in an image and one is required to find all of those faces,

can this correlation based face detector still be effective in finding all the faces? This is definitely

a tricky issue in such a detector. One of the obvious approaches is to find the locations of all

the peaks in a correlation surface. For this to work one needs to figure out a threshold so that

any correlation value that is above it can be characterized as a face location. However, finding a

threshold value is not straightforward. In some situations it could be easy to identify all the peak

locations correctly and hence find the faces in an image like the one in Figure 8.3. In others, the

(a) Image (b) Correlation Surface

Figure 8.3: An image with multiple faces and its correlation surface showing the location of the
peaks corresponding to the faces.

peaks are not always found in the correct locations and one often ends up with false detections

and hence an incorrect threshold. This can happen not only in images with multiple faces but also

with single face images. More often than not, a transition from high pixel intensity value to a low

intensity value, or vice versa, generates a high peak value and hence, many times, a false face

detection. This failure mode is illustrated in Figure 8.4.

This example identifies one of the biggest issues for face detection using correlation filters.

Neither the use of a max value in the correlation surface nor the use of a peak-to-side-lobe ratio can

prevent false peaks under these circumstances, which is key to locating faces using this technique.

If there is any direction where this work needs to be taken forward it is in finding metrics to

identify the peaks correctly. The impact is seen clearly when the intensities of pixels change, as

in Figure 8.4. Although the face in this image is frontal, with good lighting, one would assume
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(a) Image (b) Correlation Surface

Figure 8.4: An image and its correlation surface showing the effect of the change of pixel intensities
between high and low values.

this face would be located quite easily, however, that is not the case. It is important to point out

that there is a peak in the correlation surface that corresponds to the point between the eyes of the

person in the image, but this is not the highest peak in the image. Its intensity is not even close

to being as high as the string of peaks corresponding to the letters in the image. This makes it

apparent, why the identification of the correct peak is very important to find the face in this image

and many other images.

Although this aspect of peak measurement requires more study, it does appear like this may

have something to do with the way that filters look. For example, an examination of the filter in

Figure 8.5 reveals that there are dark eyes with bright pixels between them. This may cause, what

I would like to call, a barcode effect. This effect becomes apparent whenever there is a change in

intensity values like the ones shown in Figure 8.4. This leads to more false positives and a drop in

true positives. Plus, identifying the correct peak is key to the success of a correlation based face

detection. It is also important to reduce the false peaks not only because one can’t find the face in

an image that has only one face, but also because it makes it very difficult to select a threshold in
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Figure 8.5: A Typical Correlation Filter
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order to find all the faces in an image when there are more faces in them.

One of the challenges of face detection that I have discussed in detail in this dissertation is the

different scales of the faces that I am trying to detect. My solution of using a batch of filters has

worked well over a wide range of scales under some conditions. The same concept works for pose

too. I need to have filters of different poses to get a better match. This implies, for each scale, I

need to train filters that account for multiple poses. Having experimented some with it on some

of the datasets in this dissertation, I can confidently conclude that the more specific a filter is to a

dataset the better accuracy can be obtained using a correlation based filter for face detection.

8.2 Lessons Learned Going Forward

Prior to this dissertation, there has been a lot of study on correlation filters and their applica-

tions. However, this dissertation is the first research to extend correlation filters for face detection.

The goal is not to create the best face detection approach, but to extend correlation filters to an area

where they have never been applied before. More specifically, this face detector has been designed

to work under very controlled scenarios, specific for a situation. It has potential value in scenarios

such as, an airport security gate, an entrance to a sensitive building such as a nuclear reactor or an

entrance to a train/ bus station. The main findings of this research can be summarized, as follows:

• This is the first correlation filter based face detector. I have presented scenarios where such

a face detector would be successful and where it may not be an approach of choice.

• I have presented a methodology to use localization for face detection.

• A corrlation filter trained for a given scale and pose, can be used for a small range of scales

and poses around the training scale and pose.

• Correlation based face detectors are most promising in deployments where the setting re-

mains roughly constant and setting specific filters may learn to discount background distrac-

tions.
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