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ABSTRACT 

 

TURBULENCE PARAMETERIZATIONS FOR NUMERICAL SIMULATIONS OF 

STABLY STRATIFIED ENVIRONMENTAL FLOWS 

 

Almost all environmental and geophysical flows such as lakes, reservoirs, 

estuaries, and the atmosphere are turbulent and are also often characterized by stable 

density stratification. The presence of buoyancy forces due to stratification has a 

substantial effect on the flow development and turbulent mixing processes, influencing 

the distribution of pollutants and suspended matter in these flows. Mathematical and 

computer models can be used to simulate and produce numerical solutions to these flows, 

providing results that would otherwise not be feasibly attainable in a laboratory setting 

and that can be used for engineering prediction, design, and analysis purposes. 

Turbulence models use computational procedures to close the system of mean flow 

equations and account for the effects of turbulence and stratification through the 

specification of parameters that characterize the behavior of the flow. In this research, an 

attempt is made to assess and improve turbulence parameterizations for stably stratified 

environmental flows. 

An important parameter describing the transfer of momentum and scalar fluxes in 

stratified turbulent flows is the turbulent Prandtl number Prt. Specifically, four different 

formulations of the turbulent Prandtl number Prt are evaluated for stably stratified flows. 
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All four formulations of Prt are strictly functions of the gradient Richardson number Ri, a 

parameter that provides a measure of the strength of the stratification. A zero-equation 

turbulence model for the turbulent viscosity νt in a one-dimensional turbulent channel 

flow is considered to assess the behavior of the different formulations of Prt. Both uni-

directional and oscillatory flows are considered to simulate conditions representative of 

practical flow problems, such as atmospheric boundary layer flows and tidally-driven 

estuarine flows, to quantify the behavior of each of the four formulations of Prt. It is 

discussed as to which of the models of Prt allow for a higher rate of turbulent mixing and 

which models significantly inhibit turbulent mixing in the presence of buoyancy forces 

resulting from fixed continuous stratification as well as fixed two-layer stratification. The 

basis underlying the formulation of each model in conjunction with the simulation results 

are used to highlight the importance of choosing an appropriate parameterization of Prt, 

given a model for νt in stably stratified flows.  

Other more complete and dynamic models rely on additional parameters that 

allow stratified turbulent flow to be modeled as a function of local turbulence quantities 

rather than mean global properties of the flow. This research also focuses on 

implementing and testing proposed changes that explicitly account for buoyancy effects 

in two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. Direct 

numerical simulation (DNS) data of stably stratified homogeneous turbulence are used to 

study the parameters in two-equation RANS turbulence models such as the buoyancy 

parameter Cε3 and the turbulent Prandtl number Prt in the k-ε model. Both the gradient 

Richardson number Ri and the turbulent Froude number Frk are used as correlating 

parameters to characterize stratification in the k-ε model. It is shown that it may be more 
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appropriate to use Frk as the parameter of choice for the stratification parameter in the k-ε 

model since it is based on the local properties of the turbulence as opposed to Ri, which is 

a mean property of the flow. The proposed modifications and alterations to Cε3 and Prt as 

functions of Ri and Frk are implemented in a one-dimensional water column model called 

General Ocean Turbulence Model (GOTM) and used to simulate stably stratified channel 

flows. The results from numerical simulations using the modified versions of the k-ε 

model are compared to stably stratified channel flow DNS data to assess their efficacy. 
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NOMENCLATURE 

 

The notation used is given here in the following order: upper-case Roman, lower-case 

Roman, upper-case Greek, lower-case Greek, subscripts and superscripts, and 

abbreviations. 

 

Upper-case Roman 

B  buoyancy flux or buoyancy production rate of turbulent kinetic energy 

C  passive scalar concentration 

CD  drag coefficient 

Cε1  constant in the model equation for ε 

Cε2  constant in the model equation for ε 

Cε3  buoyancy parameter in the model equation for ε 

Cε3,0  maximum value of Cε3 

Cμ  turbulent-viscosity constant in the k-ε model 

Dk  diffusion of turbulent kinetic energy 

Dε  diffusion transport term in the model equation for ε 

Fr  Froude number 

Fr′  internal Froude number 

Frk  turbulent Froude number 

H  total flow depth 

L  characteristic lengthscale of the flow or turbulence lengthscale 

LO  buoyancy or Ozmidov lengthscale 

M2  Semidiurnal tidal constituent 

N  Brunt-Väisälä or buoyancy frequency 

Ni  number of grid layers 

P  production rate of turbulent kinetic energy due to shear 

Pr  Prandtl number 

Prt  turbulent Prandtl number 

Prt0  neutral (unstratified) value of the turbulent Prandtl number 

Rf∞  asymptotic value of the flux Richardson number 
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Re  Reynolds number 

Reη  friction Reynolds number 

Ri  gradient Richardson number 

Riη  friction Richardson number 

S  mean strain rate tensor or mean velocity gradient 

Sc  Schmidt number 

T  tidal period 

TL  mechanical or turbulence timescale 

Tρ  scalar timescale 

U  characteristic velocity scale of the flow 

Umax  maximum flow velocity 

 

Lower-case Roman 

g  gravitational acceleration 

hi  grid layer height or thickness 

k  turbulent kinetic energy  

p  pressure 

p   mean pressure 

t  time 

u  fluid velocity 

u′  fluctuating fluid velocity 

u   mean fluid velocity 

u1  fluid velocity at the first grid point from the lower channel boundary 

uη  shear or friction velocity 

jiuu    Reynolds stress tensor 

w′  z-component of fluctuating velocity 

x  cartesian coordinate 

y  cartesian coordinate 

z  cartesian coordinate 

zpyc  mid-depth of a pycnocline 

 

Upper-case Greek 

Γ  molecular heat or scalar diffusivity 

Γ∞  mixing efficiency 

Γt  turbulent diffusivity or scalar eddy diffusivity 

Γt|mod  modified scalar eddy diffusivity 

Δ  finite grid width, spacing, or difference 

Τ  time level 
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Lower-case Greek 

α  empirical constant in the Munk and Anderson (1948) model for νt 

αρ  empirical constant in the Munk and Anderson (1948) model for Γt 

β  empirical constant in the Munk and Anderson (1948) model for νt 

βρ  empirical constant in the Munk and Anderson (1948) model for Γt 

γ  (1/2)(TL/Tρ) 

δij  Kronecker delta 

ε  rate of dissipation of turbulent kinetic energy 

δ  empirical constant in the model equation for Prt = f(Frk) 

ε  free surface elevation 

ζ  implicitness parameter used in the ζ-method 

κ  von Karman constant 

ν  molecular momentum diffusivity or kinematic viscosity 

νt  turbulent viscosity or kinematic eddy viscosity 

νt|mod  modified eddy viscosity 

νt|mod,pyc value of νt|mod computed at the mid-depth of a pycnocline 

ρ  density 

ρ′  fluctuating density or density variation 

   mean density 

ρ0  background or reference mean density 

ζ  implicitness parameter used in GOTM 

ζk  turbulent Prandtl number for  kinetic energy 

ζε  turbulent Prandtl number for dissipation 

ϕ  conserved passive scalar 

   mean conserved passive scalar 

iu   Scalar flux 

ψ  empirical constant in the model equation for Prt = f(Frk) 

ω  specific dissipation 

 

Superscripts and Subscripts 

i  spatial grid or tensor index (1, 2, or 3) 

j  tensor index (1, 2, or 3)   

n  temporal grid index 

 

Abbreviations 

APS  American Physical Society 

ASCE  American Society of Civil Engineers 

CFD  computational fluid dynamics 
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DFD  Division of Fluid Dynamics 

DNS  direct numerical simulation 

GOTM  General Ocean Turbulence Model 

KM  Kim and Mahrt (1992) 

LES  large-eddy simulation 

MA  Munk and Anderson (1948) 

PDE  partial differential equation 

PGT  Peters et al. (1988) 

RANS  Reynolds-averaged Navier-Stokes 

VS  Venayagamoorthy and Stretch (2010)
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

Stable density stratification is a common feature in turbulent environmental flows 

such as rivers, lakes, reservoirs, estuaries, oceans, and the atmospheric boundary layer. 

Stable stratification is characterized by a density gradient in which the density of the fluid 

increases with depth in a river, lake, or ocean or decreases with altitude in the 

atmosphere. This stable stratification can occur continually or can be marked by a denser 

fluid layer (e.g. salt water from the ocean) flowing beneath a less dense fluid layer (e.g. 

fresh water from a river) separated by a distinct interface. The interface of these two 

layers forms a sharp density gradient within the flow, often referred to as a pycnocline or 

thermocline. In either case, stable stratification tends to suppress turbulence; the 

buoyancy flux term in the governing equation for the turbulent kinetic energy of a flow 

acts as an energy sink in the presence of stable stratification to inhibit vertical mixing and 

dispersion from the turbulence generated from shear stress at the bottom boundary. As a 

result, turbulent properties of the flow that describe the vertical mixing and diffusion of 

momentum and scalars called the eddy viscosity and scalar eddy diffusivity respectively 

are significantly affected, especially away from boundaries where turbulence is 
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generated. Essentially, stable stratification and turbulence compete with one another to 

determine the rate and efficiency of vertical turbulent mixing in a stably stratified 

turbulent flow. Fundamental research in this field is aimed at understanding this intricate 

coupling between stratification and turbulence with the overarching goal of developing 

improved models that capture this two-way coupling for use in computational fluid 

dynamics (CFD) simulations. 

 

1.2 Background and Motivation 

 

Predicting the vertical mixing and dispersion of a passive scalar, such as the 

concentration of a pollutant released at some depth within a stably stratified 

environmental flow, can be achieved by numerically solving the equations that govern 

the motion and properties of the flow. The equations that govern the behavior of a fluid 

are the well-known Navier-Stokes equations for conservation of momentum and the 

continuity equation for conservation of mass. However, it is not feasible in most cases to 

solve the highly nonlinear set of Navier-Stokes equations in their full form using direct 

numerical simulations (DNS) or large-eddy simulations (LES) due mainly to 

computational and geometrical constraints. A practical approach commonly used in 

engineering to obtain approximate (statistical) solutions to the Navier-Stokes equations is 

to use Reynolds decomposition to cast them in terms of time-averaged variables by 

splitting each instantaneous variable into a mean component and a fluctuating 

component. This averaging process yields the so called Reynolds-averaged Navier-Stokes 

(RANS) equations and results in six additional terms called the Reynolds stresses in the 



3 

 

averaged momentum equations and a turbulent scalar flux term in the scalar (density) 

transport equation. These turbulent flux terms give rise to what is commonly known as 

the closure problem in turbulent flows and hence necessitate the need for additional 

equations/models to close the system of equations (i.e. have enough equations to solve 

for each of the unknowns) in order to obtain solutions. 

There are different computational methods for closing the RANS system of mean 

flow equations known as turbulence models, many of which rely on the turbulent Prandtl 

number Prt = νt/Γt to link the scalar eddy diffusivity Γt and the eddy viscosity νt 

(Venayagamoorthy & Stretch 2010). Turbulence models may vary in complexity and 

completeness; for example a more complete method, which is more computationally 

expensive, is to solve six transport equations for each of the Reynolds stresses. However, 

a common approach is to use the Boussinesq turbulent-viscosity hypothesis to model the 

Reynolds stresses jiuu   as a linear function of the mean strain rate tensor S multiplied by 

νt. Again, there are different approaches to modeling νt ranging from more complete two-

equation turbulence models to simplified zero-equation algebraic models. Two-equation 

turbulence models such as the k-ε model describe νt as a function of the turbulent kinetic 

energy k and the turbulent kinetic energy dissipation rate ε, which are in turn given by 

two partial differential equations (PDEs) that must be solved within the framework of the 

RANS equations. Zero-equation models are the simplest turbulence models that use 

algebraic expressions for the eddy viscosity and hence do not require the solution of any 

additional PDEs (Chen & Jaw 1998, Ferziger & Peric 2002). They are therefore easy to 

implement and can often yield accurate and insightful results for certain (simple) types of 

turbulent flows. 



4 

 

Numerous turbulence models have been proposed and used to model and simulate 

a broad range of turbulent flows. However, there still exists a great deal of potential to 

improve upon the existing limitations and overall effectiveness of current RANS models. 

For stratified turbulent flows, a general and comprehensive formulation of the many of 

the parameters that describe and define turbulence models, including Prt and νt, has yet to 

be achieved and is thus an ongoing research task. By defining these key parameters in 

terms of the correct fundamental variables and properties that govern fluid dynamics and 

only through comparison to physical and simulation data of stratified turbulence can 

better and more robust turbulence models be established. 

 

1.3 Research Goals and Approach 

 

The goals of this research are to investigate the effects of stable stratification on 

parameters that describe the vertical mixing and diffusion of momentum and scalars, 

including Prt and the buoyancy parameter Cε3 in the standard k-ε model, and to clarify the 

definition of these parameters using numerical simulations of the RANS equations. These 

parameters, being adjusted to account for the effects of stable stratification and buoyant 

forces, can be defined as either constants or functions of the strength of stratification and 

mean properties of the flow and/or local properties of the turbulence. The results of the 

numerical simulations can then be validated by comparison to DNS data to determine the 

efficacy of the parameter formulations and the standard k-ε model in itself to handle 

stratified turbulent flows. 
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The numerical simulations are carried out by using both a simple zero-equation 

turbulence model and the two-equation standard k-ε turbulence model. The zero-equation 

turbulence model is coded in MATLAB and applied to a one-dimensional channel flow 

problem to test different formulations of Prt. The results of the vertical diffusion of a 

passive scalar are compared to one another (in a relative sense) to analyze their behavior 

under stably stratified conditions. Two different types of flow, uni-directional and 

oscillatory channel flow, are considered in this model to also test its applicability and 

robustness to different geophysical flow scenarios. A more comprehensive two-equation 

model is also used to test turbulence and stratification parameters, including Prt, used in 

these models. The standard k-ε model, present within the framework of a developed one-

dimensional water column turbulence model called General Ocean Turbulence Model 

(GOTM), is employed to simulate one-dimensional, fully developed channel flow in 

order to test model parameters through validation and comparison to DNS data for stably 

stratified channel flow. 

 

1.4 Thesis Layout 

 

The next four chapters of this thesis present the technical content of this research, 

including background information, methodology, results, discussion, and conclusions. 

The appendices include the computer codes that were developed and/or modified for this 

study to simulate numerical solutions of stably stratified turbulent flows. 

Chapter two provides background information gathered from a review of 

published literature on turbulence and modeling of stably stratified environmental flows. 
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Specifically, it highlights some of the fundamentals of fluid dynamics and turbulence, the 

challenges associated with modeling stratified turbulent flows, and methods in which 

these types of flows are modeled. In addition, it summarizes the basic theory and 

knowledge, including definitions, governing equations, and methodology, included in this 

research.  

Chapter three presents a study of the effect of stable stratification on Prt using a 

zero-equation turbulence model for νt in a one-dimensional turbulent channel flow. The 

behavior of four different formulations of Prt for four different open-channel flow cases 

are evaluated with regard to the predicted rate of vertical turbulent mixing of a passive 

scalar in the presence of buoyancy forces resulting from the imposed density 

stratification. The results of this study highlight the importance of and provide a basis for 

choosing an appropriate parameterization of Prt given a model for νt in stably stratified 

flows. 

Chapter four is dedicated to the study of implementing and testing modifications 

to parameter formulations that explicitly account for buoyancy effects in two-equation 

RANS turbulence models, namely Prt and Cε3. The modifications are applied to the one-

dimensional water column turbulence model, General Ocean Turbulence Model 

(GOTM), and used to simulate stably stratified channel flows. Using the standard k-ε 

model available in GOTM, the results of these simulations are compared to DNS data for 

stably stratified turbulent channel flows to assess the efficacy of the modified parameter 

formulations for use in two-equation RANS turbulence models. 

Chapter five is a summary of the research done and main conclusions found in 

these studies. It highlights the contributions made to research of stably stratified turbulent 
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flows, both as an extension of the work of others and as new findings and ideas. Finally, 

it gives suggestions for further work to be completed as an extension of this study. 

Appendix A contains the MATLAB code developed to simulate and compute 

results for the zero-equation turbulence model study in chapter three. Appendix B 

provides the FORTRAN95 code for each of the GOTM modules or subroutines that were 

modified to simulate and compute results using the k-ε model pertaining to the study in 

chapter four. 

 

1.5 Research Publications and Presentations 

 

 This thesis contains substantial portions of a peer-reviewed journal publication 

entitled “Evaluation of turbulent Prandtl (Schmidt) number parameterizations for stably 

stratified environmental flows” by Z.A. Elliott and S.K. Venayagamoorthy in the journal 

Dynamics of Atmospheres and Oceans. A talk entitled “Evaluation of turbulent Prandtl 

(Schmidt) number parameterizations for stably stratified turbulent flows” was also 

presented at the 63
rd

 Annual Meeting of the American Physical Society (APS) – Division 

of Fluid Dynamics (DFD) in Long Beach, California, November 21 – 23, 2010. 
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CHAPTER 2 

LITERATURE REVIEW OF TURBULENCE AND MODELING OF 

STRATIFIED ENVIRONMENTAL FLOWS 

 

2.1 Introduction 

 

Turbulence occurs every day in most practical flows of engineering relevance. An 

essential feature of turbulent flows is that the fluid velocity field varies in both space and 

time. Furthermore, this variation is always irregular and non-uniform, which makes it 

hard to predict and model. Turbulence enhances the rates of mixing of momentum, heat, 

and other variables of interest, making the application of turbulence modeling and 

understanding broad and useful. The majority of environmental or geophysical flows (i.e. 

oceans, lakes, estuaries, and the atmosphere) are also influenced substantially by density 

stratification. These stratified flows have a wide range of engineering applications 

ranging from pollutant mixing and dispersion in an estuary to reservoir hydraulics to 

weather prediction and forecasting. Stratified flows are marked by a density gradient with 

respect to the depth of the flow, causing buoyant forces that can significantly influence 

the flow patterns and the mixing of both momentum and scalars (Rodi 1987). In flows 

that are both turbulent and stratified, the interaction between the buoyant forces and the 

turbulence are dynamically coupled and influence one another. This interaction presents a 
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great modeling challenge for applications such as those discussed above and hence calls 

for a more in-depth and fundamental understanding of stratified turbulence. 

Modeling stratified and unstratified turbulent fluid flows still remains one of the 

most difficult challenges in all of fluid mechanics due to the nature of turbulence, which 

is described by the Navier-Stokes equations. For example, the instantaneous turbulent 

velocity field is three-dimensional with spatial-temporal variations over a wide range of 

timescales and lengthscales. The largest scales of turbulent motion in the flow are not 

universal as they depend on the boundaries and geometry of a given flow problem. The 

nonlinear convective term in the governing Navier-Stokes equations is difficult to solve 

for and model. Even more difficult is the pressure gradient term due to its non-local 

nature. Turbulence is marked by characteristics such as randomness and nonlinearity and 

a unique analytic solution the Navier-Stokes equations that describe the motion of fluid 

substances has yet to be obtained (Pope 2000). 

These are just a few of the specific challenges that are faced in describing, 

solving, and modeling stratified and unstratified turbulent flows. However, recent 

progress has been made in the field of turbulence, both in theory and observations, and a 

wide range of mathematical and computational techniques have been developed for 

practical flow problems to model turbulence (Kundu 1990). Computational fluid 

dynamics (CFD), as an example, is a branch of fluid engineering, mathematics, and 

computer science that uses numerical methods and algorithms to discretize and solve the 

governing equations of fluid motion using computers. 
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2.2 Governing Equations of Fluid Motion 

 

The Navier-Stokes equations that govern the motion of a fluid are a set of 

nonlinear partial differential equations named after Claude Louis Marie Henri Navier and 

George Gabriel Stokes, who worked independently to derive them over 150 years ago 

(Anderson 1998). These equations that describe the conservation of momentum for a 

Newtonian fluid in accordance with Newton’s second law can be written using tensor 

notation as 
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The terms on the left-hand side of equation (2.1) represent the total or material derivative 

of the velocity field ui, consisting of an unsteady local acceleration term plus a nonlinear 

convective acceleration term associated with the change in velocity with respect to 

position, respectively. The terms on the right-hand side of equation (2.1) account for the 

forces acting on the fluid. The first term on the right-hand side corresponds to the 

pressure forces; the second term describes the viscous forces arising from shear stress, 

and the third term represents a body force due to gravity. In addition to the Navier-Stokes 

equations for conservation of momentum, the continuity equation describing the 

conservation of mass also governs fluid flow and can be written as 
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According to the Boussinesq approximation for an incompressible flow, when 

density variations of the fluid ρ′ are small compared to the background or reference mean 

density ρ0, ρ′ generates only a small correction to the inertia terms on the left-hand side of 

equation (2.1) and can be neglected. However, in the gravity (or buoyancy) term on the 

right-hand side of equation (2.1) where the density ρ is multiplied by gravitational 

acceleration g, the effect of ρ′ is substantial and cannot be neglected (Kundu 1990). Thus, 

assuming the Boussinesq approximation holds, equation (2.1) can be simplified and 

rewritten as 
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Applying the Boussinesq approximation to the continuity equation (2.2) yields the 

incompressible form of the continuity equation for conservation of mass, which can be 

written as 
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In addition to the mass of the fluid, passive scalars in a flow are also conserved 

and governed by the scalar conservation equation. Scalar values that are passive are 

assumed to have no effect on the material properties of the flow itself such as ρ, the 

molecular kinematic viscosity ν, and the molecular diffusivity Γ and therefore do not 

influence the flow field ui (Pope 2000). For a passive scalar ϕ transported by a constant-
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property flow without a source or sink term, the advection-diffusion equation governing 

the motion of ϕ can be written as 
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where Γ is the molecular diffusivity of ϕ. In the case of an active scalar, such as ρ, 

equation (2.5) describing the conservation of ρ and equation (2.1) governing the motion 

of the flow cannot be considered independent of one another. The equations are 

inherently coupled dynamically (this is further addressed in section six of this chapter), 

which makes the solution of density stratified flows intriguing and challenging in 

addition to the already complex nature of the Navier-Stokes equations for unstratified 

turbulent flow. 

 

2.3 Mean Flow Equations 

 

Given that the equations describing fluid flow are known, where then does the 

challenge lie (besides solving complex, nonlinear, and sometimes coupled differential 

equations)? The challenge in modeling and predicting fluid flow based on the governing 

equations comes from the vast amount of information contained in the velocity field 

solution of the equations (i.e. a large range of scales for high Re flows). This makes a 

direct computation, or direct numerical simulation (DNS), impractical and virtually 

impossible for moderate to highly turbulent flows. Often times when considering 

turbulent geophysical and engineering flows, the solution of the full set of the governing 
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equations yielding the exact and instantaneous velocity field of the flow is not entirely 

necessary and/or feasible. With that said, the goal is to describe turbulent flows not it 

terms of the instantaneous velocity field, but rather with some statistics (e.g. the mean 

velocity field) that vary smoothly (if at all) in space and time. This is a tractable approach 

to solving the Navier-Stokes equations and is much less costly and daunting (Pope 2000). 

In 1884 Osborne Reynolds first derived the governing equations describing the 

mean turbulent velocity field from the Navier-Stokes equations, a set of time-averaged 

equations of motion for fluid flow that would come to be known as the Reynolds-

averaged Navier-Stokes (RANS) equations. They are derived by first noting that at any 

point in time, the instantaneous turbulent velocity ui can be expressed as in terms of its 

mean iu  and its deviation from the mean or fluctuation iu . This decomposition of the 

turbulent velocity field ui into the mean iu  and fluctuation iu  is referred to as Reynolds 

decomposition and can be written as (Pope 2000) 

 

 iii uuu  .         (2.6) 

 

Taking the Reynolds decomposition in equation (2.6), substituting it for ui and uj, and 

taking the average, the nonlinear advective term on the left-hand side of the governing 

Navier-Stokes equations in equation (2.1) can be expressed as 
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where the velocity covariances jiuu   that arise due to the Reynolds decomposition on the 

right-hand side of equation (2.7) are called the Reynolds stresses. 

Applying Reynolds decomposition to the other variables in equation (2.1) (i.e. ui, 

p, and ρ), taking the average of each of the other terms, and writing the Reynolds stress 

tensor on the right-hand side the mean momentum equations, or Reynolds-averaged 

Navier-Stokes equations, become 
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Equation (2.8) is similar to the Navier-Stokes equations for conservation of momentum in 

equation (2.1) except for the addition of the last term on the right-hand side of Equation 

(2.8) from the Reynolds decomposition – the Reynolds stress tensor. This term is key and 

accounts for the different behavior observed between the average turbulent velocity field 

iu  and the instantaneous turbulent velocity field ui. The Reynolds stress tensor arises 

from the mean momentum flux due to fluctuating velocity on the boundary of a defined 

control volume (Pope 2000). Reynolds decomposition and averaging can also be applied 

to the incompressible form of the continuity equation in equation (2.4), yielding the mean 

continuity equation that can be expressed as 
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While the Reynolds decomposition allows for the mean turbulent velocity field to 

be defined by a tractable set of equations amenable to numerical discretizations, it also 

introduces a fifth unknown term to be solved for, the Reynolds stresses jiuu  . In addition 

to the three mean velocity components iu  and the mean pressure p , the Reynolds stress 

tensor jiuu   is also unknown. Given the three RANS equations (e.g. x-, y-, and z-RANS 

equations in Cartesian coordinates) for conservation of momentum in equation (2.8) and 

the mean continuity equation for conservation of mass in equation (2.9), there are ten 

unknown variables in the four governing equations. This set of four equations with ten 

unknown variables results in an unclosed set of equations and is known the closure 

problem in turbulence when it comes to mathematical and computer modeling of the 

governing momentum and continuity equations. In order to solve these equations, the 

Reynolds stresses must be resolved (Pope 2000). 

In a similar manner, a conserved passive scalar ϕ, as governed by equation (2.5), 

can also be described as in terms of its mean  by Reynolds decomposition and 

averaging. Hence, the Reynolds-averaged mean scalar conservation equation can be 

written as 
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where the last term in equation (2.10) is called the scalar flux iu  and is analogous to the 

Reynolds stresses jiuu   in the Reynolds equations in the fact that it is an additional 



16 

 

unknown term that causes a closure problem for solving equation (2.10). Even if the 

mean velocity field iu  is known, equation (2.10) cannot be solved for   without 

determining iu  (Pope 2000). 

Again, Reynolds decomposition and time-averaging provide a tractable and more 

economic approach to solving the partial differential equations that govern the motion of 

fluid flow. The information pertinent to most engineering problems and designs, namely 

the mean quantities of the flow, can be solved for in a much more concise and less costly 

manner than the rigorous solution of the complete set of governing equations. However, 

the caveat for this solution method is the emergence of the extra unknown Reynolds 

stress and scalar flux terms introduced by the Reynolds averaging process that must be 

solved for. Methods for modeling and determining the unknown terms in the Reynolds 

equations and closing the system of time-averaged governing equations are further 

discussed in the following sections and are an active subject of research in the turbulence 

modeling community. 

 

2.4 Numerical Modeling Techniques 

 

There are many techniques and methods to model and predict turbulent flows that 

in one way or another numerically solve the partial differential equations that govern a 

particular turbulent flow. Some of these methodologies directly simulate the flow 

equations and attempt to account for many or all of the physical processes and details of 

the flow while others use models and assumptions (e.g. linearizing the governing 

equations, assuming homogeneity in one or two directions such that the flow being 
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analyzed becomes one- or two-dimensional, etc.) to simplify the mathematical rigor and 

complexity of the problem and obtain approximate solutions of the Navier-Stokes 

equations. 

The highest and most accurate level of turbulence simulation is direct numerical 

simulation (DNS). In DNS, the instantaneous velocity field is obtained by solving the 

Navier-Stokes equations without the use of averaging or approximation for one 

realization of the flow. All of the fluctuations and details of the flow, including the 

lengthscales and timescales, are resolved to their smallest level. As one can imagine, this 

method is computationally expensive and is limited to idealized problems where the 

geometry is simple and the Reynolds number Re is low (i.e. the flow is not highly 

turbulent). The Reynolds number is perhaps the most limiting factor in DNS as 

computational cost directly increases as Re
3
 (Pope 2000). DNS is too expensive to be 

employed as a design or analysis tool for most engineering problems and the detail 

contained in the results of a DNS is far greater than any engineer needs. However, DNS 

can be useful as a research tool in the fact that it provides understanding to the physics of 

turbulence and the DNS data may be regarded as the equivalent of experimental data 

(Ferziger & Peric 2002). As computer technology has advanced, so has the ability to 

simulate flows of increasing complexity and higher Reynolds numbers. For example, 

compressible flows and stratified turbulent channel flows, such as the DNS performed by 

García-Villalba and del Álamo (2009), are becoming increasingly feasible with today’s 

computing technology. Although generating DNS data is very time-consuming and 

computationally expensive, it has provided remarkable contributions and insight to the 

area of turbulence research. The ability to control and simulate a desired flow provides 
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valuable data that can be used to readily test new ideas and theories (Moin & Mahesh 

1998). 

Another simulation approach that is below the level of strictness of DNS is the 

large-eddy simulation (LES) technique. LES is a hybrid approach in which the equations 

are directly solved for a filtered velocity field, of which only the larger scales of turbulent 

motion that are more energetic and are directly affected by the boundary conditions are 

meticulously computed and solved for. The smaller scales of motion are assumed to be 

nearly universal in their statistics and effects on the larger scale motions of the flow and 

are thus modeled and specified by a small number of parameters. The theory of LES then 

is this, that turbulence calculations can more easily be closed by truncating scales of 

motion smaller than a specified grid size of interest rather than statistical moments 

(Rogallo & Moin 1984). DNS is the preferred simulation method because of its accuracy 

and simplicity, but for flows in which the Reynolds number is too high or the geometry is 

too complex for a DNS, LES is an advantageous method. LES has proved to be very 

useful in modeling certain types of flows, such as highly turbulent wall bounded flows, in 

which DNS is computationally impossible and simpler models are not sufficient enough 

to provide accurate results (Ferziger & Peric 2002). 

On the opposite end of the spectrum of DNS are the various Reynolds-averaged 

Navier-Stokes (RANS) turbulence models that solve the Reynolds equations to determine 

the mean velocity field. Again in RANS models, the mean terms of the governing 

equations are expressed via Reynolds averaging of the instantaneous terms, by which the 

unsteadiness is averaged out and regarded as part of the turbulence. Due to the 

nonlinearity of the Navier-Stokes equations, the averaging process gives rise to the 
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closure problem in which the extra Reynolds stress terms and/or the scalar flux term must 

be modeled. Since the RANS equations give time-averaged solutions to modeled 

equations that attempt to account for all the complexities of turbulence, it is important to 

remember that RANS models are engineering approximations rather than scientific laws. 

Nevertheless, RANS models can effectively be used to practically model and design 

numerous types of environmental and engineering turbulent flows, providing quantitative 

properties about the flow such as velocity distribution, hydrodynamic forces, and the 

mixing of two or more substances (Ferziger & Peric 2002). 

One approach taken to solve the Reynolds-averaged equations is to solve model 

transport equations for the individual Reynolds stresses. This type of model is called 

simply a Reynolds-stress model and requires the solution of six extra equations to close 

the loop and solve for the unknown Reynolds stress tensor. Still there are other RANS 

turbulence models consisting of zero, one, or two additional partial differential or 

algebraic equations that attempt to describe the effect of the Reynolds stresses on the 

flow. One way of determining the unknown Reynolds stresses in the mean momentum 

equation given in equation (2.8) is to use a turbulence model defined by the turbulent-

viscosity hypothesis, which states that the unknown deviatoric Reynolds stress tensor 

jiuu   is proportional to the mean rate of strain as 
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If the turbulent-viscosity hypothesis is an acceptable approximation of the unknown 

terms for a given flow, then the Reynolds equations can be conveniently closed because 

the Reynolds stresses then take on a similar form to the diffusion term in the Navier-

Stokes equations. All that is left then is to specify the turbulent or eddy viscosity νt, 

which can be written as a product of a velocity scale and a lengthscale or otherwise 

defined to satisfy dimensional consistency (Pope 2000). 

Depending on the type of flow, desired accuracy, and economy of the turbulence 

model, the velocity scale and lengthscale can be specified as simple algebraic models, 

such as the mixing-length model, or as more complex two-equation models, such as the 

k-ε model in which the velocity scale and lengthscale are related to the turbulent kinetic 

energy k and the turbulent kinetic energy dissipation rate ε, for which modeled transport 

differential equations are solved within the framework of the Reynolds equations (the k-ε 

model will be discussed in greater detail in chapter four). The k-ε model (two equations), 

k-ω model (two equations), and Spalart-Allmaras model (one equation) are each 

examples of RANS models that are used to solve turbulent flows for different 

applications. The turbulent-viscosity hypothesis has been shown to be a reasonable model 

in solving many types of simple turbulent shear flows (e.g. channel flow and boundary 

layers). However, there are many types of flows (e.g. contracting flows) for which the 

accuracy of the turbulent-viscosity hypothesis and other simplified models is not good 

enough. Whatever the approach taken for a given turbulent flow problem, the method 

must be evaluated and appraised given the goals, limitations, and application of the 

problem and the model (Pope 2000). 
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Using the same approach as the turbulent-viscosity hypothesis for the Reynolds 

stresses jiuu   the gradient-diffusion hypothesis provides a model for the scalar flux term 

in equation (2.10). The gradient-diffusion hypothesis states that the scalar flux iu  is 

aligned with and proportional to the mean scalar   gradient as 
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Again the Reynolds-averaged mean scalar conservation equation can be closed, provided 

a model for the turbulent or eddy scalar diffusivity Γt is specified. Like the eddy viscosity 

νt, the scalar eddy diffusivity Γt is commonly defined as the product of the square of a 

velocity scale and a lengthscale such that dimensional consistency is satisfied. Just as 

with the turbulent-viscosity hypothesis, the gradient-diffusion hypothesis is not without 

its limitations. Both hypotheses imply physical meanings that do not always hold true, 

but for certain flows can yield accurate and attainable solutions to the modeled equations 

(Pope 2000). 

 

2.5 Relevant Parameters of Stratified Turbulent Flows 

 

While there are many parameters that specify and define turbulent stratified fluid 

flows (many of which will be discussed in this section), a single non-dimensional 

parameter called the Reynolds number Re is fundamental to characterizing fluid flow. 

The Reynolds number is a dimensionless number that defines the ratio of inertial forces 



22 

 

to viscous forces in a fluid flow and can be expressed as the product of a velocity scale U 

and a lengthscale L divided by the kinematic viscosity of the fluid ν as 
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In all types of flows, the Reynolds number can be used to describe a threshold for 

turbulence and the phenomena associated with it. For example, the range of scales and 

fine structures seen within a flow is related to the Reynolds number. At high Reynolds 

numbers (>10000), a large range of scales is observed (Pope 2000). 

The Froude number Fr is another dimensionless parameter that is defined as the 

ratio of inertial forces to gravitational forces in a fluid and is given by 
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The Froude number is an important parameter for flows with a free surface and in which 

gravity forces are dynamically significant. In a density stratified fluid the gravity force 

can still influence the flow even if there is no free surface. The effective gravity force in a 

stratified fluid is a buoyant force caused by the density gradient. An internal Froude 

number Fr′ describing the ratio of inertial forces to buoyant forces can then be defined as 

(Kundu 1991) 
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where N is the Brunt-Väisälä or buoyancy frequency and describes the frequency at 

which a parcel of fluid vertically displaced from its equilibrium position in a stable 

environment will oscillate due to buoyant and gravitational forces. The buoyancy 

frequency can be defined as a function of the mean density gradient in a stratified flow as 

 

 

2/1

0
















z

g
N




.        (2.16) 

 

A dimensionless parameter called the gradient Richardson number Ri is often 

used instead of Fr′ to characterize the strength of stratification of the flow, computed 

from values of the mean shear rate or velocity gradient dzudS /  and buoyancy 

frequency N at a certain depth within the flow as 
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The gradient Richardson number is an important parameter in describing stability and 

understanding turbulent mixing in stratified flows (Kundu 1990). 

The Prandtl number Pr is a fundamental dimensionless parameter of fluid flows, 

approximating the ratio of molecular momentum diffusivity ν to heat or scalar diffusivity 

Γ. The Schmidt number Sc is analogous to the Prandtl number and sometimes used 
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instead to specifically describe mass transfer instead of heat transfer. Here, the Prandtl 

number Pr is defined as 
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It is important to note that the Prandtl number is strictly a function of fluid properties and 

not dependent upon the specification of a flow variable such as a lengthscale or velocity 

scale as with each of the other parameters discussed above (White 1991). 

In the case of momentum transfer and mixing in turbulent fluid flows, a turbulent 

Prandtl number Prt may be analogously defined as the ratio of the eddy viscosity νt to the 

scalar eddy diffusivity Γt that are introduced by the turbulent-viscosity hypothesis in 

equation (2.11) and the gradient-diffusion hypothesis in equation (2.12) respectively. 

Here, Prt is a flow-dependent parameter and is written as 
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For neutrally stratified flows, Prt has been found to be a constant of order unity. In the 

case of stratified flows, Prt cannot be considered to be a constant value but rather it 

depends on buoyancy effects and is often expressed in terms of one or more other 

parameters that define the degree of stratification of the flow. These are just some of the 

most prevalent parameters used in describing and modeling turbulent and/or stratified 

fluid flows. Other important modeling parameters used in this research depend on the 
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specific model and approach chosen to investigate a certain flow and will be defined as 

they are introduced in subsequent sections of this thesis. 

 

2.6 Characteristics of Stratified Flows 

 

The attributes of the density gradient that characterizes a stratified flow will affect 

the behavior and mixing properties of the flow. The buoyancy frequency N and the 

gradient Richardson number Ri that are defined in the previous section are parameters 

that describe the strength of the stratification of the flow. There are other factors such as 

stability, layering, and active scalar coupling that also determine how a stratified flow 

will evolve and how it should be modeled to reflect the physics of stratified turbulence. 

The challenge of describing parameters and adjusting models to account for the buoyant 

forces that affect stratified flows starts with an understanding of the interaction between 

the two. 

Density stratification can either be described as stable or unstable depending on 

the direction of increasing mean fluid density with respect to depth of the flow. When the 

mean fluid density increases with depth and the heavier fluid is below the lighter fluid, 

the density stratification is stable. Therefore, any disturbance will simply result in a 

restoring force. When the mean fluid density decreases with depth, the stratification is 

unstable and any displacement will cause an instability resulting in an overturning 

(destabilizing) force. Both scenarios are visualized in figure 2.1 (Turner 1973). 
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Figure 2.1. Displacements from hydrostatic equilibrium: (a) stable; and (b) unstable 

density distributions. 

 

In addition to variations in stability, density stratification can be characterized by 

a gradient that is continuous or layered, affecting fluid motion and mixing. In a 

continuously stratified fluid, such as the deep ocean, the density gradient is relatively 

constant over the entire depth of the flow as shown by the profile in figure 2.2(a). 

Layered stratification, occurring in lakes, reservoirs, and atmospheric inversion layers, 

consists of two or more well-mixed layers of relatively constant density separated by a 

distinct interface and is depicted in figure 2.2(b). The interface of these layers forms a 

sharp density gradient within the flow, often referred to as a pycnocline or thermocline. 

 

 

 

 

 

 

 

Figure 2.2. Density profiles: (a) continuous stratification density profile; and (b) two-

layered stratification density profile. 

(a) 

 

(b) 

(a) (b) 
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The buoyancy forces present in stratified flows can either act as an energy sink or 

as an energy source in the turbulence depending on the stability condition. The 

overturning force present in unstable stratification works with turbulence to transport and 

mix the fluid whereas the restoring force present in stably stratified flows acts to extract 

energy, working against the production of turbulent kinetic energy to reduce turbulent 

transport and mixing. The latter is especially true in the case of a stably stratified flow 

where the production of turbulent energy is generated mainly due to shear stress at the 

bottom boundary (e.g. channel flow). The turbulence generated by shear at the boundary 

that lends itself to momentum transfer and mixing becomes more suppressed in the 

interior part of the flow where buoyancy effects due to stratification become dominant. 

The parameter defining the transfer of energy in stratified turbulent flows is the buoyancy 

flux B and is defined as 

 

 w
g

B  


,         (2.20) 

 

where ρ′ and w′ are the fluctuations of density and vertical velocity respectively (Turner 

1973). The sign of B is dictated by whether the stratification is stable or unstable and 

accounts for the addition or subtraction of turbulent kinetic energy to or from the flow. 

The buoyancy flux term’s role in the complete turbulent kinetic energy budget equation is 

discussed further in regards to the k-ε model in chapter four. 

The buoyant forces due to density stratification also present a challenge to 

modeling stratified flows because the density ρ is an active scalar that in part influences 

and drives the flow as opposed to being passively transported by the flow. As a 
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dynamically active scalar, the Reynolds-averaged scalar equation for ρ is coupled to the 

Reynolds-averaged momentum equation via the scalar flux term in equation (2.10) and 

the Reynolds stresses and fluctuating body force term in equation (2.8) respectively. The 

fluctuating body force in the vertical momentum equation is caused by buoyant forces 

and affects both the mean flow field and the turbulence. Thus, the momentum equation 

cannot be solved independently of the scalar conservation equation for density. 

 

2.7 Conclusions 

 

This chapter has introduced the fundamental equations and parameters governing 

and describing stratified turbulent flows. Models attempt to obtain solutions to stratified 

turbulent flows by modifying key parameters and variables in the equations, some of 

which have been discussed in this chapter, to imitate the effects of stratification on 

turbulence. Some models vary parameters and variables as functions of stratification 

parameters such as the gradient Richardson number Ri while others may rely on simple 

empirical constants to reflect laboratory or field data (Durbin & Pettersson Reif 2001). 

The work of this thesis explores each of these methods while also attempting to test new 

descriptions of parameters to characterize stratification in turbulence models. Further 

reviews of stably stratified environmental flows are given by Gregg (1987), Fernando 

(1991), Riley and Lelong (2000), Peltier and Caufield (2003), and Ivey et al. (2008). In 

what follows in the next chapter of this thesis, the effects of stratification on turbulent 

flow development and scalar transport are explored using a zero-equation turbulence 

model in one-dimensional turbulent channel flow.  
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CHAPTER 3 

EVALUATION OF TURBULENT PRANDTL NUMBER 

PARAMETERIZATIONS USING A ZERO-EQUATION 

TURBULENCE MODEL
1
 

 

3.1 Introduction 

 

The complexity of a turbulence model used to capture and represent as many or 

all of the physics of a turbulent flow can range from simple to elaborate depending on the 

nature of the flow and its application. Sometimes, a basic example coupled with a simple 

model used to understand the fundamentals of fluid dynamics and turbulence can shed 

insight and understanding into deeper and more complicated problems. Thus, using a 

somewhat arbitrary but strong test case, the simple case of a one-dimensional stratified 

channel flow in which the density profile is held fixed in the channel is used to study the 

effects of stable stratification on turbulent flow development and mixing. In this chapter, 

the focus is primarily on the relationship between the turbulent Prandtl number Prt and 

the strength of stratification of the flow as characterized by the gradient Richardson 

number Ri. A zero-equation turbulence model for shallow flows in an equilibrium state of 

                                                 
1
 This chapter is in press for publication in substantial part as “Evaluation of turbulent Prandtl 

(Schmidt) number parameterizations for stably stratified environmental flows” by Z.A. Elliott and 

S.K. Venayagamoorthy in Dynamics of Atmospheres and Oceans (2010), 

doi:10.1016/j.dynatmoce.2011.02.003. 
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turbulence is used to quantify the behavior of four different formulations of Prt under 

multiple stratification and flow conditions. Both uni-directional and oscillatory flows are 

considered to simulate conditions representative of practical flow problems such as 

atmospheric boundary layer flows and tidally-driven estuarine flows. The results are used 

to evaluate which of the models of Prt allow for a higher rate of turbulent mixing and 

which models significantly inhibit turbulent mixing in the presence of buoyancy forces 

resulting from fixed continuous stratification as well as fixed two-layer stratification. The 

basis underlying the formulation of each model in conjunction with the simulation results 

are used to emphasize the considerable variability in the different formulations and the 

importance of choosing an appropriate parameterization of Prt, given a model for the 

eddy viscosity νt in stably stratified flows. 

 

3.2 Problem Set-Up 

 

Assuming a one-dimensional, fully developed turbulent channel flow with a 

hydrostatic pressure distribution and a logarithmic velocity profile, a parabolic eddy 

viscosity model for νt as a function of the flow depth z can be derived for a neutrally 

stable case by using a momentum balance between the horizontal pressure gradient and 

turbulent shear stress (vertical mixing) in conjunction with the Boussinesq turbulent-

viscosity hypothesis as (Rodi 1993) 

 

     zHHzuzt  / ,       (3.1) 
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where κ is the von Karman constant (taken as κ = 0.41), uη is the shear or friction 

velocity, H is the total flow depth in the channel, and z = 0 at the free surface. The simple 

parabolic eddy viscosity model given by equation (3.1) only accounts for turbulence 

generated at the bottom boundary of the channel by the bed friction, but can still be 

effectively used for fully developed channel flows. 

Because stable stratification in the channel can significantly limit the vertical 

turbulent mixing away from the channel bed, the parabolic eddy viscosity model given in 

equation (3.1) can be modified in the presence of stable stratification according to a 

model proposed by Munk and Anderson (1948). Their algebraic model for the modified 

eddy viscosity νt|mod accounts for the vertical effect of the buoyancy forces caused by 

stable stratification by describing νt|mod as a function of Ri and the flow depth z as  

 

     Riz tt  1|mod ,       (3.2) 

 

where β and α are experimentally determined constants with given values of 10 and -1/2 

respectively (Munk & Anderson 1948). It is clear that the value of νt|mod is significantly 

reduced where there is a strong density gradient in the flow limiting the turbulent mixing. 

However, Munk and Anderson’s model given by equation (3.2) does not account for the 

suppression of turbulence generated at the channel bed in fluid layers above a pycnocline 

in the case of two-layer stratification where the density may again become relatively 

constant up to the free surface. Thus, it is not reasonable to let the eddy viscosity be 

unaffected above the pycnocline since the only source of turbulence is assumed to be 

from the bottom shear stress. Therefore in the presence of a pycnocline, it is reasonable to 
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further adapt the model for νt|mod by limiting the eddy viscosity above the pycnocline to a 

cut-off value less than the value of νt|mod computed at the mid-depth of the pycnocline 

from equation (3.2). Above the pycnocline then, νt|mod is modeled as a parabolic function, 

decreasing from the value of νt|mod computed at the mid-depth of the pycnocline to zero at 

the free surface (personal communication, Robert L. Street). This is given by 
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z 2|| mod,mod    for z > zpyc,  (3.3) 

 

where zpyc is the mid-depth of the pycnocline and νt|mod,pyc is the value of νt|mod computed 

at the mid-depth of the pycnocline from equation (3.2). This approach, designated as the 

modified Munk and Anderson (1948) cut-off model, is admittedly simple but it mimics 

the suppression of turbulent mixing generated at the channel bed above the sharp density 

gradient while still modeling νt|mod as a parabolic shape as derived in equation (3.1). 

Accepting the modified Munk and Anderson (1948) formulation as a model for 

the eddy viscosity νt, different formulations of Prt and its effect on the scalar eddy 

diffusivity Γt and mixing of a passive scalar in stably stratified flows were then 

investigated by simulating a simple one-dimensional channel flow. The flow was 

assumed to be fully developed and one-dimensional such that the flow variables are 

horizontally homogeneous and characterized by either a constant, continuous vertical 

density gradient or a sharp density gradient interface separating two fluid layers of 

relatively constant density akin to flow in a coastal estuary channel or an atmospheric 

boundary layer as shown in the schematic of the problem set-up in figure 3.1. A 

somewhat artificial test case was used in that the density profile was held fixed in time, in 
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some ways similar to the simulations and experiments done by Venayagamoorthy et al. 

(2003) and Komori et al. (1983). Hence, the calculations assume that the density profile 

is unchanged by the turbulent mixing that occurs, illustrating a situation where the 

stratification is very strong and/or that the mixing takes place in much shorter timescales 

than the effect of turbulence on the stratification. For this simple one-dimensional flow, 

the horizontal terms can be ignored since the balance is primarily between the pressure 

gradient and vertical turbulent mixing. Hence, the governing equations are a form of the 

horizontal momentum equation coupled with a prescribed forcing equation that can be 

used as a periodic function to model the effect of the ebb and flow of a tide in an estuary. 

These equations are given respectively as 
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and 
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where  is the free surface elevation, T is the period of the semi-diurnal tide (i.e. 12.42 

hours for a M2 tidal constituent), and Umax is a prescribed maximum velocity of the flow 

in the channel. The scalar diffusion equation used to model the change in concentration 

of a passive scalar C over the depth of the channel in time is given by 
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where Γt is the scalar eddy diffusivity computed from the modified Munk and Anderson 

(1948) formulation of νt and a given formulation of Prt as a function of Ri. 

 

 

 

 

 

 

 

 

   

 

Figure 3.1. Schematic of the problem set-up depicting (a) the tidal velocity field; (b) a 

continuous stratification density profile; and (c) a two-layered stratification density 

profile. 

 

The governing partial differential equations (PDEs) given in equations (3.4) – 

(3.6) are more amenable to numerical solutions than analytical solutions since the eddy 

viscosity depends on Ri, which can vary with depth over a wide range of values. 

Equations (3.4) – (3.6) must therefore be discretized in space and time to obtain 

solutions. The accuracy of the discretization scheme chosen is based on the order of the 

terms that are retained from a Taylor series expansion of the derivative terms. For this 

(a) 

(b) 

(c) 
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model, a second-order accurate, central-differencing scheme based on a finite volume 

formulation was used to approximate the spatial derivatives. Substituting equation (3.5) 

into equation (3.4) and discretizing the remaining spatial term according to the method 

described above yields 
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where the subscripts on the discretized terms are indices denoting spatial grid points. The 

spatial discretization of the scalar diffusion equation given in equation (3.6) using a 

similar scheme yields 
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A semi-implicit discretization scheme known as the ζ-method was used to 

approximate the temporal derivatives of the horizontal momentum equation as 
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where the superscripts on the discretized terms are indices denoting temporal grid points 

or time steps. The scalar diffusion equation can be discretized in time via the ζ-method as 
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The ζ-method makes use of the implicitness parameter ζ to improve the accuracy and 

efficiency of the scheme (Casulli & Cattani 1994). The objective of the ζ-method is to 

give more or less weighting to the implicit terms in the discretized equation, or the 

unknown terms being evaluated for the next time step n+1 in the time-marching solution 

algorithm as 

 

   nnn ttt    11 .       (3.11) 

 

This weighting of implicit terms is based on the value of ζ, which can range anywhere 

from 0 to 1. If ζ = 0, then the scheme is fully explicit and first-order accurate in time and 

there are no implicit terms to be solved for in the equation. Conversely, if ζ = 1, then the 

scheme is fully implicit and first-order accurate in time and there is no weight given to 

the explicit terms. However, if ζ takes a value between 0 and 1, the scheme becomes 

semi-implicit and between first- and second-order accurate in time. When ζ = 0.5, 

variables in the governing equations are evaluated as an average of their values at time 

levels n and n+1 so that the discretization is second-order accurate in time (known as the 

Crank-Nicolson scheme). The method has been shown to be stable for 0.5 ≤ ζ ≤ 1, with 

second-order time accuracy for ζ = 0.5. When ζ < 0.5, the method is only conditionally 

stable (Casulli & Cattani 1994). It has been shown that a value of ζ slightly greater than 
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0.5 can be used in order to dampen and eliminate high-frequency oscillations (i.e. obtain 

asymptotic stability) without adversely affecting the simulations with numerically 

induced diffusion (Fringer et al. 2006). It was found for this problem that a value of ζ ≈ 

0.7 produced oscillation-free solutions. 

Combining the spatial and temporal discretizations of the horizontal momentum 

equation given in equations (3.7) and (3.9) and the scalar diffusion equation given in 

equations (3.8) and (3.10) yields the set of difference equations used to approximate the 

governing equations given in equations (3.4) – (3.6). These difference equations are finite 

algebraic equations that represent continuous PDEs and can be solved on a computer at a 

set of discrete locations or points in space and time. 

In order to completely define and be able to solve the set of discretized equations, 

initial and boundary conditions must be defined to start the solution algorithm and relate 

it to the system in which it is being analyzed. To initialize the velocity field of the flow at 

some starting point in time for the uni-directional channel flow, the model was spun up 

and the flow was allowed to reach a fully developed turbulent velocity profile before the 

passive scalar C was released in the flow. For the case of the tidally driven channel flow, 

the velocity in the channel was set to zero and allowed to be initialized by the effect of 

the periodic tidal forcing function defined in (3.5). Consequently, the variation with depth 

of νt|mod in the channel, being a function of the shear velocity near the channel bed, is 

dictated by the prescribed initial velocity field of the flow. Flux (or Neumann) boundary 

conditions at the free surface and at the bed were specified to completely define the 

problem. At the free surface, wind shear was not considered and hence the velocity 

gradient in the vertical direction was assumed to be zero due to the expected behavior of 
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the log-law velocity profile to reach a maximum value near the free surface. At the 

channel bed, the effects of a rough bed and a viscous boundary layer are given by the 

drag law to represent the shear stress at the boundary (Fringer et al. 2006). The velocity 

gradient in the vertical direction was modeled as a function of the drag coefficient CD 

(which depends on the channel roughness), νt at the boundary, and the flow velocity near 

the boundary u1 given as 
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,        (3.12) 

 

where u1 is the mean flow velocity at the first grid point from the lower boundary or bed 

of the channel. It is important to note that for real flows with rough boundaries a wall 

point to define the no-slip condition where the velocity goes to zero cannot be 

consistently defined due to the irregular roughness elements of the channel bed. 

Therefore, the boundary condition was applied some distance away from the actual 

boundary to account for the roughness elements of a real channel. The maximum velocity 

in the channel Umax was prescribed for each case such that the maximum value of νt|mod 

reached in the channel was the same for both the uni-directional channel flow case and 

the oscillatory channel flow case. This corresponds approximately to a friction Reynolds 

number of Reη = uH/ = 273300 and a friction Richardson number Riη = (NH/u)
2
 = 

13300 for the continuously stratified uni-directional flow simulations and Reη = 386000 

and Riη = 6670 for the two-layered stratified uni-directional flow simulations. Reη = 

335000 and Riη = 8880 for the continuously stratified oscillatory case (based on the 
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maximum value of u reached at the peak of the ebb or flood cycle) and Reη = 367000 and 

Riη = 7360 for the two-layered stratified oscillatory flow case. 

The parameters of interest in the problem including the variation in density and 

initial concentration and distribution of the passive scalar C must also be specified as 

functions of space and time. As prescribed, the flow was modeled as a stably stratified 

flow as either a constant, continuous density gradient or as a distinct, sharp gradient 

between two layers of fluids of relatively constant density as shown in figure 3.1(b) and 

3.1(c) respectively. The position of the distinct pycnocline interface between the two 

densities can be clearly seen in figure 3.1(c). Also, the initial distribution and position of 

a passive scalar C was centered at three different depths in the channel for each of the 

two density stratifications, above the position of the pycnocline, at the position of the 

pycnocline, and below the position of the pycnocline as shown in figure 3.4(a) – (c) and 

figure 3.5(a) – (c) respectively. 

With the complete set of discretized equations, initial conditions, and boundary 

conditions defined, a solution algorithm was developed and programmed to march the 

solution forward in time. Since the algorithm uses a semi-implicit time discretization 

scheme, the matrix of discretized equations at each grid point varying with depth in the 

channel must be solved simultaneously at each time step to produce a solution. To 

program this, a time-marching loop was coded into the algorithm to update the 

coefficients (νt|mod and Ri) at each time step so that the implicit matrix equations for 

velocity and concentration at the next time step could be solved. Due to the one-

dimensional nature of the problem, the linear system of equations yields a tri-diagonal 

matrix system which can be easily solved using a sparse Gaussian elimination procedure 
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such as the Thomas Algorithm. All coding and output of model results was done in 

MATLAB (R2009, the Mathworks, Inc., Natick, MA, USA). Refer to appendix A for the 

MATLAB code developed for this study. 

 

3.3 Turbulent Prandtl Number Formulations 

 

Four different formulations of Prt as a function of Ri were considered to study the 

effects of stratification on Γt as well as the vertical mixing of C in equation (3.6) given 

the zero-equation eddy viscosity model in equation (3.2) proposed by Munk and 

Anderson (1948) for the case of the linear stratification and the modified cut-off Munk 

and Anderson model for the two-layered stratification. A key debate in the stratified 

modeling community pertains to the issue of whether turbulence is completely quenched 

at high values of Ri (Galperin et al. 2007). There are a number of models for Prt ranging 

from those that propose an asymptotic maximum value for Prt beyond a critical value of 

Ri based on the concept of turbulence extinction to formulations where Prt continues to 

increase monotonically as a function of Ri. Three of the four formulations chosen for this 

study are based on the concept that scalar mixing is inhibited in an ever increasing 

manner as functions of Ri without any asymptotic leveling off of mixing. Each of the 

formulations of Prt was tested for both the continuously stratified case and the two-

layered stratified case in a uni-directional flow as well as a tidally-driven oscillatory flow. 

The first expression of Prt considered is also a formulation by Munk and 

Anderson (1948) (hereafter MA). They proposed a model for a modified scalar eddy 
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diffusivity Γt|mod of the same form as νt|mod in equation (3.2) to account for the effect of 

buoyant forces given as 

 

     

 Riz tt  1|mod ,       (3.13) 

 

where βρ and αρ are again empirical constants with prescribed values of 10/3 and -3/2 

respectively (Munk & Anderson 1948). Prt as a function of Ri is obtained by dividing 

equation (3.2) by equation (3.13) to get 
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where νt/Γt can be defined by equation (2.19) as the turbulent Prandtl number for a 

neutrally stratified case Prt0 such that equation (3.14) can be rewritten as 
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The second relationship for Prt based on Ri was recently derived by 

Venayagamoorthy and Stretch (2010) (hereafter VS) using theoretical arguments 

supported by DNS data for homogeneous stably stratified turbulent flows. Their model 

for Prt as a function of Ri is given as 
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where Γ∞ is the mixing efficiency and Rf∞ is the asymptotic value of the flux Richardson 

number. The DNS results analyzed by VS indicate an average value of Γ∞ ≈ 1/3, which 

translates to Rf∞ ≈ 1/4 since these two quantities are related by Γ∞ = Rf∞/(1- Rf∞) 

(Venayagamoorthy & Stretch 2010). 

There has been much work and research done concerning the value of Prt0 in 

neutrally stratified flows. Data from numerical simulations and experiments done by 

Kays and Crawford (1993) and Kays (1994) suggest values of Prt0 between 0.5 and 1.0 

for neutrally stratified flows (Kays & Crawford 1993, Kays 1994). Theoretical reasoning 

and DNS data analyzed by VS further suggest that Prt0 is approximately equal to the ratio 

of the scalar timescale Tρ to the mechanical (turbulence) timescale TL or Prt0 = 1/(2γ) 

where γ = (1/2)(TL/Tρ). Using γ ≈ 0.7 as suggested by Venayagamoorthy and Stretch 

(2006) yields a value of Prt0 ≈ 0.7. This neutral value of the turbulent Prandtl number has 

been adopted for the present study. 

The third formulation for Prt is given by Kim and Mahrt (1992) (hereafter KM). 

Their formulation of Prt is derived from the Louis model that relates the mixing length 

for heat to the Richardson number (Louis 1979, Louis et al. 1981). Using aircraft data to 

validate their model, KM arrive at a formulation of Prt similar to that of MA as 
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The final formulation of Prt is derived from expressions of νt and Γt presented by 

Strang and Fernando (2001) from formulations by Peters et al. (1988) (hereafter PGT). 

The PGT empirical formulations of the eddy viscosity and scalar eddy diffusivity are 

driven by data obtained from a study of the Pacific Ocean near the equator (Peters et al. 

1988) and given respectively as 

 

 2.84106.5   Rit         (3.18) 

 

and 
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for Ri ≤ 0.25 and as 
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for Ri > 0.25 (Strang & Fernando 2001). Combining equations (3.18) and (3.19) for Ri ≤ 

0.25 and equations (3.20) and (3.21) for Ri > 0.25 respectively yields a model for Prt as 
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This model of Prt proposed by PGT behaves differently from the other three models in 

that here Prt does not continue to grow with increasing Ri. Instead, it asymptotically 

approaches a maximum value of Prt ≈ 20 as Ri → ∞ (see figure 3.2). Also, it is important 

to note that this empirical formulation of Prt yields a value of 0 when Ri = 0 (i.e. 

unstratified flow). This would imply that there is infinite turbulent mixing of a passive 

scalar for neutrally stratified flows. This clearly implies that this model would only be 

physically applicable for Ri > 0 (i.e. stratified flow) as opposed to the other three 

formulations, which are more general in that there is a seamless transition to the 

unstratified case with Prt → Prt0 as Ri → 0. Each of the four functions of Prt considered 

in this study are shown as a function of Ri in figure 3.2 with the upper bound value of Ri 

truncated at 10 for clarity. 

It might appear to be obvious from figure 3.2 as to which of these models will 

permit greater levels of mixing or vice versa. Clearly KM has the steepest slope implying 

less scalar mixing while MA has the smallest slope indicating enhanced scalar mixing. 

However, the model by PGT suggests a much stronger suppression of scalar mixing for 

lower values of Ri than the rest but higher levels of mixing compared to KM for Ri > 4.1, 
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VS for Ri > 5.2, and MA for Ri > 14.9. Given the large range of values of Ri that varies 

with flow depth in a channel flow (for a nice theoretical discussion, see Armenio and 

Sarkar (2002)), the mixing properties of each of the Prt formulations might not be 

immediately apparent and only through test cases like those presented here can they be 

best understood. 

 

 

 

 

 

 

 

 

 

Figure 3.2. The turbulent Prandtl number Prt as a function of the gradient Richardson 

number Ri for four different models: blue dashed-dotted line, Munk and Anderson 

(1948); black solid line, Venayagamoorthy and Stretch (2010); purple dashed line, Kim 

and Mahrt (1992); red thick dashed-dotted line, Peters et al. (1988). 

 

3.4 Results 

  

All four of the Prt formulations were tested for the two types of stratified flow 

conditions shown in figures 3.1(b) and 3.1(c) for three different locations of an initial 

passive scalar plume C as depicted in figure 3.4(a) – (c) and figure 3.5(a) – (c) 

respectively. All of these cases were tested for a fully developed uni-directional stratified 
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channel flow and for a tidally-driven stratified channel flow in which the velocity field 

changes as a function of time. The results of the stably stratified flows were then 

compared to a base case of an unstratified flow, which is shown in figure 3.3. The 

unstratified cases were tested first and the model was run until the initial plume was 

completely mixed over the depth of the channel (see figure 3.3(c)). This took 

approximately 5800 seconds for both cases (approximately 0.13 M2 tidal periods). The 

mixing of C from its initial condition for the two-layered stratified and continuously 

stratified cases required a period of approximately 50 (≈ 6.5 M2 tidal periods) and 100 

(≈13 M2 tidal periods) times the time that was required for the unstratified case to mix 

out. A total of 18 simulations runs were performed to assess these four Prt models. 

 

 

 

 

 

 

 

Figure 3.3. Fully developed velocity profiles and concentration profiles for the 

unstratified base case, (a) uni-directional flow; (b) oscillatory flow; and (c) initial 

concentration profile: solid line, and final concentration profile: dashed line. 

 

Figure 3.4 shows the concentration distributions of C for the continuously 

stratified case in a uni-directional channel flow. The initial passive scalar plume C with a 

maximum concentration of 10 ppt was released near the top (free surface), near the 

middle, and close to the bed of the channel in a fully developed channel flow as shown in 
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figure 3.4(a) – (c). For each of the three different cases, each of the four formulations of 

Prt was implemented to predict the vertical mixing of C. For this case, the MA model 

predicted the maximum amount of turbulent mixing of C (see figure 3.4(g) – (i)) while 

the KM model predicted the minimum amount of turbulent mixing of C as shown in 

figure 3.4(m) – (o). The final concentration profiles for the PGT model are shown in 

figure 3.4(d) – (f) and those for the VS model are given in figure 3.4(j) – (l). The Ri 

values close to the free surface get quite large for this linearly stratified case and hence 

the models of both VS and KM predict the least amount of scalar mixing as can be seen 

from the concentration gradients at the free surface in figures 3.4(j) – (l) and 3.4(m) – (o) 

respectively. 
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Figure 3.4. Concentration profiles for a passive scalar C in a continuously stratified uni-

directional channel flow. Subplots (a) – (c) show the initial distribution of the passive 

scalar plume. Final concentration profiles are shown in subplots (d) – (f) using the PGT 

model; subplots (g) – (i) using the MA model; subplots (j) – (l) using the VS model; and 

subplots (m) – (o) using the KM model, respectively. Also superimposed on subplots (d) 

– (o) is the final profile for the unstratified case. 

 

Figure 3.5 shows the concentration distributions for the two-layered stratified case 

(with a pycnocline) in a uni-directional channel flow. Again, the passive scalar plume C 

with a maximum concentration of 10 ppt was released at the same three locations as for 

the continuously stratified case shown in figure 3.4. For this case, the MA model for Prt 

once again mixed out the initial plume the quickest over the depth of the channel as 
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shown in figure 3.5(g) – (i). At the same corresponding time, the model of PGT had also 

almost completely mixed out the initial profile as can be seen in figure 3.5(d) – (f). The 

final concentration profiles using the VS model are also almost completely mixed out and 

so were the final concentration profiles from the KM model, but the KM model predicted 

the least amount of mixing of C among the four models at the same corresponding time 

over the depth of the flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Concentration profiles for a passive scalar C in a two-layered stratified uni-

directional channel flow. Subplots (a) – (c) show the initial distribution of the passive 

scalar plume. Final concentration profiles are shown in subplots (d) – (f) using the PGT 

model; subplots (g) – (i) using the MA model; subplots (j) – (l) using the VS model; and 

subplots (m) – (o) using the KM model, respectively. Also superimposed on subplots (d) 

– (o) is the final profile for the unstratified case.  
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The same conditions and models were then tested for the case of a tidally-driven 

periodic channel flow in which the velocity field changes direction as a function of time 

(see the velocity profile shown in figures 3.1(a) and 3.3(b)). For this oscillatory flow 

case, the turbulence grows and decays with the phase of the tide and hence stratification 

effects are expected to be more dominant for this flow condition compared with the uni-

directional flow cases shown in figures 3.4 and 3.5.  

Figure 3.6 shows the results of the mixing of C for each of the four formulations 

of Prt for a continuously stratified tidally-driven flow. Figure 3.7 shows the results of the 

mixing of C for the two-layered stratified tidally-driven flow. For both of these cases and 

for all three initial release locations of the plume, the PGT model predicted the quickest 

turbulent mixing of C as shown in figures 6(d) – (f) and 7(d) – (f) and the KM model 

again predicted the slowest turbulent mixing of C (see figures 6(m) – (o) and 7(m) – (o)). 

The final concentration profiles from the MA model shown in figures 6(g) – (i) and 7(g) 

– (i) are not quite as well mixed as the profiles from the PGT model for the oscillatory 

flow case. This is a direct result of the increased influence of buoyancy forces over a 

substantial portion of the flow depth with Ri values well above the cross-over value of Ri 

= 14.9 between these two models discussed earlier (see figure 3.2), especially for the 

linearly stratified case. The VS model continues to fall in between the extremes of high 

and low mixing as shown in figures 6(j) – (l) and 7(j) – (l) respectively. This is expected 

from the model behavior of Prt as a function of Ri as shown in figure 3.2. 
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Figure 3.6. Concentration profiles for a passive scalar C in a continuously stratified 

tidally-driven channel flow. Subplots (a) – (c) show the initial distribution of the passive 

scalar plume. Final concentration profiles are shown in subplots (d) – (f) using the PGT 

model; subplots (g) – (i) using the MA model; subplots (j) – (l) using the VS model; and 

subplots (m) – (o) using the KM model, respectively. Also superimposed on subplots (d) 

– (o) is the final profile for the unstratified case.  
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Figure 3.7. Concentration profiles for a passive scalar C in a two-layered stratified 

tidally-driven channel flow. Subplots (a) – (c) show the initial distribution of the passive 

scalar plume. Final concentration profiles are shown in subplots (d) – (f) using the PGT 

model; subplots (g) – (i) using the MA model; subplots (j) – (l) using the VS model; and 

subplots (m) – (o) using the KM model, respectively. Also superimposed on subplots (d) 

– (o) is the final profile for the unstratified case.  

 

3.5 Conclusions 

 

In this chapter, a one-dimensional vertical fluid column numerical model has been 

used to evaluate and compare four different parameterizations of the turbulent Prandtl 

number Prt that are used in turbulence closure models. The four parameterizations of Prt 
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that are considered in this study are based on different hypotheses, observations, and 

numerical simulations and show considerable variability. For example, the formulation 

presented by VS is the only model considered here that is based on theoretical derivation 

and physical arguments supported by DNS data as opposed to the others, which are 

mainly empirically driven. The results from model-to-model comparisons using simple 

turbulent open-channel flow test cases highlight the effects of strong stratification in high 

Reynolds number flows and the impact of the different parameterizations of Prt on the 

vertical mixing of a passive scalar plume. The asymptotic behavior of Prt for large Ri in 

the PGT model allowed for a greater level of mixing than the other three models, 

especially for the strongly stratified oscillatory channel flow cases as shown in figures 3.6 

and 3.7 respectively. On the other hand, the VS model always predicted a rate of mixing 

of C that was less than the models of PGT and MA, but had a mixing rate greater than the 

model proposed by KM. 

While model-to-model comparisons alone are not sufficient in pinpointing the 

most appropriate model for Prt, they nevertheless provide valuable insight on the 

performance of the different parameterizations under these simple but strong test cases 

for scalar mixing. Given that the VS model was the only model with strong theoretical 

underpinning, it appears to be a promising choice but its appropriateness remains to be 

validated with field measurements. Furthermore, it is worth noting that this study shows 

how even a one-dimensional vertical fluid column model with a zero-equation turbulence 

closure scheme can be used to highlight the effects of stable stratification on turbulence 

and vertical mixing of passive scalars. In the next chapter, the study of stratified 

turbulence parameterizations is extended to a dynamic two-equation turbulence model.  
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CHAPTER 4 

DEVELOPMENT AND TESTING OF STRATIFICATION 

PARAMETERS IN TWO-EQUATION TURBULENCE MODELS 

 

4.1 Introduction 

 

The selection of a basic or a comprehensive turbulence model is dependent on the 

underlying physics to be modeled as well as the scale and complexity of the flow type 

and geometry itself. While simple models can be effectively used and manipulated to fit a 

certain problem and yield good results, they are often not as general in their application to 

the many types of turbulent flows. There is a range two-equation models, including the k-

ε model developed by Jones and Launder (1972) and Wilcox’s k-ω model (1993), which 

are widely used in engineering analysis and design of turbulent flows. While they may 

not be as accurate or computationally thorough as DNS or LES, they are suitable for 

catering to a wide range of turbulent flow applications and generating effective results. 

In this chapter, DNS data of stably stratified homogeneous turbulence are used to 

study the parameters in two-equation RANS turbulence models such as the turbulent 

Prandtl number Prt and the buoyancy parameter Cε3 in the standard k-ε model. Both the 

gradient Richardson number Ri and the turbulent Froude number Frk are used as 

correlating parameters to characterize stratification in the k-ε model. Modifications to the 
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standard k-ε model based on these parameters are implemented in a one-dimensional 

water column model called General Ocean Turbulence Model (GOTM) and used to 

simulate stably stratified channel flows in which the density profiles are allowed to 

evolve as a function of time and as a result of the turbulent mixing and transfer of 

momentum. The results from numerical simulations using the modified k-ε model are 

compared to stably stratified channel flow DNS data to assess its efficacy and determine 

the most appropriate parameter definitions for use in two-equation models. 

 

4.2 Problem Set-Up 

 

The test case used for the numerical simulations is that of a pressure gradient 

driven open-channel flow in which the density is held fixed at both the lower solid 

boundary and upper free surface (i.e. Dirichlet boundary conditions), again similar to the 

simulations and experiments done by Venayagamoorthy et al. (2003) and Komori et al. 

(1983). The set-up is still to some extent a simulated test case, but enforcing Dirichlet 

boundary conditions allows the parameters that characterize stratification to be rigorously 

tested in a stratified environment since in these simulations the density is allowed to 

evolve and mix naturally with the flow as an active scalar between the fixed boundaries. 

In this way, the flow is kept under stratified conditions for the duration of each of the 

simulations. By fixing the density at the upper and lower boundaries, the initial density 

profile becomes a continuously stratified profile varying with depth in the channel as 

shown by the blue solid line in figure 4.1. If Neumann or flux boundary conditions were 

instead used to define the density profile, the stratification quickly mixed out over the 
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depth of the channel as shown by the black dashed line in figure 4.1, thus nullifying the 

effects of stratification on the flow and the model parameters. 

 

 

 

 

 

 

 

 

 

Figure 4.1. Density profiles: blue solid line, initial continuously stratified density profile 

using Dirichlet boundary conditions; black dashed line, mixed-out unstratified density 

profile using Neumann boundary conditions. 

 

Before the stratified boundary conditions were imposed, the model was first 

allowed to spin up so as to enable the velocity field to converge to that of a fully 

developed, unstratified channel flow using the standard k-ε model (Venayagamoorthy et 

al. 2003). This was done to ensure that both the velocity and density fields would 

eventually converge on a solution, even after the stratification was imposed on the 

developed unstratified flow. Because density is an active scalar that influences 

development of the flow, density and momentum are coupled and affect one another in 

stratified flows. In a numerical simulation, the flow will hardly develop towards a steady-

state solution for a given pressure gradient that drives the flow if the stratification is 

imposed using Dirichlet boundary conditions before the velocity is fully developed. Thus, 

+ 

Free surface: 

z/H = 0 

Bottom boundary: 

z/H = -1 
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the initial stratification profile depicted in figure 4.1 was imposed on the fully developed 

unstratified channel flow to most realistically simulate a fully developed stratified 

channel flow case. 

The simulations were conducted at friction Reynolds numbers of Reη = 550 and 

590 and friction Richardson numbers of Riη = 0 (unstratified) and 60. The results were 

then and compared to stably stratified channel flow DNS data computed by García-

Villalba & del Álamo (2009) and Moser et al. (1999). A flow depth of 0.2 m in a smooth 

channel was also used to define the physical characteristics of the flow for each of the 

different test cases. 

 

4.3 Numerical Modeling 

 

The numerical simulations were carried out using a one-dimensional water 

column model called General Ocean Turbulence Model (GOTM) developed by Burchard 

et al. (1999) and used for a wide range of applications in geophysical turbulence 

modeling. The main function of GOTM is to compute solutions for the one-dimensional 

transport equations of momentum, salt, and heat by solving the RANS equations via 

turbulence models for the turbulent fluxes of these quantities. GOTM contains several 

well-tested turbulence models (e.g. the k-ε model and the Mellor and Yamada model) that 

can be coupled with different combinations of turbulence parameters or stability 

functions to model vertical mixing in natural waters. GOTM’s built-in turbulence models 

range from simple prescribed expressions for the momentum and scalar turbulent 

diffusivities to complex Reynolds-stress models, which solve several different transport 
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equations that model the turbulent fluxes. Although GOTM is strictly a one-dimensional 

code, it has been designed in a way that it can easily be coupled to a two- or three-

dimensional model and used as a module for computing the vertical components of 

turbulent mixing (Umlauf et al. 2007). 

GOTM is designed in a modular structure, which in addition to allowing easy 

integration into a more complete model, facilitates refinements and/or the introduction of 

new models and turbulent parameterizations. Figure 4.2 shows the modular format of 

GOTM and its functioning (taken from the GOTM website, www.gotm.net). Each of the 

modules or subroutines in GOTM is written in the FORTRAN95 language and the source 

code is freely available from the GOTM website, www.gotm.net. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Modular structure of GOTM 
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In addition to the FORTRAN95 subroutines that are called to execute the 

algorithm, various input files are used to read in the different parameters specified for the 

numerical model. These include discretization and run-time parameters, turbulence model 

parameters, external observations, and data output information. Using a make utility, an 

executable file is built from the GOTM source code which can then be accessed from 

within a test case folder to run the GOTM program. Finally, GOTM outputs one-

dimensional flow and turbulence results of the simulation along with any other user-

specified and programmed results according to the specified file format (e.g. NetCDF or 

ASCII) and location. Default simulation results output by GOTM include mean flow 

velocity u , buoyancy B, turbulent momentum diffusivity νt, heat and scalar diffusivity Γt, 

turbulent kinetic energy k, and turbulent kinetic energy dissipation rate ε. 

GOTM uses a finite volume method on a staggered grid for the spatial 

discretization of the water column. The water column is divided into a finite number of 

layers Ni of thickness hi specified by the user in one of the input files. The user is also 

able to specify a grid of uniform spacing with Ni layers of equal thickness or one with 

grid zooming for thinner layers and more grid points near boundaries. A staggered grid 

means that the values for the mean flow quantities (e.g. mean flow velocity, temperature, 

and salinity) are located at the center of each interval or cell and the values for the 

turbulent quantities (e.g. turbulent kinetic energy, turbulent kinetic energy dissipation 

rate, and turbulent diffusivities) are calculated at the interfaces of the cells. Since the grid 

contains information at every 1/2 index, the 1/2 indices must be shifted so that they can 

be programmed into a computer generated grid. GOTM defines the indexing such that the 
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top interval of a given cell takes the same index as that cell. The spatial organization and 

indexing of the numerical grid is shown in figure 4.3 (Umlauf et al. 2007). 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Spatial organization and indexing of the numerical grid in GOTM 

 

GOTM also uses an equidistant time discretization scheme (similar to that of the 

ζ-method used in chapter three) based on the current time step t = Τ and the next time 

step t = Τ+Δt or fractions thereof. The stability of the time discretization scheme is not 

limited by Courant numbers (i.e. grid or time step size) because vertical advection is 

assumed to be zero and vertical diffusion is treated implicitly. Analogous to the ζ-

method, GOTM uses an implicitness parameter ζ to define a semi-implicit time level at 

which solutions are computed on the numerical grid as shown in figure 4.4 (Umlauf et al. 

2007). 
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Figure 4.4. Temporal organization and indexing of the numerical grid in GOTM, shown 

with an implicitness parameter ζ = 0.6. 

 

GOTM includes a wide range of turbulence models, of which at least one member 

of every significant model family can be found (e.g. empirical models, energy models, 

two-equation models, algebraic stress models, K-profile parameterizations, etc.). The k-ε 

model is an example of a two-equation RANS turbulence model in which model transport 

equations are solved for turbulent quantities that characterize the flow. The aim of RANS 

models is to calculate an eddy viscosity νt so that the Reynolds-averaged governing 

equations given in equation (2.8) can be closed via a model given by the turbulent-

viscosity hypothesis in equation (2.11). The k-ε model was the first to be used in applied 

computational fluid dynamics and remains one of the most popular RANS turbulence 

models for engineering and geophysical flow calculations (Durbin & Pettersson Reif 

2001). Because of its popularity and effectiveness in modeling simple unstratified shear 

flows, the k-ε model was selected in this study to implement and test new 

parameterizations for Prt and Cε3 for a stably stratified channel flow within the 

framework of the GOTM code. 

It is well known that turbulent flows contain a wide range of scales of motion and 

structures. In 1941 Andrey Nikolaevich Kolmogorov first hypothesized that the largest 
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turbulent eddies in a flow characterized by a lengthscale L contain most of the turbulent 

kinetic energy k. This energy is then transferred to eddies of smaller and smaller 

lengthscales until the energy is dissipated into heat by viscous action (determined by the 

molecular momentum diffusivity or viscosity of the fluid ν) at the smallest scales of 

motion. The rate at which energy is transferred and dissipated in the flow is called the 

turbulent kinetic energy dissipation rate ε and is a key parameter in analyzing non-

dimensional variables in turbulent flows. However, it should be noted that it is not 

possible to form a non-dimensional parameter from only ε and ν. Thus, Kolmogorov also 

hypothesized that in every turbulent flow the statistics of the motions of scale in the range 

in which the overall lengthscale L is much greater than the smallest scales of motion have 

a universal form that is uniquely determined by ε and is independent of ν for sufficiently 

high Reynolds numbers. These two hypotheses have since become the central hypotheses 

in turbulence theory (Pope 2000). 

Using this knowledge reasoned by Kolmogorov, the two turbulence quantities k 

and ε that are assumed to characterize the local state of turbulence can be used to form a 

turbulence lengthscale (L = k
3/2

/ε), a turbulence timescale (TL = k/ε), and a quantity of 

dimension νt (k
2
/ε). Model transport equations in the form of partial differential equations 

are defined to solve for the quantities k and ε and attain closure to the set of governing 

Reynolds-averaged equations. In the standard k-ε model developed by Jones and Launder 

(1972) the equation for the turbulent kinetic energy k can be written as 

 

 kDBP
Dt

Dk
  .        (4.1) 
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P is defined as the production rate of turbulent kinetic energy due to shear. For simple 

shear flows where mean velocity varies in one direction (e.g. fully developed open-

channel flow) P can be estimated as 

 

 SwuP  .         (4.2) 

 

The standard form of the k-ε model allows for some accounting of buoyancy effects 

through the buoyancy flux term B in equation (4.1), where B is given as 

 

 w
g

B  


.         (4.3) 

 

The sign of B depends on the static stability (i.e. stratification) of the flow. For stably 

stratified flows, the sign of B will be negative as restoring buoyant forces oppose 

momentum and cause a dissipation or “negative production” of turbulent kinetic energy 

in the flow. The opposite is true for unstably stratified flow conditions in which the 

overturning buoyant forces cause an additional production of turbulent kinetic energy, 

which in turn enhances turbulent mixing. Finally, Dk is the diffusion of turbulent kinetic 

energy, modeled using the gradient-diffusion hypothesis as 
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where ζk is a turbulent Prandtl number for kinetic energy (see table 4.1). 
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The equation for the rate of dissipation of turbulent kinetic energy ε utilized by 

the k-ε model is written as 

 

 


D

k
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C
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Dt
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2

21 .     (4.5) 

 

Dε is a diffusion transport term, analogous to Dk in that it is also modeled using the 

gradient-diffusion hypothesis as 

 

 



















zz
D t 







 .        (4.6) 

 

where ζε is a turbulent Prandtl number for dissipation. The coefficients in equation (4.5) 

Cε1 and Cε2 are adopted empirical constants in the standard form of the model (see table 

4.1). 

Using equations (4.1) and (4.5) to compute k and ε, the eddy viscosity νt can then 

be defined as a dimensionally consistent function of the two turbulence parameters as 

 

 


 

2k
Ct  ,         (4.7) 

 

where Cμ is another empirical parameter. Again the eddy diffusivity Γt is related to the 

eddy viscosity νt via the turbulent Prandtl number Prt and with a given a formulation of 

Prt can be computed as 
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The values of each of the empirical parameters in equations (4.4) – (4.7), assumed to be 

constants in the standard k-ε model, are given in table 4.1 (Rodi 1987). 

 

Table 4.1. Empirical constant values for the standard k-ε model 

Cμ Cε1 Cε2 ζk ζε 

0.09 1.44 1.92 1.0 1.3 

 

 

There is no clear consensus on values and/or formulations of Prt and Cε3 for 

stratified flows in the turbulence modeling community. Numerically generated results for 

stratified flows have been shown to be very sensitive to these two parameters. Constant 

values as well as numerous models of Prt as a function of Ri for stratified flows have 

been presented and discussed in chapter three. There are nearly as many proposed 

parameterizations for Cε3 as there are for Prt. Many tests have even shown that the value 

of Cε3 depends on the type of stratification present in a given flow. Rodi (1987) shows 

that for unstably stratified flows where B is an energy source term Cε3 should be 

approximately equal to 1, and for stably stratified flows Cε3 should take a value between 

0 and 0.2. Other parameterizations by Baum and Caponi (1992) and Burchard and 

Baumerrt (1995) propose values of Cε3 = 1.14 and Cε3 < 0, respectively. Still others have 

reasoned that the buoyancy flux term B should be treated analogous to the turbulent 

kinetic energy production term P, thus setting the value of Cε3 = 1.44. 



66 

 

In addition to the many well-known and tested turbulence models, GOTM also 

contains a number of built-in stability functions that are computed and updated and used 

to calculate the turbulence closure parameters. Depending on the level and complexity of 

turbulence model used, these stability functions can either be constants, empirical 

functions, or functions of parameters characterizing the local state of turbulence. In the 

standard k-ε model, these stability functions are the model parameters given in table 4.1 

as well as Prt and Cε3. The version of GOTM used also has a subroutine for computing 

stability functions according to Munk and Anderson’s (1948) model that was evaluated in 

chapter three. GOTM’s open-source modular format allows stability functions to be 

modified and/or created to test different parameterizations of the stability functions. In 

order to rigorously test the effectiveness of the k-ε model in simulating stably stratified 

flows and propose an efficient model, different variations of the k-ε model were assessed 

by using different stability functions to define the turbulence parameters. The stability 

functions tested include the built-in standard form of the model using only the original 

empirical constants developed by Jones and Launder (1972), the built-in Munk and 

Anderson (1948) model for computing νt and Prt as functions of Ri (see equation (3.15)), 

the Venayagamoorthy and Stretch (2010) model for computing Prt as a function of Ri 

(see equation (3.16)), and finally a proposed model for stably stratified flows based on 

Prt and Cε3 as functions of the turbulent Froude number Frk. The FORTRAN95 code 

modules for the modified and/or created stability functions and boundary conditions used 

in GOTM for this study can be found in appendix B. 

 

 



67 

 

4.4 Results 

 

The ability of each of the four tested stability functions to simulate fully 

developed, stably stratified turbulent channel flow was assessed using the k-ε model in 

GOTM. DNS data of stably stratified homogeneous turbulence in channel flow at a 

friction Reynolds number of Reη = 550 and friction Richardson numbers of Riη = 0 and 60 

were used to validate the results computed in GOTM. The mean flow and turbulence 

parameters of interest that were analyzed and compared to the DNS include the mean 

flow velocity (non-dimensionalized as u/uη), turbulent kinetic energy (non-

dimensionalized as k/uη
2
), turbulent kinetic energy dissipation rate (non-dimensionalized 

as ε/(uη
3
H

-1
)), and density (non-dimensionalized as ρ/Δρ). 

The standard k-ε model used as the base case in GOTM was first calibrated and 

validated for an unstratified case (Riη = 0) by simulating channel flows at Reη = 550 and 

590 and comparing the results to DNS data computed by García-Villalba and del Álamo 

(2009) and Moser et al. (1999) respectively. It turns out that the k-ε model in GOTM is 

very sensitive to a number of input parameters including grid size and spacing, boundary 

roughness, and the von Karman constant κ to name a few of the most relevant ones. Thus, 

the DNS data were used to calibrate these parameters. The unstratified cases in GOTM 

were run using the standard k-ε model with constant stability functions given in table 4.1. 

For each case, the model was allowed to converge and reach a fully developed turbulent 

velocity profile to facilitate comparison with the DNS profiles. Figure 4.5(a) shows the 

fully developed velocity profile computed using the standard k-ε model in GOTM versus 

the DNS data for a friction Reynolds number Reη = 550. For the unstratified case, the 
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standard k-ε model results for the mean velocity profile were in good agreement with the 

DNS data. The turbulence quantities k and ε computed by the standard k-ε model were 

also used to validate the model with the DNS data at Reη = 550 as shown in figures 4.5(b) 

and 4.5(c) respectively. As expected, the k-ε turbulence model did not capture all of the 

physics near the boundaries, but the agreement was generally good in modeling dynamic 

turbulence quantities. 

 

 

 

 

 

 

 

 

Figure 4.5. Distributions of (a) mean velocity u; (b) turbulent kinetic energy k; and (c) 

turbulent kinetic energy dissipation rate ε in pressure gradient driven open-channel flow 

at Reη = 550 and Riη = 0: blue solid line, DNS data (García-Villalba & del Álamo 2009); 

black dashed line, GOTM results (standard k-ε model). 

 

To further validate the model for the unstratified case, DNS data (from a different 

source) for Reη = 590 were also used to compare the performance of the standard k-ε 

model in predicting the turbulent velocity profile and turbulence quantities in the channel. 

Figure 4.6(a) shows the fully developed velocity profile computed using the standard k-ε 

model in GOTM versus the DNS data for a friction Reynolds number Reη = 590. The 

model again performed well in predicting the mean velocity field in comparison to the 

(a) (b) (c) 
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DNS data. Dynamic turbulence quantities were also validated versus DNS data for the 

case of Reη = 590 in figure 4.6(b) and 4.6(c). The standard k-ε model again did an 

excellent job of predicting the trends in the turbulence with the exception of at the 

channel boundaries. 

 

 

 

 

 

 

 

 

Figure 4.6. Distributions of (a) mean velocity u; (b) turbulent kinetic energy k; and (c) 

turbulent kinetic energy dissipation rate ε in pressure gradient driven open-channel flow 

at Reη = 590 and Riη = 0: blue solid line, DNS data (Moser et al. 1999); black dashed line, 

GOTM results (standard k-ε model). 

 

Accepting the sufficiency of the standard k-ε model to model one-dimensional 

unstratified channel flow, its parameters or stability functions were modified to account 

for buoyancy effects and tested under stably stratified channel flow conditions. Four 

stability functions were assessed in their ability to predict mean velocity, density, and 

turbulent quantity profiles at Reη = 550 and Riη = 60. For each of the stratified cases, the 

flow was allowed to spin up and fully develop before the stratification was imposed on 

the channel via Dirichlet boundary conditions for the density. The flow was then allowed 

to converge to a steady-state solution to be evaluated against the stratified DNS results. 

(a) (b) (c) 
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Figure 4.7 shows results of the k-ε model with constant stability functions for Prt, 

Cε3, and each of the other k-ε model parameters in contrast to DNS data. Values of Prt = 

0.71 and Cε3 = 1.44 for buoyancy effects were used in addition to the standard constant 

values for the other parameters given in table 4.1. The constant stability functions missed 

the effect of stratification on the development of the mean turbulent velocity profile u, 

especially near the free surface in figure 4.7(a). The model did a fair job in predicting the 

behavior and trend of the density field ρ compared to the other models (see discussion 

below) in figure 4.7(b). The turbulence quantities k and ε were again adequately predicted 

away from the boundaries in figure 4.7(c) and 4.7(d). 
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Figure 4.7. Distributions of (a) mean velocity u; (b) density ρ; (c) turbulent kinetic 

energy k; and (d) turbulent kinetic energy dissipation rate ε in pressure gradient driven 

open-channel flow at Reη = 550 and Riη = 60: blue solid line, DNS data (García-Villalba 

& del Álamo 2009); black dashed line, GOTM results (k-ε model with constant stability 

functions). 

 

The same flow and stratification conditions were then used to test the Munk and 

Anderson (1948) and the Venayagamoorthy and Stretch (2010) stability functions in 

conjunction with the k-ε model. These stability functions compute Prt as a function of the 

stratification in the channel with Ri and also use a constant value of Cε3 = 1.44 to estimate 

buoyancy effects. Figure 4.8 shows the predictions of the k-ε model using the Munk and 

Anderson (1948) stability function and figure 4.9 shows the results for the k-ε model 

using the Venayagamoorthy and Stretch (2010) stability function versus DNS results for 

(a) (b) 

(c) (d) 
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stably stratified turbulence. It is important to note that for both of these models, Ri did a 

poor job in that it over-predicted the turbulent mixing of ρ in figures 4.8(b) and 4.9(b), 

essentially washing out the stratification in the channel such that buoyancy effects were 

nullified. As a consequence, the effect of stratification on the mean velocity profiles u for 

each case was significantly missed near the free surface as shown in figures 4.8(a) and 

4.9(a). Turbulence quantities are again shown in figures 4.8(c) – (d) and 4.9(c) – (d) for 

each of the models respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Distributions of (a) mean velocity u; (b) density ρ; (c) turbulent kinetic 

energy k; and (d) turbulent kinetic energy dissipation rate ε in pressure gradient driven 

open-channel flow at Reη = 550 and Riη = 60: blue solid line, DNS data (García-Villalba 

& del Álamo 2009); black dashed line, GOTM results (k-ε model with Munk and 

Anderson (1948) stability function). 

 

(a) (b) 

(c) (d) 
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Figure 4.9. Distributions of (a) mean velocity u; (b) density ρ; (c) turbulent kinetic 

energy k; and (d) turbulent kinetic energy dissipation rate ε in pressure gradient driven 

open-channel flow at Reη = 550 and Riη = 60: blue solid line, DNS data (García-Villalba 

& del Álamo 2009); black dashed line, GOTM results (k-ε model with Venayagamoorthy 

and Stretch (2010) stability function). 

 

Since Ri seems to be a poor parameter for characterizing the effects of stratified 

turbulence in dynamic two-equation models, it is not surprising that the k-ε model with 

constant stability functions performed better than the Munk and Anderson (1948) and 

Venayagamoorthy and Stretch (2010) models at predicting the turbulent velocity profile 

and density field. 

In lieu of the gradient Richardson number Ri, the turbulent Froude number Frk is 

a dimensionless parameter that has been suggested and used by others, including Shih et 

(b) (a) 

(c) (d) 
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al. (2000) and Venayagamoorthy et al. (2003), to describe the effects of stratification on 

turbulence parameters. Frk can be constructed by using a buoyancy lengthscale and a 

turbulence lengthscale. The buoyancy or Ozmidov lengthscale LO can be defined as 
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and the turbulence lengthscale L is defined as 
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Frk can then be defined in terms of LO and L as (Shih et al. 2000) 
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Substituting equations (4.9) and (4.10) into equation (4.11) yields a formulation of the 

turbulent Froude number in terms of turbulence quantities k and ε and the stratification 

parameter N, written as 
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Frk


 .         (4.12) 

 



75 

 

Frk can also be defined in terms of two timescales as simply the ratio of the buoyancy 

timescale N
-1

 to the turbulence timescale TL = k/ε, expressed by rewriting equation (4.12) 

in terms of N
-1

 and TL as 

 

 
L

k
NT

Fr
1

 .         (4.13) 

 

It is argued by some that Frk is a better parameter than Ri for characterizing stratified 

turbulence because it is based on local turbulence quantities k and ε, whereas Ri is more 

of a mean property of the flow based on global, linear quantities N and S. It may be 

especially suitable for the k-ε model because k and ε are already computed quantities. 

A model for Prt as a function of Frk can be obtained by first expressing the 

turbulent Froude number Frk in terms of the gradient Richardson number Ri. Since both 

are functions of the Brunt-Väisälä or buoyancy frequency N, equation (2.17) for Ri can be 

rearranged and solved for N in terms of Ri and S as 

 

 SRiN 2/1 .         (4.14) 

 

Substituting equation (4.14) into equation (4.13) yields an expression for Frk in terms of 

Ri, S, and TL as 
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Frk is perhaps a better parameter for stratification than Ri for dynamic two-

equation models like the k-ε model because of that fact that it is a function of the 

turbulence timescale TL, a dynamic parameter for characterizing turbulent behavior (i.e. 

mixing and decay). However, since Frk depends on S and TL in addition to Ri, it cannot 

simply be substituted directly into any of the other functions depending only on Ri 

without introducing the additional terms S and TL. Thus, using DNS data of Prt and Frk 

and physical arguments that Prt → Prt0 as Frk → ∞ and Prt → ∞ as Frk → 0, an 

expression of Prt as a function of Frk was formulated as 

 

  0exp tkt rPFrrP   ,       (4.16) 

 

where δ and ψ are empirical coefficients with values of 2.0 and 0.1 respectively. δ and ψ 

were determined using results of trial-and-error simulations in GOTM compared to DNS 

data of stably stratified turbulent flow. A value of Prt0 = 1.0 was also found to work best 

in predicting the mixing of momentum and density using this formulation. The function 

for Prt given in equation (4.16) is also plotted in Figure 4.10. 
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Figure 4.10. The turbulent Prandtl number Prt as a function of the turbulent Froude 

number Frk as defined in equation (4.16).  

 

Figure 4.11 shows the results using equation (4.16) to compute Prt and using a 

constant value of Cε3 = 1.44. Equation (4.16) does a significantly better job at predicting 

the stratified density profile in figure 4.11(b) as compared to the formulations of Prt that 

are functions of Ri. However, the model for this case still was not able to compute the 

correct trend in the mean velocity profile at the free surface as shown in figure 4.11(a). 

The results for k and ε computed using equation (4.16) are given in figures 4.11(c) and 

4.11(d) respectively. 
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Figure 4.11. Distributions of (a) mean velocity u; (b) density ρ; (c) turbulent kinetic 

energy k; and (d) turbulent kinetic energy dissipation rate ε in pressure gradient driven 

open-channel flow at Reη = 550 and Riη = 60: blue solid line, DNS data (García-Villalba 

& del Álamo 2009); black dashed line, GOTM results (k-ε model with Prt = f(Frk) and 

Cε3 = 1.44). 

 

 To further adapt the k-ε stability functions’ ability to model stratified turbulence, 

the buoyancy parameter Cε3 was also defined as a function of Frk. Again, using 

arguments that Cε3 → Cε3,0 as Frk → 0 and Cε3 → 0 as Frk → ∞ as well as trial-and-error 

simulations in GOTM, Cε3 can be expressed in terms of Frk as 

 

  kFrCC  exp0,33  ,       (4.17) 

 

(a) (b) 

(c) (d) 
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where Cε3,0 is the maximum value of the buoyancy parameter Cε3, computed as Cε3,0 ≈ 

0.48 by multiplying the mixing efficiency Γ∞ ≈ 1/3 (see chapter three) by the production 

parameter Cε1 = 1.44 (see table 4.1). Figure 4.12 shows the function for Cε3 given in 

equation (4.17), non-dimensionalized as Cε3/ Cε3,0. 

 

 

 

 

 

 

 

 

 

Figure 4.12. The buoyancy parameter Cε3 as a function of the turbulent Froude number 

Frk as defined in equation (4.17). 

 

Figure 4.13 shows results using the k-ε model with stability functions for Prt and 

Cε3 defined using equations (4.16) and (4.17) respectively. By defining both Prt and Cε3 

as functions of the turbulent Froude number, the model was able to more closely match 

the mean velocity profile in figure 4.13(a) while providing excellent predictions of the 

density profile in figure 4.13(b) and the turbulent quantities k and ε in figures 4.13(c) and 

4.13(d) respectively at Reη = 550 and Riη = 60. 
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Figure 4.13. Distributions of (a) mean velocity u; (b) density ρ; (c) turbulent kinetic 

energy k; and (d) turbulent kinetic energy dissipation rate ε in pressure gradient driven 

open-channel flow at Reη = 550 and Riη = 60: blue solid line, DNS data (García-Villalba 

& del Álamo 2009); black dashed line, GOTM results (k-ε model with Prt = f(Frk) and 

Cε3 = f(Frk)).  

 

4.5 Conclusions 

 

In this chapter, one-dimensional stratified channel flow simulations using the k-ε 

model have been used to test different formulations of the turbulent Prandtl number Prt 

and the buoyancy parameter Cε3. The results show that stratified turbulence models are 

very sensitive to changes in the formulation of these two parameters. Analysis of the 

results have shown that Ri may not be the best parameter to characterize stratification in 

(a) (b) 

(c) (d) 
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dynamic two-equation models and that Frk may be a more appropriate model parameter 

to represent turbulent behavior in stratified flows. The parameterizations for Prt and Cε3 

given in equations (4.16) and (4.17) respectively give good results for moderately 

stratified turbulence (Reη = 550 and Riη = 60) and provide an initial framework for 

defining these parameters in a general and useful form. However, it remains to be seen 

how these functions will perform at higher levels of turbulence and stratification. RANS 

modeling is the still the most practical and widely-used way to simulate turbulent flows 

and there still exists great motivation and potential to improve upon these and other 

RANS parameterizations to accurately capture the flow physics at a reasonable time and 

computational cost for an increasing range of engineering applications. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

5.1 Summary 

 

Buoyancy forces in stratified environmental flows have been shown to have a 

substantial effect on turbulent flow development and mixing. In stably stratified flows, 

buoyancy opposes momentum and the result is a reduction in the turbulent kinetic energy 

and a suppression of flow parameters that describe the vertical mixing and diffusion of 

momentum and scalars. Numerically modeling stratified turbulence in order to predict 

and analyze flow behavior is challenging due to the fact the density transport and 

momentum equations are inherently coupled. Therefore the density becomes an active 

scalar and influences the evolution of the flow. 

In chapter three, one-dimensional channel flow with a zero-equation turbulence 

model was used to evaluate and compare four different formulations of the turbulent 

Prandtl number Prt in the presence of strong stable stratification in highly turbulent 

flows. A somewhat arbitrary but strong test case was used in that the density stratification 

was held fixed in the channel in order to rigorously test and study the effects of stable 

stratification on turbulent flow development and mixing. The mixing rates of a passive 

scalar plume C for each of the four models were compared first to the base case of 
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unstratified turbulent mixing and then relative to each other to assess the performance of 

each parameterization. Each model for Prt was tested under a variety of channel flow 

conditions representing practical flows encountered in engineering and in the 

environment, including uni-directional and oscillatory flows and continuous and two-

layer stable density stratification. In addition to the numeric results generated by the 

model, the basis underlying the formulation of each model was used to consider which of 

the formulations of Prt might best represent and model the physics of stratified 

turbulence. 

In chapter four, the k-ε turbulence model was used within the framework of 

General Ocean Turbulence Model (GOTM), an open-source, one-dimensional water 

column model, to modify and test turbulence parameters in stratified channel flow using 

the dynamic two-equation k-ε model. The problem set-up and definition was also more 

complete in that the density field was held fixed only at the boundaries to ensure that the 

stratification was not completely washed out, yet could still interact with the flow and 

mix between the boundaries as an active scalar. The parameters or stability functions of 

interest again included Prt as well as the buoyancy parameter Cε3 in the k-ε model. The k-

ε model in GOTM was first calibrated and validated with unstratified DNS turbulent 

channel flow data. Using GOTM’s open-source modular format, these stability functions 

were then modified or created and tested under stratified conditions according to existing 

models including the built-in standard form of the k-ε model with constant stability 

functions developed by Jones and Launder (1972), the built-in Munk and Anderson 

(1948) model, the Venayagamoorthy and Stretch (2010) model, and finally a proposed 

model based on parameterizations of Prt and Cε3 as functions of the turbulent Froude 
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number Frk. The accuracy of each of the models was assessed using DNS data of 

stratified turbulent channel flow. 

 

5.2 Conclusions 

 

In chapter three, the different predictions yielded by each of the models tested 

show the importance of accurately modeling Prt in order to reasonably predict scalar 

mixing and dispersion. In addition to consistently predicting vertical mixing of a passive 

scalar plume that was neither the most nor the least in any of the flow scenarios, the 

model formulation for Prt of Venayagamoorthy and Stretch (2010) was the only model 

considered based on theoretical derivation and physical arguments supported by DNS 

data as opposed to purely empirical formulation. Although it still remains to be validated 

with field or lab data, the Venayagamoorthy and Stretch (2010) model proves to be a 

good choice for use in simple shear flow applications with a zero-equation turbulence 

model. The results of this study have also shown how even a one-dimensional vertical 

fluid column formulation with a zero-equation turbulence model can be effectively used 

as a modeling tool that is easy to implement and computationally economical to provide 

insightful results into the physics of turbulence and stratification. 

The results of chapter four emphasized the sensitivity of turbulent parameters to 

the effects of stratification, namely Prt and Cε3. The formulation of these parameters as 

functions of the gradient Richardson number Ri did not perform as well in a dynamic 

two-equation model setting as they did in a zero-equation model, leading to the 

conclusion that perhaps another parameter is better suited to characterize the effects of 
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stratification than Ri. In preliminary tests, the model parameter Frk was used to define Prt 

and Cε3 and provided results that reasonably matched the DNS data results for mixing and 

transport of momentum and density. Frk is a better parameter because it is a dynamic 

function of the turbulence quantities k (turbulent kinetic energy) and ε (turbulent kinetic 

energy dissipation rate), which are local quantities characterizing the state of turbulence 

in the flow as opposed to Ri, which is a parameter based on global mean flow properties. 

Frk is also a nice choice because it does not require the specification of any extra terms to 

close the model in the many popular dynamic two-equation models equations that utilize 

k and ε. 

 

5.3 Further Work 

 

A natural extension of this study is to continue the development and refinement of 

the stability functions Prt and Cε3 using Frk or other dynamic parameters that account for 

the local effects of turbulence and stratification. Although the parameterizations of these 

functions presented here performed well for the test cases analyzed, they remain to be 

validated for more turbulent flows (i.e. higher Reη) and stronger stratification (i.e. higher 

Riη). The models can only be improved by renewed theoretical reasoning and 

understanding of the physics of turbulent fluid dynamics in conjunction with additional 

field, laboratory, and DNS data to facilitate calibration and comparison. In addition to 

model parameter formulations, the discretization of the equations and meshing of the 

flow domain geometry can be improved in different ways using more accurate, higher 

order schemes and grid refinement to better capture the physics of the flow and 
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turbulence and reduce numerical errors. Other model parameters and constants (e.g. Cμ) 

may also need to be parameterized as functions of turbulence and stratification in order to 

achieve a more general model. 

To this end, it is important to continue to obtain data for strongly stratified and 

inhomogeneous flows to facilitate ongoing efforts to develop better turbulence models for 

stably stratified flows. With the rapid advancement of computing power, memory, and 

speed, obtaining DNS data for higher Reynolds number flows and increasing geometric 

complexity needed to validate these models is becoming feasible. Overall, the best 

models are those that are universal in their description and broad in their application. 
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APPENDIX A 

MATLAB CODE FOR ZERO-EQUATION TURBULENCE MODEL 

 

A.1 Introduction 

 

This appendix contains the MATLAB code developed to simulate and compute 

results for the zero-equation turbulence model study in section A.2. All coding and output 

of model results for chapter three were done in MATLAB. 
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A.2 MATLAB Code for Zero-Equation Turbulence Model 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                                                               % 
% Zach Elliott                                                  % 
% Colorado State University                                     % 
% June 2010                                                     % 
%                                                               % 
% Code for one-dimensional fully developed stably stratified    % 
% turbulent channel flow to test vertical turbulent mixing with % 
% zero-equation turbulence model                                % 
%                                                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear; 
clf; 
 
%Define parameters (SI units) 
theta=0.7; 
H=15; 
N=81; 
dz=H/(N-1); 
U_max=0.75; 
T=21600*2; %(i.e. 12 hour M2 tidal period) 
g=9.81; 
rho_0=1000; 
drho=30; 
beta=10; 
alpha=-1/2; 
beta_rho=10/3; 
alpha_rho=-3/2; 
z_1=-8; %upper stratified layer depth 
z_2=-12; %lower stratified layer depth 
z_mid=(z_1+z_2)/2; %middle of stratified layer 
nu=1e-06; 
epsilon=1e-05; %prevents Richardson number from going to infinity 
Pr_t_0=0.7; %neutral turbulent Prandtl number 
gamma_inf=1/3; %mixing efficiency 
Ri_inf=1/4; %flux Richardson number 
kappa=0.41; 
z_b=2; %ratio of z_b/z_0 for bed roughness assuming log velocity profile 
C_D=((1/kappa)*log(z_b))^-2; 
dC=10; %Concentration in ppt 
z_1C=-9; %upper concentration boundary depth  
z_2C=-15; %lower concentration boundary depth 
M=10700; 
dt=55; 
s=dt/(2*dz^2); %Diffusion Courant number 
fname='/home/zach/Movies/movie'; %Directory for storing movie images 
 
%Define grid points z(i) 
for i=1:N; 
    z(i)=-H+dz*(i-1); 
end 
 
%Define initial parameter distributions 
 
%Density stratification profile (continuous) 
%for i=1:N; 
    %rho(i)=rho_0-(drho*z(i))/H; 
%end 
 
%Density stratification profile (two-layer) 
for i=1:N; 
    if z(i)<=z_2 
        rho(i)=rho_0+drho; 
    elseif z(i)<=z_1 
        rho(i)=rho_0+(1/2)*drho*(1+cos(pi*(z(i)-z_2)/(z_1-z_2))); 
    else 
        rho(i)=rho_0; 
    end 
end 
 
%Plot density stratification profile 
    figure(1); 
    plot(rho,z); 
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    title('Density Stratification Profile','FontSize',16) 
    xlabel('\rho (kg/m^3)','FontSize',12) 
    ylabel('z (m)','FontSize',12) 
    axis([rho_0-2*drho rho_0+3*drho -H 0]) 
    grid on 
 
%Brunt-Vaisala frequency distribution 
N_BV(1)=0; 
N_BV(N)=0; 
for i=2:N-1; 
    N_BV(i)=sqrt((-g/rho_0)*(rho(i+1)-rho(i-1))/(2*dz)); 
end 
     
%Concentration profile 
for i=1:N; 
    if z(i)<=z_2C 
        C(i,1)=0; 
    elseif z(i)<=z_1C 
        C(i,1)=-dC*(sin(pi*(z(i)-z_2C)/(z_2C-z_1C))); 
    else 
        C(i,1)=0; 
    end 
end 
 
%Plot initial concentration profile 
    figure(2); 
    plot(C(:,1),z); 
    title('Initial Concentration Profile','FontSize',16) 
    xlabel('C (ppt)','FontSize',12) 
    ylabel('z (m)','FontSize',12) 
    axis([0 dC -H 0]) 
    grid on 
     
%Define explicit coefficient tridiagonal matrices     
    b1=zeros(size(1:N-1)); 
    b2=-1.*ones(size(1:N)); 
    b3=ones(size(1:N-1)); 
    B=diag(b1,-1)+diag(b2,0)+diag(b3,1); 
    B(N,N-1)=1; 
    d1=-1.*ones(size(1:N-1)); 
    d2=ones(size(1:N)); 
    d3=zeros(size(1:N-1)); 
    D=diag(d1,-1)+diag(d2,0)+diag(d3,1); 
    D(1,2)=-1; 
     
%Define eddy viscosity tridiagonal matrices N_plus and N_minus 
    n_plus_1=zeros(size(1:N-1)); 
    n_plus_2=ones(size(1:N)); 
    n_plus_3=ones(size(1:N-1)); 
    N_plus=diag(n_plus_1,-1)+diag(n_plus_2,0)+diag(n_plus_3,1); 
    n_minus_1=ones(size(1:N-1)); 
    n_minus_2=ones(size(1:N)); 
    n_minus_3=zeros(size(1:N-1)); 
    N_minus=diag(n_minus_1,-1)+diag(n_minus_2,0)+diag(n_minus_3,1);    
 
%Initialize velocity field for uni-directional flow 
%load u_CF_developed 
%u=u_CF_developed; 
     
%Initialize velocity field for oscillatory flow 
u(1:N,1) = zeros(N,1); 
 
%Time loop to march forward in time based on selected time step dt 
for n=1:M; 
     
    %Update current time 
    t(n)=dt*(n-1); 
     
    %Compute gradient Richardson number distribution 
    Ri(1)=0; 
    Ri(N)=0; 
    for i=2:N-1;         
        Ri(i)=(N_BV(i))^2/(epsilon+((u(i+1,n)-u(i-1,n))/(2*dz))^2); 
    end 
     
        %Compute "factor(i)"=(1+beta*Ri(i))^alpha 
            for i=1:N; 
                factor(i)=(1+beta*Ri(i))^alpha; 
            end 
             
        %Compute "factor_rho(i)"=(1+beta_rho*Ri(i))^alpha_rho 
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            for i=1:N; 
                factor_rho(i)=(1+beta_rho*Ri(i))^alpha_rho; 
            end 
     
    %Compute turbulent Prandtl number distribution (Munk and Anderson 1948) 
    %for i=1:N; 
        %Pr_t(i)=Pr_t_0*factor(i)/factor_rho(i); 
    %end 
         
    %Compute turbulent Prandtl number distribution (Venayagamoorthy and Stretch 2010) 
    for i=1:N; 
        Pr_t(i)=Pr_t_0*exp(-Ri(i)/(Pr_t_0*gamma_inf))+(Ri(i)/Ri_inf); 
    end 
 
    %Compute turbulent Prandtl number distribution (Kim and Mahrt 1992) 
    %for i=1:N; 
        %Pr_t(i)=Pr_t_0*(1+15*Ri(i)*(1+5*Ri(i))^(1/2))/(1+10*Ri(i)*(1+5*Ri(i))^(-1/2)); 
    %end 
 
    %Compute turbulent Prandtl number distribution (Peters et al. 1988) 
    %for i=1:N; 
        %if Ri(i)==0 
            %Pr_t(i)=Pr_t_0; 
        %elseif Ri(i)<=0.25 
            %Pr_t(i)=(56/3)*Ri(i)^1.4; 
        %else 
            %Pr_t(i)=(5*(1+5*Ri(i))^-1.5+0.2)/(5*(1+5*Ri(i))^-2.5+0.01); 
        %end 
    %end 
     
    %Compute bed shear velocity u_star 
    u_star=sqrt(C_D)*u(1,n); 
     
    %Compute eddy viscosity profile vector nu_t (no cut-off) 
    %for i=1:N; 
        %nu_t(i)=nu+factor(i)*kappa*abs(u_star)*(-z(i)/H)*(H+z(i));         
    %end 
 
    %Compute eddy viscosity profile vector nu_t (cut-off) 
    for i=1:N; 
        i_mid=round((z_mid+H)/dz); 
                
        if z(i)<=z(i_2) 
            nu_t(i)=nu+factor(i)*kappa*abs(u_star)*(-z(i)/H)*(H+z(i)); 
        else 
            nu_t(i)=nu+factor(i_mid)*kappa*abs(u_star)*(-z(i_mid)/H)*(H+z(i_mid)) 
            *(z(i)/z(i_mid))*(2-(z(i)/z(i_mid))); 
        end 
    end 
     
    %Compute eddy diffusivity profile vector gamma_t 
    for i=1:N; 
        gamma_t(i)=nu_t(i)./Pr_t(i); 
    end 
     
    %Compute spatially averaged eddy viscosity terms vector 
    nu_t_plus=N_plus*nu_t'; 
    nu_t_minus=N_minus*nu_t'; 
     
    %Compute spatially averaged eddy diffusivity terms vector 
    gamma_t_plus=N_plus*gamma_t'; 
    gamma_t_minus=N_minus*gamma_t'; 
     
    %Compute velocity boundary condition matrix E 
    E=zeros(N,1); 
    E(1,1)=-2*s*(1-theta)*nu_t_minus(1)*dz*(C_D/nu_t(1))*abs(u(1,n))*u(1,n); 
     
    %Update explicit coefficient tridiagonal matrices with eddy viscosity and eddy 
     diffusivity    
    for i=1:N 
        B_u(i,:)=(nu_t_plus(i)).*B(i,:); 
        D_u(i,:)=(nu_t_minus(i)).*D(i,:); 
        B_C(i,:)=(gamma_t_plus(i)).*B(i,:); 
        D_C(i,:)=(gamma_t_minus(i)).*D(i,:); 
    end 
     
    %Define implicit tridiagonal velocity coefficient matrix A 
    a=(s*theta).*nu_t_plus; 
    b=(s*theta).*nu_t_minus; 
    c=1+a+b; 
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    A=diag(-1*a(1:N-1),1)+diag(c(1:N),0)+diag(-1*b(2:N),-1); 
    A(1,2)=-b(1)-a(1); 
    A(1,1)=c(1)+2*b(1)*dz*(C_D/nu_t(1))*abs(u(1,n)); 
    A(N,N-1)=-b(N)-a(N); 
     
    %Matrix equation to solve for u(:,n+1) 
    u(:,n+1)=A\(u(:,n)+U_max*dt*(2*pi/T)*cos(2*pi*t(n)/T)+(s*(1-theta)).*B_u*u(:,n) 
    -(s*(1-theta)).*D_u*u(:,n)+E); 
     
    %Plot velocity field at current time step n u(:,n)     
    figure(3); 
        plot(u(:,n),z); 
        title('Velocity Profile','FontSize',16) 
        xlabel('u (m/s)','FontSize',12) 
        ylabel('z (m)','FontSize',12) 
        axis([-1 1 -H 0]) 
        grid on 
        pause(0.1) 
         
        %This part of the loop outputs .jpg images at every time step in directory fname 
        if (n<10) 
            str=['000',num2str(n)]; 
        elseif (n>9 && n<100) 
            str=['00',num2str(n)]; 
        elseif (n>99 && n<1000) 
            str=['0',num2str(n)]; 
        else 
            str=num2str(n); 
        end 
        scale=100; 
        P(n)=getframe; 
        eval(['print -djpeg ',fname,str]); 
        unix(['convert','',fname,str,'.jpg ',' ',fname,str,'.gif']); 
                 
    %Define implicit tridiagonal concentration coefficient matrix A_C 
    a_C=(s*theta).*gamma_t_plus; 
    b_C=(s*theta).*gamma_t_minus; 
    c_C=1+a_C+b_C; 
     
    A_C=diag(-1*a_C(1:N-1),1)+diag(c_C(1:N),0)+diag(-1*b_C(2:N),-1); 
    A_C(1,2)=-b_C(1)-a_C(1); 
    A_C(N,N-1)=-b_C(N)-a_C(N); 
     
    %Matrix equation to solve for C(:,n+1) 
    C(:,n+1)=A_C\(C(:,n)+(s*(1-theta)).*B_C*C(:,n)-(s*(1-theta)).*D_C*C(:,n)); 
         
    %Plot concentration field at current times step n C(:,n) 
    figure(4); 
        plot(nu_t(:),z); 
        title('Concentration Distribution','FontSize',16) 
        xlabel('C (ppt)','FontSize',12) 
        ylabel('z (m)','FontSize',12) 
        axis([0 0.05 -H 0]) 
        grid on 
        pause(0.1) 
         
        %This part of the loop outputs .jpg images at every time step in directory fname 
        %if (n<10) 
            %str=['000',num2str(n)]; 
        %elseif (n>9 && n<100) 
            %str=['00',num2str(n)]; 
        %elseif (n>99 && n<1000) 
            %str=['0',num2str(n)]; 
        %else 
            %str=num2str(n); 
        %end 
        %scale=100; 
        %P(n)=getframe; 
        %eval(['print -djpeg ',fname,str]); 
        %unix(['convert','',fname,str,'.jpg ',' ',fname,str,'.gif']); 
end  
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APPENDIX B 

FORTRAN95 CODE FOR MODIFIED GOTM MODULES 

 

B.1 Introduction 

  

This appendix provides the FORTRAN95 code for each of the GOTM modules or 

subroutines that were modified or created to simulate and compute results using the k-ε 

model pertaining to the study in chapter four. Section B.2 contains the GOTM module 

buoyancy.F90 that was modified to set Dirichlet boundary conditions in the channel to 

impose stratification on the flow after it had fully developed. Section B.3 gives the 

subroutine cmue_vs.F90 that was created to define the stability function for the k-ε model 

according to the Venayagamoorth and Stretch (2010) formulation of Prt and section B.4 

gives the subroutine cmue_frk.F90 that was created to implement the stability functions 

for Prt and Cε3 as functions of Frk in the k-ε model in GOTM. 
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B.2 buoyancy.F90 GOTM Module 

 

!----------------------------------------------------------------------- 
!BOP 
! 
! !ROUTINE: The buoyancy equation  
!  
! !INTERFACE: 
   subroutine buoyancy(nlev,dt,cnpar,nuh,n) 
! 
! !DESCRIPTION: 
!  This subroutine computes the transport of the buoyancy, 
!  \begin{equation} 
!    \label{DefBuoyancy} 
!    b=-g\frac{\rho-\rho_0}{\rho_0} 
!    \comma 
!  \end{equation} 
!  where $g$ is the accelaration of gravity, and $\rho$ and $\rho_0$  
!  are the actual and the reference densitiy.  
!  A simplified transport equation for $b$ can be written as 
!  \begin{equation} 
!   \label{bEq} 
!    \dot{b} 
!    = {\cal D}_b 
!    \comma 
!  \end{equation} 
!  where $\dot{b}$ denotes the material derivative of $b$, and 
!  ${\cal D}_b$ is the sum of the turbulent and viscous transport 
!  terms modelled according to 
!  \begin{equation} 
!   \label{Db} 
!    {\cal D}_b  
!    = \frstder{z}  
!     \left(  
!        \nu'_t\partder{b}{z} 
!      \right)  
!    \point 
!  \end{equation} 
!  In this equation, $\nu'_t$ is the turbulent diffusivity 
!  of buoyancy.  
!  The computation 
!  of $\nu'_t$ is discussed in \sect{sec:turbulenceIntro}. Note,  
!  that the model \eq{DS} assumes that turbulent transport of heat 
!  and salt is identical.  Source and sink 
! terms are completely disregarded, and thus \eq{bEq} serves 
! mainly as a convenient tool for some idealised test cases in  
! GOTM. 
! 
!  Diffusion is treated implicitly in space (see equations (\ref{sigmafirst})- 
!  (\ref{sigmalast})), and then solved by a  
!  simplified Gauss elimination.  
!   Vertical advection is included for accounting for adaptive grids, 
!  see {\tt adaptivegrid.F90}. 
! 
! !USES: 
   use mtridiagonal 
   use meanflow,     only:   h,ho,buoy,avh,w,w_grid,grid_method 
   use observations, ONLY:   b_obs_NN,b_obs_surf,b_obs_sbf 
   use observations, ONLY:   w_adv_discr,w_adv_method 
! 
   IMPLICIT NONE 
! 
! !INPUT PARAMETERS:  
   integer, intent(in)                 :: nlev,n 
   double precision, intent(in)                :: dt,cnpar 
   double precision, intent(in)                :: nuh(0:nlev) 
! 
! !REVISION HISTORY: 
!  Original author(s): Hans Burchard & Karsten Bolding 
! 
!  $Log: buoyancy.F90,v $ 
!  Revision 1.5  2003/03/28 09:20:35  kbk 
!  added new copyright to files 
! 
!  Revision 1.4  2003/03/28 08:56:56  kbk 
!  removed tabs 
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! 
!  Revision 1.3  2003/03/10 08:50:06  gotm 
!  Improved documentation and cleaned up code 
! 
!  Revision 1.1.1.1  2001/02/12 15:55:57  gotm 
!  initial import into CVS 
! 
!EOP 
! 
! !LOCAL VARIABLES: 
   integer                      :: i,Meth,Bcup,Bcdw,flag  
   double precision                     :: zz,tot 
   logical, save                :: first=.false. 
   double precision                     :: Qsour(0:nlev),RelaxT(0:nlev) 
   double precision                     :: Tup,Tdw,z 
   logical                      :: surf_flux,bott_flux 
! 
!----------------------------------------------------------------------- 
!BOC 
!  Construct initial linear profile from information in namelist  
   !print*,'n=',n 
!  Imposing stratification after flow develops 
   if( n .eq. 88200)then  
   first=.true. 
   endif 
 
   if (first) then 
      zz=0.0 
      do i=nlev,1,-1 
         zz=zz+0.5*h(i) 
         buoy(i)  = b_obs_surf - zz*b_obs_NN 
         zz=zz+0.5*h(i) 
   !print*,'h=',h(i),zz,buoy(i) 
      end do 
      first=.false. 
   else 
   buoy(i)=0. 
   end if 
 
!  Set Dirichlet boundary conditions 
   Bcup=2                             !BC Dirichlet 
   Tup=b_obs_sbf                      !Buoyancy flux  
   Bcdw=2                             !BC Dirichlet 
   if(n .ge. 88200) then 
 Tdw=-0.0038341875 
   else 
 Tdw=0. 
   endif                              !No flux 
   surf_flux=.false. 
   bott_flux=.false. 
 
   avh=nuh 
   Qsour=0. 
   RelaxT=1.e15 
 
   flag=1  ! divergence correction for vertical advection 
 
   call Yevol(nlev,Bcup,Bcdw,dt,cnpar,Tup,Tdw,RelaxT,h,ho,avh,w,  & 
              Qsour,buoy,w_adv_method,w_adv_discr,buoy,surf_flux,  & 
              bott_flux,grid_method,w_grid,flag) 
 
   return 
   end subroutine buoyancy 
!EOC 
 
!----------------------------------------------------------------------- 
! Copyright by the GOTM-team under the GNU Public License - www.gnu.org 
!----------------------------------------------------------------------- 

  



98 

 

B.3 cmue_vs.F90 GOTM Module 

 

!----------------------------------------------------------------------- 
!BOP 
! 12/1/10 for GOTM v. 3.0 
! ROUTINE: Venayagamoorthy and Stretch (2010) stability function 
!  
   subroutine cmue_vs(nlev) 
! 
! DESCRIPTION: 
!  This subroutine computes stability functions according to the  
!  Venayagamoorthy and Stretch (2010) model for Pr_t based on simulation 
!  data on stratified homogeneous shear-flows: 
!    
! Turbulent Prandtl number 
! Pr_t = Pr_t0*exp(-Ri/(Pr_t0*Gamma_inf))+Ri/Ri_inf 
! 
! where Pr_t0 is the neutral value of Ri Pr_t, Ri is the gradient 
! Richardson number, Gamma_inf is the mixing efficiency, and Ri_inf is  
! the flux Richardson number. 
! 
! !USES: 
   use turbulence, only: Prandtl0_fix,cm0_fix 
   use turbulence, only: cmue1,cmue2,as,an 
   IMPLICIT NONE 
! 
! !INPUT PARAMETERS: 
   integer, intent(in)                 :: nlev 
! 
!EOP 
! 
! !LOCAL VARIABLES: 
   integer                   :: i 
   double precision                  :: Ri,Prandtl 
! 
!----------------------------------------------------------------------- 
!BOC 
   do i=1,nlev-1 
      Ri=an(i)/(as(i)+1.e-8)   ! Gradient Richardson number 
      if (Ri.ge.1e-10) then 
         Prandtl=Prandtl0_fix*exp(-Ri/(Prandtl0_fix*(1/3)))+Ri/0.25 
      else 
         Prandtl=Prandtl0_fix 
      end if 
 
      cmue1(i)=cm0_fix 
      cmue2(i)=cm0_fix/Prandtl 
 
   end do 
   return 
   end subroutine cmue_vs 
!EOC 
 
!----------------------------------------------------------------------- 
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B.4 cmue_frk.F90 GOTM Module 

 

!----------------------------------------------------------------------- 
!BOP 
! 12/8/10 for GOTM v. 3.0 
! ROUTINE: Stability function for Pr_t and C_eps3 as functions of Fr_k 
! 
   subroutine cmue_frk(nlev, n, dt) 
! 
! DESCRIPTION: 
!  This model modifies the coefficients of the k-eps turbulence model 
!  to vary with depth (and stratification): 
! 
! Turbulent Prandtl number 
! Pr_t = 3*exp(0.1*Fr_k)+Pr_t0 
!  this is Prandtl0 in the turbulence module 
! 
! C_eps3 = C_eps30*exp(-Fr_k) 
!  this is ce3minus in the turbulence module 
!  note: this model is for stable stratification only a value for 
!   ce3minus is specified. ce3plus is for unstable 
!   stratification retains its default value. 
! 
! Compute Fr_k as 
! Fr_k = eps/Nk 
! and 
!      epsilon = dissipation = eps, in turbulence module 
!      N = buoyancy frequency = NN in meanflow module 
!      k = TKE = tke in turbulence module 
!      nu = molecular viscosity = avmolu in meanflow module 
!      P = production = P in meanflow module 
! 
! USES: 
   use turbulence, only: eps, tke 
   use turbulence, only: ce1, ce2, ce3minus, sig_k, cmue1, cmue2 
   use turbulence, only: ce2_0, ce3minus_0, sig_k0 
   use turbulence, only: cm0_fix, Prandtl0_fix 
   use meanflow, only: NN, avmolu, P 
   implicit none 
 
! INPUT PARAMETERS: 
   integer, intent(in) :: nlev 
   integer, intent(in) :: n 
   double precision, intent(in) :: dt 
 
! LOCAL VARIABLES 
   double precision  :: Fr_k,Prandtl 
   integer  :: i 
   double precision :: old_ce2, old_ce3minus, old_cmue1, old_sigk 
   double precision :: eddy_turn 
    
! 
! EOP  
!----------------------------------------------------------------------- 
! BOC   
! Set the coefficients to the standard k-eps values for the first time step 
   open(21,file='parameters.dat',status='unknown',form='formatted') 
   if( n .ge. 88200 )  then  
    
! approx. one eddy turnover time 
      eddy_turn = sum(eps)/sum(tke) 
 
      do i=1,nlev-1 
! save the last values of the variables for the first eddy-turnover time 
 
         if( n*dt .lt. eddy_turn)  then 
   old_ce2 = ce2(i) 
   old_ce3minus = ce3minus(i) 
   old_cmue1 = cmue1(i) 
   old_sigk = sig_k(i) 
         endif 
 
! calculate parameters relating to turbulence for this grid point 
 
  !Fr_k = eps(i)/sqrt(NN(i))/tke(i) 
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! calculate parameters relating to stratification for this grid point 
 
     if( NN(i) .gt. 1e-8 )  then 
            Fr_k = eps(i)/sqrt(NN(i))/tke(i) 
     
! update the values for the coefficients Pr_t and C_eps3 
 
              Prandtl=2.0*exp(-0.1*Fr_k)+Prandtl0_fix 
 
              ce3minus(i) = 0.48*exp(-Fr_k) 
       
     else  ! default to standard k-eps for NN(i) = 0 
! in the unstratified limit, the model reverts to the standard k-eps model 
 
           ce2 = ce2_0 
     ce3minus(i) = ce3minus_0 
           Prandtl = Prandtl0_fix 
           cmue1(i)=cm0_fix 
  endif  
    
      enddo  ! end of vertical grid loop 
   
   else  ! default to standard k-eps for first time step 
 
      ce2 = ce2_0 
      ce3minus = ce3minus_0 
      Prandtl = Prandtl0_fix 
      cmue1=cm0_fix 
      cmue2=cm0_fix/Prandtl 
    
   endif   
   
   return 
   end subroutine cmue_frk 
! EOC 
 
!----------------------------------------------------------------------- 

 


