
 
 

 
 

THESIS 

 

EFFECT OF GENOTYPE, STORAGE AND PROCESSING ON THE 

POLYPHENOLIC CONTENT, COMPOSITION, IN VITRO ANTI-CANCER 

ACTIVITY AND SENSORY ATTRIBUTES OF COLORED-FLESH POTATOES 

 

 

Submitted by 

Gaurav Madiwale 

Department of Food Science and Human Nutrition 

 

In partial fulfillment of the requirements 

For the Degree of Master of Science 

Colorado State University 

Fort Collins, Colorado 

Spring 2012 

 

 

Master’s Committee: 

Advisor: Jairam Vanamala 

Co-Advisor: Martha Stone 

Lavanya Reddivari 

Marisa Bunning 

David Holm 

 

 



 
 

 
 

 

 

 

 

 

 

Copyright by Gaurav Madiwale 2012 

All Rights Reserved 

 

 

 

 

 

 

 

 

 



 
 

ii 
 

ABSTRACT 

 

EFFECT OF GENOTYPE, STORAGE AND PROCESSING ON THE 

POLYPHENOLIC CONTENT, COMPOSITION, IN VITRO ANTI-CANCER 

ACTIVITY AND SENSORY ATTRIBUTES OF COLORED-FLESH POTATOES 

 

The potato (Solanum tuberosum L.) is the world’s third largest food crop with per 

capita consumption of ~126 lbs. annually in the US. The 2010 US Potato Board Report 

revealed that over the past ten years, while consumption of traditional potatoes (mashed, 

baked, fried, steamed, boiled and french fries) declined, specialty/colored potato 

consumption increased by 17%, possibly due to their putative health benefits. 

Specialty/colored potatoes, which are rich in anti-proliferative and pro-apoptotic 

anthocyanins and/or carotenoids, can be an attractive “delivery system” for these 

bioactive compounds in humans. However, colored potatoes can undergo 3-6 months of 

storage before processing/consumption and the effect of storage and processing on their 

anti-cancer properties remains unknown. We hypothesized that potatoes retain 

polyphenolic content (TP), antioxidant activity (AA) and chemopreventive properties 

against early stage (HCT-116) and advanced stage (HT-29) human colon cancer cells 

even after 3 months of storage and processing (baking and chipping). To test this 

hypothesis, we utilized white-, yellow- and purple-fleshed potato clones and tested their 

phenolic (Folin-Ciocalteu) and anthocyanin (pH-differential) content, antioxidant activity 

(ABTS and DPPH), metabolite profile (UPLC-MS), anti-cancer properties (cell 

proliferation via cell counting and BrdU assays, and apoptosis via Caspase-Glo 3/7 
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assay), and sensory attributes (9-point hedonic scale). Purple-fleshed potatoes had higher 

phenolic content and antioxidant activity as compared to their white- and yellow-fleshed 

counterparts. The antioxidant activity of all clones increased with storage; however, an 

increase in total phenolic content was observed only in purple-fleshed clones. Baking 

caused minimal losses while chipping reduced the phenolic and anthocyanin content, and 

antioxidant activity of the potatoes. With storage, total phenolic and anthocyanin content, 

and antioxidant activity increased in baked samples while in the chipped samples, they 

remained constant. Principal component analysis of approximately 1600 peaks obtained 

by UPLC-MS analysis revealed that storage caused a shift in the metabolite profiles of 

potato clones. In general, ethanol extracts of uncooked, baked and chipped samples 

suppressed proliferation and elevated apoptosis (p < 0.05) in human colon cancer cell 

lines (HCT-116, HT-29). However, chipped samples did not have any effect on HT-29 

cell lines. Anti-proliferative and pro-apoptotic properties of baked potatoes were similar 

to that of raw potatoes while chipping caused a significant reduction in the biological 

activity. Storage generally negatively affected the anti-cancer properties of the potato 

extracts. Sensory analysis revealed comparable acceptance of purple-fleshed baked and 

chipped potatoes when compared with traditional cultivars. Consumers were willing to 

pay a premium for colored-flesh potatoes if they were educated on their potential health 

benefits. Phenolic content and antioxidant activity of purple-fleshed potatoes, after 

baking, were comparable with those of anthocyanin-rich berries. Hence, locally grown 

purple-fleshed potatoes can be a healthier choice as they possess greater levels of 

bioactive compounds and in vitro anti-cancer properties even after processing as 

compared to their white- and yellow-fleshed counterparts. 
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CHAPTER I 

INTRODUCTION 

Potato (Solanum tuberosum L.) is the fourth-most extensively grown and 

consumed food crop across the world after wheat, rice and maize (FAO 2009). Potato is a 

carbohydrate-rich, versatile vegetable prepared and served in a variety of ways world-

wide. In the developing world, the poorest and undernourished families depend on 

potatoes as a major source of food and nutrition because of its highly available dietary 

energy. The potato is inexpensive to buy and easy to grow, and can give stable yield 

under conditions where other crops might fail. It is suitable to places where land is 

limited and labor is plentiful; conditions which characterize most of the developing parts 

of the world (Lutaladio and Castaldi 2009). Freshly harvested potatoes contain 

approximately 80% water and 20% dry matter. Starch accounts for 60-80% of the total 

dry matter, and the protein content is similar to that of cereals on a dry-weight basis 

(Lutaladio and Castaldi 2009). Potatoes are a rich source of iron and this, coupled with 

the presence of high vitamin C content, helps in its absorption. It is also a good source of 

B-complex vitamins, potassium, phosphorus and magnesium (Burlingame et al. 2009). In 

addition, the potato has no fat and is source of many phytochemicals. Potato by itself is 

not very high in these phytochemicals, however, due to its high consumption it is 

considered the third largest source of phenolic compounds in the human diet after 

oranges and apples (Chun et al. 2005). Thus potatoes can act as ‘delivery mechanisms’ 

for bioactive compounds. Colored-flesh potatoes are gaining popularity due to the 

potential health benefits of anthocyanins. 
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Previous researchers used either uncooked or baked potatoes with little emphasis 

on the effect of storage and processing on biological activity. It is known that storage  

and processing changes the physical and chemical composition of foods (Spanos et al. 

1990; Price et al. 1997), thus, affecting their antioxidant activity (Nicoli et al. 1999; 

Dewanto et al. 2002). Raw potato phenolic content has been extensively studied (Al-

Saikhan et al. 1995; Reyes et al. 2005; Stushnoff et al. 2008; Rumbaoa et al. 2009), but 

potatoes are almost always consumed after processing (baked, chipped, fried, boiled or 

microwaved) making it critical to understand the effect of such processing techniques on 

the activity and composition of bioactive compounds in potatoes. Potatoes are stored for 

months, sometimes up to one year before they are processed (Herrman et al. 1996). 

Indeed, post-harvest processes might suppress the in vivo anti-colon cancer activity of 

fruits and vegetables (Vanamala et al. 2006). Hence, it is necessary to determine the 

combined effects of storage and processing on the anti-cancer activity of potatoes. For 

consumers, sensory perception is of utmost importance. Hence, it is necessary to 

understand how inter-clonal differences, post-harvest storage and total phenolic content 

influence the sensory parameters of baked and chipped potato samples. Berries are the 

most popular source of anthocyanins, which have many health-benefits associated with 

them (Meyers et al. 2003; Bagchi et al. 2004; Olsson et al. 2004). However, many 

populations are unable to consume berries due to their high cost with respect to other 

fruits and vegetables, including potatoes. Hence, it is important to find how berries 

compare with colored-flesh potatoes. 
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Objectives: 

1. Determine the effect of genotype, storage time and processing (baking and 

chipping) on the total phenolic content, antioxidant activity and anthocyanin 

content of potato cultivars using spectrometric methods. 

2. Evaluate the effect of genotype on phenolic composition.  Screen the potato 

cultivars based on the techniques mentioned in Objective 1 and perform UPLC-

MS analysis on the promising samples. 

3. Study the effect of uncooked and processed potato phenolics on cell proliferation 

and apoptosis of HCT-116 and HT-29 human colon cancer cell lines. 

4. Conduct sensory analysis to understand how inter-clonal differences, post-harvest 

storage and total phenolic content influence the sensory parameters of baked and 

chipped potato samples. 

5. Quantify the phenolic and anthocyanin content of popular anthocyanin-rich 

berries such as blueberries, strawberries, raspberries and grapes, and compared 

them with baked and chipped colored-flesh potatoes. 
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CHAPTER II 

REVIEW OF LITERATURE 

1. Introduction to the Potato 

The United Nations declared 2008 as the ‘International Year of the Potato’ to 

increase the world’s focus on the potato for its role in providing food security and 

alleviating poverty. In the developing world, the poorest and undernourished families 

depend on potatoes as a major source of food and nutrition because of its highly available 

dietary energy. The potato is cheap and easy to grow and can give stable yield under 

conditions where other crops might fail. It is suitable to places where land is limited and 

labor is plentiful; conditions which characterize most of the developing parts of the 

world. Potatoes are a rich source of vitamins, minerals and phenolic compounds that play 

an important role in human health. Table 2.1. shows the chemical composition of 

potatoes (Les c y s i 1989). The phenolics, which are secondary metabolites, have been 

the subject of interest for researchers because of their promising role as bioactive 

compounds. 

1.1. History and Significance of the Potato 

The first potatoes were grown almost 7000 years ago near Lake Titacaca in the 

Andes region of Peru (Spooner et al. 2005). The potato soon became a part of Andean 

culture and religion with many myths and legends surrounding it. The Spanish introduced 

the potato to Europe in the 16
th
 century when they arrived in Peru in search of gold. 

Before potatoes became a staple food across Europe, they were considered fit only for 

consumption by the famished humans and livestock. Steadily their consumption 

increased all over Europe and this eventually spread all over the world. Potatoes played a 



 
 

5 
 

Table 2.1. Typical composition of potato tubers (Les c y s i 1989) 

Substance 
Content (%) 

Range Mean 

Dry matter   13.1 - 36.8 23.7 

Starch   8.0 - 29.4 17.5 

Reducing sugars  0.0 - 5.0 0.3 

Total sugar   0.05 - 8.0 0.5 

Crude fiber 0.17 - 3.48 0.71 

Pectic substances 0.2 - 1.5 - 

Total nitrogen   0.11 - 0.74 0.32 

Crude protein (total nitrogen x 6.25)   0.69 - 4.63 2.00 

Protein nitrogen in total nitrogen 27.3 - 73.4 54.7 

Amide nitrogen 0.029 - 0.052 - 

Amino acid nitrogen 0.065 - 0.098 - 

Nitrates 0.0 - 0.05 - 

Lipids  0.02 - 0.2 0.12 

Ash   0.44 - 1.87 1.10 

Organic acids  0.4 - 1.0 0.6 

Ascorbic acid and dehydroascorbic acid* 1.0 - 54.0 10.0 - 25.0 

Glycoalkaloids* 0.2 - 41.0 3.0 - 10.0 

Phenolic compounds* 5.0 - 30.0 - 
 *In mg/100 gfw 

key role in preventing scurvy in early European sailors and prevented deaths due to 

starvation. These same sailors, who carried potatoes as a major food source, introduced 

potatoes to China, India and Japan in the 17
th
 century. In Europe and North America, the 

initially cultivated potatoes were grown from a few, genetically similar cultivars. As a 

result, the potatoes became vulnerable to pest and disease attack. In the 1840s, potato 

blight hit Europe and spread virally across the continent. The Irish working class was 

solely dependent on potatoes as the primary source of food. When the crop failed, it led 

to famine conditions leading to the death of more than a million people and massive 

migrations to Britain and North America. After this Great Irish Famine, potato was 

considered a crop suitable only for livestock across America till an effective fungicide 
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against blight was discovered by French botanist Alexander Millardet in 1883 (USPB 

2011). 

Potatoes arrived in the United States in 1621 as a gift sent by the Governor of 

Bermuda, Nathaniel Butler, to Francis Wyatt the Governor of Virginia. The initial 

cultivation was done in New Hampshire by early Scottish-Irish immigrants. There on, the 

crop spread all across America. Idaho, currently the largest producer of potatoes in the 

United States, started producing potatoes in 1836. But, it was only with the development 

of the Russet Burbank cultivar in 1872 that the Idaho potato industry actually began to 

flourish (USPB 2011). 

The potato emerged as a global food in the 20
th
 century. The former Soviet Union 

and other east European countries started cultivating potatoes extensively. Even today, 

the potato is the primary production crop in many eastern European nations. It became 

widely utilized as a snack food as well. Many food companies started making french fries 

and chips, and potato usage spread all across the world.  

In 1995, potatoes became the first vegetable to be grown in space. Scientists from 

NASA and University of Wisconsin, Madison developed these potatoes to serve as a food 

source for astronauts on long space missions. From being called a poisonous devil’s apple 

to being enjoyed in the form of french fries and chip, the potato has surely come a long 

way since its first cultivation in the Andes. 

1.2. Potato Production 

Potato (Solanum tuberosum L.) is one of the most extensively grown food crops 

across the world. Its world-wide production is ranked fourth after rice, wheat and maize. 

In 2009, the world production of potatoes exceeded 329 million metric tons spread over 
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18 million hectares of land (FAO 2009). China and India are the top two potato 

producers, producing more than a third of the world’s potatoes, followed by Russia, 

Ukraine and the United States of America. 

In the United States, the total potato production in 2009 was 19.5 million metric 

tons. Of these, approximately 60% of the potatoes were processed into various forms 

including chips, frozen french fries, dehydrated, canned and other products, 27% were 

sold as table stock and the remaining were feed stock, other products and non-sales. The 

total value of the potatoes sold in the United States in 2009 was estimated to be $ 3.26 

billion; 7% higher than the previous year (USDA-NASS 2010). Almost 90% of the 

potatoes in the United States are planted in spring and harvested in fall. Potatoes 

harvested in the other seasons account for the remaining 10%. Idaho, where the Russet 

Burbank cultivar is most commonly grown, is the largest producer of potatoes, followed 

by Washington, Wisconsin and Colorado.  

In 2009, Colorado produced 1 million metric tons of potatoes covering 

approximately 24,000 hectares of land. Ninety-two per cent of Colorado’s potatoes are 

produced in San Luis Valley in southern Colorado (Anonymous 2011). 

1.3. Potato Cultivars 

Early Peruvian farmers developed four recognized potato species. Today, 

although the potato grown worldwide belongs to just one biological species, Solanum 

tuberosum L., there are more than 5000 cultivars known and cultivated around the world 

(Lutaladio and Castaldi 2009). These cultivars come in different colors, shapes, sizes and 

vary in taste, texture, and cooking characteristics (FAO 2008). Most of them are 

classified into four major groups - russets, reds, yellows and specialty. Russets are 
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characterized by their even, oval shape, brown net-textured skin, shallow eyes with flesh 

color varying from creamy white to light golden. Red potatoes are generally 

characterized by a rosy skin and a white flesh with a texture that is firm, smooth and 

moist. Yellow cultivars include Yukon Gold, which is a common baking cultivar. 

Specialty cultivars include colored cultivars and fingerlings. Potatoes may also be 

classified based on their waxiness. Waxy potatoes, which are good for boiling, have 

around 16-18% starch. Baking potatoes generally have more starch (20-22%), which 

gives them a mealy and floury texture.  

Colorado grows around 100 potato cultivars and continues to develop new 

cultivars. Russets are the most popular group of potatoes grown in Colorado. Some 

popular red cultivars include Colorado Rose, Rio Colorado, and Sangres. Among the 

yellows, Yukon Gold is a popular cultivar. Fingerlings, All Blue, Mountain Rose, and 

Purple Majesty are some popular specialty cultivars (Anonymous 2011). 

2. The Potato Plant 

2.1. Plant Physiology 

The potato plant grows about 100 cm tall and produces a tuber, which is actually 

classified as the stem (Figure 2.1). It belongs to the ‘Solanaceae’ (nightshade) family of 

flowering plants which also includes pepper, eggplant and tomato. S. tuberosum is further 

classified into two slightly different subspecies – andigena, which is adapted to short day 

conditions and is predominately cultivated in the Andes and tuberosum, which is the most 

widely cultivated species worldwide and believed to have been descended from European 

andigena and adapted to longer day conditions (Sukhotu and Hosaka 2006). 
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Figure 2.1. The potato plant (FAO 2008) 

As the plant grows, it bears flowers which can be white, blue, pink, red or purple 

in color with yellow stamens. In general, plants bearing white flowers have white skinned 

tubers while those having colored flowers may have pinkish skins (Winch 2007). The 

leaves of the plant produce starch, which gets transferred to its underground stems to 

form tubers. As many as 20 tubers can be formed per plant near the soil surface. The 

tubers vary in size and shape, the average weight being around 300 g. The nutrients and 

moisture content of the soil influence the number of tubers reaching maturity.  
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2.2. Cultivation and Growth 

Potato plants can be propagated via true seeds or by vegetative propagation. 

Commercially, vegetative propagation is the preferred method as it maintains genetic 

stability. Vegetative propagation will result in plants that grow vigorously, mature 

quickly and give higher yields. Each tuber can have two to ten buds, which can grow 

shoots and generate into new plants during favorable conditions (FAO 2008). Post-

flowering, potato plants produce small green fruits, each of which can contain up to 300 

true seeds. These fruits are inedible as they are high in glycoalkaloids. 

The general phases of potato growth have been illustrated in Figure 2.2. In the 

first stage, the potato tuber is planted in well-drained soil and the tuber begins to develop 

roots and a shoot. In the second stage, the shoot starts developing leaves and branches 

through photosynthesis.  

Figure 2.2. Stages of potato plant development (FAO 2008) 

The third stage marks the initiation of tuber development followed by the fourth 

stage, where the tubers start bulking and develop their characteristic shape. The energy 

generated by the plant through photosynthesis is stored as starch in these tubers. At the 
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end of the growing season, the plant dies and detaches from the tubers. Tubers are 

collected using potato harvesters, which collect the plant and surrounding soil, and place 

it on chains where the tubers are separated from plant and soil debris. 

3. Bioactive Compounds found in Potatoes 

Bioactive compounds or phytochemicals are secondary plant metabolites found in 

the potato and other plants that have been the subject of interest for researchers due to 

their promising role as health-modulators. Phytochemicals can be grouped into five major 

classes – polyphenols, carotenoids, alkaloids, nitrogen-containing and organo-sulfur 

compounds (Liu 2004) (Table 2.2.). Among these, polyphenols and carotenoids have 

been studied the most (Russo 2007). More than 8000 polyphenols have been identified 

and they can be further categorized into sub-groups comprised of phenolic acids, tannins, 

stilbenes, coumarins and flavonoids (anthocyanins) (Bravo 1998; Liu 2004). Phenolic 

acids and flavonoids are the most prominent phytochemical groups present in the potato. 

These compounds are commonly synthesized from phenylalanine, which is produced via 

the shikimate pathway (Dixon and Paiva 1995; Häkkinen 2000). The biosynthesis 

mechanism is shown in Figure 2.3. 

3.1. Phenolic acids 

Phenolic acids are distributed universally in the plant kingdom. Table 2.2 gives 

the general classification of phenolic acids. Phenolic acids can be derived from benzoic 

acid or cinnamic acid. Figure 2.4. gives the structures of some common phenolic acids. In 

the potato, most of the phenolic acids are present between the cortex and the peel of the 

potato tuber, and their content reduces towards the center of the tuber (Friedman 1997).  
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Table 2.2. Classification of dietary phytochemicals (Liu 2004) (Phytochemicals commonly found in potatoes are in ‘Bold’)  
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Figure 2.3. Biosynthesis of phenolic acids and flavonoids (Dixon and Paiva 1995; 

Häkkinen 2000) (Solid arrows indicate well-characterized single-enzyme reactions. 

Dotted arrows indicate less-characterized multi-enzyme reactions.) 

 

Enzymes: 
CA4H: Cinnamic acid 4-hydroxylase 
CHS: Chalcone synthase 
4CL: 4-Coumarate coenzyme A ligase 
PAL: Phenylalanine ammonia lyase 
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Chlorogenic acid and caffeic acid are two of the most prominent phenolic acids 

reported in the potato followed by protocatechuic acid, trans-cinnamic acid, para-

coumaric acid, ferulic acid, vanillic acid, gallic acid, syringic acid, and salicylic acid  

(Lewis et al. 1998; Shakya and Navarre 2006; Reddivari et al. 2007a; Reddivari et al. 

2007b). 

   
Figure 2.4. Structure of common phenolic acids derived from benzoic acid (A) and 

cinnamic acid (B) (Liu 2004) 

 

Chlorogenic acid (Figure 2.5.), which is an ester of caffeic and quinic acids, along 

with its isomers is the most prominent phenolic acid accounting for up to 90% of the total 

phenolic compounds in potatoes (Dao and Friedman 1992). 5-caffeoylquinic acid is the 

major isomer, which is complemented by 3- and 4-caffeoylquinic acids (Friedman 1997). 

 
Figure 2.5. Structure of chlorogenic acid

A B 
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Chlorogenic acid is reported to range from 10 to 19 mg per 100 g fresh weight 

(gfw) potato when measured by ultraviolet spectrophotometry (Dao and Friedman 1992). 

A wider range, 13.2 to 68.3 mg per 100 gfw potato, has also been reported when 

measured using HPLC (Reddivari et al. 2007a; Reddivari et al. 2007b). Chlorogenic acid 

content in the skin (100 to 400 mg per 100 gfw) is greater than that in the tuber flesh (3 to 

90 mg per 100 gfw) (Lewis et al. 1998). This wide range can be explained due to 

intervarietal differences. In a study, a 20-fold difference in the chlorogenic acid content 

has been observed between the lowest reported (S. bulbocastanum) and highest reported 

(C097226-2R/R) cultivars (Navarre et al. 2011). Pigmented cultivars such as Mountain 

Rose and Purple Majesty, and non-pigmented cultivars such as Yukon Gold had an 

approximately 10-fold difference in the chlorogenic acid content (Stushnoff et al. 2008).  

Caffeic acid is the second most abundant phenolic acid in the potato. The caffeic 

acid content can range from 310 to 420 µg per 100 gfw potato (Reddivari et al. 2007a; 

Reddivari et al. 2007b). The caffeic acid content in pigmented cultivars is greater than 

that in non-pigmented cultivars. A 100-fold difference was observed in the caffeic acid 

contents of Divina, which is a yellow cultivar and Pollunta chata, which is a purple 

cultivar (Navarre et al. 2011). The other phenolic acids are present in lower 

concentrations. In potato peels, protocatechuic acid, vanillic acid and sinapic acid ranged 

from 10 to 40 mg per 100 gfw, 2 to 20 mg per 100 gfw, and 2 to 25 mg per 100 gfw, 

respectively. Gallic acid, syringic acid, para-coumaric acid, ferulic acid, salicylic acid 

and cinnamic acid together ranged from 0 to 3 mg per 100 gfw. In the tuber flesh, 

protocatechuic acid ranged from 5 to 20 mg per 100 gfw while vanillic acid and para-

coumaric acid together ranged from 0.5 to 4 mg per 100 gfw. The other phenolic acids 
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ranged from 0 to 1 mg per 100 gfw together (Lewis et al. 1998). The values reported in 

literature are listed in Table 2.3. 

Table 2.3. Major phenolic acids found in the potato 

Phenolic acid Biological sample Reported range 

(per 100 gfw) 

Reference 

Chlorogenic acid Potato tuber 10 - 19 mg (Dao and Friedman 

1992) 

  13 - 68 mg (Reddivari et al. 

2007a; Reddivari et 

al. 2007b) 

  21 - 28.3 mg (Verde Méndez et 

al. 2004) 

 Potato skin 100 - 400 mg (Lewis et al. 1998) 

 Potato peel 4.4 - 34 mg (Im et al. 2008) 

 Potato flesh 3 - 90 mg (Lewis et al. 1998) 

  0.35 - 12 mg (Im et al. 2008) 

Caffeic acid Potato tuber 0.31 - 0.42 mg (Reddivari et al. 

2007a; Reddivari et 

al. 2007b) 

  0.73 - 1.12 mg (Verde Méndez et 

al. 2004) 

 Potato peel 0.39 - 1.20 mg (Im et al. 2008) 

 Potato flesh 0.01 - 0.11 mg (Im et al. 2008) 

Protocatechuic acid Potato peel 10 - 40 mg (Lewis et al. 1998) 

 Potato flesh 5 - 20 mg (Lewis et al. 1998) 

Vanillic acid Potato peel 2 - 20 mg (Lewis et al. 1998) 

Sinapic acid Potato peel 2 - 25 mg (Lewis et al. 1998) 

 

Health-benefiting properties 

A number of studies have examined the antioxidant, anti-mutagenic, and anti-

cancer effects of phenolic acids found in potatoes. Pure soybean oil treated with freeze-

dried extracts from peels of six potato cultivars showed a reduction in the peroxide value 

during storage (Rehman et al. 2004). Potato peel extracts, which are rich in polyphenolic 

compounds have been shown to have a protective effect on carbon tetrachloride-injured 

livers of rats. Rats treated with potato peel extracts had their livers protected from 
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glutathione depletion and reduced a variety of hepatic oxidative stress markers such as 

aspartate transaminase, alanine transaminase and malondialdehyde (Singh et al. 2008). 

Solanum jamesii tuber extracts showed anti-proliferative and cytotoxic effects against 

HT-29 human colon cancer, and LNCaP human prostate cancer cell lines (Nzaramba et 

al. 2009). In vivo oxidation of lipoproteins, especially low-density lipoproteins (LDL), 

has been implicated in causing heart disease. Chlorogenic acid and other polyphenols 

exhibit strong antioxidant activity towards heart disease-related LDLs. Thus, polyphenols 

may indirectly reduce the risk of heart disease (Vinson et al. 1995). Chlorogenic acid has 

been shown to suppress the release of glucose in the blood (Bassoli et al. 2008). Hence, 

potatoes with low glycemic index may prove beneficial for diabetic patients and result in 

a lower risk of type II diabetes (Legrand and Scheen 2007). In a cellulose model system, 

chlorogenic acid competes with nitrite to bind with benzo(a)pyrene thus blocking 

nitrosamine formation (Friedman 1997). It has been reported that chlorogenic acid can 

inhibit matrix metalloproteinase (MMP-9), an enzyme linked to tumor cell invasion and 

metastasis (Jin et al. 2005). 

3.2. Anthocyanins 

Anthocyanins are water soluble flavanoids conferring plants colors such as red, 

blue and purple (Wang et al. 2012). Chemically, anthocyanins are glycosylated 

polyhydroxy and/or polymethoxy derivatives of the 2-phenylbenzopyrylium of flavylium 

salt (Mazza and Miniati 1993; von Elbe and Schwartz 1996). Glycosylated anthocyanins 

can appear acylated with aromatic acids such as para-coumaric, caffeic, ferulic, sinapic, 

gallic or para-hydroxybenzoic acids, and/or aliphatic acids such as malonic, acetic, 
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malic, succinic or oxalic acids (Figure 2.6.) (Giusti and Wrolstad 2003; Lachman et al. 

2009).  

 

Figure 2.6. Structure of major anthocyanins found in red and purple-fleshed potatoes (Ieri 

et al. 2011) 

 

Many glycosylated anthocyanins acylated with para-coumaric and ferulic acid 

have been reported in colored potatoes. 3-rutinoside-5-glucoside and 3-rutinoside 

derivatives of pelargonidin, petunidin, malvidin, cyanidin, peonidin and delphinidin have 

been reported in colored potatoes (Lewis et al. 1998; Eichhorn and Winterhalter 2005). 

Purple-fleshed potatoes contain anthocyanins such as petunidin- and malvidin-3-

rutinoside-5-glycosides acylated with para-coumaric and ferulic acid while red-fleshed 

potatoes have pelargonidin- and peonidin-3-rutinoside-5-glycosides acylated with para-

coumaric and ferulic acid (Lewis et al. 1998; Naito et al. 1998). This has been confirmed 

in another study which found pelargonidin-based anthocyanins in the highest 
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concentration in Mountain Rose, a red-fleshed cultivar and petunidin-3-coum-rutinoside-

5-glucoside in Purple Majesty, a purple-fleshed cultivar (Stushnoff et al. 2008). In 

colored potatoes, anthocyanins can range from 17-20 mg per 100 g in red-fleshed 

potatoes and 20-38 mg per 100 g in purple-fleshed potatoes (Brown et al. 2005). 

Anthocyanins found in red and purple-fleshed potatoes have been listed in Table 2.4. 

Health-benefiting properties 

Numerous health benefits such as antioxidant activity, anti-cancer and anti-

inflammatory properties, have been attributed to consumption of anthocyanin-rich foods 

(Hidalgo et al. 2012; Tsuda 2012; Wang et al. 2012). The chemopreventive mechanisms 

of anthocyanins include scavenging-free radicals, reducing cell proliferation, up-

regulating/inducing apoptosis and modulating mitogen-activated protein kinase (MAPK) 

activities (Afaq et al. 2005; Jing et al. 2008; Shin et al. 2009).  

Anthocyanin fraction from colored-flesh potatoes induces apoptosis in LNCaP 

(androgen dependent) and PC-3 (androgen independent) prostate cancer cells via caspase-

dependent and independent pathways (Reddivari et al. 2007c). Anthocyanin-rich 

Mountain Rose cultivar showed greater inhibition of carcinogenesis in rats with 

chemically-induced breast cancer as compared with white Russet Burbank cultivar 

(Thompson et al. 2009). A study showed that anthocyanins were anti-inflammatory and 

lowered plasma concentrations of C-reactive protein, 8-hydrodeoxyguanosine, and 

interleukin-6 in healthy men on an anthocyanin-rich purple-fleshed potato diet as 

compared with men fed with a white potato diet (Kaspar et al. 2011). 
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Table 2.4. Anthocyanins reported in red and purple-fleshed potatoes  

Anthocyanin Potato genotype Reference 

Pet-3-rut-5-glc Hermanns Blaue (Eichhorn and 

Winterhalter 2005) 

 Purple Majesty (Stushnoff et al. 2008) 

Pet-3-coum-rut-5-glc Hermanna Blaue, Shetland Black, 

Vitelotte 

(Eichhorn and 

Winterhalter 2005) 

 I53, Stage II Blue, Urenika, Arran 

Victory, Blue Derwent, Kowiniwini, 

Moe Moe, Ngaoutiouti, Old Red, 

Poiwa, Raupi, Skerry Blue 

(Lewis et al. 1998) 

 Purple Majesty (Stushnoff et al. 2008) 

Pet-3-caf-rut-5-glc Vitelotte Noire (Ieri et al. 2011) 

Pet-3-ferul-rut-5-glc Purple Majesty (Stushnoff et al. 2008) 

Pel-3-rut Red Flesh, Desirée, Red Rocks (Lewis et al. 1998) 

 Mountain Rose (Stushnoff et al. 2008) 

Pel-3-rut-5-glc Highland Burgundy Red (Eichhorn and 

Winterhalter 2005) 

 Mountain Rose (Stushnoff et al. 2008) 

Pel-3-coum-rut-5-glc Highland Burgundy Red (Eichhorn and 

Winterhalter 2005) 

 Desirée, I29, O60/1, Red Rascal, 

Red Rocks 

(Lewis et al. 1998) 

 Mountain Rose (Stushnoff et al. 2008) 

Pel-3-ferul-rut-5-glc Mountain Rose (Stushnoff et al. 2008) 

Peo-3-rut-5-glc Shetland Black (Eichhorn and 

Winterhalter 2005) 

Peo-3-coum-rut-5-glc Shetland Black (Eichhorn and 

Winterhalter 2005) 

 Red Flesh (Lewis et al. 1998) 

 Mountain Rose, Purple Majesty (Stushnoff et al. 2008) 

Mal-3-rut-5-glc Vitelotte (Eichhorn and 

Winterhalter 2005) 

 Vitelotte Noire (Ieri et al. 2011) 

Mal-3-coum-rut-5-glc Vitelotte (Eichhorn and 

Winterhalter 2005) 

 Stage II Blue, Urenika, Kowiniwini, 

Skerry Blue 

(Lewis et al. 1998) 

 Mountain Rose (Stushnoff et al. 2008) 

Mal-3-caf-rut-5-glc Vitelotte Noire (Ieri et al. 2011) 

Mal-3-ferul-rut-5-glc Vitelotte Noire (Ieri et al. 2011) 

Del-3-coum-rut-5-glc Purple Majesty (Stushnoff et al. 2008) 

 Vitelotte Noire (Ieri et al. 2011) 
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Bioactive compounds in the potato are affected by genotype, environment, storage 

conditions and processing. The effect of these parameters will be discussed in further 

details in the following chapters. Figure 2.7. gives an overview of the parameters 

discussed. 

 

Figure 2.7. Overview of parameters affecting bioactive compounds in the potato 

 

4. Effect of Genotype and Environment on Potato Bioactives 

4.1. Genotype 

Around 8000 years ago, early Peruvian farmers developed four recognized potato 

species. Today, although the potato grown worldwide belongs to just one biological 

species, Solanum tuberosum L., there are more than 5000 cultivars known and cultivated 

around the world (Lutaladio and Castaldi 2009). These cultivars come is different colors, 

shapes, sizes and vary in taste, texture, and, cooking characteristics (FAO 2008). Most of 

them are classified into four major groups - russets, reds, yellows and specialty. The 

potato genotype has a significant influence on the profile of phenolic compounds and 

their quantity. A study screening hundreds of cultivated and wild potato species reported 

a 15-fold difference in their phenolic contents (Navarre et al. 2009). Another study 
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looking at 74 Andean potato genotypes reported an 11-fold variation in their phenolic 

content (André et al. 2006). The total phenolic content of potatoes can range from 28 to 

400 mg per 100 g potato depending on the cultivar (Reddivari et al. 2007b; Reddivari et 

al. 2007a; Stushnoff et al. 2008). It has been reported that Granola and Russet Norkotah 

cultivars had almost twice the phenolic concentration as compared with the Yukon Gold 

cultivar (Al-Saikhan et al. 1995).  

The total phenolic content of colored-flesh potatoes is more than their white-

fleshed counterparts (Jansen and Flamme 2006; Stushnoff et al. 2008; André et al. 2009). 

Even among the colored-flesh cultivars, violet- and purple-fleshed potatoes had higher 

total phenolic content as compared to red-fleshed cultivars (Jansen and Flamme 2006; 

Reddivari et al. 2007a; Reddivari et al. 2007b).  

4.2. Soil and Nutrient supply 

Nitrogen fertilizers applied at 100 and 200 kg/ha did not influence the 

anthocyanin content of 23 potato genotypes (Jansen and Flamme 2006). A similar 

observation was reported in another study which tested effect of fertilizers with varying 

levels of nitrogen, phosphorus, sodium and magnesium on the carotenoid content of 

potatoes (Kotíková et al. 2007). The sale of organic foods has increased between 17% 

and 21% each year since 1997 (Bellows et al. 2008). However, a study comparing 

organically and conventionally grown potatoes did not find a difference in their 

antioxidant activity (Rosenthal and Jansky 2008). This was confirmed by another study 

which reported no difference in the polyphenolic content or antioxidant activity of 

conventionally and organically grown potatoes with polyphenols from conventionally 
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grown potatoes being more resistant to losses due to cooking as compared with their 

organic counterparts (Faller and Fialho 2009). 

4.3. Location, Climate and Season 

Researchers have reported the effect of location and climate on the bioactive 

compounds in potatoes. However, the results have been varied due to the interplay of 

numerous factors such as temperature, rainfall, soil, altitude and light conditions at a 

given location influencing the bioactive compounds in the potato. Reddivari et al. 

(2007b) studied the effect of two locations –  Dalhart and McCook, both in Texas, USA, 

which differ in their altitude, latitude, mean annual temperature, rainfall and production 

season, on the bioactive compounds of 25 potato genotypes. They reported that the 

genotypes grown in McCook had greater antioxidant activity and total phenolic content 

but lower total carotenoid content than those grown in Dalhart. A similar observation was 

reported for potatoes grown in Colorado and Texas. Colorado-grown potatoes had a 

higher anthocyanin (2.5 times) and phenolic (1.4 times) content as compared with Texas-

grown potatoes possibly due to the cooler climate and longer days (Reyes et al. 2004). 

Brown et al. (2008) also observed higher anthocyanin content in genotypes grown at 

higher altitudes but the carotenoid content and antioxidant capacity did not vary.  

However, many researchers have reported insignificant influence of location on 

potato bioactives. Colored-flesh potatoes grown in two locations in Germany did not 

show a difference in their anthocyanin content (Jansen and Flamme 2006). Similarly, the 

carotenoid content of potatoes grown in two locations with varying altitude in Czech 

Republic did not differ (Kotíková et al. 2007). Ezekiel et al. (2008) studied two 
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genotypes grown at three locations in India having similar altitude but different mean 

temperatures and found no differences in the total phenolic content. 

Similar to the effects of location, seasonal influence has resulted in varied 

outcomes with respect to potato bioactives. Reddivari et al. (2007b) reported significant 

influence of year on the total phenolic content and total carotenoid content of 25 specialty 

potato genotypes. However, a consistent trend was not observed for all the genotypes. 

Total phenolic and carotenoid content increased in some genotypes while a decrease was 

seen for others. Another study observed variations in the total phenolic content and 

antioxidant activity of white-, yellow-, red- and purple-fleshed potato genotypes over a 

five year period (Stushnoff et al. 2008). Three other studies also reported significant 

influence of production year on the potato bioactives (Kotíková et al. 2007; Rosenthal 

and Jansky 2008; André et al. 2009). Contrary to this, Jansen and Flamme (2006) 

reported no influence of year in the anthocyanin content of 23 colored-flesh potato 

genotypes. This was observed in spite of the different weather conditions in the two 

years. 

Thus, it is essential to understand the effects of environment and genotype on the 

bioactive compounds in potatoes. It has been observed that the genotypic factors are more 

prominent as compared to environmental factors (Reddivari et al. 2007b). Efforts should 

be focused towards breeding cultivars that are more resistant to the influence of 

environment thus making the quantification of potato bioactive compounds predictable 

for a given genotype. 
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5. Effect of Post-harvest Storage on Potato Bioactives 

Harvested potatoes can be stored for up to one year before being processed or 

consumed (Herrman et al. 1996). This makes it critical to understand the effect of storage 

on the bioactive compounds in potatoes. It has been observed that storage generally 

increases the phenolic content of potatoes. However, prolonged storage can also cause a 

decrease or maintain the level of phenolic content. Stushnoff et al. (2008) studied the 

effect of storage (263 days) at 5°C on the total phenolic content of eight pigmented and 

non-pigmented genotypes. They observed that the phenolic content of some genotypes 

elevated by up to 100% while there was little or no change for the other genotypes. 

However, one study reported that storage at 4°C for 135 days in 86% humidity did not 

alter the anthocyanin content of six genotypes (Jansen and Flamme 2006). Rosenthal and 

Jansky (2008) reported an increase in the antioxidant activity of potatoes stored at 5.6°C 

for 5.5 months. Blessington et al (2010) studied the effect of storage at 4°C, 20°C and 

reconditioning at 20°C after storage at 4°C in eight potato genotypes. They observed that 

only the reconditioned potatoes had a significant increase in their total phenolic content.  

However, the total carotenoid content increased after all three storage regimes. 

Lewis et al (1999) observed that storage at 4°C for 180 days caused an increase in the 

anthocyanin concentration of four pigmented genotypes. However, the total phenolic 

content increased slightly up to 120 days after which it remained constant. However, 

tubers stored at 10°C, 18°C and 26°C did not show an increase in their anthocyanin 

concentration. 

Low temperature storage can induce phenylalanine ammonia-lyase (PAL), a key 

regulatory enzyme in the biosynthesis of polyphenols including anthocyanins, which can 
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cause an increase in the phenolic content (Jiang and Joyce 2003). In colored-flesh 

potatoes, cold storage conditions are known to cause the conversion of starch to sugar 

(Isherwood 1976), which can up-regulate genes coding for dihydroflavonol reductase 

(DFR) and anthocyanidin synthase (ANS), which are involved in anthocyanin 

biosynthesis, and hence potentially cause an increase in the anthocyanin concentration 

(Vitrac et al. 2000; Gollop et al. 2001; Gollop et al. 2002; Solfanelli et al. 2006). 

6. Effect of Processing on Potato Bioactives 

It is well known that processing changes the physical and chemical composition 

of foods (Spanos et al. 1990; Price et al. 1997), thus, affecting their antioxidant activity 

(Nicoli et al. 1999; Dewanto et al. 2002). Potatoes are almost always consumed after 

processing (baked, chipped, fried, boiled or microwaved) making it critical to understand 

the effect of such processing techniques on the activity and composition of bioactive 

compounds in potatoes. Literature has reported conflicting findings regarding the effect 

of processing on potato bioactive compounds. 

6.1. Baking and Steaming 

Dao and Friedman (1992) reported a 100% loss in the chlorogenic acid content of 

potatoes baked at 212°C for 45 minutes, which suggested that chlorogenic acid is 

susceptible to heat. However, some studies have observed a reduction but not a complete 

loss of chlorogenic acid. Im et al. (2008) studied the effect of baking (oven heating) on 

the chlorogenic acid content of Superior potatoes. They reported 90% to 100% retention 

of the chlorogenic acid and its isomer. This discrepancy in observations could be 

attributed to different processing conditions. Im et al. subjected their samples to a milder 

treatment (200°C for 10 minutes) as compared to Dao and Friedman. Also, unlike Dao 

and Friedman, Im et al. wrapped their samples in aluminum foil, which potentially 
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prevented complete loss in the chlorogenic acid content. Furthermore, Dao and Friedman 

conducted their research using ultra violet spectrometry while Im et al. employed 

advanced LC-MS/MS method. 

Baking led to an increase in the total phenolic content and antioxidant activity of 

eight potato genotypes. Samples had greater levels of chlorogenic acid, caffeic acid, 

para-coumaric acid and vanillic acid (Blessington et al. 2010). Baking for 30 minutes 

increased the total phenolic content and chlorogenic acid content in three potato 

genotypes. If the baking was continued for 45 minutes, the total phenolic content 

decreased. However, the phenolic content was still more than that of raw potatoes 

(Navarre et al. 2010). This increase could be due to improvement in the extractability of 

phenolic compounds as cooking weakens the matrix, and inactivates enzymes that use 

phenolic compounds as substrate (Ezekiel et al. 2011). The effects of baking cannot be 

generalized for all potato clones as they differ depending on potato genotype. It was seen 

that baking significantly altered the total phenolic content of Dakota Pearl cultivar but not 

of the Nordonna cultivar. The total phenolic content of Red Norland cultivar is altered 

approximately equally by baking (Xu et al. 2009). Hence, it is critical to determine the 

effects of baking for every cultivar for a range of temperature-time combinations. 

Steam heating on ‘high’ for 10 minutes lead to a retention of 45-65% of 

chlorogenic acid and its isomer (Im et al. 2008). Another study reported that steam-

cooking of potato strips caused a 58% loss in the chlorogenic acid content (Tudela et al. 

2002). However, an increase in the phenolic content has also been reported. Steaming for 

15 minutes increased the total phenolic content and chlorogenic acid content in three 
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potato genotypes (Navarre et al. 2010). Im et al. used “plugs” of potatoes, while Navarre 

et al steamed whole potatoes with the skin on, which could explain their observations. 

6.2. Boiling 

Boiling reduced or, in some cases, retained, or enhanced the total phenolic content 

and antioxidant activity of potato genotypes with respect to uncooked samples. Potatoes 

boiled in water for 30 minutes had a 60% loss in their chlorogenic acid content (Dao and 

Friedman 1992). It was also reported that the loss of chlorogenic acid and its isomer were 

dependent on the salt concentration in the water. One per cent salt led to 20-40% loss 

while 3% salt caused 70% and 40% loss in chlorogenic acid and its isomer respectively 

(Im et al. 2008). Researchers found that boiling for 20 minutes did not alter the phenolic 

acid content but  significantly decreased the anthocyanin content of colored-flesh 

cultivars (Mulinacci et al. 2008). Other researchers reported that boiling for 18 minutes  

caused an increase in the total phenolic content and chlorogenic acid content in two 

white-fleshed and one purple-fleshed potato genotypes (Navarre et al. 2010). Boiled 

samples had greater levels of chlorogenic acid, caffeic acid and vanillic acid (Blessington 

et al. 2010). A possible reason suggested was the increase in the extractability of phenolic 

compounds from cooked samples, similar to the observations for baked potato samples. 

6.3. Chipping and Frying 

Literature reports conflicting observations on the effect of frying on potato 

bioactive compounds, similar to baking or boiling the potatoes. Frying and sautéing led to 

20% to 30% loss in the content of chlorogenic acid and its isomer (Im et al. 2008). Potato 

strips fried in sunflower oil at 190°C for four minutes led to a loss of 76% in the 

chlorogenic acid content and 66% in case of caffeic acid derivatives (Tudela et al. 2002). 
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As seen for baked or boiled potatoes, an increase in the total phenolic content post-frying 

has also been reported. Frying led to an increase in the total phenolic content and 

antioxidant activity of eight potato genotypes. Samples had greater levels of chlorogenic 

acid, caffeic acid, para-coumaric acid, vanillic acid (Blessington et al. 2010). In the 

Piccolo cultivar, stir-frying for 18 minutes led to an increase in the total phenolic content 

(Navarre et al. 2010). Both these reports also claim that the extractability of phenolic 

compounds improved after frying which led to an increase in the total phenolic content. 

An increase in antioxidant activity was also observed which could be due to the presence 

of antioxidants such as butylated hydroxyanisole, butylated hydroxytoluene and 

tocopherols added to commercial cooking oils to prevent rancidity. 

6.4. Microwaving 

Microwaving led to an increase in the total phenolic content and antioxidant 

activity of eight potato genotypes. Samples had greater levels of chlorogenic acid, caffeic 

acid, para-coumaric acid, vanillic acid and (-) epicatechin (Blessington et al. 2010). 

Microwaving resulted in a 45% loss in the chlorogenic acid content of potatoes (Dao and 

Friedman 1992). A recent study reported a loss of 40% in the chlorogenic acid content 

and 20% in its isomer (Im et al. 2008). It was also observed that these losses decreased 

with the lower microwave power level (Barba et al. 2008). In purple-fleshed cultivars, 

microwaving did not alter the phenolic acid content but there was a significant decrease 

(16-29%) in the anthocyanin content (Mulinacci et al. 2008). Microwaving increased the 

total phenolic content and chlorogenic acid content in two white-fleshed and one purple-

fleshed potato genotypes (Navarre et al. 2010).  
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The above review of literature indicates that the content, composition and 

bioactivity of potato bioactive compounds depend on genotype, environment, storage, 

and processing method. Better understanding of how these variables interact with each 

other might help with development of mathematical models to predict the bioactive 

compounds levels and bioactivity of the potato products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

31 
 

CHAPTER III 

STORAGE ELEVATES PHENOLIC CONTENT AND ANTIOXIDANT 

ACTIVITY BUT SUPPRESSES ANTI-PROLIFERATIVE AND PRO-

APOPTOTIC PROPERTIES OF COLORED-FLESH POTATOES AGAINST 

HUMAN COLON CANCER CELL LINES 

Abstract 

Colored-flesh potatoes are an excellent source of health-benefiting dietary 

polyphenols, but are stored for up to 3-6 months before consumption. This study 

investigated the effect of simulated commercial storage conditions on antioxidant activity 

(DPPH, ABTS), phenolic content (FCR) and composition (UPLC-MS), and anti-cancer 

properties (an early (HCT-116) and advanced stage (HT-29) human colon cancer cell 

lines) of potato bioactive compounds. Extracts from seven potato clones of differing flesh 

colors (white, yellow and purple) before and after 90 days of storage were used in this 

study. Antioxidant activity of all clones increased with storage however an increase in 

total phenolic content was observed only in purple-fleshed clones. Advanced purple-

fleshed selection CO97227-2P/PW had greater levels of total phenolics and monomeric 

anthocyanins, and antioxidant activity and a diverse anthocyanin composition as 

compared with Purple Majesty. Purple-fleshed potatoes were more potent in suppressing 

proliferation and elevating apoptosis of colon cancer cells compared with the white- and 

yellow-fleshed potatoes. The extracts from both fresh and stored potatoes (10 - 30 μg/ml) 

suppressed cancer cell proliferation and elevated apoptosis compared with the solvent 

control, but these anti-cancer effects were more pronounced with the fresh potatoes. 

Storage duration had a strong positive correlation with antioxidant activity and 
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percentage of viable cancer cells and a negative correlation with apoptosis induction. 

These results suggest that though the antioxidant activity and phenolic content of potatoes 

were increased with the storage, the anti-proliferative and pro-apoptotic activities were 

suppressed. Thus, while assessing the effects of farm to fork operations on health-

benefiting properties of plant foods, it is critical to use quantitative analytical techniques 

in conjunction with in vitro and/or in vivo biological assays. 

1. Introduction 

The potato (Solanum tuberosum L.) is the fourth most important food crop 

worldwide and is an important vegetable crop in the United States with per capita 

consumption of approximately 54 kg (Burlingame et al. 2009). Potatoes are a good 

source of carbohydrates, minerals and vitamins, and also rich in antioxidant polyphenols 

and carotenoids. Colored-flesh potatoes are gaining popularity among consumers due to 

greater levels of phenolic acids, anthocyanins and  carotenoids. The total phenolic content 

of colored-flesh potatoes (90 to 400 mg GAE/100 gfw) (Stushnoff et al. 2008) is 

generally comparable to that of common berries such as strawberries, blueberries and 

cranberries (100 to 412 mg GAE/100 gfw) (Zheng and Wang 2002; Zheng et al. 2007; 

You et al. 2010). However, potatoes are relatively inexpensive and can be consumed in 

larger quantities in one meal, and hence can contribute to maintaining a healthy 

population. 

Chlorogenic acid, caffeic acid, and ferulic acid are among the prominent phenolic 

acids present in the potato, while para-coumaric acid, sinapic acid, and vanillic acid are 

present in minor quantities (Mattila and Hellström 2007). Purple-fleshed potatoes contain 

anthocyanins such as petunidin- and malvidin-3-rutinoside-5-glycosides acylated with 
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para-coumaric and ferulic acid while red-fleshed potatoes have pelargonidin- and 

peonidin-3-rutinoside-5-glycosides acylated with para-coumaric and ferulic acid (Lewis 

et al. 1998; Naito et al. 1998). Violaxanthin, antheraxanthin, lutein and zeaxanthin are the 

major carotenoids found in potatoes (Breithaupt and Bamedi 2002; Morris et al. 2004). 

A number of researchers have examined the antioxidant, anti-mutagenic, and anti-

cancer effects of potato polyphenols. Pure soybean oil treated with freeze-dried extracts 

from peels of six potato cultivars showed a reduction in the peroxide value (Rehman et al. 

2004). In our previous study, Solanum jamesii tuber extracts showed anti-proliferative 

and cytotoxic effects against HT-29 human colon cancer, and LNCaP human prostate 

cancer cell lines (Nzaramba et al. 2009). Chlorogenic acid and other polyphenols also 

exhibit strong antioxidant activity towards heart disease-related LDLs and thus may 

indirectly reduce the risk of heart disease (Vinson et al. 1995). Red- and purple-fleshed 

potato cultivars showed greater antioxidant potency suggesting a role of anthocyanins as 

antioxidants (Onyeneho and Hettiarachchy 1993). We have previously reported that 

anthocyanin fractions from potato extracts were pro-apoptotic and induce apoptosis via 

both caspase-dependent and -independent pathways in LNCaP (androgen-dependent) and 

PC-3 (androgen-independent) prostate cancer cell lines (Reddivari et al. 2007c). The 

chemopreventive mechanisms of anthocyanins include scavenging-free radicals, reducing 

cell proliferation, up-regulating/inducing apoptosis and modulating mitogen-activated 

protein kinase (MAPK) activities (Afaq et al. 2005; Jing et al. 2008; Shin et al. 2009). A 

recent study using healthy men, showed that potato anthocyanins were anti-inflammatory 

and lowered plasma concentrations of C-reactive protein, 8-hydrodeoxyguanosine, and 
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interleukin-6 in men consuming anthocyanin-rich purple potatoes compared with white 

potatoes (Kaspar et al. 2011). 

Literature suggests that cold storage (~5 °C) of potatoes either leads to an increase 

in the phenolic content or keeps it constant (Mqndy et al. 1966; Lewis et al. 1999; 

Stushnoff et al. 2008; Blessington et al. 2010). A similar observation has been reported 

for antioxidant activity (Spychalla and Desborough 1990; Mizuno et al. 1998; Rosenthal 

and Jansky 2008). Little information is available on effect of storage on bioactivity and 

how analytical data (total phenolic and anthocyanin content, antioxidant activity) 

correlates with bioactivity (cell proliferation and apoptosis) before and after prolonged 

storage. In this study, we have investigated the effects of storage on the content, 

composition and antioxidant activity of potatoes, and on potato anti-cancer properties 

using HCT-116 and HT-29 colon cancer cell lines. 

Antioxidant activity of seven potato clones, White – Atlantic, Yellow – Yukon 

Gold, CO97232-2R/Y, AC97521-1R/Y, and Purple – Purple Majesty, CO97215-2P/P and 

CO97227-2P/PW increased with storage. Phenolic content increased initially with storage 

followed by a decrease. But, after 90 days of storage, purple-fleshed potatoes showed 

significantly higher levels of phenolics compared with initial levels. Fresh purple-fleshed 

potato extracts showed more potent anti-proliferative and pro-apoptotic properties in 

HCT-116 and HT-29 cell lines compared with extracts of white- and yellow-fleshed 

cultivars. Storage reduced the anti-proliferative and pro-apoptotic properties of all clones 

tested. In summary, even though the content of phenolics increased, the anti-cancer 

activity decreased with storage. These findings suggest that it is critical to use analytical 
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techniques in conjunction with in vitro and/or in vivo functional assays in assessing the 

effects of treatments on health-benefiting properties of plant foods. 

2. Materials and Methods 

2.1. Chemicals 

Solvents for the extractions were purchased from the Department of Central 

Receiving, Colorado State University (Fort Collins, CO). Reagents and chemicals for 

total phenolics, monomeric anthocyanins and antioxidant activity assays, and phenolic 

acid standards were procured from Sigma (St. Louis, MO). Gallic acid was purchased 

from Fisher Scientific (Pittsburgh, PA). Malvidin chloride, peonidin chloride and 

pelargonidin chloride standards were procured from Indofine Chemicals (Hillsborough, 

NJ). 

For the cell culture assays, McCoy’s media, Dulbecco’s modified Eagle’s medium 

F-12, bovine serum albumin, and sodium bicarbonate were procured from Sigma (St. 

Louis, MO). Fetal bovine serum, streptomycin/penicillin mix and charcoal powder were 

obtained from Fisher Scientific (Pittsburgh, PA). 

2.2. Potatoes 

Seven potato clones – commercial cultivars (Atlantic, Purple Majesty, and Yukon 

Gold), and advanced selections (CO97232-2R/Y, AC97521-1R/Y, CO97215-2P/P, and 

CO97227-2P/PW) were grown at San Luis Valley Research Center – Colorado State 

University, Center, CO. The potatoes were grown in Dunul cobbly sandy loam soil for a 

growth period of 100-110 days; starting from mid-May till October. Vine killing was 

done approximately three weeks before harvesting using sulfuric acid. The potatoes were 

reconditioned for three weeks to allow sugar-starch conversion and then stored at 3 ± 1 
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°C. This was considered as ‘Day 0.’ Potatoes were randomly placed in numbered bags 

and weighed at Day 0 and then subsequently at monthly intervals before sampling for 

analysis to obtain moisture loss data. Tubers showed no signs of visual deterioration or 

loss of firmness even at Day 90. 

2.3. Preparation of Potato Extracts 

Potato samples (10 g) were homogenized with 25 ml of 80% ethanol acidified 

with formic acid (0.1% v/v). The homogenized samples were poured into chloroform-

resistant tubes and vortexed every 15 minutes for an hour. Then 15 ml chloroform was 

added to the tubes and they were vortexed every 10 minutes for half an hour. The tubes 

were then centrifuged at 4000 rpm for 10 minutes and stored overnight to allow layer 

separation. Supernatants (~15 ml) were collected and stored at -20°C until further 

analyses. All potato samples were corrected for moisture loss during storage. To 

minimize intraclone variability for each clone, eight randomized tuber samples were 

taken at each time point and extracted separately for further analyses. 

2.4. Quantification of Total Phenolics 

Total phenolic content of the potato extracts was determined using a modified 

Folin-Ciocalteu colorimetric method (Singleton et al. 1999). In a 96-well microplate, 35 

µl of extract was combined with 150 µl of 0.2 M Folin-Ciocalteu reagent and allowed to 

react for 5 minutes. Then 115 µl of sodium carbonate solution (7.5% w/v) was added and 

the mixture was allowed to react for 30 minutes at 45 °C and cooled for one hour. The 

absorbance was read at 765 nm using a microplate reader (Synergy-2, BioTek 

Instruments Inc., VT, U.S.) and expressed as milligrams of gallic acid equivalents per 

100 g of fresh potato sample (mg GAE/100 gfw). 
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2.5. Quantification of Total Monomeric Anthocyanin Content 

The total monomeric anthocyanin content was determined by pH differential 

method (Wrolstad 1976). Buffers of pH 1.0 and pH 4.5 (290 µl of each) were separately 

added to 10 µl of the purple-fleshed potato extracts. After 15 minutes, absorbance was 

measured at 525 and 700 nm using a microplate reader (Synergy-2, BioTek Instruments 

Inc., VT). The difference in absorbance (A) at different pH values and wavelengths was 

obtained using the equation below. 

A = (A525 - A700) pH1.0 - (A525 - A700) pH4.5 

Monomeric anthocyanin concentration (MAC) was calculated using an extinction 

coefficient (ε) of 26,900 l/cm/mol, molecular weight (MW) of 449.2 g/mol, standard path 

length of 1 cm and a dilution factor (DF) of 10 using the formula below. 

MAC (mg/l) = (A x MW x DF x 1000) / (ε x 1) 

Anthocyanin content was reported as mg cyanidin-3-glucoside per 100 g of fresh 

potato sample (mg C-3-G equivalents/100 gfw). 

2.6. Antioxidant Activity Analysis 

The antioxidant activity was measured using modified 2,2-diphenyl-1-

picryhydrazyl radical (DPPH) assay (Blois 1958) and modified 2,2’-azino-bis(3-

ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay (Awika et al. 2003; Reddivari et al. 

2007a). For the DPPH assay, freshly prepared 285 µl of diluted DPPH solution (240 

µg/ml) was added to 15 µl of ethanol extracts in a 96-well microplate, and allowed to 

react for 30 minutes. The absorbance was measured at 517 nm using a microplate reader 

(Synergy-2, BioTek Instruments Inc., VT), and compared with trolox standards. The 
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antioxidant activity was calculated as mg trolox equivalent per 100 g of fresh potato 

sample (mg TE/100 gfw). 

For the ABTS assay, equal volumes of 3 mM ABTS radical and 8 mM potassium 

persulfate were allowed to react in the dark for at least 16 hours at room temperature to 

form the mother solution. Then 5 ml of this mother solution was mixed with 145 ml of 

phosphate buffer (pH 7.4) to make the working solution. In a 96-well microplate, 290 µl 

of the ABTS working solution was mixed with 10 µl of ethanol extracts and allowed to 

react for 30 minutes. The absorbance was measured at 734 nm using a microplate reader 

(Synergy-2, BioTek Instruments Inc., VT). The antioxidant activity of the samples was 

expressed as mg trolox equivalent per 100 g of fresh potato sample (mg TE/100 gfw). 

2.7. Ultra Performance Liquid Chromatography (UPLC) and Mass Spectrometry 

Potato extracts (2 µl) were injected in a Waters Acquity UPLC system (Waters 

Corporation, Milford, MA) using a HSS T3 column (1.8 µm, 1.0 x 100 mm), and a 

gradient from solvent A (100% water + 0.1% formic acid) to solvent B (95% methanol, 

5% water, 0.1% formic acid). Injections were made in 100% A, which was held for 2 

minutes, followed by a 13 minute linear gradient to 100% B, followed by a 2 minute hold 

at 100% B. The column was returned to starting conditions over 0.1 minutes, and allowed 

to reequilibrate for 2.9 minutes. Flow rate was kept constant at 140 µl/min for the 

duration of the run. The column and the auto sampler were held at 50 °C and 5 °C, 

respectively. 

Column eluent was infused into a Micromass Q-Tof Micro mass spectrometer 

(Waters Corporation, Milford, MA) fitted with an electrospray source. Data was collected 

in positive ion full scan mode, scanning from m/z 50-1200 at a rate of 2 scans per second 
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with an interscan delay of 0.1 second. Calibration was performed prior to sample analysis 

via infusion of sodium formate solution, with mass accuracy within 3 µl/l (ppm). The 

capillary voltage was held at 2200 V, the source temperature at 130 °C, and the 

desolvation temperature at 300 °C with a nitrogen desolvation gas flow rate of 300 l/hr. 

The quadrupole was held at collision energy of 7 volts. 

Peak detection was performed using MarkerLynx software (Waters MassLynx, v 

4.1, Milford, MA). Peak areas were exported to SIMCA-P+ (Umetrics AB, v12.0, San 

Jose, CA) for principal component analysis. Data were scaled to unit variance and mean 

centered before principal component analysis. 

2.8. Human Colon Cancer Cell Lines  

HCT-116, p53+/+ cells were a generous gift from Dr. Bert Vogelstein and HT-29 

cells were purchased from ATCC (Manassas, VA). The cells were maintained at 37 °C in 

a humidified 5% CO2 incubator in McCoy’s media supplemented with sodium 

bicarbonate (2.2 g/l), fetal bovine serum (50 ml/l), and streptomycin/penicillin mix (10 

ml/l). 

2.9. Cell Proliferation  

Cell proliferation was assessed via BrdU assay (Cell Signaling Technology, MA) 

and cell counting using an automated cell counter (Nexcelom Bioscience, Lawrence, 

MA). Briefly, HCT-116 or HT-29 cells were grown in 96 well plates at 4000 cells per 

well in Dulbecco’s modified Eagle’s medium F-12 (DMEM). After 24 hours, the cells 

were treated with potato extracts diluted in DMEM having final phenolic concentrations 

of 10, 20 and 30 µg GAE/ml. The treatments were added in triplicates at the volume of 

1ml per well and then allowed to incubate for 24 hours. At the end of the incubation 
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period, cell viability was assessed by quantifying the amount of 5-bromo-2’-deoxyuridine 

(BrdU) incorporated into cellular DNA of proliferating cells using an anti-BrdU antibody. 

For cell counting, cells were plated at 50,000 cells per well in a 12-well plate and treated 

as above and reported as per cent reduction with respect to control.  

2.10. Apoptosis 

Apoptosis was measured using the Caspase-Glo 3/7 assay (Promega Corporation, 

Madison, WI). After 24 hour incubation with the extracts, HCT-116 and HT-29 cells 

were counted and 15,000 cells were added per well to a 96-well microplate and the 

volume was made up to 200 µl using DMEM. Caspase-Glo 3/7 reagent (100 µl) was 

added to each well and the plate was placed on a shaker at 300 rpm for 5 minutes. The 

plate was incubated in the dark at room temperature and luminescence was measured 

after 30 minutes. Cells undergoing apoptosis have a higher caspase-3 and caspase-7 

activity, which results in a stronger luminescence signal. 

2.11. Statistical Analysis  

Fisher's protected t-tests using the Least Squares Means test, which was used for 

comparing group differences with p < 0.05 being considered as a statistically significant 

difference, and Pearson correlation coefficients were calculated using SAS Statistical 

Analysis System, v.9.2 (SAS Institute Inc., Cary, NC). All results have been expressed as 

mean ± standard error. 

3. Results and Discussion 

3.1. Total Phenolic Content 

Total phenolic content of seven clones (white-, yellow- or purple-fleshed) 

measured at 0, 30, 60 and 90 days of storage using Folin-Ciocalteu reagent assay ranged 
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from 25.6 ± 0.4 to 268.6 ± 3.3 mg GAE/100 gfw. This is in accordance with previous 

studies reporting that the total phenolic content of potato cultivars ranged from 90 to 400 

mg GAE/100 gfw (Stushnoff et al. 2008) and 76 to 181 mg chlorogenic acid 

equivalents/100 gfw (Reyes et al. 2005). The phenolic content primarily depends upon 

the genotype and slight variations with in the genotype reported by different authors may 

be due to differences in the growing location, method of extraction and sample 

preparation as vigorous extraction methods can lead to an increase in the phenolic content 

(Rumbaoa et al. 2009). The rank order for the phenolic content was purple-fleshed clones 

 
Figure 3.1. Initial storage elevated total phenolic content in potato clones. Total phenolic 

content of the potato extracts was measured by Folin-Ciocalteu reagent assay as 

described in Materials and Methods, and expressed as mg gallic acid equivalents/100 

gfw. The letters (P/P, P/PW and R/Y) after some of the advanced selections denote 

skin/flesh color. P: purple; PW: purple with white patches; R: red; Y: yellow. *Indicates 

significant differences (p < 0.05) in the phenolic content compared with the initial time 

point. Results are presented as mean ± SE of 8 replicates for each time point. 
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followed by yellow-fleshed clones and finally the white-fleshed cultivar. The phenolic 

content of purple-fleshed clones was approximately six to eight times greater than that of 

Atlantic because of the presence of anthocyanins along with phenolic acids. 

A significant increase (p < 0.05) in the phenolic content was observed after 30 

days of storage for most clones (Figure 3.1.), followed by a decline either to initial levels 

or to significantly above the initial levels after 90 days of storage depending upon the 

clone. CO97227-2P/PW had the greatest phenolic content among all clones tested. At 

Day 0, its phenolic content was 166.2 ± 5.6 mg GAE/100 gfw which increased to 268.6 ± 

3.2 mg GAE/100 gfw at 60 days of storage and finally reduced to 205.4 ± 5.5 mg 

GAE/100 gfw at 90 days of storage. The lowest phenolic content was seen in the Atlantic 

cultivar (25.6 ± 0.4 mg GAE/100 gfw) at Day 0. 

In plants, environmental stresses such as low temperature storage, strong light, 

wounding or pathogen attacks have been shown to induce generation of phenolic 

compounds via the phenylpropanoid pathway (Dixon and Paiva 1995). In potatoes, low 

temperature storage (Rhodes and Wooltorton 1978), light (Percival and Baird 2000), 

wounding (Reyes et al. 2007) and disease (Smith and Rubery 1981) can cause an increase 

in the phenolic content. Low temperature storage-induced activation of phenylalanine 

ammonia-lyase (PAL), a key regulatory enzyme in the biosynthesis of polyphenols 

including anthocyanins (Jiang and Joyce 2003), and de novo synthesis of secondary 

metabolites (Lewis et al. 1999) may be responsible for an initial increase in the phenolic 

content with storage. Between 30 - 90 days of storage, a decreasing trend in phenolic 

content may be due to degradation of the polyphenolic compounds, especially 

chlorogenic acid (Rhodes and Wooltorton 1978). 
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3.2. Total Monomeric Anthocyanin Content 

The anthocyanin content of purple-fleshed clones ranged from 20.9 ± 0.2 to 110.3 

± 1.4 mg C-3-G equivalents/100 gfw (Figure 3.2.). It has been documented that the 

anthocyanins in purple-fleshed cultivars can range from 11 to 174 mg C-3-G 

equivalents/100 gfw (Reyes et al. 2005). This is in line with our current observation. 

CO97227-2P/PW had the highest anthocyanin content among all cultivars irrespective of  

Figure 3.2. Initial storage caused de novo synthesis of anthocyanins in purple-fleshed 

clones. The trend is similar to the total phenolic content suggesting that anthocyanins are 

major polyphenolic compounds present in purple-fleshed potatoes. Monomeric 

anthocyanin content was measured using the pH-differential method as described in 

Materials and Methods, and expressed as mg cyanidin-3-glucoside equivalents/100 gfw. 

The letters (P/P and P/PW) after some of the advanced selections denote skin/flesh color. 

P: purple; PW: purple with white patches. *Indicates significant differences (p < 0.05) in 

the anthocyanin content compared with the initial time point. Results are presented as 

mean ± SE of 8 replicates for each time point. 
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the storage time. The initial anthocyanin content of CO92772-2P/PW was 51.7 ± 1.5 mg 

C-3-G equivalents/100 gfw which then increased to 110.3 ± 1.5 mg C-3-G 

equivalents/100 gfw at Day 60 and gradually decreased to 82.9 ± 2.4 mg C-3-G 

equivalents/100 gfw at Day 90. Purple Majesty, which showed lowest anthocyanin 

content among the three clones tested, had 20.9 ± 0.2, 40 ± 1 and 29.6 ± 0.9 mg C-3-G 

equivalents/100 gfw at 0, 60 and 90 days, respectively. 

The anthocyanin content followed a trend similar to that of the phenolic content, 

suggesting that anthocyanins contribute to a major portion of polyphenols in purple-

fleshed potatoes. Cold storage conditions are known to cause the conversion of starch to 

sugar (Isherwood 1976), which can up-regulate genes coding for dihydroflavonol 

reductase (DFR) and anthocyanidin synthase (ANS), which are involved in anthocyanin 

biosynthesis, and hence potentially cause an increase in the anthocyanin concentration 

(Vitrac et al. 2000; Gollop et al. 2001; Gollop et al. 2002; Solfanelli et al. 2006). Also, as 

suggested for the phenolic content, the initial increase might be due to enhanced PAL 

activity (Jiang and Joyce 2003) and de novo synthesis of anthocyanins (Lewis et al. 1999) 

during storage. 

3.3. Antioxidant Activity  

Antioxidant activity measured by the DPPH and ABTS assays, showed an 

increase with storage (Figure 3.3). The antioxidant capacity measured by DPPH assay for 

fresh potatoes ranged from 25.8 ± 0.6 mg TE/100 gfw at Day 0 to 107.8 ± 0.4 mg TE/100 

gfw at Day 90 for Atlantic and 976.2 ± 11.46 mg TE/100 gfw at Day 0 to 1412.2 ± 1.3 

mg TE/100 gfw at Day 90 for the advanced selection CO97227-2P/PW, which showed 

the highest antioxidant activity among the seven clones tested (Figure 3.3 A). For the 
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ABTS assay, the range was from 94 ± 3.2 mg TE/100 gfw at Day 0 to 144.4 ± 4.9 mg 

TE/100 gfw at Day 90 for Atlantic and 782.3 ± 19.2 mg TE/100 gfw at Day 0 to 1285.4 ± 

25.1 mg TE/100 gfw at Day 90 for CO97227-2P/PW (Figure 3.3. B). The antioxidant 

values at Day 90 were significantly higher compared with Day 0 for all clones 

irrespective of the tuber flesh color. 

The DPPH and ABTS methods measure the antioxidant activity as a result of their 

respective radical quenching ability. It has been reported that the antioxidant potential of 

pigmented cultivars can be two to eight times higher than the non-pigmented cultivars 

because of presence of anthocyanins and/or carotenoids along with the phenolic acids 

(Brown 2004; Stushnoff et al. 2008). In this study, CO97227-2P/PW had approximately a 

10-fold greater antioxidant activity than the white cultivar. At 90 days of storage, the 

antioxidant activity had increased to its maximum for the duration of the study though 

there was a trend towards reduction in the phenolic content between 30 – 90 days. These 

results indicate the contribution of some of the non-phenolic compounds such as vitamins 

and minerals to the antioxidant activity (Gliszczynska-Swiglo 2006; Shenkin 2006). 

3.4. UPLC-MS profile of Phenolic Compounds  

Based on the data from total phenolic and anthocyanin content, and antioxidant 

activity assays, four clones were selected for phenolic profile screening. Of the four 

selected, three were commercially available cultivars representative of their color – 

Atlantic (white), Purple Majesty (purple) and Yukon Gold (yellow) – and the fourth one 

was CO97227-2P/PW, a purple-fleshed advanced selection, which had the highest 

phenolic content, antioxidant activity and anthocyanin content. Chlorogenic acid was the 

most abundant phenolic acid in most clones (Table 3.1). It has been reported that 
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Figures 3.3. Antioxidant activity of potatoes as assessed by DPPH (A) and ABTS (B) 

assays, respectively. Antioxidant activity was expressed as mg trolox equivalents/100 

gfw. The letters (P/P, P/PW and R/Y) after some of the advanced selections denote 

skin/flesh color. P: purple; PW: purple with white patches; R: red; Y: yellow. *Indicates 

significant differences (p < 0.05) in the antioxidant activity compared with the initial time 

point. Results are presented as mean ± SE of 8 replicates for each time point. 
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chlorogenic acid may account for 90% of the total phenolic content in potatoes (Dao and 

Friedman 1992). However, in this study only chlorogenic acid was measured but not its 

isomers. The chlorogenic acid content of Purple Majesty was approximately 35 times 

greater than that of Yukon Gold at Day 0 which, at Day 90 reduced to approximately 12-

fold. A previous study has reported an approximately ten-fold difference in the 

chlorogenic acid concentration in pigmented cultivars such as Mountain Rose and Purple 

Majesty, and non-pigmented cultivars such as Yukon Gold (Stushnoff et al. 2008). 

Another study observed a 20-fold difference in the chlorogenic acid content (Navarre et 

al. 2011). In Atlantic and Yukon Gold cultivars, 90 days storage increased the 

chlorogenic acid content approximately two-fold and four-fold respectively. Among the 

purple-fleshed clones, a 1.5-fold increase was observed. Caffeic acid was the second 

most abundant phenolic acid. We have previously reported that caffeic acid content can 

range from 310 to 420 µg per 100 gfw potato (Reddivari et al. 2007a; Reddivari et al. 

2007c). In the current study, the caffeic acid ranged from 580 to 1160 µg per 100 gfw 

potato in the white- and yellow-fleshed cultivars, irrespective of storage. The caffeic acid 

content in pigmented clones was greater than that in non-pigmented clones. The purple-

fleshed clones contained caffeic acid ranging from 5.7 mg to 10.7 mg per 100 gfw potato 

irrespective of storage. A previous study observed a 100-fold difference in the caffeic 

acid contents of the yellow cultivar, Divina, and the purple cultivar Pollunta chata 

(Navarre et al. 2011). Storage increased the caffeic acid content in Atlantic, Yukon Gold, 

Purple Majesty and CO97227-2P/PW clones 1.3, 1.9, 1.5, and 1.8, times respectively. 

Thus, this increase in the phenolic acids could explain the observed increase in the total 

phenolic content with storage. 
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Table 3.1. Phenolic profile of potato extracts and the effect of storage 

The phenolic acid values are expressed as mg/100 gfw potato. The anthocyanins have been reported as area under the curve. Values 

are presented as mean ± SE of six replicates 

 

Compound 
Molecular 

ion M
+
 

(m/z) 

Retention 

time 

(mins) 

Atlantic Yukon Gold Purple Majesty CO97227-2P/PW 

Day 0 Day 90 Day 0 Day 90 Day 0 Day 90 Day 0 Day 90 

Chlorogenic acid 355 6.11 
1.15± 
0.02 

2.13±0.06 0.42±0.02 1.94±0.13 
14.77± 

0.13 
23.77± 

0.31 
19.20± 

0.65 
30.09± 

0.26 

Caffeic acid 181 6.15 
0.87± 

0.08 
1.16±0.09 0.58±0.03 

1.12± 

<0.01 

5.73± 

0.33 

8.79± 

0.45 

5.98± 

0.21 

10.73± 

1.13 

Ferulic acid 177 7.56 - 
0.102± 

0.01 

0.043± 

<0.01 

0.136± 

<0.01 
- - - - 

Sinapic acid 207 7.76 - 
0.041± 

<0.01 
- 

0.023± 

<0.01 
- - - - 

Pet-3-rut-5-glc 787 5.79 - - - - 215.4 449.7 297.1 761.8 

Mal-3-rut-5-glc 801 6.19 - - - - 31.06 56.51 84.05 184.1 

Peo-3-coum-rut-5-

glc isomer 
917 7.70 - - - - 0 0 128.9 297.2 

Pet-3-coum-rut-5-

glc 
933 7.92 - - - - 6574 10720 11034 12026 

Pel-3-coum-rut-5-

glc 
887 8.11 - - - - 0 0 1224 1514 

Peo-3-coum-rut-5-

glc 
917 8.21 - - - - 306.8 416.2 7527 6225 

Mal-3-coum-rut-5-
glc 

947 8.31 - - - - 668.7 834.2 1949 2516 
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Purple-fleshed clones also contained anthocyanins in their glycosylated form; 

some of them were acylated with para-coumaric acid. Pel-3-coum-rut-5-glc was observed 

only in CO97227-2P/PW. CO97227-2P/PW also had approximately a 3-fold higher 

amount of mal-3-coum-rut-5-glc as compared with Purple Majesty. Pet-3-coum-rut-5-glc 

was the most abundant anthocyanin in Purple Majesty, followed by mal-3-coum-rut-5-glc 

and then peo-3-coum-rut-5-glc. This agrees with another study that has reported Purple 

Majesty anthocyanins in the same order of abundance (Stushnoff et al. 2008). Storage 

increased the individual anthocyanins 1.2 to 2.5 times in both purple-fleshed clones with 

the exception of peo-3-coum-rut-5-glc in CO97227-2P/PW. This could explain the 

observed increase in the monomeric anthocyanin content from Day 0 to Day 90.  

Principal component analysis indicated differences in the phenolic profiles among 

the clones and between the initial and final storage period (Figure 3.4.). 

 

Figure 3.4. Principal component analysis revealed differences in phenolic profiles based 

on cultivar and storage. The purple-fleshed clones had different profiles than the white- 

and yellow-fleshed cultivars.  The bubbles point out difference in phenolic profiles due to 

storage. Plot shows all the individual data points. Data are represented for Atlantic (●), 

Purple Majesty (□), Yu on Gold (○) and CO97227-2P/PW (■) cultivars. 
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The phenolic profiles of Purple majesty (purple) were not only different from Atlantic 

(white) and Yukon Gold (yellow) but also from other purple clone CO97227-2P/PW. 

3.5. Cell Proliferation and Apoptosis Assays  

The potential growth inhibitory effects of the extracts from the four clones 

(Atlantic, Purple Majesty, Yukon Gold and CO97227-2P/PW) before and after storage 

were investigated using HCT-116 and HT-29 human colon cancer cell lines. Figures 3.5. 

and 3.6. illustrate the effects of different concentrations of the extracts (expressed as µg 

GAE/ml) on proliferation of HCT-116 cells. Number of cells were quantified and 

reported as percentage reduction with respect to control treatment (only media).  

Potato extracts caused a dose-dependent reduction in the number of cells (Figures 

3.5. and 3.6.). The potato extracts could also suppress proliferation of HT-29 cells, which 

is an advanced human colon cancer cell line (Figures 3.7. and 3.8.). However, the 

efficacy was lower as compared to HCT-116 cell line. The purple-fleshed clones showed 

more potent anti-proliferative properties compared with the white- and yellow-fleshed 

cultivars. Significant reduction in the anti-proliferative property was observed for all four 

clones with storage. CO97227-2P/PW was the most potent clone showing greater than 

70% reduction in cell proliferation at 30 µg GAE/ml. 

Previous studies have shown reduction in proliferation of cancer cells when 

treated with potato extracts. Purple Majesty extracts (2%) in the media have been 

reported to suppress proliferation of MCF7 (estrogen-dependent) and MDAMB468 

(estrogen-independent) breast cancer cells by approximately 70% after a five day 

incubation period (Stushnoff et al. 2008). Phenolic acids identified in potatoes have been 

implicated in suppression of cancer cell proliferation in vitro (Lee and Zhu 2006). 
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Figure 3.5. Potato extracts suppressed proliferation of HCT-116 cells in a dose-dependent 

manner. Cell number was measured using a cellometer as described in Materials and 

Methods. Values with different letters in each graph indicate significant difference (p < 

0.05) between percentage reduction at two different concentrations at a given time point. 

*Indicates a significant difference (p < 0.05) between percentage reduction at two 

different time points for a given concentration. Results are presented as mean ± SE of 

four replicates for each time point. 

 

A similar trend was seen in the elevation of apoptosis (Figures 3.9. and 3.10.). The 

potato extracts showed a dose-dependent increase in the induction of apoptosis with 

respect to the control (only media). Duration of storage negatively affected the pro-

apoptotic activity of HCT-116 (Figure 3.9.) and HT-29 (Figure 3.10.) cancer cells. 

Purple-fleshed clones not only had anti-proliferative activity but also caused a greater  
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Figure 3.6. Potato extracts suppressed proliferation of HCT-116 cells in a dose-dependent 

manner. Cell viability was measured using the BrdU assay as described in Materials and 

Methods. Values with different letters in each graph indicate significant difference (p < 

0.05) between percentage reduction at two different concentrations at a given time point. 

*Indicates a significant difference (p < 0.05) between percentage reduction at two 

different time points for a given concentration. Results are presented as mean ± SE of 

four replicates for each time point. 

 

increase in apoptosis as compared to the white- and yellow-fleshed cultivars. CO97227-

2P/PW, with greater total phenolic content and antioxidant capacity, was the most potent 

clone causing almost a 10-fold increase in the apoptotic cells as compared to the control. 

The diverse anthocyanin composition of CO97227-2P/PW as seen in the above section 

may explain the higher anti-cancer activity as compared with Purple Majesty. 
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Figure 3.7. Potato extracts suppressed proliferation of HT-29 cells in a dose-dependent 

manner. Cell number was measured using a cellometer as described in Materials and 

Methods. Values with different letters in each graph indicate significant difference (p < 

0.05) between percentage reduction at two different concentrations at a given time point. 

*Indicates a significant difference (p < 0.05) between percentage reduction at two 

different time points for a given concentration. Results are presented as mean ± SE of 

four replicates for each time point. 

 

3.6. Correlations 

Significant positive correlations were observed for phenolic content and 

antioxidant activity (R
2
 = 0.90, p < 0.0001) as well as anthocyanin content (R

2
 = 0.89, p < 

0.0001). This is in line with a strong positive correlation between the total phenolic and 

anthocyanin content (R
2
 = 0.91) as reported by Reyes et al. (2005). Significant positive 

correlation has been observed between the DPPH and ABTS assays 
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Figure 3.8. Potato extracts suppressed proliferation of HT-29 cells in a dose-dependent 

manner. Cell viability was measured using the BrdU assay as described in Materials and 

Methods. Values with different letters in each graph indicate significant difference (p < 

0.05) between percentage reduction at two different concentrations at a given time point. 

*Indicates a significant difference (p < 0.05) between percentage reduction at two 

different time points for a given concentration. Results are presented as mean ± SE of 

four replicates for each time point. 

 

for antioxidant activity measurement (Thaipong et al. 2006; Reddivari et al. 2007a; 

Dudonn  et al. 2009). Similar, correlation (R
2
 = 0.96, p < 0.0001) was observed between 

DPPH and ABTS assays. 

Storage duration was positively correlated with antioxidant activity (R
2
 = 0.79, p 

< 0.02) of all the genotypes individually. Moderate to strong correlations were observed  
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Figure 3.9. Potato extracts induced dose-dependent apoptosis in HCT-116 colon cancer 

cells. Apoptosis was measured using Caspase-Glo 3/7 assay as described in Materials and 

Methods. Values with different letters in each graph indicate significant difference (p < 

0.05) between apoptotic cells at two different concentrations at a given time point. 

*Indicates a significant difference (p < 0.05) between apoptotic cells at two different time 

points for a given concentration. Results are presented as mean ± SE of four replicates for 

each time point. 

 

between storage duration and percentage of cancer cells viable for Atlantic (R
2
 = 0.74, p 

< 0.1 for BrdU and R
2
 = 0.67, p < 0.1 for cell counting) and Yukon Gold samples (R

2
 

=0.46, p < 0.36 for BrdU and R
2
 = 0.99, p < 0.001 for cell counting). However, apoptosis 

induction exhibited a strong negative correlation with storage duration for Atlantic (R
2
 = 

-0.93, p < 0.01) and Yukon Gold (R
2
 = -0.95, p < 0.01) samples indicating a loss in the 

ability to induce apoptosis with storage duration. For the Purple Majesty samples, storage 



 
 

56 
 

 

Figure 3.10. Potato extracts induced dose-dependent apoptosis in HT-29 colon cancer 

cells. Apoptosis was measured using Caspase-Glo 3/7 assay as described in Materials and 

Methods. Values with different letters in each graph indicate significant difference (p < 

0.05) between apoptotic cells at two different concentrations at a given time point. 

*Indicates a significant difference (p < 0.05) between apoptotic cells at two different time 

points for a given concentration. Results are presented as mean ± SE of four replicates for 

each time point. 

 

duration moderately correlated with percentage of viable cancer cells (R
2
 = 0.90, p < 0.01 

for BrdU and R
2
 = 0.66, p < 0.1 for cell counting) and apoptosis (R

2
 = -0.58, p < 0.2). For 

the CO97227-2P/PW, the correlations were not significant which could indicate that 

storage duration did not suppress its anti-cancer properties. 
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CHAPTER IV 

COMBINED EFFECTS OF STORAGE AND PROCESSING ON THE 

COMPOSITION, ANTI-CANCER PROPERTIES AND SENSORY ATTRIBUTES 

OF COLORED-FLESH POTATOES 

Abstract 

Potatoes can be stored for up to one year before being processed and consumed. 

The objective of this study was to determine the extent to which fresh and stored colored-

flesh potatoes retain their anti-cancer properties after baking and chipping compared with 

uncooked potatoes. We utilized white-, yellow- and purple-fleshed potato clones and 

tested their phenolic and anthocyanin content, antioxidant activity, metabolite profile, 

anti-cancer properties, and sensory attributes. When compared with uncooked samples, 

baking or chipping led to significant losses in the phenolic and anthocyanin content, and 

antioxidant activity of the potatoes. However, with storage, total phenolic and 

anthocyanin content, and antioxidant activity increased in baked samples while in the 

chipped samples, they remained constant. Principal component analysis of approximately 

1600 peaks obtained by ultra performance liquid chromatography-mass spectroscopy 

(UPLC-MS) analysis revealed differences among metabolite profiles of baked and 

chipped white-, yellow- and purple-fleshed clones post-storage. Even though two clones 

had same flesh color (purple), their metabolite profiles were different. Ethanol extracts of 

baked and chipped samples, in general, suppressed proliferation and elevated apoptosis (p 

< 0.05) in early stage (HCT-116, p53+/+) and advanced stage (HT-29) human colon 

cancer cell lines. Anti-proliferative and pro-apoptotic properties of baked potatoes were 

similar to that of fresh potatoes while chipping caused a significant reduction in the 
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biological activity. After 90 days of storage, Atlantic and Purple Majesty, in general, 

showed reduction in the anti-proliferative and pro-apoptotic properties of baked and 

chipped samples. However, CO97227-2P/PW and Yukon Gold retained their anti-cancer 

properties. Sensory analysis revealed comparable acceptance of purple-fleshed baked and 

chipped potatoes when compared with traditional cultivars. Consumers were willing to 

pay a premium for colored-flesh potatoes if they were educated on their potential health 

benefits. Phenolic content and antioxidant activity of purple-fleshed potatoes, after 

baking, were comparable with those of anthocyanin-rich berries. Hence, purple-fleshed 

potatoes can be a healthier choice as they possess greater levels of bioactive compounds 

and anti-cancer properties even after processing as compared with white- and yellow-

fleshed counterparts. 

1. Introduction 

The potato (Solanum tuberosum L.) is one of the most commonly consumed 

vegetable crops worldwide. Due to its high consumption it is considered the third largest 

source of phenolic compounds in the human diet after oranges and apples (Chun et al. 

2005).   The US Potato Board, through the National Eating Trends Report (2010), 

revealed that over the past ten years, though the consumption of traditional potatoes 

(mashed, baked, fried, steamed, boiled and french fries) declined, specialty/colored 

potato consumption increased by 17%, possibly due to their putative health benefits. 

Anthocyanin-rich colored-flesh (purple and red) potatoes have up to eight times higher 

antioxidant capacity compared with white or yellow counterparts (Stushnoff et al. 2008). 

The role of potato polyphenols as antioxidants, anti-carcinogenic and anti-

mutagenic agents have been reported in numerous studies. Potato polyphenols are 
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effective against human liver, colon, and prostate cancer cells (Chu et al. 2002; Nzaramba 

et al. 2009). Chlorogenic acid, in particular, has shown to suppress the proliferation of 

A549 human lung cancer cell lines and block UVB- or TPA-induced transactivation of 

AP-1 and NF-κB, which are inflammatory mediators lin ed to cancer, in JB6 mouse 

epidermal cell line (Feng et al. 2005). Colored-flesh potatoes are a rich source of 

anthocyanins with a wide array of health benefits. Colored-flesh potato anthocyanins are 

toxic to human stomach cancer cells and suppress growth of benzopyrene-induced 

stomach cancer in mice (Hayashi et al. 2006). We have previously reported that 

anthocyanin fractions from potatoes induce apoptosis in prostate cancer cell lines through 

caspase-dependent and -independent pathways (Reddivari et al. 2007c). Researchers 

recently found lower levels of inflammatory markers such as plasma C-reactive protein, 

8-hydrodeoxyguanosine, and interleukin-6, in healthy men who were consuming purple 

potatoes as compared with those who were consuming white ones (Kaspar et al. 2011). 

Previous researchers used either uncooked or baked potatoes with little emphasis 

on the effect of storage and processing on biological activity. It is known that storage  

and processing changes the physical and chemical composition of foods (Spanos et al. 

1990; Price et al. 1997), thus, affecting their antioxidant activity (Nicoli et al. 1999; 

Dewanto et al. 2002). Raw potato phenolic content has been extensively studied (Al-

Saikhan et al. 1995; Reyes et al. 2005; Stushnoff et al. 2008; Rumbaoa et al. 2009), but 

potatoes are almost always consumed after processing (baked, chipped, fried, boiled or 

microwaved) making it critical to understand the effect of such processing techniques on 

the activity and composition of bioactive compounds in potatoes. Domestic cooking such 

as microwaving, boiling or frying can result in partial losses in the phenolic content 
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(Tudela et al. 2002). Specifically, chlorogenic acid has also been shown to undergo 

degradation after home processing (Im et al. 2008). However, processing has also been 

reported to cause an increase in the phenolic content and the antioxidant activity of potato 

(Blessington et al. 2010). Potatoes are stored for months, sometimes up to one year 

before they are processed (Herrman et al. 1996). Hence, it is necessary to determine the 

combined effects of storage and processing on the anti-cancer activity of potatoes. The 

objective of this study was to analyze the extent to which potatoes, especially colored-

fleshed ones, retained their anti-cancer activity after post-storage processing as compared 

with uncooked potatoes.  

For the consumer, sensory perception is of utmost importance. Hence, we 

conducted sensory analysis to understand how inter-clonal differences, post-harvest 

storage and total phenolic content influence the sensory parameters of baked and chipped 

potato samples.  

Berries are the most popular source of anthocyanins, which have many health-

benefits associated with them (Meyers et al. 2003; Bagchi et al. 2004; Olsson et al. 2004). 

However, many populations are unable to consume berries due to their high cost with 

respect to other fruits and vegetables, including potatoes. Hence, to find how berries 

compare with colored-flesh potatoes, we quantified the phenolic and anthocyanin content 

of popular anthocyanin-rich berries such as blueberries, strawberries, raspberries and 

grapes, and compared them with baked and chipped colored-flesh potatoes. 
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2. Materials and methods 

2.1. Chemicals 

Ethanol for the extractions was purchased from the Central Receiving, Colorado 

State University (Fort Collins, CO). Phenolic acid standards, reagents and chemicals for 

spectrophotometric quantitative assays were purchased from Sigma (St. Louis, MO). 

Gallic acid was acquired from Fisher Scientific (Pittsburgh, PA). 

McCoy’s 5A modified medium, Dulbecco’s modified Eagle’s medium F-12, 

bovine serum albumin, and sodium bicarbonate required for cell culture were obtained 

from Sigma (St. Louis, MO). Fetal bovine serum, streptomycin/penicillin mix and 

charcoal powder were procured from Fisher Scientific (Pittsburgh, PA). 

2.2. Potatoes and Anthocyanin-rich Fruits 

Seven potato clones – commercial cultivars (Atlantic – white-fleshed, Yukon 

Gold – yellow-fleshed, and Purple Majesty – purple-fleshed), and advanced selections 

(CO97232-2R/Y, AC97521-1R/Y, CO97215-2P/P, and CO97227-2P/PW) were grown at 

San Luis Valley Research Center, Colorado State University, Center, CO. For the 

advanced selections, the two letters separated by a ‘/’ at the end of the name indicate s in 

color and flesh color respectively (R: Red, Y: Yellow, P: Purple, PW: Purple white). The 

potatoes were grown in Dunul cobbly sandy loam soil for a growth period of 100-110 

days; starting from mid-May till October. Vine killing was done approximately three 

weeks before harvesting using sulfuric acid. The potatoes were reconditioned at 16 ± 1 

°C for three weeks to allow sugar-starch conversion and then stored in a dark room at 3 ± 

1 °C. This was considered as ‘Day 0’. Each potato clone was placed in  four numbered 

bags weighing 4.5 kg (10 lb) each for every processing method (uncooked, baked, 
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chipped) and every month (November, December, January, February) of study and their 

weight was recorded at Day 0 and at monthly intervals subsequently before sampling for 

analysis. 

Organic anthocyanin-rich fruits (blueberries, raspberries, strawberries and grapes) 

were purchased at Whole Foods Market®, Fort Collins, CO.  

2.3. Baking and Chipping of the Potatoes 

Potatoes were removed from storage every month from November 2009 (Day 0) 

till February 2010 (Day 90) and baked in a conventional oven preheated to 204 °C for 

one hour and fifteen minutes. Before baking each potato was washed with water, dried, 

wrapped in food-grade aluminum foil and pierced approximately 1.5 cm deep with a 

knife at approximately 3 cm intervals. The baked potatoes were cooled for 15-20 minutes 

and diced with skin into pieces weighing 7±1 g and stored at -20 °C until extraction.  

Chipping of potatoes was done every 30 days from Day 0 to Day 90. The potatoes 

were taken out from the storage three weeks before the chipping and reconditioned at 15 

°C. Then the potatoes were cleaned under running tap water and then introduced into an 

industrial chipper (Dito Dean Food Prep, Model TRS 23 with C-2 blade) with 1/16” 

blade clearance. The raw chips were washed under running warm water for 

approximately one minute to remove any water-soluble sugars present on the surface, 

placed in strainer trays to remove excess water and fried in Ba ers & Chefs™ Clear 

Frying Oil at 185 °C till bubbling slowed. The fried chips were placed on paper toweling 

for absorbing excess oil and then allowed to cool for 10-15 minutes. The chips were then 

labeled, bagged and stored at -20 °C until extraction. Samples for sensory evaluations 

were stored in dark conditions at 4 °C in air-tight bags. 
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2.4. Preparation of Extracts 

Baked or chipped potato samples (10 g) or anthocyanin-rich fruits (5 g) were 

homogenized with 25 ml acidified ethanol (80%, with 0.1% v/v formic acid). 

Homogenates were poured into chloroform-resistant tubes and vortexed every 15 minutes 

for an hour. Then 15 ml chloroform was added to the tubes and they were vortexed every 

10 minutes for 30 minutes. The tubes were then centrifuged at 4000 rpm for 10 minutes 

and stored overnight to allow layer separation. Supernatants were collected and stored at -

20 °C until further analyses. Data were corrected for moisture loss due to processing 

(baking or chipping) and storage. To minimize intra-clonal variability, eight randomized 

samples (biological replicates) were taken and extracted separately for each time point 

and processing method. 

2.5. Determination of Total Phenolic Content 

Total phenolic content of the potato extracts was determined using a modified 

Folin-Ciocalteu colorimetric method (Singleton et al. 1999). In a 96-well microplate, 150 

µl of 0.2 M Folin-Ciocalteu reagent was added to 35 µl of potato extract and held for 5 

minutes. Then, 115 µl of sodium carbonate solution (7.5% w/v) was added and the 

mixture was allowed to react for 30 minutes at 45 °C and cooled to room temperature for 

one hour. The absorbance was read at 765 nm using a microplate reader (Synergy-2, 

BioTek Instruments Inc., Winooski, VT), and expressed as milligrams of gallic acid 

equivalents per 100 g of fresh potato sample (mg GAE/100 gfw). 

2.6. Determination of Total Monomeric Anthocyanin Content 

The total monomeric anthocyanin content was determined by pH differential 

method (Wrolstad 1976). In a 96-well microplate, 290 µl of buffers (pH 1.0 and pH 4.5) 
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were added separately to 10 µl of dilute potato extract. Absorbance (A) was obtained 

using the equation below. 

A = (A525 - A700) pH1.0 - (A525 - A700) pH4.5 

Monomeric anthocyanin concentration (MAC) was calculated in terms of 

cyanidin-3-glucoside, using an extinction coefficient (ℇ) of 26,900 l/cm/mol and 

molecular weight (MW) of 449.2 g/mol, and standard path length of 1 cm and a dilution 

factor (DF) of 10 using the formula below. 

    (    )  
(                  )

(ℇ   )
 

Anthocyanin content was reported as mg cyanidin-3-glucoside per 100 g of fresh 

potato sample (mg C-3-G equivalents/100 gfw). 

2.7. Antioxidant Activity Analysis 

Antioxidant activity was measured using modified 2,2-diphenyl-1-picryhydrazyl 

radical (DPPH) assay (Blois 1958) and modified 2,2’-azino-bis(3-ethylbenzthiazoline-6-

sulfonic  acid) (ABTS) assay (Awika et al. 2003; Reddivari et al. 2007a). For the DPPH 

assay, freshly prepared 285 µl of diluted DPPH solution (240 µg/ml) were added to 15 µl 

of potato extracts in a 96-well microplate, and allowed to react for thirty minutes. The 

absorbance was measured at 517 nm using a microplate reader (BioTek Instruments Inc., 

Winooski, VT) and compared with trolox standards. The antioxidant activity was 

calculated as mg trolox equivalent per 100 g of fresh potato sample (mg TE/100 gfw). 

For the ABTS assay, equal volumes of 3 mM ABTS radical and 8 mM potassium 

persulfate were allowed to react in the dark for at least 16 hours at room temperature to 

form the mother solution. Then 5 ml of this mother solution was mixed with 145 ml of 

phosphate buffer (pH 7.4) to make the working solution. In a 96-well microplate, 290 µl 
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of the ABTS working solution was added to 10 µl of potato extracts and allowed to react 

for thirty minutes. The absorbance was measured at 734 nm using a microplate reader 

(BioTek Instruments Inc., Winooski, VT). The antioxidant activity of the samples was 

expressed as mg trolox equivalent per 100 g of fresh potato sample (mg TE/100 gfw). 

2.8. Ultra Performance Liquid Chromatography (UPLC) and Mass Spectrometry 

Potato extracts (2 µl) were injected in a Waters Acquity UPLC system (Waters 

Corporation, Milford, MA) using a HSS T3 column (1.8 µm, 1.0 x 100 mm), and a 

gradient from solvent A (100% water, 0.1% formic acid) to solvent B (95% methanol, 

5% water, 0.1% formic acid). Injections were made in 100% A, which was held for 2 

minutes, followed by a 13 minute linear gradient to 100% B, followed by a 2.0 minute 

hold at 100% B. The column was returned to starting condition over 0.1 minutes, and 

allowed to reequilibrate for 2.9 minutes. Flow rate was kept constant at 140 µl/min for 

the duration of the run. The column and the auto sampler were held at 50 °C and 5 °C, 

respectively. 

Column eluent was infused into a Micromass Q-Tof Micro mass spectrometer 

(Waters Corporation, Milford, MA) fitted with an electrospray source. Data were 

collected in positive ion full scan mode, scanning from m/z 50-1200 at a rate of 2 scans 

per second with an interscan delay of 0.1 second. Calibration was performed prior to 

sample analysis via infusion of sodium formate solution, with mass accuracy within 3 

ppm. The capillary voltage was held at 2200 V, the source temperature at 130 °C, and the 

desolvation temperature at 300 °C with a nitrogen desolvation gas flow rate of 300 l/hr. 

The quadrupole was held at collision energy of 7 V. Peak detection was performed using 

MarkerLynx software (Waters MassLynx, v 4.1, Milford, MA).  
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2.9. Human Colon Cancer Cell Lines 

HCT-116, p53+/+ cells were a generous gift from Dr. Bert Vogelstein and HT-29 

cells were purchased from ATCC (Manassas, VA). The cells were maintained at 37 °C in 

a humidified 5% CO2 incubator in McCoy’s 5A medium supplemented with sodium 

bicarbonate (2.2 g/l), fetal bovine serum (100 ml/l), and streptomycin/penicillin mix (10 

ml/l). 

2.10. Cell Proliferation and Apoptosis 

Cell proliferation was assessed via BrdU assay (Cell Signaling Technology, MA) 

and cell counting using an automated cell counter (Nexcelom Bioscience, Lawrence, 

MA). Briefly, HCT-116 or HT-29 cells were grown in 96 well plates at 4000 cells per 

well in Dulbecco’s modified Eagle’s medium F-12 (DMEM). After 24 hours, the cells 

were treated with potato extracts diluted in DMEM having final phenolic concentrations 

of 10, 20 and 30 µg GAE/ml. The treatments were added in triplicates at the volume of 

1ml per well and then allowed to incubate for 24 hours. At the end of the incubation 

period, cell viability was assessed by quantifying the amount of 5-bromo-2’-deoxyuridine 

(BrdU) incorporated into cellular DNA of proliferating cells using an anti-BrdU antibody. 

For cell counting, cells were plated at 50,000 cells per well in a 12-well plate and treated 

as above and reported as per cent reduction with respect to control. Apoptosis was 

measured using the Caspase-Glo 3/7 assay (Promega Corporation, Madison, WI). After 

24 hour incubation with the extracts, HCT-116 and HT-29 cells were counted and 15,000 

cells were added per well to a 96-well microplate and the volume was made up to 200 µl 

using DMEM. Caspase-Glo 3/7 reagent (100 µl) was added to each well and the plate 

was placed on a shaker at 300 rpm for 5 minutes. The plate was incubated in the dark at 
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room temperature and luminescence was measured after 30 minutes. Cells undergoing 

apoptosis have a higher caspase-3 and caspase-7 activity, which result in a stronger 

luminescence signal. To compare the effects of baking and chipping on the anti-cancer 

properties of potatoes, the reduction in cell proliferation and apoptotic index were 

compared at a single concentration, 30 µg GAE/ml, which was the highest concentration 

in the study. 

2.11. Sensory Evaluation 

Sensory evaluation of the baked and chipped samples from all seven potato clones 

was carried out with 116 and 114 untrained panelists, respectively. Evaluations were 

carried out using samples at day 30 and day 90 to study the effect of storage on the 

sensory attributes.  The baked potato samples were not stored and were served fresh 

while the chipped samples were tested after two months of storage to mimic market 

conditions wherein bagged chips may sit on shelves up to three months. The panelists 

were asked to judge the samples based on their appearance, taste, color, texture and 

overall acceptability on a 9-point hedonic scale (1 = disliked extremely; 9 = liked 

extremely) and were asked to rank the samples based on their preference (1 = liked most; 

7 = disliked most). Each sample was assigned a three-digit random code and served in a 

two-ounce portion cup in random order. The panelists were asked to rinse their mouths 

with distilled water and bite into an unsalted cracker between samples to clean their 

palates. The consumer panelists were informed that ‘purple-colored potatoes are a rich 

source of anthocyanins which are antioxidants and potential anti-inflammatory agents’ 

through their sensory evaluation forms and asked if they would prefer colored-fleshed 

potatoes over conventional white-fleshed cultivars given these potential health benefits of 
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colored-fleshed potatoes. Consumer willingness to pay more for colored-flesh potato 

chips was also assessed through a simple question. Panelists were asked how much more 

they would be willing to pay if a 10.5 ounce bag of chips cost $ 3.20. 

2.12. Statistical Analysis 

Fisher's protected t-test using the Least Square Means test, which was used for 

comparing group differences with p < 0.05 being considered as statistically significant, 

and Pearson correlation coefficients were calculated using SAS Statistical Analysis 

System, v.9.2 (SAS Institute Inc., Cary, NC). All results have been expressed as mean ± 

standard error. For principal component analysis, peak areas were exported to SIMCA-P+ 

(Umetrics AB, v12.0, Sweden). Data were scaled to unit variance and mean centered 

before principal component analysis. 

3. Results and discussion 

3.1. Total Phenolic Content 

Total phenolic content of baked and chipped potato samples was measured for 

seven potato clones every 30 days for 90 days. Total phenolic content of the baked and 

chipped potato samples ranged from 11.2 to 307.7 mg GAE/100 gfw and 1.8 to 18.7 mg 

GAE/100 gfw (Table 4.1.) for all seven clones over the entire storage period, 

respectively. When compared with uncooked samples at Day 90, depending on the clone, 

baking decreased or increased the phenolic content. Purple-fleshed clones CO97215-2P/P 

and CO97227-2P/PW showed increased phenolic content post-baking, while chipping 

retained only 4-7% in all clones. 

Researchers have reported both an increase and a decrease in the phenolic content 

post-baking (Im et al. 2008; Xu et al. 2009; Blessington et al. 2010; Navarre et al. 2010). 
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The increase in the phenolic content of the two purple-fleshed clones could be due to 

release of bound phenolic compounds during baking. Cooking may weaken the matrix 

thus improving the extractability of phenolic compounds and inactivate enzymes that use 

phenolic compounds as substrate (Ezekiel et al. 2011). Effects of processing cannot be 

generalized for all potato clones as they differ depending on potato genotype. It was seen 

that microwaving or baking significantly affects the total phenolic content of Dakota 

Pearl cultivar but not of the Nordonna cultivar. The total phenolic content of Red Norland 

cultivar is affected approximately equally by boiling, baking or microwaving (Xu et al. 

2009). In this study, chipping and frying resulted in greater losses in phenolic content 

(Tudela et al. 2002; Im et al. 2008). Chipping/slicing increases the surface area, which 

might be responsible for the greater degradation of bioactive compounds. 

With storage, an increase (p < 0.05) was observed in the phenolic content of 

baked samples of all clones. Baked purple-fleshed potatoes had higher phenolic content 

(p < 0.05) as compared with their white- and yellow-fleshed counterparts throughout the 

storage duration. For baked Purple Majesty samples, the phenolic content increased at 60 

days of storage and then did not change over the next 30 days. Storage may make the  

matrix weaker leading to a greater release of bound phenolic compounds of stored 

potatoes after baking. 

As seen for the baked samples, CO97227-2P/PW chipped samples had the highest 

amount of total phenolics while the lowest was in Atlantic chipped samples. However, 

storage did not seem to influence the phenolic content of the chipped samples with the 

exception of CO97227-2P/PW. Hence, it is important to consider the effects of genotype  
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Table 4.1. Total phenolic content of potatoes after storage and processing.  

Potato clones 

Baked  Chipped  Uncooked 

Day 30 Day 60 Day 90  Day 0 Day 30 Day 60 Day 90  Day 90 

Atlantic 11.2±0.6 17.9±1.0 22.5±0.9*  2.51±0.03 2.61±0.05 2.18±0.02 1.83±0.01  25.1±0.4 

Yukon Gold 12.7±0.6 12.8±0.8 25.0±0.8*  3.04±0.03 3.51±0.04 2.65±0.01 2.27±0.01  29.1±0.6 

Purple 

Majesty 
69.6±1.5 125.7±7.2* 117.3±3.4*  10.2±0.21 8.34±0.33 7.92±0.31 9.06±0.29  118.1±3.8 

AC97521-

1R/Y 
20.7±0.6 26.7±1.2 38.1±1.3*  3.54±0.04 3.72±0.05 2.96±0.03 2.55±0.02  38.3±0.6 

CO97232-

2R/Y 
31.9±1.1 35.1±2.4 50.2±1.4*  3.11±0.04 3.74±0.03 2.82±0.02 2.33±0.01  44.6±0.5 

CO97215-

2P/P 
143.9±4.5 148.3±2.4 191.7±9.6*  13.14±0.30 13.28±0.23 13.46±0.28 10.86±0.21  117.3±5.0 

CO97227-

2P/PW 
180.1±4.7 213.5±8.5* 307.7±8.0*  18.72±0.50 18.02±0.31 14.98±0.23 13.34±0.32*  205.4±5.5 

The letters (P/P, P/PW and R/Y) after some of the advanced selections denote skin/flesh color. P: purple-fleshed; PW: purple-fleshed 

with white-fleshed patches; R: red skin; Y: yellow-fleshed. *Indicates significant differences (p < 0.05) in the phenolic content 

compared with the initial time point (Day 30 for baked and Day 0 for chipped). Results are presented as mean ± SE of eight replicates 

for each time point and expressed as mg gallic acid equivalents/100 gfw. 
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and farm-to-fork operations such as storage and processing while selecting clones for 

breeding potatoes with greater health-benefiting compounds. 

To compare the phenolic content of baked purple-fleshed clones with traditional 

anthocyanin-rich fruits, the same extraction procedure and analysis were used. 

Blueberries, grapes, raspberries and strawberries had 323.3 ± 4.1, 199.5 ± 5.0, 170.0 ± 

3.1, and 113.7 ± 2.8 mg GAE/100 gfw respectively; whereas, the phenolic content of 

baked purple-fleshed clones ranged from 117.0 ± 3.4 to 307.7 ± 8.0 mg GAE/100 gfw 

after 90 days of storage. Thus, the phenolic content of purple-fleshed potatoes was 

comparable to that of berries making them an affordable choice for most people. 

3.2. Anthocyanin Content 

The anthocyanin content of the baked and chipped potatoes was calculated only 

for the purple-fleshed clones. For the baked samples, the anthocyanin content ranged 

from 13.4 to 81.3 mg C-3-G equivalents/100 gfw while for the chipped samples ranged 

from 0.8 to 3.2 mg C-3-G equivalents/100 gfw (Table 4.2.). We report for the first time 

that baking either increases or fully retains the anthocyanin content of the purple-fleshed 

potatoes, with the exception of Purple Majesty, which retained only 63% anthocyanin 

content, while chipping resulted in ~97% losses as compared with uncooked samples at 

Day 90. Purple Majesty baked samples had the lowest anthocyanin content throughout 

the duration of storage while the CO97227-2P/PW baked samples consistently had the 

highest anthocyanin content. The anthocyanin content of most baked potato cultivars 

increased (p < 0.05) at the end of the storage. Purple Majesty baked samples showed a 

peak at 60 days of storage followed by a decrease in the anthocyanin content at 90 days 

of storage. The anthocyanin trend observed was similar to that of the total phenolic 
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content which suggests the role of anthocyanins in contributing to the total phenolic 

content. 

CO97227-2P/PW and Purple Majesty chipped samples consistently had the 

highest and the lowest anthocyanin content, respectively. The chipped samples showed a 

gradual decrease in the anthocyanin content and at 90 days of storage, however, the 

differences were not significant.  

The anthocyanin content of the baked samples was comparable to that of 

blueberries (81.8 ± 3.0 mg C-3-G equivalents/100 gfw), raspberries (50.0 ± 0.7 mg C-3-G 

equivalents/100 gfw), grapes (45.5 ± 0.8 mg C-3-G equivalents/100 gfw) and 

strawberries (41.9 ± 1.7 mg C-3-G equivalents/100 gfw). Thus, as seen with the total 

phenolic content, purple-fleshed potatoes can act as a rich source of anthocyanins in the 

diet. 

3.3. Antioxidant Activity 

Antioxidant activity of the baked samples ranged from 7.9 to 1270.0 mg TE/100 

gfw as measured by the DPPH assay (Table 4.3.) and 28.3 to 1113.0 mg TE/100 gfw as 

measured by the ABTS assay (Table 4.4.). For the chipped samples, the antioxidant 

activity ranged from 2.1 to 38.3 mg TE/100 gfw (DPPH) and 2.3 to 33.8 mg TE/100 gfw 

(ABTS). When compared with uncooked Day 90 samples, baking led to 10-81% loss as 

assessed by the DPPH assay and up to 26% losses when tested by the ABTS assay. 

Chipping resulted in losses greater than 97% when measured by DPPH and ABTS assays 

when compared with uncooked Day 90 samples. 

The antioxidant activity of the purple-fleshed samples was significantly higher 

than the white- and yellow-fleshed samples. Both assays confirmed an increase (p < 0.05) 
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in the antioxidant activity of baked samples with storage. Similar DPPH values for baked 

white-fleshed potatoes have been reported to range from 11.3 to 21.2 mg TE/100 gfw (Xu 

et al. 2009). The chipped samples showed different trends for the DPPH and ABTS 

assays in terms of antioxidant activity with storage (Tables 4.3 and 4.4). Chipped samples 

from most clones showed no change in the antioxidant activity over the entire period of 

the storage when measured by the DPPH or ABTS assays. 

The slight differences between the antioxidant values of the ABTS and DPPH 

assays could be due to differential reactivity of bioactive compounds towards the ABTS 

and DPPH radicals due to steric hindrance (Prior et al. 2005). Although correlations 

between the assays might be strong, reflecting the general trend, the values can be 

different (Thaipong et al. 2006; Dudonn  et al. 2009).  

The antioxidant values of the baked potatoes were comparable to that of 

anthocyanin-rich fruits. The DPPH values for blueberries, strawberries, raspberries and 

grapes were 918.2 ± 16.2, 570.7 ± 9.1, 640.1 ± 6.5, and 367.1 ± 10.3 mg TE/100 gfw, 

respectively, while the ABTS values were 542.9 ± 7.8, 413.3 ± 5.5, 380.8 ± 6.2 and, 

236.8 ± 6.8 mg TE/100 gfw, respectively. Thus, baked purple-fleshed potatoes can also 

serve as a rich source of antioxidants. 

3.4. UPLC-MS profile of Phenolic Compounds 

Based on the data from the spectrophotometric assays, processed samples from 

four clones were selected for screening of their metabolite profiles. Three of the four 

selected were commercially available cultivars representative of their color – Atlantic 

(white-fleshed), Yukon Gold (yellow-fleshed) and Purple Majesty (purple-fleshed) – and  
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Table 4.2. Anthocyanin content of potatoes after storage and processing.  

Potato clones 

Baked  Chipped  Uncooked 

Day 30 Day 60 Day 90  Day 0 Day 30 Day 60 Day 90  Day 90 

Purple Majesty 13.4±0.2 25.7±1.6* 18.6±0.9  1.24±0.07 1.13±0.03 0.93±0.05 0.81±0.05  29.6±0.9 

CO97215-2P/P 31.3±0.8 36.0±1.9 44.1±1.6*  1.57±0.09 1.29±0.06 1.12±0.05 1.07±0.03  32.1±2.2 

CO97227-

2P/PW 
51.2±1.7 61.1±2.7* 81.3±2.6*  3.24±0.14 3.25±0.22 2.79±0.09 2.61±0.17  82.9±2.4 

The letters (P/P, and P/PW) after some of the advanced selections denote skin/flesh color. P: purple-fleshed; PW: purple-fleshed with 

white-fleshed patches. *Indicates significant differences (p < 0.05) in the phenolic content compared with the initial time point (Day 

30 for baked and Day 0 for chipped). Results are presented as mean ± SE of eight replicates for each time point and expressed as mg 

cyanidin-3-glucoside equivalents/100 gfw. 
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Table 4.3. Antioxidant activity (DPPH) of potatoes after storage and processing.   

Potato clones 

Baked  Chipped  Uncooked 

Day 30 Day 60 Day 90  Day 0 Day 30 Day 60 Day 90  Day 90 

Atlantic 8.4±0.8 22.7±0.9* 20.4±1.0*  2.84±0.02 2.36±0.02 2.38±0.03 2.07±0.02  107.8±0.5 

Yukon Gold 7.9±0.8 14.0±0.9* 22.0±0.9*  3.33±0.02 3.03±0.02 3.33±0.02 3.55±0.01  115.2±0.5 

Purple Majesty 678±14 982±26.3* 1071±18*  34.0±0.04 32.7±0.06 37.5±0.05 38.3±0.12  1401±5.8 

AC97521-

1R/Y 
20.4±1.0 32.9±1.4* 40.9±1.2*  3.32±0.01 3.24±0.01 3.60±0.01 3.72±0.01  117.1±0.5 

CO97232-

2R/Y 
28.6±1.3 31.4±2.0 52.9±2.0*  3.27±0.02 3.13±0.02 3.44±0.02 3.54±0.02  112.6±0.3 

CO97215-2P/P 855±16 946±29* 1087±26*  33.0±0.06 31.8±0.09 35.8±0.14 37.5±0.2  1314±13.7 

CO97227-

2P/PW 
1096±20 1228±8* 1270±7*  31.3±0.2 30.7±0.2 35.1±0.2 36.0±0.4  1412.2±1.3 

The letters (P/P, P/PW and R/Y) after some of the advanced selections denote skin/flesh color. P: purple-fleshed; PW: purple-fleshed 

with white-fleshed patches; R: red skin; Y: yellow-fleshed. *Indicates significant differences (p < 0.05) in the phenolic content 

compared with the initial time point (Day 30 for baked and Day 0 for chipped). Results are presented as mean ± SE of eight replicates 

for each time point and expressed as mg trolox equivalents/100 gfw. 
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Table 4.4. Antioxidant activity (ABTS) of potatoes after storage and processing.  

Potato clones 

Baked  Chipped  Uncooked 

Day 30 Day 60 Day 90  Day 0 Day 30 Day 60 Day 90  Day 90 

Atlantic 28.3±3.1 101.9±4.8* 136.4±5.1*  2.28±0.06 2.67±0.09 3.66±0.36 2.75±0.41  144.4±4.9 

Yukon Gold 57.5±5.6 78.8±3.5* 146.9±3.9*  3.01±0.10 3.45±0.05 7.11±0.60* 5.58±0.43  164.7±4.1 

Purple 

Majesty 
559±32 649±28* 670±27*  15.77±0.92 15.94±0.70 21.11±1.89* 17.41±0.78  908.3±20.1 

AC97521-

1R/Y 
93.8±4.6 153.8±5.04* 184.5±4.5*  4.61±0.07 4.45±0.12 9.02±0.70* 7.92±0.84*  198.2±3.4 

CO97232-

2R/Y 
180.2±5.0 173.10±10.3 211.7±4.1*  4.25±0.07 4.24±0.10 6.36±0.28 6.61±0.45  226.0±4.1 

CO97215-

2P/P 
585±31 722.6±38.6* 783±40*  17.99±1.08 20.16±1.02 26.34±3.03* 20.60±1.68  1058.4±23.4 

CO97227-

2P/PW 
661±50 865.6±20.4* 1113±22*  21.49±0.86 30.30±1.96* 33.85±1.80* 27.18±2.25  1285.4±25.1 

The letters (P/P, P/PW and R/Y) after some of the advanced selections denote skin/flesh color. P: purple-fleshed; PW: purple-fleshed 

with white-fleshed patches; R: red skin; Y: yellow-fleshed. *Indicates significant differences (p < 0.05) in the phenolic content 

compared with the initial time point (Day 30 for baked and Day 0 for chipped). Results are presented as mean ± SE of eight replicates 

for each time point and expressed as mg trolox equivalents/100 gfw. 

 



 
 

77 
 

the fourth was a purple-white-fleshed advanced selection, CO97227-2P/PW, which had 

the highest phenolic content, antioxidant activity and anthocyanin content.  

Chlorogenic acid is the most abundant phenolic acid found in potatoes (Dao and 

Friedman 1992). In the baked white- and yellow-fleshed cultivars, chlorogenic acid 

degraded to negligible amounts (Table 4.5) as compared with uncooked white- and 

yellow-fleshed samples seen in Table 3.1. However, a 13 – 100% increase was seen in 

the chlorogenic acid content of the purple-fleshed clones that were baked after 90 days of 

storage. Degradation may be due to the susceptibility of chlorogenic acid to heat and, 

similar to our results, reports suggest a 100% loss after baking in an oven at 212°C for 45 

minutes (Dao and Friedman 1992). Conversely, some studies show that chlorogenic acid 

is reduced but not completely destroyed after baking. However, the baking was done at 

178°C for 40 minutes and the study claims that the peels could act as barriers against the 

loss of chlorogenic acid (Xu et al. 2009). In our present study, the baking was done at 

204°C for 75 minutes which could explain the loss of chlorogenic acid in baked Atlantic 

and Yukon Gold potatoes. Chipped samples showed a decrease in the phenolic acids 

(Table 4.6.) as compared with uncooked samples (Table 3.1.). Storage led to an increase 

in the chlorogenic acid content. Low temperature, strong light, wounding, pathogen 

attack and other environmental stresses during storage can lead to the synthesis of 

phenolic compounds via the phenylpropanoid pathway (Dixon and Paiva 1995). Thus, 

storage at different temperatures might alter the levels of phenolic acids in processed 

potato products. 

Baked purple-fleshed samples contained anthocyanins in their glycosylated form 

such as petunidin-3-rutinoside-5-glucoside (Pet-3-rut-5-glc) and malvidin-3-rutinoside-5-
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glucoside (Mal-3-rut-5-glc). Many anthocyanins were acylated with para-coumaric acid 

such as peonidin-3-(p-coumaroyl)-rutinoside-5-glucoside (peo-3-coum-rut-5-glc), 

petunidin-3-(p-coumaroyl)-rutinoside-5-glucoside (pet-3-coum-rut-5-glc), pelargonidin-

3-(p-coumaroyl)-rutinoside-5-glucoside (pel-3-coum-rut-5-glc) and malvidin-3-(p-

coumaroyl)-rutinoside-5-glucoside (mal-3-coum-rut-5-glc) (Table 4.5.). CO97227-

2P/PW cultivar had approximately a 5-fold higher amount of mal-3-coum-rut-5-glc as 

compared with Purple Majesty. Pet-3-coum-rut-5-glc was the most abundant 

anthocyanin, followed by peo-3-coum-rut-5-glc. Storage increased most individual 

anthocyanins in both purple-fleshed clones. It is known that low temperature storage can 

lead to biosynthesis of phenolic compounds including anthocyanins through the 

activation of phenyl ammonia-lyase (PAL), a key enzyme in the phenylpropanoid 

pathway(Jiang and Joyce 2003) This could explain the observed increase in the 

monomeric anthocyanin content from day 0 to day 90. Chipped samples also contained 

glycosylated anthocyanins and pet-3-coum-rut-5-glc was the most abundant anthocyanin 

followed by peo-3-coum-rut-5-glc and mal-3-coum-rut-5-glc (Table 4.6.). 

Principal component analysis of approximately 1600 peaks obtained through 

UPLC-MS revealed overall differences in the metabolite profiles of the baked (Figure 

4.1.) and chipped (Figure 4.2.) potato samples. Baked Atlantic and Yukon Gold samples 

had similar metabolite profiles (Figure 4.1.). Storage altered the metabolite profile of the 

baked samples of both these cultivars. The similarity among the profiles of these cultivars 

also reduced with storage. Baked samples of the purple-fleshed clones were different 

from the non-purple-fleshed cultivars and also among themselves indicating that different  



 
 

79 
 

Table 4.5. Phenolic compound profile of baked potato samples by UPLC-MS.  

The phenolic acid values are expressed as mg/100 gfw potato. The anthocyanins have been reported as area under the curve. Values 

are presented as mean ± SE of six replicates 

 

Compound Molecular 

ion M
+
 

(m/z) 

Retention 

time 

(mins) 

Atlantic Yukon Gold Purple Majesty CO97227-2P/PW 

Day 30 Day 90 Day 30 Day 90 Day 30 Day 90 Day 30 Day 90 

Chlorogenic acid 355 6.11 
0.05± 

<0.01 
1.50±0.19 

0.05± 

0.02 

1.40± 

0.28 

16.76± 

0.20 

27.49± 

0.86 

37.97± 

0.78 

52.33± 

0.68 

Caffeic acid 181 6.15 
0.35± 

0.06 
0.75±0.07 

0.34± 

0.10 

0.63± 

0.07 

6.19± 

0.78 

9.97± 

0.78 

11.53± 

0.50 

13.28± 

0.35 

Ferulic acid 177 7.56 - 
0.08± 

<0.01 
- 

0.07± 

<0.01 
- - - - 

Sinapic acid 207 7.76 - - - 
0.02± 
<0.01 

- - - - 

Pet-3-rut-5-glc 787 5.79 - - - - 323 653 881 1265 

Mal-3-rut-5-glc 801 6.19 - - - - 43 61 181 215 

Peo-3-coum-rut-5-glc 

isomer 
917 7.7 - - - - - - 1443 1449 

Pet-3-coum-rut-5-glc 933 7.92 - - - - 7171 8937 10889 12053 

Pel-3-coum-rut-5-glc 887 8.11 - - - - 190 - 1454 1469 

Peo-3-coum-rut-5-glc 917 8.21 - - - - 1273 290 8288 9164 

Mal-3-coum-rut-5-glc 947 8.31 - - - - 462 527 1866 2613 
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Table 4.6. Phenolic compound profile of chipped potato samples by UPLC-MS.  

The phenolic acid values are expressed as mg/100 gfw potato. The anthocyanins have been reported as area under the curve. Values 

are presented as mean ± SE of six replicates 

Compound Molecular 

ion M
+
 

(m/z) 

Retention 

time 

(mins) 

Atlantic Yukon Gold Purple Majesty CO97227-2P/PW 

Day 0 Day 90 Day 0 Day 90 Day 0 Day 90 Day 0 Day 90 

Chlorogenic acid 355 6.11 
0.21± 
<0.01 

0.13± 
<0.01 

0.22± 
0.01 

0.20±0.01 
1.11± 
0.02 

1.00± 
0.04 

1.10± 
0.03 

1.10± 
0.04 

Caffeic acid 181 6.15 
0.06± 

<0.01 

0.05± 

<0.01 

0.05± 

0.01 

0.06± 

<0.01 

0.36± 

0.02 

0.31± 

0.02 

0.36± 

0.01 

0.38± 

0.03 

Ferulic acid 177 7.56 - - - - - - - - 

Sinapic acid 207 7.76 - - - - - - - - 

Pet-3-rut-5-glc 787 5.79 - - - - 623 548 927 952 

Mal-3-rut-5-glc 801 6.19 - - - - 87 81 241 243 

Peo-3-coum-rut-5-glc 

isomer 
917 7.7 - - - - - - 987 915 

Pet-3-coum-rut-5-glc 933 7.92 - - - - 11497 10176 12113 10286 

Pel-3-coum-rut-5-glc 887 8.11 - - - - 24 - 1707 1758 

Peo-3-coum-rut-5-glc 917 8.21 - - - - 716 343 9410 9666 

Mal-3-coum-rut-5-glc 947 8.31 - - - - 1075 672 3178 3310 
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Figure 4.1. Metabolite profiles of baked potatoes during storage - principal component 

analysis. The bubbles point out difference in phenolic profiles due to storage. Plot shows 

all the individual data points. Data are represented for Atlantic (●), Purple Majesty (□), 

Yu on Gold (○) and CO97227-2P/PW (■) cultivars. 

 

Figure 4.2. Metabolite profiles of chipped potatoes during storage – principal component 

analysis. Storage caused slight modification of the profiles as pointed out by the bubbles. 

Plot shows all the individual data points. Data are represented for Atlantic (●), Purple 

Majesty (□), Yu on Gold (○) and CO97227-2P/PW (■) cultivars. 
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purple-fleshed potato clones might differ in their metabolite profiles and hence their 

bioactivity. Storage caused a change in the metabolite profiles of the purple-fleshed 

potato clones as well. Chipped samples of Atlantic and Yukon Gold had similar 

metabolite profiles at Day 0. However, at Day 90, a large variation in the profiles was 

observed (Figure 4.2.). The metabolite profiles of the chips of purple-fleshed clones were 

different from each other. It was observed that storage did not cause a large change in 

their metabolite profiles even after 90 days. 

3.5. Human Colon Cancer Cell Proliferation and Apoptosis Studies 

The anti-cancer activity of baked and chipped potato samples from four potato clones 

(Atlantic, Yukon Gold, Purple Majesty and CO97227-2P/PW), as described in section 

3.4., before and after storage, was tested against early stage (HCT-116, p53 +/+) and 

advanced stage (HT-29) human colon cancer cell lines. Compared to uncooked samples, 

bioactivity of the baked potato samples against cell proliferation reduced for most clones 

while ability to induce apoptosis was comparable at 30 µg GAE/ml (Figures 4.3. and 

4.4.). In spite of dosing at same phenolic concentration, chipping significantly suppressed 

the anti-proliferative and pro-apoptotic properties of potatoes against HCT-116 cells as 

compared with uncooked samples. This might be due to a change in the phenolic 

composition of the samples due to chipping. In general, storage suppressed the anti-

proliferative properties of potatoes, but some clones were superior in retaining their 

bioactivity as seen by cell counting (Figures 4.5. and 4.6.) and the BrdU assays (Figures 

4.7. and 4.8.). Baked and chipped CO97227-2P/PW samples had more potent anti-

proliferative properties against HCT-116 cell lines compared with the other three  
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Figure 4.3. Baking and chipping suppressed the anti-proliferative activity in most potato 

clones at 30 µg GAE/ml concentration. Values with different letters in each graph 

indicate significant difference (p < 0.05) between % cells viable for different processing 

methods at a given time point. *Indicates a significant difference (p < 0.05) between 

percentage reduction at two different time points for a given processing method. Results 

are presented as mean ± SE of four replicates for each time point. 

 

cultivars; with approximately 50% reduction observed in cell proliferation at 30 µg 

GAE/ml. A similar response was observed in the elevation of apoptosis of HCT-116 cells  

by baked (Figure 4.9.) and chipped (Figure 4.10.) potatoes. Baked and chipped potatoes 

showed a dose-dependent increase in the induction of apoptosis with respect to the 

control (solvent control in media). Purple-fleshed potatoes caused a greater increase in 

apoptosis as compared to white-and yellow-fleshed cultivars.  
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Figure 4.4. Baking and chipping suppressed the pro-apoptotic activity of most potato 

clones at 30 µg GAE/ml concentration. Values with different letters in each graph 

indicate significant difference (p < 0.05) between apoptotic cells for different processing 

methods at a given time point. *Indicates a significant difference (p < 0.05) between 

apoptotic cells at two different time points for a given processing method. Results are 

presented as mean ± SE of four replicates for each time point. 

 

A dose-dependency was observed for the anti-proliferative effect of baked 

samples against HT-29 cell lines (Figures 4.11. and 4.12.). However, the effect was 

suppressed as compared to HCT-116 cell lines. In general, storage did not alter the 

activity of the extracts. A similar trend was observed in the induction of apoptosis (Figure 

4.13.). However, the effect of storage in suppressing the proapoptotic activity was more 

pronounced. The bioactivity of the chipped samples at the tested concentrations did not 
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Figure 4.5. Baked potato extracts suppressed proliferation of HCT-116 cells in a dose-

dependent manner. Cell number was measured using a cellometer as described in 

Materials and Methods and represented as % cells viable. Values with different letters in 

each graph indicate significant difference (p < 0.05) between percentage reduction at two 

different concentrations at a given time point. *Indicates a significant difference (p < 

0.05) between percentage reduction at two different time points for a given concentration. 

Results are presented as mean ± SE of four replicates for each time point. 

 

produce any general trend when tested against advanced stage HT-29 cell lines. This was 

consistent for both, cell proliferation (Figures 4.14. & 4.15.) and apoptosis assays (Figure 

4.16.). These results indicate that chipping and deep frying suppress or completely 

destroys the anti-cancer properties of potatoes against human colon cancer cell lines. 

Baked samples were more effective in elevating apoptosis as compared with chipped 

samples suggesting that baking retains greater bioactivity compared with chipping. 
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Figure 4.6. Chipped potato extracts suppressed proliferation of HCT-116 cells in a dose-

dependent manner. Cell number was measured using a cellometer as described in 

Materials and Methods and represented as % cells viable. Values with different letters in 

each graph indicate significant difference (p < 0.05) between percentage reduction at two 

different concentrations at a given time point. *Indicates a significant difference (p < 

0.05) between percentage reduction at two different time points for a given concentration. 

Results are presented as mean ± SE of four replicates for each time point. 

 

CO97227-2P/PW was more potent in inducing apoptosis possibly due to the presence of 

petunidin and malvidin anthocyanins which have been reported to be pro-apoptotic and 

anti-proliferative (Stushnoff et al. 2008), respectively as compared to Purple Majesty in 

which these anthocyanins were at undetectable or very low levels. 
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Figure 4.7. Baked potato extracts suppressed proliferation of HCT-116 cells in a dose-

dependent manner. Cell viability was measured using the BrdU assay as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between percentage reduction at two different concentrations at a 

given time point. *Indicates a significant difference (p < 0.05) between percentage 

reduction at two different time points for a given concentration. Results are presented as 

mean ± SE of four replicates for each time point. 

 

3.6. Sensory Analysis 

Sensory evaluations were performed to compare the acceptance of purple-fleshed 

potatoes with traditional white- and yellow-fleshed varieties. The evaluation of sensory 

parameters has been shown in the form of spider-charts (Figure 4.17.) and the overall  
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Figure 4.8. Chipped potato extracts suppressed proliferation of HCT-116 cells in a dose-

dependent manner. Cell viability was measured using the BrdU assay as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between percentage reduction at two different concentrations at a 

given time point. *Indicates a significant difference (p < 0.05) between percentage 

reduction at two different time points for a given concentration. Results are presented as 

mean ± SE of four replicates for each time point. 

 

ranking is listed in Table 4.7. Yukon Gold potatoes, a common baking cultivar, were used 

as the standard for baked potatoes. For the Day 30 sensory evaluation, Yukon Gold baked 

potatoes received a mean score of 6.79 from 116 consumer panelists for overall 

acceptability. Only AC97521-1R/Y received a higher score (6.91) than the standard, 

although not significantly different. Yukon Gold potatoes received a mean score of 5.82  
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Figure 4.9. Baked potato extracts elevated dose-dependent apoptosis in HCT-116 colon 

cancer cells. Apoptosis was measured using Caspase-Glo 3/7 assay as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between apoptotic cells at two different concentrations at a given 

time point. *Indicates a significant difference (p < 0.05) between apoptotic cells at two 

different time points for a given concentration. Results are presented as mean ± SE of 

four replicates for each time point. 

 

in the Day 90 evaluation. In the Day 30 evaluation, Yukon Gold baked potatoes received 

a mean rank value of 3.24 and only CO97232-2R/Y received a slightly better mean rank 

score (2.89) which was not significant from the standard. All other potato clones were 

ranked lower than these two clones for baking. In Day 90 evaluations, baked Yukon Gold 

potato ranking mean score was 4.36. AC97521-1R/Y (mean rank = 3.05), Purple Majesty  
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Figure 4.10. Chipped potato extracts elevated dose-dependent apoptosis in HCT-116 

colon cancer cells. Apoptosis was measured using Caspase-Glo 3/7 assay as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between apoptotic cells at two different concentrations at a given 

time point. *Indicates a significant difference (p < 0.05) between apoptotic cells at two 

different time points for a given concentration. Results are presented as mean ± SE of 

four replicates for each time point. 

 

(mean rank = 3.54), and CO97232-2R/Y (mean rank = 3.57) were liked significantly 

lower than the standard. Atlantic potatoes, a popular chipping cultivar, were used as the 

standard for potato chips. In the Day 30 study, the Atlantic chips received a mean score 

of 7.15 from 114 consumer panelists for overall acceptability. No other potato clone was 

statistically higher than Atlantic. Again in the Day 90 study, Atlantic chips had the  
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Figure 4.11. Baked potato extracts suppressed proliferation of HT-29 cells in a dose-

dependent manner. Cell number was measured using a cellometer as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between percentage reduction at two different concentrations at a 

given time point. *Indicates a significant difference (p < 0.05) between percentage 

reduction at two different time points for a given concentration. Results are presented as 

mean ± SE of four replicates for each time point. 

 

highest mean score for overall acceptability (7.01). Overall acceptability for Purple 

Majesty (6.83) and other potato clones was not higher than the standard. Atlantic chips 

received a rank mean score of 2.56 after 30 days of storage and 2.91 after 90 days of 

storage. No potato clones were ran ed “li ed more” than the standard Atlantic. Yu on 

Gold potato chips were ranked slightly lower than the standard at Day 30 evaluation 
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Figure 4.12. Baked potato extracts suppressed proliferation of HT-29 cells in a dose-

dependent manner. Cell viability was measured using the BrdU assay as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between percentage reduction at two different concentrations at a 

given time point. *Indicates a significant difference (p < 0.05) between percentage 

reduction at two different time points for a given concentration. Results are presented as 

mean ± SE of four replicates for each time point. 

 

(3.26), while Purple Majesty received a similar mean rank (2.96). Thus, some purple-

fleshed clones were comparable with traditional cultivars in terms of their sensory scores. 

Eighty four per cent (n = 94) of the panelists responded that they would prefer 

colored-flesh potatoes over traditional white-fleshed potatoes if they knew purple-fleshed 

potatoes had potential health benefits. When asked if they would be willing to pay more 

 



 
 

93 
 

 
Figure 4.13. Baked potato extracts induced dose-dependent apoptosis in HT-29 colon 

cancer cells. Apoptosis was measured using Caspase-Glo 3/7 assay as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between apoptotic cells at two different concentrations at a given 

time point. *Indicates a significant difference (p < 0.05) between apoptotic cells at two 

different time points for a given concentration. Results are presented as mean ± SE of 

four replicates for each time point. 

 

for colored-flesh potato products, 55% (n=61) were willing while 45% (n=50) were not. 

Panelists were asked how much more they would be willing to pay if a 10.5-ounce bag of 

chips cost $3.20. They were willing to pay an average of $0.83 more per bag of chips 

made from colored-flesh potatoes. 
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Figure 4.14. Chipped potato extracts did not suppress proliferation of HT-29 cells in a 

dose-dependent manner. Cell number was measured using a cellometer as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between percentage reduction at two different concentrations at a 

given time point. *Indicates a significant difference (p < 0.05) between percentage 

reduction at two different time points for a given concentration. Results are presented as 

mean ± SE of four replicates for each time point. 

 

3.7. Correlations 

Phenolic content and antioxidant capacity had positive correlations in baked (r = 

0.92, p < 0.0001) and chipped (r = 0.81, p < 0.0001) samples. Phenolic content also 

showed a strong correlation with anthocyanin content (r = 0.95, p < 0.0001 for baked and 

r = 0.87, p < 0.0001 for chipped samples). This is similar to a strong positive correlation 
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Figure 4.15. Chipped potato extracts did not suppress proliferation of HT-29 cells in a 

dose-dependent manner. Cell viability was measured using the BrdU assay as described 

in Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between percentage reduction at two different concentrations at a 

given time point. *Indicates a significant difference (p < 0.05) between percentage 

reduction at two different time points for a given concentration. Results are presented as 

mean ± SE of four replicates for each time point. 

 

between the total phenolic and anthocyanin content (r = 0.91) as reported by Reyes, et al. 

(2005) for uncooked potatoes indicating that baking and chipping did not alter the 

functionality of anthocyanins as phenolic compounds or their antioxidant capacities. 

Antioxidant activity measured using DPPH assay showed a strong positive correlation 

with ABTS assay antioxidant activity (r = 0.96, p < 0.0001 for baked and r = 0.83, p < 
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Figure 4.16. Chipped potato extracts did not induce dose-dependent apoptosis in HT-29 

colon cancer cells. Apoptosis was measured using Caspase-Glo 3/7 assay as described in 

Materials and Methods. Values with different letters in each graph indicate significant 

difference (p < 0.05) between apoptotic cells at two different concentrations at a given 

time point. *Indicates a significant difference (p < 0.05) between apoptotic cells at two 

different time points for a given concentration. Results are presented as mean ± SE of 

four replicates for each time point. 

 

0.0001 for chipped samples) (Thaipong et al. 2006; Reddivari et al. 2007a; Dudonn  et al. 

2009). 

Though storage duration was strongly correlated with antioxidant activity (r = 

0.87, p < 0.004) of most genotypes for the baked samples, the percentage of viable cancer 

cells was moderately to strongly correlated for Atlantic (r = 0.79, p < 0.06), Purple 

Majesty (r = 0.87, p < 0.02) and CO97227-2P/PW (r = 0.63, p < 0.2) which 
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Figure 4.17. Mean hedonic scores from consumer panelists for stored baked and chipped potatoes. Sensory analysis was performed on 

116 and 114 untrained panelists for the baked and chipped samples respectively. (1 = disliked extremely; 9 = liked extremely) 
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Table 4.7. Average sensory rank of baked and chipped samples. 

Potato Clones 

Baked 
 

Chipped 

Day 30 Day 90 
 

Day 30 Day 90 

Atlantic 4.42
b
 (4) 4.02

ab
 (4)  2.56

a
 (1) 2.91

a
 (1) 

Yukon Gold 3.24
a
 (2) 4.36

b
 (5)  3.26

a
 (2) 3.29

a
 (3) 

Purple Majesty 4.53
b
 (6) 3.54

a
 (2)  3.58

ab
 (4) 2.97

a
 (2) 

AC97521-1R/Y 3.25
a
 (3) 3.05

a
 (1)  6.00

c
 (7) 5.42

c
 (7) 

CO97232-2R/Y 2.89
a
 (1) 3.57

a
 (3)  3.47

ab
 (3) 3.43

a
 (4) 

CO97215-2P/P 4.48
b
 (5) 4.42

b
 (6)  3.98

b
 (5) 5.29

bc
 (6) 

CO97227-

2P/PW 
5.16

c
 (7) 4.96

b
 (7)  5.19

c
 (6) 4.76

b
 (5) 

Values in the bracket indicate the ranking order. Different letters indicate significant 

differences (p < 0.05) between the clone rankings for a given time point. 

 

indicates a suppression of anti-proliferative properties. Chipped samples also showed a 

strong correlation between storage duration and percentage of viable cancer cells (r = 

0.87, p < 0.005) indicating that storage suppressed the anti-proliferative activity of the 

potatoes post-chipping. Apoptosis induction did not exhibit a correlation with storage 

duration for the baked samples. For the chipped samples, a strong negative correlation 

was observed (r = -0.85, p < 0.003) indicating suppression of anti-proliferative properties 
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with storage. However, for CO97227-2P/PW, the correlation was not strong (r = -0.34, p 

< 0.5) which could indicate that storage duration did not suppress its anti-cancer 

properties. Thus, it was observed that storage duration influenced the apoptosis of the 

baked potato extracts. However, in the chipped samples, both proliferation and apoptosis 

were dependent on storage duration for most genotypes. 

Correlation coefficients were calculated for overall acceptability sensory scores 

and total phenolic content. For the baked potatoes after 30 days of storage, there was a 

negative correlation between the two parameters (r = -0.87; p < 0.01). Similar results 

were observed between mean rank and total phenolic content (r = 0.80; p < 0.03). No 

other correlations were significant. 
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CHAPTER V 

CONCLUSIONS 

Potatoes are receiving much attention lately for their role in promoting obesity 

and diabetes. However, the consumption of specialty/colored potatoes has increased by 

17% due to their putative health benefits. Colored-flesh potatoes are usually stored before 

consumption, so it is important to understand the effect of storage on the potato bioactive 

compounds. These results, for the first time, show that storage alters the phenolic 

compound profiles in potatoes and elevates total phenolic content but suppresses 

biological activity. Thus, it is important to optimize the storage conditions in order to 

retain the biological activity of potato bioactive compounds. It was also observed that 

colored-flesh potatoes, containing anthocyanins, had higher bioactivity as compared with 

the white- and yellow-fleshed ones. Hence, breeders can utilize these colored-flesh potato 

cultivars as parental material in the breeding programs to develop cultivars with potent 

health-benefits. Results also warrant the use of in vitro and in vivo biological assays in 

conjunction with quantitative analytical techniques in assessing the genotype, storage and 

processing effects on health benefits of fruits and vegetables.  

This study also demonstrated the effect of post-storage processing on the 

bioactive compounds found in white-, yellow- and purple-fleshed potato clones.  There 

are growing concerns regarding caloric intake due to potato consumption. However, 

purple-fleshed potatoes can deliver health-benefiting polyphenolic compounds in levels 

comparable to blueberries and grapes with fewer calories being consumed with respect to 

traditional cultivars. We observed that half of a baked purple-fleshed potato (~ 100 g) has 

total phenolic content equivalent to three and a half yellow-fleshed Yukon Gold potatoes 
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or 45 blueberries or 25 grapes. This study for the first time showed that potato 

compounds retained bioactivity against colon cancer cells even after post-storage 

processing. Storage caused a shift in the metabolite profile of the potato samples which 

could possibly explain the suppression of anti-cancer properties of processed potato 

samples post-storage. However, some clones retained their anti-cancer properties better 

than others. Hence, these clones could be utilized as parent material for breeding 

programs to develop genotypes that retain their bioactive properties post-storage and 

processing. As purple-fleshed potato clones differed in the content and composition of 

bioactive compounds and their anti-cancer properties, flesh color alone may not be a 

good indicator of health-benefiting properties.  

Regardless of the health-benefits, the sensory attributes and consumer acceptance 

of these new cultivars should not be discounted. Sensory analysis revealed consumers’ 

readiness to accept colored-flesh potatoes provided they are educated on the health 

benefits. Hence, purple-fleshed potatoes can be a healthier choice as they possess greater 

levels of bioactive compounds and anti-cancer properties even after processing as 

compared with their white- and yellow-fleshed counterparts. We are currently confirming 

these in vitro results by evaluating the baked and chipped colored-flesh potatoes for their 

anti-inflammatory properties using obese pigs, a highly relevant model for human 

paradigm. Farm-to-fork operations need to be systematically studied and optimized so 

that potatoes and other fruits and vegetables can retain their health-benefiting properties 

and, thus, act as a popular delivery mechanism for bioactive compounds. 
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