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ABSTRACT 
 
 
 

PROFILING THE ANTIVIRAL SMALL RNA RESPONSE IN MOSQUITOES TO ARBOVIRUS INFECTION: 

INTRA- AND INTERSPECIES COMPARISONS AND RELATIONSHIP TO VECTOR COMPETENCE 

 
 

 Arthropod-borne viruses (arboviruses) are a taxonomically diverse group of viruses 

which represent emerging/re-emerging threats to global human and livestock health. By far, 

the most prevalent vectors of arboviruses are mosquitoes, though ticks and sandflies are also 

significant vectors for viruses causing human disease. Since the discovery of Aedes aegypti as 

the primary vector for yellow fever virus in the early 1900’s, an astounding amount of money 

and effort has been expended on trying to control arbovirus transmission. For most of this time, 

efforts have primarily focused on controlling vector mosquito populations, with variable results. 

With the advancement of molecular biology, much knowledge has been gained on how viruses 

infect, replicate within, and are eventually transmitted by their arthropod vectors. However, we 

still lack a detailed understanding of how mosquitoes control arbovirus infection and mitigate 

pathogenesis.  

 Unlike vertebrates, mosquitoes and other invertebrates lack adaptive immune systems, 

as well as many of the important innate immune effectors vertebrates possess to combat viral 

infection. However, mosquitoes do possess sophisticated mechanisms for dealing with 

microbial infection. RNA interference (RNAi) is the major innate immune response in 

mosquitoes to virus infection. Work over the past nearly 20 years has illustrated the importance 
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of RNAi pathways in controlling arbovirus infection; however, many unanswered questions 

regarding RNAi and its role in vector/virus ecology remain.  

 Accordingly, this dissertation focused on investigating the role of two RNAi pathways, 

the small interfering RNA (siRNA) pathway, and the PIWI-interacting RNA (piRNA) pathway, in 

controlling West Nile virus (WNV) infection in Culex spp. mosquitoes. We first began by 

performing a comparative analysis of the antiviral small RNA response in field-collected Culex 

spp. mosquitoes to WNV to colonized strains of Culex mosquitoes. Utilizing next-generation 

sequencing technology, we sequenced viral-derived small RNA populations corresponding to 

products of both the siRNA and piRNA pathways and made both intra- and interspecies 

comparisons in the targeting of the virus genome by these pathways. Doing so, we were able to 

find a remarkable amount of conservation in the targeting of the virus genome by the siRNA 

pathway between several species and populations within species, but also found that Cx. 

quinquefasciatus mosquitoes exhibited a unique targeting profile of the virus genome by this 

pathway. We also found 24-30 nucleotide RNAs, consistent in size with products of the piRNA 

pathway, were produced in significantly different proportions amongst different mosquito 

species/populations. 

 This led us to further investigate the role of the piRNA pathway during arbovirus 

infection. We analyzed piRNA populations from Cx. tarsalis mosquitoes infected with either 

flaviviruses (i.e. WNV) or alphaviruses (i.e. Western equine encephalitis virus, Sindbis virus) and 

looked for characteristic signatures of the “ping-pong” dependent amplification loop, a model 

proposed for the biogenesis of piRNAs. In congruence with published studies on flavivirus 

infection in mosquitoes, but in contrast to published studies on alphavirus infection in 
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mosquitoes, we found no signatures of ping-pong dependent amplification in any of the virus 

infection models of Cx. tarsalis. After further analysis and comparison to a small RNA library 

sequenced from alphavirus Ae. aegypti mosquitoes, we concluded that the differential 

biogenesis of viral-derived piRNA-like small RNAs in response to arbovirus infection in 

mosquitoes is dependent upon the vector-virus pairing. 

 Lastly, we sought to determine the effect of RNAi on either restricting or permitting 

virus escape from the midgut of mosquitoes. Using multiple biological replicates and sampling 

over numerous time points, we sequenced small RNA populations from WNV-infected Cx. 

quinquefasciatus mosquitoes. We found that neither the siRNA nor piRNA pathways appear to 

be functionally active at early points during infection, which are arguably the most important 

for virus in establishing an infection. Surprisingly, we found no association between the siRNA 

targeting profiles of the virus genome and the infection phenotype, i.e. midgut restriction or 

midgut escape.  

 The studies included in this dissertation show a large degree of intra- and interspecies 

conservation of viral genome targeting by the exogenous siRNA pathway, with the notable 

exception of Cx. quinquefasciatus, which exhibited a high degree of intraspecies correlation, but 

differed from the other species studied in this regard. Secondly, we provided evidence 

suggesting that biogenesis and/or processing of viral-derived piRNA-like small RNAs is 

differentially modulated depending on the virus-vector pairing. Lastly, we found no evidence 

for the early induction of the siRNA or piRNA pathways following peroral exposure to WNV, and 

that once initiated, these pathways collectively fail to restrict the virus from disseminating from  
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the midgut. Taken together, the studies entailed in this dissertation  contribute to the rapidly 

expanding body of knowledge regarding the antiviral function of RNAi pathways in controlling 

arbovirus infection in mosquitoes.   
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Chapter 1: Literature Review 
 
 
 

Background 

Arthropod-borne viruses (arboviruses) represent a taxonomically diverse group of 

viruses that persist in nature through transmission cycles between hematophagous arthropod 

vectors and vertebrate hosts [1]. Known arboviruses belong to seven different families: 

Flaviviridae, Togaviridae, Bunyaviridae, Rhabdoviridae, Reoviridae, a single genus from 

Orthomyxoviridae (Thogotovirus), and the sole genus/species from Asfarviridae (Asfivirus, 

African swine fever virus, ASFV) [2]. With the exception of Asfarviridae, which possesses a 

double-stranded DNA (dsDNA) genome [3], all other arboviruses have RNA genomes, though 

the polarity, single or double-strandedness, presence of one or multiple segments, and 

organization of the genome differs between families. As of April 2014, there are 637 viruses 

listed in “The International Catalog of Arboviruses Including Certain Other Viruses of 

Vertebrates” [4], of which at least 214 are known or probable arboviruses, at least 287 are 

possible arboviruses, and the remainder are probably or definitely not arboviruses [1] (these 

numbers have likely increased). 

Arbovirus infection is a serious emerging/re-emerging threat globally to both human 

and livestock health. Several billion people, primarily living in tropical, underdeveloped, and 

impoverished nations are currently at risk of infection from one or more arboviruses, with 

perhaps hundreds of millions of infections occurring annually from dengue viruses (DENV, 

Flaviviridae) alone [5]. Largely due to globalization, numerous arboviruses, such as West Nile 

virus (WNV, Flaviviridae) and chikungunya virus (CHIKV, Togaviridae) have expanded their 
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geographic ranges dramatically. Most recently, as of April 2014, local transmission of CHIKV has 

occurred in several Caribbean nations, starting in Saint Martin in December 2013 and quickly 

spreading to other countries, marking the first instances of autochthonous transmission of this 

virus in Western hemisphere [6]. In addition, climate change resulting in the geographic 

expansion of arthropod vector species is also expected to significantly contribute to the 

increase of arbovirus prevalence [7, 8]. Increasing global temperatures may also result in 

increased disease transmission by reducing the extrinsic incubation period (EIP) required by 

arboviruses to replicate in and be transmitted by their arthropod vectors [9]. Finally, the 

importation of a large variety of domestic and exotic animals for the agriculture and pet trades 

may contribute to the transfer of arboviruses to non-endemic regions [10]. 

Prevention of arbovirus transmission has historically and presently primarily relied upon 

vector control strategies; in the case of mosquitoes, by far the most prevalent vectors of 

arbovirus disease, larvacide treatment and adulticide treatments are common preventative 

measures. However, failure to maintain adequate mosquito control programs, along with other 

factors such as urbanization, insecticide and drug resistance, and genetic adaptation by 

pathogens has resulted in the emergence/resurgence of arbovirus diseases [11]. More modern 

experimental approaches to curbing arbovirus transmission include sterile insect technique [12-

14] and the related “Trojan female technique” [15], development of a variety of transgenic 

mosquitoes incapable of virus transmission [16-22], and the use of Wolbachia (Rickettsiales), a 

maternally-inherited Gram negative insect endosymbiont bacterium, to reduce mosquito 

lifespans below the threshold of most arbovirus EIPs or to block transmission of arboviruses 

[23-29]. With regards to generation of transgenic mosquitoes, these efforts have greatly 
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benefitted from the full genome sequencing of three medically important mosquito species: the 

yellow fever mosquito (Aedes aegypti), the southern house mosquito (Culex quinquefasciatus), 

and the malaria mosquito (Anopheles gambiae) [30-32]. 

 

Flaviviridae and the genus Flavivirus 

The Flaviviridae are a large family of viruses comprised of four genera: Flavivirus, 

Pestivirus, Hepacivirus, and the newly accepted Pegivirus [33, 34]. All members of Flaviviridae 

possess a lipid-bilayer enveloped nucleocapsid housing a single-stranded, positive sense RNA 

genome [35], though the genes encoded vary by genus.  The RNA genome serves as the viral 

mRNA, and is thus infectious to cells [36], and is 5’-m7GpppAp capped and lacks poly(A) tailing 

at the 3’ terminus [37, 38]. Genomic RNA is translated into a single polyprotein precursor which 

is co- and post-translationally cleaved into individual proteins by both viral encoded and host 

proteases. Structural proteins are encoded at the N-terminal region of the polyprotein, while 

non-structural (NS) proteins make up the remainder. Out of the four genera, only the genus 

Flavivirus is known to contain members transmitted by arthropod vectors. 

The genus Flavivirus is comprised of over 70 species of viruses [39], most of which are 

arboviruses or insect-specific viruses. Members of the genus Flavivirus include YFV, DENV, West 

Nile virus (WNV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and tick-

borne encephalitis virus (TBEV), among others. The name of the genus is derived from the Latin 

word flavus, meaning “yellow”, describing the jaundice caused in infected, symptomatic 

persons by the type species, yellow-fever virus (YFV). YFV itself holds a special place in the 
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annals of virology, being the first virus, or “filterable agent”, shown to be responsible for a 

human disease [40]. 

Flavivirus genomes are ~11 kilobases (kb) in length, and contains three structural 

proteins in the 5’- portion (Capsid, C; pre-membrane, prM; envelope, E) and seven NS proteins 

making up the rest of the genome (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). The mature virion 

is a small, spherical particle of ~50 nanometers (nm) in diameter with a ~30 nm electron dense 

core surrounded by a lipid bilayer envelope [41]. Flaviviruses enter cells via binding of cellular 

receptors and entry into clathrin-coated pits resulting in endocytosis (receptors implicated in 

cellular entry in both mosquitoes and mammals are discussed in greater detail in the 

“Pathogenesis in Mosquitoes and Mammals” section) [42, 43]. Virions are uncoated via a 

conformational change in the E glycoprotein from a homodimeric to a trimeric structure in low 

pH endosomes, resulting in fusion of the viral and cellular membranes and release of the viral 

nucleocapsid into the cytoplasm [42, 44-46]. Following this, the capsid dissociates with the 

RNA, which triggers the translation of viral proteins, replication of the viral genome, and 

packaging of virions [47, 48]. Replication of the viral genomic RNA occurs within virus-induced 

membrane structures (IMS) at the surface of the endoplasmic reticulum (ER) [49], and is 

mediated in part by the NS5 protein, which has both RNA-dependent RNA polymerase (RdRP) 

[50, 51] and methyltransferase [52] activity. The organelle of origin for IMS’s varies between 

flaviviruses; the IMS for WNV appears to be derived from the ER [53, 49], with reorganization of 

the membrane being mediated by NS2A, NS2B, NS4A, and NS4B [49, 54]. Using the genomic 

RNA as a template, an antisense strand is synthesized by RdRP activity of NS5, which is then 

used as the template to produce positive-strand genomic RNAs. Immature virions are formed in 
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the lumen of the ER [55], and derive their lipid-bilayer envelope by budding through this 

organelle [56]. Mature virions emerge from the trans-Golgi network, wherein furin-mediated 

cleavage of prM into the pr peptide and M protein is necessary to produce infectious particles 

[57, 58]. Mature virions exit the cell via exocytosis [39]. 

 

WNV and Flavivirus Evolution 

Theories regarding flavivirus evolution must take into account the following 

considerations: (1) their degree of genetic relatedness, (2) the natural ecology of the viruses 

(i.e. vectors, if any, and vertebrate hosts), and (3) their geographic distribution [59]. One theory 

of vector-borne flavivirus evolution is that they arose from non-vectored ancestors, some of 

which eventually adapted to arthropod hosts [60]. Flaviviruses can be divided into three main 

categories, determined both by their phylogenetic relationships to one another as well as their 

ecological niches: those vectored by mosquitoes, those vectored by ticks, and those with no 

known vectors [61]. Genetic and antigenic relatedness between flaviviruses strongly correlates 

with their vector preference (i.e. mosquito or tick-borne) [62, 63]. Some interesting 

observations can be made when attempting to classify flaviviruses. Mosquito-borne flaviviruses 

fall into two distinct subgroups: those which have been primarily isolated from Aedes sp. 

mosquitoes, and those that have primarily been isolated from Culex sp. mosquitoes, with the 

Aedes subgroup containing two paraphyletic groups (one with YFV and the other with DENV) 

comprising 16 species, and the Culex group comprising 21 species (as of 2007) [59]. 

Interestingly, none of the viruses isolated primarily from Aedes have an avian cycle, and none of 

the viruses isolated from Culex involve a primate cycle [59]; this is likely due to the feeding 
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preferences inherent to each genus. Additionally, the primary disease manifestation in humans 

of viruses isolated in the Aedes group is hemorrhagic fever, while the diseases caused by viruses 

in the Culex group are primarily encephalitides [64]. Among the tick-borne flaviviruses, two 

groups exist: those associated with seabirds, and those associated with mammals (the TBEV 

complex) [65]. 

WNV belongs to the JEV complex within the genus Flavivirus and the family Flavivirdae, 

based on its antigenic similarity to other viruses in this complex [61]. There are five distinct 

lineages (some sources state as many as eight, including putative lineages [66]) of WNV, with 

Lineage I and II being the predominant lineages most isolates fall into. Lineage I has the largest 

geographic distribution, and is divided into several clades: clade 1a includes the pathogenic 

strain introduced into North America in 1999 (WNVNY99), and is most associated with causing 

neuroinvasive disease, clade 1b includes Kunjin virus (KUNV), a mildly pathogenic strain 

endemic to Australia [67-70], and clade 1c includes isolates from India [71]. Lineage II was 

believed to be isolated to sub-Saharan Africa, but since 2004 has been responsible for 

outbreaks in Europe, specifically in Hungary, Greece, and Spain [72-74] , and now appears to be 

established in Europe [75]. Lineages III, IV, and V are mostly restricted to Eastern Europe (III and 

IV), and India (V) [76]. Interestingly, Koutango virus (KOUV), a flavivirus initially classified as a 

separate species [77], but later shown to be a WNV variant [78, 70], has primarily been isolated 

from rodents and ticks, peculiar hosts for WNV [66]. 

Like all RNA viruses, WNV is thought to exist in nature as a quasispecies, or a collection 

of diverse genotypes diverged from a common ancestral genotype within a single infected host 

(or cell) [79, 80]. RNA viruses replicate with extremely high mutation rates [81], owing at least 
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in part to the lack of proof-reading activity of most viral RdRPs, resulting in relatively low-

fidelity replication (estimated error rate for many viral RdRPs is a single misincorporated base 

for every 104-106 nucleotides [82]; for flaviviruses this would translate to ~1 mutation per 

genome per replication event). High mutation rates may present a problem to viruses as excess 

mutations could potentially lead to population extinction [81, 83-85], since most mutations 

negatively impact viral fitness, as seen in a study with vesicular stomatitis virus (VSV, 

Rhabdoviridae) [86]. However, high mutation rates could be expected to benefit a large 

population, even if they may be detrimental on individuals [87], with the low fidelity of the viral 

RdRP allowing for rapid mutation and adaptation to new or changing environments. In support 

of this, studies with a CHIKV mutant expressing a high-fidelity RdRP have shown the mutant 

virus exhibited lower infection and dissemination rates in Ae. aegypti mosquitoes compared to 

the wild-type virus [88]. Thus, it becomes clear that RNA viruses have to find a balance between 

mutational robustness and replicative fitness. One mechanism for this may be epistatic 

interaction, where the combined effect of multiple mutations affects fitness differently than 

any individual mutation may be expected to on its own [81]. Indeed, this has been shown to be 

the case in the La Réunion island strain of CHIKV [89]. 

 

Global Importance of Flaviviruses 

As a group, arboviruses have a global distribution, being found on all continents except 

Antarctica, but many species are endemic to tropical or subtropical regions which provide for 

perennial transmission cycles through cold-blooded arthropod vectors [1]. Members of the 

genus Flavivirus are predominantly mosquito-borne, and those which cause human disease are 
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primarily encephalitic (JEV, WNV, SLEV, TBEV) or hemorrhagic fever viruses (DENV, YFV). 

Flaviviruses such as DENV and YFV have probably been afflicting humans since pre-history, but 

it has only been relatively recently that that the variety and severity of the diseases they cause 

has been appreciated. While vaccines exist for flaviviruses like YFV and JEV, sporadic outbreaks 

of these viruses still occur, often with significant mortality rates, with YFV-infection killing 

roughly 30,000 people annually [90-94]. The global burden of DENV alone is estimated to be in 

the hundreds of millions of infections per year, and recent years have seen the expansion of 

flaviviruses such as WNV into new territories. Since its introduction into the United States in 

1999, WNV has caused more than 16,000 cases of neuroinvasive disease and more than 1,500 

deaths, as of 2012 [95]. 

Tick-borne flaviviruses less commonly cause human disease, however there are several 

viruses that can cause sporadic outbreaks resulting in severe clinical manifestations. By far the 

most prevalent agents of human disease in this group are the TBEV serocomplex of viruses. 

Several thousand infections by TBE viruses are reported each year, with some outbreaks 

exhibiting case fatality rates as high as 50% [65].  

 

West Nile Virus Epidemiology and Ecology 

WNV was first isolated from the blood of a woman exhibiting febrile illness in the West 

Nile district of northern Uganda in 1937 [96]. During the next thirty years, large outbreaks of 

febrile illness caused by WNV (though few cases of neuroinvasive disease) were reported in 

Israel and South Africa [97], along with the first epidemic of WNV neuroinvasive disease in 

Europe [98]. No significant outbreaks were reported from the years 1975-1993, however from 
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1994-2000 there were numerous large epidemics resulting in meningoencephalitis 

(inflammation of the meninges, brain, or both; henceforth collectively referred to as 

encephalitis) in North Africa, Europe, North America, and the Middle East [97], including an 

outbreak in Romania in 1996 that resulted in nearly 400 cases of neuroinvasive disease and at 

least 17 deaths [99]. In 1999, an outbreak of viral encephalitis occurred in New York City, New 

York, U.S.A., [100] which preliminary analysis determined to be caused by a KUNV/WNV-like 

flavivirus [101], later shown to be a strain of WNV nearly identical to that of an isolate from a 

dead goose in Israel in 1998 [68]. WNVNY99 rapidly expanded its range in the U.S. over the next 

several years, but was displaced starting in 2001 by a new genotype (WNVWN02) [102], and was 

rendered completely extinct in favor of WNVWN02 by 2004 [103]. The reason for this 

displacement of the original genotype was found to be due to the WNVWN02 genotype exhibiting 

a dramatically shorter EIP in native mosquitoes than its rival [104], which resulted in increased 

transmission and proliferation, though a more recent study found no such difference in EIP 

between WNVNY99 and WNVWN02 [105]. WNVWN02 differs from WNVNY99 by three nucleotide (nt) 

mutations, only one of which is non-synonymous, resulting in a valine replacing an alanine in 

position 159 of the E glycoprotein (E-A159V) [102, 106], though the direct effect this mutation 

has on the virus phenotype is unknown. This situation is mirrored by the 2005 La Réunion island 

outbreak of CHIKV. The strain of CHIKV responsible for this outbreak, which resulted in >3500 

confirmed infections and an additional ~250,000 suspected infections (and unusual for CHIKV 

infections, several hundred fatalities [107]) and facilitated the spread of the virus to other 

islands and eventually mainland Europe, was found to have a single nucleotide substitution 

resulting in an alanine to valine at position 229 of the E1 envelope glycoprotein (E1-A229V) 



10 
 

[108]. Subsequent studies demonstrated that this mutation, as well as others subsequently 

found in later isolates, conferred a fitness advantage to the virus in the Asian tiger mosquito 

(Ae. albopictus), a species it was not normally vectored by [109, 89, 110, 111], and an invasive 

species that can occur in the absence of (or compete with or even replace in cases of sympatry 

[112-118]) Ae. aegypti, a previously established vector of CHIKV. This adaptive plasticity of 

arboviruses to new environments and potentially new vectors/hosts demonstrates that given 

competent arthropod vectors, a pool of amplifying vertebrate hosts, and a mechanism for 

overwintering (if necessary), arboviruses can spread with relatively little resistance [119].  

In nature, WNV persists in an enzootic cycle between ornithophilic vector mosquitoes 

and birds, primarily of the order Passeriformes (“perching birds”). At least 65 species of 

mosquitos in the U.S. , primarily of the genus Culex [120-123], have been found to be infected 

with the virus [95]. The ability of a species, population, or individual within a population to 

successfully transmit a given pathogen is known as vector competence, and is influenced by 

both intrinsic (i.e. genetics) and extrinsic factors (i.e. environment) [124], and can vary 

dramatically between species [121-123, 125-129]. Besides mosquitoes, both ixodid (hard) and 

argasid (soft) tick species have been found to be naturally infected with West Nile virus [130-

133], sometimes with infection rates as high as 11.7% [131].  Ticks have been proposed to serve 

as potential reservoirs for the virus during bird migration-mediated transfer of the virus 

between geographical locations [134], and ticks have experimentally been shown to be capable 

of transmitting the virus [135, 136]; however, the importance of ticks in the maintenance and 

transmission of WNV in nature remains unknown.  
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Susceptibility to WNV infection varies in birds, with at least 326 species of birds being 

susceptible to infection [95]. Passeriformes, Charadriiformes (shorebirds, gulls and auks), and 

domestic geese (order Anseriformes) exhibit the highest susceptibility to infection, severe 

disease, and mortality [137-140], with Psittaciformes (parrots) and Galliformes (fowl) being the 

least susceptible to infection and disease [138]. Corvids (Corvidae; crows, ravens, etc.) in 

particular develop high viremia titers and exhibit high mortality rates, often in the absence of 

marked clinical pathology [141-143], other than behavioral changes such as lethargy a day prior 

to death [144]. Prior to the 1998 outbreak in Israel, WNV was not associated with avian 

virulence, and the observed mortality in both wild and captive birds is considered unique to the 

introduction of the virus to North America [145]. It has been shown that a single mutation in 

the NS3 helicase, resulting in a threonine to proline substitution at position 249 of the protein 

(NS3-T249P) is responsible for this dramatic shift in virulence in the WNVNY99 strain compared 

to previous isolates [146]. In addition to aves, at least 30 other species of vertebrates are 

known to become infected with WNV [147]. Reptiles such as alligators [148-152], crocodiles 

[153, 154], and snakes [155] may serve as amplification/overwintering hosts for the virus, as 

with other arboviruses [156-161]. 

Human and equine infections typically occur as spillover events, whereby they are fed 

on by infected mosquitoes either due to a lack of suitable avian prey, or simply by opportunity. 

Mammals such as humans and equines are not thought to be capable of sustaining WNV 

transmission cycles due to the inability to develop sufficient viremia titer to transmit back to 

mosquitoes (established as being 104-105 plaque forming units [PFUs]/mL of blood [137]), and 

are therefore considered to be dead-end hosts for the virus [162]. 
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Mosquito Vectors of WNV in the United States 

Mosquitoes known as competent vectors of WNV primarily belong to the genus Culex. In 

particular, the Cx. pipiens complex, which includes Cx. pipiens, Cx. quinquefasciatus, Cx. 

australicus, and Cx. globocoxitus, have world-wide distributions and exhibit varying 

competencies to WNV [124]. In the United States, the predominant vector of WNV differs 

based on geographical location. In the Northeastern U.S, Cx. pipiens  and Cx. restuans appear to 

cause the majority of infections [163, 164]. Cx. tarsalis, the species thought to be responsible 

for the westward expansion of the virus, is the predominant vector in the central and Western 

U.S. [165, 166]; the sister taxon to Cx. pipiens, Cx. quinquefasciatus is a major vector in the 

Southern U.S. [167], and Cx. nigripalpus is most responsible for WNV transmission in Florida 

stretching down to Puerto Rico [168, 169]. In addition to Culex mosquitoes, mosquitoes in the 

genera Aedes and Ochlerotatus are moderately competent in laboratory settings, and may 

serve as peripheral or bridge vectors in the avian-Culex cycle, though due to their primarily 

mammalian feeding preferences, their importance in the maintenance and transmission of the 

virus is in question [127]. 

 

WNV Pathogenesis in Mosquitoes and Mammals 

In mosquitoes, WNV (and other arboviruses) are generally thought to cause persistent, 

non-lytic infections [170, 171], though apoptotic cell death has been observed in mosquito 

midguts and salivary glands after infection with a variety of arboviruses [172-179] (discussed in 

greater depth in the “Mosquito Innate Immunity to Virus Infection” section). Since they 

ultimately require to be amplified and transmitted, and that eventual transmission is likelier 
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through a healthy vector, it would seem beneficial to arboviruses to produce primarily benign 

infections within their arthropod hosts [180]. This appears to be the case with several 

arboviruses [181-183]. However, infection by arboviruses is apparently not without cost, as 

studies have shown infected mosquitoes exhibit decreased fecundity [184, 185] and increased 

blood-feeding, which ultimately increases the likelihood of transmission, but may also increase 

the likelihood of injury or death to the mosquito by its prey [124]. Intriguingly, resistance to 

WNV infection in a highly susceptible colony of Cx. pipiens was correlated with decreased 

survivorship, indicating that mounting a robust immunological response may have deleterious 

consequences for the insect as well [180]. Taken together, the variety of studies investigating 

the cost of virus infection in vectors seem to indicate that vector/virus pairing and mode of 

transmission (horizontal or vertical) appear to strongly affect the virulence of arbovirus 

infection in mosquitoes [186]. 

After imbibing a bloodmeal containing WNV, the first site of infection in mosquitoes 

occurs in the mesenteron (midgut) epithelium, where the virus presumably enters cells through 

receptor-mediated endocytosis, as with other flaviviruses [187, 188]. Studies with DENV-2 and 

Venezuelan equine encephalitis virus (VEEV, Togaviridae) indicate that only a small number of 

cells (as low as 10-15) of the midgut epithelium are initially infected [189-191]. A secreted 

protein, mosquito galactose-specific C-type lectin (mosGCTL-1), has been shown to interact 

with the E glycoprotein of WNV and facilitates its contact with the cellular surface receptor 

mosquito protein tyrosine phosphatase-1 (mosPTP-1) [192] in both Cx. quinquefasciatus and 

Ae. aegypti mosquitoes, though whether this interaction directly results in endocytosis of the 

virion or merely functions as attachment scaffolding is unknown [193]. Several mosGCTL-1 
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paralogs (but not mosGCTL-1 itself) have recently been shown to enhance DENV-2 infection in 

Ae. aegypti as well [194]. In addition to the C-type lectins, heat-shock proteins [195, 196], 

laminin receptor [197], and prohibitin [198] have also been implicated as cellular receptors for 

DENV, though the role they may play in WNV infection is unknown. Following replication in the 

midgut, the virus can disseminate into the hemocoel of the insect, infecting and replicating 

within a variety of tissues including the muscles surrounding the alimentary tract, fat bodies, 

hemocytes, and nervous tissue, before finally invading the salivary glands, which may result in 

transmission [199]. During the course of infection, the virus encounters and must circumvent 

numerous physical and immunological barriers, i.e. the midgut infection barrier [200], the 

midgut escape barrier [201], the salivary gland infection barrier [202], and the salivary gland 

escape barrier [203], with failure to do so at any of these points eliminating the possibility of 

transmission. 

 In mammalian systems, numerous cellular receptors have been proposed to participate 

in viral binding and entry [193]. Receptors implicated to be used by various flaviviruses, 

including WNV, include the glycosaminoglycan (GAG) heparin sulfate [204-209], heat shock 

proteins [210-215], the C-type lectins DC-SIGN and L-SIGN [216-221], mannose receptor [222], 

and CLEC5A [223], laminin receptor [224], phosphatidylserine receptors TIM [225, 226] and 

TAM [225], Integrin αvβ3 [227, 228], scavenger receptor Class B type I [229], claudin-1 (a 

component of tight junctions) [230, 231], and the natural killer cell activating receptor NKp44 

[232]. Most of these studies were performed using DENV, but it is possible that a dependence 

on some or all of these receptors is shared by WNV.  
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 Keratinocytes and resident dendritic cells (DCs) are the first cells to become infected 

after a mammal is infected with WNV from percutaneous exposure through the bite of a 

mosquito, with the mosquito secreting proteins in its saliva that help facilitate infection [233]. 

Migration of infected DCs to the draining lymph nodes may aid the virus in spreading to the 

visceral organs and invasion of the central nervous system (CNS) [95], which can result in the 

most serious disease manifestations associated with WNV infection; namely aseptic meningitis 

or encephalitis. Invasion of the CNS may occur through one or more mechanisms, i.e. direct 

crossing of the blood-brain barrier (BBB), facilitated transport across the BBB by infected 

macrophages (“Trojan horse”), passage through the BBB endothelium, or retrograde axonal 

transport to the CNS via olfactory or peripheral neurons [234, 95]. Approximately 80% of 

people infected with WNV are asymptomatic, and ~20% exhibit a febrile illness. Neuroinvasive 

disease associated with WNV is rare, occurring in <1% of patients [235]. Risk factors implicated 

in the development of WNV neuroinvasive disease include advanced age, gender, alcohol 

abuse, and diabetes, among others [236-240, 95]. Additionally, individuals with the CCR5Δ32 

mutation, which confers resistance to HIV-1 infection [241, 242], are also at increased risk of 

symptomatic WNV infection [243]. 

 

WNV Vaccine Development 

 Vaccines for YFV, JEV, and TBEV have been approved for use in humans for some time 

now [244]. However, at present time, there is not an approved vaccine for use in humans for 

WNV [245], though several exist for equines [246]. The E glycoprotein is the major target of 

neutralizing antibodies, and therefore the protein has largely been the focus of vaccine 
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development [247]. There are numerous candidate human vaccines for WNV in various phases 

of research and development, utilizing a variety of strategies such as live attenuated 

viruses/chimeras, plasmid DNA, inactivated virus, E glycoprotein subunits, replicons, or virus-

like particles (VLPs) [248]. Most of these vaccines are in the preclinical stage of development, 

however two are in phase I clinical trials and a single vaccine candidate is currently in stage II 

clinical trials [248]. The latter vaccine, ChimeriVAX-WN02 (Sanofi Pasteur, France) is a chimeric 

YFV-17D virus expressing WNV prM/E genes in place of the same genes from YFV [244]. Data 

from a phase II clinical trial showed that 28 days following inoculation, seroconversion was 

achieved in >96% of subjects, and that the vaccine was highly immunogenic and safely 

tolerated by all age groups at all dosage levels [249]. A second phase II study using only subjects 

≥50 years old found that among these subjects, seroconversion rates were >92% with a single 

dose of the ChimeriVAX vaccine [250], indicating that this vaccine shows promise as a safe and 

efficacious prophylaxis against WNV. 

In addition to WNV-specific vaccines, the efficacy of existing flavivirus vaccines, such as 

for JEV or YFV, has been investigated for cross-protection against WNV [245, 251-253]. There 

has been some evidence in animal models of cross-protective immunity to WNV following 

vaccination with heterologous flaviviruses [254, 255]. In mice, only partial protection upon 

challenge with WNV was seen after vaccination with the mouse brain-derived JE-VAX (BIKEN, 

Japan) inactivated virus vaccine [256]. However, the cell culture-derived JE-ADVAX (Vaxine, 

Australia) [257], which is formulated with inactivated JEV antigen and Advax, a polysaccharide, 

plant inulin-derived adjuvant [258], showed significant protection in mice after challenge with 

WNV [245, 253]. In human studies, the results of vaccination with heterologous flavivirus 
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vaccines have been less encouraging [259, 251]. The development of an effective, safe vaccine 

for WNV has some promising prospects, but given the early stages of development for most 

potential candidates, it may be a few years before one is approved and available for use in 

humans [246]. Additionally, factors such as the low cost effectiveness of a vaccine due to the 

relatively rare incidence of disease [260], and the seasonal and relatively unpredictable nature 

of WNV infection (making the design of clinical trials problematic) [246], may further delay 

these efforts. 

 

Mosquito Innate Immune Responses to Virus Infection 

Invertebrates lack an adaptive immune system, as well as many of the effector 

molecules present in mammalian innate immune response (i.e interferon), but they possess 

sophisticated mechanisms for dealing with microbial pathogens. The following section on insect 

innate immunity was excerpted from “The Role of Innate Immunity in Conditioning Mosquito 

Susceptibility to West Nile Virus” Prasad et al Viruses 2013, 5, 3142-3170 [261], which 

attempts to focus mostly on the mosquito innate immune response to WNV infection, but 

draws heavily from published data in a variety of other invertebrate host/virus systems, and is 

included to provide a detailed overview of insect innate immune pathways and their role in 

controlling arbovirus infection. 

 

Small RNA Regulatory Pathways 

Small RNA regulatory pathways (SRRPs) are an integral component of endogenous pre- 

and post-transcriptional gene regulation. Three primary classes of small RNAs exist within 
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metazoans: micro-RNAs, (miRNAs), small-interfering RNAs (siRNAs), and PIWI-interacting RNAs 

(piRNAs), being distinguished by both the size of the small RNA product, and their biogenesis. 

Invertebrates lack type I and type III interferon (IFN) responses, which are the main innate 

immune pathways through which vertebrates respond to virus infection. Rather, in 

invertebrates, there is ample evidence highlighting the role of SRRPs in antiviral innate 

immunity. Exogenous RNA interference (exo-RNAi) via the siRNA pathway appears to be the 

primary small RNA response; however, involvement of the piRNA pathway in antiviral defense 

has recently been described in both mosquitoes and mosquito cell culture. In this section, we 

will discuss the role of these pathways and their components in the context of antiviral defense 

to WNV. 

 

Exo-siRNA Pathway 

RNA interference (RNAi) was first described in plants as a mechanism for “post-

transcriptional gene silencing” [262], and later, “virus-induced gene silencing” [263] , two 

phenomena which, at the time, were seemingly unrelated. Several years after these initial 

observations, double-stranded RNA (dsRNA) was found to be the trigger for RNAi in 

Caenorhabditis elegans [264] and Drosophila melanogaster [265]. In invertebrates and plants, 

exo-RNAi is induced by cellular recognition of long dsRNAs as pathogen-associated molecular 

patterns (PAMPs), which naturally occur as viral genome replication intermediates and genomic 

RNA secondary structures in the case of RNA viruses, and as convergent transcripts in DNA 

viruses. These dsRNAs are recognized and cleaved by Dicer-2 (DCR2), a cytoplasmic RNase III 

enzyme, resulting in 19-23 base pair (bp) fragments (predominately 21 bps) termed siRNAs. 
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siRNA duplexes produced in this manner exhibit 5’ monophosphates and 3’ hydroxyls, as well as 

two-nucleotide (nt) overhangs on their 3’ termini. These siRNAs are then loaded into the 

Argonaute-2 (AGO2)-containing  RNA-induced silencing complex (RISC) through association with 

a DCR2/R2D2 heterodimer [266]. After the duplex is unwound a single-stranded RNA known as 

the guide strand remains associated with the RISC, and is 2’-O methylated by the 

methyltransferase HEN1 [267, 268], and the complementary strand, known as the passenger 

strand, is degraded. The RISC then recognizes cognate mRNA (in this case, virus genomic RNA) 

by sequence complementarity with the guide strand. Cleavage of the target occurs through the 

Slicer endonuclease activity of AGO2 [269]. Unlike miRNAs, where mismatches between the 

guide strand and target are tolerated, even a single mismatch in complementarity between an 

siRNA and its target can result in diminished or abolished silencing [270, 271]. In this way, the 

siRNA pathway acts as a highly potent antiviral pathway in controlling arbovirus infection. 

The role of the siRNA pathway in antiviral defense in arthropods has been the subject of 

intense investigation in recent years. In Drosophila, numerous studies have demonstrated that 

RNAi inhibits virus replication [272-274]. Notably, Drosophila with a null mutant DCR2 enzyme 

exhibit ~70% mortality and dramatically higher virus titers when inoculated with Sindbis virus 

(SINV, Togaviridae), as compared to wild-type controls [273]. In mosquitoes, evidence of the 

involvement of the siRNA pathway during arbovirus infection has been observed in several 

virus/arthropod pairings, including o’nyong-nyong virus (ONNV, Togaviridae) in Anopheles 

gambiae [275], Sindbis virus (SINV, Togaviridae) in Aedes aegypti [276, 277], and DENV in Ae. 

aegypti [278]. viRNAs produced in response to WNV had been detected in Drosophila S2 cells, 

but not Ae. albopictus C6/36 cells [279] due to a dysfunctional siRNA pathway [280, 281] 
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resulting from a single nucleotide deletion introducing a premature stop codon within the open 

reading frame (ORF) of DCR-2 [282]. One potential pitfall in interpreting the results of these 

studies is the utilization of non-natural virus/vector pairings and/or infection routes (i.e 

intrathoracic inoculation), with the exception of Sanchez-Vargas et al. [278]. Brackney et al. 

utilized next-generation sequencing (NGS) to profile the antiviral RNAi response to WNV in its 

natural vector, Cx. quinquefasciatus mosquitoes, following peroral infection, and found viRNAs 

produced in the midgut of mosquitoes at 7 and 14 days post-infection (dpi) [283]. viRNAs 

produced in this manner were primarily 21 nts in length (indicative of DCR2 processing), and 

were asymmetrically distributed along the entire length of the virus genome. 

Given the requirement for high target sequence complementarity in siRNAs, it comes as 

no surprise that RNAi can drive viral diversity and evolution through the generation of RNAi-

escape mutants that differ sufficiently from the master sequence. Viral escape from one or a 

few transfected siRNAs has been observed in a variety of different systems, including hepatitis 

C virus (HCV, Flaviviridae) [284], human immunodeficiency virus-1 (HIV-1, Retroviridae) [271], 

turnip mosaic virus (TuMV, Potyviridae) [285], and poliovirus (PV, Picornaviridae) [286]. Based 

on the observation that WNV population structure was more complex in mosquitoes than in 

birds [287], it was hypothesized that the mosquito RNAi pathway may serve as a potent 

selective pressure on the virus to favor generation and maintenance of rare mutants. Indeed, a 

correlation between nucleotide targeting and increased likelihood for corresponding point 

mutations has been observed [283], though it is important to note that this observation was 

associative, and does not demonstrate causation. Taken together, these studies highlight the 

role this pathway may play in mosquito innate antiviral immunity, and shed light on how it may 
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influence virus diversification and evolution. Moreover, the error rate of the virus replicase 

complex may serve in part as an evolutionary mechanism for circumventing the mosquito 

siRNA-based antiviral response through the generation of rare mutants which differ sufficiently 

from the master sequence. This is circumstantially supported by the observation that a 

chikungunya virus (CHIKV, Togaviridae) mutant expressing a high fidelity RdRP exhibited lower 

infection and dissemination titers in mosquitoes as compared to the wild-type virus [88]. 

However, it should be noted that the molecular basis for this observation was not investigated, 

and that immunological factors other than RNAi could potentially influence the fitness of a 

genetically homogeneous virus population. 

Systemic RNAi, first described in plants and worms, is the process by which the siRNA 

response spreads beyond the site of initiation into surrounding cells and tissues (see [288] for a 

review). The mechanism of spread differs between plants and animals, with short-distance 

transport of siRNAs in plants occurring through plasmodesmal junctions connecting cells, and 

long-distance transport being mediated by the vascular system. In C. elegans, spread of the 

RNAi signal is mediated by members of the SID family of transmembrane transporters [289, 

290]. Evidence suggests that this process may occur in dipterans as well, and has broad 

implications in understanding RNAi-based antiviral immunity in these systems. Studies in flies 

have revealed a systemic RNAi pathway [291, 292], and cell-to-cell spread of viRNAs produced 

in response to Semliki Forest virus (SFV, Togaviridae) infection has been demonstrated in 

mosquito cell culture [293]. In C. elegans, primary viRNAs are amplified in a target dependent 

manner by the endogenous RNA-dependent RNA polymerase (RdRP) RRF-1, which contributes 

to systemic RNAi spread and subsequent maintenance of long-term silencing [294]. Secondary 
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viRNAs produced in this manner are composed entirely of antisense polarity, and exhibit 5’ di- 

or triphosphates, making them structurally unique, and thus a distinct class of small RNA 

molecules [295, 296]. While an RdRP capable of amplifying viRNAs has not been conclusively 

identified in dipterans, a recent publication suggests that viral RNA produced during flock house 

virus (FHV, Nodaviridae) infection in Drosophila can be reverse-transcribed into viral cDNAs 

mediated by the reverse transcriptase activity of endogenous long terminal repeat (LTR)-

retrotransposons [297]. Viral cDNA produced in this manner may then be integrated into the 

host cell genome, or circularized into stable, extrachromosomal DNA which can be efficiently 

transcribed into dsRNAs that can be fed back into the siRNA pathway, leading to a primed 

immune response, and allowing for a persistent infection to develop. Additionally, viRNAs 

produced in response to FHV infection in C. elegans have been observed to be 

transgenerationally inherited from mother to offspring in successive generations [298], raising 

the intriguing possibility that similar mechanisms of amplification and non-Mendelian, 

extrachromosomal inheritance of small RNAs may exist in mosquitoes as well, though it should 

be noted that to date, there is a lack of experimental data supporting this. Given the 

aforementioned importance of the RNAi pathway in mosquito innate immunity to viral 

infection, inheritance of viRNAs might be expected to influence mosquito vector competence 

and arbovirus populations in nature. 

 

Vago 

Cross-talk between SRRPs and other innate immune pathways is an emerging feature of 

mosquito antiviral defense against arboviruses. DCR2 belongs to the same family of DExD/H-
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box helicases as the RIG-I-like receptors, which are involved in the induction of the IFN 

response in mammalian systems. Deddouche et al. reported that the secreted peptide vago is 

induced in D. melanogaster in response to Drosophila C virus (DCV, Dicistroviridae) and SINV 

infection in the fat bodies of flies, and that induction of vago was reliant on the amino terminal 

DExD/H-box domain of DCR2 [299]. Notably, infection by FHV did not induce vago expression, 

likely due to the FHV encoded viral suppressor of RNAi, B2, which binds dsRNA thereby 

interfering with downstream signaling by DCR2. While vago was shown to control virus 

infection in this study, the mechanism by which it did so was unclear. Pradakar et al. further 

explored vago’s role in antiviral immunity using cultured mosquito cells and WNV [300]. It was 

found that vago was effective in limiting WNV infection in Cx. quinquefasciatus-derived Hsu 

cells, and that induction of vago resulted in activation of Jak/STAT signaling, leading to the 

induction of the STAT-dependent virus inducible gene vir-1, thereby restricting WNV 

replication. Although the identity of the cellular receptor for vago is currently not clear, studies 

published to date suggest that components of the RNAi pathway can have diverse, 

multifunctional roles in controlling arbovirus infections in mosquitoes. 

 

PIWI-Interacting RNA Pathway 

Recent evidence suggests that a second class of small RNAs with distinct biogenesis may 

also be induced in arthropods following virus infection. The p-element induced wimpy testes 

(PIWI) class of Argonaute proteins were first discovered in 1997 by Lin et al. and shown to be 

potent regulators of spermatogenesis in Drosophila [301]. In 2006, several studies were 

published indicating that PIWI proteins interact with a unique class of small RNAs, named PIWI-
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interacting RNAs (piRNAs; the nomenclature at the time was variable, and they were also 

referred to as repeat-associated small interfering RNAs [rasiRNA], which are now considered a 

distinct subclass of piRNAs) [302-306]. piRNAs exhibit some unique features that distinguish 

them from miRNAs and siRNAs. First, piRNAs are considerably larger than most miRNAs or 

siRNAs, the latter two ranging from 20-23 nts in length, the former 24-30 nts. Secondly, piRNAs 

are produced from single stranded precursor molecules independently of Dicer processing. Like 

siRNAs, but not miRNAs, piRNAs are modified by HEN1, which results in 2’-O-methylation at the 

3’ terminus of the RNA [268, 307]. Additionally, expression of piRNAs shows tissue specificity, 

with gonadal tissue being highly enriched for this species and associated proteins. 

Endogenously transcribed and processed piRNAs have been shown to be important repressors 

of transposable elements (TEs) in these tissues. However, expression of piRNAs has been 

detected in somatic tissue as well [308, 309]. 

Biogenesis of piRNAs is proposed to occur through two pathways: the primary pathway 

and the ping-pong dependent amplification loop. In the primary pathway, piRNAs are processed 

from single-stranded precursor molecules transcribed from genomic loci (piRNA clusters). In 

flies, primary piRNAs are associated with PIWI and Aubergine (AUB) [310], and are typically 

antisense to TEs [305]. Primary piRNAs produced in this manner exhibit a strong bias for a 

uridine residue at the 5’-terminus of the transcript (U1). These primary piRNAs are then fed into 

the ping-pong dependent amplification cycle, whereby after binding to their target transcript, 

cleavage occurs 10 nts upstream from the 5’ terminus of the primary piRNA [311, 312]. Thus, 

Argonaute 3 (AGO3)-associated secondary piRNAs exhibit an adenine residue in the 10 position 

(A10). Secondary piRNAs subsequently bind complementary transcripts, resulting in cleavage at 
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the A10-U basepairing, producing piRNAs corresponding to the sequence of the initial primary 

piRNA they were derived from, thereby restarting the cycle. 

Recently, the piRNA pathway has been implicated in antiviral immunity in invertebrates. 

A possible  hypothesis is that the piRNA pathway can act in a compensatory manner, such as 

when the siRNA pathway is overburdened or suppressed. Indeed, in Drosophila, flies with a null 

mutant PIWI protein exhibited significantly higher titers of WNV in comparison to wild-type 

controls [279]. Silencing of AGO3 in An. gambiae has been shown to result in increased 

dissemination of ONNV [275], and dsRNA-knockdown of piRNA-pathway component proteins 

has been shown to result in increased titers of SFV in Ae. aegypti-derived Aag2 cells, with 

knockdown of PIWI-4 in particular showing considerable effect in this regard [313]. Additionally, 

sequencing of small RNAs in DENV2-infected Ae. albopictus C6/36 cells, which as previously 

mentioned, have a dysfunctional siRNA pathway [280-282], revealed a shift from the 

stereotypically predominant distribution of siRNAs (19-23nts, no significant strand bias) to 

products consistent with the piRNA pathway (24-30 nts, predominately positive strand, A10 

bias) [281]. Wu et al. described a population of virus-derived small RNAs in their sequencing of 

persistently-infected Drosophila ovary somatic sheet (OSS) cells that held hallmarks of piRNAs; 

specifically, being between 24-30 nts in length, exhibiting a strong (95%) strand bias, and a 

preference for a 5’ uracil (though, notably, no bias for an A10 was seen) [314]. Similarly, 24-30 nt 

small RNAs produced in response to DENV2 in Ae. aegypti mosquitoes have been found by 

deep-sequencing [315]. Interestingly, piRNA-like small RNAs sequenced in the latter study 

exhibited no preference for a 5’ uracil, and only a slight bias for an A10 residue.  



26 
 

Recently, piRNA-like small RNAs exhibiting characteristics of ping-pong dependent 

amplification have been sequenced in mosquitoes and mosquito cells after virus infection. 

Morazzani et al. found that piRNA-like small RNAs are produced in the soma (non-ovarial tissue) 

of both Ae. aegypti and Ae. albopictus after infection with CHIKV, and that, unlike endogenously 

transcribed piRNAs, dsRNA was likely the biogenic precursor for virus-derived piRNAs [282]. 

Likewise, small RNAs from Aag2 and Ae. albopictus-derived U4.4 cells  infected with SINV 

shared these same characteristics [316]. In the same study, sequencing data from C6/36 cells 

infected with La Crosse virus (LACV, Bunyaviridae) revealed ping-pong dependent signatures in 

the piRNA-like viral small RNA population. Similar results from small RNA deep-sequencing of 

virus infected invertebrate hosts has also been seen in Rift Valley fever virus (RVFV, 

Bunyaviridae) infected mosquito cells [317], as well as Schmallenberg virus (SBV, Bunyaviridae)-

infected Culicoides sonorensis-derived KC cells and Aag2 cells, and blue-tongue virus (BTV, 

Reoviridae)-infected Culicoides and mosquito cells [318] (though notably, 24-30 nt small RNAs 

sequenced from BTV-infected cells did not exhibit signatures of ping-pong dependent 

amplification). The disparity between different virus/host pairings producing piRNAs either 

possessing or lacking signatures of ping-pong dependent amplification suggests that the piRNA 

response may be differentially modulated in response to infection by diverse viruses. 

     While no studies profiling the piRNA response in a Culex mosquito/WNV pairing have been 

published, the existing data in these numerous other infection models suggest that it too may 

play a significant role in this system. 
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WNV sfRNA as a viral suppressor of RNAi (VSR) 

Most arboviruses cause persistent infections within their arthropod vectors. This has led 

to speculation as to how these viruses maintain infection in the face of a robust RNAi response. 

In addition to the evolutionary mechanisms (i.e. the viral replicase error rate) described above, 

many plant and insect-specific viruses have developed molecular mechanisms for subverting 

the host RNAi response. For example, the previously mentioned FHV encodes a protein, B2, 

which binds to dsRNA and inhibits the function of DCR2, effectively rendering the siRNA 

pathway inert [319]. Plasmid-expressed LACV NSs protein has been shown to inhibit IFN and 

RNAi in mammalian cells and mice [320, 321]. However, NSs fails to show any RNAi-suppressive 

effect in LACV-infected C6/36 cells or in NSs plasmid-transfected U4.4 cells infected with SFV 

[320]. A recent publication demonstrated that DENV NS4b functions as a VSR in human Huh7 

cells via inhibition of dsRNA processing by Dicer [322]. However, whether NS4b behaves 

similarly in mosquitoes has not been investigated, and to date, no VSR activity has been 

described for an arbovirus protein during mosquito infection. Thus, it is currently not clear how 

arboviruses establish and maintain persistent infection of arthropods. 

Recently, intriguing evidence has been presented that viral subgenomic RNAs may 

function as VSRs in some cases. All flaviviruses studied thus far produce a sub-genomic RNA 

product (sfRNA) from the 3’ UTR of the virus genome [323]. In WNV, this RNA comprises the 

last 525 nts of the virus genome. sfRNA is produced by incomplete degradation of the viral 

genome by the cellular 5’-to-3’ exoribonuclease  XRN1, which stalls on the conserved 

pseudoknot-like structures present at the 5’-terminus of the 3’ UTR, resulting in large amounts 

of sfRNA accumulating within infected cells [324, 325]. Recent evidence using fluorescent 
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reporter assays suggests that the WNV sfRNA may act as a VSR by interfering with Dicer in a 

concentration-dependent manner [326], though this type of assay alone may be prone to 

misinterpretation, and should be corroborated by genetic rescue experiments [327].  The 

mechanism through which sfRNA exerts this effect is unclear, but it is hypothesized that it acts 

as a decoy substrate for DCR2. Interestingly, sfRNA has also been shown to act in a negative 

feedback loop by suppressing XRN1 activity due to the enzyme stalling at the 3’UTR [328], 

illustrating that multiple antiviral pathways can be manipulated by this decay product. 

 

Immune Signaling Cascades 

In addition to RNAi, there are numerous other innate immune pathways responsible for 

protecting insects from pathogenic organisms. These include the Toll, Immune Deficiency (Imd) 

and the Janus kinase (Jak)/signal transducer and activator of transcription (STAT) pathways, as 

well as the phenoloxidase (PO) cascade. Early characterization of these pathways revealed that 

the Toll pathway was activated upon challenge with gram-positive bacteria and fungi whereas 

the Imd pathway is responsive to gram-negative bacteria. In each case, signal transduction 

events initiated upon recognition of PAMPs by pattern recognition receptors (PRRs) results in 

the transcription of downstream effector molecules, specifically antimicrobial peptides (AMPs). 

The specific factors responsible for Jak/STAT activation and the downstream effector molecules 

are not well characterized, but numerous gene products are transcriptionally controlled by this 

pathway. The PO cascade is integral in wound healing and melanization of pathogenic 

organisms. Activation of PO results from cuticular damage or PAMP recognition. Traditionally 

thought to confer protection against bacterial, fungal and parasitic pathogens, recent evidence 
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suggests that these pathways may also play a role in antiviral immunity. The details of these 

pathways have been extensively reviewed previously [329, 330]. 

 

Toll Pathway 

The Toll pathway was originally described in Drosophila as an evolutionarily conserved 

signaling cascade involved in the establishment of the dorso-ventral axis as well as in many 

other developmental processes [330, 331]. It has since been characterized as having a 

significant role in innate immunity to gram-positive bacteria and fungi [332, 333]. More 

recently, some studies suggest that the Toll pathway may serve an important role in antiviral 

immunity. In 2005, Zambon et al. observed a significant increase in the expression of the Toll 

regulated AMPs, Drosomycin and Metchnikowin, upon Drosophila X virus (DXV; Birnaviridae) 

challenge of Drosophila [334]. It was further shown that flies lacking a functional Toll pathway 

were significantly more susceptible to DXV challenge. Similarly, it was determined that Toll 

pathway components and AMPs were significantly up-regulated upon DENV infection of Ae. 

aegypti mosquitoes [335]. Further, suppression of Cactus (a negative regulator of Toll signaling) 

or MyD88 (a Toll signaling adapter protein) resulted in modest but significant reductions and 

accumulations of infectious DENV particles in the mosquito midguts, respectively [336]. These 

findings were confirmed by another study in which Toll pathway components were up-

regulated upon DENV infection of Ae. aegypti salivary glands [337]. In addition, a modest 

increase in Dif (a Toll inducible NF-κB transcription factor) was recognized during early stages of 

SINV infection of Ae. aegypti [338]. Together, these data suggest that the Toll pathway plays a 
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role in antiviral immunity in insects; however, others have observed conflicting results [339-

341].  

Colpitts et al. observed significant reductions in the expression levels of the Ae. aegypti 

ortholog of Drosophila Spӓtzle 5 (an upstream signaling peptide of the Toll pathway) upon Ae. 

aegypti infection with three flaviviruses; WNV, yellow fever virus (YFV, Flaviviridae) and DENV 

[339]. In addition, transcript levels of the Ae. aegypti ortholog to Drosophila Toll was reduced 

upon YFV infection. These findings challenge those previously published by Xi et al. [335]. Many 

confounding factors may account for this difference, including but not limited to experimental 

design, mosquito strains, virus strains and/ or environmental conditions. The authors of this 

study did not directly address these discrepancies, but rather suggested that viral-associated 

reductions potentially indicate an evolved mechanism by which arboviruses suppress antiviral 

pathways. However, there is currently no evidence supporting this. Using the SFV – Aedes U4.4 

cell system, Fragkoudis et al. observed a down-regulation of Toll pathway component transcript 

levels upon infection by SFV. Furthermore, prior activation of the Toll pathway did not seem to 

adversely affect SFV replication in U4.4 cells [340]. From these studies it is difficult to determine 

with confidence the contribution of the Toll pathway to antiviral immunity of insects as a 

whole. However, these findings may indicate that Toll-mediated antiviral activity is specific to 

each virus–insect pairing. With regards to WNV, little is known about the role of this pathway 

during infection of insects except for the apparent down-regulation of the Spӓtzle5-like 

cytokine during infection of Ae. aegypti mosquitoes and that none of the canonical Toll 

pathway genes and/or associated AMPs were significantly altered during WNV infection of Cx. 

quinquefasciatus [341]. Further research will be needed to fully elucidate the possible 
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contributions of Toll pathway mediated antiviral immunity during WNV infection of 

mosquitoes.   

 

Immune Deficiency (Imd) Pathway 

The Imd pathway is another immune signaling cascade of insects and bears striking 

similarities to the Tumor Necrosis Factor (TNF) pathway of mammals. It was initially described 

after the identification of a mutant Drosophila line that had significantly decreased levels of 

numerous AMPs, yet maintained normal levels of another AMP, Drosomycin [332, 342, 343]. 

These findings indicated that the expression of AMPs were controlled by two or more 

regulatory cascades. It was later determined that imd mutant flies were highly susceptible to 

infection with gram-negative bacteria yet maintain resistance to gram-positive bacteria and 

fungi [330]. Recently, the Imd pathway has been implicated in antiviral immunity in insects. The 

first indication of the potential significance of the Imd pathway during viral infections was 

observed in the Drosophila - cricket paralysis virus (CrPV; Dicistroviridae) model [344]. 

Somewhat paradoxically, the authors found that while AMPs were not up-regulated during 

infection with CrPV, suggesting that neither the Imd or Toll pathways were responsive to CrPV 

infection, mutant flies lacking components of the Imd pathway were more susceptible to viral 

infection resulting in shortened lifespan and increased viral replication. Together, these data 

suggest that Imd activation is uncoupled from AMP induction during infection with CrPV, and 

implies that induction of the Imd pathway results in transcription of several other genes with 

presently unknown roles in immunity [345]. The role of the Imd pathway in antiviral immunity is 

further supported by the observations of Avadhanula et al. and Huang et al. Using a novel SINV 
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replicon transgenic Drosophila line, the authors observed increased AMP expression as well as a 

modest but significant increase in susceptibility of Imd-deficient lines to SINV challenge [346, 

347]. Additionally, Sigma virus (SIGMAV; Rhabdoviridae) infection of Drosophila induced the 

expression of numerous Imd controlled AMPs; however, the significance of these observations 

on SIGMAV replicative fitness or fly survivorship were not assessed [348]. While there have 

been several studies implicating the role of Imd during antiviral immunity, there have been just 

as many suggesting otherwise. The induction of almost all AMPs were observed during DXV 

infection of Drosophila, yet mutant flies lacking a functional Rel (an Imd inducible transcription 

factor) were no more susceptible to DXV challenge than the controls [334]. Further, a lack of 

AMP induction was observed during DCV infection of Drosophila [299, 349]. As with the Toll 

pathway, it is difficult to discern the significance of the Imd pathway in antiviral immunity based 

on these studies. This uncertainty is further confounded by the fact that the majority of these 

viruses do not naturally infect Drosophila, with the exception of SIGMAV and DCV.  

These ambiguities in the literature also encompass mosquito–virus interactions. 

Recently, a cecropin-like peptide presumed to be under the control of the Imd signaling cascade 

was found to be significantly induced upon DENV infection of Ae. aegypti salivary glands [337]. 

Characterization of this peptide revealed that it could potently inhibit DENV and CHIKV 

replication in mosquito cell culture. However, the significance of its antiviral effect has not been 

confirmed with in vivo knock-down studies. In addition, other studies have observed either 

down-regulation or insignificant differences in the expression of Imd-controlled AMPs or 

pathway components during SFV infection of Aedes U4.4 cells or ONNV infection of An. 

gambiae [340, 350], although in the former study, decreased SFV replication in Imd and 
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Jak/STAT activated U4.4 cells was observed. The biological relevance of these findings is difficult 

to determine at this time because functional assays assessing their significance during natural 

infections of adult mosquitoes have not been performed. Studies investigating the role of Imd 

during WNV infection of mosquitoes are lacking, and it remains to be seen what if any effect 

this pathway has on shaping antiviral immunity to WNV in relevant mosquito vectors; however, 

it was demonstrated that Imd gene transcripts and/or associated AMP transcripts were 

unaltered during WNV infection of Cx. quinquefasciatus [341].  

 

Jak/STAT Pathway 

The Jak/STAT pathway is an evolutionarily conserved pathway first described for its role 

in embryonic segmentation in Drosophila [351]. Subsequently it was determined that it has an 

important role in antibacterial defense. It is composed of the three major components, the 

receptor Domeless, the Janus Kinase (Jak) Hopscotch, and the transcription factor STAT [352, 

353, 351]. Unlike the Toll and Imd pathways, a well characterized subset of inducible effector 

AMPs have not been associated with this pathway; however, a handful of inducible genes 

containing a STAT binding site in their promoters have been identified, with some of these gene 

products appearing to have antiviral effects. 

The initial findings implicating a role of Jak/STAT in antiviral immunity in insects were 

observed in the Drosophila–DCV model. By performing microarray analysis on bacterial, fungal, 

and DCV challenged flies, the authors identified a subset of gene products that were up-

regulated during DCV infection but not during fungal or bacterial challenge [349]. Upon closer 

inspection the authors identified a gene, vir-1, that contained the STAT binding site within its 
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promoter and was strongly induced during DCV and FHV challenge. Furthermore, it was 

demonstrated that Jak/STAT deficient flies were more susceptible to DCV challenge as 

determined by increased DCV replication and increased mortality. These results were 

confirmed by studies performed by Kemp et al. who also demonstrated that the Jak/STAT 

pathway was important in Drosophila antiviral immunity to CrPV [354]. Interestingly, when 

Jak/STAT deficient flies were challenged with five other evolutionarily divergent viruses, 

including SINV, DXV and FHV, the authors found no effect on the survivorship of the flies. These 

results indicate that Jak/STAT involvement in antiviral immunity may be specific to each virus–

insect pairing and not broadly applicable to all systems.  

A role for Jak/STAT involvement in mosquito immunity to arboviruses has been 

described. Specifically, components of the Jak/STAT pathway as well as Jak/STAT inducible gene 

products were found to be up-regulated upon DENV infection of Ae. aegypti mosquitoes [355, 

335]. Included in these findings were two novel Jak/STAT inducible genes termed Dengue Virus 

Restriction Factors 1 and 2 (DVRF1-2). Further, it was demonstrated that suppression of these 

two genes resulted in 2.5- and 2.2-fold increases in DENV-2 replication in mosquitoes, 

respectively [355]. In addition, a recent study demonstrated that WNV induces the expression 

of vago in Hsu cells. Subsequent silencing of vago increased WNV titers. The antiviral effect of 

vago expression was determined to arise from downstream vir-1 activation via vago-induced 

Jak/STAT signaling. Studies in mosquitoes will be needed to validate the in vivo role of vago in 

controlling arbovirus infection. As with the Toll and Imd pathways others have observed 

conflicting data on the role of Jak/STAT pathway in antiviral immunity. In these studies there 

were no indications of Jak/STAT up-regulation upon infection in four separate virus – vector 
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models (ONNV/An. gambiae, SFV/Aedes U4.4 cells, WNV-DENV-YFV/Ae. aegypti, WNV/Cx. 

quinquefasciatus) [350, 340, 339, 341]. However, as previously mentioned, activation of the 

Jak/STAT pathway prior to SFV infection resulted in reduced viral replication in U4.4 cells. From 

these studies it is difficult to accurately assess the importance of the Jak/STAT pathway in 

antiviral immunity. Future studies assessing the importance of this pathway on arboviral 

infection, dissemination and transmission rates within mosquitoes will help clarify its 

significance. In the context of WNV and mosquitoes, this holds true especially considering the 

systems utilized; however, it is difficult to determine the relevance considering that one study 

was limited to cell culture and the other in an ancillary vector. Additional research into the role 

of Jak/STAT in antiviral immunity in primary mosquito vectors is clearly required in order to fully 

understand its possible influence on mosquito antiviral responses. 

 

Phenoloxidase (PO) Cascade 

Among arthropods, the PO cascade is an evolutionarily conserved extracellular pathway 

responsible for wound healing and melanization of bacterial and parasitic pathogens [329]. This 

pathway can be induced by cuticular damage or upon recognition of PAMPs. This in turn 

activates a serine protease cascade ultimately resulting in the activation of the 

prophenoloxidase activating enzyme (PPAE). Active PPAE cleaves the prophenoloxidase 

zymogen to produce PO, which catalyzes the conversion of mono- and diphenolic substrates to 

quinones, which are then converted to melanin [329]. While direct melanization of viruses has 

not been observed, there is evidence that by-products of the pathway may have antiviral 

effects. It was demonstrated that plasma from the tobacco budworm has virucidal effects on 
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Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV; Baculoviridae) and chemical 

inhibition of PO resulted in increased viral titers [356, 357]. It was also determined that 5,6 

dihydroxyindole, a byproduct of the PO cascade, could almost completely inactivate 

Autographa californica nucleopolyhedrovirus (AcMNPV; Baculoviridae) in vitro [358]. Similar 

antiviral activity has been observed in mosquitoes. Tamang et al. observed increased SINV titers 

in Armigeres subalbatus mosquitoes after suppression of prophenoloxidase I [359]. Such 

observations were also found during SFV infection of U4.4 cells. Specifically, recombinant SFV 

over-expressing an inhibitor of the PO cascade was able to replicate to significantly higher titers 

than the control virus. It was further determined that inhibition of the PO cascade could 

decrease the survivorship of SFV infected Ae. aegypti [360]. The authors went on to 

demonstrate that the specific effector molecules involved in the antiviral effects were the 

pathway intermediate quinones. The specific nature of their antiviral effect remains to be 

determined. Together, these studies highlight the potential role of the PO cascade in insect 

immunity to arboviruses. These are the first studies to assess the role of the PO cascade in 

antiviral immunity in mosquitoes and it will be interesting to see if this antiviral effect is 

conserved among other virus – vector pairings. Future research into the involvement PO 

cascade during WNV infection of Culex spp. mosquitoes is warranted.    

 

Cellular Processes 

In addition to RNAi and the PAMP-induced signaling cascades previously discussed, 

evidence suggests that multi-functional cellular processes can have significant effects on 

arboviruses in arthropods. Cellular processes, such as apoptosis and autophagy, are important 
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in maintaining homeostasis in multicellular organisms and integral to their development. 

Autophagy, in effect, is the recycling center of the cell. It serves an important role in removing 

damaged organelles and protein aggregates which can put undue stress on the cell, ultimately 

reducing their constituent macromolecules to basic molecular building blocks and sources of 

energy. In addition, it appears to function as an innate immune defense against numerous 

prokaryotic and eukaryotic intracellular pathogens [361, 362]. Interestingly, the role of 

autophagy during viral infections is not well defined. In some systems, autophagy functions in 

an antiviral capacity while in others it can be commandeered and utilized in a pro-viral manner 

[363]. However, to date, little is known about the role of autophagy during arboviral infections 

of arthropods with the exception of the studies discussed below, which indicate a role in 

antiviral immunity. Apoptosis is the process of programmed cell death (PCD) which plays an 

integral role in eliminating old, injured or defective cells from organisms. This process can be 

differentiated from necrosis by its ability to control the release of cellular components in 

apoptotic bodies which can be scavenged by phagocytic cells and thereby diminishing any 

potential immunologic over-reaction [364]. It has been observed that such an approach to 

stress-induced cell death could predispose viruses and their associated PAMPs to antigen 

presenting cells. Not coincidently many viruses have devised mechanisms by which to subvert 

or avoid apoptosis altogether [365]. In recent years it has become evident that apoptosis may 

function as an antiviral defense in insects especially with regards to arboviruses.      
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Autophagy  

Autophagy is an evolutionarily conserved pathway that serves an important role in 

maintaining cellular homeostasis and cell survival [366]. Induction of autophagy results in the 

formation of double-phospholipid membrane vesicles termed autophagosomes which 

sequester the targeted organelles and proteins. Subsequently, the autophagosomes fuse with 

lysosomes forming autolysosomes which mediate degradation of the contents [367]. During 

normal growth conditions autophagy maintains cellular homeostasis by degrading unwanted or 

damaged organelles and protein aggregates. In times of cellular stress, autophagy catabolizes 

these cellular components thereby generating a pool of energy and macromolecules that 

maintain crucial cellular functions until favorable growth conditions return [366]. In addition, it 

appears to play a significant role in antiviral immunity in invertebrates. Shelly et al. 

demonstrated that deletion of autophagy-related genes (Atg’s) increased vesicular stomatitis 

virus (VSV; Rhabdoviridae) replication and decreased Drosophila survivorship [368]. It was later 

demonstrated that pre-formed PAMPs in the context of UV-inactivated virus appear to interact 

with Toll-7 at the plasma membrane, which leads to the activation of autophagy independently 

of the canonical Toll pathway [369]. These studies were the first to examine the antiviral role of 

autophagy to an arbovirus in the context of an invertebrate host. Additional studies are 

required in order to clarify whether these findings can be replicated in natural virus–vector 

pairings. 
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Apoptosis 

Apoptosis is a conserved mechanism of programmed cell death in multicellular 

organisms [370] that is critical to a variety of biological processes including embryonic 

development, maintenance of homeostasis, and lysis of virus-infected cells by cytotoxic T-

lymphocyes [364]. In vertebrates, apoptosis may be induced through two known pathways: the 

extrinsic, or death-receptor pathway, and the intrinsic, or mitochondrial pathway [371], though 

in dipterans only the intrinsic pathway is known to exist [372]. 

Many viruses from diverse families encode anti-apoptotic genes, such as inhibitors of 

apoptosis (IAPs), p53-binding proteins, and bcl-2 homologs. This has led to the hypothesis that 

apoptosis functions as an innate immune pathway in response to viral infection [365]. FHV 

strongly induces apoptotic events in Drosophila DL-1 cells through depletion of the Drosophila 

inhibitor-of-apoptosis-1 (DIAP1) protein, a negative regulator of initiator caspase DRONC and 

effector caspase DrICE; however, replication of FHV is not negatively impacted by apoptosis 

[373]. Similar depletion of host cell IAPs were observed in DL-1 cells [374] and Spodoptera 

frugiperda (order Lepidoptera) SF21 cells [374, 375] infected with AcMNPV, which encodes its 

own viral IAP, p35, with depletion of IAPs in both cell lines being triggered by viral DNA 

replication [374]. However, p35-deficient mutant viruses demonstrated reduced infectivity of 

SF21 cells, and reduced infectivity and lethality in Spodoptera frugiperda larvae [376]. 

Furthermore, studies in flies infected with FHV or AcMNPV reveal that rapid induction of 

apoptosis by the upstream regulator p53 limits viral gene expression and proliferation [377], 

further highlighting the importance of apoptosis in controlling virus infection in these systems. 
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Numerous studies have investigated the role apoptosis plays in arbovirus infection 

models. Apoptosis is a natural consequence of arbovirus infection in mammalian cells, where 

cytopathic effect (CPE) is frequently seen; conversely, most arboviruses are thought to cause 

minimal cytopathology in insect cells, instead resulting in non-lytic, persistent infections [170, 

171]. However, cell death consistent with apoptosis has been observed in mosquito midgut and 

salivary gland tissues following infection with a variety of arboviruses [172, 174, 176-179, 175, 

173], including WNV. With regards to WNV, apoptosis in the midgut epithelium [177] or salivary 

glands [174, 173] of Cx. pipiens or Cx. quinquefasciatus mosquitoes was associated with a 

resistance to infection or reduced ability to transmit virus, respectively. Thus, an attractive 

hypothesis is that apoptosis functions in an antiviral capacity to arbovirus infection in 

mosquitoes, and that it may be more likely to occur in mosquitoes incapable of vectoring a 

particular virus rather than permissive hosts [378, 379]. Indeed, pro-apoptotic genes in a 

refractory strain of Ae. aegypti mosquitoes were significantly up-regulated between 24 and 48 

hours post-infection (hpi) in response to DENV2 infection as compared to a susceptible strain of 

Ae. aegypti or blood-only fed mosquitoes from the same strain [380]. In the same study, 

dsRNA-knockdown of the caspase inhibitor AeIAP1 in two susceptible strains converted the 

phenotype from susceptible to refractory, and knockdown of initiator-caspase AeDronc in the 

refractory strain resulted in increased permissiveness to DENV2 infection. The same group 

previously reported up-regulation of pro-apoptotic genes in the DENV2-susceptible strain in 

comparison to the refractory strain at 48 hpi [381], indicating that apoptotic events controlling 

virus infection may be induced acutely and rapidly limit the course of infection. However, it is 

important to note that neither of these studies directly measured apoptotic events in midgut 
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tissue after DENV2 infection, and that the methods used to measure differential gene 

expression were different between studies (qPCR and suppressive subtractive hybridization, 

respectively [380, 381]). Conversely, modulation of apoptosis by RNAi-mediated silencing of 

either apoptosis inhibitors or initiators in Ae. aegypti subsequently infected with SINV produced 

results contrary to the hypothesis that apoptosis acts in an antiviral manner to arbovirus 

infection in mosquitoes [382]. Specifically, inhibition of apoptosis led to decreased infection 

and dissemination rates, and induction of apoptosis led to greater infection and dissemination. 

The authors speculate that experimental systemic induction or inhibition of apoptosis prior to 

virus infection, in contrast to apoptosis being stimulated in individual cells in response to virus 

infection, resulting in widespread destruction of structural barriers to viral 

infection/dissemination, may account for this apparent discrepancy. In summary, the variety of 

studies in mosquitoes investigating the role of apoptosis in response to arbovirus infection 

strongly implicate the pathway as contributing to the acute antiviral response; and that either 

the presence or lack of an effective apoptotic response has important consequences for vector 

competence in mosquitoes. 
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Chapter 2: Small RNA Profiling of the Anti-WNV Response in Field-Collected Culex sp. 

Mosquitoes: Evidence for Stereotypical Targeting of the Viral Genome and Comparison to 

Colonized Mosquitoes 

 
 
 
Introduction 

Vertebrates and invertebrates differ in their mechanisms for combatting microbial 

infections. Vertebrates possess both innate and adaptive immune systems; however, 

invertebrates lack an adaptive immune system entirely, as well as several important innate 

immunity antiviral effector molecules found in vertebrate systems (i.e. IFN). Most eukaryotic 

organisms possess pathways for recognizing pathogen-associated molecular markers (PAMPs). 

PAMPs are recognized by pattern recognition receptors (PRRs), which can be membrane bound, 

cytoplasmic, or secreted. Double-stranded RNA (dsRNA) is a PAMP which acts as a potent 

trigger for the RNA interference (RNAi) pathway, the major innate immune response to virus 

infection in invertebrates, including dipterans such as mosquitoes [383]. Processing through the 

RNAi pathway involves endonucleolytic digestion of dsRNA into 19-23 bp small-interfering RNA 

(siRNA) duplexes, of which a single strand, known as the guide strand, is loaded into the RISC 

and facilitates sequence-specific degradation at complementary regions of target transcripts 

(such as viral RNA). Numerous studies have investigated the role of RNAi in modulating 

arbovirus infection in mosquitoes [275, 384, 276, 278, 283, 315, 282, 279, 293, 281, 316, 317]. 

However, many questions remain to be answered regarding the extent of variation in this 

response across mosquito species and populations within species.  
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The historical and current literature clearly demonstrates that mosquito species, 

populations within species, and individuals within populations vary in their intrinsic ability to 

become infected with a pathogen, support its replication, and eventually transmit to a 

vertebrate host (i.e. in their vector competence) [121, 122, 124, 123, 125-127]. The extent to 

which mosquito innate immunity to virus infection contributes to this well documented 

variation in vector competence is poorly understood. The importance of RNAi in controlling 

virus infection in insects is evident given that (1) mosquitoes engineered either by transgenesis 

[18] or by co-infection with a recombinant heterologous virus [385-387] to express dsRNA 

against a given virus are resistant to infection, and (2) mosquitoes [388] or flies [389, 273] or 

their cells [390] that have deficiencies in the RNAi pathway may rapidly succumb to virus 

infection. On the other hand, competent mosquitoes infected by West Nile virus (WNV, 

Flaviviridae) [283] and other viruses such as dengue virus (DENV, Flaviviridae) [315], Sindbis 

virus (SINV, Togaviridae) [276], and chikungunya virus (CHIKV, Togaviridae) [282] mount robust 

RNAi-based responses that seem to have minimal impact on virus replication. Importantly, no 

published studies of mosquito RNAi have examined field-collected populations of vector 

mosquitoes. This is a critical shortcoming since these are the mosquitoes that are generally 

responsible for virus transmission in nature. 

Accordingly, we sought to investigate the extent of variation in the anti-WNV small RNA 

response in natural and colonized populations of mosquitoes. We hypothesized that mosquito 

species and populations within a species may vary quantitatively and/or qualitatively in their 

RNAi response to viral infection. Specifically, we reasoned that differences in either the 

robustness of the response, the targeting of the viral genome, and the pathways involved may 
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differentially influence mosquito vector competence and viral genetic diversity. We profiled the 

antiviral small RNA response to WNV in three primary vector species (Culex sp.), as well as 

Aedes aegypti, a species which is not believed to contribute to the maintenance or 

transmission, but which exhibits competence to WNV under laboratory conditions. Our results 

demonstrate that an anti-WNV small RNA response is largely conserved among WNV vector 

species, but that one species, Cx. quinquefasciatus, demonstrates potentially significant 

deviation from the stereotypical response that we found in other mosquitoes.  

 

Materials and Methods 

Mosquito Field Collections, Rearing and Species Identification 

Oviposition traps were baited with an infusion of rabbit food pellets fermented in water 

for 5-7 days. Traps were checked daily, and Culex egg rafts were collected in individual 50 mL 

conical tubes with water and taken back to the laboratory and allowed to hatch in individual 

larval rearing bins. Cx. quinquefasciatus mosquitoes were collected in two sites in New Mexico 

separated by ~20 miles: Albuquerque (designated as ABQ) and Bernalillo (BERN). Cx. tarsalis 

egg rafts, which were not found in oviposition traps, likely because Cx. tarsalis prefers to 

oviposit in cleaner water [391], were collected from flooded tire tracks at the Turfmaster Sod 

Farms located northeast of Fort Collins, CO (designated as FC Cx. tarsalis). Cx. pipiens egg rafts 

were collected in Fort Collins, CO (designated as FC Cx. pipiens). Larvae were raised on a diet of 

powdered Tetra fish food or a 1:1 mix of powdered Tetra food and powdered rodent chow. 

Species identification was done using both L3/L4 larval morphology and a confirmatory PCR-

based assay which differentiates multiple possible Culex species based on the interspecies 
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sequence variation in the spacer regions of ribosomal DNA (rDNA) segments [392, 393]. DNA 

was extracted from L3/L4 larvae using Wizard Genomic DNA Purification Kits (Promega, 

Madison WI) or DNeasy Blood and Tissue DNA extraction kits (Qiagen, Valencia CA). After 

confirming the species of larvae from individual egg rafts, larvae were pooled according to 

species and collection site and allowed to pupate and emerge into ice-cream cartons. Adult 

mosquitoes were kept at 26-27 ⁰C with a 16:8 light:dark cycle and 70%-80% relative humidity, 

with water and sucrose provided ad libitum. Colonized Cx. quinquefasciatus (designated here 

US-Cxq, a longstanding colony of unknown duration originating from U.S. [394]), Cx. pipiens 

(designated here as PA-2004, established in 2004 from Pennyslvania collections [394]), Cx. 

tarsalis (KR83; established in 1983 from Kern County, CA collections [395]), and Ae. aegypti 

Higgs White Eye (HWE, a white-eye mutant strain of Puerto Rico, Rexville D mosquitoes [18]) 

and Rockefeller (longstanding strain possibly originating from a Havana, Cuba colony 

established in 1881 by Carlos Finlay [396]) strain mosquitoes were raised in identical conditions. 

 

Viruses and Experimental Infections 

WNV was produced from an infectious clone based on the New York 1999 (WNVNY99) 

strain of the virus as described previously [397, 283]. Briefly, the plasmid containing the full-

length infectious cDNA clone was linearized, and then in vitro transcribed into the infectious 

viral genomic RNA. Purified viral RNA was electroporated into BHK-21 cells, with the 

electroporation parameters set to 425 V, 1200Ω resistance, 25µF capacitance, and two pulses. 

Cell supernatant was collected after cells showed obvious signs of cytopathic effect (CPE; 

usually ~3 days post-electroporation). Cellular debris was removed from the supernatant by 
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centrifugation at ~3000 g, clarified supernatant was raised to a final concentration of 20% fetal 

bovine serum (FBS), and aliquots of 0.5 mL were made and stored at -80⁰C. Virus titer was then 

quantified by plaque assay on Vero cells. Virus produced in this manner exhibits a high degree 

of genetic homogeneity [398] and is well characterized phenotypically [399]. Adult female 

mosquitoes 6-8 days post-eclosion were fed an infectious bloodmeal of defibrinated goose 

blood or sheep blood mixed 1:1 with ~2 X 108 PFU/mL of infectious clone derived WNV 

(WNVicd) and raised to a final concentration of 2mM ATP. Uninfected control mosquitoes were 

fed a 1:1 mix of defibrinated sheep blood and uninfected BHK-21 cell supernatant raised to a 

final concentration of 2mM ATP. Engorged mosquitoes were held for 7 or 14 days in a BSL-3 

insectary with the same rearing conditions described previously, after which they were cold 

anesthetized, and midguts dissected and stored in miRvana RNA isolation lysis buffer (Ambion, 

Austin TX) at -80⁰C until needed for RNA isolation. 

 

Total RNA Isolation and Small RNA Library Preparations 

Total RNA was extracted from homogenized mosquito midguts using the miRvana 

miRNA isolation kit (Ambion) as per manufacturers suggested protocol for total RNA isolation. 

Eluted RNA from individual midguts were screened for the presence of WNV genomic RNA by 1-

step RT-PCR (Qiagen) using 1971-F (5’-TTGCAAAGTTCCTATCTCGTCAG-3’) and 2928c (5’-

CCAAATCCAAAATCCTCCACTTCT-3’) primers (numbers in primer designation denote genome 

position). RNA samples positive for WNV RNA were checked for RNA quality on a 2100 

Bioanalyzer (Agilent, Santa Clara CA), and then pooled into groups of 5 midgut RNAs. Pooled 

RNAs were precipitated by adding 3.25 volumes of ice-cold EtOH, 0.1 volume 3M NaOAc (pH 
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5.5), and 1.5 µL of linear polyacrylamide (5 mg/mL) as a carrier. After holding overnight at           

-20⁰C, the pools were centrifuged at ~20,000 g, washed twice with 80% EtOH, and re-

suspended in nuclease-free water. 1 µg total RNA was used as the input for small RNA library 

preparation using either the Illumina v1.5 Small RNA Prep Kit (ABQ, BERN, and Colony WNV 

14dpi sRNA libraries) or the TruSeq Small RNA Sample Prep Kit (all others) (Illumina, San Diego 

CA) as per manufacturer’s suggested protocol. Briefly, small RNAs were preferentially 3’ and 5’ 

adapter-ligated, reverse transcribed using the Superscript II reverse transcriptase (Invitrogen, 

Carlsbad CA), and PCR amplified (and in the case of TruSeq libraries, barcoded for multiplexing). 

Small RNA libraries were size selected on 6% TBE PAGE or 2% TBE-agarose gels, and purified by 

either overnight elution of the gel slice in nuclease-free water while rocking in the case of 

PAGE, or with MinElute Gel Extraction kits (Qiagen) in the case of agarose gels. Purified small 

RNA cDNA libraries were eluted in either water (PAGE gel slices) or Qiagen EB buffer (agarose 

gel slices) and sequenced on either Illumina GAIIx (Cx. quinquefasciatus ABQ, BERN, and US-Cxq 

WNV 14dpi, Ae. aegypti Rockefeller WNV 7dpi libraries) or HiSeq 2000 instruments (all others). 

 

Assembly and Analysis of sRNA Libraries 

Sequence FASTQ files were trimmed of the 3’ adapter using FASTX Toolkit [400] and 

aligned to the WNV infectious clone reference genome using Bowtie 0.12.8 [401] and allowing 

for 0-mismatches. The -a --best --strata mode was used, which instructs Bowtie to report only 

those alignments in the best alignment stratum. SAM output files produced by Bowtie were 

used as the input for processing through SAMtools [402]. Additional analyses were conducted 
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using Microsoft Excel, Graphpad Prism 6, and viRome, an R package for the analysis of viral-

derived small interfering RNA (viRNA) sequencing data [403]. 

 

qRT-PCR 

WNV genome equivalents were determined using a Taqman qRT-PCR assay amplifying a 

70bp fragment within the WNV E gene (described in [404]). 5 µL of total RNA from individual 

mosquito midgut samples used to construct our small RNA sequencing libraries or genome 

equivalent standards were used as the template in duplicate 20 µL reactions using the iScriptTM 

1-Step RT-PCR Kit for probes (Biorad, Hercules CA) with reagent ratios as per the 

manufacturer’s suggested protocol. The following primer and probe sequences were used for 

this assay: 1160-F (5’-TCAGCGATCTCTCCACCAAAG-3’), 1229-R (5’-GGGTCAGCACGTTTGTCATTG-

3’), and 1207-Probe (5’-TGCCCGACCATGGGAGAAGCTC-3’). Reactions were run on a CFX-96TM 

real-time system (Biorad). WNV genomic equivalent standards were previously generated by 

amplifying a 2.4 kb fragment from the WNV E gene using WNV 1031-F (5’-

ATTTGGTTCTCGAAGGCGAC-3’) and WNV 3430-R (5’-TGGTGGTAAGGTGCAGCTCC-3’) primers. 

The resulting amplicon was then cloned into the pCR2.1-TOPO vector (Invitrogen, Carlsbad CA) 

downstream of the T7 promoter. The recombinant vector was linearized with KpnI, purified and 

used as template for in vitro transcription using the T7 Megascript kit (Ambion) according the 

manufacturer’s instructions. In vitro transcribed RNA was then quantified and aliquoted into 

serial ten-fold dilutions. 
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Statistical Analysis 

Nucleotide targeting plots of the viral genome were generated using the pileup function 

of SAMtools. Differences in the relative proportion of viRNAs by size class (i.e 19-23nts and 24-

30nts) were determined using Tukey’s multiple comparison test. Correlational analysis between 

separate data sets was conducted using the non-parametric Spearman rank coefficient rs. 

Differences in mean rs values for each species were computed using an unpaired t-test with the 

Holm-Sidak correction for multiple comparisons. 

 

Results 

Field-collected Cx. spp. mosquitoes exhibit a stereotypical viRNA response to WNV 

Sequencing of small RNAs from field-collected Cx. quinquefasciatus mosquito midguts at 

14 days post WNV infection revealed that they exhibit a stereotypical distribution of 19-23 nt 

viRNAs, with the 21 nt population of small RNAs being the most prevalent, as previously 

reported in colonized Cx. quinquefasciatus mosquitoes (Figure 2.1) [283].  While there was no 

significant difference in the relative abundance of 19-23nt viRNAs (consistent in size with 

products of the DCR-2-dependent siRNA pathway) across the three groups, 24-30nt viRNAs 

(consistent in size with products of the DCR-2-independent PIWI-interacting [piRNA] pathway) 

were significantly different across all three groups, with the ABQ group in particular being 

highly enriched for this population of small RNAs. viRNAs of 19-23nts were asymmetrically 

distributed along the length of the virus genome, exhibiting both “hot” and “cold” spots of 

targeting (Figure 2.2). Approximately 70% of the 19-23nt viRNAs in all three groups were 

derived from the positive strand of the virus, in congruence with what has previously been 
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described for Cx. quinquefasciatus mosquitoes infected with WNV [283]. In contrast, in both the 

ABQ and BERN groups, >90% of viral derived piRNA-like small RNAs (vpiRNAs) from 24-30nts 

were derived from the positive strand, consistent with the strong strand bias exhibited by 

piRNAs [282, 316] (Figure 2.3). However, this population of small RNAs lacked signatures of 

ping-pong dependent amplification, which have been observed in alphavirus [282, 313, 316] 

and bunyavirus [316-318] infected insects or insect cells, but not flaviviruses [281, 315] or 

reoviruses [318]. In the colonized group, only roughly 70% of 24-30nts viRNAs were derived 

from the positive strand, and these comprised only slightly greater than 1% of the total 19-30 nt 

viral-derived small RNA population 

 We next expanded the study to include additional mosquito species. We collected egg 

rafts of both Cx. pipiens and Cx. tarsalis mosquitoes in Fort Collins, CO (FC) and infected 

emerged adult females with WNV per os. Additionally, we infected colonized Cx. tarsalis, Cx. 

pipiens, and Ae. aegypti mosquitoes in the same manner. Midguts were harvested from 

mosquitoes at 7 and 14 dpi, and small RNA sequencing libraries were made from pools of 5 

infected midguts per timepoint (only the 7 dpi timepoint was sequenced for the Ae. aegypti 

libraries). Distribution of viRNAs by length was similar to that seen in Cx. quinquefasciatus 

mosquitoes, and there was significant variation in the percentage of 24-30nt viRNAs amongst 

field-collected and colonized groups within the same species (Figure 2.4A and 2.4B). 

Interestingly, small RNA profiles at 7dpi from both FC Cx. pipiens and Cx. tarsalis failed to show 

a prominent peak at 21nts though by 14dpi the profiles appeared typical. Rather, these libraries 

exhibited a more or less even distribution of viRNAs from 19-30nts. Due to this, we compared 

these libraries to each other, but excluded them from all other intra- and interspecies 
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comparisons, and found a high degree of correlation (rs= 0.85, data not shown).  The 

percentage of 19-23nt and 24-30nt WNV viRNAs out of the entire 19-30nt population of small 

RNAs varied greatly amongst all of the libraries, including in the Cx. tarsalis KR83 experimental 

replicates (Table 2.1). As seen in Cx. quinquefasciatus, WNV viRNAs were asymmetrically 

distributed along the length of the viral genome in the Cx. pipiens, Cx. tarsalis, and Ae. aegypti 

data sets. The positive strand/negative strand ratio for 19-23nt products varied within and 

between species. In Cx. pipiens, 19-23nt viRNAs were between 53%-64% derived from the 

positive strand, while in Cx. tarsalis the percentage of 19-23nts derived from the positive strand 

ranged between 50%-80%, with wide variation seen even among the two KR83 experimental 

replicates. 19-23nt viRNAs in the Ae. aegypti Rockefeller and HWE libraries were 83% and 77% 

derived from the positive strand, respectively. However, as seen in Cx. quinquefasciatus, 24-

30nt reads were uniformly between 94%-99% derived from the positive strand of the virus RNA 

in all of the sequencing libraries (including the FC Cx. pipiens WNV 7dpi and FC Cx. tarsalis WNV 

7dpi libraries, which were predominately positive-strand derived for all 19-30nt reads). 

 

Intra- and interspecies comparisons of midgut anti-WNV small RNA profiles from Cx. spp. and 

Ae. aegypti mosquitoes  

We next analyzed the correlation in viral genome nucleotide targeting within and 

between species. Relative intensity of nucleotide targeting (measured as number of times a 

given nucleotide position was sequenced as part of a read in a given library) of 19-23nt viRNAs 

was highly correlated between field-collected and colonized mosquitoes of the same species 

(Figure 2.5). The strength of the correlation was considerably decreased when intra-species 
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comparisons of 24-30nt nucleotide targeting were made (Figure 2.6), showing that much of the 

intra-species conservation of the total RNAi response appears to lie within the siRNA pathway. 

 Inter-species comparisons were made for all libraries excluding the FC Cx. pipiens WNV 

7dpi and FC Cx. tarsalis WNV 7dpi libraries, and are summarized in Tables 2.2 and 2.3. Cx. 

quinquefasciatus mosquitoes had a significantly lower degree of correlation with either Cx. 

pipiens or Cx. tarsalis when comparing 19-23nt viRNAs (Figure 2.7A). Interestingly, nucleotide 

targeting intensity was highly similar between multiple comparisons of Cx. pipiens and Cx. 

tarsalis libraries, as the two species exhibited similar degrees of correlation between the 

species as they did within their species. Aedes aegypti and Cx. tarsalis libraries were also similar 

to each other, though significance could not be tested due to a lack of replicate correlations 

from those species. When comparing differences in intensity of nucleotide targeting amongst 

the 24-30nt size class, there was no significant difference in intensity of nucleotide targeting in 

24-30nt vpiRNAs between the three Cx. species when compared against Cx. quinquefasciatus, 

with even Cx. quinquefasciatus exhibiting low correlations between field-collected and 

colonized groups. There was a significant difference in the correlations between Cx. 

quinquefasciatus and Cx. tarsalis when comparing against Cx. pipiens and Cx. quinquefasciatus 

and Cx. pipiens when comparing against Cx. tarsalis (Figure 2.7B). Both Cx. pipiens and Cx. 

tarsalis showed much higher degrees of intra-species correlation in 24-30 nt nucleotide 

targeting than either Cx. quinquefasciatus or Ae. aegypti. 

 We next quantified the viral load in the midguts of the individual Cx. sp. mosquitoes 

used to construct the pools as input for small RNA libraries by qRT-PCR. We found no 
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statistically significant difference in the viral burden in midguts as measured by virus genome 

equivalent copy numbers (Figure 2.8). 

 

Detection of Culex flavivirus (CxFV)-derived viRNAs in field-collected Cx. pipiens mosquito 

midguts but not Cx. quinquefasciatus or Cx. tarsalis 

 We aligned 19-30nt small RNAs to the Culex flavivirus (CxFV, Flaviviridae) genome 

(GenBank Accession # AB262759.2) allowing for 0-mismatches. CxFV-derived viRNAs were 

found in both the FC Cx. pipiens WNV 7dpi and 14dpi libraries, but not FC Cx. tarsalis or field-

collected Cx. quinquefasciatus libraries. In both FC Cx. pipiens libraries, CxFV-derived viRNAs fit 

the stereotypical siRNA distribution pattern with a significant peak at 21nts, even though as 

previously mentioned this pattern was not observed in WNV-derived viRNAs from the FC Cx. 

pipiens WNV 7dpi library. 

 

Discussion 

 RNAi is the major innate immune pathway in mosquitoes in response to arbovirus 

infection, and in the past decade has become a major focus of research in regards to 

invertebrate innate immunity [383]. However, the degree to which antiviral small RNA 

pathways vary quantitatively or qualitatively amongst vector species of mosquitoes has not 

been investigated. Since it is more or less presumed that vector competence is linked to at least 

some degree with the mosquito innate immune response to virus infection, an understanding 

of interspecies variation in innate immune responses is therefore critical. Secondly, as far as we 

are aware, all studies to date have relied on inbred colonized lab strains of mosquitoes or 
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mosquito cell culture, which may or may not recapitulate what occurs in natural infections. A 

clear understanding of how well these laboratory systems represent what occurs in nature is 

therefore critical to extrapolating data from experimental studies to the natural world.  

Here we sequenced viral-derived small RNAs from 4 species of mosquitoes, 3 of which 

encompassed both field collected and colonized populations. We found that all species 

examined exhibit a stereotypical siRNA response to WNV, with 21nt species being produced in 

the greatest abundance, as has been described before in mosquitoes [276, 282, 283]. However, 

between intra-species populations there was significant variation the percentage of viRNAs 

made up by the 24-30nt size class. These small RNAs were predominately derived from the 

positive strand, consistent in both size and strand bias with products of the piRNA pathway, 

which has been shown to be a likely participant in antiviral defense in mosquitoes [315, 282, 

281, 316, 317, 313]. Curiously, viRNA profiles from field-collected Cx. pipiens and Cx. tarsalis at 

the 7dpi timepoint exhibited atypical size distribution profiles. Additionally, all 19-30nt viRNA 

reads from these libraries were almost entirely derived from the positive strand of the virus 

(data not shown). Mosquitoes used to create these two libraries were collected at different 

times (around one year apart), and infections, dissections, RNA extractions, and preparations of 

small RNA libraries were conducted separately. Otherwise, both groups were treated the same 

(rearing conditions, infection protocol, RNA extractions, small RNA library preparation 

protocol). However, by the 14 dpi timepoint, viRNA size distribution profiles had returned to 

what is considered stereotypical. It would seem unlikely that both of these libraries would 

exhibit these signatures due to technical error, since none of the other libraries prepared for 

this study or subsequent ones discussed later in this dissertation exhibited similar profiles. 
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Additionally, when compared against one another, 19-23nt small RNA profiles from these two 

groups were strongly correlated, comparable with the strength of correlation between these 

groups at 14dpi. Similarly, 24-30nt viRNAs from these libraries were strongly correlated, even 

more so than at the 14dpi timepoint (7dpi rs= 0.87, 14dpi rs= 0.56). These results confirm that 

natural populations of vector mosquitoes exhibit a stereotypical viRNA response to virus 

infection.  

We found a high degree of intra-species homogeneity in targeting of the DCR-2 

processed 19-23nt siRNA size class in all species. However, the strength of correlation for 24-

30nt was generally less, though in Cx. pipiens and Cx. tarsalis, not markedly. This indicates that 

much of the conservation in targeting of the viral genome within different populations of the 

same species is retained within the siRNA pathway. Strikingly, when inter-species 19-23nt 

viRNA nucleotide targeting profiles were compared, Cx. pipiens, Cx. tarsalis, and Ae. aegypti 

were more highly correlated with one another than any were with Cx. quinquefasciatus. This 

was a surprising finding, given that Cx. quinquefasciatus and Cx. pipiens are closely related 

sister taxa [124]. These differences between Cx. quinquefasciatus and Cx. pipiens did not relate 

to viral burden in the midguts as measured by qRT-PCR detection of viral genome 

equivalents.WNV has been shown to undergo population bottlenecks in Cx. pipiens [405], but 

not Cx. quinquefasciatus [406], where viral genetic diversity is maintained. Presumably, RNAi 

plays a role in defining virus population structure within the mosquito vector, though it is 

impossible to draw any correlations between this present study and the previously published 

ones. Still, the finding that Cx. quinquefasciatus and Cx. pipiens differ in their RNAi targeting of 
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the WNV genome is provacative given the existing evidence showing differences in how these 

species interact with WNV. 

Evolution of RNAi component genes has been investigated in Ae. aegypti, but not Cx. sp. 

mosquitoes. In Ae. aegypti, RNAi components including dcr-2 and ago-2 have been found to 

undergo rapid evolution in natural populations [407], and polymorphisms in dcr-2 have been 

implicated in influencing vector competence in Ae. aegypti to DENV [408]. While not 

demonstrated in this study, it is plausible that polymorphisms in intra- and inter-specific 

populations of Cx. sp. mosquitoes similarly influence mosquito susceptibility to WNV infection. 

Such polymorphisms may also account for the variation in RNAi targeting profiles seen between 

species, particularly between Cx. quinquefasciatus and other Culex species.  

In addition to the above findings, the high degree of intra-specific correlations between 

small RNA targeting profiles of colonized and field-collected mosquitoes demonstrates that the 

use of heavily inbred populations, such as those in lab colonies of mosquitoes, can still 

recapitulate the antiviral RNAi response seen in natural populations. These findings add 

confidence to reports in previous studies, which have entirely relied on the use of inbred 

populations of mosquitoes. 
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Figure 2.1: Distribution of viRNAs of 19-30nts from Albuquerque, NM, Bernalillo, NM, and 

colonized Cx. quinquefasciatus midguts 14dpi with WNV. Reads mapping to the positive 

strand are presented on the upper portion of the y-axis and reads mapping to the negative 

strand on the lower portion of the y-axis. Asterisk denotes significance (p<0.05) by Tukey’s 

multiple comparison test. 
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Figure 2.2: Distribution of 19-23nt viRNAs along the length of the viral genome. 

A) Albuquerque, NM (ABQ) B) Bernalillo, NM (BERN), C) colonized mosquitoes 

(US-Cxq). Positive strand/negative strand proportions were 0.72/0.27, 0.69/0.31, 

and 0.66/0.34, respectively. 
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Figure 2.3: Distribution of 24-30nt viRNAs along the length of the viral genome. A) 

Albuquerque, NM, B) Bernalillo, NM, C) US-Cxq (Colony). Positive strand/negative 

strand proportions were 0.93/0.07, 0.97/0.03, and 0.71/.29, respectively. 
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Figure 2.4: Distribution of WNV viRNAs from 19-30nts in length. A) Field-collected (FC) and colonized Cx. pipiens midguts, B) FC 

and colonized Cx. tarsalis midguts. Two separate libraries were made and sequenced for the colony mosquitoes at 7dpi, error 

bars represent SEM. C) Two colonized strains of Ae. aegypti. The HWE library was prepared using RNA isolated from whole 

mosquitoes; the Rockefeller library was prepared from midguts. Comparisons between mean percentages of 19-23nt and 24-30nt 

populations between populations in Cx. pipiens and Cx. tarsalis excluded the field-collected 7dpi timepoint for each species since 

they exhibited atyptical viRNA distributions. Asterisks denotes significance (p<0.05) by Tukey’s multiple comparison test. 
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Figure 2.5: Intra-species comparisons of 19-23nt viRNA targeting of the WNV genome. 

Each point represents a single nucleotide position. All correlations were made using 

the non-parametric Spearman rank coefficient (rs). A) rs= 0.85, 95% CI= 0.85-0.86, 

p<0.0001, B) rs= 0.84, 95% CI= 0.84-0.85, p<0.0001, C) rs= 0.80, 95% CI= 0.79-0.80, 

p<0.0001, D) rs= 0.79, 95% CI= 0.78-0.80, p<0.0001, E) rs= 0.89, 95% CI= 0.88-0.89, 

p<0.0001, F) rs= 0.76, 95% CI= 0.76-0.77 
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Figure 2.6: Intra-species comparisons of 24-30nt viRNA targeting of the WNV genome. 

Each point represents a single nucleotide position. All correlations were made using 

the non-parametric Spearman rank coefficient (rs). A) rs= 0.53, 95% CI= 0.52-0.54, 

p<0.0001, B) rs= 0.18, 95% CI= 0.16-0.20, p<0.0001, C) rs= 0.17, 95% CI= 0.16-0.19, 

p<0.0001, D) rs= 0.64, 95% CI= 0.63-0.65, p<0.0001, E) rs= 0.78, 95% CI= 0.77-0.79, 

p<0.0001, F) rs= 0.21, 95% CI= 0.19-0.22 
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Figure 2.7: Mean rs values were calculated for both intra-species and inter-species 

comparison correlations and plotted. Error bars denote SEM. A) Mean rs values for 

19-23nt viRNA targeting profiles for all species. B) Mean rs values for 24-30nt 

targeting profiles for all species. Asterisks denote significance of p < 0.05 as 

measured by independent t-tests using the Holm-Sidak correction for multiple 

comparisons. 



64 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: WNV genome equivalents in individual Cx. sp. mosquito midguts as measured by 

qRT-PCR. Bars represent mean and SEM. 
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Library Name 

Total 19-30 NT Reads w/ 

Adapters (X106) 

Reads Aligning to WNV         

(%) 

ABQ Cx. quinquefasciatus 

WNV 14dpi 

1.9                    29291 (1.55) 

BERN Cx. quinquefasciatus 

WNV 14dpi 

0.84                      7250 (0.86) 

US-Cxq Cx. quinquefaciatus 

WNV 14dpi 

1.5                      7504 (0.51) 

PA-2004 Cx. pipiens WNV 7dpi 2.9                      3630 (0.12) 

PA-2004 Cx. pipiens WNV 

14dpi 

2.6                    11324 (0.43) 

FC Cx. pipiens WNV 7dpi 5.8                    22105 (0.38) 

FC Cx. pipiens WNV 14dpi 0.58                      8014 (1.38) 

KR83 Cx. tarsalis WNV 7dpi 

Rep 1 

5.3                  157453 (2.99) 

KR83 Cx. tarsalis WNV 7dpi 

Rep 2 

7.7                    62356 (0.81) 

KR83 Cx. tarsalis WNV 14dpi 1.6                    37305 (2.34) 

FC Cx. tarsalis WNV 7dpi 7.7                    92629 (1.2) 

FC Cx. tarsalis WNV 14dpi 11.1                   73686 (0.66) 

HWE Ae. aegypti WNV 7dpi  16.5                   12797 (0.08) 

Rockefeller Ae. aegypti WNV 

7dpi 

1.5                     4354 (0.29) 

 

Table 2.1: Features of sequenced small RNA libraries. 
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Table 2.2: Summary of intra- and interspecies correlations of 19-23nt viRNAs. rs= Spearman r value. ND= Comparison not 
determined. 

 
 

Table 2.2 
 

 
 
ABQ Cx. 
quinquefasciatus 
WNV 14dPI  

 
 
BERN Cx. 
quinquefasciatus 
WNV 14dpi 

 
 
US-Cxq Cx. 
quinquefasciatus 
WNV 14dpi 

 
 
FC Cx. 
pipiens 
WNV 
14dpi 

 
 
PA-2004 
Cx. 
pipiens 
WNV 
7dpi 

 
 
PA-2004 
Cx. 
pipiens 
WNV 
14dpi 

 
 
FC Cx. 
tarsalis 
WNV 
14dpi 

 
 
KR83 Cx. 
tarsalis 
WNV 
7dpi 

 
 
KR83 Cx. 
tarsalis 
WNV 
14dpi 

 
 
HWE Ae. 
aegypti 
WNV 
7dpi 

 
 
Rockefeller 
Ae. aegypti 
WNV 7dpi 

ABQ Cx. 
quinquefasciatus 
WNV 14dpi  

-- rs= 0.85, 95% CI= 
0.85-0.86, p<0.0001 

rs= 0.84, 95% CI= 
0.84-0.85, p<0.0001 

rs= 0.43, 
95% CI= 

0.42-
0.45, 

p<0.0001 

ND rs= 0.45, 
95% CI= 

0.44-
0.47, 

p<0.0001 

rs= 0.41, 
95% CI= 

0.40-
0.43, 

p<0.0001 

ND rs= 0.49, 
95% CI= 

0.47-
0.50, 

p<0.0001 

ND ND 

BERN Cx. 
quinquefasciatus 
WNV 14dpi 

rs= 0.85, 95% CI= 
0.85-0.86, p<0.0001 

-- rs= 0.80, 95% CI= 
0.79-0.80, p<0.0001 

rs= 0.39, 
95% CI= 

0.37-
0.40, 

p<0.0001 

ND rs= 0.40, 
95% CI= 

0.38-
0.41, 

p<0.0001 

rs= 0.38, 
95% CI= 

0.36-
0.40, 

p<0.0001 

ND rs= 0.43, 
95% CI= 

0.41-
0.44, 

p<0.0001 

ND ND 

US-Cxq Cx. 
quinquefasciatus 
WNV 14dpi 

rs= 0.84, 95% CI= 
0.84-0.85, p<0.0001 

rs= 0.80, 95% CI= 
0.79-0.80, p<0.0001 

-- rs= 0.36, 
95% CI= 

0.34-
0.37, 

p<0.0001 

ND rs= 0.38, 
95% CI= 

0.36-
0.39, 

p<0.0001 

rs= 0.36, 
95% CI= 

0.35-
0.38, 

p<0.0001 

ND rs= 0.41, 
95% CI= 

0.39-
0.42, 

p<0.0001 

ND ND 

FC Cx. pipiens 
WNV 14dpi 

rs= 0.43, 95% CI= 
0.42-0.45, p<0.0001 

rs= 0.39, 95% CI= 
0.37-0.40, p<0.0001 

rs= 0.36, 95% CI= 
0.34-0.37, p<0.0001 

-- ND rs= 0.79, 
95% CI= 

0.78-
0.80, 

p<0.0001 

rs= 0.86, 
95% CI= 

0.86-
0.87, 

p<0.0001 

ND rs= 0.85, 
95% CI= 

0.85-
0.86, 

p<0.0001 

ND ND 

PA-2004 Cx. 
pipiens WNV 
7dpi 

ND ND ND ND -- ND ND rs= 0.77, 
95% CI= 

0.76-
0.77, 

p<0.0001 

ND rs= 0.68, 
95% CI= 

0.67-
0.69, 

p<0.0001 

rs= 0.64, 95% 
CI= 0.62-

0.65, 
p<0.0001 

PA-2004 Cx. 
pipiens WNV 
14dpi 

rs= 0.45, 95% CI= 
0.44-0.47, p<0.0001 

rs= 0.40, 95% CI= 
0.38-0.41, p<0.0001 

rs= 0.38, 95% CI= 
0.36-0.39, p<0.0001 

rs= 0.79, 
95% CI= 

0.78-
0.80, 

p<0.0001 

ND -- rs= 0.81, 
95% CI= 

0.80-
0.82, 

p<0.0001 

ND rs= 0.85, 
95% CI= 

0.85-
0.86, 

p<0.0001 

ND ND 

FC Cx. tarsalis 
WNV 14dpi 

rs= 0.41, 95% CI= 
0.40-0.43, p<0.0001 

rs= 0.38, 95% CI= 
0.36-0.40, p<0.0001 

rs= 0.36, 95% CI= 
0.35-0.38, p<0.0001 

rs= 0.86, 
95% CI= 

0.86-
0.87, 

p<0.0001 

ND rs= 0.81, 
95% CI= 

0.80-
0.82, 

p<0.0001 

-- ND rs= 0.89, 
95% CI= 

0.88-
0.89, 

p<0.0001 

ND ND 
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Table 2.2 
(Cont.) 

 
ABQ Cx. 
quinquefasciatus 
WNV 14dpi  

 
BERN Cx. 
quinquefasciatus 
WNV 14dpi 

 
US-Cxq Cx. 
quinquefasciatus 
WNV 14dpi 

 
FC Cx. 
pipiens 
WNV 
14dpi 

 
PA-2004 
Cx. 
pipiens 
WNV 
7dpi 

 
PA-2004 
Cx. 
pipiens 
WNV 
14dpi 

 
FC Cx. 
tarsalis 
WNV 
14dpi 

 
KR83 Cx. 
tarsalis 
WNV 
7dpi 

 
KR83 Cx. 
tarsalis 
WNV 
14dpi 

 
HWE Ae. 
aegypti 
WNV 
7dpi 

 
Rockefeller 
Ae. aegypti 
WNV 7dpi 

KR83 Cx. tarsalis 
WNV 7dpi 

ND ND ND ND rs= 0.77, 
95% CI= 

0.76-
0.77, 

p<0.0001 

ND ND -- ND rs= 0.77, 
95% CI= 

0.76-
0.78, 

p<0.0001 

rs= 0.71, 95% 
CI= 0.70-

0.72, 
p<0.0001 

KR83 Cx. tarsalis 
WNV 7dpi 

ND ND ND ND rs= 0.77, 
95% CI= 

0.76-
0.77, 

p<0.0001 

ND ND -- ND rs= 0.77, 
95% CI= 

0.76-
0.78, 

p<0.0001 

rs= 0.71, 95% 
CI= 0.70-

0.72, 
p<0.0001 

KR83 Cx. tarsalis 
WNV 14dpi 

rs= 0.49, 95% CI= 
0.47-0.50, p<0.0001 

rs= 0.43, 95% CI= 
0.41-0.44, p<0.0001 

rs= 0.41, 95% CI= 
0.39-0.42, p<0.0001 

rs= 0.85, 
95% CI= 

0.85-
0.86, 

p<0.0001 

ND rs= 0.85, 
95% CI= 

0.85-
0.86, 

p<0.0001 

rs= 0.89, 
95% CI= 

0.88-
0.89, 

p<0.0001 

ND -- ND ND 

HWE Ae. aegypti 
WNV 7dpi 

ND ND 
 

ND ND rs= 0.85, 
95% CI= 

0.85-
0.86, 

p<0.0001 

ND ND rs= 0.77, 
95% CI= 

0.76-
0.78, 

p<0.0001 

ND -- rs= 0.76, 95% 
CI= 0.76-

0.77, 
p<0.0001 

Rockefeller Ae. 
aegypti WNV 
7dpi 

ND ND ND ND rs= 0.64, 
95% CI= 

0.62-
0.65, 

p<0.0001 

ND ND rs= 0.71, 
95% CI= 

0.70-
0.72, 

p<0.0001 

ND rs= 0.76, 
95% CI= 

0.76-
0.77, 

p<0.0001 

-- 
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Table 2.3: Summary of intra- and interspecies correlations of 24-30nt viRNAs. rs= Spearman r value. ND= Comparison not 
determined. 
 

Table 2.3 ABQ Cx. 
quinquefasciatus 
WNV 14dpi  

BERN Cx. 
quinquefasciatus 
WNV 14dpi 

US-Cxq Cx. 
quinquefasciatus 
WNV 14dpi 

FC Cx. 
pipiens 
WNV 
14dpi 

PA-2004 
Cx. 
pipiens 
WNV 
7dpi 

PA-2004 
Cx. 
pipiens 
WNV 
14dpi 

FC Cx. 
tarsalis 
WNV 
14dpi 

KR83 Cx. 
tarsalis 
WNV 
7dpi 

KR83 Cx. 
tarsalis 
WNV 
14dpi 

HWE Ae. 
aegypti 
WNV 
7dpi 

Rockefeller 
Ae. aegypti 
WNV 7dpi 

ABQ Cx. 
quinquefasciatus 
WNV 14dpi  

-- rs= 0.53, 95% CI= 
0.52-0.55, 
p<0.0001 

rs= 0.18, 95% CI= 
0.16-0.20, 
p<0.0001 

rs= 0.36, 
95% CI= 
0.35-0.38, 
p<0.0001 

ND rs= 0.47, 
95% CI= 
0.46-0.49, 
p<0.0001 

rs= 0.38, 
95% CI= 
0.36-0.39, 
p<0.0001 

ND rs= 0.49, 
95% CI= 
0.48-0.51, 
p<0.0001 

ND ND 

BERN Cx. 
quinquefasciatus 
WNV 14dpi 

rs= 0.53, 95% CI= 
0.52-0.55, 
p<0.0001 

-- rs= 0.17, 95% CI= 
0.16-0.19, 
p<0.0001 

rs= 0.27, 
95% CI= 
0.25-0.29, 
p<0.0001 

ND rs= 0.26, 
95% CI= 
0.24-0.28, 
p<0.0001 

rs= 0.28, 
95% CI= 
0.26-0.29, 
p<0.0001 

ND rs= 0.28, 
95% CI= 
0.26-0.30, 
p<0.0001 

ND ND 

US-Cxq Cx. 
quinquefasciatus 
WNV 14dpi 

rs= 0.18, 95% CI= 
0.16-0.20, 
p<0.0001 

rs= 0.17, 95% CI= 
0.16-0.19, 
p<0.0001 

-- rs= 0.14, 
95% CI= 
0.12-0.16, 
p<0.0001 

ND rs= 0.16, 
95% CI= 
0.14-0.17, 
p<0.0001 

rs= 0.12, 
95% CI= 
0.10-0.14, 
p<0.0001 

ND rs= 0.12, 
95% CI= 
0.10-0.14, 
p<0.0001 

ND ND 

FC Cx. pipiens 
WNV 14dpi 

rs= 0.36, 95% CI= 
0.35-0.38, 
p<0.0001 

rs= 0.27, 95% CI= 
0.25-0.29, 
p<0.0001 

rs= 0.14, 95% CI= 
0.12-0.16, 
p<0.0001 

-- ND rs= 0.64, 
95% CI= 
0.63-0.65, 
p<0.0001 

rs= 0.56, 
95% CI= 
0.55-0.58, 
p<0.0001 

ND rs= 0.65, 
95% CI= 
0.63-0.66, 
p<0.0001 

ND ND 

PA-2004 Cx. 
pipiens WNV 7dpi 

ND ND ND ND -- ND ND rs= 0.57, 
95% CI= 
0.55-0.58, 
p<0.0001 

ND rs= 0.38, 
95% CI= 
0.36-0.40, 
p<0.0001 

rs= 0.25, 
95% CI= 
0.23-0.26, 
p<0.0001 

PA-2004 Cx. 
pipiens WNV 
14dpi 

rs= 0.47, 95% CI= 
0.46-0.49, 
p<0.0001 

rs= 0.26, 95% CI= 
0.24-0.28, 
p<0.0001 

rs= 0.16, 95% CI= 
0.14-0.17, 
p<0.0001 

rs= 0.64, 
95% CI= 
0.63-0.65, 
p<0.0001 

ND -- rs= 0.63, 
95% CI= 
0.62-0.64, 
p<0.0001 

ND rs= 0.77, 
95% CI= 
0.76-0.78, 
p<0.0001 

ND ND 

FC Cx. tarsalis 
WNV 14dpi 

rs= 0.38, 95% CI= 
0.36-0.39, 
p<0.0001 

rs= 0.28, 95% CI= 
0.26-0.29, 
p<0.0001 

rs= 0.12, 95% CI= 
0.10-0.14, 
p<0.0001 

rs= 0.56, 
95% CI= 
0.55-0.58, 
p<0.0001 

ND rs= 0.63, 
95% CI= 
0.62-0.64, 
p<0.0001 

-- ND rs= 0.78, 
95% CI= 
0.77-0.79, 
p<0.0001 

ND ND 

KR83 Cx. tarsalis 
WNV 7dpi 

ND ND ND ND rs= 0.57, 
95% CI= 
0.55-0.58, 
p<0.0001 

ND ND -- ND rs= 0.50, 
95% CI= 
0.48-0.51, 
p<0.0001 

rs= 0.30, 
95% CI= 
0.28-0.32, 
p<0.0001 
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Table 2.3 
(cont.) 

ABQ Cx. 
quinquefasciatus 
WNV 14dpi 

BERN Cx. 
quinquefasciatus 
WNV 14dpi 

US-Cxq Cx. 
quinquefasciatus 
WNV 14dpi 

FC Cx. 
pipiens 
WNV 
14dpi 

PA-2004 
Cx. 
pipiens 
WNV 
7dpi 

PA-2004 
Cx. 
pipiens 
WNV 
14dpi 

FC Cx. 
tarsalis 
WNV 
14dpi 

KR83 Cx. 
tarsalis 
WNV 
7dpi 

KR83 Cx. 
tarsalis 
WNV 
14dpi 

HWE Ae. 
aegypti 
WNV 
7dpi 

Rockefeller 
Ae. aegypti 
WNV 7dpi 

KR83 Cx. tarsalis 
WNV 14dpi 

rs= 0.49, 95% CI= 
0.48-0.51, 
p<0.0001 

rs= 0.28, 95% CI= 
0.26-0.30, 
p<0.0001 

rs= 0.12, 95% CI= 
0.10-0.14, 
p<0.0001 

rs= 0.65, 
95% CI= 
0.63-0.66, 
p<0.0001 

ND rs= 0.77, 
95% CI= 
0.76-0.78, 
p<0.0001 

rs= 0.78, 
95% CI= 
0.77-0.79, 
p<0.0001 

ND -- ND ND 

HWE Ae. aegypti 
WNV 7dpi 

ND ND ND ND rs= 0.38, 
95% CI= 
0.36-0.40, 
p<0.0001 

ND ND rs= 0.50, 
95% CI= 
0.48-0.51, 
p<0.0001 

ND -- rs= 0.21, 
95% CI= 
0.19-0.23, 
p<0.0001 

Rockefeller Ae. 
aegypti WNV 7dpi 

ND ND ND ND rs= 0.25, 
95% CI= 
0.23-0.26, 
p<0.0001 

ND ND rs= 0.30, 
95% CI= 
0.28-0.32, 
p<0.0001 

ND rs= 0.21, 
95% CI= 
0.19-0.23, 
p<0.0001 

-- 
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Chapter 3: Virus-vector pairings determine the molecular signatures of virus-derived piRNA-

like small RNAs in mosquitoes 

 
 
 
Introduction 

The canonical antiviral RNAi pathway in mosquitoes, the exogenous small-interfering 

RNA (exo-siRNA) pathway, has been the subject of much investigation in recent years. 

However, comparatively, very little is known about the role that other small RNA pathways, 

such as the micro RNA (miRNA) pathway and PIWI-interacting RNA (piRNA) pathway, may play 

in antiviral defense in mosquitoes. Recently, several studies have provided evidence suggesting 

that the piRNA pathway or components of the pathway participate in the innate antiviral 

immune response in insect systems [314, 281, 315, 317, 282, 316, 318, 313]. Like the 

endogenous siRNA (endo-siRNA) pathway, the piRNA pathway plays a significant role in 

regulating the expression of endogenous RNA transcripts. piRNAs have been shown to be 

important repressors of transposable elements (TEs) in the germline cells of a variety of 

organisms from flies to mice [409-413]. Endogenous piRNAs are believed to originate from two 

distinct pathways. In the primary piRNA pathway, piRNAs are processed from single-stranded 

RNA precursors which are transcribed from discrete genomic loci (known as piRNA clusters). 

Primary piRNAs are typically antisense to TEs, exhibit a strong bias for a 5’-uridine residue (U1), 

and in flies, are associated with the PIWI/Aubergine protein complex [310]. Primary piRNAs are 

then fed into the second pathway, the “ping-pong dependent” amplification cycle. In this 

pathway, after binding of the target transcript, cleavage occurs ten nucleotides upstream from 

the 5’ end of the primary piRNA, resulting in secondary piRNAs with an adenine residue in the 
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10 position (A10), and are Argonaute-3 (Ago3) associated [311, 312]. Cleavage of the target 

transcript presumably occurs via the Slicer activity of Ago-3, as in flies, but not mammals [414]. 

Secondary piRNAs then bind complementary targets resulting in cleavage at the A-U base-

pairing, resulting in piRNAs identical (or very similar) to the initial primary piRNA, exhibiting a 

5’-U1 residue. In fact, this nucleotide bias is a hallmark of endogenous piRNAs in flies and 

possibly mammals, and is the basis for the ping-pong dependent amplification model [311, 

312].  

However, examination of our previous small RNA sequence data from Culex 

quinquefasciatus, Cx. pipiens, Cx. tarsalis, and Aedes aegypti mosquito midguts infected by 

West Nile virus (WNV, Flaviviridae) (Chapter 2) were not entirely consistent with this model. 

Although at both 7 and 14 days post infection (dpi) 24-30nt viRNAs from these libraries were 

predominately derived from the positive strand (>90% in all libraries), consistent with the 

strong positive-strand bias seen in previous reports of viral-derived piRNA-like small RNAs 

(vpiRNAs) [314, 317, 282, 316, 318, 313], we failed to observe signatures of ping-pong 

dependent amplification. Interestingly, this signature has been widely reported in studies of 

alphavirus [282, 316, 313] and bunyavirus infections[316, 318], but not with flaviviruses (DENV) 

[281, 315] or reoviruses [318]. Therefore, while a growing body of evidence suggests that the 

piRNA pathway plays a role in antiviral defense in insects, the biogenesis of the effector 

molecules remains somewhat obscure. Further, the variety of different virus-vector pairings 

utilized make comparing the piRNA response across these systems problematic. 

 Accordingly, we sought to determine whether modes of vpiRNA production and/or 

processing is virus family-dependent. In particular, we hypothesized that, consistent with the 
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literature [281, 315], vpiRNAs produced in response to flavivirus infection would lack signatures 

of ping-pong dependent amplification while piRNAs produced in response to alphavirus 

infection would exhibit these signatures in a single species of mosquito. Cx. tarsalis is a highly 

competent natural vector for both WNV and Western equine encephalitis virus (WEEV, 

Togaviridae) in North America, and a competent laboratory vector for Sindbis virus (SINV, 

Togaviridae). We therefore infected Cx. tarsalis mosquitoes with either a flavivirus (WNV), or 

alphaviruses (WEEV, SINV) and sequenced small RNAs at 7 and 14dpi. We also investigated 

tissue-specific small RNA profiles by sequencing both midguts and carcasses sans ovaries to 

determine whether differences seen in our previous studies and previously published ones may 

be attributed to compartmental differences in the vpiRNA response. Additionally, we compared 

24-30nt small RNA profiles from Ae. aegypti mosquitoes infected with WNV to Ae. aegypti 

infected with SINV. Our results demonstrate that vpiRNAs produced in response to 

alphaviruses, but not flaviviruses, tend to be produced in a ping-pong dependent manner. 

Moreover, it appears that the mode of vpiRNA biogenesis is a unique property of specific virus-

vector pairings. 

 

Materials and Methods 

Mosquitoes 

Lab-colonized Cx. tarsalis mosquito larvae (KR83, described in [395]) were raised on a 

diet of a 1:1 mix of powdered Tetra food and powdered rodent chow. Pupae were allowed to 

emerge into containers and adult mosquitoes were kept at 26-27 ⁰C with a 16:8 light:dark cycle 

and 70%-80% relative humidity, with water and sucrose provided ad libitum. 
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Viruses and Experimental Infections 

WNV was produced from an infectious cDNA clone based on the WNVNY99 strain of the 

virus as described elsewhere [397]. WEEV isolate Imperial 181 (WEEVImp181), an isolate that 

exhibits low virulence in mice [415] but high infections rates in Cx. tarsalis mosquitoes [416, 

417], was similarly derived from an infectious cDNA clone (WEEVImp181icd). Briefly, the plasmid 

containing the full-length infectious clone was linearized with the NotI-HF restriction enzyme 

(New England BioLabs, Ipswich MA), and then in vitro transcribed into the infectious viral 

genomic RNA using the T7 Megascript kit (Ambion, Austin TX), and 5’-capped with a 

m7G(5’)ppp(5’)A cap analog (New England BioLabs, Ipswich MA). Purified viral RNA was 

electroporated into BHK-21 cells, with the electroporation parameters set to 425 V, 1200Ω 

resistance, 25µF capacitance, and two pulses. Cell supernatant was collected after cells showed 

obvious signs of cytopathic effect (CPE; usually ~3 days post-electroporation). Cellular debris 

was removed from the supernatant by centrifugation at ~3000 g, clarified supernatant was 

raised to a final concentration of 20% fetal bovine serum (FBS), and aliquots of 0.5 mL were 

made and stored at -80⁰C. Virus titer was then quantified by plaque assay on Vero cells. 

Recombinant infectious-clone derived SINV strain MRE16 with a second introduced subgenomic 

promoter 5’ to the structural genes of the virus (5’dsMRE16icd, described in [418]) was 

provided as a kind gift by Dr. Brian Foy of Colorado State University. Adult female mosquitoes 6-

8 days post-eclosion were fed an infectious bloodmeal of defibrinated sheep blood mixed 1:1 

with ~2.5 X 106 PFU/mL of WEEVImp181icd, ~2 X 108 PFU/mL of WNVNY99icd or ~5 X 107 PFU/mL of 

infectious clone derived recombinant SINV5’dsMRE16icd and raised to a final concentration of 

2mM ATP. Engorged mosquitoes were held for 7 or 14 days in a BSL-3 insectary under the same 
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conditions described above for larvae, after which they were cold anesthetized, and midguts 

dissected and stored in miRvana RNA isolation lysis buffer (Ambion) at -80⁰C until RNA 

isolation. In separate experiments, mosquitoes infected in the same manner were cold 

anesthetized at 7 and 14dpi, and both midguts and carcasses sans ovaries separately collected 

and homogenized in miRvana RNA isolation lysis buffer. 

 

Total RNA Isolation and Small RNA Library Preparations 

Total RNA was extracted from homogenized mosquito midguts using the miRvana 

miRNA isolation kit (Ambion) as per manufacturers suggested protocol for total RNA isolation. 

Eluted RNA from individual midguts and carcasses from each infection group were screened for 

the presence of WNV genomic RNA by 1-step RT-PCR (Qiagen, Valencia CA) using 1971-F (5’-

TTGCAAAGTTCCTATCTCGTCAG-3’) and 2928c (5’-CCAAATCCAAAATCCTCCACTTCT-3’) primers, 

WEEV genomic RNA using 8495-F (5’-GTTCTGCCCGTATTGCAGACACTCA-3’) and 8848c (5’-

CTCCTGATCTTTCTCTCCACGG -3’) primers, or SINV genomic RNA using 9468-F (5’-

AAAAGTGACCAGACAAAGTGGGTC-3’) and 9901c (5’-GCGGCTACTAGGACCATCAC-3’) primers 

(numbers in primer designation denote genome position). RNA samples positive for viral RNA 

were checked for RNA quality on a 2100 Bioanalyzer (Agilent, Santa Clara CA), and then pooled 

into groups of 5 midgut RNAs by virus infection and timepoint. Pooled RNAs were precipitated 

by adding 3.25 volumes of ice-cold EtOH, 0.1 volume 3M NaOAc (pH 5.5), and 1.5 µL of linear 

polyacrylamide (5 mg/mL) as a carrier. After holding overnight at -20⁰C, the pools were 

centrifuged at ~20,000 g, washed twice with 80% EtOH, and re-suspended in nuclease-free 

water. 1 µg total RNA was used as the input for small RNA library preparation using the TruSeq 
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Small RNA Sample Prep Kit (Illumina, San Diego CA) as per manufacturer’s suggested protocol. 

Briefly, small RNAs were preferentially 3’ and 5’ adapter-ligated, reverse transcribed using the 

Superscript II reverse transcriptase (Invitrogen, Carlsbad CA), and PCR amplified, during which 

time a unique oligonucleotide barcode sequence was added to each library for multiplexing. 

Small RNA libraries were size selected on 2% TBE-agarose gels, and purified with MinElute Gel 

Extraction kits (Qiagen). Purified small RNA cDNA libraries were eluted in Qiagen EB buffer, 

validated on the 2100 Bioanalyzer, and sequenced on an Illumina HiSeq 2000 instrument. 

 

Assembly and Analysis of sRNA Libraries 

FASTQ files were trimmed of the 3’ adapter using FASTX Toolkit [400] and aligned to the 

WEEVImp181, WNVNY99, SINV5’dsMRE16 infectious clone, or species-specific transposable element 

reference genomes/sequences using Bowtie 0.12.8 [401] and allowing for 0-mismatches. The -a 

--best --strata mode was used, which instructs Bowtie to report only those alignments in the 

best alignment stratum. SAM output files produced by Bowtie were used as the input for 

processing through SAMtools [402]. Nucleotide targeting plots of the viral genome were 

generated using the pileup function of SAMtools. 5’ distance plots and small RNA sequence 

conservation bar plots were produced using viRome [403], in R [419]. Additional analyses were 

conducted using Picard [420], Microsoft Excel and Graphpad Prism 6. 

 

RT-PCR screening for PIWI-component transcripts 

10 midguts and 10 ovaries were separately dissected from adult female colonized US-

Cxq Cx. quinquefasciatus mosquitoes, pooled, and homogenized in miRVana lysis buffer 
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(Ambion). Total RNA was extracted using the miRVana miRNA isolation kit and the total RNA 

protocol. Midgut and ovary pools were screened for PIWI component transcripts using the 

primers listed in Table 3.1. Reactions without the reverse transcriptase enzyme (-RT) or RNA 

template (NTC) served as negative controls. 

 

Results 

Alphavirus infection of Cx. tarsalis results in disparate positive/negative strand targeting 

ratios in midguts and carcasses 

Cx. tarsalis mosquitoes infected with either WNV, WEEV, or SINV all exhibited 

stereotypical siRNA profiles with a predominant peak at 21 nts (Figure 1). 19-23nt viRNAs made 

up between ~50-90% ( = 60.6%, n=5), ~54-88% ( = 70.4%, n=6), and ~71-96% ( = 85.2%, n=4) 

of 19-30nt viRNAs derived from WNV, WEEV, and SINV, respectively, across both midgut and 

carcass libraries for each time point. Similarly, the percentage of 24-30nt vpiRNAs varied across 

tissue, timepoint and virus, comprising between ~11-50% ( = 39.4%, n=5), ~12-46% ( = 29.6%, 

n=6), and ~4-29% ( = 14.8, n=4) of 19-30 nt viRNAs derived from WNV, WEEV, and SINV, 

respectively. Strand bias in 19-23nt viRNAs were consistent with previous studies, averaging 

between ~57-85% originating from the positive strand across all virus infections, tissues, and 

timepoints (Figure 3.2 – 3.4). vpiRNAs sequenced from both midguts and carcass libraries from 

mosquitoes infected with WNV exhibited a strong strand bias with between 96% and nearly 

100% of these small RNAs being derived from the positive strand of the virus (Figures 3.5). 

However, vpiRNAs sequenced from WEEV- and SINV-infected midguts were only between 51-

57% and 64-70% positive-strand derived, respectively (Figures 3.6A-B and 3.7A-B). Intriguingly, 
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vpiRNAs sequenced from the carcasses in these infections were predominantly positive strand-

derived (Figures 3.6C-D and 3.7C-D), consistent with ours and others’ previous observations 

[314, 282, 316, 318]. 

 

Cx. sp. mosquitoes do not produce vpiRNAs with signatures of ping-pong dependent 

amplification after infection with WNV, WEEV, or SINV. 

We next conducted sequence analysis of 24-30nt vpiRNA populations. As we previously 

observed with Cx. quinquefasciatus, Cx. pipiens, and Ae. aegypti, vpiRNAs sequenced from Cx. 

tarsalis midguts and carcasses infected with WNV, WEEV, or SINV lacked U1 or A10 biases 

expected of products of ping-pong amplification (Figures 3.8 – 3.13). We next measured the 

positional frequency of the 5’-terminus of reads mapping to opposite strands of the virus 

genome. Products of the ping-pong dependent amplification model would be expected to have 

5’-termini separated by 10 nts. As expected from the lack of U1/A10 bias, we found no such peak 

at 10 nts in either midguts or carcasses infected with WNV, WEEV, or SINV at either time point. 

However, there was a high degree of consistency observed in the 5’-distance plots in the same 

tissues across time points, most obviously in SINV-infected carcasses (Figure 3.14 and Figure 

3.15).  

To evaluate the possibility that the lack of ping-pong dependent amplification signatures 

observed in Culex midguts was due to the lack of primary components of the piRNA pathway 

are present in the mosquito midgut, we attempted to amplify these components from tissue 

mRNAs by RT-PCR. We detected the presence of 6 PIWI-component transcripts (Ago3, Arm1, 

PIWI4, PIWI5, PIWI6, SPNE) in the midguts of un-infected mature female Cx. quinquefasciatus 
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mosquitoes by RT-PCR (Figure 3.16). In Cx. quinquefasciatus, PIWI4, PIWI5, and PIWI6 are 

annotated as orthologues to D. melanogaster Aubergine (Aub) (PIWI5, PIWI6, and PIWI7 are 

Aub orthologues in Ae. aegypti) [421]. Aub is associated with primary piRNAs being fed into the 

ping-pong dependent amplification pathway. Thus, we were able to detect the necessary 

component machinery transcripts within the midguts of Cx. quinquefasciatus. Presumably, 

these transcripts are being translated, and we reason that they are likely similarly expressed in 

the midguts of Cx. pipiens and Cx. tarsalis. 

 

Ae. aegypti mosquitoes produce ping-pong dependent vpiRNAs in response to SINV infection 

but not WNV infection 

We previously sequenced small RNAs from midguts from the Rockefeller strain of Ae. 

aegypti as well as whole HWE mosquitoes after experimental infection with WNV. A third Ae. 

aegypti library (Ubi61, a transgenic strain expressing FHV B2, a viral suppressor of RNAi [422]) 

from orally WNV-infected whole mosquitoes was also made. In all three libraries, infection with 

WNV failed to produce vpiRNAs exhibiting signatures of ping-pong dependent amplification 

(Figure 3.17), and corresponding 5’-distance plots showed no peak at 10 nts (Figure 3.15D and 

3.15E). Curiously, a 28 nt RNA sequence (5’-CTGGCTGGGACACCCGCATCACGAGAGCT-3’, 

underlined nucleotides denote longer/shorter derivations of this sequence that were also 

present in high abundance) mapping to the positive strand of WNV RNA was found in 

overwhelming abundance in all three Ae. aegypti/WNV libraries. This sequence and its 

longer/shorter derivations made up 72.7%, 76.0, and 17.6% of the total 24-30nt population in 

the HWE, Rockefeller, and Ubi61 libraries, respectively. BLAST of this sequence revealed that 
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there are no known non-WNV sequences that share significant homology with the full 28nt 

RNA, and that this sequence maps to the NS5 coding region of WNV (positions 9293-9320).  To 

determine whether the striking abundance of this sequence was masking a ping-pong 

dependent signature in the rest of the 24-30nt population, we reduced all repetitive reads to a 

single instance using the MarkDuplicates option in Picard [420]. Removing repetitive sequences 

from these datasets did not reveal latent signatures of ping-pong dependent amplification in 

the rest of the dataset. Since previous reports have described ping-pong dependent vpiRNAs in 

Ae. aegypti and Ae. albopictus mosquitoes [282] and cell culture [317, 316, 313] after infection 

with alphaviruses and bunyaviruses, we analyzed a previously unpublished Ae. aegypti dataset 

derived from whole mosquitoes 9dpi with a recombinant SINV expressing eGFP (5’dsMRE16-

eGFP). 19-23nt viRNAs made up ~53% of the total 19-30nt population, with ~54% of 19-23nt 

viRNAs being derived from the positive strand (Figure 3.18). Similar to WNV infection in Cx. 

mosquitoes, but not alphavirus infection in Cx. tarsalis midguts, 92% of 24-30nt vpiRNAs were 

positive strand derived. Of note, as observed in previous studies of Ae. spp. mosquitoes or cells 

infected with alphaviruses, 24-30nt vpiRNAs show heavy targeting at the 5’-portion of the virus 

genome and near the subgenomic promoter, with very little targeting in between. Conversely, 

vpiRNAs from WNV-infected HWE and Rockefeller mosquitoes show a much more even 

distribution along the length of the viral genome, with the notable exception of a very large 

peak at NS5 resulting from the aforementioned high abundance read mapping to that gene 

(data not shown). vpiRNAs from the Ae. aegypti/SINV data set exhibited strong biases for a U1 

and A10 on the antisense and sense strand reads, respectively (Figure 3.19). As expected, 5’-

distance overlap confirmed a peak at 10 nts, suggesting a ping-pong dependent mechanism 
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(Figure 3.14F). Since we had removed duplicate sequences from the Ae. aegypti/WNV libraries, 

we performed the same treatment to the Ae. aegypti/SINV library, to ensure that detection of 

U1/A10 biases were not dependent on the abundance of particular sequences. Even after 

removing duplicate reads, 24-30nt vpiRNAs from the Ae. aegypti library still indicated a strong 

bias for both nucleotides, confirming that the nucleotide bias is due to a preponderance of 

unique sequences exhibiting the bias as opposed to a relative few in high abundance (data not 

shown). 

 

Features of endogenous piRNAs in Cx. quinquefasciatus and Ae. aegypti mosquitoes 

We next investigated whether endogenous piRNAs in Culex and Aedes mosquitoes 

exhibit signatures of ping-pong dependent amplification. Since TEs are often the targets of 

endogenous piRNAs, we aligned our Cx. quinquefasciatus midut libraries and Ae. aegypti midgut 

and whole mosquito libraries to published TE sequences from the a recent report describing 

novel LTR-retrotransposons (LTR-rTEs) in Cx. quinquefasciatus [423] and the TEfam database of 

mosquito transposable element sequences [424] . The gypsy family LTR-rTEs selected for 

alignment against Cx. quinquefasciatus small RNA midgut libraries (CqGypsy-13 and CqGypsy-

47) universally resulted in alignments mapping antisense to the LTR-rTE, as expected for piRNAs 

(Figure 3.20). Nucleotide sequence analysis revealed that in all three Cx. quinquefasciatus 

midgut libraries, the predominant base at position 1 was a U (Figures 3.21 and 3.22). However, 

a lack of sense strand reads made it impossible to confirm ping-pong dependent amplification. 

We aligned both Rockefeller Ae. aegypti midgut libraries and HWE whole mosquito libraries to 

3 Ae. aegypti gypsy LTR-rTEs: Ty3-Gypsy-121, Ty3-Gypsy-122, and Ty3-Gypsy-123. As seen in Cx. 
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quinquefasciatus, midgut library alignments resulted in nearly universally negative strand 

alignments, with a strong U1 bias (Figures 3.23-3.26). Alignments of the HWE whole mosquito 

library were predominately antisense, but a sufficient number of reads mapping directly to the 

LTR-rTE were present that we could perform sequence analysis. In this whole mosquito library, 

antisense reads exhibited a strong U1 bias while sense reads exhibited a strong A10 bias, 

indicative of a ping-pong mechanism (Figures 3.24-3.26). However, measuring the distance 

between 5’-ends of opposite strands did not reveal a peak at 10 nt (data not shown).; this likely 

resulted from the extremely low abundance of sense strand reads relative to antisense reads. 

These results suggest that a piRNA pathway is active in both the Cx. quinquefasciatus and Ae. 

aegypti midgut epithelium. 

 

Discussion 

The piRNA pathway has relatively recently been implicated in participating in the innate 

antiviral immune response in insects. However, little is known about how this pathway actually 

functions in response to virus infection. Presumably, vpiRNAs are loaded into a cytoplasmic 

“piRISC”, which in similar fashion to the siRNA pathway targets viral RNA by sequence 

complementarity leading to degradation of the viral transcript. Here we present evidence that 

this pathway can be modulated differentially in different virus/vector pairings, and that the 

presence or lack of molecular signatures characteristic of the ping-pong dependent model for 

piRNA biogenesis is neither vector nor virus specific, i.e. certain vectors do not universally 

produce RNAs with these signatures upon arbovirus infection and certain viruses do not 
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universally elicit this response in vectors. Rather, there appears to be a complex interplay 

between the specific virus and vector that determines what types of vpiRNAs are produced. 

vpiRNAs generated during alphavirus infection of Ae. aegypti mosquitoes and mosquito 

cells show a strong bias for targeting of both the 5’- and 3’- ends of the viral genome, with very 

strong positive strand bias [282, 316, 313]. Conversely, in both the midgut and carcass of Cx. 

tarsalis mosquitoes infected with either WEEV or SINV, the distribution of targeting along the 

length of the virus genome is considerably more even, and no apparent strand bias was 

observed in midguts infected with WEEV or SINV. However, in the carcasses of these 

mosquitoes, the expected positive strand bias of vpiRNAs was maintained. This suggests that 

24-30nt viRNAs are produced in disparate ways in the midgut and the rest of the soma. It is 

worth noting that in RVFV-infection of mosquito cells, the lack of strand bias for some (but not 

all) of the 25-28nt small RNAs sequenced has been observed [317], though this varies 

depending on which segment of the viral genome is being analyzed, with some segments 

showing a strong negative strand bias (perhaps expected since RVFV has a negative-sense 

segmented genome). 

We found no evidence of ping-pong dependent signatures from 24-30nt vpiRNAs 

sequenced from either flavivirus or alphavirus infection of Cx. tarsalis mosquitoes, though 24-

30nt viRNAs are generally produced in appreciable abundance during these infections. Our 

previous sequencing of small RNAs from Cx. spp. and Ae. aegypti mosquitoes infected with 

WNV similarly showed a lack of these signatures, and this has also been observed in sequencing 

of small RNAs from DENV-infected Ae. aegypti mosquitoes and Ae. spp.-derived mosquito cells 

[281, 315]. However, the finding that alphavirus infection (in particular SINV infection) did not 
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produce molecular signatures of ping-pong dependent amplification was surprising, given that 

both the published literature as well as our data described in this manuscript indicate that 

alphavirus infection in Ae. aegypti mosquitoes and mosquito cells does elicit production of ping-

pong dependent vpiRNAs [282, 316, 313]. We addressed the issue as to whether the lack of a 

ping-pong mechanism was unique to the Cx. tarsalis midgut by sequencing carcasses sans 

ovaries; despite this, we found no evidence that this mechanism was functioning in either 

compartment. We were able to detect piRNA-component protein RNA transcripts in the 

midguts of Cx. quinquefasciatus mosquitoes, and presumably these transcripts are actively 

being translated. Additionally, our analysis of 24-30nt reads aligning to species-specific LTR-

rTE’s strongly suggest that a piRNA pathway is active and functional in the midguts of both Cx. 

quinquefasciatus and Ae. aegypti. While we did not directly test this for Cx. tarsalis, we have 

extrapolated this data to assume that the piRNA pathway functions in the midgut of these 

mosquitoes as well. 24-30nt small RNAs aligning to LTR-rTEs from midgut libraries were almost 

entirely or entirely antisense to the LTR-rTE, and had a predominant U1 bias. Alignments made 

with libraries constructed from whole Ae. aegypti mosquitoes showed a distinct antisense bias, 

with a U1 residue on the antisense strand, and an A10 bias on the positive strand, indicative of a 

ping-pong dependent mechanism. Given that these libraries were made from whole 

mosquitoes with ovaries intact, it is possible that some or most of these reads were derived 

from reproductive tissue, where piRNAs and LTR-rTEs are most abundant. However, production 

of vpiRNAs with signatures of ping-pong dependent amplification have been reported in the 

soma of Ae. aegypti and Ae. albopictus mosquitoes after infection with CHIKV [282]. 
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A perplexing observation in Ae. aegypti/WNV libraries was the massive over-

representation of a single 28 nt sequence, or slightly shorter/longer derivations of it, which 

accounted for a substantial proportion of the 24-30 nt reads from those libraries. In Ubi61 

mosquitoes, which express Flock house virus (FHV, Nodaviridae) B2, a viral suppressor of RNAi, 

this sequence was still present in great abundance, though as a significantly lower proportion of 

the total 24-30nt sequence than either of the two RNAi-competent Ae. aegypti libraries we 

sequenced. The sequence, which maps to the NS5 viral replicase gene, was not present in 

appreciable amounts in any of the numerous Cx. spp./WNV libraries we have sequenced for this 

and other studies, and is sometimes completely absent from those libraries. Interestingly, we 

attempted to find this sequence in a previously published C6/36/WNV small RNA dataset and 

were unable to find it either. It is unlikely that the large proportion of this sequence is due to 

sequencing bias, since it was replicated in multiple libraries sequenced on different 

instruments. 

One of the more striking observations made in our studies was the disparity between 

vpiRNAs produced in response to either WNV or SINV-infection in Ae. aegypti mosquitoes. We 

observed no signatures of ping-pong dependent amplification in our sequencing of small RNAs 

from Ae. aegypti midguts or whole mosquitoes infected with WNV, yet a previously 

unpublished small RNA dataset from Ae. aegypti whole mosquitoes infected with a 

recombinant SINV showed signatures indicative of a ping-pong dependent amplification 

mechanism. Previous studies with Ae. aegypti mosquitoes infected with another flavivirus, 

DENV-2, showed only a slight bias for an A10 residue, and no bias for a U1 residue [281, 315]. 

Similarly, Ae. aegypti-derived Aag2 cells infected with DENV fail to produce piRNAs indicative of 
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a ping-pong mechanism, as do Ae. albopictus-derived C6/36 mosquito cells, which have a 

dysfunctional siRNAi pathway due to a premature stop codon in dcr-2 [280, 281], but which 

produce products consistent in size with vpiRNAs [281, 280]. Therefore, it is apparent that the 

exogenous piRNA response in at least Ae. aegypti mosquitoes is differentially modulated upon 

infection with either flaviviruses or alphaviruses. The reasons for this are unclear. Both 

flaviviruses and alphaviruses have single-stranded, positive-sense RNA genomes; however 

alphaviruses produce a smaller 26S subgenomic transcript during replication of the full length 

42S genomic RNA [425]. However, these differences in the replication of flaviviruses and 

alphaviruses do not account for the disparity observed in vpiRNAs produced from Cx. tarsalis 

and Ae. aegypti mosquitoes in response to alphavirus infection. Thus, it appears that the 

products of the exogenous piRNA pathway in mosquitoes during arbovirus infection are 

dependent on both host and viral determinants. We have summarized our findings and those of 

previous studies in Table 3.2. 
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Table 3.1: Primer sequences used to screen for PIWI component transcripts in Cx. quinquefasciatus. Designation next to gene name 
denotes Vectorbase ID. 
 

Target Gene Forward Primer Reverse Primer 

Ago3 (CPIJ005275) 5’-AGTACATCAACCAGCATCGAG-3’ 5-TGCAGAATTGTTTCCACGTTG-3 

Arm1 (CPIJ001245) 5-GTGAATTCCAAGCCCTAATGC-3 5-TCCAGCAACCTACCCAAATC-3 

PIWI 4  Txn 1(CPIJ012516) 5-TCAAGGTGCTCATGGAATCG-3 5GACCGTTGAGTAGAATTCCGAG-3 

PIWI 5 Txn 1 (CPIJ017382) 5- TGAAGTTGACGCTGATTGGG-3 5- ACGATGGGTAAGTTCTGCAC-3 

PIWI 6 (CPIJ017381) 5-CTACATTACCAGCATCCGACAG-3 5-TGCACTTCTCAAACAGGTCG-3 

SPNE (CPIJ017541) 5-GAAGGTCTACTCGGTCGTTG-3 5-TCGTGGTCTAGCTTGGAAATG-3 
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Figure 3.1: Read length distributions for Cx. tarsalis small RNA libraries. Reads on the 

negative portion of the x-axis denote reads mapping to the negative strand of the virus. 

Error bars represent SEM in libraries with replicates. A) Cx. tarsalis/WNVNY99, B) Cx. 

tarsalis/WEEVImp181, C) Cx. tarsalis/SINV5’dsMRE16. 
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Figure 3.2: Distribution of 19-23 nt reads along the length of the WNVNY99 genome. A) Cx. tarsalis midgut WNVNY99 7dpi. 

Positive/negative strand ratio is 53.0%/47.0%. This represents one of two experimental replicates; the second had a strand ratio 

of 80.5%/19.5%. B) Cx. tarsalis midgut WNVNY99 14dp. Positive/negative strand ratio is 71.4%/28.6%. C) Cx. tarsalis carcass sans 

ovaries WNVNY99 7dpi. Positive/negative strand ratio is 80.1%/19.9%. D) Cx. tarsalis carcass sans ovaries WNVNY99 14dpi. 

Positive/negative strand ratio is 88.8%/11.2%. 
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Figure 3.3: Distribution of 19-23 nt reads along the length of the WEEVImp181 genome. A) Cx. tarsalis midgut WEEVImp181 7dpi. 

Positive/negative strand ratio is 55.1%/44.9%. This represents one of two experimental replicates; the second had a strand ratio 

of 51.4%/48.6%. B) Cx. tarsalis midgut WEEVImp181 14dpi. Positive/negative strand ratio is 55.5%/44.5%. This represents one of 

two experimental replicates; the second had a strand ratio of 51.8%/48.2%. C) Cx. tarsalis carcass sans ovaries WEEVImp181 7dpi. 

Positive/negative strand ratio is 75.5%/24.5%. D) Cx. tarsalis carcass sans ovaries WEEVImp181 14dpi. Positive/negative strand 

ratio is 55.2%/44.8%. 
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Figure 3.4: Distribution of 19-23 nt reads along the length of the SINV5’dsMRE16 genome. A) Cx. tarsalis midgut SINV5’dsMRE16 7dpi. 

Positive/negative strand ratio is 51.6%/48.4%. B) Cx. tarsalis midgut SINV5’dsMRE16 14dpi. Positive/negative strand ratio is 

53.5%/46.5%. C) Cx. tarsalis carcass sans ovaries SINV5’dsMRE16 7dpi. Positive/negative strand ratio is 64.4%/35.6%. D) Cx. tarsalis 

carcass sans ovaries SINV5’dsMRE16 14dpi. Positive/negative strand ratio is 57.7%/42.3%. 
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Figure 3.5: Distribution of 24-30 nt reads along the length of the WNVNY99 genome. A) Cx. tarsalis midgut WNVNY99 7dpi. 

Positive/negative strand ratio is 96.1%/3.9%. This represents one of two experimental replicates; the second had a strand ratio of 

98.9%/1.1%. B) Cx. tarsalis midgut WNVNY99 14dpi. Positive/negative strand ratio is 96.8%/3.2%. C) Cx. tarsalis carcass sans 

ovaries WNVNY99 7dpi. Positive/negative strand ratio is 99.4%/0.6%. D) Cx. tarsalis carcass sans ovaries WNVNY99 14dpi. 

Positive/negative strand ratio is 99.8%/0.2%. 



92 
 

 

Figure 3.6: Distribution of 24-30 nt reads along the length of the WEEVImp181 genome. A) Cx. tarsalis midgut WEEVImp181 7dpi. 

Positive/negative strand ratio is 55.7%/44.3%. This represents one of two experimental replicates; the second had a strand ratio 

of 54.2%/45.8%. B) Cx. tarsalis midgut WEEVImp181 14dpi. Positive/negative strand ratio is 57.0%/43.0%. This represents one of 

two experimental replicates; the second had a strand ratio of 51.0%/49.0%.  C) Cx. tarsalis carcass sans ovaries WEEVImp181 7dpi. 

Positive/negative strand ratio is 98.2%/1.8%. D) Cx. tarsalis carcass sans ovaries WEEVImp181 14dpi. Positive/negative strand ratio 

is 81.4%/18.6%. 



93 
 

 

Figure 3.7: Distribution of 24-30 nt reads along the length of the SINV5’dsMRE16 genome. A) Cx. tarsalis midgut SINV5’dsMRE16 7dpi. 

Positive/negative strand ratio is 63.9%/36.1%. B) Cx. tarsalis midgut SINV5’dsMRE16 14dpi. Positive/negative strand ratio is 

69.7%/30.3%. C) Cx. tarsalis carcass sans ovaries SINV5’dsMRE16 7dpi. Positive/negative strand ratio is 97.1%/2.9%. D) Cx. tarsalis 

carcass sans ovaries SINV5’dsMRE16 14dpi. Positive/negative strand ratio is 95.3%/4.7%. 
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Figure 3.8: Barplot showing the relative frequencies of each nucleotide in the 

24-30nt population of small RNAs from Cx. tarsalis WNVNY99-infected midguts 

(A) and carcasses (B) 7dpi. 
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Figure 3.9: Barplot showing the relative frequencies of each nucleotide in the 

24-30nt population of small RNAs from Cx. tarsalis WNVNY99-infected midguts 

(A) and carcasses (B) 14dpi. 
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Figure 3.10: Barplot showing the relative frequencies of each nucleotide in 

the 24-30nt population of small RNAs from Cx. tarsalis WEEVImp181-infected 

midguts (A) and carcasses (B) 7dpi. 
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Figure 3.11: Barplot showing the relative frequencies of each nucleotide in 

the 24-30nt population of small RNAs from Cx. tarsalis WEEVImp181-infected 

midguts (A) and carcasses (B) 7dpi. 
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Figure 3.12: Barplot showing the relative frequencies of each nucleotide in 

the 24-30nt population of small RNAs from Cx. tarsalis SINV5’dsMRE16-infected 

midguts (A) and carcasses (B) 7dpi. 
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Figure 3.13: Barplot showing the relative frequencies of each nucleotide in 

the 24-30nt population of small RNAs from Cx. tarsalis SINV5’dsMRE16-infected 

midguts (A) and carcasses (B) 14dpi. 
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Figure 3.14: 5’-distance plots of 24-30nt reads mapping to opposite strands of 

the virus genome showing the relative frequency of finding the 5’-end of a 

complimentary small RNA. The dashed line at 9 nt indicates the position at which 

a peak would indicate a distance of 10 nt (the first nucleotide is at position 0), 

indicative of a ping-pong mechanism. A) Cx. tarsalis WNVNY99-infected midguts, B) 

Cx. tarsalis WEEVImp181-infected midguts, C) Cx. tarsalis SINV5’dsMRE16-infected 

midguts 
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Figure 3.15: 5’-distance plots of 24-30nt reads mapping to opposite strands of the 

virus genome showing the relative frequency of finding the 5’-end of a 

complimentary small RNA. The dashed line at 9 nt indicates the position at which a 

peak would indicate a distance of 10 nt (the first nucleotide is at position 0), 

indicative of a ping-pong mechanism. A) Cx. tarsalis WNVNY99-infected carcasses, B) 

Cx. tarsalis WEEVImp181-infected carcasses, C) Cx. tarsalis SINV5’dsMRE16-infected 

carcasses, D) HWE Ae. aegypti WNVNY99-infected whole mosquitoes 7dpi, E) Ubi61 

Ae. aegypti WNVNY99-infected whole mosquitoes 7dpi, F) Ae. aegypti SINV5’dsMRE16-

eGFP-infected whole mosquitoes 9dpi 
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Figure 3.16: RT-PCR detection of 6 PIWI-component protein RNA transcripts in the midgut 

(M) and ovaries (O) of un-infected adult female Cx. quinquefasciatus mosquitoes. 

Reproductive tissue such as the ovaries are expected to be rich in piRNAs and component 

proteins, and were used as a positive control to compare against midgut detection. 

Reactions without reverse transcriptase (-RT) were used to exclude signal being a result of 

genomic DNA amplification. NTC= no template control. 
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Figure 3.17: Barplot showing the relative frequencies of each nucleotide in 

the 24-30nt population of small RNAs from WNVNY99-infected Ae. aegypti 

mosquitoes. (A) Rockefeller strain midguts 7dpi (B) HWE strain whole 

mosquitoes 7dpi. Data from Ubi61 mosquitoes not shown. 
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Figure 3.18: Distribution of reads along the length of the SINV5’dsMRE16-eGFP genome. A) Ae. 

aegypti whole mosquitoes SINV5’dsMRE16 9dpi 19-23 nt reads. Positive/negative strand ratio 

is 53.9%/46.1%. B) Ae. aegypti midgut SINV5’dsMRE16-eGFP 9dpi 24-30 nt reads. 

Positive/negative strand ratio is 91.8%/8.2 
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Figure 3.19: Barplot showing the relative frequencies of each nucleotide in the 24-30nt 

population of small RNAs from SINV5’dsMRE16-eGFP-infected Ae. aegypti mosquitoes 9dpi. 
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Figure 3.20: Read length distribution of reads aligning to LTR-rTE in Cx. quinquefasciatus 

mosquito midguts. A) Reads aligning to CqGypsy-13, B) Reads aligning to CqGypsy-47. 



107 
 

 
 
 
 
 
 

Figure 3.21: Barplot showing the relative frequencies of each nucleotide in 

24-30 nt small RNAs mapping to the CqGypsy-13 LTR-rTE. A) ABQ Cx. 

quinquefasciatus WNV 14dpi midgut, B) BERN Cx. quinquefasciatus WNV 

14dpi midgut, C) Colonized US-Cxq Cx. quinquefasciatus WNV 14dpi midgut 
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Figure 3.22: Barplot showing the relative frequencies of each nucleotide in 

24-30 nt small RNAs mapping to the CqGypsy-47 LTR-rTE. A) ABQ Cx. 

quinquefasciatus WNV 14dpi midgut, B) BERN Cx. quinquefasciatus WNV 

14dpi midgut, C) Colonized US-Cxq Cx. quinquefasciatus WNV 14dpi midgut 
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Figure 3.23: Read length distributions of reads aligning to LTR-rTE’s in Ae. aegypti 

midguts (Rockefeller) and whole mosquitoes (HWE). A) Reads aligning to Tyr3-

Gypsy121, B) Reads aligning to Tyr3-Gypsy122, C) Reads aligning to Tyr3-Gypsy123. 

Note the change in scale on the positive and negative portions of the y-axis. 
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Figure 3.24: Barplot showing the relative frequencies of each nucleotide 

in 24-30 nt small RNAs mapping to the Tyr3-Gypsy121 LTR-rTE in Ae. 

aegypti. A) Rockefeller Ae. aegypti WNV 7dpi midgut reads mapping to 

antisense strand B) HWE Ae. aegypti WNV 7dpi whole mosquito reads 

mapping to sense and antisense strands. 
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Figure 3.25: Barplot showing the relative frequencies of each nucleotide 

in 24-30 nt small RNAs mapping to the Tyr3-Gypsy122 LTR-rTE in Ae. 

aegypti. A) Rockefeller Ae. aegypti WNV 7dpi midgut reads mapping to 

antisense strand B) HWE Ae. aegypti WNV 7dpi whole mosquito reads 

mapping to sense and antisense strands. 
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Figure 3.26: Barplot showing the relative frequencies of each nucleotide 

in 24-30 nt small RNAs mapping to the Tyr3-Gypsy123 LTR-rTE in Ae. 

aegypti. A) Rockefeller Ae. aegypti WNV 7dpi midgut reads mapping to 

antisense strand B) HWE Ae. aegypti WNV 7dpi whole mosquito reads 

mapping to sense and antisense strands. 
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 WNV DENV WEEV SINV CHIKV SFV LACV RVFV SBV BTV 

Cx. 
quinquefasciatus 

No1 - - - - - - - - - 

Cx. pipiens No1 - - - - - - - - - 
Cx. tarsalis No1 - No1 No1 - - - - - - 
Ae. aegypti No1 No3,8 - Yes1 Yes5 - - - - - 

Ae. albopictus - - - - Yes5 - - - - - 
C6/36 No2 No8 - Yes4 Yes5 - Yes4 Yes7 - - 
U4.4 - - - Yes4 Yes5 Yes6 - Yes7 - - 
Aag2 - No8 - - - Yes6 - Yes7 Yes9 No9 

 
  

Table 3.2: Summary of studies profiling the small RNA response in mosquitoes and mosquito 

cells to different virus infections. “Yes” indicates a ping-pong dependent piRNA response 

was found, “No” indicates signatures of a ping-pong dependent mechanism were not found 

or that incomplete features were found (such as the bias for one nucleotide being present 

but not the other). 1 This study, 2 Brackney et al 2010 PLoS Neglected Tropical Diseases, 3 

Hess et al 2011 BMC Microbiology, 4 Vodovar et al 2012 PLoS ONE, 5 Morazzani et al 2012 

PLoS Pathogens, 6 Schnettler et al 2013 Journal of General Virology, 7 Léger et al 2013 Journal 

of Virology, 8 Scott et al 2010 PLoS Neglected Tropical Diseases, 9 Schnettler et al 2012 

Journal of Virology. Abbreviations: WNV=West Nile virus, DENV= dengue virus, WEEV= 

Western equine encephalitis virus, SINV= Sindbis virus, CHIKV= chikungunya virus, SFV= 

Semliki Forest virus, LACV= La Crosse virus, RVFV= Rift Valley fever virus, SBV= 

Schmallenberg virus, BTV= blue-tongue virus. 
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Chapter 4: Small RNA Response of Culex quinquefasciatus to West Nile Virus Infection: 

Relationship to Vector Competence 

 
 
 
Introduction 

 Arboviruses perpetuate in nature through alternating replication in two hosts: the 

invertebrate arthropod host (vector), and the vertebrate host (avian, mammalian, reptilian). 

Thus, arboviruses must overcome distinct physical and immunological challenges within these 

disparate hosts or become extinct. It has long been appreciated that different mosquito 

species, populations within a single species, and individuals within populations vary 

considerably in their ability to transmit pathogens. The likelihood that a given arthropod is 

susceptible to infection by a given agent, can support its replication within and dissemination 

from the midgut (first site of infection) and secondary tissues, and eventually release the agent 

into saliva is known as “vector competence.” Vector competence is influenced by both intrinsic 

(e.g. genetics) and extrinsic (diet, temperature) factors [124]. Barriers to infection, 

dissemination, and transmission, such as the midgut infection barrier (MIB) [200], midgut 

escape barrier (MEB) [201], salivary gland infection barrier (SIB) [202], and salivary gland escape 

barrier (SEB) [203] play important roles in defining the infection phenotype and thus the vector 

competence of the mosquito. Vector competence is a component of vectorial capacity (VC), a 

calculation of a mosquito population’s capacity to transmit a given pathogen to a naïve 

population [124]. 

 The impact of RNA interference (RNAi) on arbovirus transmission in nature remains the 

subject of intensive investigation. The exogenous small-interfering RNA (exo-siRNA) pathway is 
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the main innate immune pathway responsible for controlling virus infection in mosquitoes 

[383]. Although it is clear that the exo-siRNA pathway can protect mosquitoes from lethal virus 

infection [388], and that mosquitoes engineered to express short viral RNA sequences either by 

transgenesis or co-infection with a heterologous recombinant virus are resistant to infection 

and/or incapable of transmitting virus [387, 18, 20, 385, 386], the role of RNAi in determining 

vector competence under natural conditions is unclear. A primary component of the siRNA 

pathway, Dcr-2, has been shown to be undergoing rapid diversifying evolution in Aedes aegypti 

[407], and polymorphisms in this gene correlate with differences in vector competence to DENV 

among populations of this species [407, 408]. However, it is unknown what phenotypic effect 

polymorphisms in Dcr-2 may impart on the activity of the enzyme, nor how this affects the 

functionality and/or efficacy of the siRNA pathway. In addition, little is known about how the 

antiviral RNAi response in mosquitoes changes temporally during arbovirus infection, and how 

early this response is induced after imbibing an infectious bloodmeal. In Ae. aegypti, viRNAs 

derived from DENV-2 have been observed as early as 2 dpi, and the profile of the total viral-

derived small RNA population (i.e. genome targeting, strand bias, proportion of small RNA size 

classes) changes over time from 2 dpi to 9 dpi [315]. Moreover, the impact of RNAi on arbovirus 

transmission remains obscure. 

 Accordingly, we sought to define how  the exo-siRNA pathway shapes the vector 

competence phenotype in mosquitoes and to determine whether the exo-siRNA pathway 

appears to be activated early during arbovirus infection when it may impact mosquito vector 

competence. Vector competence is a quantitative genetic trait under the control of several 

genomic loci which collectively account for a relatively small proportion of the observed 
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variation in vector competence phenotypes [426-428]. Thus, we hypothesized that quantitative 

and/or qualitative differences in the antiviral RNAi response in mosquitoes influence vector 

competence. Specifically, we profiled sRNAs in mosquito midguts at multiple time points and 

across infection phenotypes (midgut-limited infections and infections which had disseminated 

from the midgut into the hemocoel) in order to (1) track the development of the response and 

(2) determine whether specific viRNA profiles may be correlated with infection phenotype 

(midgut limited vs. disseminated). In addition, we also identified viRNA sequences common 

across multiple replicate libraries and time points and determined their individual efficacy in 

suppressing WNV replication in vitro. Our results suggest that RNAi is ineffective in limiting 

mosquito susceptibility to WNV infection because it is not activated during the first 24 hours of 

infection, when virus is entering cells and undergoing replication. Further, we failed to associate 

a particular profile of viRNA expression with either limitation of WNV to or its escape from 

mosquito midguts. In sum, these results fail to provide a strong link between RNAi and 

mosquito vector competence. 

 

Materials and Methods 

Mosquitoes 

Lab-colonized Cx. quinquefasciatus mosquito larvae (designated here as US-Cxq, 

described in [394]) were raised on a diet of a 1:1 mix of powdered Tetra food and powdered 

rodent chow. Pupae were allowed to emerge into containers and adult mosquitoes were kept 

at 26-27 ⁰C with a 16:8 light:dark cycle and 70%-80% relative humidity, with water and sucrose 

provided ad libitum. 
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Viruses and Experimental Infections 

WNV was produced from an infectious cDNA clone based on the WNVNY99 strain as 

previously described [397]. Briefly, purified viral RNA was electroporated into BHK-21 cells, with 

the electroporation parameters set to 425 V, 1200Ω resistance, 25µF capacitance, and two 

pulses. Cell supernatant was collected after cells showed obvious signs of cytopathic effect 

(CPE; usually ~3 days post-electroporation). Cellular debris was removed from the supernatant 

by centrifugation at ~3000 g, clarified supernatant was raised to a final concentration of 20% 

fetal bovine serum (FBS), and aliquots of 0.5 mL were made and stored at -80⁰C. Virus titer was 

then quantified by plaquing on Vero cells. Adult female mosquitoes 6-8 days post-eclosion were 

fed an infectious bloodmeal of de-fibrinated sheep blood mixed 1:1 with ~2 X 108 PFU/mL of 

infectious clone derived WNV (WNVicd). Un-infected control mosquitoes were fed only de-

fibrinated sheep blood. Engorged mosquitoes were held for 12 hour, 24 hour, 3 day, 7 day, or 

14/16 day extrinsic incubation periods (EIPs) in a BSL-3 insectary with the same rearing 

conditions described previously, after which they were cold anesthetized, and midguts 

dissected and stored in MagMax isolation lysis buffer (Ambion) at -80⁰C until needed for RNA 

isolation. Legs were also harvested from mosquitoes at 7, 14, and 16 days post infection (dpi) 

time points in order to assess for disseminated infections. 

 

Total RNA Isolation and Small RNA Library Preparations 

Total RNA was extracted from homogenized mosquito midguts and legs using the 

MagMAX Viral RNA isolation kit (Ambion) as per a modified protocol for enrichment of small 

RNA isolation in the total RNA fraction [429], using a Kingfisher Flex Magnetic Particle Processor 
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(Thermo Scientific, Waltham MA). Specifically, the incubation/binding time was increased from 

4 minutes to 10 minutes, and the amount of isopropanol added to Wash Buffer #1 was raised 

from 1:2 to 1:1. Eluted RNA from individual midguts and sets of 6 legs from each mosquito from 

each infection group and time point were screened for the presence of WNV genomic RNA by 

1-step RT-PCR (Qiagen) using 212-F (5’-TTGTGTTGGCTCTCTTGGCGTTCTT-3’) and 619-R (5’-

CAGCCGACAGCACTGGACATTCATA-3’) primers (numbers in primer designation denote genome 

position). Because accurate determination of infection (as measured by the presence of 

antisense viral RNA) is problematic at early time points, midguts from 12 and 24 hour time 

points were not screened for infection and simply designated as “exposed”. Since dissemination 

from the midgut would not be expected to occur by 3 dpi, we only screened midguts from this 

time point. For the 7, 14, and 16 dpi time points, an infection phenotype of “midgut-limited” 

was designated if no viral RNA was detectable in legs corresponding to a given midgut, and a 

“disseminated” phenotype was designated if viral RNA was detectable. Midgut RNA samples 

positive for viral RNA were checked for RNA quality on a 2100 Bioanalyzer (Agilent), and then 

pooled into groups of 5 midgut RNAs by infection phenotype and time point. Pooled RNAs were 

precipitated by adding 3.25 volumes of ice-cold EtOH, 0.1 volume 3M NaOAc (pH 5.5), and 1.5 

µL of linear polyacrylamide (5 mg/mL) as a carrier. After holding overnight at -20⁰C, the pools 

were centrifuged at ~20,000 g, washed twice with 80% EtOH, and re-suspended in nuclease-

free water. 1 µg total RNA was used as the input for small RNA library preparation using the 

TruSeq Small RNA Sample Prep Kit (Illumina) as per manufacturer’s suggested protocol. Briefly, 

small RNAs were preferentially 3’ and 5’ adapter-ligated, reverse transcribed using the 

Superscript II reverse transcriptase (Invitrogen), and PCR amplified, during which time a unique 
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oligonucleotide barcode sequence was added to each library for multiplexing. Three biological 

replicate libraries were made for each pooled time point/infection phenotype. In addition, we 

sequenced small RNAs from four separate individual midgut libraries at the 24 hour post-

exposure (hpe) time point. Small RNA libraries were size selected on 2% TBE-agarose gels, and 

purified with MinElute Gel Extraction kits (Qiagen). Purified small RNA cDNA libraries were 

eluted in Qiagen EB buffer, validated on the 2100 Bioanalyzer, and sequenced on an Illumina 

HiSeq 2000 instrument. 

 

Assembly and Analysis of sRNA Libraries 

Sequence FASTQ files were trimmed of the 3’ adapter using FASTX Toolkit [400] and 

aligned to the WNVNY99 infectious clone reference sequence using Bowtie 0.12.8 [401] and 

allowing for 0-mismatches. The -a --best --strata mode was used, which instructs Bowtie to 

report only those alignments in the best alignment stratum. SAM output files produced by 

Bowtie were used as the input for processing through SAMtools [402]. Nucleotide targeting 

plots of the viral genome were generated using the pileup function of SAMtools, and then used 

for correlational analysis. Additional analyses were conducted using Microsoft Excel, Graphpad 

Prism 6, and VENNY, an online tool for creating Venn diagrams [430].  

 

Transfection of C6/36 Mosquito Cells with Synthetic siRNAs 

Ae. albopictus-derived C6/36 cells were seeded into 6-well plates at a concentration of  

1 X 106 cells/well, and transfected one day later with 100 pM concentration of synthetic siRNA 

duplexes (Dharmacon, Inc., Lafayette CO, siRNA sequences provided in Table 4.1) using 
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Lipofectamine 2000 transfection reagent (Invitrogen, Carlsbad CA) as per manufacturers 

suggested protocol. Cells were infected 48 hours post-transfection with infectious clone derived 

WNVNY99 at an MOI of 0.1. 300 µL of cell supernatant was harvested every 12 hours up to 48 hpi 

and viral titer quantified by plaque assay on Vero cells.  

 

qRT-PCR 

WNV genome equivalents were determined using a Taqman qRT-PCR assay amplifying a 

70bp fragment within the WNV E gene (described in [404]). 5 µL of total RNA from individual 

mosquito midgut samples used to construct our small RNA sequencing libraries or genome 

equivalent standards was used as the template in duplicate 20 µL reactions using the iScriptTM 

1-Step RT-PCR Kit for probes (Biorad) with reagent ratios as per the manufacturer’s suggested 

protocol. The following primer and probe sequences were used for this assay: 1160-F (5’-

TCAGCGATCTCTCCACCAAAG-3’), 1229-R (5’-GGGTCAGCACGTTTGTCATTG-3’), and 1207-Probe 

(5’-TGCCCGACCATGGGAGAAGCTC-3’). Reactions were run on a CFX-96TM real-time system 

(Biorad). WNV genomic equivalent standards were previously generated by amplifying a 2.4 kb 

fragment from the WNV E gene using WNV 1031-F (5’-ATTTGGTTCTCGAAGGCGAC-3’) and WNV 

3430-R (5’-TGGTGGTAAGGTGCAGCTCC-3’) primers. The resulting amplicon was then cloned 

into the pCR2.1-TOPO vector (Invitrogen) downstream of the T7 promoter. The recombinant 

vector was linearized with KpnI, purified and used as template for in vitro transcription using 

the T7 Megascript kit (Ambion) according the manufacturer’s instructions. In vitro transcribed 

RNA was then quantified and aliquoted into serial ten-fold dilutions. 
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Results 

The exogenous siRNA and PIWI-interacting RNA (piRNA) pathways do not appear to be 

induced at early time points of WNV infection 

We sequenced small RNAs from triplicate pools of 5 Cx. quinquefasciatus midguts from 

early (12 hpe, 24 hpe, and 3 dpi) and late (7 dpi, 14 dpi, and 16 dpi) time points after infection 

with WNV. The percentage of reads mapping to WNV RNA varied considerably between time 

points, but was relatively consistent between replicates (Figure 4.1A). At 12 hpe, few viRNA 

reads were present, however the percentage of viRNAs relative to total 19-30 nt small RNAs 

increased considerably by 24 hpe. At 3 dpi, detectable viRNAs had again dropped to 

proportions comparable to the 12 hpe time point, and gradually increased by 7, 14, and 16 dpi. 

Analysis of the distribution of sequences by length revealed that 19-30 nt reads mapping to the 

WNV genome were approximately evenly distributed with no peak at 21 nts, which would be 

expected from products of Dcr-2 digestion (Figure 4.1B-C). Viral replication at these early time 

points was evident based on the presence of a significant fraction of viRNAs derived from the 

negative strand of the virus RNA. Bias for reads derived from the positive strand of the virus 

was elevated at 12 hpe compared to the later time points, with roughly 80% of 19-23 nt reads 

being generated from this strand (Figure 4.2A). In contrast, 19-23 nt viRNAs were more or less 

equally generated from both the positive and negative strands at all other time points during 

infection. Strand biases for 24-30 nt sequences, which correspond by size to products of the 

piRNA pathway, were more skewed toward the positive strand (Figure 4.2B). At 12 hpe, roughly 

75% of 24-30 nt reads mapping to WNV were derived from the positive strand. At 24 hpe, the 

ratio of positive:negative strand had decreased to ~60:40, inconsistent with the heavy positive-
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strand bias observed in our previous studies as well as the published literature [282, 313, 318, 

316, 314]. The expected positive-strand bias began to resolve starting at 3 dpi onward, with 

~80-90% of 24-30 nt reads being derived from the positive strand at these time points (Figure 

4.2B). Interestingly, 24-30 nt small RNAs were significantly enriched in the 14 dpi midgut limited 

cohort as compared to the 16 dpi disseminated cohort (Figure 4.1F). This population of small 

RNAs represented between 7% and 20% of the total 19-30 nt RNAs across replicates in this 

cohort. However, 24-30 nt small RNAs in the 7 dpi midgut limited cohort were not significantly 

enriched over the 7 dpi disseminated group (Figure 4.1E). Starting at 3 dpi, the size distribution 

of 19-23 nts RNAs became approximately normally distributed with a prominent peak at 21 nts 

(Figure 4.1C-F).  

 

Nucleotide targeting of the virus genome by RNAi is highly conserved within and between 

time points and infection phenotypes 

 We previously compared intra- and interspecies anti-WNV RNAi profiles across different 

species and populations of mosquitoes, and found that in particular, the relative intensity of 

intra-species nucleotide targeting of the virus genome was highly conserved. We compared the 

19-23 nt viRNA nucleotide targeting profiles of midgut pools sequenced in triplicate at 3 dpi, 

7dpi, 14 dpi, and 16 dpi. The 7 dpi and the 14-16dpi time points were classified into two 

different infection phenotypes: midgut limited and disseminated, determined by either the lack 

or presence of detectable viral RNA in the legs, respectively.  

 To test the hypothesis that qualitative and/or quantitative differences in targeting of the 

viral genome by the exo-siRNA pathway influences vector competence, we correlated 
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nucleotide targeting frequencies between individual replicates within a cohort (i.e. 7 dpi midgut 

limited) and between cohorts (i.e. 7 dpi midgut limited vs. 7dpi disseminated). We focused on 

the 19-23 nt reads corresponding to products of the siRNA pathway since this population makes 

up the bulk of the total RNAi response. At 12 hpe, there was a low correlation between 

replicates as measured by the Spearman r value (rs= 0.31) (Figure 4.3). In contrast, at 24 hpe, 

intra-time point replicates were more strongly correlated (rs=0.77). Similar results were 

observed for intra-time point and intra-infection phenotype correlations for 7, 14, and 16 dpi. 

Surprisingly, when we made inter-time point and inter-infection phenotype comparisons 

between individual replicates at 3 dpi, 7 dpi, 14 dpi, and 16 dpi, the strength of the correlation 

in all cases was statistically equal to the intra-cohort comparisons within replicates. Similarly, 

the ratio of small 19-23 nt viRNAs derived from either the positive or negative strand across 

these time points did not change significantly (Figure 4.2A). This suggests that once the RNAi 

pathway is activated, the relative intensity of nucleotide targeting of the virus genome (i.e. the 

“RNAi profile”) remains constant during the course of infection.  

 We next measured viral load in individual mosquitoes comprising each replicate pool 

from 3 dpi to 16 dpi using qRT-PCR. There was no association between viral genome copy 

number and infection phenotype. When comparing both the 7 dpi midgut limited vs. 

disseminated libraries and the 14-16 dpi midgut limited and disseminated libraries, titers were 

higher in the midgut limited libraries when comparing either individual replicate titers or cohort 

mean titers, though not significantly (Figure 4.4A-B).  
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Abundant viRNAs are inefficient at individually suppressing WNV replication in C6/36 

mosquito cells 

We next tested whether abundant viRNAs from early (12 hpe, 24 hpe) and later (7 dpi) 

time points could effectively suppress WNV replication in vitro. We identified several highly 

abundant viRNAs common to both the 12 and 24 hpe libraries, as well as viRNAs common 

amongst the 7 dpi libraries. We designed synthetic siRNA duplexes to each of these selected 

viRNA sequences and individually transfected them into Ae. albopictus-derived C6/36 cells 48 

hours prior to infecting with WNV. With the exception of siRNA 7d at 48 hours post infection 

(hpi), none of the siRNAs significantly reduced viral titers individually (Figure 4.5). The 

combined effect of these siRNAs was not determined. 

 

Discussion 

In this study, we sought to determine the temporal plasticity of the anti-WNV RNAi 

response in Cx. quinquefasciatus mosquitoes, as well as determine the effect of the exo-siRNA 

pathway in shaping mosquito vector competence to arbovirus infection. At early time points 

after taking an infectious bloodmeal, small RNAs sequenced from the midguts of WNV-exposed 

mosquitoes exhibited an atypical size distribution profile, specifically lacking a prominent peak 

at 21 nts, which is a hallmark of the Dcr-2 mediated siRNA response. Since we lacked the ability 

to reliably determine prior to sequencing whether these mosquitoes had replicating virus in the 

midgut, mosquitoes pooled for small RNA libraries at the 12 and 24 hpe time points were 

deemed as “exposed” as opposed to “infected”. However, small RNA sequencing revealed 

sequences derived from the negative strand of the virus, indicating active viral replication. A 
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key question that remains is biogenic origin of the small RNA sequences from these early time 

points. It is possible that we were observing the early stages of the siRNA response, prior to the 

development of the stereotypical normal distribution with a peak at 21 nts that has been 

observed in ours and others’ previous studies of invertebrate RNAi responses to RNA viruses 

[280, 282, 283, 293, 313, 281, 314-318, 431-433]. Conversely, it is also possible that we were 

sequencing degradation products produced by other cellular non-RNAi RNA decay pathways. 

The latter scenario seems to be supported by our observations at the 12 hpe time point, since 

the low correlation of nucleotide frequency within the reads between replicates may be 

indicative of the “random” production of RNA products, such as through the incomplete exo-

nucleolytic degradation by XRN-1 or the exosome. The Illumina Truseq small RNA protocol we 

used to make our sequencing libraries is designed to specifically ligate RNAs with a 5’-PO4 and 

3’-OH, which miRNAs, siRNAs, and piRNAs all exhibit, and the size selection step of the protocol 

ensures a further degree of specificity for small RNA products. However, it is possible that in the 

absence of appreciable amounts of small RNAs, other RNA products can become preferential 

targets for adapter ligation and subsequent sequencing.  In mammals, Dicer has been shown to 

cleave targets with high specificity with regards to RNA secondary structure and distance from 

the 5’-end of the target [434, 435]. It is likely that invertebrate Dicer enzymes similarly 

recognize signatures in their targets that dictate where cleavage of the target occurs. Indeed, 

the high degree of intra- and inter-cohort correlation we see between replicates suggests that 

targeting and subsequent processing of the virus genome by Dcr-2 is not random, but highly 

specific. Due to the atypical proportions of 24-30 nt RNAs to 19-23 nt RNAs, the apparent lack 

of consistency in nucleotide targeting between replicates at 12 hpe, and the lack of expected 
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strand bias at 12 and 24 hpe in the 24-30 nt RNAs, we conclude that neither the siRNA nor 

piRNA pathways are activated at the earliest, and probably most relevant timepoints during 

mosquito infection.  

By 3 dpi infection, a more stereotypical distribution of viRNAs had appeared, with a 

prominent peak at 21 nts, indicative of Dcr-2-mediated digestion of the virus genome. There 

was no statistical difference in the proportions of 19-23 nt viRNAs between replicates or 

infection phenotypes at any time point; however, at 14 dpi, there was a statistically significant 

enrichment of 24-30 nt viRNAs in the midgut limited vs. the 16 dpi disseminated group. An 

enrichment in this size class, which corresponds to products of the piRNA pathway, was not 

observed between 7 dpi midgut limited and disseminated cohorts. There is a considerable lack 

of understanding regarding the impact the piRNA pathway has on controlling arbovirus 

infection, and we hypothesize in the previous chapter that it plays a compensatory or 

redundant rather than a primary role in RNAi-mediated antiviral defense. 

 In this study, we hypothesized that qualitative or quantitative differences in the RNAi 

response may be correlated with vector competence phenotypes in the mosquito midgut; 

specifically, whether or not the virus is restricted to the midgut epithelium or is allowed to 

disseminate into distal tissues. Surprisingly, we not only found that once established, the 

antiviral RNAi profile in mosquito midguts is remarkably constant during the entire course of 

infection, but that there was little discernable difference in the profiles of midguts from 

mosquitoes with disparate infection phenotypes. There are several possibilities for this 

observation. First, these experiments were carried out using highly inbred, colonized 

mosquitoes with presumably low genetic diversity. While Dcr-2 has been shown to undergo 
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rapid evolution in mosquitoes and is correlated with differential vector competencies to virus 

infection [407, 408], it is unlikely our colonized mosquitoes undergo such selective pressures, 

since infected mosquitoes are not part of the breeding stock of the colony. Additionally, it is 

unknown what phenotypic effect on the targeting specificity of Dcr-2 may occur as the result of 

mutation within that gene. Vector competence is a polygenic trait that is not completely 

understood, and it is likely that many factors, both internal and external, contribute to the 

vector competence phenotype in mosquitoes. It is also possible that by limiting our studies to 

the mosquito midgut, we may have missed important variation in the RNAi response in other 

tissues; i.e. is a midgut-limited phenotype due to the strict inability of the virus to escape from 

the midgut, or can a robust RNAi response in the hemolymph (perhaps primed by a 

hypothetical systemic RNAi response) of the mosquito clear or prevent infection in that 

compartment. We found no relationship between the viral load in mosquito midguts and the 

infection phenotype; in fact, mosquitoes with disseminated infections had slightly lower virus 

genomic copy numbers than mosquitoes with midgut limited infections, though this difference 

was not statistically significant. Thus, we conclude that not only does the antiviral RNAi 

response fail to limit viral load in midgut limited versus disseminated infection phenotypes, but 

that it is not associated with either the restriction or dissemination of the virus from the 

midgut.  

 We also investigated the individual efficacy of highly abundant viRNAs from our 

sequencing data in limiting WNV replication in vitro. In congruence with previous unpublished 

data from our lab, we found that at best, there was modest suppression of WNV replication in 

C6/36 cells infected with WNV 48 hours post transfection with synthetic siRNAs. A single siRNA 
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at 48 hpi showed statistically significant suppression of WNV as measured by Dunnett’s 

multiple comparisons test. A relatively recent paper demonstrated that low abundance Semliki 

Forest virus (SFV, Togaviridae)-derived viRNAs were more effective at suppressing virus 

replication than highly abundant viRNAs in Ae. albopictus-derived U4.4 and Ae. aegypti-derived 

Aag2 cells [433]. However, previous unpublished work from our lab has shown that synthetic 

siRNAs designed from low abundance WNV-derived viRNAs were no more effective at 

suppressing viral replication than highly abundant viRNAs. Thus, susceptibility to replicative 

inhibition by individual virus-specific siRNAs may be a feature of some arboviruses but not 

others. 
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siRNA Name Sense Sequence Antisense Sequence 

1224a 5’-GGCACCAGAGCCCGAGUCAUU-3’ 5’-UGACUCGGGCUCUGGUGCCUU-3’ 

1224b 5’-ACUUCCCGGCCUGACUUUCUU-3’ 5’-GAAAGUCAGGCCGGGAAGUUU-3’ 

1224c 5’-CUUCCCGGCCUGACUUUCUUU-3’ 5’-AGAAAGUCAGGCCGGGAAGUU-3’ 

1224d 5’-CUCCUCCAACUGCGAGAAACGUGUU-3’ 5’-AGAAAGUCAGGCCGGGAAGUU-3’ 

1224e 5’-GCUCUAAUUCUGGGACGUCCGUU-3’ 5’-CGGACGUCCCAGAAUUAGAGCUU-3’ 

7a 5’-GGUGCGAGUGGCAGGUCCACGUU-3’ 5’-CGUGGACCUGCCACUCGCACCUU-3’ 

7b 5’-CAGCGAACUGGCGGAGCCUGUUU-3’ 5’-ACAGGCUCCGCCAGUUCGCUGUU-3’ 

7c 5’-GACUUACAGACUGAGAUCCCGUU-3’ 5’-CGGGAUCUCAGUCUGUAAGUCUU-3’ 

7d 5’-GACAGUACGAGAAGCCGGAAUUU-3’ 5’-AUCCGGCUUCUCGUACUGUCUU-3’ 

7e 5’-GGCAGUCCUCUCAGUGCUUCAUU-3’ 5’-UGAAGCACUGAGAGGACUGCCUU-3’ 

Table 4.1: Sequences for synthetic siRNAs transfected into C6/36 mosquito cells 

prior to WNV infection. The number designation in the name denotes the libraries 

these sequences were identified from, i.e. 1224 indicates that these sequences were 

abundant in both 12 and 24 hpe libraries, 7 means that these sequences were 

abundant amongst the 7 dpi libraries. The two terminal U’s at the 3’ end of each 

sequence (underlined) are artificial 3’-overhangs inserted to mimic the 2 nt 3’ 

overhangs present on siRNA duplexes, and were not derived from the actual viRNA 

sequences. 
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Figure 4.1: Features of small RNA libraries. A) Relative abundance of small 

RNA reads mapping to the WNV genome normalized per million. Error bars 

represent mean and SEM. B-F) Distribution of viRNA sequences by size at 12 

hpe (B), 24 hpe (C), 3 dpi (D), 7 dpi (E), and 14/16 dpi (F). Mean values of 3 

replicates are plotted, error bars represent SEM. Asterisk in (F) denotes 

significant difference in 24-30 nt abundance by an unpaired t-test with 

Welch’s correction (p= 0.007). 
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Figure 4.2: Positive/negative strand ratios for small RNA libraries. A) 19-23 nt reads, B) 

24-30 nt reads. Mean values for three replicates from each cohort are plotted. Error bars 

represent SEM. Asterisk denotes significance (p≤ 0.05) as tested by Dunn’s multiple 

comparisons test. 
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Figure 4.4: WNV genome equivalents from library pools as measured by qRT-

PCR. Taqman qRT-PCR was performed on individual mosquito midguts used to 

create small RNA library pools. A) WNV genome equivalents/µL total RNA for 

individual mosquitoes from each replicate within the 3 dpi, 7 dpi, 14 dpi, and 16 

dpi cohorts. Bars represent mean and SEM. B) Mean genome equivalent titers 

for each replicate. Bars represent mean and SEM. For both graphs, statistically 

homogeneous data sets share common letters. Statistical significance (p≤ 0.05) 

was determined by log10 transforming the data and then performing Tukey’s 

multiple comparison test on the means. 
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Figure 4.5: Synthetic siRNA transfection of C6/36 cells. C6/36 

cells were transfected with synthetic siRNA duplexes 48 hours 

prior to infection with WNV. Cell supernatant was harvested every 

12 hours up to 48 hpi and viral titers quantified by plaque assay. 

Mean titers of three replicates are plotted, error bars represent 

SEM. Asterisk denotes WNV titer from the 7d siRNA treatment 

group at 48 hours which was significantly less than the negative 

siRNA control (siNEG) as determined by Dunnett’s multiple 

comparisons test (p≤ 0.05). 
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Chapter 5: Concluding Remarks 
 
 
 

Arboviruses constitute both emerging and re-emerging threats to human and livestock 

health worldwide. In particular, mosquito-borne arboviruses cause the majority of severe 

disease outbreaks. It is therefore critical that we develop a complete understanding of 

mosquito-virus interactions, both from macro (i.e. natural history, ecology, etc.) and molecular 

(i.e. virus evolution, vector innate immunity) perspectives. Additionally, a detailed 

understanding of these factors is important in order to ascertain how they influence differences 

in susceptibility to arbovirus infection and likelihood of transmission in natural populations of 

mosquitoes, i.e. vector competence. 

 RNAi is the major innate immune response to arbovirus infection in mosquitoes [383]. 

Over a decade of research has been invested into investigating the role small RNA pathways 

play in controlling arbovirus infection in mosquitoes. What has become clear is that RNAi, 

specifically the exo-siRNA pathway, protects mosquitoes from lethal infection [388], and data 

from other infection models suggest that an equilibrium between the antiviral-RNAi response 

and viral replication allows for the establishment of a persistent, non-pathogenic infection 

[297]. Insights into the importance of the antiviral function of small RNA pathways have 

inspired research into the development of novel arbovirus control strategies which seek to 

exploit these immune pathways [385, 18, 20, 387, 386]. However, there is still a considerable 

lack of understanding regarding the degree to which the antiviral RNAi response varies amongst 

mosquito species and populations, as well as how it influences mosquito vector competence. 
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Additionally, it has only been recently that the role of another small RNA pathway, the piRNA 

pathway, has been implicated in participating in antiviral defense in mosquitoes. 

 The work contained in this dissertation sought to resolve these questions and increase 

our understanding of small RNA pathways in the context of innate immunity to arboviruses in 

mosquitoes. We first began by profiling virus-derived small RNAs in the midguts of Culex sp. 

mosquitoes in response to WNV infection using the Illumina next-generation sequencing 

technology. The midgut is the first site of infection after imbibing an infectious bloodmeal, and 

a failure to infect/replicate sufficiently/disseminate from this tissue results in a dead-end 

infection for the virus. Since there is a lack of studies that have investigated innate immune 

mechanisms in natural populations of mosquitoes to arbovirus infection, we collected egg rafts 

from three species of WNV vector mosquitoes from the field: Cx. quinquefasciatus, Cx. pipiens, 

and Cx. tarsalis. We reared larvae to adulthood in the laboratory, and experimentally infected 

adult female mosquitoes per os with an infectious clone derived virus based on the NY99 strain 

of WNV. We then compared viral-derived small RNA populations of 19-30 nts sequenced from 

midgut pools of infected mosquitoes. In addition, we sequenced midgut pools from colonized 

Cx. quinquefasciatus, Cx. tarsalis, Cx. pipiens, and Ae. aegypti mosquitoes reared and infected in 

the same manner. We found that there was a high degree of intra-species correlation between 

the 19-23 nt viRNAs (consistent in size with products of the Dcr-2 dependent exo-siRNA 

pathway) in all of the species studied. We also made interspecies comparisons between WNV-

derived viRNAs and found a striking level of correlation between species; with the notable 

exception of Cx. quinquefasciatus, which significantly differed in the targeting of the virus 

genome when compared to Cx. tarsalis, Ae. aegypti, and even the closely related sister taxa Cx. 
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pipiens. Previous work has shown that WNV undergoes population bottlenecks in Cx. pipiens 

[405], but not Cx. quinquefasciatus [406]. It is therefore possible that qualitative differences in 

the total RNAi response may differentially influence virus diversification and population 

structure. As we did not analyze virus genetic diversity from our sequenced mosquitoes, it is 

impossible to draw a correlate; however, future studies should address this point. 

 While profiling 19-30 nt viral-derived small RNAs from both field-collected and colonized 

Cx. quinquefasciatus mosquitoes, we found that while the relative proportion of 19-23 nt did 

not differ statistically between the groups, the proportion of 24-30 nt small RNAs, 

corresponding in size to products of the piRNA pathway, did differ significantly across the three 

groups. The piRNA pathway is a relatively recently described small RNA pathway that plays 

important roles in spermatogenesis [301] in flies, and is an important suppressor of 

transposable elements in gametic tissue [301]. Endogenous piRNAs typically exhibit strong 

strand biases, being primarily antisense to TE’s [305], and exhibit preferences for a 5’-uracil 

residue on primary piRNAs and an adenosine at position 10 of secondary piRNAs [311, 312]. The 

ping-pong dependent amplification model has been proposed to explain these nucleotide 

biases. Recently, the piRNA pathway has been implicated in participating in antiviral defense in 

flies and mosquitoes [282, 313, 281, 314-318] Moreover, when we analyzed the strand bias and 

nucleotide bias for these small RNAs in all of our Culex and Ae. aegypti libraries, we found a 

very strong bias for reads derived from the positive strand of the virus; however, no preference 

for a U1 residue on the primary (negative) strand or a A10 on the secondary strand (positive) was 

observed in these putative viral-derived piRNA-like small RNAs (vpiRNAs). This is partially 

consistent with what has been observed for DENV-2 in both mosquitoes and mosquito cells 
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[315, 281], for which only a slight bias for an A10 was observed, but contrary to what has been 

observed in alphavirus and bunyavirus infected mosquitoes or mosquito cells, where viral-

derived piRNAs (vpiRNAs) consistent with the model for ping-pong dependent amplification 

have been sequenced [317, 282, 313, 318, 316]. Therefore, we hypothesized that infection with 

either alphaviruses or flaviviruses results in the disparate biogenesis and/or processing of small 

RNAs through the piRNA pathway.  

We chose Cx. tarsalis, an important natural vector for both WNV and WEEV, and a 

competent laboratory vector for SINV, as our single-species infection model, and sequenced 

both midguts and carcasses sans ovaries from mosquitoes experimentally infected with these 

viruses. Remarkably, we found that infection with none of these viruses resulted in production 

of 24-30 nt small RNAs with signatures of ping-pong dependent amplification. Additionally, we 

found that while a strong bias for reads being derived from the positive strand of the virus was 

maintained in both midguts and carcasses of mosquitoes infected with WNV, only the carcasses 

of mosquitoes infected with either WEEV or SINV exhibited a strong positive strand bias. This 

observation challenged our hypothesis that production of 24-30 nt small RNAs that either 

exhibited signatures of ping-pong dependent amplification or did not was virus dependent. 

When we analyzed a previously made library from Ae. aegypti infected with SINV, we found 

that a strong positive strand bias was maintained, along with the expected nucleotide biases 

observed for other alphavirus infections in Ae. spp. mosquitoes and cells. However, Ae. aegypti 

does not produce piRNA-like small RNAs with these molecular signatures to WNV. Therefore, 

we concluded that the specific products of the piRNA pathway in mosquitoes are dependent on 

both host and virus, and that specific viruses do not universally elicit production of ping-pong 
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dependent piRNA-like small RNAs, nor do specific vectors universally produce ping-pong 

dependent piRNA-like small RNAs to arbovirus infection. 

 We were able to confirm the presence of transcripts for required machinery for the 

ping-pong dependent pathway in Cx. quinquefasciatus midguts, providing evidence that it is 

likely this pathway is functional in this tissue. Secondly, we aligned small RNA reads to several 

selected TE sequences from Cx. quinquefasciatus, finding not only that they exhibited strong 

strand bias (antisense to the TE), but also the expected nucleotide bias. This implies that the 

pathway is intact in Cx. quinquefasciatus (and presumably Cx. pipiens and Cx. tarsalis), but for 

currently unknown reasons, is not triggered by arbovirus infection. 

 The role of RNAi in influencing the vector competence phenotype in mosquitoes is 

poorly understood. We do know that vector competence is a quantitative genetic trait, under 

the control of several loci [426-428] ; however, collectively, these loci account for little of the 

wide variation in observed vector competence phenotype amongst species and populations 

within species. Therefore, we hypothesized that since RNAi is the major innate immune 

pathway responsible for controlling arbovirus infection in mosquitoes, it also plays a role in 

shaping the vector competence of the insect. Using multiple biological replicates, we profiled 

the midgut small RNA response to WNV infection in our colonized Cx. quinquefasciatus 

mosquitoes at both early (12 hpe, 24 hpe, 3 dpi) and late (7 dpi, 14/16 dpi) time points as well 

as different infection phenotypes (midgut limited and disseminated). Remarkably, we found 

little evidence for activity of the siRNA or piRNA pathways at 12 hpe and 24 hpe, though by 3 

dpi, products of Dcr-2 dependent digestion of the virus genome were evident. Additionally, we 

found no correlation between a particular viRNA profile and either limitation to or escape from 
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the midguts of infected mosquitoes. Moreover, neither infection phenotype nor RNAi profile 

was correlated with virus load in the midgut. Based on these lines of evidence, we conclude 

that RNAi fails to control virus replication at key time points during infection, specifically, when 

the virus is first entering cells and undergoing replication.  

 Taken together, these investigations into the antiviral RNAi pathways in mosquitoes to 

arbovirus infection add to the continually growing body of evidence highlighting the importance 

of small RNA pathways in controlling arbovirus infection. However, there are numerous 

unanswered questions that remain ripe for exploration. For example, little is known about the 

effect persistent viral infection has on altering the RNAi response in natural populations, where 

vertical (transovarial) transmission of arboviruses, in particular bunyaviruses, is possible [436, 

186, 437]. Bombyx mori larvae are frequently persistently infected with Bombyx mori 

cytoplasmic polyhedrosis virus (BmCPV, Reoviridae) [438], and have been found to have 

frameshift mutations in r2d2, a core component of the siRNA pathway [439]. Similarly, virus 

infection has been correlated with deficiencies in RNAi in C. elegans [440]. This has led to the 

hypothesis that persistent infection leads to the alterations in the RNAi response in insects 

[438]. Whether the RNAi response is similarly altered by arboviruses in mosquitoes is 

undetermined. Another interesting avenue of future research would be the existence of a 

mechanism for systemic RNAi in mosquitoes, such as that described in Drosophila [292]. Future 

studies should address these and related points. 
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