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ABSTRACT

The purpose of this paper is to suggest a set of statistical tests
useful in the validation of simulation models of real world systems.
Multivariate techniques can be employed to test two hypotheses: agreement
of model predictions and empirical observation and agreement of the system
dynamics or ''shape'' of the predictive traces and data. The methods described
employ multivariate analysis of variance (MANOVA), permutation tests, and
nonparametric ranking tests. For illustrative purposes the validation
tests were applied to the primary producer and decomposition sections of
the ecosystem level model (ELM) of a grassland community being developed

by the Grassland Biome, U.S. International Biological Program,



1.0 INTRODUCTION

The widespread use of computer simulation models to study real-world
systems has necessitated a parallel birth of validation techniques. In
practice, the physical sciences and engineering disciplines have rarely
used the term validation in their literature. While the validation pro-
cedures proposed by these disciplines are often quite similar to those
conceived in the economic, social, and biological sciences, biologists
have brought the concepts and use of the term, validation, to the popular
usage most often encountered today. Apparently, the physlcal sciences are
less attracted to the concept of validation because these models are based
in more well-defined laws than either the biological or social sciences,

The validation tests appropriate to a particular model are dependent
upon the nature of the model and the goals and objectives of the modeling
study, regardless of discipline. Models can be thought of as deterministic
or stochastic, as well as mechanistic or empirical in nature. These two
dimensions can be visualized as a pair of colinear axes on a plane as
shown in Fig. 1. Empirical implies the model outputs are based on observed,
experimental data. Mechanical models presuppose that natural processes can
be mechanistically defined and are capable of complete explanation by the
laws of chemistry and physics. In the second dimension we define a stochastic
model as one involving variables that may take on any one of a specified set
of values with a specified probability at each point in time. A deterministic
model yields one and only one set of unique outputs for each set of fixed
input values. Thus a model such as the one represented by point A in Fig. 1
would tend to produce output of a deterministic rather than stochastic nature

and the functions generating the outputs are based more on empirical data,
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Fig. 1. Colinear modeling axes.



such as regression functions, rather than on functions based on known

physical and chemical laws. Empirical models are more typical of the

social, economic, and biological sciences while mechanistic models are
more characteristic of the engineering and physical sciences.

Models can be developed for predictive or descriptive purposes. A
predictive model must only produce accurate predictions of the output
variables in the system. In this case the modeler is not concerned with
exact replication in the model of the interactions between the variables
in the system. The relationships employed in the model to generate the
predicted output need not conform to the mechanisms in the real system
which lead to the same outputs. In contrast, descriptive models must not
only generate predictions in agreement with real system output, but the
intermediate relationships employed in the model must also be realistic
representations of the real processes which generate the cobserved outputs.

Validation of a predictive model would be concerned only with outputs
while a descriptive model's validation would also be concerned with the
accuracy with which the subsystems within the overall system were modeled.
Validation of a predictive model wouid only attempt to determine that the
model outputs and the observed outputs agree. On the other hand, validation
of a descriptive model would require that the submodels of the subprocesses
be validated prior to any validation of the overall model of the system.
The validation of descriptive models is obviously a more involved undertaking
than the va}idation of predictive models,

Most simulation models generate a functional trace of any of a number
of variables exhibited over time as illustrated in Fig. 2. The observed

data to be used in the validation process ordinarily consist of replicated
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observations at a number of points In time (see Fig. 3). Validation then
becomes a process of checking the output of the model against empirical
observations from field or laboratory measurements. Answering the question

of how well the modei output and the data agree suggests the need for general-
ized lack of fit tests. The aim of this paper is to suggest possible
statistical solutions to the validation problem in both the univariate

and multivariate situations,

Within this framework section 2.0 will outline the philosophy of the
validation process and enumerate some of the validation techniques for
simulation models as suggested in the literature. Section 3.0 will concep-
tualize the validation problem and present a series of possible solutions.,
Sections 4.0 and 5.0 will delve into the properties and behavior of these
solutions using actual data sets and suggest conclusions and topics for

further study.

2.0 LITERATURE REVIEW

There has been much effort devoted to developing the philosophy of
modeling and the processes by which we attempt to verify or validate the
truthfulness or correctness of computer simulation models through our
knowledge and observation of the ''real world.' Many authors use the words
validation and verification synonymously, yet some authors, notably Nolan
(1972) and Wright (1971), make a distinction.

Verification concerns itself with the establishment of the correctness
of a model. The verification process includes: (i) tests of the correct-
ness of the computer coding used in the model, (ii) tests to determine the

accuracy or correctness of the assumptions and hypotheses upon which the
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model is based, and (1ii) tests of the agreement of observed outputs and
model predictions when the model Is run, using as inputs the data employed
in the construction of the model. Thus the data used in the verification
process is the same as that used In the development of the model. In a
verified model the mechanisms and functions included in the model correctly
simulate and realistically represent the assumptions upon which they are
based. Tests (i) and (ii) can be used to verify purely mechanistic models
designed without the aid of empirical data. A possible verification test
of a purely empirical model would be to run the model using the observed
empirical inputs employed in building the model and then determine that the
model predictions generated agree with the observed outputs as in test (iii).
If a model was both mechanistic and empirical in nature, all three tests
could be applied.

On the other hand, validation is primarily concerned with determining
the usefulness of a model as evidenced in the accuracy of its predictions,
If a model of some system is an accurate representation of reality, then it
should be able to predict future outputs under different sets of initial
conditions. |In determining the accuracy of model predictions, the best
evidence or primary source of information available for validation is
empirical data. This suggests that the usefulness of validation results
is ¢losely linked with the quality of the data employed in the validation
process. Steinhorst (1973) suggests three minimal conditions that the data
must meet.

(i) The validation data must not have been used in model development.

(ii) The data must be of sufficient precision to make the test meaningful,

(111} The objectives of the modeling exercises must be kept in perspective.
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Condition (i) Tmplies that the data used in the validation process are
independent of the data employed in the verification process. Condition
(iii) implies that not all data are appropriate for use in validation.

This occurs because data collection inherently requires some preconceptions
of the phenomena being measured and these concepts may differ from those
being modeled.

In elucidating this Tast point we note that since a data collection
scheme presupposes some model of the system, from a pragmatic viewpoint,
validation is tantamount to comparing the output of two models. In the
case of data collection this implicit model is usually well accepted. At
the same time other models of the same system may already exist. 1f these
models have been validated with respect to empirical data, they can also be
considered as another representation of reality, though of a less viable
nature than empirical data. Therefore, a secondary source of Information
applicable to the validation process Is the output of other validated models,

The fact that model output and data do indeed agree does not imply that
the medel is unequivocally correct as the data could be in error Ttself,
This tenet can be supported by the fact that the experimental design used
to collect the data assumes a model of the real world, and this model suffers
from errors of omission and commission and the problems of interpretation
common to the modeling realm. |In statistical theory this error would be
construed as a Type II error in hypothesis testing.

Various validation techniques for comparing mode! output and data have
been suggested in the literature. These are applicable to both predictive
or descriptive models and to models based on empirical or mechanistic func-
tions. The critical dimension affecting the applicability of various

techniques is that of the deterministic or stochastic nature of the output,



1 f the output of a deterministic model is to be validated against
corresponding observed data, a number of technigues are available that are
summarized in a paper by Wright (1972). These include point fit tests using
regression analyses (Cohen and Cyert 1961), factor analysis (Cohen and Cyert
1961), and Theil's (1961) inequality coefficient and nonparametric
distributional tests such as the chi-square goodness-of-fit test or the
Kolmogorov-Smirnov test (Naylor and Finger 1967).

The point fit test suggested by Theil (1961) is a quantity designed to
measure the agreement of prediction and observation called the inequality
coefficient, U. If we let PI’ asey Pn be the n predicticons and AT’ cery An

be the actual observed outcomes, then

where 0 < U < 1. If Pi = Ai’ for every i =1, ,.., n, we have complete
agreement of prediction and observation and U = 0. Theil noted a rather
serious drawback in the interpretability of this measure in that U is not
invarfant against location change. This Indicates that the value of U
calculated for Pi and Ai’ i =1, «.., n would not be the same as that for

the points Pi* and Ai* where

and

where ¢ is a constant.
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In a vein similar to Theil's inequality coefficient, Kapoor (1968) has
suggested a similar measure of quality of a simulation model, the V inequality
coefficient. Suppose we wish to validate a variable trace against a data
record where the record consists of n; replicates taken at each of i =1,

., t times, Let a; be the maximum response and a? be the minimum response
of the n. replicates at each of the t times. At each of the t times the
model generates a prediction for the variable in question, Pi’ =1, .v.y t.

For each of the i =1, ..., t times we define

P. - a! - if P, > a!
i i i i
e, = 0 ifa's P, <a!
i i i i
al! - P, if P, <al.

Kapoor defines the V inequality coefficient as

t t
= -1-— 2 l. - 1 2
v = /" oy S / /t 751(a; -

Dividing by the quantity in the denominator makes the measure scale invariant.

One might note that V is always greater than zero and V is identically equal
to zero if a? < Pi < ai for every i = 1, ..., t, that is, if the predictions
at each of the t times falls between the maximum and minimum observed values
for each time,

Cohen and Cyert (1961) suggest two other possible tests. In the first
we assume that we observe n pairs of observations (Pi’ Ai)’ i=1, (.., n,
where the Pi is the predicted value and the Ai is the observed value. We
then estimate the parameters Bo and B] in the equation P = BO + B1A using

conventional regression technigues and test the hypothesis
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If one does not reject the null hypothesis, then we may conclude that Ai = Pi’
that is, the model predictions and data agree. The second method suggested

is to compute the factor loadings for the variables' model outputs and

the loadings for the observed data for the same variables. If the loading
matrices for the model output and the data agree, this would be evidence of
the viability of the simulation model.

Naylor and Finger {1967) suggest the following technique. A model
through its predictions generates a trace, f(t), over time for some variate,
say X, as in Fig. 4, It is possible to project this curve in such a manner
that it generates a cumulative distribution function for the random variable
X, say Fx(x). Referring to Fig. &4, the probability, p, of observing a value

of the random variable X less than x can be found as follows:

p=pP[X<x]=_AresA ) (shaded area in Fig. 4)

) 0} £(t) dt
Note that
PIX<0]=0
and
PIX < x,1 =1,

Therefore, if we find P[X < x] for every x such that 0 € x < Xy the result-
ing function is the cumulative distribution function, Fx(x), as displayed

in Fig. 5 for the random variable X. Application of the Kolmogorov-Smirnov
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Fig. 5. Cumulative distribution function generated
from model output in Fig. 4.
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test would determine if the sample cumulative distribution function of the
observed data is the same as the cumulative distribution'function, Fx(x),
generated by the model output. Since the probability density function, fx(x),
is directly related to the cumulative density function, Fx(x), by
L

dx
we could employ a chi-square goodness-of-fit test to determine if the ob-
served data came from the density, fx(x). Wright (1972) has noted that
this method has a shortcoming in the fact that this approach destroys the
time series nature of the data.

Another approach to the validation problem, applicable to models
generating either stochastic or deterministic outputs employing time series
analysis, has been suggested by Fishman and Kiviat (1967). |If we observe
the behavior of a process over an arbitrary but closed time interval, this
constitutes a time series. |If in addition the time series is covariance
stationary, a method of comparing the time series generated by the model
over some time interval with the time series associated with the observed
data over the same time span is available through examining their respective
spectral densities.

We define the random variable modeled, X(t), to be time dependent,

where

E(X(t)) = My
and

var (X{t)) = o2.

The covariance between the two random variables, X(t) and X{(t+T), when T > 0

and -» < t < =, {5 defined as
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Cov(X(t), X(t+T)) = o2 p(T)

Note that p(T) is a function of T alone and not t and T both. This implies
that the covariance between X(t} and X(t+T) is not dependent on their rela-
tive location on the time scale but only on the distance between the two
points. |If this assumption is indeed true, then the time series associated
with the random variable, X{t), is covariance stationary and p(T) is called
the autocorrelation function. The spectral density, f(A), is directly
related to the autocorrelation Functfon in the following manner,
p(T) = [ cos ar f{X)dxr
0

Within this structure it is possible to estimate the spectral density in
an unbiased fashion if the times are equally spaced. In data collection
the times are not always evenly spaced, but Kendall and Stuart (1966} point
out that relatively small deviations create a relatively minor bias.

Comparison of the two spectral densities associated with the model
output and the observed data can give some insight into the validity of
the model. |If prior knowledge indicates that the data and predictions do
agree, then agreement of the estimated spectral densities lends further
credence to model validity. On the other hand, similarity of the spectral
densities does not necessarily imply that the predicted and cbserved time
records will be in agreement. This last fact can detract from the overall
usefulness of this technigue.

When the empirical evidence is of such a nature that objective valida-
tion techniques are not applicable, one can resort to subjective validation

procedures, such as graphical approaches. Naylor and Finger (1967) have
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suggested some criteria which the experimenter can apply In passing judgment
on the validity of a model. The modeler can examine:
(1) the number of turning points,
(2) the timing of turning points,
(3) the direction of turning points,
(4) the amplitude of the fluctuations for corresponding time segments,
(5) the average amplitude over the whole series,
(6) the simultaneity of turning points for different variables,
(7) the average values of the variables, and
(8) the exact matching of values of variab}es.
Discrepancies in these measures between the model output and the data repre-

sent possible errors in the model.

3.0 STATISTICAL TECHNIQUES
3.1 CLConceptualization of the Problem
A simulation model of an ongoing system generates a trace over time

for each of the p variates in the model,
Fle)s =1, o, p

where the functions Fi(-) are usually continucus in the time domain. We
desire to validate this generated function with respect to empirical evidence
gathered on each of the p variates at each of t times in replicate form.

We have the following observed data:

ijk; j -
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These data should be independent of the process of designing the model and
also independent of any of the data employed in the verification process.

Ideally we would like

Xip - F;) =0

forall i=1, ...,p, jJ=1, ..., t,and k=1, ..., nj, as this would
imply that prediction and observation are identical. Obviously, this
equality will rarely be true which implies the need for a statistical test
to see 1f the difference is significant,

We next define
Vi = %k - H1 )
where Yi'k isoneof k=1, ,.., nj observations from the random variable

Y.., i=1, ..., pand j=1, ..., t. Let

Yi= Y, Yo, e, Y oD i=
Y= Mg Yo I |

where !j has some unknown continuous p variate cumulative distribution func-
tion, Fj(x). For statistical agreement between the data and model output

we heed to verify
Hot Fily) = Foly) = ... = F(y) = Fy{y) for all y

where Fo(x) is again some unknown continuous p variate cumulative distribution
function with zero mean (more generally with zero location parameter). If

we are interested in testing translation-type alternatives, we let

FJ(I) = FO(X-_ xj), for j =1, «.., t .
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Within this framework verifying the hypothesis given above s equivalent to

testing the null hypotheslis
H.: y.=0, for j=1, ..., t (3.1.1)

versus the alternative hypothesis

H1: at least one equality in H, is an inequallty.

0

Often the model analyst Is content to verify initially that the ''shape'
of the data and model output agree. This would occur if the modeler were
primarily interested in the validation of model dynamics as contrasted to
the exact fit of model output and data. In this case the fact that the
absolute magnitude of the response is in error is not considered critical
as this type of discrepancy can often be remedied simply by adding or sub-
tracting the appropriate constant from the output for each variable. In

this case the following hypothesis would be applicable:
(3.1.2)
versus the alternative

H1: at least one equality In Ho is an Inequality.

In the following sections we present a number of different solutions
to the problem of statistically testing hypotheses (3.1.1) and (3.1.2) under
different sets of assumptions. There are two assumptions that are made

throughout so they will be stated here. First implicit in the hypothesis

Fj(l') = Fo(i-x_j); j = 1, ey t
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is the fact that the scale parameters associated with the random variables,

Y.., are the same, for j =1, ..., t within each i =1, ..., p, that Is,

ij

the scale parameter for Yi is, say 0?, for i =1, ..., pand j =1, ..., t.

J
Secondly, we assume that the random variables are independent over time,

that is,

Cov (Yij’ Yij!)=os forj#j'=1’ ---,t (3-1-3)

and 1 =1, ..., p.

This last assumption is not unreasonable if the t times are spaced suffi-
ciently apart. The distance necessary to accomplish this depends, of course,
on the nature of the variable and response. |f the observations are equally
spaced along the time dimension, Phillips (1971) has summarized a number
of statistical techniques to check the validity of this assumption Including
the Anderson circular autocorrelation coefficient, the von Newmann ratio,
"runs'' tests, and a 2 x 2 contingency table independence test.

One should note that equation {3.1.3) does not make any assumptions

h time. All of the

about the relationship between the p responses at the jt
techniques presented in this chapter incorporate the fact that the p re-
sponses may be correlated into their analyses. Therefore, the techniques

are applicable regardliess of the correlation structure of the p responses

at each time.

3.2 MANOVA Methods
The first technique proposed employs a standard multivariate analysis

of variance approach (MANOVA)., Let

LA | PR SR S P
Y= 1j> 2j° pili J
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be & p-variate response of some phenomena. Ij is ap x 1 vector distributed

as a multivariate normal with mean, Ij' and covariance matrix, L. We have

L)

d

Y. ~ MWN LY.
Y ol t X

where

1 =
I'j [Y-Ij’ Yzj’ "‘Iij]

and I Is a p x p matrix with elements (Umn). Letting

X0

I.i =[Y“,Yi2, sy Y. ];i=1, ...,p ’

we define

* * 2
Yy TMN Gy sy, 9f L)
where
I =
Y [vigs Yige oo vd o

I, is at xt identity matrix, and o? =0 withm=n=1,

If we replicate the observation of each random variable, Ylj’ nj times,

for j =1, ., t, then we can write
I =
Yo' = g Yiggs oo Yi1n1’ Yizrs Yiags v oo Y12n2’ e
Yierr Yiggs oo vitnt], fori=1, ..., p (3.2.1)
and
r‘- —
L 20 v ]
60 1 ...0 Y.
- = = = - i2
.Y..i ili+—| - 2 +

<
o
A—l
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Letting N =
J

1

n., Xis Nxt and 1 is an, x 1 vector of ones. Finally
1 J- = —nj J
let

where Y is N x p.

If we wish to test hypothesis (3.1.1)

then using multivariate least squares regression theory, we calculate the

sum of squares under H0

X'y (3.2.2)
the error sums of squares

X'y (3.2.3)
and the total sums of squares

E+W =YY

where E and W are p x p matrices.

An approximate F - statistic is given by Anderson (1958) as
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where
lEl \1/39
y=|—— ,
|E + M|
. 2 2 b
[“1% e 1'] if (t-1)2 4+ p% #5
(t-1)" +p" -5
g=
1 if (t-1)2 + p2 =5
and
-t
he N - (1) - BZEXIy g - BEay
Under H0 the test statistic, F, is approximately distributed as an F random

variable with pt and h degrees of freedom  and the level of significance of

the test is approximately

P2 Prob[F 2 F ]

pt,h

This is an exact test if por t is 1 or 2.

If, on the other hand, we are interested in testing hypothesis (3.1.2),

then the approach is altered slightly. We have

Yij can be thought of as the sum of two components, the first due solely to
variate i, say His and the second part due to the time J and variable i,

say aij' Therefore, hypothesis (3.1.2) is equivalent to

i=1, ..., p (3.2.4)
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or

This hypothesis is reparameterized to a full rank model as follows:

Y + +

ijk M T % T %k

=(H+“L)+wr'“n)+%ﬂ

J
where
- toa;.
o, = I ——l-.
le . t
j=1
Letting
ey +a,
and
F3 -
177 %5 7 %L o
we have

Yijk : H + eijk . (3.2.5)

Within this framework the hypothesis (3.2.4) is equivalent to

HO:. Oy T ai; = 0py @, = o...0= uit LT i=1, .e., P

as o;. - o, = 0, forevery i =1, ..., pand | =1, esvy tiF H0 is true.
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If we define as before

*1 =
xﬂ [Yll’ Yi2’ ’ it] ?
we have
L * o
Y, = X + e,
—i - = -
rF 1
i
l_t-l lt-1 G.;.\ . K
_ it
- g +oe
1 —~t-1 o
i2
“i,t-1
as
t_l KR -+
E . = t ]
j=1 ij i
or
!h = §.E4 + 2
%
TR P RCR R
1 1
1 T o
-n2 - -n2 - il
. . : - aiz +—|
1 0 0 . lﬂ .
t-1 t-1 :
1 -1 -1 -1 uf
L-ﬂt —ﬂt -, -ﬂt ] | l,t—[_
where 14 is defined as in equation (3.2.1) for i =1, cevy po If we pre-
. . 1 .
multiply both sides by (EN - ﬁ-gN) where iN is an N x Nmatrix of ones, then



1 _ -] X _'I_
Iy - gd) Yy = @y - g )X 8+ (I - gy &
Let
A, = (T, - 0¥
-1 —N N =N —i
1 *
%= (EN WA &
and
- -
[0B] = (T, -~ g X
where B is N x t-1, Therefore,
"
_|=[QE] {_1_}‘ +E—|
%
= Ba, +z,
= =i —i
where
ki = oy gy cees oy
As before we let
B_- [5_1: &29 ey _&p] (3-2.6)

where A is N x p and employ multivariate least square regression theory to

calculate the sum of squares under the null hypothesis

B') A , (3.2.7)
the error sum of squares

-8 (8'8) ' B') A (3.2.8)

W= Al

and the total sum of squares
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Again we can employ the approximate F statistic in Anderson (1958) in

order to determine the significance under H, of the observed sums of squares.

0
We calculate
=1y, _h
i Y plt-1)
where
- lgl e
Y= — ’
L |E + W]
- 2 2 3
([l et o J if (e-12 +p2 #5
[ (t=1)° + p® - 5
g=
1 if (t-1)%+pl =5
and

h= O - (1) - B2 ]y g - By

Under H0 the test statistic, F, is approximately distributed as an F variate
with p(t-1) and h degrees of freedom. The approximate level of significance,

P, can be found by determining

Prob [F > F 1

p(t-1)’h

Again this is an exact test if p=1o0or 2 or if t =2 or 3.
If the model analyst is interested in validating one variate rather
than p variates, the analysis reduces to a one-way analysis of variance.

In testing hypothesis (3.1.1), we would have
HO: Yj =0for j=1, ..., t

versus
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H,: Yj £ 0 for at least one j =1, ..., t.

The observed data would be of the form

ij =7 + SR 1, ooy t
k=1, , h,
"]
where
Y., ~ Normal (y.,: 02)
jk yjk' Yjv
and
Cov (Vs Yyupe) =0 for J#J0 = 1, wouy t
and k #k' =1, ..., n

In this simplified situation the total sums of squares is

"
50 v2

E+ W=
1 k=1 K

N~

]
where E and W are now 1 x 1 matrices. The sums of squares under the null

hypothesis is

N nJ 2
W= & z Y.
j=1 \k=1 K
and the error sums of squares is
I"Ij )
. 2y )
E= =& x Y.k— —
j=1 \k=1 j
Under normal theory the quantity,
F= N-t)W
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is distributed as a Snedecor's F random variable with t and N-t degrees of

freedom. Therefore, the level of significance of the test of H0 is

P="Prob [F> F 1.

JN-t

On the other hand, if we are interested in testing hypothesis (3.1.2),

then we have

ot Y1 =¥ = e =y
or as defined above
HO: u + al =y + az = = + at
which is equivalent to testing
HO: al = az = a4, = at

versus
H1: at least one equality in HO is an inequality.

In this case, the total sum of squares is

2
t
. n. X Y,
Erwe 1 5 y2 o \=lk=1 K/
j=1 k=1 K N

the sums of squares under the null hypothesis is

(3.2.9)
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and the error sums of squares is

n. 2
J
z .
t nJ 2 =1 YJk
E= & I Yk - ——?—— . (3.2.10)
j=1 Vk=1 J j

Again under normal theory the statistic,

(N-t) w

FEW (3-2.1])

is distributed as a Snedecor's F random variable with t-1 and N-t degrees

of freedom. The level of significance of this test is

P = Prob [F z Ft-],N-;] .

3.3 Permutation Methods

3.3.1 Permutation Test. In spite of the fact that much evidence
has been gathered to lend credence to the robustness of analysis of variance
techniques under the normality assumptions, there are times when the
assumptions are not admissible. To circumvent this problem, two areas
have been developed, nonparametric tests and permutation tests. The
latter will be the subject of this section.

Conceptually, permutation tests can be explained intuitively, for
example, by the one-way analysis of variance. Say we have nj replicate

observations in each of t times or treatments,

.=.+_"=,_._,
Yik =vj*reps J=1 t

k

If
=]

and we wish to test



H.: Yy =Y, = e =y, (3.3.1)
versus
H.: at least one equality in H0 is an inequality.

One can calculate the F statistic given in eguation (3.2.11). Under normal
theory this statistic has an F distribution, but without the normality assump-
tions the most we can say is that the null hypothesis tends to be false {f
the F statistic is '‘large' and true if the F statistic is Ysmall."

If we assume ij has some unknown distribution with location parameter,

Yj’ and variance, ¢%, and

_ X .
Cov (ij, Yj'k') 0 for j # j 1, , t
and k # k' =1, ..., nj y
then we can apply permutation theory results. |If the null hypothesis is
true, then all the Yj are equal which implies
ij =Y, + ejk; J=1, ..., t
k=1, ..., n. .
J

in this case all the treatments or times would show equivalent yields so
ij could just as likely be an observation from treatment j as from some

other treatment j' # j =1, ..., t. This implies that if the null hypoth-

esis is true, we could just as readily randomly assign each of the N =

o™

n. observations to any of the t treatments or times. We could calculate
j=14
the F statistic in equation (3.2.11) for this random permutation of the observa-

tions, say FI, and compare it to the original observed test statistic, say FO'
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If we repeated the permutation process, say M times, then we could com-
pare each of these with the observed F~test statistic. |[If the number
of Fi’ i=1, ..., M less than F0 is ''large'" this implies intuitively
that F0 was an extreme or unusual event, that is, not in accordance
with the null hypothesis. On the other hand, if the number of Fi less
than F0 is '"'small," this lends credence to the truthfulness of the null

hypothesis. This argument supports the tenet that the level of signifi-

cance of the test of hypothesis (3.3.1) can be approximated by

P £ (number of Fo> Fos i =1, oo M)/M .

0’
One might note that the goodness of the approximation is directly
related to the number of permutations selected. For example, if M = 4,
the only possible levels of significance are 0.00, 0.25, 0.50, 0.75, and
1.00. The number of possible permutations is related to the sample size.

For this test the number of permutations possible is N!, and the number

of distinct values of the F statistic possible is

if the F statistic is calculated for all of the N! possible permutations
t
of the observations or the N}//H n,! combinations of the observations
Jj=t

which lead to different distinct values of the F statistic, then the

test described is exact. The level of significance is

P = (number of Fi > F i=1, ..., NI)/N!

0,

if all possible permutations of the observations are found or
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A
P = (number of F. > F., i =1, ..., N/ 1 n ') (N ot
i 0 j=1 j j=1 j

if all possible combinations of the observations which give distinct
values of the F statistic are enumerated. Often the number of permuta-
tions or combinations is prohibitively large, leading to the practice
of choosing M of these at random for the approximation given in the
preceding paragraph. It should be noted that nowhere in this discussion
has an assumption been made about the distribution of the ij.

We might note that the number of permutations, M, required to gain
a suitably accurate estimate of P depends on the nature of the data in-

volved. Consequently, from a computational viewpoint one might calculate

Pj = (number of Fo>Fo =1, oo, )/ 3 =1, oo, M.

When the series (Pj) has stabilized sufficiently for the accuracy desired
by the analyst, the process can be terminated. This technique is invalu-
able if the permutations are being generated by a computer as it necessitates
only fixing an upper bound on the number of permutatlions. Often the number
of permutations required to meet a * 0.01 tolerance on the true level of
significance is surprisingly smail; for example, a value of M £ 50 for
permutation tests of MANOVA problems is often sufficient.

Generalizing to the multivariate problem, we are interested in

applying a permutation test to the hypothesis (3.1.2)

versus

H.: at least one equality in H0 is an inequality.
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We can proceed as in section 3.2 and calculate E and W by equations (3.2.7)
and (3.2.8) for the observed data set. We can next calculate any one or

all of the following multivariate criterion: the Willls-Bartlett likeli-

hood ratio test statistic

the Hotelling test statistic
Tg = trace (H_EF])
or the Lawley-Pillai test statistic
Tg = trace [W(E + H)'T]

We next permute the N elements of each of the vectors, Y =1, ..., p, as

i i
defined in equation (3.2.1). This shuffling succeeds in assigning the N re-
sponses of each variate to the t times in a random fashion. This permutation
pProcess is repeated M times, where after each permutation we recalculate
each of the multivariate test criterion, AE’ T?, and T? for i =1, ..., M.
Intuitively if the null hypothesis is true, we expect the likelihood
ratio to be '"large," the Hotelling statistic to be '"'small," and the Lawley -
Pillai statistic to be "small." Therefore, the level of significance for

the likelihood ratio criterion is approximately
P = (number of Ai < AO’ =1, ..., M)/M

for the Hotelling criterion

P = (number of T? > Tg, =1, ..., MM,
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and for the Lawley-Piilai criterion

P = (number of T: > Ta, =1, ..., M}/M .

In the univariate case, the procedure is identical, but the test

criteria simplify in the following manner:

m

Y
miE +

'}
—
I
et

and )

where E and W are defined in equations (3.2.9) and (3.2.10).

Unfortunately, a permutation test for the hypothesis (3.1.1)

versus

Hl: at least one equality in H0 is an inequality

does not exist without making additional assumptions about the distribu-
tion of the ij. This occurs because under the null hypothesis Yij =0

or, in general, any hypothesis of the form Yij =c where <, is a

constant, the permutation test is insensitive to the value of c;- if

one is willing to make the additional assumption that the distribution

of ij is symmetric, a technique does exist for testing this hypothesis.

It is not presented here since, if one has sufficient prior knowledge to
assume symmetry, the distribution of the means at the different times

will be approximately normal for small sample sizes. in this case, the
simpler MANOVA analyses would be quite adequate as the normality assumptions

would not in all probability be grossly violated.
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3.3.2 Approximation to the Permutation Test. An approximation to
the permutation distribution test as described in section 3.3.1 has been
suggested by Urquhart (1965). Using this approximation, the significance
level of the test can be found without actually performing the permutations.

Suppose we wish to test the hypothesis (3.1.2)

versus

HT: at least one equality in H0 is an inequality.

If we performed a permutation test of this hypothesis using the Lawley-

Pillai test criterion

T, = trace [W(E + H)_1] ,

K
I

as described in section 3.3.1, we could calculate T0 for the observed data

and then calculate T; for each of the i =1, ..., M permutations generated.

Since T;/p is bounded between zero and one, we could think of the

M values

as being observations from a Beta distribution with parameters o and B.
We could then see at what percentile of the Beta distribution the observed
TO/p fell and thus determine the approximate level of significance of the

*
test. |{f TO/p is '"large," then
P = Prob [T;/p > Beta(a, 8)]

would be "small" and we would reject HO'
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In essence Urquhart derives the first two moments of the permutation
distribution, sets them equal to the first two moments of a Beta distributed
random variable, and then solves these two equations, both of which are
functions of o and B, simultaneously to derive estimates of o and B.

The two parameters are in themselves sufficient to completely describe a
Beta distribution.
70 estimate these two parameters, we proceed to make the foliowing

calculations. We find

(square of the diagonal elements of Ejgfg)_]gf)

[{=]
[’
M=

i=1

and

(square of the diagonal elements of (ﬂfﬁ)-]ﬂf)

-
]

fll =
| >

i=1

where A and B are defined as in equation (3.2.6). One might note that

JIA = 0 and J”B = 0 where A is N x p and B is N x (t-1). Thus,

(£-1) (t+1) (N+1)

U=y N(N+T) ’
= h - pp+2) (N-1)

V=h- & 5 N+1 ’

¢ = _CNF1) (NY (N-1) U

x  {t=1) (N-t) (N-3] ’

¢ = AN+1) (N)(N-1) v,

y  p(N-p-T)(N-3)

N-3

D = 2NR=1y Cx Gy

_ (Np=2)(N-1) - 2D(N-P-1)

S I e )
o = §(t~1)
and 8 = §(N-t) .
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Therefore, the significance level of H0 is approximately
P = Prob [To/p > Betala,B)] .

Since there exists a one-to-one functional relationship between the
Beta and F-distributions and the F-distribution is more widely tabulated
than the Beta, one might wish to transform the Beta statistic to an F

statistic. In this case,

? = Prob [F > Fm n]

1]

nt.
where m = 2§8(t-1), n = 25(N~t), and F =-—————g— - In the univariate case
m(p-TO)

the calculations are analogous to those given above except A is now a

N x 1 matrix and

where E and W are calculated by the formulas given in equations (3.2.9)
and (3.2.10).

In section 3.3.1 it was noted that a permutation test did not exist
for testing the hypothesis (3.1.1) without making additicnal assumptions
about the distribution of the Yij' Consequently, no approximation exists
for calculating the significance of the null hypothesis under hypothesis
(3.1.1) and the broad assumptions given in section 3.3.1.

This approximation appears to be quite invaluable when the sample
size is large as the computing time necessary to generate the M permuta-
tions may become prohibitive. This technique again avoids making any
distributional assumptions, and in fact the second permutation moment

contains a term which expresses the variance from normality in A and B.
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3.4 Nonparametric Ranking Method
Another test criterion employing a nonparametric test based on ranks
is also applicable to the validation problem. Let the cumulative distri-

bution function associated with

Y= DY, Yoo, e, Y 1 =0, et
Y; = [y vy, SR

be denoted by Fj(l)' We wish to verify

Hy: F](Z) = Fz(l) = ... = FtC[) = F(y} for all y {(3.4.1)

where F(Z) is some unknown continuous p variate cumulative distribution
function. We wish to test hypothesis (3.4.1) versus a location parameter

type alternative, that is, versus
H,: Fj(x) = F(y - Ej) for j =1, ..., t and some éj #0

or equivalently test

Versus

H]: at least one equality in H0 is an inequality.

This hypothesis test js equivalent to the test given in hypothesis (3.1.2).
One should note that only a translation type alternative is considered

here and not a scale type alternative. This implies that
2 R .
Var(Yij) =0} for i =1, ..., pand j = 1, «ve, t

or that the variances over time within each of the multivariate responses

are equal as noted in section 3.1.
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Let Ii be defined as in equation (3.2.1) and iéR) = p(!i), for | =
1, ««., p. The rank function p(*) replaces the observed values, Yijk‘
with the observation's corresponding rank, that is, the smallest value

is replaced by a one, the second smallest is replaced by a two, and so

forth, until the largest value in the vector ii is replaced by an N. Let

n; y(R)
vt | | I ,pand =1, ..., t
1] n.
k=1 ]
and
(R)! -(R} ={R - (R)
= H ] H H] L] b} = 1! 3 t
= s ¥z pj 13
Also
. R)
-R) ot "y CF N
y o= 1 3 ;‘!k=% Ei-ﬁ'(N(gﬂ))"‘N;I
j=1 k=1 i=1
-(R)
Note that y is the same for i =1, ..., p. Define
(R) _ (R} L(R) (R),
l - {il ] :!_2 ? trmy _Y_p ]
and
(R) _ 1 ,(R)! 1 (R}
LA A RS ENIAE

Lastly, we calculate the test statistic

- (R)

- (R)
n_j (i(R) - ; > 1

iy (R =1 5 (R)
lp) [v*™] (_Y_J. y _p)

~
[}
ot

Jj=1
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Puri and Sen (1971) have shown that for nj large Lp is asymptotically
distributed as a chi-square random variable with p(t-1) degrees of free-

dom, that is,

. 2
Yo Xp(t-1)

The level of significance associated with this test of the hypothesis

(3-4.1) is approximately equal to

. 2
P =Prob [L > xp(t-l)]

When testing the univariate hypothesis

versus

H,: at least one equality in H0 is an inequality

this test reduces to the well-known Kruskal-Wallis test, which is a

nonparametric one-way analysis of variance using ranks. Since p = 1,

we let 14 = Y, where ii is defined as in equation (3.2.1). Similarly
define
y® 2 oy
and
"]

R, = YFR); i=1, , t

b =y JK
Therefore,
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For n_j large LI is asymptotically distributed as a xz random variabie
with t - 1 degrees of freedom. The level of significance of the test in

this case is
. 2

If the max (nj) < 5, then tables of the exact distribution of L, exist
(see Seigel 1956) and the exact level of significance of the test can
be determined without resorting to the asymptotic result,

Since the cumulative distribution functions Fj(-) are continuous,
this implies there shouid be no repeated observations in the data or
ties in the ranks. This is not always the case as data measurements are
only taken to a finite number of decimal points. When ties occur between
two or more scores, usually each score is given the mean of the ranks for
which it is tied. This practice in general causes the value of Lp to be
underestimated, though not seriously if the number of ties is small. In
the univariate case there exists a correction factor (C.F.) to compensate

for this underestimation:

[| I e |
e
-

-_
1
Ias
g

where t. is the number of tied observations in the ith group of tied
scores and r is the number of tied groups of scores. Thus, the test

statistic, L1, adjusted for ties is

Often C.F. is near zero and negligible and hence can be ignored.
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This test can be employed only to evaluate hypothesis (3.1.2).

in order to create an intuitively sensible test statistic, we look at

the sum of the squared deviations of the cell means, ;g?), about the
-(R) _
overall mean, y . This prohibits us from looking at hypothesis (3.1.1)

unless we again make additional assumptions about the random variables,
Yij’ such as symmetry. |If there is evidence to assume symmetry of the
variables, for all practical purposes we will be near normality and

shculd proceed under that assumption.

4.0 APPLICATION OF THE TECHNIQUES

4.1 Application to a Grassland Primary Producer Mode]

The statistical techniques discussed in the previous chapter were
applied to two sections of an Ecosystem Level Mode] (ELM) of a grassland
community in order to validate model output with respect to empirical
observation. The section of ELM created by Sauer (1975) was designed
to simulate biomass production by grassland primary producers. The
primary producers were defined to be all photosynthetic plants which
for simplicity of modeling were classified into five categories: warm
Season grasses, cool season grasses, forbs, shrubs, and cacti. The
primary producer model! was designed to generate deterministic outputs.
The driving mechanisms of this descriptive model were based primarily on
the literature, the expert opinion of those knowledgeable in the systems
being modeled, and experimental evidence from process studies designed
to provide specific production data, resulting in a more mechanistic

than empirical model.
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The output variables simulated by the primary producer model included
various measures of biomass or organic material production. The model
did not actually generate biomass predictions per se, but instead generated
estimates of grams of carbon per square meter. The modelers opted for
this carbon flow type model as the carbon content of the biomass of
photosynthetic plants over time is approximately a constant. As deter-
mined by atomic weights, approximately 40% of the grams biomass (dry
weight) is carbon. A conversion is readily facilitated by multiplying
the model output by 2.5 in order to have predictions in the same units
as the observed data, grams biomass (dry weight) per square meter.

Biomass data for validation were collected in the field by selecting
randomly distributed square meter plots; clipping, uprooting, and gathering
the organic materials; separating the harvest into preordained categories;
and drying and weighing the results. Since this procedure leads to

destructive sampling, new plots must be selected at each sampling date

and the process repeated. The sampling scheme attempted to have the
sampling dates be equally spaced on the time axis in order to get a
representative view of the functions modeled, fi(t)’ i=1, ..., p.
Nevertheless, uncontrollable factors, such as unfavorable weather
conditions, would occasionally interfere with data collection in the
field, often making this goal unattainable,

Two variates were examined in the primary producer model validation
study: aboveground biomass of warm season grasses and aboveground
biomass of cool season grasses. (ool season grasses are those species
which begin their photosynthetic activity in the "cool season'' or early
spring, while warm season grasses commence photosynthetic activity later

in the spring. Each of these two categories encompasses a distinct
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collection or set of species of grasses. The model generated grams
carbon per square meter for each of these two categories for each day in
the years modeled. These values, corrected upward to represent biomass
predictions, were compared to field data for these two categeries by
assigning the sampling results, species by species, to the two categories.
The model predictions for that date could be compared with field observa-
tions for that date since the model was "run" with the actual weather
record of that time period. At each of ten times approximately evenly
distributed over the growing season approximately 12 plots were selected

In replicate and clipped.

Letting variable 1 be warm season grasses biomass and variable 2 be

cool season grasses biomass, we define
|- 1 1 1 .o =
Yi= Wi Yigs oma Yippls 1= 1, 2

as in section 3.0. We then tested hypotheses (3.1.1) and (3.1.2) first for
the bivariate case (p = 2) of warm season and cool season grasses together
and then for the two univariate cases (p = 1) warm season and cool season
grasses separately. Employing the tests discussed in section 3.0, we

found ourselves rejecting all the null hypotheses. The tests and the
levels of significance, P, for each are summarized in Table 1.

This result caused some concern which led to further analyses to
determine if the tests were too restrictive and would always lead to
rejection of the null hypotheses. Table 2 sheds light on this question.
The means of the data and 95% confidence intervals on the means along
with the corresponding predictions for each of the two variables at each
of the ten times are given. Of the 20 predictions only one (or 5%) fell

within the limits of the corresponding 95% confidence intervals. Further
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Table 1. Results of validation tests on the grassland primary producer model.

Test P

TP I T YiZ T e Ty 05 Y T g el = 2,10 T (3.1.0)

q-—-q-_——-_———_——_--_-—-..-———q..-_-—..._-.-—...—-——---——-—n-———---——u——--—»-——-..._.._-.

0TI e T i Y T Yyt ety (.1.2)

-8
F-test 6.5 x 10
Permutation test 0.00
Urguhart approximate to permutation test 5.3 x 10-8
Nonparametric test 1.3 x 10_7
Ho® Y11 =¥ = oo =y g =0 (3.1.1)
F-test 1.0 x 1072
fof Vi3 =Yg T e =y g (3.1.2)
F-test 1.0 x 1073
Permutation test 6.00
Urquhart approximate to permutation test 9.1 % 10-4
Nonparametric test 8.5 x 1077
Ho YZ] Yzz L YZ,]O - o (3-1.1)
F-test 3.6 x 107!
HO' Yz-l Y22 L Y2’10 (3-1 2)
F-test 1.9 x 107°
Permutation test 0.00
Urquhart approximate to permutation test 1.6 x 10‘6

Nonparametric test 3.9 x 1077
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Table 2. Means, predictions, and confidence intervals for the grassland
primary producer model.
Time X Prediction 95% confidence interval on u
Warm Season Grasses
1 k1.779 L46.682 (33.267, 50.292)
2 43,321 63.409 (28.525, 58.117)
3 60.896 86.319 (36.085, 85.707)
4 57.350 96.567 (41,348, 73.352)
5 67.371 95.640 (53.#1#, 81.328)
6 71.533 93.055 (53.259, 89.807)
7 52.262 90.365 (42,620, 61.905)
8 54,112 86.767 (47.691, 60.534)
9 52.571 85.168 (38.932, 66.209)
10 45,787 96.149 (31.028, 60.547)
Cool Season Grasses
1 5.242 17.551 ( 2,459, 8.025)
2 12.796 25.196 ( 6.427, 19.165)
3 7.708 31.750 ( 4,391, 11.027)
b 17.323 32.214 ( 6.966, 27.680)
5 13.721 31.259 ( 7.177, 20.265)
6 4,779 30.602 (7.568, 6.990)
7 8.787 29.910 ( 5.275, 12.300)
8 7.708 28.812 ( 1.803, 13.614)
9 6.167 28.287 ( 0.669, 11.665)
10 6.629 25.969 ( 2,133, 11.125)
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inspection revealed that the model overpredicted the amount of biomass
at each of the 10 times for both variates. Also the model tended to
overpredict more severely in the latter part of the growing season, that
is, In time classes 7 through 10. Since the model overpredicted in a
pattern that was not parallel to the observed means, the statistical
tests rejected both hypotheses (3.1.1) and (3.1.2).

In order to determine within what range the predictions must lie in
order to not reject Hy in hypotheses (3.1.1) and (3.1.2), sets of predic-
tions were ''created.' For each variate at each time the mean and standard

error of the replicated observations were calculated,

and

n, - 3
515 = ki] (Yijk yij) /nj("j 1)

for i =1, 2 and i=1,2, ..., 10,

Seventeen predictions, Pijq’ were formed as follows for each time and

variate:
- - - = - + -~
Prediction Pijq Yij 0.5(q Uij)
where q9=20,1,2,3, 4,5, 6,7, 8
for i =1, 2 and i=1,2, ..., 10.

For each q the F statistic for hypothesis (3.1.1) was calculated, and
the F statistic, the Urquhart approximation to the permutation test, and

the nonparametric ranks statistic were calculated for hypothesis (3.1.2).
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The calculation of the four test statistlcs was performed for each of
the nine sets of predictions for each of 2 years of data, 1970 and 1971.
For each year the calculations were made for the bivariate case, warm
season and cool season grasses biomass together, and also for each
variate separately in the two univariate cases.

Since each of the statistics was calculated for each data set and
each of the 17 sets of predictions, we could view these 17 values as
points on a curve. We have four curves; one for each test statistic.
These are plotted in Fig. 6 to 11 for each of two bivariate examples and
the four univariate examples. On the ordinate we have the value of P,
the level of significance of the test, and on the abscissa the predicted
values as measured in number of standard errors from the mean.

The six figures suggest certain generalizations. In testing hypoth-

esis {3.1.1), here formulated as

o° Yij

in the bivariate case and

in the univariate case versus

H]: at least one equality in H0 is an inequality

and employing the F statistic described in section 3.2, the level of
significance of the test was generally greater than 0.5 if the predictions
were within one standard error of the mean. In testing hypothesis

(3.1.2)
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HO: Yip = Y59 = v = Y500 | 1, 2
in the bivariate case and
Ho: Y1 = YZ = ,,. = Y]O

in the univariate case versus

H,: at least one equality in H0 is an inequality,

the F test and the Urquhart approximation to the permutation test given
in section 3.3 gave similar results. If the predictions were within two
standard errors of the mean of the observed data at each time, the null
hypothesis would not be rejected. |In testing hypothesis (3.1.2) with
the nonparametric ranking test described in section 3.4, the evidence
indicated that the nonparametric test would accept the null hypothesis
if the predictions were within two standard errors of the median of the
observed replications.

Many biologists are often skeptical of the normality assumptions
necessary for MANOVA analyses since biomass data are quite typically of
a nonnormal nature. Since there are usually a few large observations,
this causes the distributions of observed biomass to be skewed to the
right. This is reflected in the fact that the median is often one
standard error less than the mean of the cobserved data. Analysts are
interested in what manner the normality assumptions affect the ability
of the test to accept the null hypothesis. The close agreement of the
curves in Fig. 6 through 11 for the F statistic and the Urgquhart approxi-

mation to the permutation test, coupled with the fact that the Urqubart
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approximation does not contain any normality assumptions, lends credence
to the tenet that MANOVA techniques are generally quite robust to the

normal ity assumptions.

4.2 Application to a Grassland Decomposer Model

Another example of an application of these principles and the
validation tests previously described was provided in the interest of
validating the decomposer section of ELM. A description of this portion
of ELM is included in an article by Hunt (1975). This descriptive
model was designed to simulate the belowground decomposition of dead
material in a grassland ecosystem. One set of model predictions was
based on tracing the decomposition of 2 grams (dry weight) of bluestem
hay buried on some preset initial date. The model outputs are the
amount of material not yet decomposed as predicted on a day-to-day
basis.

In order to create multiple observations for validation, the foliow-
ing experiment was run. 6n an initial date 15 litter bags, each containing
2 grams of dry bluestem hay, were buried. The container bags were
designed in such a fashion that they would not interfere with the decom-
position process. On five dates with approximately equal spacing
throughout the ''decomposition season' three of the bags were recovered
and the nondecomposed material was collected and weighed. This procedure
provided three repiicate observations of the decomposition process at
each of five different times.

Since predictions were available on a daily basis, it was possible
to validate the model predictions for the 5 days on which the Titter bags

were recovered against the observed outputs of the litter bag experiment.
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In Table 3 the means of the observed data on each of the five dates and
the corresponding model predictions are presented. The difference between
the means and the predictions is given and 95% confidence intervals on

the observed means are provided. The results are presented graphically

in Fig. 12. Note that the predicted values fell within the bounds of

the 95% confidence intervals 40% of the time.

The validation tests described in section 3.0 were run on these data,
the results being presented in Table 4. Hypotheses {3.1.1) and (3.1.2) were
tested and the significance level, P, of the test calculated. Since the
predictions were less than the observed means on all five dates, hypothesis
(3.1.1) of exact agreement between the model output and observed data
was easily rejected with a = 0.01. A more interesting fact to the ex-
perimenter was the similarity of the shape of the lines generated by
the observed means and the model predictions. The results presented by
the test of hypoihesis (3.1.2) of the similarity of shape of the two curves
produced P values ranging from 0.081 to 0.131, making rejection of hypo-
thesis (3.1.2) at the 0.1 level questionable. The experimenter noticed
that the shapes of the two curves were almost identical for t = 1, 2, 3,
but the decomposition rate for the observed means decreased more rapidly
than the decomposition rate of the predictions for t = 4, 5. This occur-
rence was traceable to an overestimation of the decomposition rate of the
""hard'' or slowly decomposing materials in the system. The majority of
the material decomposing at t = 1, 2, 3 was "soft" or easily decomposed
matter while at t = 4, 5 the majority of the material was '"hard.’" Because
of this last result, the validation procedure provided a source of
valuable information for the experimenter as far as understanding the

model was concerned.
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Table 3. Means, predictions, and confidence intervals for the grassland
decomposer model.

Time X Prediction X-Prediction 95% Confidence Interval on u
1 1.557 1.440 117 (1.505, 1.608)

2 1.327 1.240 .087 (1.275, 1.378)

3 1.253 1.140 .113 (1.126, 1.381)

4 1.273 1.080 .193 (0.979, 1.568)

5 1.247 1.040 . 207 {1.167, 1.327)
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—— Upper and lower bounds of 5% confidence intervals
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Fig. 12. Validation of decomposition model.
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Table 4. Results of validation tests on the grassland decomposer model.

Test P
Hot Yy =¥y = 00 = Yo = 0 (3.1.1)
F-test 0. 00009
HO: Yy =Yy = =Yg (3.1.2)
F-test 0.131
Permutation test 0.090
Urquhart approximation to permutation test 0.113

Nonparametric test 0.081
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5.0 DISCUSSION

The validation process has suffered from an overdependence on sub-
jective procedures and a lack of available applicable objective procedures.
Hopefully, the statistical tests presented in section 3.0 will fill part
of this need for ecosystem simulation models though much more work in this
area is still needed to bridge the gap.

To date, ecosystem modeling has concentrated on producing determin-
istic rather than stochastic models. This philosophy has been fostered
by the belief of biological modelers that, if all the driving variables
could be defined and all the compiex interactions inherent in biological
systems explained, a set of inputs would uniquely determine the correct
outputs. At the same time the high noise levels of certain biological
phenomena as reflected in the large variability of their data imply that
the real world systems modeled are too complex to be treated in a purely
deterministic fashion. The innate variability of some biological data
can be decreased by placing more controls over the experiment designed
to provide the desired information, as in the case of process studies.
Yet, as we proceed to place more controls on the experiment, we also
lose more of the ''realtity" that we wish to model. The result is a trade
of f between variability and the maintenance of '"real world" conditions
in the experiment. A possible method of confronting this problem may be
to employ stochastic models in biological simulations. Since a controlled
amount of variability can be built into a stochastic model, this approach
might provide a more appropriate and realistic representation of the
system modeled.

The problems of validation are complicated by the fact that every

model is unique in conception and application, resulting in validation
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problems unique to each model. Many of the validation techniques de-
fined in the literature were designed to solve the problem of validating
one particular type of model. The problems encountered in validating
economic models of a firm or econometric models are often quite different
from those problems encountered in validating biological ecosystem models
because of the nature of the subject matter under study.

The statistical techniques discussed in this paper have been directed
toward the problem of validating systems level models of biological
communities. Since these models generate predictive traces over time,
the data gathered for validation must alsc be collected over time. In
the theory we assume that the data collected at each time is independent
of those observations taken at other times. This assumption may be
unnecessarily restrictive. Rather than assuming a covariance structure
for each of the i = 1, ..., p variates of the form
i

COV(Yij, Y- -|) =

G2 iF =l =1, o, t
30 =1

0 otherwise,

we might more realistically assume

LI T L TR

ij 2

ol IFI#FI =1,

2
where cijj" could be some function of the length of the interval between

j and j'. Any test with this type of covariance structure probabty
would ultimately require estimation of the covariances, o?..,, which

V1]
could become quite difficult as the sampling dates are often not equally

spaced on the time axis.
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One might well inquire what effect, if any, assuming the covariances
are zero has when in reality they are not. |If the covariances are not
zero and, at the beginning of the time record, the predictions and data
agree, then we would be more prone to accept the null hypothesis than
we should. On the other hand, if at the beginning of the time record
the predictions and data are not compatible, then the tendency would be
to reject the null hypothesis more often than we should. |If the time
record is of sufficient length, these discrepancies should average out
giving an unbiased estimate of the level of significance.

Being able to calculate one level of significance in a simultaneous
test of several output variables modeled satisfies the need for an objec-
tive, quantitative validation test. Often quantitative tests based on
subjective judgment are employed. One such criterion suggested by
ecosystem modelers has been to accept the model as valid if for each
variable the predicfions are within the bounds of 95% confidence intervals
on the means. There is an interesting similarity between this criterion
and one of the results from section 4.1 which showed that for the MANOVA
test or the Urquhart approximation to the permutation test of the hypoth-
esis (3.1.2) we would not reject the null hypothesis if the predictions
were within two standard errors of the means of the data. A 95% confidence
interval would tend to extend approximately 2.5 standard errors on each
side of the mean.

Since biological modelers are primarily interested in trying to
match data means, it is intuitively viable to use confidence intervals
to create a set of ''gates' or "hurdles' through which one hopes the

model-generated trace will pass. Since there are no data available other

than that gathered at the t sampling dates, one can actually only validate
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the model at those t points. This allows the experimenter to devise
various subjective validation tests by meeting a criterion of having the
predictions fall within X% confidence intervals Y% of the time. This
appears to lend support to the use of significance tests, possibly in
conjunction with subjectively based quantitative tests, to validate

simulation models.

The fact that the data medians tend to be one standard error less
than the means could present a question about the approach of biological
modelers. Most modelers generally concentrate on trying to predict or
model the mean of the data. Since the median is less than the mean, this
implies they are not modeling the most common event. This suggests a
question of whether it is more viable scientifically to model the most
common event, the median, or to model the average but not most of ten

observed event, the mean.
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