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ABSTRACT 

 

SIMULATING CANOPY DYNAMICS, PRODUCTIVITY AND WATER BALANCE OF 

ANNUAL CROPS FROM FIELD TO REGIONAL SCALES 

 

To provide better understanding of natural processes and predictions for decision support, dynamic 

models have been used to assess impact of climate, soils and management on crop production, water use, 

and other responses from field to regional scales.  

It is important to continue to improve the prediction accuracy and increase the reliability. In this 

work, we first improved the DayCent ecosystem model by developing a new empirical method for 

simulating green leaf area index (GLAI) of annual crops. Its performance has been validated using 

experimental observations from different experimental field locations as well as more aggregate NASS 

yield data spanning the country. Additionally, sensitivity and uncertainty of important parts of the crop 

growth model have been quantified.  

Our results showed the new model provided reliable predictions on crop GLAI, biomass, grain yield, 

evapotranspiration (ET), and soil water content (SWC) at field scale at various locations. At national 

scale, the predictions of grain yields were generally accurate with the model capable of representing the 

geographically-distributed differences in crop yields due to climate, soil, and management. The results 

indicated that the model is capable of providing insightful predictions for use in management and policy 

decision making. Although there are challenges to be addressed, our results indicate that the DayCent 

model can be a valuable tool to assess crop yield changes and other agroecosystem processes under 

scenarios of climate change in the future. 
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CHAPTER 1. SUMMARY 

 

I remember, in the first meeting with my advisor Dr. Paustian after I started my PhD program, he 

pointed out some critical problems found in previous simulations using the DayCent ecosystem model. 

He asked me if I was interested in solving some of them. I answered yes. So DayCent improvement 

became one of the goals of my PhD study.  

One of the biggest challenges we were facing was modeling the soil water balance. Water is the most 

limiting factor for plant growth besides temperature. As we know, precipitation is the main source of 

fresh water. The amount of precipitation in a year ranges from more than 300 cm in some tropical forests 

to a few cm in arid deserts. When precipitation cannot supply the demand of plants, this drought stress 

retards their growth and may even kill them. So it is important to accurately estimate the amount of water 

available for plants.  

Not all precipitation that falls on the ground can be utilized by plants. Most precipitation infiltrates 

into the soil while some run offs the soil surface into surface waters. Part of the infiltrated water gets 

retained in the top soil layers where roots can reach. The rest goes deeper into groundwater. Water in the 

root zone can be taken up by plants and used in transpiration. It is the major way of returning soil water 

back to the atmosphere. Soil surface without canopy cover may also return some water through 

evaporation. These movements of water compose the soil water balance. 

The DayCent model soil water submodel is a one-dimensional model which simulates the 

components of the mass balance of water including the infiltration of precipitation and irrigation, surface 

runoff, saturated and unsaturated flow in the root zone, percolation to the groundwater, evapotranspiration 

(ET; evaporation plus transpiration), and capillary rise of groundwater. It simulates the movement of 

water within the soil with the field capacity concept of the tipping-bucket approach and applies Richards’ 

equation for water re-distribution after the drainage from saturation to field capacity (Parton et al., 1998). 

Similar to many other models, DayCent calculates reference ET using weather data and applies 
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coefficients to derive the potential ET for a specific plant (the amount of ET under no water limitation in 

soil).  

The splitting of potential ET into evaporation and transpiration is based on the percentage of ground 

covered by the canopy. The first problem we found out was that DayCent model did not simulate the 

canopy coverage of crops well. No gradual senescence of leaves of annual crops was simulated in the 

DayCent model. By not capturing the gradual senescence after peak biomass is reached, the model over-

predicted soil water loss via transpiration in late growing season. In addition, the model assumed the 

attainment of a full canopy during the middle and late growing season, but in the case of severe stresses 

(drought or nutrient deficit), canopy development can be affected; thus the assumption was not valid.  

So finding a better way of simulating canopy development became the goal of the first part of my 

research (in Chapter 1). Initially, we first created a very simple triangle function to simulate the decrease 

of green leaf area index (GLAI; a representation of the green canopy) to account for the loss of green 

canopy in the late growing season. As expected, there was significant improvement in the simulated ET 

and soil water content (SWC) in comparison with the daily measurements of three irrigation×rotation 

treatments over 11 years in eastern Nebraska. However, there were limitations with this method. When 

crops are grown in drier area like eastern Colorado, they likely do not develop a full canopy in the middle 

of growing season, while our simple triangle method assumed a fully canopy. So we tried to adopt 

methods from some other crop models. After spending months on reading and testing the existing 

methods, we found some of them are too complicated for implementation in DayCent while some are not 

very accurate in a stressed environment or do not fit the current structure of the DayCent model. 

Eventually, we decided to create a new method for the use in DayCent. After analyzing a lot field data, 

the change of green leaf weight ratio (GLWR) of various grain crops caught our attention. The ratio of 

green leaf weight to total aboveground weight was initially high at the beginning of growth and gradually 

decreased to zero at the end of growing season. The change along the growing season could be described 

by three linear relationships as a function of growing degree units (GDD; a measurement of phenological 

development). As leaf weight is proportional to leaf area, LAI can be calculated.  
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We implemented this new method in DayCent model and tested with measured data of corn, soybean, 

and winter wheat which are the three major crops in the United States. The method worked well for all 

three crops grown in different conditions, with the temporal dynamics of canopy development being well 

represented, especially the canopy senescence. As the simulated canopy coverage is also used to estimate 

the amount of light intercepted for photosynthesis of leaves, the simulated daily biomass production was 

also improved. As a result, we also saw better results for predictions of daily ET and SWC, especially in 

late growing season period.  

To further validate the model under stressed condition, we choose three limited irrigation experiments 

of corn conducted in semiarid northeastern Colorado (in Chapter 2). In this region, the average annual 

precipitation is only 30-60 cm and lack of sufficient water is the main cause of the lower yields of dryland 

fields. Irrigation has been applied in this region for over a century to achieve higher crop production; 

however, as the demand of fresh water from municipal and industrial sections grows, water is being 

increasingly diverted from agricultural use.  Hence limited irrigation practices, which supply less water 

than maximum crop demand, are seen as promising alternative. The original DayCent model did not 

reflect well the relationships between irrigation amount, canopy dynamics and crop production. With the 

improvement in canopy simulation and other improvements in the soil water submodel, we expected 

better estimates of crop water use and yield. Our results showed that the modified model accurately 

simulated the drought stress effect on GLAI, biomass production and grain yield of corn across irrigation 

treatments. The accuracy is better or similar to those reported of other dedicated crop models, which is a 

significant achievement in that DayCent is a more general ecosystem model that can simulate all types of 

terrestrial ecosystems. 

After model improvement, a new version should be analyzed for parameter sensitivity and 

uncertainty. This is the research goal of Chapter 3, in which a global sensitivity analysis has been 

conducted and uncertainty has been quantified. First, 24 parameters that were closely related to crop 

growth, production and water stress effect were identified. Then, the ‘sobol’ global sensitivity method 

(Sobol, 1993) was used to identify the most sensitive parameters under both rainfed and irrigated 
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conditions. We found the growth/production related parameters in DayCent have relative more impact on 

grain yield, GLAI, and biomass than ET and soil water related parameters. We selected the 12 most 

sensitive parameters for uncertainty analysis using a formal Bayesian method called DREAM (Vrugt et 

al., 2008; Vrugt et al., 2009). As the inclusion rate (the percentage of observed data points within the 95% 

confidence interval of predictions) of the predictive uncertainty was low, we adjusted the estimated σ 

variable in the likelihood equation to increase it. Using 440% of the original estimated σ, the inclusion 

rate of the calibration and validation datasets reached 0.95 and 0.96, respectively. Some limited irrigation 

scenarios were created to analyze yield response to irrigation. It was interesting to find that for all 

irrigation levels, CV (coefficient of variation) of predicted yields was relative stable. This implies that the 

uncertainty of a water production function could be easily estimated using CV, which could be directly 

applied to simulations of similar conditions without running the complicated time-consuming uncertainty 

analysis.   

The sensitivity and uncertainty analysis provided us a better understanding of the model. We decided 

to use it for broader application. Previously, many projects have used DayCent model for large regional 

analysis on crop yields, soil carbon and nitrogen, soil water, and trace gas emissions. Thus there is a need 

to continually improve the model to increase the accuracy of model predictions of these variables. So in 

Chapter 4, we parameterized the modified version of DayCent and used it to predict corn and soybean 

yields for the continental U.S. at county-scale. In this study, the National Resources Inventory survey 

(NRI) data, high resolution weather data (PRISM) and SSURGO soil data were used to derive inputs for 

the simulations. As different varieties of crops are grown in climatically different regions, in our 

simulation, corn and soybean were divided to several variety groups based on their length of maturity. To 

validate model performance, our predictions were compared with 15-year USDA NASS (National 

Agricultural Statistics Service) county level yields. The results across the major production areas, the 

model predictions were generally accurate, and substantially improved over the previous version. The 

model was able to catch the variation of crop yields due to differences in climate, soil, and management. 

Additionally, in regions with high variation in year-to-year yields, the interannual variability was well 
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simulated for both crops. These results provided us greater confidence in performing regional simulations 

for other ecosystem variables such soil carbon dynamics because crop production substantially impacts 

soil carbon input, crop water use, soil nitrogen concentration, and other essential variables.  

In our simulations, we found there are many areas that we still can improve on. First, there is need for 

a better phenology submodel. The current method used is the simple growing degree day method (also 

called heat unit). It is generally accurate for crops like corn that are not affected by photoperiod (day 

length or night length). For photoperiod sensitive crops (soybean, wheat, etc.), phenology stages are not 

well represented and it causes the inaccuracy in simulated GLAI, water balance and biomass 

accumulation. Second, the simulated GLAI and biomass at early development stages are very sensitive to 

the input parameter BMINI (initial biomass at emergence). This is a cultivar specific parameter which is 

hard to estimate. What’s more, for the same cultivar, its value is not a constant in the real world and is 

affected by soil temperature and moisture in the period between planting and emergence. So seed 

germination and seedling emergence should be considered when parameterizing. Third, irrigation types 

are not explicitly modeled in DayCent. Irrigation is assumed as sprinkler type and simulated as the same 

as rainfall. As more efficient technology such as dripping irrigation becomes more popular, it is necessary 

to add more options in the model to better represent the real practices on farms. Fourth, the soil hydraulic 

parameters are fixed for each soil layer for a site in the entire simulation. These parameters are actually 

impacted by management practices like tillage, application of organic amendments, etc. These changes 

affect soil water movement significantly. The good news is that building a dynamic process of soil 

parameters is currently in the improvement plan.  

To summarize, the work described in the four chapters of this dissertation was all closely linked 

together. This work has provided an improved version of DayCent model and a systematic analysis of the 

model. Its performance has been validated using experimental observations from different experimental 

field locations as well as more aggregate NASS yield data spanning the country. Additionally, sensitivity 

and uncertainty of important parts of the crop growth model have been quantified. Our results showed 

that the model is capable of providing insightful predictions for use in management and policy decision 
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making. Although there are challenges to be addressed, our results indicate that the DayCent model can 

be a valuable tool to assess crop yield changes and other agroecosystem processes under scenarios of 

climate change in the future.   

Using the calibrated model, we are able to explore scenarios and provide decision support for various 

needs. There are a few studies that are either currently undergoing or may be conducted in the future. In 

collaboration with experts in hydrology in CSU, we implemented the modified version of DayCent model 

into the eRAMS platform which was designed for building accessible and scalable analytical tools and 

simulation models that can be accessed via desktop or mobile devices (https://erams.com/). Using this 

powerful platform, we are able to get input information from the embedded databases and run 

simulations. We have simulated crop water use and yield response for South Platte River Basin (SPRB) 

for 17 crops under various level of irrigation and tillage types. Optimized water allocation scenarios were 

selected and the results are being processed by an economic model for policy making support. 

Simulations using predicted future weather data will be conducted to access climate change effect on 

cropping system water demand and crop yields in SPRB. We will also be deploying the new DayCent 

version in the COMET-Farm decision support platform, which is being used by USDA, carbon offset 

developers and agricultural companies to estimate the carbon and water footprints of alternative 

agricultural management systems.  Another project is to investigate the crop yields change and land use 

change of the continental U.S. for the near future (2010 – 2060) using projected weather data. Crop 

growth response to elevated CO2 has been parameterized for crops in the new DayCent model version. 

The results will also be used with an economic model to optimize the economic return while considering 

environmental impacts. A third study is in collaboration with some researchers in Italy to investigate soil 

water movement and nitrogen cycling. An updated DayCent-Hydrus model (Dozier et al., 2016; Yuan et 

al., 2011) is used to simulate water table changes. In this version, the soil water submodel of DAYCENT 

was replaced by the Hydrus module (Simunek et al., 2008) which uses Richard’s equation for water flow 

instead of original tipping bucket method.  
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This work is done because of the foundation of numerous previous studies and collaboration with 

field experimental researchers and fellow modelers. In the past 50 years, dynamic modeling has gone 

through a journey from an idea to a relatively mature tool for decision making and knowledge testing. 

Although, modeling, as a manifestation of the scientific process, is never done and is always being 

questioned, renewed and improved, through the effect of generations of scientists and researchers, it will 

play a more and more important role in the future to provide better understanding of underlining 

processes, regional assessment for decision making, and provide forecasting services for agricultural 

communities.  
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CHAPTER 2. IMPROVED CROP CANOPY AND WATER BALANCE DYNAMICS FOR 

AGROECOSYSTEM MODELING USING DAYCENT 

 

2.1. SUMMARY 

Field experimental data of maize and soybean from two locations in the US Corn Belt and winter 

wheat in northern Oklahoma were used to develop a new empirical method for simulating green leaf area 

index (GLAI) in the DayCent model. The method is based on the change of green leaf weight ratio as a 

function of phasic development in grain crops and required minimal changes to other parts of the model.  

The simulated results from the modified DayCent model compared well with field measurement of GLAI 

and aboveground biomass for all three crops. The improvement in GLAI resulted in substantial 

improvement in simulated evapotranspiration and soil water content, especially in late growing season 

period, with the improved representation of canopy senescence.  Simulation of biomass and grain yield by 

the modified model was also slightly improved (R2 was 0.69 for grain yield of maize and 0.65 for 

soybean).  

2.2. INTRODUCTION 

 The expansion and duration of green leaf area is one of the most important processes in crop growth 

development. Green leaf area determines the amount of light intercepted by the canopy and hence 

photosynthesis rates and biomass accumulation. Canopy dynamics are also directly linked to 

evapotranspiration processes and thus are a major determinant of the soil and ecosystem water balance.  

For crop models, in order to accurately predict crop production and water use, accurate simulation of 

green leaf area is one of the essential components.  

Several approaches have been used to predict green leaf area in crop simulation models. Generally, 

these approaches can be divided into two categories, depending on whether or not the leaf expansion is 

explicitly dependent on modeled biomass production.  Approaches in the first category simulate the 

potential increase in leaf area independent of simulated increase in biomass. These methods can be simple 
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as those in the APEX model (Williams et al., 2008) and AquaCrop model (Steduto et al., 2009) in which 

polynomials or other functions are fitted to describe the change of green leaf area index (GLAI) or canopy 

cover (CC) over part or all of the growing season, using daily or thermal unit time scales. Methods in this 

category can also be very complicated like the one proposed by Lizaso et al. (2003) which simulates the 

appearance, expansion and senescence of each individual leaf.  Both leaf expansion and senescence are 

directly affected by abiotic stresses in most of the models in this first category.  

The approaches in the second category relate the increase of leaf area to the increase in leaf biomass 

through the concept of specific leaf area (SLA; the ratio of leaf area to its biomass). The assumption is 

that SLA is relatively stable (or its change over time is well characterized) and thus leaf expansion is 

modeled as a function of the allocation of photosynthate to leaf biomass.  Models in this category include 

the Cropsyst model (Stockle et al., 1994) and WOFOST model (Vandiepen et al., 1989). The SLA is 

usually a fixed input parameter or a simple function of solar radiation and temperature or crop growth 

(Soltani and Sinclair, 2012). The abiotic stress effects on leaf area are indirect via the stress effects on 

biomass production. In these models, leaf senescence is commonly modeled as a decrease of GLAI at a 

certain rate over a growth stage or that leaves have a fixed longevity, followed by senescence.  

A sound approach for simulating leaf area dynamics is fundamental for any crop modelling 

application. The DayCent model (Del Grosso et al., 2008; Del Grosso et al., 2006; Parton et al., 1998) is a 

generalized ecosystem model designed to simulation biogeochemical (C, N, P, S) and water dynamics for 

multiple ecosystem types (e.g., grassland, forest, savanna), including annual crops.  The DayCent model 

has been widely used to simulate soil carbon dynamics and soil greenhouse gas (CO2, N2O, CH4) 

emissions, especially for agricultural ecosystems (e.g. Del Grosso et al., 2008; Del Grosso et al., 2006; 

Jarecki et al., 2008; Zhang et al., 2013).  The crop growth sub-model in DayCent is designed to model the 

productivity, nutrient uptake, and water use of the crop, which in turn have a large impact on the carbon 

and nutrient cycling processes of the agroecosystem. For example, after precipitation, crop water use is 

the single largest component of the soil water balance and the rate and timing of plant water uptake 
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strongly effects soil moisture contents and depth distribution, which are key controls on soil organic 

matter and nutrient dynamics (Parton et al., 1987).   

Currently, the method used in DayCent to simulate leaf area dynamics is very simple. Similar to other 

models in the ‘second category’, described above, the GLAI during early vegetative growth is dependent 

on the aboveground biomass using a fixed leaf area ratio (LAR; the ratio of leaf area to total aboveground 

biomass). The simulated GLAI is not used after crop reaches full canopy (usually GLAI is above 3) and 

full canopy is assumed until harvest of crop. Despite its advantage of simplicity, there are a few flaws of 

this method. First, LAR should not be treated as a constant, as it has been observed to decrease along with 

the early vegetative growth in some crops (Miller et al., 1988; Wallace and Munger, 1965). Second, under 

some severe abiotic stresses, crops might not reach full canopy. So the assumption of full canopy is not 

always valid. Third, leaf senescence or loss of green leaf area is a gradual process. The method in 

DayCent over-predicts the canopy coverage in the late growing season. These flaws can result in poor 

prediction of biomass production and water use. Some studies have reported a weak correlation of 

simulated soil water content (SWC) by DayCent model and field observations (Jarecki et al., 2008; Smith 

et al., 2008), which may in part be due to the inaccuracy of simulated GLAI.  

To improve the simulation of leaf area dynamics in DayCent model, we recognized several 

constraints relating to the structure and purpose of the model. First, any new method needs to be general. 

DayCent model is designed to simulate all kinds of terrestrial ecosystem types using general formations 

of key processes. It uses two general submodels for plant growth, grass/crop and tree, so the new method 

needed to be compatible with this general design and not entail major changes in the model structure. 

Thus generalized algorithms with only crop-specific parameters that reflect major differences of crop 

species and cultivars were needed. Secondly, the method should be simple and not substantially increase 

the input data requirements of the model.  An important attribute of DayCent is that it can be run with 

ready available input data; the model is often used for regional, national and global applications that don’t 

allow for local calibration of model parameters.  Third, the new method should improve the accuracy of 

current method and be robust across a range of climatic and edaphic conditions.  
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In this paper, we describe the new methods used to model leaf area dynamics in DayCent and the 

derivation of model parameters for three major grain crops in the US: maize (Zea mays L.) soybean 

(Glycine max L.) and wheat (Triticum aestivum L.). We then test the new method against field measured 

leaf area data from three research sites in the US and evaluate and compare the model performance on 

other system variables, including evapotranspiration (ET), soil water content, crop biomass production 

and yield, that are affected by the crop canopy dynamics.  

2.3. MATERIAL AND METHODS 

2.3.1. Field Experiment 

2.3.1.1. Mead, NE 

This field experiment was conducted at the University of Nebraska Agricultural Research and 

Development Center near Mead, NE, on three large fields of about 49-65 ha, each of which are 

instrumented with an eddy covariance tower.  The research site is part of the AmeriFlux site network and 

complete details of the experiment can be found in Suyker and Verma (2009).  Each of the three fields 

represents a different management treatment: 1) irrigated continuous maize (ICM), irrigated by a center 

pivot system, 2) irrigated maize-soybean (IMS) was managed as a maize-soybean rotation from 2001 to 

2008, but changed to continuous maize since 2009, and 3) a rainfed maize-soybean (RMS) rotation. 

Standard best management practices prescribed for production-scale maize-soybean systems have been 

employed which includes herbicide and pesticide applications, fertilization, irrigation, etc. The crop 

management details are summarized in Table 2.1. No-till practice was used after the start of the 

experiment for a few years. As a heavy litter layer became a problem for the continuous maize system, a 

reduced tillage operation was introduced in 2005 on ICM site and in 2010 on IMS site. 

Soils at the site are deep silty clay loams with very little slope, lacking shallow groundwater (Table 

2.2). Measurements at the site include eddy covariance towers for each treatment (to measure CO2, H2O 

and energy fluxes) and soil moisture sensors (Theta probe, Delta-T Devices, Cambridge, UK) were placed 

at 10, 25, 50, 100 cm depth. Detailed information on sensors used are given in Suyker and Verma (2009). 

As described in Grant et al. (2007), six 20 by 20 m intensive measurement zones (IMZ) were established 
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in each field. In each IMZ, leaf area and aboveground biomass were measured destructively on an average 

of 11-day basis at six different locations of each site. Before harvest, at least six samples per site were 

hand-harvested to estimate harvest index. Grain yield data were from combine harvest of each entire site. 

Crop phenology was observed frequently and the records included most vegetative and reproductive 

stages since 2003 while fewer growth stages were recorded in 2001 and 2002. Severe hail storms 

occurred in September of 2010 and damaged the crops and thus yields in 2010 were not included in our 

study. 

2.3.1.2. Bondville, IL 

We used field data for maize and soybeans from another site in the AmeriFlux network at Bondville, 

IL (Meyers and Hollinger, 2004). The site was established in 1996 and was managed as a maize and 

soybean rotation. We evaluated the model against measurement data from 2001 to 2005, during which 

time GLAI and biomass were frequently measured during the growing season and biomass of different 

aboveground organs was recorded. Maize was planted in 2001, 2003, and 2005 on DOY 108, 105, and 

111 respectively. The planting density was 78,000 plants ha-1 for all three years. Soybean was planted at 

360,000 plants ha-1 on DOY 152 in 2002 and 416,276 plants ha-1 on DOY 127 in 2004. Crop variety 

information was not available. The soil texture is silt loam with an average bulk density of 1.45 g cm-3.  

2.3.1.3. Ponca City, OK 

The third Ameriflux network experiment used in our study was near Ponca City, OK (Hanan et al., 

2002). The site was a 65 ha field planted with winter wheat continuously from 1996 to 2000. Planting was 

in mid-autumn and harvest was conducted at mid-summer. Details about crop varieties were not available 

from published reports. Aboveground biomass and LAI were measured using destructive method roughly 

at bi-weekly intervals throughout each growing season. The soil is silty clay loam (Typic and Pachic 

Argiustolls of Poncreek and Kirkland complexes) in the upper 0.6 m and underlain by a thick clay 

horizon. Weather data were available from the on-site eddy-covariance tower.  However, air temperature 

measurements were not fully reliable and so data from the nearby weather station at Ponca City Regional 
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Airport were used and some missing data were filled from observations from the Blackwell station of the 

Oklahoma Mesonet meteorological network which is about 16 km distant.  

2.3.2 Model description and parameterization 

2.3.2.1. Water flow sub-model  

In a review of existing water flow models, Ranatunga et al.(2008) defined two broad categories:  

simple models, using a ‘tipping-bucket’ approach, and complex models which solve the Richards 

equation. The tipping-bucket approach is charaterized as a high efficiency method and is often used for 

regional or global scale simulation. It assumes that free drainage of soil water ceases at field capacity (and 

below) and it uses empirical methods to calculate drainage rate and plant water uptake rate. The dynamic 

models employing Richards’ equation (Richards, 1931), represent a more physically-based mechanistic 

approach. These models are capable of greater accuracy but require more input data which might be not 

readily available in many cases. Also the computing power needed for numerial solutions of models 

employing the Richards-equation is much greater than for models employing a tipping-bucket approach 

(Yuan et al., 2011). The DayCent ecosystem model adopted advantages from both approaches. It 

simulates water flow with the field capacity concept of the tipping-bucket approach and applies Richards’ 

equation for water re-distribution after the dainage from saturation to field capacity (Parton et al., 1998). 

The water flow sub-model of DayCent model predicts the components of the mass balance of water which 

mainly includes the infiltration of precipitation and irrigation, surface runoff, percolation to the 

groundwater, evapotranspiration (ET), and capillary rise of groundwater. The relationship of the 

components is described by the equation of the water balance (daily):  ∆ ௜ܵ  =  ܲ + ௡௘௧ܫ   − ܧ  ௖ܶ  −  ܴܱ − + ܲܦ   (2.1)                                                 ܹܩ 

where,  ∆ܵ� is the net change in soil water at the end of day i and i-1. In this equation, P, RO, and DP 

are precipitation, runoff, and deep percolation on day i, respectively.  Inet is the net irrigation on day i. GW 

is the ground water contribution if a shallow water table is present. ETc is the actual evapotranspiration on 

day i. All units are in cm day-1. 
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2.3.2.2. Evapotranspiration 

In the water balance of cropping systems, evapotranspiration comprises the largest part of water loss. 

Models using meteorological data has been developed and applied to estimate ET (Farahani et al., 2007). 

Like many other crop models, the standardized Penman-Monteith model is an option in DayCent model 

for potential ET estimation. The standardized Penman-Monteith model has been shown to have high 

accuracy and has been promoted world-widely by the Food and Agriculture Organization of the United 

Nations (FAO) (Allen et al., 1998).  

Potential ET is usually partitioned into potential evaporation and potential transpiration as a function 

of the green canopy coverage. Actual transpiration is affected by the available water in the root zone; a 

method similar to the non-linear equation for the response of transpiration to SWC in the review by 

Sadras and Milroy (1996) is adopted in DayCent. Regarding potential soil evaporation, it can be reduced 

by the amount of standing dead biomass and litter on the soil surface. In DayCent, actual evaporation is 

also limited by the low soil water potential of the top soil layer and the upward fluxes from underlying 

layers (Parton et al., 1998). 

The partition of potential ET is usually estimated by Beer’s law equation or modified Beer’s law 

equations in models (Monsi and Saeki, 1953; Sellers, 1985), to calculate the green canopy coverage (CC), 

which represents the fraction of intercepted light. In the DayCent model, a standard Beer’s law equation is 

used, i.e.  ܥܥ =  ͳ − �−ሺ݌��  ×             ሻ                                                                                                    (2.2)ܫܣܮܩ

where k (dimensionless) is the light extinction coefficient of the vegetation, and GLAI is green leaf 

area index (m m-1).  

2.3.2.3. Plant production  

Green CC is also widely used for modeling carbon assimilation by the crop.  In DayCent, daily 

potential plant production (PP; g biomass m-2) is a function of the intercepted light; similar to many other 

models (Soltani and Sinclair, 2012), where solar energy is converted to biomass (aboveground and 

belowground) via radiation use efficiency (RUETB; g biomass m-2 langley-1 PAR).  
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ܲ ௜ܲ  = ௜ܥܥ  × ௜ܴܣܲ  ×  (2.3)                                                                          ��ܧܷܴ 

PARi is the photosynthetic radiation (langley) on day i. Actual production (AP; g biomass m-2) is the 

amount PP adjusted for temperature and water stress and it is also limited by nutrients availability.  ܣ ௜ܲ  =  ݉�݊ሺܲ ௜ܲ  ×  ௘ܶ  ×  ௘ܹ , ܲ ௡ܲ௨௧�௜௘௡௧ሻ                        (2.4) 

where Te and We are temperature and water effect (unitless); PPnutrient is the maximum production that 

can be supported by available nutrients. The actual daily biomass production is then allocated to 

belowground and aboveground biomass using time-dependent empirical partitioning factors. DayCent 

does not explicitly model stem, leaf, and grain pools of aboveground biomass for crops. Grain mass is 

calculated as a fraction of total aboveground biomass at harvest using the concept of harvest index (HI).  

Relative soil water content (RSWC) of the wettest soil layer  in the root zone is used to estimate the 

level of drought stress on production. ܴܹܵܥ௜  =  ሺܹܥ௜ − ܹ ௜ܲሻ/ሺܥܨ௜ − ܹ ௜ܲሻ                 (2.5) ܴܹܵܥ௪௘௧  =  ݉��ሺܴܹܵܥ௜ሻ                (2.6) 

where WC, FC, and WP are the water content, field capacity, and wilting point (cm/cm) of soil layer i 

and RSWCwet is the RSWC of the wettest soil layer in the root zone.  We (in Equation 2.4) is a logistic 

function of daily RSWCwet (lower We at lower RSWCwet) with parameters adjusted for crop types.  

2.3.2.4. Original GLAI method in DayCent 

In order to predict green CC, a model for GLAI is needed (Equation 2.2). The DayCent model uses 

the second approach as described earlier, however the previous version of the model did not explicitly use 

the concept of specific leaf area. To estimate LAI, the DayCent model assumed a linear relationship 

between GLAI and the cumulative total aboveground live biomass (g m-2): ܫܣܮܩ = ௔௕௢௩௘��௢௨௡ௗݏݏ�݉݋�ܤ  ×  (2.7)                                                                              ܴܣܮ

where LAR is leaf area ratio (unitless) which is assumed constant. This approach is also found in the 

AZODYN model (Jeuffroy and Recous, 1999). Equation 2.7 can be seen as a simplification of the 

equation below:  
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= ܫܣܮܩ ௔௕௢௩௘��௢௨௡ௗݏݏ�݉݋�ܤ  × ܴܹܮܩ ×  (2.8)                                                               ܣܮܵ

where GLWR is the green leaf weight ratio (percentage of leaf biomass relative to aboveground 

biomass) and SLA is the specific leaf area. Equation 2.8 is equivalent to Equation 2.7 when GLWR and 

SLA are approximated as constants. Leaf area ratio or the product of GLWR and SLA is close to a 

constant only in vegetative grow stages before crops reach full canopy (Aase, 1978; Ashley et al., 1965). 

After the crop reaches full canopy (CC is close to 1.0), full green CC was assumed up until the time of 

harvest.  DayCent did not model pre-harvest leaf senescence for annual crops.  

In reality, green CC decreases during late growing season due to ongoing leaf senescence. In the 

previous version of DayCent, the lack of leaf senescence led to an over-prediction of ET in the late 

growing season as senescent leaves do not actively transpire water and they also block radiation from 

reaching the bare soil, thus reducing evaporation. Plant production was often over- predicted at late 

growing season stages for the same reason. Additionally, in the case of dryland agriculture, as a result of 

drought effect, crops are not able to develop full canopy in semi-arid regions; thus, the assumption of full 

canopy is not appropriate for dryland conditions. To address these problems, we developed a new simple 

method for modeling GLAI in DayCent.  

2.3.2.5. New GLAI method   

In order to minimize changes to the original model structure, Equation 2.8 is still used in the new 

method and we assume SLA to be a constant. Specific leaf area has been found to be relatively stable for 

a given crop type and has been simplified as a constant input parameter in models like CropSyst (Stockle 

et al., 1994). Although some studies have shown SLA changes during crop development and can be 

affected by light intensity, drought stress, nitrogen availability, planting density, and atmospheric CO2 

concentration (Amanullah et al., 2007; Lafarge and Hammer, 2002; Sionit et al., 1982; Tardieu et al., 

1999), simulation with constant SLA has been shown to give good accuracy in simulating GLAI for 

general purpose crop models (Maas, 1993; Todorovic et al., 2009). Measured SLA of maize and soybean 

of Mead, NE experiment is plotted (Fig. 2.1) against heat unit index (HUI, 0 at planting and 1 at 

physiological maturity). There is a trend of decrease of SLA of maize in the vegetative growth period 
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starting at an average of 0.025 m2 g-1 and maintained at about 0.016 m2 g-1 afterward. No clear trend of 

SLA for soybean is observed. Also, no clear difference between irrigated and rainfed treatments for both 

crops is observed. For simplicity, in our model, SLA is set as a constant for the entire growing season.  

The other component in Equation 2.8 GLWR, is made as a function of crop development in the new 

method. It has been long observed that annual crops partition the majority of photosynthate to leaves for 

several days following emergence. As the crop develops, more is allocated to support root and stem 

biomass and the relative allocation to leaf growth is reduced. For determinate crops, leaf growth stops at 

flowering stage while indeterminate crop overlap in their leaf growth and reproductive growth periods. 

Fig. 2.2 and Fig. 2.3 show changes of measured LWR of determinate crop maize and indeterminate 

varieties of soybean in Mead, NE and Bondville, IL. Linear relationships can be drawn for both the period 

of growth before maximum GLAI and after maximum GLAI, with different slopes. The growth stages of 

peak GLAI of maize and soybean were found to be stable in Mead, NE field experiment and also other 

studies (Dale et al., 1980; Kumudini et al., 2001) which occurred at silking (R1) and beginning seed/full 

seed (R5/R6), respectively. As a determinate crop, the peak of GLAI of winter wheat is at the beginning 

of anthesis. Similar linear relationships or two-stage linear relationships (plateau and linear decrease) for 

the period before maximum GLAI can be found in many studies of different crops including maize 

(Bullock et al., 1988; Voldeng and Blackman, 1973), indeterminate and determinate varieties of soybean 

(Heinemann et al., 2006; Koller et al., 1970; Scott and Batchelor, 1979; Unsworth et al., 1984), dry beans 

(Wallace and Munger, 1965), sorghum (Lafarge and Hammer, 2002),  wheat (Morgan, 1988; Oleary et 

al., 1985; Assuming SLA is constant.), barley (Mallott and Davy, 1978), rice (Abe and Suge, 1993) and 

cotton (Miller et al., 1988). For the period after maximum GLAI, although only a few published studies 

are available (Bullock et al., 1988; Miller et al., 1988; Morgan, 1988), together with our measurements 

from Mead, NE and Bondville, IL (Fig. 2.3), they show a high linear correlation between GLWR and HUI 

after maximum GLAI, which represents the gradual senescence of green leaves when approaching 

maturity.  
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Based on these findings, we developed a simple method for modeling GLWR (Fig. 2.4), by dividing 

the growth period into three stages. In the first stage, we assume GLWR is a constant; then followed by a 

linear equation that represents the decrease in GLWR before maximum GLAI; in the final stage, 

extending to physiological maturity, another linear equation with different slope and intercept is used. The 

added input parameters are the ceiling GLWR at early development stage, the intercept of the second-

stage linear equation at emergence, the GLWR at maximum GLAI, and the GLWR at physiological 

maturity. Observed GLWR at physiological maturity is not necessarily zero because the ‘stay green’ trait 

(leaves remaining green at physiological maturity) has been found in some varieties of maize, sorghum, 

sunflower and other crops (Borrell et al., 2001; de la Vega et al., 2011; Subedi and Ma, 2005).  

In order to simulate the initial growth at emergence, we added a parameter to present the initial 

aboveground biomass at emergence. This approach is similar to some other crop models (e.g. WOFOST). 

This parameter should be variety-specific and reflect the difference of planting population.  

2.3.2.6. Other modifications to the DayCent crop submodel 

The original plant production function in DayCent used a coefficient (PRDX) for calculating potential 

aboveground monthly production as a function of solar radiation outside the atmosphere to implicitly 

represent RUETB. We modified it to use RUETB explicitly with unit of g biomass m-2 langley-1 PAR at the 

top of the canopy, using measured short-wave solar radiation instead of estimated values in original 

DayCent. Half of the measured short-wave solar radiation is assumed as PAR (Soltani and Sinclair, 

2012).  

We also modified the calculation of water stress index. Studies (e.g. Sudar et al., 1981) have 

demonstrated that AT/PT is a good indicator for water stress effect on production and is used in models 

like WOFOST (where AT is actual transpiration and PT is potential transpiration). We replaced the 

original logistic function of water stress effects on daily plant production (where the stress factor was a 

function of SWC of the wettest soil layer) with the AT/TP relationship in which the water stress effect (0-

1 multiplier) on total biomass production is directly proportional to AT/PT.  
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2.3.2.7. Model parameterization 

The manually calibrated parameters for the new GLAI method are shown in Table 2.3. Parameter 

values for the original and modified model were then calibrated with biomass measurements at Mead, NE 

for the Pioneer maize cultivar using data of 2002 and 2003 at the site ICM and for the DeKalb cultivar 

using data of 2005 at ICM. Soybean was calibrated using biomass data of 2006 (relative maturity group 

3.5) at IMS. Soybean of 2002 (relative maturity group 2.7) and 2004 (relative maturity group 3.1) were 

adjusted for the cultivar difference by modifying the parameter of initial aboveground biomass at 

emergence. The harvest index (HI) of soybean has been found to be very stable within a cultivar but 

varies dramatically among cultivars (Spaeth et al., 1984). Since there were no readily available data for 

HI of the cultivars used in the experiment, we derived best estimates of potential HI parameters from 

measurement (0.48 for Pioneer 93B09 in 2004 and 0.4 for the rest). Phenology in DayCent is expressed 

using the growing degree days (GDDs) method. For the Mead NE experiment, observed GDDs for critical 

stages were used as input for each cultivar in each site in the simulation except in 2012. The cumulative 

GDDs at silking of 2012 has been replaced by the average of the GDDs of other years because the 

recorded silking date in 2012 is much earlier than those of maize in other years with similar planting date, 

which implies an error in recording. 

For the experiment at Bondville, IL, calibration was done by using data of maize in 2005 and soybean 

in 2004. We assumed the same cultivars of maize and soybean have been grown every year and calibrated 

the required cumulative GDDs for critical stages accordingly. In the modified model, when different 

planting density was used in the field experiments, adjustment to the initial aboveground biomass at 

emergence was done by reducing the parameter value using the ratio of the two planting density 

(Densityrainfed/Densityirrigated).  

At the site near Ponca City, OK, where no specific information was given about the cultivars grown, 

we used observed data in 1997 and 1998 seasons for calibration and assumed the same cultivar was used 

throughout the experiment period.  
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Potential ET in our simulations was calculated by the standardized Penman-Monteith equation 

described in FAO Paper 56 (Allen et al., 1998). The mid-season crop coefficient Kc of 1.03 and 0.98 for 

maize and soybean was previously fit with measured ET of the field experiment at Mead, NE using data 

from 2001 to 2005 by Suyker and Verma (2009). Thus, for simplicity Kc was set 1.0 for both maize and 

soybean in the simulations. The mid-season Kc of 1.15 is used for winter wheat according to Allen et al. 

(1998). 

2.3.3. Statistical evaluation 

Simulated results by both the original DayCent model and the modified model were compared with 

experimental observations. The statistical evaluation criteria used were root mean square error (RMSE) 

and coefficient of determination (R2), i.e.,   

RMSE = √ଵ௡ ∑ ሺܱi − ܲiሻ2௡௜=ଵ                                     (2.9) 

Rଶ  = ͳ − ∑ ሺைi−௉iሻ2೙�=భ∑ ሺைi−ை ̅ ሻ2೙�=భ              (2.10) 

where Oi is the observed value, Pi is the predicted value, n is the total number of observations, and ܱ̅ is 

the average of the observed values.  

2.4. RESULTS AND DISCUSSION 

2.4.1. GLAI, CC, and Biomass 

The measured field data showed a strong correlation between GLAI and total aboveground live 

biomass over the time period from emergence to full canopy (Fig. 2.5). Aase (1978) also found a 

correlation of R2 = 0.95 in winter wheat and Ashley et al. (1965) found a similar correlation in cotton. 

However, in the two locations used in this study, the slopes of the regression (which equals the value for 

leaf area ratio (LAR) used in the original DayCent) were significantly different for maize (0.0106 at 

Mead, NE and 0.0054 at Bondville, IL), suggesting that LAR is site or cultivar specific. In the original 

DayCent model LAR is assumed to be a fixed parameter with a value of 0.011 m2 g-1, and therefore 

cannot capture differences between cultivars.  In contrast, the slopes and intercepts of the regressions of 

the new GLAI method as a function of normalized cumulative degree days (shown in Fig. 2.2 and Fig. 
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2.3) were similar for each crop across cultivars and sites, indicating that the new method is more robust 

than the original method. To simulate crop canopy development, we used a single set of GLWR input 

parameter values for each crop across all sites (Table 2.3). The simulated GLAI by the modified model 

gave generally good agreement with measured data (Figs. 6-8) for the three experimental locations; 

statistics on model fit are summarized in Table 2.4.   

However, the new GLAI method is quite sensitive to the prediction of phenology, which can be seen 

in 2003 at the Bondville site, where peak GLAI was underpredicted by 23% (measured and simulated 

were 6.04 and 4.67 respectively).  In this year the predicted date of peak GLAI based on thermal time 

calculated in DayCent occurred 10 days earlier than the measured date and hence simulated leaf growth 

stopped 10 days too early. 

  While crops at IL and OK recieved enough rainfall to support ET demands in most years, drought 

stress occurred in Mead, NE in the rainfed treatment. Our result indicates the model could adequately 

simulate the effect of drought stress on growth and canopy development at this site. However, more 

studies should be carried out on the simulation of more severe drought (e.g. experiments in semi-arid 

regions) to further test this method.  

Nutrient stress is another factor that can have a large impact on crop growth. Although there were no 

treatments with varying nutrients supply to test the new method in this study, our method is potentially 

valid under nutrient stress, because GLWR can be very stable. One experiment showed that the GLWR of 

fertilized and un-fertilized spring wheat was not significantly different until close to maturity (Morgan, 

1988), indicating the new method will potentially work under conditions of nutrient stress, although 

additional work is needed to fully test this assumption. 

An example of simulated canopy coverage (CC) by the modified and original model is shown in Fig. 

2.9. There was not a direct measurement of CC in the experiments so we estimated CC from measured 

LAI by applying Equation 2.2 with extinction coefficient of 0.6 for both maize and soybean (Ahuja et al., 

2000). The accuracy of simulated CC in the late growing season has been dramatically improved 
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compared to the previous version of DayCent. The overall R2 was improved from 0.66 to 0.93 for maize 

and 0.52 to 0.88 for soybean in the Mead, NE experiment.  

As GLAI and CC play an important role in crop modeling, various methods have been used in 

predicting GLAI and CC and evaluations of these methods can be found in many studies. Although we 

used a simple empirical method on simulation of GLAI and CC, the accuracy of the modified DayCent 

model is comparable to those of models with a similar (or greater) number of parameters to model GLAI 

and CC using other approaches (Fraisse et al., 2001; Heng et al., 2009; Lizaso et al., 2003; Todorovic et 

al., 2009).  

Both the original and new methods of GLAI modeling depend on the accuracy of predicting 

aboveground biomass. The predicted aboveground biomass was fairly accurate for maize (R2 = 0.83) and 

soybean (R2 = 0.89) at Mead, NE by the original DayCent model. The modified DayCent slightly 

improved the prediction by improving the overall R2 to 0.88 and no increase for soybean (R2 = 0.89) (Fig. 

2.10).  Note that both model versions significantly underestimated biomass of maize in 2003 and 2009 in 

the rainfed maize-soybean treatment and in  2012 in the irrigated maize-soybean.  A possible reason is an 

underestimation of nitrogen fixation by soybean in the rotation (nitrogen stress was found in simulation 

but no observed in field).   

The effect of changing the function for the water stress effect on plant production is illustrated by the 

2012 growing season at Mead, NE, where only 22.2 cm of rain was observed (the driest year in the 

experimental period; Table 2.1). Both versions of the model provided a good estimation of water stress 

effect on production, but the new water stress effect method was slightly better, while requiring fewer 

crop-specific parameters (Fig. 2.10).  However, our data was not sufficient to draw a firm conclusion on 

improved performance and further testing is needed.  At Bondville, IL, similarly to the Mead, NE 

experiment, the overall R2 of maize on biomass was improved from 0.82 to 0.89 and there was no 

improvement for soybean with same R2 of 0.79 (Fig. 2.7). For winter wheat (Fig. 2.8), both models’ 

predictions on biomass are similar with average R2 of 0.90 and 0.92 for the original and modified models.  
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2.4.2. ET 

The accurate simulation of CC contributed to improved simulation of evaporation and transpiration 

rates as shown in comparison to weekly cumulative ET measured at Mead, NE (Fig. 2.11). We choose 

weekly cumulative values because the standardized Penman-Monteith method is more accurate on 

predicting weekly cumulative ET than daily values since the crop coefficient value can vary significantly 

on a daily basis (Suyker and Verma, 2009). The analysis of ET at the Mead, NE sites is divided into three 

periods: non-growing season (harvest to planting of next year), early to middle (planting to DOY 210) 

and middle to late growing season (DOY 210 to harvest). During the non-growing seasons, the amount of 

surface residue has a major effect on evaporation. Surface residue blocks solar radiation and advective 

energy from reaching the soil surface and thus reduces evaporation (Steiner, 1989). Overall, the DayCent 

model could simulate the effect of surface residue cover on soil evaporation but tended to overestimate 

the effect in some years (Fig. 2.11). The weekly evaporation during the non-growing season was not well 

simulated by either model version but the new version had a slightly improved the R2 of the rainfed site at 

Mead, NE from 0.30 to 0.34 (Table 2.5). The poor agreement of simulated ET with the measurement in 

non-growing season likely resulted from the difficulties in simulating the residue cover on the soil 

surface, effects on snow capture and melting, and the amount of rain intercepted by residue.  

For ET during the early to middle growing season, both the original and modified model show 

relative accurate results. The overall weekly cumulative ET simulation in these periods of the modified 

model (average RMSE = 0.45 cm, R2 = 0.81) was better than the original model (average RMSE = 0.56 

cm, R2 = 0.69) for both maize and soybean at the three sites at Mead, NE.  

In the late growing season (from DOY 210 to harvest), our simulation shows that the original model 

substantially over-estimated ET (Fig. 2.11). For example, in 2005 at IMS site, the weekly ET was over-

predicted by 35% while the modified model was within 3% of the measurement. The average RMSE of 

each year decreased from 0.78 cm to 0.42 cm and R2 increased from 0.53 to 0.82 with the new version.  

Our modifications resulted in better simulation of green CC at the period of senescence (Fig. 2.9) and thus 

the allocation of potential soil evaporation and crop transpiration were more accurate.  
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2.4.3 SWC 

Simulated soil water contents (SWC) were compared with the measurement at 10 cm, 25 cm, 50 cm 

and 100 cm at Mead, for measurements between DOY 90 and DOY 330 when the soil temperature was 

generally above 0 ⁰C and water was in liquid phase (and thus measureable by the soil water probes).  

Both the original and modified model were relatively accurate and the average RMSE of daily SWC was 

less than 0.06 cm cm-1 at all four measurement depths.  However, the modified model had a better 

correlation with measurements than the original model because of the improvement of ET simulation in 

the late growing season (Table 2.3). For both models, the R2 was generally higher in the rainfed site than 

the two irrigated sites. For the modified model, the average R2 of SWC at the rainfed site at 10 cm and 25 

cm improved from 0.57 and 0.56 to 0.71 and 0.73, respectively, compared to the original DayCent 

version.  The lower agreement of simulated SWC with measurements at the irrigated sites may be due to 

the unevenness of the irrigation application and spatial variation of soil. Fig. 2.12 shows simulated results 

of the three years which represent a dry year (2003), a normal year (2006) and an annual time series from 

the irrigation treatment (2005). In all three years, it is clear that the original model underestimated the 

SWC from DOY 250 to DOY 300, which corresponded to the overestimation of ET for the same period 

by the original model.   

Although the simulation of SWC has been significantly improved by the new method, our analysis 

also showed some defects of the water flow submodel. As shown in Fig. 2.12, when SWC measurement 

was above field capacity (e.g., for surface layers in spring of 2003), the simulated values do not exceed 

field capacity because the default parameterization in DayCent is that water above field capacity is set to 

drain immediately to field capacity within the same day of infiltration in our simulation. A delayed 

drainage option was added to the DayCent model to allow the SWC to remain at saturation for 1 or 2 days 

following rainfall events (Smith et al., 2008).  However, in several instances the model overestimated 

SWC following significant precipitation events and thus the delayed drainage option should be used with 

caution and needs further evaluation.  Accurate simulation of the timing and duration of saturated 
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conditions is important for simulating N gas loss via denitrification process as pointed out by Yuan et al. 

(2011). 

2.4.4 Crop grain yield 

Both the original and modified model provide reasonably accurate simulation on grain yields. The 

observed yields range from 6.6 to 11.9 and 1.8 to 3.8 for maize and soybean, respectively (Fig. 2.13). 

Simulated grain yield of maize at Mead, NE and Bondville, IL by the modified model (R2 = 0.69) was 

better than the original model (R2 = 0.47) and the fit for soybean yield was also improved (R2 of 0.65 vs 

0.55). Both models captured the inter-annual variations due to management and climate. For maize 

simulation, both model versions tended to over-estimate grain yield when observed yield were high. In 

contrast, for soybean, the modified model underestimated yield when observations were high. The 

accuracy of prediction is generally similar to other studies using commonly used crop models (Donatelli 

et al., 1997; Kozak et al., 2006; Todorovic et al., 2009; Xie et al., 2001).    

2.5. CONCLUSIONS 

In summary, the new empirical method produced accurate estimates of green leaf area index (GLAI) 

for maize, soybean, and winter wheat. Along with the improvement in GLAI estimates, our modifications 

improved the model performance of the DayCent model for time series estimates of canopy coverage, 

evapotranspiration, and soil water content, especially in late growing season period. The modified model 

also provided slightly better results for biomass and grain yield in both irrigated and rainfed treatments. 

Although more tests are needed for these three crops and potentially other grain crops, the simplicity, 

robustness, and generality of the new GLAI method provides potential broader use for simulations of 

canopy dynamics which has been identified as critical in all kinds of biogeochemical and agricultural 

modeling.  
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Table 2.1. Crop management for the three sites at Mead, NE during 2001 to 2012. Data from 2001 is 
incomplete. 

Site/
Year 

Crop/cultivar Plant 
population 

(plants ha-1) 

Planting 
time 

(DOY) 

Harvest 
time (DOY) 

N application 
(Kg N ha-1 yr-1) 

Irrigation and 
rainfall from 
planting to 

harvest (cm) 
Irrigated continuous maize (ICM) 

2001 M/Pioneer 
33P67 

82,000 131 291 196  

2002 M/Pioneer 
33P67 

82,000 130 308 314 72.09 

2003 M/Pioneer 
33B51 

77,000 135 300 235 62.89 

2004 M/Pioneer 
33B51 

79,800 125 288 293 61.25 

2005 M/DeKalb 63-
75  

70,800 125 285 247 64.89 

2006 M/Pioneer 
33B53 

81,800 125 277 211 68.46 

2007 M/Pioneer 
31N30 

78,600 121 309 226 84.73 

2008 M/Pioneer 
31N30 

80,600 120 323 241 77.22 

2009 M/Pioneer 
32N73 

81,500 110 313 243 58.6 

2010 M/DeKalb 65-
63 VT3 

81,700 109 268 235 78.25 

2011 M/Pioneer 
32T88  

85,000 137 299 240 62.73 

2012 M/DeKalb 62-
97 

84,000 114 284 219 57.06 

Irrigated maize-soybean rotation (IMS) 

2001 M/Pioneer 
33P67 

80,900 132 295 196  

2002 S/Asgrow 
2703  

333,100 140 280 0 57.41 

2003 M/Pioneer 
33B51 

78,000 134 296 226 63.27 

2004 S/Pioneer  
93B09 

296,100 154 287 0 47.06 

2005 M/Pioneer 
33B51 

81,000 122 290 231 63.58 

2006 S/Pioneer 
93M11 

370,600 132 276 0 54.47 

2007 M/Pioneer 
31N28 

78,700 121 309 181 89.92 

2008 S/Pioneer 
93M11 

369,500 135 283 0 72.7 

2009 M/Pioneer 
32N72 

81,500 111 314 171 61.98 

2010 M/DeKalb 65-
63 VT3 

82,500 110 259 246 72.7 

2011 M/Pioneer 
32T88 

85,000 137 299 224 57.79 
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2012 M/DeKalb 62-
97 

84,000 115 283 225 60.96 

Rainfed maize-soybean rotation (RMS) 

2001 M/Pioneer 
33B51 

52,600 134 302 128  

2002 S/Asgrow 
2703 

304,500 140 282 0 37.23 

2003 M Pioneer 
33B51 

57,600 133 286 90 29.15 

2004 S/Pioneer 
93B09 

264,700 154 280 0 30.73 

2005 M/Pioneer 
33G66 

56,300 116 290 117 36.45 

2006 S/Pioneer 
93M11 

370,600 131 276 0 46.9 

2007 M/Pioneer 
33H26 

62,088 121 309 125 60.22 

2008 S/Pioneer 
93M11 

369,500 134 282 0 64.06 

2009 M/Pioneer 
33T57 

61,800 112 315 110 55.82 

2010 S/Pioneer 
93M11 

370,600 139 279 0 60.35 

2011 M/DeKalb 61-
72RR 

56,800 122 291 138 51.98 

2012 S/Pioneer 
93M43 

370,600 136 275 0 20.22 
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Table 2.2. Soil characteristics of the experimental sites at Mead, NE. Field capacity and wilting point 
were measured at matric potentials of -33 and -1,500 kPa, respectively. 
Site Measurement 

depth 
Bulk 

Density Saturation Field 
Capacity 

Wilting 
Point 

 cm g/cm3 ----------------- cm/cm ---------------- 
ICM 10 1.39 0.48 0.37 0.20 
 25 1.35 0.49 0.41 0.22 
 50 1.44 0.46 0.40 0.22 
 100 1.45 0.45 0.41 0.27 
IMS 10 1.49 0.44 0.39 0.24 
 25 1.49 0.44 0.41 0.26 
 50 1.41 0.47 0.42 0.27 
 100 1.41 0.47 0.42 0.27 
RMS 10 1.41 0.47 0.39 0.23 
 25 1.33 0.50 0.40 0.24 
 50 1.36 0.49 0.39 0.25 
 100 1.31 0.51 0.39 0.22 
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Table 2.3. Parameters used in model simulations. RUETB is the radiation use efficiency of total biomass; 
GLWR is the green leaf weight ratio; GLAI is the green leaf area index; and SLA is the specific leaf area.  
 Maize at Mead, 

NE 
Maize at 
Bondville, 
IL 

Soybean at 
Mead, NE 

Soybean at 
Bondville, 
IL 

Winter 
wheat at 
Ponca city, 
OK 

RUETB (g biomass m-2 
langley-1 PAR) 
 

0.16 (Pioneer), 
0.14 (DeKalb)Ɨ 

0.16 0.08 0.09 0.13 

Initial biomass at 
emergence (g m-2) 

0.9  1.0 1.4 (2002), 
3.0 (2004), 
0.4 (2006, 
2008, 2010, 
2012) 

2.5 10.0 

Ceiling GLWR at early 
development stage 
 

0.9 0.9 0.7 0.7 0.5 

Intercept of the second 
stage linear equation at 
emergence 
 

0.9 0.9 0.85 0.85 0.9 

GLWR at maximum 
GLAI 
 

0.3 0.3 0.3 0.3 0.2 

GLWR at physiological 
maturity 
 

0.02 0.02 0 0 0 

SLA (m2 g-1) 
 

0.02 0.02 0.025 0.025 0.025 

Extinction coefficient 0.6 0.6 0.6 0.6 0.7 

Ɨ For rainfed treatment, these values have been adjusted for smaller planting density. 
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Table 2.4. Statistics of green leaf area index (GLAI) simulation by the modified model.  R2 is coefficient 
of determination and RMSE is root mean square error.   

  Irrigated sites   Rainfed sites 
  R2 RMSE   R2 RMSE 

Mead, NE      
Maize 0.87 0.61  0.82 0.63 
Soybean 0.85 0.53  0.84 0.50 
Bondville, IL      
Maize    0.72 0.96 
Soybean    0.83 0.69 
Ponca City, OK      
Winter wheat    0.83 0.53 
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Table 2.5. R2 of the simulated evapotranspiration (ET) for three periods in a year and volumetric soil 
water content (SWC) at 4 depths for the irrigated sites and the rainfed site at Mead, NE.  R2 (coefficient of 
determination) value is the average of each year.   
 Irrigated sites  Rainfed site 

 Original Modified  Original Modified 
ET      
non-growing season 0.27 0.28  0.30 0.34 
early and middle season 0.76 0.84  0.62 0.74 
late season 0.68 0.87  0.38 0.72 
SWC      
10 cm 0.28 0.32  0.57 0.71 
25 cm 0.27 0.35  0.56 0.73 
50 cm 0.27 0.28  0.51 0.60 
100 cm 0.26 0.27  0.36 0.39 
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Fig. 2.1. Measured specific leaf area (SLA) of maize (top) and soybean (bottom) at three experiment 
treatments at Mead, NE from 2001 to 2007. Heat unit index is calculated as ratio of cumulated growing 
degree days to the amount of growing degree days at physiological maturity.  Treatments were irrigated 
continuous maize (ICM), irrigated maize-soybean (IMS) and rainfed maize-soybean (RMS). 
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Fig. 2.2. Measured green leaf weight ratio (GLWR) of maize and soybean at two locations from 
emergence to the development stage of maximum green leaf area index, as a function of the heat unit 
index (HUI). 
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Fig. 2.3. Measured green leaf weight ratio (GLWR) of maize and soybean of two locations from the 
development stage of maximum green leaf area index to end of growing season. 
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Fig. 2.4 The schematic representation of the new method for green leaf weight ratio (GLWR) modeling.  
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Fig. 2.5 Regression of measured green leaf area index (GLAI) vs. measured aboveground biomass of 
maize and soybean at two locations. 
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Fig. 2.6. Measured (dot) and simulated green leaf area index (GLAI) by the modified model (solid line) at 
ICM site (top row), IMS site (middle row), and RMS (bottom row) from 2002 to 2012. M and S stands 
for maize and soybean, respectively. 
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Fig. 2.7. Comparison of measured (dot) and simulated total biomass for experiment at Bondville, IL by 
original (dashed line) and modified (solid line) models. M and S stands for maize and soybean 
respectively. 
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Fig. 2.8. Comparison of measured (dot) and simulated total biomass of winter wheat for experiment at 
Ponca City, OK by original (dashed line) and modified (solid line) models. 
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Fig. 2.9. Comparison of measured (dot) and simulated canopy cover of soybean in 2004 and maize in 
2005 at IMS site by original (dashed line) and modified (solid line) models.  
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Fig. 2.10. Measured (dot) and simulated total biomass by original (dashed line) and modified (solid line) 
models at ICM site (top row), IMS site (middle row), and RMS (bottom row) from 2002 to 2012. M and S 
stands for maize and soybean respectively. 
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Fig. 2.11. Measured (dot) and simulated weekly cumulative ET of soybean in 2004 and maize in 2005 at 
IMS site by original (dashed line) and modified (solid line) models. 
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Fig. 2.12. Simulated and measured SWC at 4 depths in three years. Solid line is the simulated result by 
the modified model and dashed line is the simulated result by the original model. Solid points indicate the 
measured values. The first two columns of the figure are from the rainfed site and represent a relative dry 
year (2003) and a year (2006) with growing season precipitation close to long-term average. The third 
column is from ICM site (irrigated continuous maize).  
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Fig. 2.13. Simulated and measured grain yield for maize and soybean of two experiments. Yield has been 
adjusted to 0% of moisture. 
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CHAPTER 3. MODELING DEFICIT IRRIGATION OF MAIZE WITH THE DAYCENT 

MODEL 

 

3.1. SUMMARY 

Dramatic increase in water demand in municipal and industrial sections results in less water 

available for crop irrigation in semi-arid region of U.S. Limited irrigation strategy is seen as one of the 

promising solutions to close this water demand and supply gap. To estimate crop water use and 

production under limited irrigation is challenging. Dynamic models have been designed to understand the 

impact of limited irrigation and provide information on decision making. In this study, we presented the 

parameterization and validation results on three limited irrigation experiments using a recently improved 

version of the DayCent ecosystem model. We also compared the stress coefficient (Ks) method of the 

original DAYCENT model with the one described in the FAO 56 paper. Overall, the new leaf area 

method provided fairly accurate estimation of green leaf area index (GLAI) for full and limited irrigation 

treatments. The method tends to over-predict the GLAI at late vegetative growth period of the limited 

irrigation treatments. GLAI, biomass, and grain yields compared well with the measured values. There is 

little difference between the two Ks methods in the output variables. In summary, the DAYCENT model 

could simulate the response of maize under water deficit conditions and could be used as a guide for 

application of limited irrigation strategies for water saving.  

3.2. INTRODUCTION 

Dramatically increased water demand from municipal and industrial users will create bigger 

water shortage in the future in arid and semi-arid regions of U.S; in semi-arid Colorado, the projected 

water demand and supply analysis showed that the state’s water shortage gap is between 0.23 and 0.78 

km3 by 2050 which is 3.5% to 11.9% of current annual consumption (Colorado Water Conservation 

Board, 2010; Vorosmarty et al., 2000). To meet this demand, one of the strategies is to transfer water 

from agriculture (composes 86% water supply at 2010). The Colorado Water Conservation Board (2010) 
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projected a significant loss of irrigated agriculture and the associated wetlands by 2050; which means 

about 40% of the South Platte Basin and 30% of the Arkansas Basin would dry up. One of the alternatives 

is to apply limited irrigation to reduce irrigation water use and maintain certain amount of crop yields 

(Fereres and Soriano, 2007). However, to estimate crop water use and production under limited irrigation 

is challenging. In order to gain more understanding of limited irrigation and provide predictions for 

decision support, field experiments and modeling exercises are very necessary (Fereres and Soriano, 

2007; Saseendran et al., 2014; Trout et al., 2010).  

Lack of irrigation results in substantial crop yield reduction in semi-arid and arid regions 

(Doorenbos and Kassam, 1979). The mechanism is well studied that water stress causes leaf stomatal 

closure to prevent loss of water through transpiration, which also results in reduction of the inward 

transportation rate of CO2 (Hsiao, 1973). Thus, the CO2 assimilation of photosynthesis is reduced. 

Persistent drought also leads to reduced leaf area and further reduce the amount of light intercepted by 

canopy for photosynthesis. Other changes due to drought include leaf rolling, the partitioning of 

assimilate among root and shoot, the rate of nutrient uptake and transport, etc. (Hsiao, 1973).  

Our understanding of drought effect on crop growth and production has been incorporated into 

crop models for hypothesis testing and yield predictions (Ma et al., 2003; Todorovic et al., 2009; Xie et 

al., 2001). The DAYCENT model (Del Grosso et al., 2011; Del Grosso et al., 2000; Parton et al., 1998) is 

an ecosystem model which has been widely used for estimation of soil carbon and nitrogen, and 

greenhouse gas emission in agro-ecosystems. It contains a crop growth/production sub-model and has 

been applied in simulations of agricultural lands not only in the U.S. but also globally (Del Grosso et al., 

2008; Lee et al., 2012; Stehfest et al., 2007). Recently, we found soil water use of crop lands was not 

properly simulated due to its simple method for canopy development. The original model assumed full 

canopy cover for middle and late growing season which was not valid in severe water or nutrient stress 

environments. The lack of senescence process in late growing season resulted in over-prediction of 

transpiration. To improve the model, a new green leaf area index (GLAI) simulation method was 

developed and implemented into the DayCent model which is characterized as simple, robust, and easy 
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for parameterizing (Chapter 2). The improved model has been applied to irrigated and rain-fed conditions 

(Chapter 2). Results showed simulated ET, SWC, GLAI, biomass and yield of maize, soybean, and wheat 

were compared well with measured values. It suggested this version of model simulated crop response to 

water stress better than the original model. However, there was no comprehensive and systematic 

validation of the modeled drought effect.  

To estimate the drought effect on transpiration, DayCent model simulated stress coefficient (Ks) 

as a function of relative soil water content (RSWC) of the wettest soil layer. An exponential function was 

used to describe the relationship. This approach was similar to the one documented in FAO Irrigation and 

Drainage Paper No. 56 (Allen et al., 1998). In contrast, the relationship of RSWC and Ks was modeled 

using linear equations, which was very easy to parameterize. Additionally, the RSWC in FAO 56 was 

calculated based on the soil water in entire root zone. While in theory, both Ks methods might be proper 

and they have been used in various models, some field studies (Meyer and Green, 1981; Shouse et al., 

1982) indicated the linear method provided better fit to measurements. It is not clear on the accuracy of 

simulated drought effect on transpiration and crop production by these two methods in dynamic models.   

To further evaluate the new version of DayCent model and improve the simulated water stress 

effect, three data sets of limited irrigation experiments of corn conducted in Colorado were used in this 

study. The objectives are to: 1) simulate and test the new GLAI method in DayCent model using 

measured GLAI under water limited conditions; 2) examine the predictions of crop growth, biomass 

accumulation, grain yield and soil water dynamics; 3) compare the simulated drought effect on 

transpiration and production using two stress coefficients (Ks) methods.  

3.3. MATERIALS AND METHODS 

3.3.1. Field Experiment 

3.3.1.1. Greeley, Colorado 

The first field experiment was conducted near Greeley, Colorado (Ma et al., 2012; Trout et al., 

2010) which was designed to study limited irrigation strategy on crop production. From 2008 to 2011, 

maize hybrid ‘Dekalb 52-59’ was planted in May (Table 3.2).  Dripping irrigation was applied through 
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surface drip tubing adjacent to each row. As described in Saseendran et al. (2014), six irrigation 

treatments (numbered from 1 to 6) are to apply certain percentage of potential crop ET requirements:  

100%, 85%V, 70%, 70%V, 55%V, and 40%V (Table 3.2). Letter V denotes that 20% of the calculated 

amounts of irrigation were withheld and added to the reproductive growth period on a weekly basis. 

Fertilizer was applied several times every year to meet the potential need of crop for nutrients.  

The soil of this site is a sandy loam with three soil types Nunn (Fine, smectitic, mesic Aridic 

Argiustolls), Olney (Fine-loamy, mixed, superactive, mesic Ustic Haplargids), and Otero (Coarse-loamy, 

mixed, superactive, calcareous, mesic Aridic Ustorthents). An on-site standard Colorado Agriculture 

Meteorological Network weather station was established for measurement. Aboveground biomass was 

only sampled at harvest and LAI was measured weekly using LI-3000C portable leaf area meter (non-

destructive method) in 2010 in 4 treatments only. Green canopy cover was estimated using nadir-view 

digital camera mounted on a mobile platform weekly. Soil water content near surface (0 – 15 cm) was 

measured with a portable TDR senor (MiniTrase, Soil Moisture Equipment Corp.). Neutron probe (503 

DR Hydroprobe moisture gauge, Campbell Pacific Nuclear) was used for measurement from 30 to 200 

cm at 30 cm increment.  

3.3.1.2. Fort Collins, Colorado  

This field experiment was conducted at Agricultural Research, Development and Education 

Center of Colorado State University near Fort Collins, Colorado from 2006 to 2010. Maize was irrigated 

with linear move sprinkler system and two treatments were studied: full irrigation and limited irrigation. 

Full irrigation was to meet crop water need in entire growing season based on crop ET requirement which 

is similar to the Greeley experiment. For the limited irrigation treatment, no irrigation was applied before 

V12 stage and full irrigation was started afterwards. To ensure uniform germination, early irrigation was 

supplied as necessary in both treatments. Fertilizer has been applied according to crop need and details of 

management can be found in DeJonge et al.(2012).  

Soil at this site is a Fort Collins Loam (fine-loamy, mixed, superactive, mesic Aridic Haplustalf). 

Gravimetric soil water content was sampled weekly in 2008 to a depth of 40 cm and less frequently to 90 
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cm. In 2007, 2008, and 2009 growing seasons, LAI was sampled by a non-destructive method (DeJonge 

et al., 2011). Crop yield of 2008 reported here has been corrected for hail damage occurred on 14 August 

2008. An on-site standard Colorado Agriculture Meteorological Network weather station (FTC03) was 

used for weather recording.  

3.3.1.3. Akron, Colorado 

Limited irrigation experiment was conducted at the USDA Central Great Plains Research Station 

near Akron, Colorado. Maize of Pioneer Hybrid 3732 was planted in May during 1984, 1985, and 1986 

three growing seasons. A line-source gradient irrigation system (Nielsen, 1997) was designed to apply 

water linearly declining with distance from the line. Four levels (only three in 1984) of irrigation were 

conducted and irrigation catch gauges were placed in sampling sub-plots for measurement of irrigation 

amount. Irrigation was not applied before tasseling; the amount of irrigation of all treatments is in Table 

2.1. Fertilizer of ammonium nitrate was applied before each planting at 168 kg N ha-1.   

The soil type is a Rago silt loam (fine, smectitic, mesic Pachic Argiustoll); detailed soil texture 

information can be found in Ma et al. (2003). Neutron probe readings of soil moisture were made several 

times from planting to harvest in 1985. The measurement depth was from 15 cm to 165 cm with 30 cm 

increment. Aboveground biomass and leaf area measurements were made periodically in 1984 and 1985 

by the destructive method from 1 m of crop row sampling. Weather data are available from an automated 

station about 300 m from the experimental site.  

3.3.2. The DAYCENT Model 

3.3.2.1. Overall description of DayCent model 

The DayCent model is the daily time step version of the CENTURY model which was widely 

used for simulation of soil carbon and nitrogen cycling (Parton et al., 1987). The DayCent simulates 

major ecosystem processes including plant production, changes in soil water, soil organic matter 

dynamics, and trace gas emissions, etc. The main inputs include soil property, daily weather data, plant 

type, and management practices.  
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In this study, modified DAYCENT model (Chapter 2) was used. The most notable change in this 

testing version is the new method for leaf area simulation. The new method can be described as  

GLAI = Biomassaboveground * GLWR * SLA                                                                      (3.1) 

where GLAI is green leaf area index; GLWR is the green leaf weigh ratio; and SLA is specific 

leaf area. In the modified model, SLA is kept as constant while GLWR changes from emergence to 

maturity. The change of GLWR is modeled using three linear equations as shown in Fig. 3.1. Unlike 

some crop models, this method does not intend to explain the allocation of daily carbon supply among 

organs in a physiological way but assumes there is a kind of regulation mechanism of crop that regulates 

the amount of green leaf biomass as a fraction of its total biomass. This leaf area method has been 

validated for maize and soybean in two locations in the Corn Belt and for winter wheat in northern 

Oklahoma (Chapter 2). Under drought stressed conditions, we assume there is no direct water stress effect 

on either GLWR or SLA in current version of the model. In DAYCENT model, phenology of the 

reproductive stages is modeled as accelerated by water stress. So indirectly, enhanced leaf senescence 

under drought is modeled as a result of faster development of phenology. The importance of GLAI is that 

it provides prediction on canopy cover (CC) which is used in the plant production sub-model for 

estimating the amount of light intercepted by the leaves and also in the soil water sub-model for 

partitioning PET into soil evaporation and plant transpiration. In DAYCENT, CC is calculated simply by 

Beer’s equation as a function of GLAI. 

CC = 1 – exp(-k * GLAI)                                                                              (3.2) 

where k is the extinction coefficient. 

3.3.2.1. Plant production sub-model 

In this testing version of DAYCENT, daily potential production (PP) is a function of intercepted 

light using the concept of radiation use efficiency (RUE).  

PP = CC *PAR * RUE          (3.3) 
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where CC is short for canopy cover; PAR is the photosynthetic radiation which is assumed half of 

the measured short wave radiation. Actual production (AP) is calculated considering temperature, water 

and nutrients effect.  

AP = min(PP * Te * We ,  PPnutrient)       (3.4) 

 where Te and We are temperature and water effect; PPnutrient is the maximum production can be 

supported by available nutrients. There are no explicit pools for stem, leaf, and grain for crops in the 

model. Grain biomass is calculated using predicted harvest index (HI) which is the fraction of grain to 

total aboveground biomass.  

Soil water sub-model 

The DAYCENT model uses a method incorporating the field capacity concept of the tipping-

bucket approach and applies Richards’ equation for water re-distribution after the dainage from saturation 

to field capacity; details can be found in Parton et al.(1998). At the beginning of daily loop, PET is 

calculated from climatic inputs and crop coefficent (fixed value and equivilent to Kc mid in FAO 56). CC is 

used to estimate the propotion of potential transpiration: 

PT = PET * CC                                                                                     (3.5) 

where, PT is potential transpiration and PET is crop potential evapotranspiration. Actual 

transpiration is firstly estimated using a stress coefficient that is a function of the soil water status 

(discussed later).  And the actual root water uptake in each soil layer is based on the root uptake 

coefficients in that layer (reflecting the amount of root in that layer and ability for water uptake) and soil 

water potential.  The water stress effect on daily production is fraction of AT to PT in the modified 

version of DAYCENT. So the prediction for AT under limited soil water condition is critical for the 

model to simulate the biomass and yield of the limited irrigation experiments.  

Stress coefficient of transpiration 

The soil water status used in the DAYCENT model for estimating the stress coefficient of 

transpiration is the relative soil water content (RSWC) of the wettest soil layer in the root zone. 

RSWCi = (SWCi – WPi)/(FCi – WPi)       (3.6) 
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RSWCwettest = max(RSWCi)       (3.7) 

where SWC, FC, and WP are the soil water content, field capacity, and wilting point of soil layer 

i; RSWCwet is the RSWC of the wettest soil layer in the root zone. The stress coefficient is a function of 

RSWCwettest (Fig. 3.2): 

Ks = 1.0 – exp(– b * RSWCwettest)                                                                (3.8) 

where b is a coefficient of the curve and is set 3.0 as default in DAYCENT.  

In this study, we compared the DAYCENT default method on Ks to the FAO 56 method (Allen et 

al., 1998). The FAO 56 method of Ks is based on the water depletion in the entire root zone. First, the 

total available soil water in the current root zone (TAW) is calculated each day. 

TAW = (FC – WP) * Zr                                                                 (3.9) 

where Zr the rooting depth. To apply this equation in DAYCENT, we calculate (FC – WP) and 

multiply by layer width for each soil layer in root zone and summed them up. The relation of Ks and the 

fraction of soil water depletion (Dr) to TAW is shown in Fig. 3.2. The turning point of the FAO 56 curve 

is (1 – p); p is “the fraction of TAW that a crop can extract from the root zone without suffering water 

stress is the readily available soil water”. Factor p is adjusted for ET demand using an empirical equation: 

p = pTable + 0.04 * (0.5cm – ETc)                                                              (3.10) 

where, pTable is the recommended p value for a crop type in the table of FAO 56 paper; ETc is the 

crop ET of FAO 56 method. In our calculation, ETc was replaced with PT which represents the demand of 

water for root uptake.  

3.3.3. Model calibration 

The model with original Ks method and the one with FAO 56 Ks method were calibrated 

separately. For the experiment at Greeley, CO, the measurement from the full irrigation treatment of 2010 

was used to calibrate the model because LAI data were only available in 2010. Two brands of hybrids 

were used in the experiment at Fort Collins, CO. We calibrated Garst 8827 with measurement of full 

irrigation treatment in 2007 and hybrids of Pioneer with data of 2010. Although different hybrids of 

Pioneer were used from 2008 to 2010, we used the same set of parameters as little information was 
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available about the difference of the hybrids. Data in 1985 of treatment 4 in the Akron, CO experiment 

was used for calibration as SWC was measured only in 1985. The crop coefficient of ET at mid-season of 

1.2 based on recommendation of FAO 56 was used for all locations. The factor pTable is set 0.55 for maize 

according to FAO 56. Parameters and values used in the simulations are listed in Table 3.2. Nitrogen 

stress effect was not simulated as ample nitrogen fertilizer was applied in all the experiments for stress-

free growth and no nutrient deficit symptoms were observed in fields.  

Statistics 

To compare model predictions to measurements and between simulation models, we selected root 

mean square error (RMSE) and coefficient of determination (R2) as evaluation criteria.  

RMSE = √ଵn ∑ ሺOi − Piሻ2ni=ଵ        (3.11) 

R2 = ͳ − ∑ ሺ୓i−୔iሻ2ni=భ∑ ሺ୓i−୓ ̅̅̅ሻ2ni=భ         (3.12) 

Where Oi is the observed value, Pi is the predicted value, n is the total number of observations, 

and O̅ is the average of the observed values. These two criteria are commonly reported in modeling 

studies and provide good evaluation of model performance.  

3.4. RESULTS AND DISCUSSION 

3.4.1. Greeley, CO 

Simulated Ks represents the drought effect on transpiration. Taking Treatment 6 (lowest irrigation 

water) in 2008 as an example, severe water stress was simulated around DOY 200 (Fig. 3.3a) which 

resulted in low actual transpiration rate in the same period (Fig. 3.3b). There was not substantial 

difference in simulated Ks values using the DAYCENT Ks method and the FAO 56 method (Fig. 3.3a). 

This resulted in the similar simulated daily actual transpiration rates (Fig. 3.3b). As shown in Fig. 3.2, 

when RSWCwettest was at 1.0, the corresponding Ks value was 0.95 for the DAYCENT method and 1.0 for 

the FAO 56 Ks method. In theory, if plenty water is in root zone, there should be no water stress for plant 

and maximum Ks is expected to be 1.0. The coefficients of equation used in DAYCENT were originally 

fitted with field measurements and not theoretically perfect. Using treatment 6 in 2008 as an example 
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(Fig. 3.3a), between Day 150 and Day 190, simulated Ks value by DAYCENT Ks method was 0.95 which 

was lower than 1.0 of the FAO 56 Ks method. As a result, slightly more actual transpiration (3% more 

than the DAYCENT Ks method) was simulated by FAO 56 Ks method between Day 150 and Day 190 

(Fig. 3.3b). Because more water lost during the period between Day 150 and Day 190, the simulated Ks 

(Fig. 3.3b) was lower in FAO 56 method around Day 200. The overall difference in the growing season 

was little. Under no stressed condition where Ks was at its maximum, potential production is always 

lower in the DAYCENT Ks method if same reference RUE was used. So we calibrated RUE to be slightly 

higher in the DAYCENT Ks method in order to achieve same potential production (Table 3.2).  

Leaf area determines the amount of light intercepted for photosynthesis and the percentage of 

actual transpiration relative to full canopy. In this experiment, the measurement of GLAI was only 

conducted for 4 of the 6 treatments in 2010. Regarding the model prediction of GLAI, both DAYCENT 

Ks method and FAO 56 Ks method accurately simulated GLAI of the full irrigation treatment (Fig. 3.4). 

For the limited irrigation treatment 4 and 5, both methods slightly over-predicted GLAI in the later part of 

the vegetative growth period. One of the reasonable guesses was that water stress causes SLA decreasing 

in the field while the model assumes SLA as constant (Tardieu et al., 1999). However, in another 

experiment conducted at the same site at Greeley, CO in 2013, measured SLA at three weeks before 

silking showed a trend of increase under mild drought stress (Fig. 3.5; not significant between treatments 

at 0.05 level using LSD test; unpublished data). Similarly, unchanged SLA in maize under water deficit 

was reported by Tardieu et al. (1999) although they showed decreased SLA in sunflower leaves under 

mild water stress. Another possible reason was that the leaf structure change due to water deficit (leaf 

rolling) was not modeled. Our field observation showed obvious change in leaf structure in the stressed 

treatments. Under drought, leaves became more erect and rolls inward to reduce the amount of light 

intercepted by canopy thus reduce biomass production and leaf area. In modeling, leaf rolling can be 

simulated as change in extinction coefficient of Beer’s Law (Equation 3.2). Cavero et al. (2000) reported 

a decrease of the extinction coefficient of their field measurement of maize due to water stress and found 
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improved simulation results after making the fixed coefficient as a function water stress in their modified 

EPICphase model.  

Drought stress substantially inhibited the biomass production in the field (Fig. 3.6). The drought 

stress effect was well simulated by both Ks methods in our model in all four years (Fig. 3.6). The FAO 56 

Ks method was slightly better than the DAYCENT Ks method in this simulation (1129 kg ha-1 of FAO 56 

method comparing to 1537 kg ha-1 of the DAYCENT Ks method). Both methods over-predicted the 

biomass in 2010 for the Treatment 4, 5 and 6. Similar to our result, Ma et al. (2012) found the RZWQM2 

model over-predicted the biomass of the same treatments in 2010. Regarding grain yield (Fig. 3.7), model 

predictions provided very good fit to the observations. Our prediction of grain yields was similar to those 

from RZWQM2 model (Ma et al., 2012). Overall, DAYCENT model with both methods could simulate 

the effect of water stress on production at this site.  

The SWC was simulated by the DAYCENT model with fair accuracy. The RMSE of comparison 

to neutron probe measurement at 30, 60, 90, and 120 cm measurement depths were 0.033, 0.026, 0.028, 

and 0.026 cm cm-1, respectively; and R2 were 0.43, 0.44, 0.25, and 0.16. The statistics of both the 

DAYCETN Ks method and FAO 56 Ks method were almost the same; thus result of only one model was 

presented. These statistics were similar to those of two irrigated experimental sites at eastern Nebraska in 

Chapter 1. The comparison of SWC of top 15 cm was not shown because the same potable TDR devices 

were found relatively low accuracy in another experiment at a site near Fort Collins, CO (Erika Foster, 

personal communication, 2015).  

3.4.2. Fort Collins, CO 

Measurement of GLAI in this experiment was made in 2007, 2008, and 2009 in vegetative 

growth period only. Again, the model accurately simulated the GLAI under the full irrigation treatment 

for both Ks methods (Fig. 3.8; full irrigation treatment in 2007 and 2008 were used for calibration). For 

the limited irrigation treatment, the accuracy was slightly lower. Similar to the simulated GLAI at 

Greeley, CO, the GLAI of the limited irrigation treatment at late vegetative growth was over-predicted in 

2007. In 2008, the GLAI in the whole vegetative growth period was over-predicted for the limited 
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irrigation treatment. The reason might be that the stressed crop was slower to recover from adversity. As 

stated in DeJonge et al. (2011), a tornado that occurred in in nearby Windsor, CO on 22 May 2008 likely 

delayed the leaf development following this period. In 2009, the observed GLAI of limited irrigation was 

even higher than the full irrigation treatment which might due to the large variations in the field; thus, it 

appeared that the model under-predicted the GLAI for the limited treatment in this year. Overall, the new 

leaf area method provided accurate estimation of leaf development under both non-stress and drought 

stress conditions.  

The predictions of grain yields of the full irrigation treatment were fairly well for this site. They 

were within 12% of the measured values in the five years (Fig. 3.9; RMSE of 668 and 837 kg ha-1 for 

DAYCENT Ks method and FAO 56 Ks method). Both Ks methods under-predicted the yield of limited 

irrigation treatment (10.3% and 13.7% lower in average for the DAYCENT and FAO 56 methods). 

Similarly, DeJonge et al. (2012) simulated this experiment with the CERES-Maize model and found the 

original model under-predicted the yield of limited irrigation by 12.9%. Although the modified CERE-

Maize provides better yield prediction of five-year average, the RMSE (1451 kg ha-1) was larger than 

those of the DAYCENT model (834 and 1114 kg ha-1 for DAYCENT Ks method and FAO 56 method).  

Regarding soil water, both Ks methods resulted in good predictions of SWC (Fig. 3.10). The 

difference of predicted SWC between the two Ks methods was negligible. The R2 was higher in the 

limited irrigation treatment (0.67) than the full irrigation treatment (0.41). In Chapter 1, we found similar 

results and concluded that irrigation uniformity and spatial variations in soil likely resulted in the lower 

agreement with observations of full irrigation.  

3.4.3. Akron, CO 

There was no full irrigation treatment in the experiment at Akron, CO. All treatments started to 

receive irrigation just prior to tasseling (stage VT). Thus, observed peak GLAI was less than 4 in both 

1984 and 1985 due to the drought stress at the vegetative growth period. The new GLAI method 

implemented in DAYCENT model accurately simulated the development of leaf area for both Ks methods 

(Fig. 3.11). Regarding biomass, simulated results were fairly accurate and the difference of the two Ks is 
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small (Fig. 3.12). The two Ks methods slightly under-predicted finial biomass at harvest for treatment 1 

and 3 in 1984. In 1985, we observed large variation in the measured biomass at the vegetative period. 

Measured biomass values were constantly higher in treatment 2 and 3 than that in treatment 1 and 4. As 

no irrigation was initiated at that period, we would expect similar amount of biomass.  

Grain yield was correctly simulated in 1985 for all treatments (Fig. 3.13; treatment 4 of 1985 was 

used for calibration). In 1984, the predicted yield of treatment 3 was close to the measurement but the 

yields of treatment 1 and 2 were largely over-predicted (about twice of the measurement) by both Ks 

methods. As we see in Fig. 3.12, the predicted final biomass was fairly well; thus the model failed to 

predict HI correctly. The observed HI values of treatment 1 and 2 in 1984 were only 0.20 and 0.22 while 

model predictions are 0.41 and 0.42 by both Ks methods. The reason was likely that although water stress 

effect on HI was simulated by DAYCENT, the inhibition of pollination resulted from severe stress was 

not considered in the model. In the AquaCrop model, Raes et al. (2009) described a method introducing a 

water stress coefficient for pollination in addition to the simulated reduction of HI due to reduced 

photosynthesis rate. Similar method can be added to DAYCENT model to improve simulation on HI 

under severe water stress. For the grain yields in 1986, both Ks methods under-predicted the values by 

18% in average of four treatments. It was hard to determine the reason as there was no measurement of 

biomass and HI in 1986. Ma et al. (2003) simulated the same experiment using the RZWQM model. In 

their simulation, yields of Treatment 1, 2 and 3, were overestimated by 23% and 35%, and overestimated 

by 18% in 1984, respectively. In 1985, yields were predicted well. In 1986, the model under-predicted the 

yield values ranging from 10% to 24%. These results were in high agreement with the predictions from 

our DAYCENT model.  

SWC was well simulated by both Ks methods (Table 3.3) in 1985. The R2 was lower at 15 cm 

depth than the deeper depths which may due to the high spatial variations in crop residue cover in the 

field according to Saseendran et al.(2008). Saseendran et al.(2008) simulated the same experiment using 

the CERES-maize model. The RMSE of SWC simulation using DAYCENT was slightly lower than the 

reported value of 0.025 of the simulation using CERES-maize.   
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3.5. CONCLUSIONS 

The new leaf area method implemented in DAYCENT model provided relatively accurate 

estimation of GLAI of maize grown in Colorado regarding its simplicity. The changes in GLAI in 

response to water deficit were well represented, although the GLAI of the limited irrigation treatments at 

late vegetative growth period was slightly over-predicted. Both the DAYCENT Ks method and FAO 56 

Ks method provided similar predictions on actual transpiration and leads to similar results of simulated 

SWC, biomass production and grain yields. The accuracy of predictions of these variables was fairly high. 

It is hard to conclude which method is superior than the other based on the results of this study; however, 

the FAO 56 56 Ks method is easier for parameterization. Comparing these predictions of the new 

DayCent model with simulations of the same experiments by some other crop models, the performance of 

DAYCENT is at the same level. The advantages of the new DayCent model is the simplicity and that the 

most of input parameters can be directly measured. With further testing on other crop types and 

conditions in the future, the new DayCent model can be used as a tool to provide decision-support and 

forecasting capabilities for agricultural producers and water managers.   
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Table 3.1 Crop management for the three sites in Colorado. 
Site/
Year 

Crop/cultiva
r 

Plant 
population 

(plants ha-1) 

Planting 
time 

(DOY) 

Harvest 
time (DOY) 

Rainfall in 
growing season 

(cm)  

Total irrigation (cm) 

Greeley, Colorado 

2008 Dekalb 52-59 81,000 133 311 23 43.8, 33.8, 28.2, 
27.2,18.1, and 13.7Ɨ 

2009 Dekalb 52-59 81,000 131 306 22.9 41.8, 34.8, 30, 25, 
16.8, and 10.9Ɨ 

2010 Dekalb 52-59 81,000 131 305 20 36.5, 29, 24.7, 22, 
15.9, and 11.2Ɨ 

2011 Dekalb 52-59 81,000 123 298 17.6 48.5, 38.8, 32.9, 30.6, 
22.1, and 15.7Ɨ 

Akron, Colorado 
 

1984 Pioneer 3732 72,400 133 275 26.5 2.3, 6.8, and 10.6ǂ 
1985 Pioneer 3732 76,100 123 270 30.8 7.2, 9.8, 15.1, and 

18.8ǂ 
1986 Pioneer 3732 76,100 121 288 22.6 14.6, 20.3, 25.8, and 

29.9ǂ 
Fort Collins, Colorado 

2006 Garst 8827 79,100, and 
59,300§ 

130 308 8.3 50.0, and 25.9§ 

2007 Garst 8827 79,800, and 
59,300§ 

128 317 20.1 36.2 and 21.0§ 

2008 Pioneer 38P 79,100 121 324 24.1 40.6 and 20.3§ 

2009 Pioneer 
P9512XR 

79,100 133 317 20.2 29.2, and 19.1§ 

2010 Producers 
Hybrids 
5004VT3 

79,100 124 289 15.2 40.0 and 21.0§ 

Ɨ Treatments are 100%, 85%V, 70%, 70%V, 55%V, and 40%V (percentage of potential crop ET). Letter V denotes that 20% of 
the calculated amounts of irrigation were withheld and added to the reproductive growth period on a weekly basis. 
ǂ Irrigation levels from treatment 1 to treatment 4. There is no treatment 4 in 1984.  
§ Treatments are full irrigation and limited irrigation.  
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Table 3.2. Calibrated parameters used in simulations. 
Parameters Dekalb 52-59 Pioneer 

3732 
Garst 8827 Pioneer 

 Greeley Akron Fort Collins Fort Collins 
RUE (g biomass m-2 
langley-1 PAR) 
 

0.15 
(DAYCENT), 
0.14 (FAO 56) 

 

0.165 
(DAYCENT) 
0.16 (FAO 

56) 

0.17 
(DAYCENT), 
0.16 (FAO 56)  

0.165 
(DAYCENT), 
0.155 (FAO 

56) 
Optimum temperature 
for production (⁰C) 
 

27 

Initial biomass at 
emergence (g m-2) 

0.4 0.1 0.4 Ɨ 0.1 

Ceiling GLWR at early 
development stage 
 

0.9 
 

Intercept of the second 
stage linear equation at 
emergence 
 

0.9 
 

GLWR at maximum 
GLAI 
 

0.25 
 

GLWR at physiological 
maturity 
 

0.02 
 

SLA (m2 g-1) 
 

0.02 
 

Extinction coefficient 0.55 ǂ 
 

Ɨ For limited irrigation treatment, this value have been adjusted for smaller planting density. 
ǂ Calibrated using measured canopy cover and GLAI in 2010 of the experiment at Greeley, CO.  
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Table 3.3 Statistics of simulated soil water content at 4 depths across treatments in 1985 at Akron, CO.  
Depth 
(cm) 

DAYCENT Ks 
method 

FAO Ks method 

 RMSE R2 RMSE R2 
15 0.03 0.46 0.03 0.47 
45 0.03 0.73 0.03 0.73 
75 0.03 0.63 0.04 0.68 
105 0.02 0.78 0.03 0.73 
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Fig. 3.1. The schematic representation of the new method for green leaf weight ratio (GLWR) modeling 
in Chapter 2.  
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Fig. 3.2. Water stress coefficient (Ks) response function to the relative soil water content of the wettest 
soil layer (RSWCwettest) in DAYCENT model and the relative depletion in soil water content (Dr/TAW) of 
the FAO 56 method. 
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Fig. 3.3. Example of simulated a) stress coefficient (Ks) and b) actual transpiration of Treatment 6 in 2008 
of the Greeley experiment by the DAYCENT Ks method and FAO 56 Ks method. 
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Fig. 3.4. Comparison of measured green leaf area index (GLAI) of Treatment 1, 3, 4, and 5 in 2010 of the 
experiment at Greeley, CO and simulated values by the DAYCENT Ks method and FAO 56 Ks method. 
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Fig. 3.5. Measure specific leaf area (SLA) in a limited irrigation experiment at Greeley, CO in 2013 
(unpublished data). Measurement was taken about three weeks before silking.  
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Fig. 3.6. Comparison of measured final aboveground biomass at harvest of the experiment at Greeley, CO 
and simulated values by DAYCENT Ks method and FAO 56 Ks method. Irrigation amount decreases 
from Treatment 1 to Treatment 6.  
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Fig. 3.7. Comparison of measured grain yields (0% moisture) of the experiment at Greeley, CO and 
simulated values by DAYCENT Ks method and FAO 56 Ks method. Irrigation amount decreases from 
Treatment 1 to Treatment 6.  
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Fig. 3.8. Comparison between measured green leaf area index (GLAI) of the full and limited irrigation 
treatments of the experiment at Fort Collins, CO and simulated values by the DAYCENT Ks method and 
FAO 56 Ks method. 
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Fig. 3.9. Comparison of measured grain yields (0% moisture) of the experiment at Fort Collins, CO and 
simulated values by DAYCENT Ks method and FAO 56 Ks method for full and limited irrigation 
treatments.  
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Fig. 3.10. Comparison of measured soil water content (SWC) of four depths in 2008 at Fort Collins, CO 
and simulated values by DAYCENT Ks method and FAO 56 Ks method for full and limited irrigation 
treatments.  
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Fig. 3.11. Comparison between measured green leaf area index (GLAI) of the 4 treatments (only 3 in 
1984) of the experiment at Akron, CO and simulated values by the DAYCENT Ks method and FAO 56 
Ks method. 
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Fig. 3.12. Comparison between measured aboveground biomass of the 4 treatments (only 3 in 1984) of 
the experiment at Akron, CO and simulated values by the DAYCENT Ks method and FAO 56 Ks method. 
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Fig. 3.13. Comparison between measured grain yield (0% moisture) of the 4 treatments (only 3 in 1984) 
of the experiment at Akron, CO and simulated values by the DAYCENT Ks method and FAO 56 Ks 
method. 
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CHAPTER 4. QUANTIFYING THE PARAMETER UNCERTAINTY IN MODEL 

PREDICTED CROP WATER PRODUCTION FUNCTIONS 

 

4.1. SUMMARY 

In semi-arid west U.S, the amount of water for agricultural irrigation is dramatically decreasing as a 

result of increasing demand from municipal users and other industrial and environmental users. Using 

dynamic models to characterize crop water production functions is helpful for decision making for 

reducing the water footprint of agricultural crop while maintaining production levels. However, there is 

uncertainty associated with the model predicted water production functions. In this study, we investigated 

the uncertainty in crop production functions due to parameter uncertainty using DayCent model. First a 

global sensitivity analysis was carried out for 24 parameters; we found growth/production related 

parameters in DayCent have relative more impact on grain yield, GLAI, and biomass than ET and soil 

water related parameters in both rainfed and irrigated conditions. A MCMC method DREAM was used to 

characterize the posterior distribution of 12 most sensitive parameters. In order to reach desired 95% 

inclusion rate, the unknown parameter �� in the likelihood function was increased from the estimated 

optimal value. Using 440% of the optimal ��, the inclusion rate of the training and testing datasets 

reached 95% and 96%, respectively. To quantify predictive uncertainty of crop water production 

functions, scenarios of six levels of irrigation for 12-year period was created. The model generated yield 

response to irrigation levels was found similar to previous field and modeling studies. The standard 

deviation of predicted yield for each scenario was found to increase as irrigation increased. However, CV 

was found very stable (averaged at 0.097) regardless of climatic differences in each year, which implies 

that the uncertainty of a water production function can be roughly estimated using a CV value if no 

resources available for a complete uncertainty analysis. 
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4.2. INTRODUCTION 

In arid and semiarid regions, such as the western United States, water poses the greatest limitation 

in agricultural production as rainfall in these regions does not meet the evaporative demand (Doorenbos 

and Kassam, 1979; Feddes et al., 1978). Large amounts of water from surface and underground sources 

are applied for irrigation every year to maintain high crop yield. The total irrigation withdraws were 

estimated as 0.435 km3/day in U.S. in 2010, which accounted for 38 percent of total freshwater 

withdrawals (Maupin et al., 2014). The increasing demand for water from municipal users due to rapid 

population growth and urbanization as well as demands from other industrial and environmental users 

pose a great threat to availability of water for agriculture (Colorado Water Conservation Board, 2010; 

Vorosmarty et al., 2000). Extended drought periods in a changing climate and declining groundwater 

levels are expected to only exacerbate the situation (Colorado Water Conservation Board, 2010; McGuire, 

2014). Understanding the response of cropping systems to changes in irrigation levels is essential for 

reducing the water footprint of agricultural crops while maintaining production levels (Fereres and 

Soriano, 2007; Saseendran et al., 2014; Trout et al., 2010).  

Characterization of crop water production functions, i.e. the relationship between crop yield and 

irrigation water amount, is necessary in order to simultaneously optimize economic return of crop 

production and achieve desired water allocation levels (English, 1990; Reca et al., 2001). Dynamic crop 

models are valuable tools for the estimation of water production functions specific to a crop at a specific 

location (Brumbelow and Georgakakos, 2007; Garcia-Vila and Fereres, 2012; Saseendran et al., 2014). 

However, simulation models are approximate representations of the real world systems and bear 

uncertainties in simulating the behavior of the system under study. Quantification of modeling 

uncertainties is needed particularly when their outputs are used in decision making (Vose, 1996). The 

predictions of dynamic crop models are influenced by meteorological, soil, and land use inputs, uncertain 

model parameters, the limitation of the mathematical representation of real world processes, and 

uncertainty in observed data that are used for calibration purposes. Consequently, the uncertainty in crop 

model predictions should be better investigated (Confalonieri et al., 2016). However, to the authors’ 
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knowledge, no previous studies have investigated how modeling uncertainties propagate forward into 

estimated crop production functions.  

Sources of modeling uncertainties include input, parameter, and structural uncertainties (Haefner, 

2005). Input uncertainty is from errors in input forcing (e.g. precipitation or soil texture of a field). When 

input data are obtained from predictions of another model, like the projected future climate or model 

generated weather, input uncertainty can be from the predictive uncertainty of the model producing the 

forcing inputs. Model structures are invariably incomplete due to approximation of real world processes, 

lack of knowledge about some processes, and neglecting to include some processes that are deemed 

insignificant for pragmatic considerations. Finally, model parameters, time-invariant coefficients that are 

treated as constants and are estimated by means of calibration to observed data, could beat considerable 

uncertainty.  

For a single model structure, the uncertainty due to model parameters can be estimated using 

Bayesian methods by conditioning the model behavior on measurements. Literature is replete with 

methods for uncertainty analysis based on Bayesian formalism, particularly in hydrological studies (e.g. 

Beven and Binley, 1992). Some Bayesian methods have been applied for uncertainty analysis of crop 

models. The Generalized Likelihood Uncertainty Estimation (GLUE) method (Beven and Binley, 1992) 

has been used for the estimation of posterior parameter distributions in studies of wheat using STICS-

wheat model (Varella et al., 2010), sweet corn using CERES-Maize model (He et al., 2009), and cotton 

using CSM-CROPGRO-Cotton model (Pathak et al., 2012).  Despite computational simplicity and 

popularity of the GLUE method, concerns about using informal Bayesian likelihood functions in GLUE 

have been the subject of extensive scientific discourse (Stedinger et al., 2008; Vrugt et al., 2009b).   

Alternatively, formal Bayesian methods using the Markov-Chain Monte-Carlo (MCMS) 

techniques have been developed. In crop modeling, MCMC methods have been applied to quantify the 

uncertainty in predicted phenological development of maize in Slovenia using WOFOST model (Ceglar 

et al., 2011). More recently, the Differential Evolution Adaptive Metropolis (DREAM) method was 

applied to characterize uncertainties in simulations of winter wheat using STICS model (Dumont et al., 
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2014). Another recent study applied MCMC method with SALUS model to simulate maize, peanut, and 

cotton (Dzotsi et al., 2015). The predictive uncertainty of output variables was also examined with 

validation data sets in both later studies and were found useful as a method for quantifying uncertainty.  

Parameter sensitivity analysis (SA) is usually performed prior to uncertainty analysis to evaluate 

the importance of model parameters (Ceglar et al., 2011; He et al., 2009; Laloy et al., 2010; Pathak et al., 

2012). While several local and global methods are available, global SA methods are more informative 

since they account for interactions between parameters (Saltelli et al., 2000). Furthermore, global SA can 

provide information for examination of the structure of the model residuals, which is essential the 

implementation of formal Bayesian techniques for uncertainty analysis (Ahmadi et al., 2014).  

The DayCent model (Parton et al., 1998) is one of the most commonly-use agroecosystem models 

for crop yield, soil carbon, nitrous oxide emission, and other ecosystem responses (Chang et al., 2013; 

Del Grosso et al., 2008; Del Grosso et al., 2006; Jarecki et al., 2008; Stehfest et al., 2007; Zhang et al., 

2013). A few previous studies have been carried out to assess the predictive uncertainty of DayCent due 

to parameter uncertainty (De Gryze et al., 2010; Del Grosso et al., 2010; Fitton et al., 2014; Lee et al., 

2011). Two studies, in particular, analyzed the parameter uncertainty on trace gas emissions using 

Bayesian methods (van Oijen et al., 2011; Wang and Chen, 2012).  

Despite the importance of understanding the crop response to irrigation under various climatic 

conditions, no previous study has investigated the uncertainty in crop production functions due to 

parameter uncertainty. The overall goal of this study is to enhance understanding of the uncertainty in 

crop yield and production functions using the DayCent agroecosystem and ecological model. The 

objectives are to: (i) understand the importance of parameters and processes they represent in DayCent 

model through Global sensitivity analysis; (ii) characterize the uncertainty of important parameters; and 

(iii) propagate parameter uncertainty forward into estimation of crop production functions. 

Quantifying uncertainty of model predictions is particularly important when their outputs are used 

in decision making. This study will illustrate how predictive uncertainty changes at different irrigation 
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levels in crop production functions due to parameter uncertainty, which has not been previously 

investigated by others.  

4.3. METHODS 

The DayCent agroecosystem model (Parton et al 1998) was used to simulate agroecosystem 

processes. Maize measurement data from a field experiment conducted in Mead, NE were used in this 

study, which include three treatments of irrigated continuous maize, irrigated maize soybean rotation, and 

rainfed maize soybean rotation. First, the Sobol’s global sensitivity analysis was applied to identify the 

importance of the DayCent model parameters for model responses of annual grain yield, monthly GLAI, 

and monthly aboveground biomass; and the model outputs from sensitivity analysis were used to 

investigate the structure of model errors using measurement data (six year*treatment). Posterior 

distribution of the model parameters for one maize hybrid was identified using the DREAM technique. 

The predictive uncertainty of training dataset (three from six year*treatment) was quantified and analyzed 

for its spread and inclusion rate using the posterior distribution of the parameters. The predictive 

uncertainty of testing (the rest three year*treatment) datasets was estimated. To assess uncertainty in 

predicted crop production functions, we created 6 scenarios of different levels of irrigation using 13-year 

weather data. The distribution of the predicted grain yield was analyzed and standard deviation and 

coefficient of variation was quantified.  

4.3.1. Field experiment 

The field data used in this study was obtained from a field experiment conducted at the University 

of Nebraska Agricultural Research and Development Center near Mead, NE. Detailed experimental 

design can be found in Suyker and Verma (2009). Although it is not a limited irrigation experiment, the 

irrigated treatment and rainfed treatment provide enough information for the study of water stress. The 

experiment was initialized in 2001. Two of the treatments were irrigated and one was rainfed. Each 

treatment is a large production field (49 – 65 ha). One of the irrigated treatment was planted in maize (Zea 

mays L.) continuously (ICM). The other irrigated treatment was in maize/soybean (Glycine max L.) 

rotation (IMS). The rainfed treatment was also in maize/soybean rotation (RMS). These treatments have 
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been managed using standard best management practices in this region. These managements include 

fertilizer, herbicide, and pesticide applications. During the experimental period, different hybrids of maize 

were grown with different planting date depending on the relative maturity and weather/soil conditions 

(Chapter 2.). Hybrid Pioneer 33B51 was planted in 2001, 2003, 2004 and 2005 (Table 4.2); measurement 

data of this hybrid were selected to use in this study. 

Within each treatment, six 20 m by 20 m measurement areas (intensive measurement zones) were 

established for detailed measurement of leaf area, aboveground biomass and other important ecosystem 

variables (Verma et al., 2005). Grain yields were recorded from the measurement of combine harvest of 

each entire treatment field. In this study, LAI, aboveground biomass and grain yield measurements were 

used. Leaf area and aboveground biomass were sampled destructively on an average of 11-day basis at 

each intensive measurement zone of each treatment.  

The soil of the three treatments is deep silty clay loam with very gentle slope. Soil characteristics 

were measured for four depths and details can be found in Chapter1. Weather data of temperature, solar 

radiation, relative humidity, and wind speed for model simulation are from a local weather station (station 

name MEADAGROFARM; High Plains Regional Climate Center, Lincoln, Nebraska). Precipitation and 

irrigation amounts were from the direct measurement within each treatment field using rain gauges.  

4.3.2 Agroecosystem Model 

The DayCent ecosystem (cropland, forest, grassland and savanna) model (Parton et al., 1998) was 

used in this study. The model is the daily time step version of the widely used monthly time step model 

Century (Parton et al., 1987). The major sub-models of DayCent include plant growth, soil water, soil 

organic matter decomposition, trace gas emission. Major inputs for the model are daily weather, soil 

property, plant type, and management practices. The model has been in continuous development and 

improvement. Recently, Zhang et al. (Chapter1) has incorporated a new method to simulate the canopy 

dynamics of annual crop along with other modifications. The field experiment used in this study has been 

previously simulated with the improved model using manually calibrated parameters (Chapter1). The 

results show improved green leaf area index (GLAI) simulation and better fit in late season 
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evapotranspiration rate in comparison with the original model.  And this version of model has also been 

successfully applied to simulate limited irrigation experiments in eastern Colorado (Chapter 3) with 

accurate prediction for the GLAI, biomass and grain yield.  

A brief discussion of the theory, concepts and methods used in the improved model are presented 

in this study. In DayCent, crop daily potential production is simulated as the product of radiation use 

efficiency and intercepted photo synthetically active radiation (PAR).  ܲ ௜ܲ  = ௜ܥܥ   × ௜ܴܣܲ  ×  (4.1)                                                                                          ܤܶܧܷܴ 

where ܲ ௜ܲ is the potential production on the ith day, ܥܥ௜ is the fraction of radiation intercepted by canopy 

on the ith day and RUETB is the radiation use efficiency of total biomass production (aboveground and 

belowground). The ܥܥ௜ is calculated using Beer’s Law (MONSI and SAEKI, 1953; Sellers, 1985).  ܥܥ௜ = ͳ − ܶܪܩܫܮܭ−ሺ݌�� ×                                   ௜ሻ                                                                                                        (4.2)ܫܣܮܩ

where KLIGHT is the extinction coefficient of vegetation. The actual production is affected by 

temperature, water, and nutrient. Daily actual production is allocated to above and below-ground based on 

the development stage and stress (water and nitrogen). Phenology of growth is estimated by growing 

degree day (GDD) method. Temperature effect (௘ܶ) on ܲ ௜ܲ (close to bell-shape) is as following 

 ௘ܶ =  ቀ ௉௉��ଶ−�೘��೙௉௉��ଶ−௉௉��ଵቁ௉௉��ଷ × exp {௉௉��ଷ௉௉��ସ × [ͳ − ቀ ௉௉��ଶ−�೘��೙௉௉��ଶ−௉௉��ଵቁ௉௉��ସ]}   (4.3) 

where PPDF1, PPDF2, PPDF3, PPDF4 are parameters to control the shape of the curve; Tmean is 

the daily mean temperature.  

The soil water sub-model simulates 1-dimension water balance including precipitation, irrigation, 

ET, runoff, and percolation (Parton et al., 1998). Potential ET is simulated by calculated reference ET and 

crop coefficient (Allen et al., 1998). Potential ET is partitioned to potential evaporation of soil and 

transpiration of plant based on GLAI.  

Both growth/production sub-model and soil water sub-model require prediction of GLAI. The 

newly added improved GLAI method is described in Chapter 2.  Briefly, GLAI is converted from green 
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leaf biomass using constant specific leaf area (SLA). Green leaf biomass is simulated using green leaf 

weight ratio (GLWR; as a function of GDD) and aboveground biomass.  ܫܣܮܩ௜ = ௜ݏݏ�݉݋�ܤ�ܣ × ௜ܴܹܮܩ ×  (4.4)                                                                                       ܣܮܵ

4.3.3. Global sensitivity analysis 

Global sensitivity analysis (GSA) apportions the uncertainty in model outputs to the uncertainty 

in individual inputs and interactions thereof (Saltelli et al., 2000). The ‘Sobol’ method (Sobol, 1993) is 

arguably the most comprehensive GSA methods due to its sampling design for the exploration of the 

parameter space. The decomposition of variance of the model outputs VarሺŶሻ for k parameters (�) is 

written: ��ݎ(�̂) = ∑ ௜௞௜=ଵܦ + ∑ ௜௝ܦ + ⋯ + ଵ…௞௜<௝ܦ              (4.5) 

where  ܦ௜ is the main effect of input parameter �௜. The terms of ܦ௜௝, … , Dଵ…k correspond to the 

interactions between parameters.      

The sensitivity indices are given by 

௜ܵభ,…,௜� =   ሺ�̂ሻ                                                                  (4.6)ݎ��/�௜భ,…,௜ܦ

So the first order sensitivity indices (main effects) for each parameter are 

௜ܵ =                                ሺ�̂ሻ                                (4.7)ݎ��/௜ܦ
And total order indices are  ܶ ௜ܵ = ௜ܵ + ∑ ௜ܵ௝ + ⋯ + ܵଵ…௞௝≠௜                                                                          (4.8) 

Twenty-four crop growth and water stress related parameters in the improved version of DayCent 

model were used in sensitivity analysis (Table 4.1). These parameters can be summarized into two 

groups: i) crop growth/production related parameters, which are species or cultivar specific; and ii) 

parameters representing ET and soil water processes. Non-informative uniform distribution was assumed 

for the prior parameter distributions. The ranges of model parameters were selected based on field 

measurements or previous studies.  

Global sensitivity analysis using the method of Sobol requires independency of parameters. 

However, parameters MNDDHRV (minimum number of degree days from anthesis to harvest) and 
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MXDDHRV (maximum number of degree days from anthesis to harvest) are not independent. A new 

parameter GAPMNDD, the difference between MNDDHRV and MXDDHRV, was defined as a random 

variable. MNDDHRV was then calculated based on the MXDDHRV and GAPMNDD. Additionally, a 

wider range of 0.9 – 1.3 for the crop coefficient for evapotranspiration (KCET) parameter was used 

because field measurements indicated smaller values (1.03 ± 0.07, (Suyker and Verma, 2009) values than 

the those reported by FAO (Allen et al., 1998). Soil parameters including saturation point, field capacity, 

wilting point, and saturated conductivity were estimated by soil texture using the Saxton equation (Saxton 

et al., 1986). The sand content, clay content, and bulk density were varied within the ranges of a silty clay 

loam (U.S. soil texture triangle) by assuming only one soil texture in the experimental fields.  

In this study, a sample size of 25,600 were generated using the SimLab software (Joint Research 

Center of the European Commission, 2004). This sample size meets the requirement of ݊ × ሺ� + ʹሻ (with 

n in range of 500 to 1000 typically) to ensure numerical stability (Saltelli et al., 2005; Saltelli et al., 

1999).  These samples of parameter sets were used to run simulation of hybrid Pioneer 33B51 (total six 

year*treatment; Table 4.2). The model responses examined in the sensitivity analysis are annual grain 

yield, monthly aboveground biomass and monthly GLAI. Monthly averages of aboveground biomass and 

GLAI in May, July and September were examined for the differences of sensitivity in early, middle, and 

late growing seasons.    

Important model parameters were then included in parameter and predictive uncertainty analysis. 

The criterion for classifying parameters as “important” was sensitivity indices greater than 0.05 for 

monthly aboveground biomass, monthly GLAI, or annual grain yield.  

4.3.4. Bayesian parameter uncertainty analysis using DREAM 

Using Bayesian formalism, the posterior distribution ܲሺ�௜|ܦሻ of a set of parameters � of model 

responses (�̂) conditioned on observed data Y is: 

ܲሺ�|�ሻ = ௉(�|�) ௉ሺ�ሻ∫ ௉(�|�)  ௉ሺ�ሻ ௗ�                                                               (4.9) 
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where ܲ ሺ�|�ሻ represents the likelihood of the data, ܲሺ�ሻ is the prior distribution of parameters. The 

likelihood ܲ ሺ�|�ሻ  is determined from the probability distribution of the residuals between observed (�) 

and modeled (�̂) responses.  Residuals are often assumed to be uncorrelated, independent identically 

normally distributed (Box and Tiao, 1992), hence yielding the likelihood function: ܮሺ�|�ሻ = ∏ ሺʹ� ��ଶሻ−ଵ/ଶ௡௜=ଵ × exp ቀ − ଵଶ ��మ  [�̂௜ሺ�ሻ − �௜]ଶቁ                                   (4.10) 

where �� is the standard deviation of model errors and n is the number of observed responses. Assuming 

homoscedastic model residuals, the log likelihood function is: ℒሺ�|�ሻ = − ௡ଶ  lnሺʹπሻ − ʹ݊ lnሺ��ሻ − ଵଶ��మ ∑ [�௜−�̂௜ሺ�ሻ]௡௜=ଵ ଶ
                         (4.11) 

When model residuals are not homoscedastic, observed and model responses are typically transformed 

using appropriate transformations, e.g. Box-Cox transformation (Box and Cox, 1964), prior to 

computation of the likelihood function. Similarly, autoregressive time series models, e.g. AR(1), may be 

applied to remove model error autocorrelation (Sorooshian and Darcup, 1980; Ahmadi et al., 2014; Vrugt, 

2016). 

MCMC simulations are commonly used for estimation of posterior parameter distributions as a 

formal Bayesian method. The DREAM algorithm (Vrugt, 2016; Vrugt et al., 2008; Vrugt et al., 2009a) 

was selected for this study. The advantage of this approach is the efficiency in mitigating issues with 

high-dimensionality, multimodality, nonlinearity, and local optima with proved ergodicity comparing to 

some traditional MCMC algorithms. Vurgt (2016) presents a complete review of the theory, concepts, and 

MATLAB implementation for the DREAM approach. 

4.3.5. Identification of the structure of model residuals  

DayCent model residuals were investigated for homoscedasticity, normality, and uncorrelated 

residuals. From the 25,600 GSA run, outputs were extracted and residuals were calculated for each run 

using measurement data of annual grain yield, multiple in-season GLAI and in-season aboveground 

biomass of hybrid Pioneer 33B51. Residuals for the “best” model, selected based on the minimum root 

mean squared error (RMSE), were explored. Model residuals of the three responses were examined for 
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heteroscedasticity using the chi-square test for normality. Since the GLAI and biomass are only 

continuously measured within each year, graphical assessment of partial autocorrelation in each year was 

also assessed.   

4.3.6. Implementation of the DayCent linkage with DREAM 

The R package for DREAM (Guillaume and Andrews, 2012) was integrated with the DayCent 

model to conduct the parameter uncertainty analysis. A script was written in R to compute the likelihood 

function required as input by the DREAM package. Twelve MCMC chains were used in this study. The 

Gelman and Rubin (1992) statistic (ܴ̂) of 1.2 was used for convergence. The first 50% of simulations 

were treated as the burin-in runs. 

The measurement data used in residual analysis were divided into two datasets for training and 

testing. Data from the ICM treatment in 2004, IMS treatments in 2005, and RMS treatment in 2001 were 

used for training since these data covered variations in planting dates, water stress (irrigated vs non-

irrigated), and growing season temperature. This data set contained 28 measurements of GLAI, 26 

measurements of aboveground biomass, and 3 measurements of annual grain yield. For testing purpose, 

measurements from the three treatments in 2003 were used. The measurement data included 24 

measurements of monthly GLAI, 24 measurements of monthly aboveground biomass, and 3 

measurements of annual grain yield. 

Field measurements are associated with uncertainty largely because of the natural variation of the 

soil, precipitation, and management inputs. Since these variations were not included in our simulation, the 

measurement uncertainty of uniform fields was estimated using data from a well-managed field 

experiment conducted on maize in Colorado (Trout et al., 2010) which characterized as uniform in soil 

property, irrigation (dripping system) and other managements. The coefficient of variation (CV) of the 

well irrigated treatments (less affected by the non-uniformity of soil and precipitation) ranged from 1.44% 

to 12.1%. A repressive value of 3% was used in this study. 

Predictive uncertainty for GLAI, aboveground biomass, and annual grain yield were computed 

using the last 10% of parameter sets from DREAM algorithm. The performance of the predictive 
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uncertainty analysis technique was then corroborated using the “inclusion rate” and “spread”. The 

inclusion rate was computed as the percentage of data points within the 95% prediction interval (P.I.). To 

account for measurement uncertainty, an observed data point was considered as included in the 95% P.I. 

if the 95% measurement uncertainty band had an overlap with the model 95% P.I. The spread was defined 

as the average width of the corresponding uncertainty band. 

The sensitivity of the inclusion rate and spread of the model 95% P.I. to �� was examined by 

altering ��  at 20% intervals. The purpose of this experiment was to identify the value of �� that results in 

minimum spread with inclusion rate above 95%. The posterior distributions of parameters from the 

selected � were used for testing and predictive uncertainty of water production functions. 

4.3.7 Uncertainty in the prediction of crop production function 

A 13-year analysis period from January 2001 to December 2012 was used to generate crop 

production functions. The analysis period was selected such that dry and wet climatic conditions were 

encompassed. The planting date was fixed at Day of Year (DOY) 130. Simulation were conducted with 

no nutrient stress to be able to discern the effects of water stress at varying irrigation levels under dry to 

wet climatic conditions. Soil data from the rainfed treatment was used.  

The optimal DayCent parameter set from DREAM computational experiments was used to 

estimate irrigation amount requirements to meet crop consumptive use in each year within the analysis 

period.  Subsequently, the uncertainty of model responses was evaluated for limited irrigation treatments 

at 0 (i.e. rainfed), 20, 40, 60, and 80 percent of full irrigation requirements.  

4.4. RESULT AND DISCUSSION 

4.4.1. Important DayCent parameters and critical crop growth processes  

Figure 4.1 presents a summary of the main effects and total effects of DayCent model parameters 

on the estimated average annual grain yield for the ICM, IMS, and RMS treatments. The most important 

parameters were crop growth/production related parameters. The total sensitivity indices for ET and soil 

water related parameters were very small even under rainfed treatment (RMS).  
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Parameters PPDF1, RUETB, and KLIGHT were the most important parameters for all treatments. 

Results suggest that more attention should be paid to the optimum temperature for production (PPDF1) 

when using DayCent, which is typically not adjusted. Radiation use efficiency (RUETB) is the primary 

parameter that controls the crop production response in DayCent and was found to have very high 

sensitivity indices. These results corroborated similar finding for other crop models with similar scientific 

theory and conceptualization for crop growth simulation, including CERES-Maize (DeJonge et al., 2012) 

and EPIC (Wang et al., 2005). Extinction coefficient parameter (KLIGHT) is another parameter widely 

used by crop models which determines how much light can be intercepted by the canopy for 

photosynthesis; thus it is expected to be very influential on yield (Pathak et al., 2007).  

Results indicated that the soil texture parameters (BD, Psand, and Pclay) for a given texture class had 

relatively small influence on simulated average annual crop yields, which justifies the use of texture class 

information in regional studies, or field level studies where detailed soil information are not available. 

Similarly, the soil property parameters of CERES-Maize model were found with relatively low sensitivity 

on grain yield of corn in both full and limited irrigation treatments. The KCET parameter in the rainfed 

treatment was more important than the two irrigated treatments. This result is plausible since higher 

potential ET rate (higher KCET value) indicates higher actual ET and subsequently higher drought stress 

when irrigation is not available to mitigate water stress.   

Sensitivity of seasonal or monthly crop response variables has not been investigated in previous 

studies. Understanding the importance of model parameters and processes they represent on inter-annual 

responses enhances the knowledge about interactions and feedback among various processes that must be 

adequately represented within the model structure (Passioura, 1996). The enhanced understanding is also 

vital for proper parameterization of models in response to the temporal variability of climatic conditions. 

Figure 4.2 shows the total sensitivity indices for months May, July and September in the rainfed treatment 

corresponding to early, middle and late growing season. Results are depicted for only important 

parameters with indices greater than 0.05 for monthly GLAI and aboveground biomass.  The ranking of 

indices of the two irrigated treatments is similar except the parameter GAPMNDD, which tends to be 
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more important in rainfed treatment since it represents the change of GDD requirement from anthesis to 

maturity under drought stress. The three most important parameters for grain yield (PPDF1, RUETB, and 

KLIGHT) were also important in most of months for GLAI and aboveground biomass. In some months, a 

single parameter was shown to be most influential. For example, in May, the sensitivity indices for 

DDEMERG for both GLAI and aboveground biomass were higher than 0.4, conforming to the intuition 

that early crop growth is largely affected by the time of emergence after planting while late emergence 

produces less biomass.  

4.4.2. Analysis of residuals from Sobol GSA 

Model residuals for the GSA simulation with lowest RMSE were analyzed to identify a proper 

likelihood function for uncertainty analysis (Figure 4.3). Heteroscedasticity was not detected in model 

residuals using Brown-Forsythe test (p values for GLAI and biomass were 0.246 and 0.462, respectively; 

grain yield was not test because of only six observations). Residuals for all three responses (monthly 

GLAI, monthly aboveground biomass, and annual grain yield) were normally distributed based on the 

chi-square test for normality at 0.05 significance level (p values for GLAI, biomass, and grain yield were 

0.918, 0.088, and 0.059, respectively). The partial autocorrelation plots of each year and treatment 

showed no significant correlation at any lag. The estimated optimal �� values corresponding to the GSA 

simulations with minimum RMSE were 0.51 m2 m-2, 119.30 kg ha-1, and 38.67 kg ha-1 for GLAI, 

aboveground biomass, and grain yield respectively.   

4.4.3. The influence of residual standard deviation on the performance of DREAM  

DREAM failed to converge within 50,000 model evaluations for the optimal �� values obtained 

from the GSA. Hence, the �� for the three response variables were altered at 20% incremental increase for 

all three responses until the convergence criteria were met. For computation simplicity, we did not 

investigate altering �� the three responses differently. Convergence was achieved when �� was increased 

to 160% of the optimal values. Figure 4.4 provides a summary of the results from uncertainty analysis 

using different values for ��. With increasing ��, DREAM generally tended to require lower number of 

model evaluations before convergence, while the spread of the 95% P.I. for all three response variables 
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increased substantially. Desired inclusion rate (above 95%) was obtained when 440% �� was used. As we 

know, �� which is the standard deviation of errors is unknown in most cases and need to be estimated. 

The errors which  �� represented including measurement, model input, and model structural errors, some 

of which are usually very difficult to quantify. Figure 4.5 shows the change of �� on log likelihood values 

(calculated using Equation 4.11) for two arbitrarily picked residual levels. The difference between the log 

likelihood values dramatically reduces when �� increases. Since the MCMC algorithm was based on 

maximizing log likelihood, there was more probability for model runs resulting large residuals. Moreover, 

log likelihood from different model responses (GLAI, biomass and grain yield) were combined in 

Equation 4.11. At small  ��, a very low log likelihood value from one response could dominate the overall 

combined likelihood (Figure 4.5); this effect would be much smaller when  �� is large. Large  �� results 

in more parameter samples potentially get accepted in the MCMC algorithm, which leads to less 

evaluations for convergence and larger spread of predictions. 

4.4.4. Posterior distribution of parameters 

Figure 4.6 depicts the posterior cumulative distribution function (CDF), i.e. nonexceedance 

probabilities, for the 12 important DayCent parameters from DREAM at three levels of �� (160%, 300%, 

and 440%). The straight line depicts the prior CDF from the uniform distribution.   The summary of the 

basic statistics and the optimal value for each parameter was shown in Table 4.3.  Interestingly, the 

standard deviation of the posterior distribution of most DayCent parameters increased monotonically with 

increasing �� values for yield, aboveground biomass, and GLAI responses. As discussed previously, 

when  �� is larger, more parameter samples would be potentially accepted in the MCMC algorithm, 

which leads to a parameter posterior distribution with larger standard deviation.   

Figure 4.7 illustrates the correlation structure between posterior parameters from DREAM 

analysis. A high positive correlation of 0.58 was evident between parameters PPDF1 and PPDF2, which 

is realistic because the two parameters jointly influence temperature effects on production (Equation 4.3). 

A high negative correlation was computed between parameters BMINI and KLIGHT with a correlation 
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coefficient of -0.57. The parameter BMINI determines the GLAI at early stages of growth, while GLAI 

and KLIGHT jointly influence canopy cover (Equation 4.2). Hence, the high negative correlation between 

BMINI and KLIGHT is to be expected. Another strong negative correlation was evident between RUETB 

and KLIGHT. This observation can be explained because to produce same amount of biomass when more 

light is intercepted (i.e. larger KLIGHT) the radiation use efficiency would have to decrease (i.e. smaller 

RUETB). High negative correlation was also computed between DDBASE and LEAFMX. When the time 

of maximum GLAI is delayed, the LEAFMX (GLWR at maximum GLAI) decreases because the linear 

function with negative slope used in the revised DayCent model (Chapter 2). The correlations between 

other parameters are relatively small and negligible.  

4.4.5. Predictive uncertainty for the training data 

Figure 4.8 shows the 95% P.I. for the response variables GLAI, aboveground biomass, and 

annual grain yield, with �� values (440% of optimal values) 2.24 m2 m-2, 230.96 kg ha-1, and 74.9 kg ha-1, 

respectively. For the two irrigated treatments (field experiments ICM and IMS), the inclusion rate was 

100% for aboveground biomass, GLAI and grain yield. In the rainfed treatment (field experiment RMS), 

two measurements in the late growing season were not covered, indicating that water stress was over-

predicted by the model. One of the reasons might be the precipitation inputs were not representative of the 

whole field as rainfall varies spatially. In this study, no input uncertainty was included because it would 

largely increase the complexity of the assessment. Also, DayCent includes a one-dimension water sub-

model with only daily precipitation input to simulate runoff and run-on within the filed, which may be 

inadequate in capturing all important processes, responses and interactions.  

The width of the P.I. was wider comparing to that of the training dataset presented by Dumont et 

al. (2014) for winter wheat using the STICS crop model and DREAM algorithm, although Dumont et al. 

(2014) did not report the corresponding inclusion rate. The width of the 95% P.I. for grain yield in the 

rainfed treatment was slightly narrower than those of the two irrigated treatments (Figure 4.8). The reason 

might be that the predictions were more limited by water stress than the uncertainty in parameters. 

4.4.6. Predictive uncertainty for the testing data 
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For each irrigation scenario in 12 years, distribution of predictions of yields were plotted using 

boxplot (Figure 4.10). In dry years (2001, 2002, 2003, 2005, and 2012; annual precipitation less than 60 

cm), the response of yield to irrigation was very clear (except 2005 which has large storage of water from 

previous year). The medium values of predicted yield of non-irrigated scenario were less than half of 

those of full irrigation scenario in extremely dry year of 2012. In wet years, there was little difference in 

predicted medium of yield between irrigation levels because precipitation could meet most water demand 

for crop growth. In these years, standard deviations of different irrigation levels within the same year was 

similar, while they were significantly different in dry years. There was a trend of increase in standard 

deviations as irrigation level increased in dry years. This may be due to the limiting effect of drought 

stress on production over-whelmed the effect of parameter uncertainty. In most years and irrigation levels, 

the predicted yields using the optimal parameter set were close to the medium but they are frequently 

outside the range of first and third quantiles. In all 100% irrigation level scenarios, the predictions using 

optimal parameter set were less the medium of predictions. It may be because irrigation used in the 

calibration dataset was slightly less than the actual demand; predictions of yield from some parameter sets 

were constrained by water stress. In our irrigation scenarios, as the constrain removed, over-predictions 

using these parameter sets were expected.  

Coefficient of variation (CV) which is a standardized measure of dispersion of a distribution, was 

shown in Figure 4.11 for each scenario of 12 years. Relative stable CV (slope of fitted line was -0.0002) 

were found regardless of dry and wet years and irrigation levels with a mean value of 0.097. The two 

obvious outliers in irrigation levels of 0 and 20% were from 2001, which likely be that it was the first 

year of simulation which started with the same soil water content in all irrigation levels and resulted in 

large amount of available water in the begging of growing season in low irrigation level scenarios. As CV 

was found relative stable, it indicated that in situation when uncertainty analysis was not performed due to 

reasons like lacking of computation power or regional analysis with large amount of simulations, a rough 

estimation of uncertainty interval can be made using predictions from optimal parameter set and the mean 

of CV.  
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4.5. CONCLUSION 

In this study, parameter sensitivity, parameter uncertainty, and predictive uncertainty were 

analyzed using DayCent model for one hybrid of corn. Among the 24 parameters tested, 

growth/production related parameters in DayCent had relative more impact on grain yield, GLAI, and 

biomass than ET and soil water related parameters at both rainfed and irrigated conditions. Additionally, 

sensitivity indices can be dramatically different for each month of simulated GLAI and biomass. Using 

the MCMC method DREAM, posterior distributions of 12 most sensitive parameters were obtained and 

used for estimation of predictive uncertainty. In the predictive uncertainty analysis, both inclusion rate 

and spread increased when the unknown parameter �� (in likelihood function) increased. Using 440% of 

the optimal ��, the inclusion rate of the training and testing datasets reached 95% and 96%, respectively. 

Scenarios of six levels of irrigation for 12-year period was created to quantify the predictive uncertainty 

of grain yield. The DayCent model generated yield response to irrigation levels was similar to previous 

field and modeling studies. Regardless of climatic differences in each year, relative stable CV averaging 

0.097 was found, which implies that the uncertainty of a water production function can be roughly 

estimated using a CV value if no resources available for a complete uncertainty analysis.  
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Table 4.1.  The input parameters for the sensitivity analysis. 
Name Definition Unit Lower 

bound 
Upper 
bound 

Reference 
# 

Reference 

Growth and production   

RUETB Radiation use efficiency for 
total biomass production  

g m-2 
langley-1 
PAR 

0.12 0.2 1 Chapter 1 and 2 

PPDF1 Optimal temperature for 
production  

(⁰C) 25 32 2 Necpálová et al. 
(2015) and 
Chapter 2 

PPDF2 Maximum temperature for 
production  

(⁰C) 35 50 3 Necpálová et al. 
(2015) and 
Chapter 2 

DDEMERG GDDs from planting to 
emergence 

Degree-day 50 120 4 Field 
measurement 

DDBASE GDDs from planting to 
anthesis 

Degree-day 600 900 5 Field 
measurement 

MXDDHRV The maximum number of 
degree days from anthesis to 
harvest 

Degree-day 650 850 6 Field 
measurement 

GAPMNDD1 The difference between 
MNDDHRV* and 
MXDDHRV 

Degree-day 0 600 7 Field 
measurement 

BMINI Initial biomass at emergence g m-2 0.1 2 8 Field 
measurement 

SLA Specific leaf area m2 g-1 0.015 0.025 9 Field 
measurement 

LEAFEMERG Intercept of the second stage 
linear equation at emergence 

g g-1 0.8 0.95 10 Field 
measurement 

LEAFMX Green leaf weight ratio at 
maximum GLAI 

g g-1 0.2 0.35 11 Field 
measurement 

LEAFPM Green leaf weight ratio at 
physiological maturity 

g g-1 0 0.1 12 Field 
measurement 

FRTC1 Fraction of C allocated to 
roots at planting, with no 
water or nutrient stress, 

g g-1 0.3 0.5 13 Developers’ 
suggestion 

FRTC2 Fraction of C allocated to 
roots when reaches 
maximum root depth 

g g-1 0.05 0.2 14 Developers’ 
suggestion 

FRTC3 Time after planting at which 
the FRTC2 value is reached 

days 70 110 15 Developers’ 
suggestion 

FRTC4 The maximum increase in 
the fraction of C going to the 
roots due to water stress 

g g-1 0.01 0.3 16 Developers’ 
suggestion 

HIMAX The maximum harvest index g g-1 0.5 0.6 17 Field 
measurement 

HIWSF Water stress factor on 
harvest index 

- 0.3 0.7 18 Developers’ 
suggestion 

KLIGHT Extinction coefficient of 
Beer's Law 

- 0.4 0.8 19 Developers’ 
suggestion 

ET and soil water   

KCET Crop coefficient for 
evapotranspiration 

- 0.9 1.3 20 Allen et al. 
(1998) and 
Suyker and 
Verma (2009) 

dmpflux The damping factor for soil 
water flux is a multiplier 
used to reduce (or dampen) 
the upward and downward 

- 1E-7 1E-5 21 Developers’ 
suggestion 
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soil water fluxes between 
two soil layers in a Darcy's 
Law calculation. 

BD Bulk density g m-3 1.3 1.5 22 USDA NRCS2 

Psand Sand content - 0.05 0.2 23 USDA NRCS 

Pclay Clay content - 0.27 0.4 24 USDA NRCS 

1. GAPMNDD is not a real parameter in the model. MNDDHRV is the minimum number of degree days from anthesis to 
harvest.  
2.  USDA Natural Resources Conservation Service soil texture triangle.  
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Table 4.2. Crop management for the three treatments of Pioneer 33B51 at Mead, NE.  
Treatment/

Year 
Plant 

population 
(plants ha-1) 

Planting 
time 

(DOY) 

Harvest 
time 

(DOY) 

Irrigation and 
rainfall from 
planting to 

harvest (cm) 
Irrigated continuous maize (ICM) 

2003 77,000 135 300 62.9 

2004 79,800 125 288 61.3 

Irrigated maize-soybean rotation (IMS) 
2003 78,000 134 296 63.3 

2005 81,000 122 290 63.6 

Rainfed maize-soybean rotation (RMS) 
2001 62,000 134 302 35.5 

2003 57,600 133 286 29.2 
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Table. 4.3 Summary of the statistics of parameter uncertainty analysis 
Parameter Optimal Mean SD 

RUETB 0.199 0.176 0.015 

PPDF1 27.370 27.261 1.694 

PPDF2 43.448 44.279 3.828 

DDEMERG 118.412 87.987 19.230 

DDBASE 604.618 707.255 68.320 

MXDDHRV 650.024 713.417 51.010 

GAPMNDD 440.270 258.663 165.800 

BMINI 0.268 1.040 0.530 

SLA 0.025 0.022 0.002 

LEAFMX 0.330 0.295 0.037 

LEAFPM 0.001 0.028 0.021 

KLIGHT 0.588 0.585 0.111 
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Fig. 4.1 Comparison of first order and total order sensitivity indices of Sobol for DayCent output of grain 
yield of maize of three treatments. Treatments were irrigated continuous maize (ICM), irrigated maize-
soybean (IMS) and rainfed maize-soybean (RMS). The numerical numbers are references for parameters 
in Table 4.1. Dashed line indicates the criterion for selection of important parameters. 
  



108 
 

 

 
Fig. 4.2 Total sensitivity indices for DayCent output of GLAI and aboveground biomass in May, July, 
and September representing early, middle, and late growing season, respectively. Only input parameters 
with total sensitivity indices higher than 0.05 in at least one month were shown.   
  

GLAI 

Aboveground Biomass 



109 
 

 

 
Fig. 4.3 Modeled residuals plotted against a) measured GLAI and b) measured aboveground biomass. The 
density plot of residuals for c) GLAI and d) aboveground biomass. 
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Fig. 4.4. Tradeoffs between spread, inclusion rate and DREAM conversion. 
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Fig. 4.5 Simple illustration of changes in log likelihood as a function of σ at two levels of residuals.  
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Fig. 4.6 The cumulative distribution functions (CDFs) for posterior distribution of the parameters for 
three levels of �� used in DREAM algorithm. The straight line depicts the prior CDF from the uniform 
distribution. 
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Fig. 4.7 The correlation of the parameters from the analysis using DREAM algorithm.  
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Fig. 4.8 Comparison of predictive 95% uncertainty (gray band) with measured data (dots) of the 
calibration dataset of aboveground biomass, GLAI and grain yields for 3 treatments in 3 years. Plus signs 
indicate the measurement 95% uncertainty intervals assuming 3% of coefficient of variation.  
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Fig. 4.9 Comparison of predictive 95% uncertainty (gray band) with measured data (dots) of the 
validation dataset of aboveground biomass, GLAI and grain yields for 3 treatments in 3 years. Plus signs 
indicate the measurement 95% uncertainty intervals assuming 3% of coefficient of variation. 
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Fig. 4.10 The box plots of the predicted grain yield using parameter sets from DREAM algorithm for six 
irrigation levels (percentage of the 100% full irrigation scenario) for 12 years at Mead, NE. The asterisk 
symbols represent the predictions using the optimal set of parameters. 
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Fig. 4.11 The coefficient of variation (CV) of the predicted grain yield of the four dry years at six 
irrigation levels (percentage of the 100% full irrigation scenario).  
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CHAPTER 5. COUNTY LEVEL CORN AND SOYBEAN YIELD PREDICTION FOR 

CONTINENTAL U.S. USING DAYCENT MODEL 

 

5.1. SUMMARY 

To provide better understanding and decision support, dynamic models have been used to access 

the regional impact of climate, soils and management on crop production, including climate change 

scenarios.  In making future projections, it is critical to first test the performance of these models on 

regional scale under current climate conditions. In this study, we used 15-year NASS county level yields 

of corn and soybean of the continental U.S. to validate the performance of a newly revised version of the 

DayCent ecosystem model. The National Resources Inventory survey data, high resolution weather data 

(PRISM) and SSURGO soil data were used to derive inputs in our simulations. The predictions of corn 

and soybean yields in the major production areas of U.S. were generally accurate, which reflected the 

differences of crop yields to climate, soil, and management drivers. In regions with a high variation in 

year-to-year yields, the interannual variability in yields was generally well simulated for both crops. 

Although there are challenges to be addressed, our result indicates that the DayCent model can be useful 

in accessing crop yield changes under scenarios of climate change in the future.     

5.2. INTRODUCTION  

Climate change is expected to dramatically affect various ecosystems on our planet, including 

agricultural cropping systems (Adams et al., 1990; IPCC, 1990). Dynamic simulation models have been 

used to access the impacts on crop production and other variables at regional scales which policy 

decisions are usually made on. To ensure reliable assessments of future impacts, methods of regional 

analysis should be first tested with current climatic conditions. 

Regional analysis covers large area with differences in climate, soil, and management practices. 

Previous work has demonstrated dynamic models could simulate the impact of climatic variations across 

climate regions especially on crop production (Kiniry et al., 1997; Muchow et al., 1990; Wilson et al., 
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1995). It has been shown that the effect of temperature and solar radiation explains the most variation of 

the potential production of crop in locations of different climate regions, along with the genetics of the 

crop varieties grown (Muchow et al., 1990). Drought and nutrient deficit are two of major stresses that 

account for actual production being less that the potential given by radiation and temperature conditions.  

Many studies have demonstrated accurate predictions on the effect of these two stresses (e.g. Ma et al., 

2003). However, previous studies also revealed that a limitation of most, if not all, models is the lack of 

accounting for stresses from disease, pests, and weeds, which can account for substantial loss of yields in 

some regions (Jagtap and Jones, 2002).  

Simulation models are usually parameterized and tested at field level with detailed input data; to 

simulate regionally, there are a lot of challenges. Among the biggest challenges are limitations with the 

spatial and temporal data including weather, soils, management, and crop variety which are the necessary 

inputs for simulation models. In some previous regional studies, weather data from representative 

meteorological stations were used (Hodges et al., 1987; Moen et al., 1994) while other studies have used 

gridded weather data from climate simulation (Irmak et al., 2005; Kucharik, 2003). The gridded weather 

data are preferable as they use interpolation methods to include locations without weather stations. Soil 

property data are usually from national or regional soil survey databases but researchers may choose to 

use one or a few dominant soils for a region or the actual soil type of each parcel of cropland in the 

database (Hartman et al., 2011; Moen et al., 1994). Management practices vary from farm to farm. 

Commonly, one or a few sets of representative practices were assumed for each defined sub-region 

(Jagtap and Jones, 2002). Although many varieties of a crop are available in a certain region, a theoretical 

variety is usually created in the simulations based on the assumption that high yielding varieties share 

similar traits (e.g. similar period from planting to maturity).  

Many studies have been conducted to evaluate and predict crop yields at different regional scales 

from state to world level (Irmak et al., 2005; Jagtap and Jones, 2002; Kucharik, 2003; Stehfest et al., 

2007; Tan and Shibasaki, 2003). Generally, simulations of small regions were conducted with higher 

resolution inputs like weather, soil types and details on management. In contrast, national simulations 
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typically use coarser resolution inputs and model outputs have often been validated using state level or 

national level of historical yield records. On one hand, we desire large region predictions to provide 

general estimates for policy and decision making. On the other hand, more fine-grained results are 

necessary to accurately represent the differences in sub-regions and to capture the pattern of changes, 

which aid in better understanding the limiting factors for crop yields in different regions. Also, more 

detailed inputs potentially provide better estimation (Moen et al., 1994). Because of the limitation in input 

data and computation power, there are few studies using high resolution input data for very large scale 

regional simulation like continental U.S.  

In this study, we utilized the National Resources Inventory (NRI) survey data and high resolution 

weather and soil data to produce yield estimation of corn and soybean that were then aggregated to 

county-scale for continental U.S using the DayCent ecosystem model. Our predictions were compared 

with NASS reported county level yields to help us assess the following questions: 

1) Is our dynamic model able to capture the variations in crop production across the climate regions 

of the continental U.S.?  

2) Was the interannual variability of crop yields well simulated?  

3) What are the major challenges that we are still facing in simulating crop yields of large regional 

scale in high resolution?  

5.3. METHOD 

5.3.1 The DayCent model 

The DayCent model is an ecosystem model designed to simulate terrestrial ecosystems of 

cropland, forest, grassland and savanna (Del Grosso et al., 2011; Del Grosso et al., 2000; Parton et al., 

1998). It produces a number of ecosystem output variables including plant productivity, water balance, 

soil carbon and nitrogen dynamics, nitrous oxide and methane emissions (Cheng et al., 2014; Del Grosso 

et al., 2006; Stehfest et al., 2007; Zhang et al., 2013a; Zhang et al., 2013b). The model runs on a daily 

time step using daily weather and also requires basic information on soil physical properties, plant type, 
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and management practices as input. In recent development, the simulation of crop canopy development 

has been substantially improved (Chapter 2) and this version of the model is used in this study.  

Within DayCent, the crop growth and production submodel is based on the radiation use 

efficiency approach. The amount of light intercepted by crop canopy is converted into biomass 

production. For models using such light interception approach, it was found that the accuracy of modeled 

canopy is very important (Adam et al., 2011). The new version of the DayCent model was implemented 

with a new canopy method that simulates canopy development using green leaf weight ratio (fraction of 

green leaf biomass to aboveground biomass) which is a function of growing degree days (GDD). The new 

version of model has been validated with experimental data of corn, soybean, and winter wheat in 

different regions, for its performance in simulating GLAI, biomass, grain yield, evapotranspiration (ET), 

and soil water (Chapter 2 and Chapter 3).  

5.3.2 Input Data 

The distribution of crop type and management data in our study were derived from the National 

Resources Inventory (NRI) survey which is a comprehensive long-term survey conducted by the U.S. 

Department of Agriculture’s Natural Resources Conservation Service (NRCS) providing information on 

the status, condition, and trends of land, soil, water, and related resources on the nation’s non-Federal 

lands (USDA, 2009). It was initiated in 1977 and more than 800,000 locations were sampled before 2007. 

A stratified two-stage random sample and design-based analysis strategy was used to represent the 

variation in the large scale (Nusser and Goebel, 1997). Majority sites were visited every 5 years during 

earlier years in the inventory but the frequency was changed after 2000 to sampling a rotating subset of 

points every year. An extensive amount of soils, land use, and land management data are collected each 

time.  

In this study, NRI locations that are identified as crop land (about one fourth of the total points) 

were simulated. The survey data were used to provide information on crop management history (1982-

2007) for generating the management schedules for DayCent runs. Simulated results of corn and soybean 

from 1993 to 2007 were extracted for analysis. The number of records in each county (location and year 
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combinations) from NRI survey was shown in Fig. 5.1. As NRI data do not include detailed management 

data like planting date and fertilization amount, we used survey data from other sources. Planting and 

harvesting dates were derived from the NASS database (NASS, 2010). To simplify the simulation, one set 

of representative planting and harvesting dates was used for each state (Appendix Table A1). For nutrient 

management practices, only nitrogen fertilization was simulated in this study and average nitrogen 

fertilizer rates for each state, subdivided for irrigated and non-irrigated crops, were derived from the 

chemical use survey from NASS (NASS, 2003). We created an initial scenario of applying the reported 

nitrogen rates (Appendix Table A1). In a second scenario, nitrogen application rates were doubled in 

order to eliminate nutrient stress on crop growth to evaluate simulated yields solely as a function of 

climatic (and radiation) drivers. Irrigation practice was simulated with the automatic irrigation option in 

DayCent model, assuming that full irrigation to meet crop water demand was the predominant practice.  

Automatic irrigation was assumed to be triggered when 60% of available water depleted in the root zone 

(Allen et al., 1998). Cropping histories before 1980, based on analyses of a variety of literature and 

historical databases developed for the US national greenhouse gas inventory (USEPA, 2015), were used 

for the model ‘spinup’ to establish the initial conditions for soil organic matter pools (Basso et al., 2011). 

Soil property data of each NRI location were derived from the Soil Survey Geographic database 

(SSURGO) which is the most detailed soil database of the continental U.S. with information collected at 

scales ranging from 1:12,000 to 1:63,360 (NRCS, 2009). Soil hydraulic parameters were estimated using 

the pedotransfer function from Saxton et al. (1986).  

Recent published 4 km gridded PRISM spatial climate datasets (PRISM Climate Group, 2015) 

were chosen as climate input data (including daily maximum temperature, minimum temperature, and 

precipitation). As solar radiation was not provided by PRISM, the DayCent model estimated it using a 

modified method described in Thornton and Running (1999). Reference ET was calculated using 

Hargreaves’ equation (Hargreaves and Allen, 2003).  
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5.3.3. Crop parameterization 

5.3.3.1 Crop groups 

We divided corn varieties into six groups and soybean into seven (Table 5.1). The groups of corn 

varieties were created according to the variety map from Dupont Pioneer Seed Company 

(https://www.pioneer.com/home/site/us/agronomy/library/compare-maturity-corn-products/; accessed 

05/06/2016). The grouping was based on comparative relative maturity (CRM) values (Table 5.1 and Fig. 

5.1a). The crop group map of soybean was adapted from Monsanto Company 

(https://www.aganytime.com/asgrow/mgt/planting/Pages/Soybean-Maturity.aspx; accessed 05/06/2016) 

which was based on the widely recognized soybean maturity group (MG) system (Table 5.1 and Fig. 

5.1b).  

5.3.3.2. Corn 

We created general crop parameter values to represent different crop groups (Table 5.1). The 

most sensitive and important crop parameters in DayCent (Chapter 4) were first calibrated using 

experimental sites data (Appendix Table A2). Based on the comparison between the experimental site 

yields and NASS reported yields at that location, we slightly adjusted the RUETB (radiation use 

efficiency for total biomass) parameter to reflect the lower yields obtained by farmers which are mainly 

due to suboptimal management (Grassini et al., 2011). Parameters from each experimental location were 

pooled and used to generate one set of parameters for each crop group.  

As previous studies showed, RUE is a highly sensitive parameter in DayCent (Zhang et al. in 

prep-b) and also in other models (DeJonge et al., 2012; Wang et al., 2005). Different from some crop 

models which only account for aboveground biomass production, RUE in DayCent is defined as the total 

biomass production (aboveground and belowground) per intercepted photosynthetically active radiation. 

As Stockle and Kiniry (1990) reported, 50% the variation of the field measured RUE can be explained by 

vapor pressure deficit (VPD); thus we developed an equation similar to the one in Kiniry et al. (1997) 

based on calibrated parameter values from dry and wet regions.  ܴܷܤܶܧ = Ͳ.ʹʹ − Ͳ.ͲͶ ∗  (5.1)                                                                                                         ܦܸܲ

https://www.pioneer.com/home/site/us/agronomy/library/compare-maturity-corn-products/
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where RUETB is the RUE for total biomass (g m-2 langley-1 PAR); VPD is the 33-year average vapor 

pressure deficit from May to September (growing season) in unit of kPa. For VPD less than 1.0 kPa, 

RUETB was set a constant of 0.18 g m-2 langley-1 PAR. Since PRISM data did not include VPD or 

humidity variables, to estimate VPD for entire U.S., we used the equations in Stockle and Kiniry (1990) 

which only requires daily mean and minimum temperature as input (Fig. 5.2c). 

Planting population for irrigated corn was assumed as 80,000 plants ha-1 at all locations (Grassini 

et al., 2009). For dryland corn, the planting population decreases from east of U.S. to the west along the 

VPD gradient (Grassini et al., 2009); so we used a linear equation to proximate the change in planting 

population.  ܱܷܱܲܲܫܶܣܮ ௣ܰ௟௔௡௧௜௡� = ͳͲͲͲ ∗ ሺ−ͷ ∗ ܦܸܲ + ͳ͵ሻ                             (5.2) 

where ܲ ܱܫܶܣܮܷܱܲ ௣ܰ௟௔௡௧௜௡� is in unit of plants ha-1. Because there is no explicit parameter for planting 

population in DayCent, we adjusted the parameter of initial biomass at emergence to reflect the 

difference.  

One major difference in parameters between crop groups was the values of phenological 

parameters. DayCent uses the GDD method for phenology development. As corn CRM values have been 

found to be linearly related to GDD (Kucharik, 2003), we assigned different GDD values for each crop 

group. We used values of GDD of physiological maturity ranging from 1050 ⁰C to 1600 ⁰C (base 

temperature 10 ⁰C and ceiling temperature 30 ⁰C) to represent the different maturity classes.  

5.3.3.2 Soybean 

Similar procedures were used to develop parameters for soybean. The field experimental data 

(Appendix A2) were mainly from the example datasets in the DSSAT crop model package (Hoogenboom 

et al., 2010) and GRACEnet online database (Del Grosso et al., 2013). As soybeans in U.S. are grown in 

relatively moist regions compared with corn and there are not enough field studies to assess whether RUE 

of soybean was also affected by VPD, we used one constant RUETB for all the simulations (Table 5.1). 

The calibrated RUETB values using field experiments were also slightly lowered to account for the lower 



131 
 

yields on farms (Jagtap and Jones, 2002). We did not simulate the difference of soybean planting 

population in irrigated and non-irrigated conditions as it is small (Chapter 2).  

5.3.4 Data Post-processing 

Simulations and post-processing were conducted on a mid-performance computer cluster (256 

processors and 463 GB memory). Simulated corn and soybean yields were extracted and summarized for 

each county. In the NRI survey design, each NRI location is associated with an expansion factor which 

indicates the area represented by the point location. The expansion factors were used to area-weight 

DayCent output for the locations within each county to derive county-level yield estimates. Since 

cropping patterns result in varying acreages across years, area-weighted yields were calculated for each 

crop and irrigation type combination on an annual basis. The area-weighted DayCent yield estimates were 

compared to NASS reported yields from 1993 to 2007 (last year of NRI records obtained). In many 

counties, irrigated and non-irrigated fields both exist but in some cases only total yields were reported by 

NASS and therefore we computed an area-weighted average for the county assuming that the survey 

design of the NRI locations reflects the proportion of fields with different irrigation management. For 

counties where irrigated yields are explicitly reported, we were able to compare the irrigated and non-

irrigated yields separately. To avoid problems with limited sample size, we filtered out the years with less 

than five NRI records in a county and those years for which the reported NASS crop area was less than 

1214 ha (3000 acres). Grain yield values were adjusted to 15.5% moisture content for corn and 13% 

moisture content for soybean. Maps were generated using the R program with package ggmap (Kahle and 

Wickham, 2013).  

5.4. RESULTS AND DISCUSSION 

5.4.1. Climate and NRI data 

Crop growth and production are largely affected by climate, with water and temperature as main 

regulators, and human management. The annual precipitation in the mainland U.S. east of the Rocky 

Mountains changes generally along an east to west gradient, decreasing from more than 120 cm in the 

east to less than 30 cm in the west (Fig. 5.2a). The average daily temperature during the growing season 
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(May to September) ranges from above 29 ⁰C in southern Texas to below 20 ⁰C in the states along the 

Canadian border with the exception of the Rocky Mountain area in the west (Fig. 5.2b). The estimated 

average VPD of the growing season shows a trend of gradual decrease from below 1.0 kPa in the north-

east to above 2.0 kPa in the arid region in the south-west (Fig. 5.2c).  

Climate substantially impacts the distribution of crop land. The majority of corn and soybean are 

grown in the wet regions (VPD less than 1.6 in Fig. 5.2c) which are east of the Rocky Mountain (Fig. 

5.1). There were considerably more NRI records (combination of location and year) of corn and soybean 

(more than 500 records in a county) in the “Corn Belt”, the major production region located in the 

Midwest (Fig. 5.1). Outside the Corn Belt, the planting areas were generally low, with only a few NRI 

records found in some counties. When the number of NRI records were low, the simulated results may 

not represent the actual distribution of soil type, management and weather in a county, potentially leading 

to biased predictions. 

5.4.2. Corn yield prediction 

The 15-year average of NASS reported yields of corn (irrigated and non-irrigated combined) was 

generally higher in the center of the Corn Belt (Fig. 5.3a), with yields of 9-11 Mg ha-1 in south Minnesota, 

Iowa, and Illinois where plentiful rainfall was received and temperature is optimal for growth. Relatively 

high yields were also achieved in the south Nebraska and north-east Colorado because of the application 

of irrigation in this semi-arid region. Low yield (less than 5 Mg ha-1) were observed in North Dakota and 

South Texas, likely due to sub-optimal temperature conditions. High total yields were also reported in 

south-west Kansas, north Texas, south New Mexico and California, due to the application of irrigation 

and long growing seasons. 

The modeled yields exhibited a very similar pattern to the NASS data (Fig. 5.3b). In most 

counties (91% in the major production states of Minnesota, Wisconsin, Michigan, Iowa, Illinois, Indiana, 

and Ohio), our predictions were within ±20% of the NASS reported 15-year average yields. And 63% of 

predicted yields were within ±10% of NASS reported yields. In the semi-arid region of eastern Colorado, 
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south west Nebraska, and north-west Kansas, the prediction was also relative accurate with majority 

counties’ yields within ±20%.  

In the states along the south-east coast (Virginia, North Carolina, and South Carolina), the no 

nitrogen stress scenario predicted corn yields that exceeded NASS results by more than 30% for most 

counties (Fig. 5.3c). However, the modeled yield prediction was much closer to NASS reported yield in 

the scenario using state average N fertilization rate (Fig. 5.3d). This suggests that the farmers might 

achieve higher yield by increasing the fertilization rate.  However, in an analysis of crop yield trends in 

the SE US, Jagtap and Jones (2002) suggested that typical yield losses due to insects, pathogens and 

weeds can be severe in this region, and thus farmers may fertilize less than required to achieve climatic-

potential yields.  

Our model also over-predicted yields for a strip of counties in north and middle of Texas (Fig. 

5.3c). This region is dominated with Houston Black-Heiden-Wilson soil series comprised of Vertisol soils 

which are subject to extensive, deep cracking when dry. Since the DayCent model does not simulate 

macro-pore flow which bypasses the root zone through cracks, the simulation of the water balance is 

difficult and soil available water was likely over-predicted, leading to an over-prediction of yield. In 

north-west Texas, yields were correctly predicted for the region of corn group 5 but over-estimated for 

corn group 6. The assumed boundary between group 5 and group 6 might not be correct as in reality a 

mixture of corn varieties of different CRM was planted in this region. In southern Kansas, irrigated corn 

yields were under-estimated by more than 20% (Fig. 5.4a). We found that it was likely that the RUETB 

was too low after the adjustment using VPD (high VPD region). We also predicted lower yield for middle 

and western North Dakota and higher yield in California, but the reasons are not clear.  

From eastern Nebraska to northeastern Colorado, precipitation gradually decreases from around 

80 cm to around 40 cm per year. Because many NRI records were available and there was minimal 

missing data in the NASS database for this region, we used the data from Nebraska and Colorado to 

examine the models capability to simulate water limitations on yield at regional scale.  As shown in Fig. 

5.4b, dryland yield was over-predicted in southern Nebraska with an apparent systematic bias.   Looking 
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at the 15-year average, the modeled yields were highly correlated with observed yields but predicted 

yields were consistently higher (Fig. 5.5a; R2= 0.89; RMSE= 1342.86 kg ha-1), with a slope of 1.12 and 

490.20 kg ha-1. Since the slope of the fitted regression was close to 1.0, applying a correction factor would 

eliminate the positive bias of our prediction which might be due to the yield losses in some years from 

severe hail damage, disease, and pest that were not simulated by the model. Looking at the yield trends 

over time in the counties in Nebraska and Colorado, the model captured the inter-annual variability with 

overall R2 of 0.58. We also calculated the statistics for each county (Appendix Table A3); there were 37 

counties whose minimum dryland yield in 15 years was lower than 30% of the observed maximum 

dryland yield (mainly caused by drought stress). Among them, 28 counties have R2 values of above 0.5, 

which suggest the inter-annual variability was well represented by the model. We also noticed that in 

some years, the model substantially over-predicted those in the no nitrogen stress scenario. In the scenario 

of using state level average nitrogen rate, yield values of those years were much lower. So it possible that 

in real world, dryland crops experienced some nutrient stress when there was a wet year with optimal 

temperature.  

Several authors have demonstrated that dynamic models could accurately simulate corn yield at 

different locations across climate regions (Kiniry et al., 1997; Wilson et al., 1995). Because of the 

limitation of input data for many simulation models, only a few studies have been conducted for large 

regional analysis for U.S. in the past.  In 1990s and before that, the resolution of input data of these 

studies was very low. The weather data were from meteorological stations in the study region and every 

station was assumed to represent a certain area in the simulations (Hodges et al., 1987; Kunkel et al., 

1991; Moen et al., 1994). These studies only used one or a few dominant soil types.  Therefore, most of 

these studies have produced more aggregate estimates and less spatial and temporal variability due to 

averaging over larger land areas and time spans.  In more recent years, gridded weather products and 

intensive soil survey data have become available. Kucharik (2003) used the ecosystem model Agro-IBIS 

to simulate corn yield for 13 states in Corn Belt with 0.5° grid (50 km) climate and soil data (derived from 

STATSGO database). In comparison with our simulation, with the exponential rise in computational 
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power, our regional analysis can be conducted at much higher resolution with detailed input. The PRISM 

weather data used in our study were at 4 km grid and the soil data were at scales ranging from 1:12,000 to 

1:63,360 compared to the scale of 1:250,000 of State Soil Geographic (STATSGO) data used in Kucharik 

(2003). In the Kucharik (2003) study, compared to 15-year average NASS data, the model predictions for 

rain-fed yields accounted for about 50% of the observed variability in yields (R2 = 0.46). 

5.4.3. Soybean yield prediction 

Compared to corn, there is almost no soybean grown in the semi-arid region in west Great Plain, 

with the bulk of production located in the Corn Belt and southeastern US. Observed 15-year average total 

yields (including irrigated and non-irrigated) from NASS were highest (above 3200 kg ha-1) in the middle 

and west of the Corn Belt (Fig. 5.6a). The soybean varieties used in these high yield regions were the MG 

II and III. Grain yields in the south and southeast were relative low, mainly in the range of 1200 to 2400 

kg ha-1. Maturity group V and above which are determinate varieties of soybeans were majorly grown in 

these regions (Bruns, 2009). As temperature is low and growing season is short in the north (North 

Dakota and northern Minnesota), soybean yields were less than 2400 kg ha-1.  

Our simulation captured the pattern of yield change in the main Corn Belt (Fig. 5.6b). Our 

predictions in 93% of the counties in the major production states (Minnesota, Wisconsin, Michigan, Iowa, 

Illinois, Indiana, and Ohio) were within ±20% of NASS reported yields and 64% of them were within 

±10% (Fig. 5.6c). These statistics were similar to those of our corn predictions. 

In Nebraska, high average total yields were found in both NASS data and our simulation. The 

high yields were associated with widely used irrigation systems in this region. The model correctly 

simulated the yields of irrigated and non-irrigated fields in this state with most counties within ±20% of 

NASS data (Fig. 5.7a and 5.7b). The model tended to slightly over-predict the yields of rainfed soybean 

(Fig. 5.8a).  Looking at year-to-year data, inter-annual variability which was mainly due to drought stress 

in Nebraska and that trend was also captured in the model (Fig. 5.8b; R2 = 0.39 and RMSE 481.42 kg ha-

1). For counties whose minimum annual yield was less than 40% of its maximum yields in the 15 years 

(14 counties), the R2 values were all above 0.55 (Appendix Table A4).  
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However, in the south and southeast, model predictions were more than 30% greater than 

reported yields for a majority of counties (Fig. 5.6c). In another study, Irmak et al. (2005) predicted 

regional soybean yields for Alabama, Arkansas, Georgia, Louisiana, Mississippi, North Carolina, and 

South Carolina using CROPGRO-Soybean model and found the also model over-predicted yields for all 

locations when no adjustment was used. Jagtap and Jones (2002) reported GROPGRO-Soybean largely 

over-predicted soybean yields in Georgia in comparison to NASS county yield but the predictions were 

much closer to the measured yield at an experiment site. The major causes of the actual yield loss in those 

years were disease, insects, weeds and operational problems which were not simulated in the model but 

commonly seen in this region. The soybean simulated in this region was MG V; however, in our 

calibration, no experimental site data contained soybean MG V, which was one of the reasons for the 

biased prediction. Another reason might be the crop group boundary was not drawn properly. In northern 

Arkansas and Tennessee where MG IV soybean was simulated, our modeled results were accurate. 

However, crossing the boundary, the difference in yields suddenly increased in the region specified for 

MG V (Fig. 5.6c).  While assuming such an abrupt geographic transition in crop variety deployment is a 

simplification needed to make a large regional simulation tractable, it is likely that in reality there is a 

gradual transition in the soybean maturity groups and in many places a mixture of maturity groups is 

grown. However, there is very limited data available documenting which varieties are actually grown in 

these transition areas.  In the past two decades, soybean production systems in the Mississippi Delta have 

been reported to change dramatically. An early soybean production system using MG III, MG IV and MG 

V varieties (planted from March to early May earlier than traditional May and June) has been developed 

and used; the high yields for Mississippi during 2000 to 2005 were suggested to be a result of adapting 

the early production system (Bruns, 2009). So by simulating mixtures of MG of soybeans with difference 

in planting dates, our predictions should improve.  

As soybean fixes nitrogen through symbiotic relationship with rhizobia bacteria, nitrogen 

fertilization requirement is generally very low. As a result, there was no substantial difference in yield 

predictions in our two nitrogen scenarios for soybean (Fig. 5.6c and 5.6d).  
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5.5. CONCLUSIONS 

Our predictions of corn and soybean in the major production areas of U.S. were generally 

accurate with the model capable of representing the geographically-distributed differences in crop yields 

due to climate, soil, and management. In our simulations, not only the county level 15-year average 

yields, but also the interannual variability was well simulated for both crops. The use of NRI survey data 

and high resolution and quality weather product and soil property database enabled us to capture the 

major changes in spatial and temporal input variables.  The results demonstrated that a general model 

parameterization, with a few broadly defined regional crop varieties, was sufficient to use the model for 

large regional analysis.  

In this study, we demonstrated that the RUE approach used in crop production modeling could be 

applied across broad climate regions. Although measured RUE values from field studies were 

dramatically different (Kiniry et al., 1989), the variation generally can be explained by the differences in 

temperature, VPD and growth stages in growing season (Muchow et al., 1990; Stockle and Kiniry, 1990). 

In comparison with other studies which have varied the RUE parameter of same crop substantially for 

different regions to match measured production (Cheng et al., 2014; Stehfest et al., 2007), the approach 

used in our study and a few others, of specifying a constant RUE parameter of potential production for 

each species of crop, is more appropriate and robust (Kiniry et al., 1997; Soltani and Sinclair, 2012; 

Wilson et al., 1995). 

We also identified several challenges in large regional simulations of crop production. First, it is 

difficult to draw distinct ‘monolithic’ crop variety boundaries; in reality, a mixture of different maturity 

classes of crops is used within a particular region. Second, as identified by some previous studies (Irmak 

et al., 2005; Jagtap and Jones, 2002), the loss of yield caused by weed, disease, pest, lodging, and hail 

damage is not well accounted for in models. We chose to adjust RUE parameter to partially correct the 

bias by comparing well managed experimental field yields to farmers’, but a more accurate way of 

estimating these stresses is needed. Third, we found regional prediction of crop yields is associated with 
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uncertainty from a lot of sources. There is a big challenge to quantify the uncertainties from model inputs, 

parameters, and model structure.  

In summary, as we demonstrated, a dynamic model is able to predict the variations of crop yields 

under current climate at national scale. Although more work is needed to model crop response to the 

rising of CO2 and possible management changes, our result suggests the DayCent model can potentially 

be used to predict regional-scale yield changes under scenarios of climate change in the future.  
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Table 5.1. The crop groups for corn and soybean and major parameters used for each crop group (values 
of RUETB and BMINI of corn is conditioned for VPD under 1.0). Definitions and units of these 
parameters are in Appendix Table A3. 

 Corn  Soybean 

Crop group 1 2 3 4 5 6  0 1 2 3 4 5  6 
CRM or 
MGƗ 68 - 77 78 – 87 88 – 97 98 – 105 106 – 115 116+  00 & 0 I II  III  IV V 

VI & 
VII 

DDBASE 600 600 700 700 800 850  500 600 700 700 800 800 900 
MXDDHRV 450 550 550 650 700 750  550 600 600 700 700 800 900 
DDLAIMX 600 600 700 700 800 850  700 800 900 1000 1100 1200 1300 
BMINI 0.3 0.3 0.3 0.3 0.3 0.9  1 1.5 1.5 1 1.5 2 2 
SLA 0.02 0.02 0.02 0.02 0.02 0.02  0.025 0.025 0.025 0.025 0.025 0.03 0.03 
LEAFCL 0.9 0.9 0.9 0.9 0.9 0.9  0.8 0.8 0.8 0.8 0.8 0.75 0.75 
LEAFEMER
G 0.9 0.9 0.9 0.9 0.9 0.9  0.85 0.85 0.85 0.85 0.85 0.85 0.85 
LEAFMX 0.25 0.25 0.25 0.25 0.25 0.25  0.35 0.35 0.35 0.35 0.35 0.3 0.3 
RUETB 0.17 0.17 0.17 0.17 0.17 0.18  0.09 0.09 0.09 0.09 0.09 0.09 0.09 
PPDF(1) 27 27 27 27 27 27  25 25 25 25 25 25 25 
PPDF(2) 45 45 45 45 45 45  40 40 40 40 40 40 40 
KLIGHT 0.55 0.55 0.55 0.55 0.55 0.55  0.5 0.5 0.5 0.5 0.5 0.5 0.5 
HIMAX 0.55 0.55 0.55 0.55 0.55 0.55  0.4 0.4 0.4 0.4 0.4 0.4 0.4 
HIWSF 0.7 0.7 0.7 0.7 0.7 0.7  0.5 0.5 0.5 0.5 0.5 0.5 0.5 
KCET 1.2 1.2 1.2 1.2 1.2 1.2  1.15 1.15 1.15 1.15 1.15 1.15 1.15 

Ɨ The comparative relative maturity for corn or maturity group class for soybean.  
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Fig. 5.1 The number of NRI records (combination of location and year) in each county used in our 
simulation for a) corn and b) soybean. Counties with NRI records less than 5 were filtered out. The gray 
lines are the boundaries of crop groups and the numeric numbers indicate the crop group.  
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Fig. 5.2 The maps of a) annual total precipitation, b) growing season average temperature (May to 
September), and c) growing season average VPD. Data were derived from PRISM dataset (1981-2013). 
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Fig. 5.3 The maps of a) 15-year average NASS yields of corn, b) simulated average yields of the same 
period, c) the percentage difference of simulated yields to NASS yields of the double nitrogen rates 
scenario, and d) the percentage difference of simulated yields to NASS yields of the average nitrogen 
rates scenario. 
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Fig. 5.4 The maps of a) the percentage difference of simulated irrigated yields to NASS irrigated corn 
yields of the double nitrogen rates scenario and b) the percentage difference of simulated non-irrigated 
yields to NASS non-irrigated yields of the double nitrogen rates scenario. 
 
  

a
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Fig. 5.5 Relationship a) between 15-year average NASS corn yields of counties in Nebraska and Colorado 
(across moisture gradient) and simulated yields and b) between NASS yields of individual years and 
simulated yields. 
  

a b



145 
 

 

 

 

 
Fig. 5.6 The maps of a) 15-year average NASS yields of soybean, b) simulated average yields of the same 
period, c) the percentage difference of simulated yields to NASS yields of the double nitrogen rates 
scenario, and d) the percentage difference of simulated yields to NASS yields of the average nitrogen 
rates scenario. 
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Fig. 5.7 The maps of a) the percentage difference of simulated irrigated yields to NASS irrigated soybean 
yields of the double nitrogen rates scenario and b) the percentage difference of simulated non-irrigated 
yields to NASS non-irrigated yields of the double nitrogen rates scenario. 
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Fig. 5.8 Relationship a) between 15-year average NASS soybean yields of counties in Nebraska and 
simulated yields and b) between NASS yields of individual years and simulated yields.  
  

a b
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APPENDIX  

 

Table A1. Management practices of corn and soybean used in simulations for each state.  
 Corn  Soybean 
State Planting 

date 
Harvest 
dateƗ 

Fertilizati
on rate of 
irrigated 
fields (kg 
N ha-1) 

Fertilizati
on rate of 
non-
irrigated 
fields (kg 
N ha-1) 

 Planting 
date  

Harvest 
date  

Fertilizati
on rate of 
irrigated 
fields (kg 
N ha-1) 

Fertilizati
on rate of 
non-
irrigated 
fields (kg 
N ha-1) 

AL 4/9 8/31 20.4 13.8  6/9 11/12 2 2 
AZ 4/23 10/16 18.3 7.8      
AR 4/13 9/7 20.4 13.8  5/29 10/21 4.8 3.2 
CA 5/16 10/16 18.9 14.7      
CO 5/9 10/26 18.3 7.8      
DE 5/8 10/2 18.9 8.7  6/13 11/2 2.1 2.1 
FL 4/4 8/21 20.4 13.8  5/23 11/4 2 2 
GA 4/6 9/3 20.4 13.8  6/6 11/16 2 2 
ID 5/15 10/30 18.3 7.8      
IL  5/7 10/14 20.2 17.7  5/25 10/11 1.8 1.9 
IN 5/16 10/21 20.2 17.1  5/23 10/16 2 2 
IA  5/6 10/22 20.2 15  5/20 10/9 1.2 1.2 
KS 4/30 10/2 21.1 12  6/2 10/16 2.5 1.8 
KY 5/4 10/1 18.9 17.9  6/6 10/27 3.7 3.7 
LA 3/29 8/22 20.4 13.8  5/14 9/29 2.9 1 
MD 5/10 10/7 18.9 8.7  6/11 11/1 2.1 2.1 
MI 5/14 11/2 15.9 13.7  5/25 10/18 1.8 1.8 
MN 5/7 10/23 15.9 13.6  5/20 10/8 1.9 1.9 
MS 4/10 9/7 20.4 13.8  5/13 10/7 1.8 1.5 
MO 5/4 10/6 20.5 15.5  6/3 10/21 2.2 2.1 
MT 5/16 11/13 18.3 7.8      
NE 5/6 10/22 18 11.3  5/21 10/11 1.4 1.5 
NJ 5/10 10/21 18.9 8.7  6/10 10/30 2.1 2.1 
NM 4/30 10/15 18.3 7.8    2.1 2.1 
NY 5/24 10/29 18.9 7.4  6/5 10/26 2.5 2.5 
NC 4/17 9/25 18.9 14.4  6/9 11/22 1.9 2.1 
ND 5/15 10/29 18.7 13.3  5/24 10/7 1.3 1.3 
OH 5/9 10/31 20.2 18  5/16 10/15 2 2 
OK 4/20 9/18 20.6 12.6  5/27 10/21 2.1 2.1 
OR 5/15 11/4 18.9 14.7      
PA 5/17 11/2 18.9 9.7  5/30 10/30 2 2 
SC 4/4 9/7 20.4 13.8  6/11 11/25 1.6 1.8 
SD 5/14 10/26 18.7 12.5  5/28 10/11 2.3 2.3 
TN 4/22 9/20 18.9 16.7  6/4 10/28 2 2 
TX 4/7 9/5 20.6 12.6  4/29 9/19 1.8 1.8 
UT 5/10 10/20 18.3 7.8      
VA 4/30 10/2 18.9 16.7      
WA 5/5 10/25 18.9 14.7  6/8 11/6 3.2 3.2 
WV 5/18 10/25 18.9 16.7  6/4 11/2 1.7 1.7 
WI 5/14 10/31 15.9 10.8  5/24 10/16   
WY 5/12 11/5 18.3 7.8      

Ɨ In our simulations, if the harvest date is before crop maturity (based on GDD), harvest will be postponed until maturity.
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Table A2. Experimental sites used for initial calibration of the model. 
State City Latitude Longitude Records (Yr * 

location) of 
corn 

Records (Yr * 
location) of 
soybean 

In-season 
measurem
ent 

Source 

CO Fort Collins 40.7 -105.0 15 0 No GRACEnet 
databaseƗ 

IA Ames 42.0 -93.8 4 0 No GRACEnet 
database 

KY Bowling Green 36.9 -86.5 6 0 No GRACEnet 
database 

MN Morris 45.7 -95.8 8 8 No GRACEnet 
database 

NE Mead 41.2 -96.4 17 0 No GRACEnet 
database 

SD Brookings 44.4 -96.8 5 5 No GRACEnet 
database 

AL Shorter 32.4 -85.9 
3 0 No Causarano et 

al.(2007) 
IL  Bondville  40.0 -88.3 3 2 Yes Chapter 1 
NE Mead 41.2 -96.5 26 10 Yes Chapter 1 
CO Akron 40.2 -103.1 3 0 Yes Chapter 2 
CO Fort Collins 40.7 -105.0 5 0 Yes Chapter 2 
CO Greeley 40.5 -104.6 4 0 Yes Chapter 2 
FL Gainesville 29.6 -82.4 0 12 Yes DSSAT 

databaseǂ 
IW Ames 42.0 -93.5 0 4 Yes DSSAT 

database 
MN Morris 45.6 -95.7 0 1 Yes DSSAT 

database 
OH Wooster 40.8 -81.9 0 2 Yes DSSAT 

database 
MO Centralia 39.2 -92.2 0 3 Yes Wang et al. 

(2003) 
Ɨ GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) is a USDA-ARS research program 
(Del Grosso et al., 2013). 
ǂ DSSAT database is within DSSAT crop model package (Hoogenboom et al., 2010). 
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Table A3.  The definitions and units of parameters in Table 5.1.  
Name Definition Unit 

DDBASE GDD from planting to anthesis ⁰C 

MXDDHRV GDD from anthesis to harvest without water stress ⁰C 

DDLAIMX GDD from planting to maximum GLAI ⁰C 

BMINI Initial biomass at emergence g m-2 

SLA Specific leaf area m2 g-1 

LEAFEMERG Intercept of the second stage linear equation at 
emergence 

g g-1 

LEAFMX Green leaf weight ratio at maximum GLAI g g-1 

RUETB Radiation use efficiency for total biomass production  g m-2 langley-1 PAR 

PPDF(1) Optimum temperature for production for 
parameterization of a Poisson Density Function curve 
to simulate temperature effect on growth 

⁰C 

PPDF(2) Maximum temperature for production for 
parameterization of a Poisson Density Function curve 
to simulate temperature effect on growth 

⁰C 

KLIGHT Extinction coefficient of Beer's Law - 

HIMAX The maximum harvest index g g-1 

HIWSF Water stress factor on harvest index - 

KCET Crop coefficient for evapotranspiration - 
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Table A4.  The statistics of predicted annual dryland yields (from 1993 to 2007) for counties in Nebraska. 
Observed yields were from NASS. 

 Corn  Soybean 
County R2 RMSE 

(kg ha-1) 
ratio of minimum 
observed yield to 
maximum 

 R2 RMSE 
(kg ha-1) 

ratio of minimum 
observed yield to 
maximum 

Adams 0.56 2433 0.22  0.65 529 0.35 
Antelope 0.17 2191 0.45  0.76 432 0.48 
Boone 0.16 2428 0.47  0.64 322 0.47 
Boyd 0.61 2132 0.21  0.55 634 0.36 
Buffalo 0.79 2043 0.16  0.90 503 0.35 
Burt 0.03 2101 0.60  0.06 416 0.63 
Butler 0.31 2278 0.34  0.51 396 0.48 
Cass 0.21 1970 0.30  0.26 424 0.53 
Cedar 0.02 1694 0.51  0.31 385 0.64 
Chase 0.78 807 0.29     
Clay 0.58 2497 0.26  0.55 580 0.36 
Colfax 0.21 2184 0.43  0.19 421 0.57 
Cuming 0.15 2223 0.47  0.25 443 0.57 
Custer 0.60 1266 0.23     
Dakota 0.07 2608 0.60  0.04 478 0.62 
Deuel 0.82 1236 0.25     
Dixon 0.00 2685 0.43  0.27 402 0.62 
Dodge 0.15 1923 0.51  0.07 466 0.60 
Douglas 0.25 1917 0.49  0.33 454 0.51 
Dundy 0.54 1440 0.11     
Fillmore 0.63 2189 0.24  0.79 474 0.42 
Franklin 0.70 1608 0.21  0.87 486 0.28 
Frontier 0.46 2142 0.44     
Furnas 0.60 1331 0.18  0.76 760 0.30 
Gage 0.12 2769 0.37  0.26 569 0.46 
Gosper 0.83 1603 0.23     
Greeley 0.58 2561 0.25     
Hall 0.67 2406 0.22     
Hamilton 0.59 2475 0.26  0.85 445 0.34 
Harlan 0.61 1842 0.19     
Hayes 0.48 1596 0.29     
Hitchcock 0.76 852 0.24     
Holt 0.15 1220 0.40  0.01 394 0.50 
Howard 0.73 1814 0.29     
Jefferson 0.54 2236 0.24  0.33 492 0.47 
Johnson 0.35 2579 0.18  0.39 644 0.44 
Kearney 0.54 2414 0.25  0.76 497 0.32 
Keith 0.44 1261 0.26     
Kimball 0.00 1433 0.78     
Knox 0.10 1718 0.42  0.42 381 0.67 
Lancaster 0.35 1686 0.39  0.27 408 0.49 
Lincoln 0.54 824 0.41     
Madison 0.13 2257 0.53  0.14 512 0.61 
Merrick 0.50 1245 0.33     
Nance 0.50 2046 0.20  0.60 542 0.28 
Nemaha 0.46 1679 0.27  0.43 404 0.43 
Nuckolls 0.74 1790 0.24  0.76 558 0.26 
Otoe 0.39 2062 0.19  0.35 453 0.45 
Pawnee 0.27 2606 0.25  0.34 535 0.47 
Perkins 0.60 1097 0.33     
Phelps 0.68 2667 0.20  0.85 639 0.42 
Pierce 0.11 2151 0.47  0.51 346 0.53 
Platte 0.24 2333 0.43  0.42 410 0.49 
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Polk 0.55 2154 0.20  0.75 415 0.33 
Red Willow 0.58 1496 0.20     
Richardson 0.38 1414 0.40  0.31 433 0.51 
Saline 0.44 2598 0.31  0.49 547 0.41 
Sarpy 0.33 1863 0.29  0.44 435 0.47 
Saunders 0.23 1834 0.44  0.25 387 0.47 
Seward 0.30 2170 0.26  0.59 395 0.46 
Sherman 0.56 2830 0.30  0.54 787 0.48 
Stanton 0.06 2499 0.44  0.16 485 0.52 
Thayer 0.64 1892 0.29  0.59 501 0.40 
Thurston 0.00 2461 0.54  0.09 453 0.59 
Valley 0.53 2985 0.33     
Washington 0.15 1821 0.51  0.05 530 0.58 
Wayne 0.08 2649 0.44  0.39 420 0.51 
Webster 0.74 2009 0.19  0.78 546 0.30 
York 0.33 2384 0.22  0.60 431 0.32 
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