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ABSTRACT

The criteria for appropriate design flows for NPDES permits in the

State of Colorado are based on the requirements of the most sensitive

water use, which in most cases is aquatic life. Alternatives to annual

7QIO have been analyzed with respect to flow magnitude, level of protection,

and potential economic impact on dischargers . The choice of acute and

chronic design flows must take these factors into account in addition to

the biological requirements of aquatic life communities reflected in water

quality criteria.

In this investigation it was found that the design flows meeting

the criteria currently recommended by the U. S. Environmental Protection

Agency were the annual lQlO for acute flows and 7QlO on 7Ql5 for chronic

flows. These design flows are very restrictive and do not take advantage

of the assimilative capacfty of the stream.

It was also found that monthly or seasonal design flows offer the

possibil ity to increase the use of assimilative capacity and still maintain

existing instream uses . The choice of whether to use monthly or seasonal

design flows (rather than annual) may be a compromise between increased

complexity of implementation and greater utilization of assimilative

capacity. The differences between annual and monthly design flows are

much greater than the differences ·between annual and seasonal design

flows. Therefore the use of monthly design flows could result in

substantially higher effluent permit limits than seasonal or annual flows,

depending on the number of flow excursions allowed. The ability of

dischargers to adjust their treatment processes on a monthly basis and

the increased complexity of implementation, however, may discourage the

use of monthly low-flow criteria.



A water qual ity control program based on the number of streamflow

excursions is not the same as one based on the number of water qual ity

excursions. For example, in the case of unionized ammonia, the sensitivity

of the concentration of ~nionized ammonia to the combination of pH and

temperature is so strong that in many cases the streamflow has little

effect on whether or not the water qual ity standard is violated. A

given design flow will therefore not guarantee that a water qual ity

standard will not be violated.

This report gives very good estimates- of the magnitude and frequency

of low-flow events in the several streamflow reaches analyzed in Colorado.

With the uncertainty of these parameters thus removed, it may be prudent

for municipal ities or industries in these reaches to reasses their

effluent limitations. For example, the frequency distributions of the

upstream and effluent unionized ammonia concentrations may allow the

effluent limit to be raised,
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OiAPfER 1 - INTROOUCf ION

The objective of this study was to Investigate alternative design flews

to the annual 7Ql0 statistic fa- use In determining discharge permit limits

In the State of Colorado. The purpose of lookIng at alternatIve flews was

to reduce wastewater trea1ment costs by usl ng the assl mII atl ve ca pact ty of

streams ma-e f ul ly, while maintaining existing downstream water qual l tv ,

The study research pi an I ncl uded the fol I ew Ing steps:

1) lIterature revIew

a. federal and state regul ata-y requl ranents and procedures used In

discharge permitting;

b. al ternatlve approaches used In dl scharge perm Ittl ng throughout

the natIon; and

c. methodol ogl es used I n I ew-fl cw anal ysl s,

2) site selection and review;

3) data aoqulsltlon;

4) fl cw data anal ysl s;

5) comparIson of alternatIve desIgn flews

a. thea-ett cal effl uent I 1m Its;

b. cost of trea1ment.
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An InterIm report was publIshed In January, 1986 as part of this study

to provIde background Information. A short summary of each of the three

parts of the Interim report Is gIven bel 011 •

.R§ylew of federal and C.o.l.£udo State Legl 51 atl on and Regul atl oos on Eft I uent

DIscharge PermItting. Water pollution control In the United States Is based

primarIly on the Federal Water Pollution Control Act of 1972 (P.L. 92-500)

(as amended J n 1977 by the CI ean Water .Act (P. L. 95-217) and I n subsequent

years). The Clean Water Act requIres water qualIty standards to be

established for the NatIon's waters and provides for the NatIonal Pollutant

DIscharge Elimination System (NPDES) to enforce these standards. In

Color ado, th e federal NPDES Js adm I n I stered under a state version of the

progran called the Colorado DIscharge Permit System (CDPS).

Streans In Colorado have been divided Into specifIc segnents whIch have

been assigned one or more use classificatIons according to existing or

potentl al future uses. Water qualIty crlterl a are def Ined as the maxImum

levels of pollutants which may be allowed In rIvers and stili protect

designated uses. To ensure that water quality crIteria are met and uses are

maintaIned, the COPS regulates the discharge of pollutants from point

sources within the state.

Water quality-based perm It 11mIts are cal cui ated by us I nq a steady

state mass bal ance model. The model Is sol ved for eft I uent concentration

whIch generally becomes the permit limit. Fact cr s considered I n the model

Include upstream f l oe, anblent stream pollutant levels, effluent t I oe, and

water quality cr I ter l a, The upstream flOil value traditionally accepted for

use In the calculation of permit effluent limits Is the 7Q10 (the seven-day

mov Ing average 1011 flOil that occurs once every ten years on the average).

The Feder al CI ean Water Act makes no sped f Ic prov I sl on for the use of the
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7Ql0, but rather prov Ides fl exl bl I Ity for the states to develop thel r CArt'n

water qualliy management prograns to meet speclflc state needs. The use of

some other 10« flo« val ue to determIne COPS permIt limIts may actually be

more cost effectIve whIle stIli maIntaIning river water quality.

AlternatIve Approaches to NatIonal Pollutant Discharge ElImInation System

Permitting. The delegatIon of authority for water pollution control under

the NPDES, leaves the states wIth a high degree of flexIbility to establish

th el r ow n water qual I ty progr ams and dl scharge permIt sy stems to meet the

goals of the Clean Water Act. Recently, the EPA's Office of Polley,

PI annl ng and Eval uatl on and I ndl v Idual states have sought out Innovative

approaches to water pollution control permitting which will maintain or

Improve ex l sr l nq water quality wIth minimum construction and operatIon

costs.

There are two major types of Innovations In NPDES permitting. The

first type Includes variations of permitting techniques which enable a

full er use of strean asslmll atlve capacl tl es whll e stili malntal nl ng stream

standards. Exampl es are the changl ng upstream desl gn f I ow freq uency/

duration statistic, water qualIty standards, effluent flo«, and timing of

effluent release. The second type Involves reallocating waste loadings

through discharge allocation tradIng to achieve the mast economical

al I oeatl on. Exampl es are pol nt source tradl ng, pal nt/nonpal nt tr ad I ng, and

bankl ng.

Innovative approaches are currentl y Incorporated Into approxlmatel y

one-fourth of al I State of Colorado discharge permits (225 out of 900

total). Alternative permitting technIques have been applied In Colorado In

five major areas: seasonal desIgn flows, sIte specIfIc water qualIty

standards, dIscharge allocatIon tradIng, controlled rei ease, and poundage

3



based limits. Real time permits have been proposed, but have not yet been

Implemented. Considerable potential exists for future use of alternative

techniques In NPOES permitting In the State of Colorado, particularly as

applied to streams of env Ironmental and econom Ic Importance. Further

development and Implementation of Innovative approaches should be focused on

those technlq ues currentl y appl led I n Colorado and real time permIttl ng.

Summary of L0i EL Ott Statl stl cs for Sel ected Col Q[ado Strecms. Based on a

review of dally and routine flew and h l stor l cal water qual liy data records,

seven stream sl tes were sel ected for study. The stream 51 tes cover a range

of discharge iypes, hydrologic characteristics, and degree of man's Impact

(e.g. dIversions). Comparisons of summary statistIcs, frequency/duratIon

statIstIcs, and frequency of exceedance statIstics were made within and

between rivers.

The descr I ptl on of 10iI flOil condl tl ons all ews for better determ I nation

of how to group months Into seasons and the Importance of background water

quality during lew flew periods. Facta-sthataffect the use of low flows

In the permit process are: hydrologic, diversions, flow routing,

extrapolatIon of lew flew statistics, and errors In estImates of low flow

data. The summary pol nts of the report are:

1. There were two types of streams In terms of the effect of changl ng the

annual duration/frequency statistIcs, one group (Blue River near DIllon,

Coal Creek near Plainview, St. Vrain at Lyons, and Cache La Poudre at

Fort Collins) shewed very little change In the estImated flOil value for

different annual duration/frequency statIstics. For these streams, the

apparent method for changl ng the upstream desl gn f I ow woul d be to

examine and propose seasonal flOil statl stlcs. The second group (CI ear

Cr eek near Gol den and South PI atte at L Ittl eton and Henderson) dId shew
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changes In the estImated flow value for dIfferent annual duratlonl

freq ue ncy statl st I cs, For these sfreens, changl ng both the annual and

seasonal fl~ statIstics should be examIned.

2. There appear to be three groups of months based on whether the fl ~ In

the month Is lew flew, hIgh flew, or a transItIon between low and hIgh

f low. The low flow months for all streans were December, January and

February; with the months of NOIanber and March usually IQi fl~ months.

The groupIng of months Into seasons to al l oe the estImatIon of seasonal

flOil statl stl cs shoul d al so take I nto account any seasonal patterns that

may exl st In strean water qualIty.

3. Most of the streams exh I bl ted I arge I a9 one autocorr el atl ons f or both

mean annual and monthly strean f l oes, The annual correl atlon suggests

that low flow years tend to be grouped together and the monthly

carrel atlon suggests that for any gIven low flow year there may be

nunerous excursions for a partIcular flQl statIstic. This pattern

results In some desIgn flow crIterIa to have a dIfferent level of

protect I on for dl fferent years.

4. The qualIty of applying low flow statIstIcs as upstrean desIgn flew

crIterIa In the wasteload al locatIon process Is dependent not only on

choosIng the approprIate flow statIstIc, but also on the amount of

uncertaInty In the estImated lew flew statl sr l c, Factors that affect

the amount of uncertainty In the estimated lQi flew statIstIc are: flcw

measuranent errors, dIfferences beiween strean gage I ocatl on and pol nt

of effluent dIscharge, and statIstIcal estImatIon of the low flow

statIstIc. WIthout sane measure of the amount of uncertaInty In design

flow crIteria there exists a state of doubt as to the level of

protectIon provIded to the aquatIc lIfe communIty.
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OiAPrER 2 - ~1HOOOLOO IES OF LCW-FLCW IWAL YS IS

FACTORS AFFECT ING l~ FLCl'IS

LQII fl QIIS are affected by a mmber of natural and human factors. These

factors may affect both the quantIty and tImIng of low flows, and ma)(

produce short- or long-term changes In ION flON regimes.

Natur al facta: s

The natural factors that determine IQII flONS for a gIven catchment can

be gr oupe d I nto four mal n categor I es ba sed on: climate, vege ta t Ion,

hydrogeology, and morphology. Climatic factors Incl ude or ect pt tett on,

evapotranspiration, and temperatures. PrecIpItation directly affects the

quantIty of low flows. Evapotranspiration al so may largely determine the

quantl1y of IQII f l oes, particularly during dry periods. HQllever, for rivers

that are fed excl uslvel y by groundwater, the effect of evapotranspl ration Is

mInImal (McMahon, 1985). Temperature may affect ION flows dur I ng the col d

winter season In Colorado. FreezIng of water In the ground and In str ean

channel s reduces dl scharges, causl ng ION fl QII s (McMahon, 1985). Vegetation

may affect low flows reducing runoff and Increasing Infiltration, or by

Increasl ng evaportranspl ration.

Hydrogeol ogl c factors I ncl ude geology and groundwater. Geology Is

consl dered an extranei y Important f actor In determ 1nl ng low flow regl mes
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(Riggs, 1976>' Highly porous, permeable geologic formations like

unconsolidated sands and gravels transmit more groundwater at faster rates

than Impervious formations. Infiltration capacities determine recharge and

runoff quantItIes. Groundwater frequently pr ov lde s the primary source for

streClTlflew during lew-flew pert ods, In general, groundwater flews gradually

deer ease th rough out th e I ow- f low sea so n as stor age I s de pi ete d. A

relatively stable mlnlmllll flew may eventually be reached, depending on the

sources of groundwater flows (McMahon, 1985>' In some cases, rIvers

actually lose water to the groundwater system rather than being fed by

groundwater. Influent rivers may exhibit completely different low flow

regimes as a result.

The effect of geology and groundwater on lew fl ew s t s sl gnt flea nt, yet

very dl ff Icul t to def Ina, Seepage runs are one technique that may be used

to detect major gal ns or losses to a river system (Riggs, 1972). A seepage

run Is conducted by measuring streamflcw at Intervals along a given reach

dur I ng a per I od of base flew. Incr eases or decreases may be attr I buted to

groundwater, If al I other factors are hel d constant. Studies have been made

In Colorado at a number of specific sites to quantify the effects of

groundwater on streanflews, and have shewn that flcws are often Inconsistent

and difficult to predict accurately. Lewis presented predictions of

groundwater fl ews Into segnent 15 of the South PI atte River that ranged fran

3.9-6.8 cfs/mlle (1986). This study was based on six seepage readings taken

by the U$S during the years 1966-1968. Hew ever, more studies are necessary

to better define the relationships beiween groundwater and strean systems In

Col or ado.

Morphological facters that may affect lew flews Incl ucle: size, relief,

and water bodl es. The dral nage area ot a stream basi n Is consl dered by many
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to be a major factor In determining streamflows, particularly In humid

environments (McMahon, 1985; RIggs, 1976, Singh, 1974). Relief factors,

such as basi n slopes and el ev atl ons, may af fect r unof f and I nf I I tr atl on

characteristics which help to define low flows. The presence of lakes,

reservoirs, or Irrigation channels may Influence low flows by feeding

groundwater systems or by al terlng climate.

Human Facters

Man- Induced ch ange s are ev I dent I n many str eans throughout the Front

Range of Colorado, particularly during lew flews. The major ways that human

activities have affected strecmflcws Include: urbanization, construction of

dams and reservol r s, agr I cui tural dev el opment, and I rr I gatl on. AI th ough

changes In flow regimes are to be expected, the question of concern Is

whether or not the changes affect elanents specifically related to low-flow

character I stl cs (RI ggs, 1976>-

Urbanization produces greater Imperv lous area whi ch ge ner al I y resul ts

In more runoff, shorter time to peaks, higher peak discharges, and less

Infiltration to recharge groundwater flows. Urbanization may bring

I ncr eased needs for diversion of water or pumpl ng of groundwater for public

or Industrial uses. In addition, urbanization may result In Increased

dI scharges of effl uents fran munlcl pal wastewater treatment pi ants or

Industrial plants. The overall effects of urbanization on 1011 flows may be

mixed. Increased Impervious area may produce I Oller ml nlrmm flews, while

discharges may Increase low flows, particularly If the source of the

discharge Is fran deep groundwater (McMahon, 1985; Riggs, 1976; Singh,

1974>- I n basi ns where the Imperv lous area constl tutes onl y a smal I percent

of th e entl re dr al nage basi n area, the effect of urbanization on lew fl ew s

may be minimal (Riggs, 1976).
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The construction of dams and reservoIrs may Influence IOff f l oss In a

variety of ways. The slgnlf lcance of the effects of a dam varies, dependl ng

on the purpose of the dam and degree of flew regul atlon. Generally, IOff

flews directly downstrean fran the dam are equal to the design minimum flew

(Singh, 1974). However, effects further downstrean may be SUbstantIally

dl fferent fran those dl recti y downstream fran the dam and are more dl ff Icul t

to predict (Riggs, 1976). A reservoir may reduce downstrean flews belew

natural levels by Increasing losses due to evaporation, or may Increase low

flows by feeding groundwater systems that add to the river downstream

(McMahon, 1985) •

Agricultural development and Irrigation diversions affect lew flews

Indirectly by InfluencIng evaporation, Infiltration, and runoff

characteristics. These effects are particularly Important along the Front

Range of Colorado. Irrigation water Is often supplied by strean diversions.

These diversions are the controlling factors for lew flews during the crop

season In sane streams. Frequently, water rights have been allocated to the

point where a stream may legally be dried up and may have zero flows.

Return flew s f ran I rrl gated agr I cui ture v I a groun dw ater or surf ace r unof f

may Increase low flC\fls to streams located within a certain distance.

Hoe ever-, little water that Is appl led to Irrigated areas Is actually thought

to return to streams (McMahon, 1985). Much of the water applIed to

Irrigated fields Is lost to evapotranspIratIon.

The greatest Influence of Irrigated agriculture on mInimum sfr eemfl oss

occurs during years of IOff ralnfal I. DurIng these periods, Irrigation Is at

a maxlmun and ION strean levels may require pumping of groundwater to supply

IrrigatIon, potentially lewerlng flews even further.
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GENERJIJ.. OONCEPTS ,AND TEQ-lNIQUES USED IN LCW FLCW N-lJlJ.. YS IS

.M2YJ.Dg Averages

Low flows may be cal cui ated tor durations at one day or I anger. L~

flOfis of durations longer than one day are generally cal cui ated as mov Ing

averages of a series at dally tlOfis. The moving average acts as a smoothing

function tor a dall y flow record to reduce the effects of extreme

varlabll tty, particularly of zero or very lew Instantaneous f l or s, An x-day

moving average Is calculated by averaging dally flOfi values for days 1 to x,

2 to (x+l), 3 to (x+2) etc. For an annual period of record, 365 dally

val ues waul d be smoothed to (365-x)+1, x-day mov Ing averages. The date of

occurrence assigned toa given moving average Is the middle day of all the

days I ncl uded I n the average.

Acute and Cbronlc Design EI Q1S

Design flew Is the term currently applied by the U.S. EPA to designate

the upstream dilution tl~ to be used In discharge permitting. The limiting

facta-s that generally determine the design fl~ are the requlranents of the

eq uatt c community being protected. Design flews may be calculated for acute

or chronl c level s of exposure of the equatl c env I rorment to pol I utants.

Acute design flews are generally based on maximum concentration levels,

which are Intended to protect aquatic life from unacceptable short-term

effects. The U.S. EPA rationale for acute and chronic design flews Is given

In the 1985 EPA Guidelines fa- Developing National Water Quality Criteria

(Stephan, 1985). The acute concentration used by the U.S. EPA Is the

Criterion Maxlmllll Concentration (CMC), which Is equal to one-half of the

Fl nal Acute Val ue (FAV). The FAV Is a val ue based on I aboratory toxicity

test resul ts (I. e. 48- a- 96-hour LC50). The CMC I s I ntended to pr ov I de a

"reasonable level" of protection for aquatic life. this level has been
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def I ned by the EPA as protect I on of al I except a small fraction of the taxa

present (or 50 percent of the popul atl on of the most sensl tlve 5 percent of

the species present) (Stephan, 1985). The duration of exposure deemed by

the U. S. EPA to be approprIate for acute level s Is one hour, a short enough

perIod to avoid large fluctuations In pollutant concentratIon. In practice,

the duration used Is one day, because discharge data are riot often avaIlable

on an houri y basi s,

ChronIc desIgn f l oes are generally based on a concentratIon l oser than

the acute level, which Is designed to protect ecosystems fran unacceptable

ef fect s due to long-term exposure. The chronl c concentratIon used by the

u.s. EPA Is the Criterion Continuous ConcentratIon (CCC), which Is equal to

the Final Acute Val ue divIded by the FInal Acute-te-Chronlc Ratio. Acute-

te-Chronlc ratios have been determIned In the laboratory and range fran one

to more than a thousand, dependIng on the toxIcity characterIstics of the

water qualIty varl abl e. The duratIon of the chronl c desl gn f ION I s longer

than one day, usually taken as a mov Ing average of four to thIrty days.

Four days Is the duration that has been recommended Initially by the U.S.

EPA, but longer duratIons (7-day or 3D-day) may be JustifIed for relatively

stable flew and downstrean water qualIty condt rt ons, The crIterIon used by

the U.S. EPA to Justify the use of a 3D-day average for chronIc design flews
,

Is that the coeffIcient of varIation (mean dIscharge divided by the standard

dev tet l'on) based on the complete record of dally flQls be approximately one

or I esse Other cr I ter I a th at may be more appr opr I ate 1ncl ude the

coeffIcIent of variation based on low flQls only, tnstr een water quality

varIations or effluent quantity and qualIty variations.
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Recurrence I ntery aLs

The recurrence Interval of a gIven fl~ event Is a measure of hew often

It Is expected to occur, and Is equal to the Inverse of the frequency of

occurrence of the event. For exampl e, If the frequency were once t n ten

years or 10 percent, then the recurrence Interval Is ten years. The

al l osabl e frequency of acute or chronic flQi events recommended by the U.S.

EPA t s once every three years, al though th I 5 val ue may vary dependl ng on the

aquatic ecosystem being considered. Justification given by the U.S. EPA for

the three year period Is that It has been deemed sufficient for most aquatic

ecosystems to recover fran damage caused by adverse water quality conditions

(Stephan, 1985). The three years recommended by the U.S. EPA Is actually

meant to be longer than the average recovery per I od so th at ecosy stem 5 are

not In a constant state of recovery (U.S. EPA, 1986). Frequencies greater

than once every three years may be justIfIed on a sIte-specifIc basIs for

partl cui ar equatl c ecosy stems.

In the case of a prolonged drought with many 51 ngl e I Qi-fl Qi events, a

frequency of once every three years or once every two years may not be

appropriate. For Instance, If a string of 10 IQi-fIQi events occurred In a

s l ngl e year, then the frequency of once I n three years waul d require a

recovery perIod of 30 years without anoth er sl ng I e I ow- f low event. As an

al ternatlve, the U. S. EPA has recommended the use of a maxl mtm per l od of

recovery of 15 years after a drought per I ode The j ustt f I catt on for 15 years

t s th at an ecosy stem req ul res beiween fIve and ten years to recover after a

severe stress 1 Ike a drought, and an ecosystem shaul d not be I n a constant

state of recovery. Thus, 15 years was deemed by the U.S. EPA as an

"appropriate stress-free period of time" after a severe drought CU. S. EPA,

1986). In the case of a drought then, no more than 15 years can be required
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before the next allewable IOff-flew events that occurred during the drought.

The maximum period r equl red for recovery after a drought can vary and other

val ues can be Justified by site-specific analysis.

Period of~

The recommended period of record for low-flow frequency/duration

anaI y sl sis 30 years or more of daIt y fl 011 s (McMahon, 1985). If 30 years t s

not avallable, a minimum of 10 years of dally flow data may be used to

produce valId results (U.S. Interagency Advisory Committee, 1982).

Fr eq uency analyst sofa period of record shorter than 30 years could produce

resul ts wIth larger probabl e errors and may Introduce bl as t f the short-term

record I ncl udes a preclan tnanca of wet or dry years (McMahon, 1985; Searcy,

1959). The perIod of record for bIologIcally-based lew-flew analysis may be

shorter than 30 years and still produce resul ts with a good level of

cont tdence (U.S. EPA, 1986). Because biologIcally-basad analysis considers

all days within the perIod of record and not Just the s l ngl a extreme low

flow for each year, the sampl e sIze I s much I arger than that of frequency

anal ysl s, and 50 a shorter data record Is suff lei ent. Whenever posst bl e, a

per rod 0 f 3 0 yea r 5 0 fda tawas uti I rzed for f r eq uency / durat Ion and

biologically-based analysis In this study.

One Important consIderatIon In the determInatIon of an appropriate

length of record to use Is the hanogenetiy of tlOti data. If data are non­

homogeneous, then the advantage of a longer, more representative record Is

offset by the dl sadvantage of Inconsl stent data. Both hanogenei ty and

representativeness should be weIghed In the determination of the period of

record for analysl s, These faeters are dt scussed further t n the sectt on on

data assumpt Ions.
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Periods of Analysis

The analysis of low flows In this study was carried out for three

different periods of time - years, seasons and months. The purpose of

monthly and seasonal analysis was to more accurately reflect I~ f l oe s

during all times of the year, rather than Just during the lowest flow

periods.

Annual Loy FI qy s and the CI Imatl c Year

Annual low-flow analysis Is based on the single I OtIest moving average

flori for each year of record. Usually, the per I od of record I s broken up

Into distinct year-long segments rather th.an analYZing the entire continuous

period of record. A flew record may be separated Into water years <October

l-September 30>, climatic years (April 1-March 31> or calendar years

(January 1-December 31). Both the cl Imatl c year and the water year are

Identified by the year In which the period ends (e.g., the climatic year

Apr II 1, 1955-March 31, 1956 I s denoted as 1956>. The per I od of annual I~­

flOti analysis should be chosen so as to Include the 1000-fl~ period entirely

within a given year. Generally, flood fl~ analysis Is made on the basis of

the water year. The cl Imatl c year, h~ever I s more appropr I ate for I ew-fl 0tI

analysis since a 1000-f10ti perIod rarely occurs In late March-early April

(ASCE Task CommIttee, 1980; Riggs, 1972; Petsch, 1979>' In sane cases,

other annual perIods may be more appropriate than the climatic year,

depending on the pattern and timing of low flows at a particular sIte. For

th I s study, annual I~ flow anal y ses were made on the basI s of th e cl Imatl c

year •

.MQntb 1y LOti FI Qd S

Monthly low-flew analysis Is based on the single I OtIest moving average

flow within each of the 12 months of the year for each year of record.
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Thus, there would be 12 different monthly low flows (April-March) as

compared to one single annual low flow. The lowest monthly low flo« for

each year shoul d be equal to the annual 1011 fl ew for the same years. Other

monthly low flows reflect wetter periods of the year and may be

substantl al I y hi gher than the annual lew fl ew.

The procedure generally used to calculate monthly low flews Is similar

to that used for annual flows. Each month of the year Is evaluated

separately for minimum flews. The calculation of monthly or seasonal x-day

mov I ng average f lows with th I s approach presents carta I n probl EmS because

the period of analysis Is short rei atlve to the mov Ing average duration.

Monthly mov Ing averages cal cui ated with standard techniques tend to be

biased teward flow values occurring In the middle of the month. This Is

because values In the middle of the month are Included In more moving

averages than values occurring at the beginning and end of the month.

Another probl em I s that the cal cui atl on of mov fng averages for 12 separate

months of the year usl ng standard procedures produces fewer mov Ing averages

for the entl re year than annual anal ysl s does. For exampl e, the cal cui atf on

of monthly 7-day moving averages would produce 293 values In a monthly

anal ysl s as compared to 359 flows cal cui ated on an annual basi s,

To deal wfth these problans, monthly moving averages for this study

were cal cui ated with an overl appl ng procedure. FI ews frc:m the end of the

pr ev lous month and the begl nnl ng of the fol low I ng month were used I n the

calculation of moving averages for a given month. For monthly 7-day moving

averages, three days were used from each of the prev lous and follow Ing

months. For 4-day averages, two days were used.
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Seasonal LOti FIOds

For seasonal lew-flew analysis, months can be grouped together as low,

hIgh and transItion flOK seasons. In this study, months were grouped

together on basi s of flews only, for descrIptive purposes. other factors,

such as seasonal water quality and effluent quality, al so determine

downstream water quality and should be considered In actual applicatIons.

Flow criteria used to spl It out the seasons Included statIstics on monthly

7-day movIng average low flows (mean, medIan, standard deviation) and

monthly 7Q3 statIstic low flows. On the basis of these criterIa, the months

generally seem to separate fairly well Into distinct high and lew flOW'

seasons. Certain other months exhIbit flews that are Inconsistent fran one

year to the next and are more difficult to group conclusIvely. These months

have been deemed as transl tl on seasons.

The grouping of months Into seasons has a significant effect on the

val ues of the seasonal fl ews. The Incorrect groupl ng of a transl tl on month

with a high-flow season may reduce the flews drastically, particularly If

the lew f l oes occur within the high-flOtl season for some years and In the

transition month for the other years. The sel ectlon of seasons may actually

require a two-stage process. The first stage consists of an Initial

sel ectl on of seasons and cal cui atl on of seasonal ft OW's, and may be foil oeed

by a second stage If It I s necessary to adj ust the seasons. The I nl tl al

selection Is somewhat sUbjective, but can be verified with the actual

calculatIon of seasonal flews.

The selection of seasons requIres st te-spect r tc analysIs because the

patterns of low-flow events may differ significantly fran one site to

another. In addItion, flQtl patterns may even dJffer fran one duratIon flew

to another (I.e. the Ideal l-day low-flow seasons may not be the same as
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Ideal 7-day low-flow seasons). For practical purposes, one set of seasons

shoul d be chosen for each sl te by bal ancl ng all the factors I nvol ved.

Zero EI at 5 and Mt sst ng Data

Analysis of dally flew records wIth zeros Is problanatlc because It Is

difficult to fit log-dIstributIons to sets of data with zeros (Jennings,

1969). For this reason, zero flews should be replaced by non-zero values.

Two approaches may be used to transform zero flews. The first Is to add a

small anount (e.g. 0.1 cf s) to each of the discharges In a gIven flew record

<Tasker, 1972; Jennings, 1969). One disadvantage of this method Is that the

arbitrary addition of a constant value may change the characteristics of the

flow distribution. A preferred, though more canpi ex, approach Is to use

conditional probability to determine approprIate val ues to repl ace zero

flew s. Th I s method I nvol ves f Ittl ng a dl str I butl on to events greater than a

given base flOll and predl ctl ng val ues based on a ratio of the number of

events greater than Q
b

to the total number (Jennl ngs, 1969). None of the

sites In this study actually exhibited zero flOlls so that neither approach

descr I bed here was rE:G ul red.

FIOII records with missing data may be completed by estimating the

missing values. One approach to estimating missing data Is to Interpolate

beiween the surroundl ng val ues Just precedl ng and just fol I cw I ng the mI ssl ng

v et ue t s ) , If the duration of missing data Is longer than several days,

Interpol atlon may not be an appropr I ate method and another method may be

rE:G ut red.

Extensioo of Short PerIod of Record/Uogaged Slte.s

The estImatIon of low flows at a specIfIc poInt of Interest (an

effluent discharge point) for use In discharge permitting Is often very

difficult. Rarely Is there a set of discharge data of sufficient length
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avail abl e I n the v lcl nt ty of the outfall that can be uti I lzed, The probl em

Is compounded In the western U.S. where the nearest gaging station may be

many miles away fran a dIscharge point and where there may be many

unmeasured tr I butary str eams and I rrl gatl on dl versIon pol nts between. In

a dd t t l on , the role of groundwater Is usually not well def l ne d ,

Determinations of whether a stream Is Infl uent or effl uent as well as

quantitatIve estimates of groundwater flQlis are difficult to make. Changes

over time of flQli characteristIcs further complIcate the analysts. For this

study, the majorIty of the sites were selected at exIsting USGS gages wIth

long records. Three sl tes, hQliever, dl d not have long gage records nearby,

and r equl red s l gnU lcant effort to develop a f ION record appropr I ate for

anal ysl s.

A nunber of methods have been used to extend short per I od of r ecor d or

to develop flQlis at ungaged sites for analysIs of IQIi-fIQli characteristics.

Methods I ncl ude: regression anal ysl s, water bal ance procedures, and

regionalized analysl s (McMahon, 1985; Sal as, 1980; Riggs, 1972; Searcy,

1959) •

Regression analysis can be used to extend a short perIod of record at a

sl re by developIng a relatIon between flONS at the point of Interest and

flows at one or more nearby gage sites wIth longer periods of record. The

relation can be used along with the records at other sites to predict f l os s

at the pol nt of Interest for ungaged periods.

One of the assumptions Inherent In regression analysis Is normalIty of

the data set. Frequently, flOlti data used In regression analysIs Is

transformed to a normal dl str I butl on through a I og-transformatl on, though

this Is not always necessary. CertaIn biases may be Introduced wIth l oq­

transformatIons, whIch may result In ION estImates. The effect of this
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bias, however, Is very small for low-flow estimates and Is generally

considered InsignIfIcant fa- lOtI f l oss (Beauchamp, 1973>' For regression

analysis of lOtI flews It may be desirable to limit the analysis to lew flews

bel ew a certal n cut-off level, rather than usl ng a I og-transformatl on. ThI s

approach would help to remove bias Introduced by high flews, though It may

not strengthen the normality assumption.

Regression equations can be developed for flews of durations ranging

fran one to several days, or for specific monthly or annual flows of given

durations (e.g. monthly 7-day lew flews). A regresslon equation for dally

flows may be used to generate a dally flow record at a site which can

subsequently be analyzed statistically as a gaged site would be. One

weakness of regression analysis based on dally flows or flows of slightly

longer durations Is that the events are not Independent fram one another and

may Introduce sane bias due to serial cross correlation. To avoid this

error, regression analysis may be made for monthly or annual lOtI flOtis which

exhibit a greater degree of Independence. Hewever, regressions of monthly

or annual low flows may be more dIfficult to make because of the lImIted

number of data points available. For example, If a three-year period of

concurrent record I s avail abl e, then a regression of annual 7-day lew fl cw s

would be based on only three data points. In this case, It may be that the

violation of the assumption of Independence using dally f l oss Is offset by

the added benef It of many more data pol nts upon whl ch to base the

regression.

If regressIons are to be made for monthly or annual flows, lt Is

Important that the flows being predIcted correspond to the f l oss used to

generate the regression equatl on beI ng appl I ed. For exampl e, to def I ne a

monthly 7010, a regression equation developed to predict monthly 7-day lOtI
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tl Oti s may be used to generate val ues for each month of recor d, wh I ch coul d

In turn be analyzed statistically (using a tit to a Log-pearson type III

dl str I butl on or other method) to determ I ne th e 7 Q1 O. How ever, th e same

equation should not be used to take a monthly 7Q10 from one site to predict

the monthly 7Q10 at the point of Interest.

A measure of the ability of a regression equation to predict f l oes

2
accurately Is given by the coefficient of variation, or r value. This

val ue Is generally cal cui ated for each regression equatIon as part of the

analysis. The mlnl mtm r 2 value recommended to Indicate a reasonable fit of

the equatIon to the data set Is approximately 0.65, which Is based on a

correlation coefficient, or r value, of 0.80 (McMahon, 1985; Riggs, 1968).

Other measures of the accuracy of estimated flOt' records can be made

for sites with short per l ods of record. One method Involves F and t-test.lng

to compare predl cted to actua I f I Ofi s, As wII I be descr I bedin th e fol lOti I ng

section on homogeneity of flows, F-test results Indicate significant

differences between the variances of two sets of data, and t-tests shOt'

51 gnl f Icant dl fferences I n the means. Another way to eval uate the accuracy

of predl cted f I Ofi 5 I s to compare summary statl stl cs for actual and predl cted

t l cs s, statistics may Include: mean, medIan, standard devIatIons, mInimum

and maximum val ues, conf Idence Interval s, skewness, and Kurtosis

(de finItIons of terms are given In the glossary>. Perhaps the most rei l abt e

evaluatIon of the accuracy of predIcted f l os s 15 a consIderation of their

physical signifIcance and their relation to flOti condItIons observed at the

sl te, For 1000-f1Ofi anaf y sl s, the results predicted by a regression equation

should be val l d particularly at lOti f l oes Incl udlng a flow of zero at the

gage bel ng used for pr edl ctl ens,
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A water bal ance procedure can be used to route fl ews fran a gaged sl te

to a site that Is ungaged or has a short perIod of record. All sources and

losses beiween the gaged site and the point of Interest must be quantified

and accounted for In the analysis. Sources may Include tributary flews,

effluent dIscharges, returns from IrrIgatIon, or groundwater recharge.

Stormwater r unof f may al so act as a source, but Is general I y I nsl gnIf lcant

In low-flow analysis. Losses may Include dIversIons, or groundwater

outflews. Dally flew data are rarely available for all of these factors and

estimates must often be made fran monthly or even I ess frequent data.

A third approach, regional analysis, has been used with lImited success

to predict lew flews at ungaged sites. The reglonallzatlon method Is based

on the premise that low flows can be predicted through an analysIs of the

regIonal factors affect I ng streamflows I ncl udl ng: basI n dral nage area,

precipitation, geology, groundwater flews, relief, and vegetation.

FREQUENCY ANAL YS IS

Frequency analysis and frequency curves are tools used In hydrologic

analysis to relate the magnitude of flows to their frequencies of

occurrence. Often, the analysis Is concerned with flew durations longer

than a single day (e.g. 4-,7- or 3D-day). The frequency of occurrence for

annual events Is def I ned statl stl cally by the probability of occurrence each

year and I s equal to the I nverse of the recurrence I rrrerv al , The recurrence

Interval Is defined as the period of time In which one occurrence Is

expected or the Inverse of the frequency of occurrence. For example, a flew

with a 10 percent probability of occurrence has a frequency of 0.10 per year

and a recurrence Interval of 10 years. Frequency statistics for various

duration flows are often denoted as (duration) Q (recurrence Interval).
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Thus the 7Q1 D Is def Tned as the I Qiest 7-day mov In9 average fl o« that occurs

on th e average once I n every ten years. FI 011 val ues der I ved fran f req uency

analyses are most frequently pi otted versus recurrence I nterval to produce

f req uency curves.

LON-fIOll frequency analysIs may be made on the basi s of eIther annual

ser I es or partJ al-d ur atl on ser I es, Annua I ser I es are gener al I y used unless

frequencies of events longer than 12 months duratIon are r eq ul r ed, Annual

serIes frequency analysts l s based on the mInImum frOil event of a given

duration for each year of record. Frequency analysis may al so be based on

min I mum f I QI event s for shor ter per lads such as seasons or month s, There

are several methods used to cal cui ate annual ION tlOll treq uency val ues, Two

methods are graph I cal and mathematl cal.

GraphIcal Procedure

The procedure used wIth the graph tcat method I s as foil QiS:

'1. Rank I QI fl Ott s, Mev I n9 average f l oss are cal cui ated for gl ven durations

of x-days (e.g. 1-, 4-,7- or 3D-days). The mlnlmun x-day flews for

each year, season or month of record are ranked, wIth the l os esr flow

beJ ng ranked one.

2. AssIgn plottIng positIons. Plotting positIons are assigned to each flew

value usIng one of a number of avaIlable plottIng position formulae.

The formula most wIdely used and recommended Is the common or Werbull

plotting positIon (Riggs, 1974; McMahon, 1985) gIven as:

pp
_ m _ J.
- n + 1 - T

where pp = th e pi ottl ng posl tl on and an estl mate of the pr obabII Ity, P,

of occurrence of an x-day flOil that I siess than or eq ual to

a given ranked f I Qi.
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T = the estimate of the recurrence Interval or the average perIod

of tIme between years wIth an event I ess than or equal to the

gIven x-dav fiOli.

m = the rank of a given minImum annual x-day flew.

n = the number of years of daII y fl cw data.

3. Plot po l rrt s, Plot observed flews versus plottIng posItIon (probabIlIty

of Inverse of the recurrence Interval) to show the magn I tude and

freq uency of occurrence. 01 fferent types of probability paper may be

used, Includlng normal, log-normal or log-extreme value paper.

4. Fit equation. A smooth curve may be dralln through the points to fIt the

data and estimate the model error.

Figure 2.1 provides an example of graphIcal analysis of frequency

statl stl c flews.

Mathem.atlcal Pracedur..e

The mathematical procedure for determining nonexceedance probabilities

consists of estimating the parameters for a theoretical distribution frem a

set of lew flows and using the estimated distrIbution to generate flow

magnitudes for given recurrence Intervals. A number of different

distributions have been discussed for use In lew-flcw analysis, Including:

normal, log-normal, Gamma, Pearson Type III, log-Pearson Type III, Krltsky­

Mankel, Extreme Val ue Type 1 (Gumbel), or extreme Val ue Ty pe I I I (WeI bu I I )

(McMahon, 1985).

~raphIc.a.L.gnd Matbernatl cal Procedures

Of the two methods dIscussed, the graphical method has been recommended

In a number of papers (McMahon, 1985; ASCE Task CommIttee, 1980; RIggs,

1974», partIcularly for determining flews of recurrence Intervals less than

n/3 years. The graphIcal method Is considered by some to be superior to the

23



-VI-0-
~
0-~
.2
eu
8'...
~
0
0'
c::
>
0
E
~

0

~
V
C
=s
c::
c::« z

0.050.1 0.2 0.5 I 2 5 10 20 30 40 50 60 70 80 90 95 98 99 99.8 99.9 93.93

Probability of non -exceedence

Figure 2.1 The graphical method of determining low flow frequency statistics at Littleton
(1956-1985).



mathematical method for two reasons: 1) a graphIcal method requIres no

assumptIon as to the type or characterIstIcs of a theoretical dIstrIbutIon

and thus may better deal wIth a varIety of low-flow regImes, 2) In some

cases a purel y statl stl cal anal y sl s may be mI sl eadl ng and prov I de less

Information than a graph (McMahon, 1985; RIggs, 1974>' However, the

mathanatlcal method Is more widely used for frequency analysIs, probably

because of Its relatIve sImplIcIty and consIstency of results between

dl fferent I nvestl gaters.

Estimate of the freQuency Distribution

To IdentIfy an appropriate dIstrIbution functIon whIch would describe

th e dI str I but Ion of I ow f lows a th ree step procedure was fol I~ ed, Four

possible distrIbutIons were selected to be eval uated. They Incl uded the

normal, the log-normal, the Pearson Type III, and the Log-Pearson Type III

dIstributions. Appropriate transformations of the original low flows were

selected which corresponded to the above mentIoned dIstrIbutIons.

Transfermatlons used In this analysIs were the logarIthmic, the Wllson­

HII ferty, and th e Log-W I I son- HII ferty. To quantI fy h~ wei I the assumed

dIstrIbutIons fit the I~ fl~ data, the Chi-square Goodness of Fit test and

the Shapl ro-W II k test fer normality were appl ted to both non-transformed and

transformed low flows. The crIterIa used for selecting potential

distributions was based on the relative scores of either passing or failing

the Chi-square and the Shaplro-Wllk tests. A five percent level of

sl gn I f Icance was chosen for passl ng I n the tests for normality.

Distribution testIng was done on both annual and monthly seven day I~ flews

for the perIod of record at each station. Hence, for annual flows the

entire record eIther passed or failed the tests for normality, I.e., a total

score of one. However, when testIng monthly I~ flews, the scores of each
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month passIng or fall Ing were recorded, I.e., total passIng and fall Ing

equal led 12. The tol lowing is Intended to be a brief description of the

three transformations used In this study.

1) Logarithmic Transform:

The original lew flews Y were transformed by

Th i s transformed seri es was then transformed into the standard form of the

normal density function with a mean equal to zero and a variance equal to

one. The calculation of the normal deviate Is given by the equation:

x - X
z = Sex)

where X, X, and sex) were the log transformed flews, the mean log flow, and

the standard dev I atl on, respect I vel y. If the I ogarl thms of the flew 5 were

normally distributed, then the origInal flows themselves w III have a

lognormal dl str i buti on.

2) Wilson-HII ferty Transformation:

The original lew flews Yare standardized by

- y - y
X - $( y)

where X, Y, S( y) represent the Pearson Type I I I standard dev late, the mean

lew fl o«, and the standard dey Iati on, respect I vel v , The WII son-H II ferty

transformation was appl led as foil ews (Matal as, 1~7):

Z ={-6-- [G(x)X' + 1J
'/

3 - 1 +~6 l
G( x) 2 ~

where Z Is the normal standard deviate, G Is the skewness coefficient, and

X' Is given by (McGinnis and Sammons, 1970)

X' = {max[x,-2/G(x)J If G(x) Z 0
min[x,-2/G(x)J If G(x) < 0
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The above form of the Wllson-HII ferty equation Is valid whenG(x) F O.

HOftever, If G(x) = 0 , then no transformatlon l s necessary because X = z.
3) Log-Wfl son-HrI ferty Transformatlon:

ThIs transformatIon Is essentIally a combination of the logarIthmic and

WII son-HI I ferty transformatt ons that were prev Iousl y descr t bed. The

original 10ft flOfts were fIrst logarithmically transformed by

W = log (V)e .

These transformed flows were then standardized to X, the Log-Pearson Type

III standard devlate, usIng

X - W- W
- Sew)

where \'i, W, and Sew) were the log flow, mean log flow, and the standard

dev I atl on of the log f I 011, respectlvel y. The WI I son-HI I ferty transformation

was appl led as given In Item 2.

Goodness of EIt

To eval uate the I evel of agreement betw een an observed sampJ e of low

flows and an assumed theoretical distrIbution, a statistical goodness of fit

test may be used (McMahon, 1985). The Ch I-Square test I s one standard test

used for thIs purpose. The test Is conducted by separating the range of

possible 10ft flOil values Into class Intervals of equal probabIlIty based on

the theoretical distrIbutIon. The Intervals should be chosen so that the

expected nunber of observations In each Interval Is five or more (Sanders,

1983) • Actual 1011 flOil val ues are then spl It I nto each of the theoretl cal I y

determ I ned cl ass I nterv al s, The observed f lows wIth I n each I nterv al Is

compared with the number of theoretically expected rumber of flews. If

there Is a significant difference be1ween the observed and expected val ues,
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then the InItIal hypothesIs that the observed data fIt the theoretIcal

distribution Is rejected.

Specl f leal I y, the Ch I-Sq uare statl stl cIs computed as foil ew s (Sanders,

1983) :

where X2 = Ch I-Square statl stl c
E1 = expected val ue

01 = observed val ue

K = number of class Intervals

Th e computed Ch1- Sq uare statl stl c may be compared to a tabl e val ue for the

Chi-Square statistic, given a certain confidence level (usually 95 percent)

and degrees of freedom (equal to the number of class Intervals minus the

nt.mber of estImated distribution parameters). If the computed value Is

greater than the tabl e val ue, then the null hypothesi sIs rejected and the

data appear not to be of the same distribution with a given level of

cant l dence , For this study, the Chi-Square test was used to determine the

goodness of tit of the data to the log-Pearson Type III DistrIbution.

One problem with the use of any goodness of fit test Is that the test

focuses on hew well the entl re dl str I butl on fits al I of the data. ThI s sort

of test I s not heav I l y I nf I ue nced by the tall s of a dl str I butl on and thus

may not be able, to accurately define the level of agreanent specIfIcally for

mInImum flows (McMahon, 1985>' Two other crIterIa have been used to

evaluate the applicabIlIty of varIous probability dIstributIons to flCltl

data. The first Is to compare observedmlnlmlll1 flcwswlth the l oser limIt

of the theoretl cal dl str I butl on, and the second t s to compare the rei atl on
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between skewness and kurtosis of the observed to the theoretical

distribution (Matalas, 1953).

The Shapl ro-WII k test was al so used to test for normality In the non­

transformed, and the three transformed 1011 fl 011 s, ThI s test has been shown

f o be an ef feet I ve test fa- normality even with small sized sampl es (n<20)

(Shapiro and Wllk, 1955). the maximum perIod of record In this study was 30

years, while two sites (Boulder and Fort Collins) covered 11 and 9 years,

respect I vel y. Therefore, the Shapl ro-WII k test meets the constral nts of the

f I Oil records.
A

The test statistic, Wn, Is computed by

" [n/2
Wn = 1~1 (Zn-I+1 - XI)

where Z are the ordered f I OIlS (21 < Z2 < •••

An-I+lr/(n-1l5
2

< Zn)' A~I+1 are coefficients

given by Shapiro and WIJ k (1965) and 52 Is the variance of the Z ordered

f l oe s, The null hypothesi s of normality I s accepted I f the cal cu I ated W >
n

W ,where Ware tabul ated percentage pol nts given by Shapl ro and WII k
a.,A a.,n

(1965) for a gIven level of sIgnificance and sample sIze.

Log-Pe~ Iy M J I J 01 str I but [00

For the purposes of this study, the mathematical method of defining

freq uency curves with the log-Pearson Type III dl str I butl on was chosen. The

reason for this was primarily to maintain consl stency with current.

prevailing practices. The log-Pearson Type III distributIon Iswldely used

by various agencies for lew-flew analysis Including the USGS and the EPA

ru s, EPA, 1986; Petsch, 1979).

The Pearson Type III distribution Is based on three statistIcal

parameters - mean, standard deviation, and skewness coefflcfent. The
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distribution has a limited range In the left direction (zero) and unlimited

I n the right dl recti on. ThI s dl str I butl on Is f req uentl y fitted to the legs

of f lOll and l s vth us cal I ed a log-Pearson Type I I I dI str I but Ion. The most

common way to fIt thIs dIstrIbutIon Is to calculate frequency factors for

gl ven recurrence Interval s and then to use the foil OIl I ng eq uatl on.

log x =x, + K(SI )og og

where x = flOil for a gIven recurrence Interval T

-x
l og

= the mean of the logarithms of lOll f l oss

SI = the standard deviation of the logarithms of lOll f l os sog

K = a frequency factor, which Is a function of the coefficient of

skewness of the logarIthms of low f l oe s and the probability

level and can commonly be found In tables CU. S. Interagency

Adv I sory Comm I ttee, 1982) •

One dl ff I cui ty with I 0fI- f I 0fI ana I y sis by the log-Pearson ty pe III

distribution or any other distribution which uses the skewness as a

distribution paraneter Is the choice of a skew value to use. Generally, In

flood flew analysis the skew used In the log-Pearson type III distribution

Is a combination of the regionalized skew and the station skew.

RegionalIzed skew s have not yet been developed for lew fl ew sin the state of

Colorado. Consequently, statIon skews based on the hIstorical record were

used I n the analysl s. An al ternatlve approach that has been recommended Is

to use zero for a skew val ue,

EXCURS ION JWD RUN LENGlH JWPL YS IS

Analysis of dally flows below a given threshold level, or excursion

analysis, was conducted for each site. For the purpose of this analysis, an
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excur 51 on was def 1ned as as-I ngl a x-dey fl ~ bal cw a gl ven I cw er I 1m It. The

excursIon analysl s focused on 1-day lew-flew everrts to quanti fy the number

of day s wIth I n each year with f I~ 5 bel ew a gIven level, and to exam I ne the

tIming and lengths of lew flew events. 80th monthly and annual 10« flo«s

were examined. The analysl s was carrIed out by a computer progran that

ranked daI I y fl cw s for each year fran 10iI to high, and I 1sted th e date of

occurrence for each low flo«. Fl oe s below the given cutoff level (flew

statistic) were totaled fa- each flo« statistic. ExcursIons of duration

I onger than one-day were eval uated by a run I ength anal ysl s, The run length

of a I 0iI- f I Oil event was def I ned as the m.mber of consecut 1ve days w' th f I QtI S

beIowa 9I ven I ev el • Run I engths were cal cui ated and tal I Ied for the I 0iI­

fl cw events bel ew a range of frequency statl stf c low flows at each of the

sites. The nunber of excursions occurring within a given lew-flew event can

be cal cui ated as the run I ength of the event dlv ldad by the duration of the

excur s l on, For example, the nunber of 3D-day excursions occurrIng l n a run

length of 35 days would be 35/30 or 1.17 excursions.

EPA 8 lOLa; ICALL Y-BASED DES fGN FLCW CALQJLATION

A bl ol oql cet Iv-based method for determIning design flo«s was recently

developed by the Off lee of Research and Devel opnenr of the U. S. E. P. A. The

bioi ogl call v-based method 1s. an amp1 r1 cal, dl str I butl on- free appr oach th at

ur l l Iz es historIcal records of dally flOlis. The method Is empirIcal;

because It I s based on the actual fl C1fI record, rather than on f I ow s

pr ed1 cted by a statl stl ca I d1str I butl on. Desl gn flew s for both acute and

chront c level s of equetl c lIfe protect1on are cal cui ated W1th th I s method.
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Desl gn EI at Cr I te.ril

The design flOtl calculated with the biologically-based method Is

def Ined as the highest flew of a given duration that will not cause a gIven

I nstr eam co nce ntr at I on to be exceede d with gr eater f req ue ncy th an I s

at l os ebl e, The bIological ratIonale for this new EPA method Is found In

1985 EPA guidelines for deriving national water quality criteria (Stephan,

1985). The current national criteria are expressed as two levels, acute and

chronic rather than the traditional one level, to reflect actual

toxicological conditions more accurately as described earlier. Three major

factors are considered , In design flew criteria: frequency (Inverse of the

average recurrence Interval), Intensity (concentration), and duratIon

( I ength of averagI og per I od) •

The all ewabl e frequency of I ew-fl ew events used by the U. S. EPA I s once

every three years. The concentrations used are the CrIterIon MaxImum

ConcentratIon for acute flews and the CriterIon ContInuous Concentration for

chronic flews. Durations are 1-day for acute flews and ~day or longer for

chronic flows. As mentioned prevIously, longer durations may be Justified

for relatively stable flew and water quality conditions. The U.S. EPA has

used a low coeffIcient of variatIon (C ) of dally flews as an Indicator ofv

stabilIty. Generally, a C of one or less Is considered adequate
v

JustIfIcatIon by the EPA.

Methods

The general approach of the biologically-based technique Is to look at

the mmber of lew-flew excursions (lew flews belew a lewer limIt) that have

occurred In the past to gaIn an understandIng of hew many excursIons are

lIkely to occur In the future. A dally flew record Is spIlt Into 1000-f10tl

periods and low flOtl excursions are counted for various lew flQl limIts.
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The flQl that Is chosen for the design tlQl Is the maxlmun flQl that results

I n no more than the allowed number of excursions for the entl re period of

record, o: no mere than one excursion every three years.

Low- f low per I ods used for anal y sis by the U. S. EPA bioi 091 call y-based

method are 120-day periods, rather than the more tradl tl onal annuaI per I od,

According to the U.S. EPA, 10« flo«s are expected to occur In a certain

pattern grouped within a 120-day low flow period followed by a 120-day

period of few, If any, low flo«s (U.S. EPA, 1986). Each IQI-fIQl period

begl ns with a I OiI-fl QI excursion (a I QI flOtl bel os a 10«er I 1m I t or de 51 gn

flow) and lasts exactly 120 days. Depending on the pattern of 1000-f10li

excursions, the nunber of days beiween I Otl-fIOtl periods may vary.

With I n each 120 day I QI- f I QI per l od, th ere may be one or more I QI- f I QI

excursion events. An excursion event Is defined as a sequence of

consecutive days where each day belongs to an x-day average flQl that Is

bel Oil the desl gn f I QI (U. S. EPA, 1986). For exampl e, If th ree 4-day mov I ng

averages of a consecutive six day period are less than the design flQl, then

those six days belong to a Io«-flow excursion event. The number of

excursions In an excursion period Is calculated as the total nunber of days

I n the per I od dl v I dad by the duratIon (e. g. one day for th e CMC a nd four

day s f or the CCC). The maxi mum nunber of excur 51 ons to be counted for any

gIven low-flow period Is five. GIven an allowable frequency of one

excursion every three years, th I s pr cv Ides for no more than 15 years, on the

average, for ecosystans to r~cover fran severe stress caused by a drought.

ETocedure

The biologically-based design flow calculations Is an Iterative

convergence procedure that consists of five basic parts <u.S. EPA, 1986>'

The parts are:
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1. De term I nation of the all ewed nunber of excursions, the nunber that w" I

produce an average of no more-than one excursion every three years,

gl ven by the eq uatl on:

(all ewed excursions) = (nunber of years of record)/(3)

2. Cal cui atl on of x-dav (1-day for CMC, 4-day for CCC) runnt ng averages

f ran the record of daII y fl ew s,

3. Cal cui atl on of the total nunber of excursions of a specl fled flew for a

given flew record.

4. Determination of Initial lewer and upper limits on the design flew with

the corresponding nunber of excursions fran Part 3, and an Initial trial

fl oe,

5. Cal cui atlon of the desl gn flew by successive I teratl ons usl ng the method

of fal se post tl on.

6. Note - In cartal n cases, val ues other than the standard ones gl ven for

duratIons (1-day or 4-day) or frequency (once In three years) may be

used to cal cui ate sped al user-def I ned flew s,

The above procedure Is carded out by computer progran (EPA's DFL()I a:

DES CON) used In conjunction with direct access to STORET dally flo« record

flies. For th e pur poses of th I s study, an IBM PC v er sl on of DFL()I was

converted for use on the Cyber 205 and was used I n conjunctIon with data

f l l es with U93S dally fl ew records.

DATA ASSUMPf IONS AND ERRORS IN L()I-FLO'l ANJll YS IS

Certal n assumptions about f low data must be ach leved for most

statistical analyses to be val Id, The assumptions are as follcws: 1) the

record I s a representative time sampl e, 2) flo« events are random and

I ndependent, and 3) the record Is hanoge neous (U. S. I nterage ncy Adv I sory
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CommIttee, 1982>' The v tol atlon of these assumptIons may produce

statistical results that are less reliable a" ~en tnval Id, dependIng on the

degree of vIolatIon. One of the fIrst steps In lew flew analysIs should be

to check the adequacy of the flew data and the appl Icabfl Ity of specIfIc

statl stl cal anal yses.

Representatl ye TIme San~1 e

A representatIve time sampl e r equl res that the fl 011 record Is compl ete

and Is long enough to Incl ude the ful I range of a characteristIc flow

regl me. An adeq uate I ength of record has been recommended as 30 years or

more (McMahon, 1985).

Randan and I ndependent Events

Statl stl cal anal ysl sIs usually based on a subset of measurements of

th e entl re popul atl on, call ed a sampl e. For a sampl e of f l oss to be random,

each manber of the population (or each flOll for a gIven day) must have an

equal and Independent chance of beIng selected. Independent events r-equl re

that the occurrence or nonoccurrence of one event has no bearing on the

chance that the other wII I occur.

Dally streent t oes form a time serIes, a sequence of events arranged tn

order of occurrence (Riggs, 1977). Usually these flews are positively

correlated, meantng that a lew flew one day Is f ol l csed by another lew flew

on the next day. SerIal correl atlon tests prov Ide an IndIcatIon of the

degree of correl atl on of f l or s, Annual mlnl mum lew fl ew s may be consl dered

to be a sampl e of random and I ndependent events (U. S. Interagency Adv Isory

Committee, 1982). Annual events are generally not as hIghly correl ated as

dally events, although long-term persistence of drought may occur and upset

this assumption. Monthly mInImum flews may exhIbIt a hIgher degree of
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serial carrel atlon than annual val ues and thus may not strictly be

consl dered random and Independent.

Homage ne.Ql.lS Recor d

Homogeneity of a f I at record I mpl les that data are taken from the same

popul atlon, or that the flow regime has remained relatively constant O/er

the entire period of record. No~homogenelty may otten result from men-made

developnents or by the mO/ement ot a gagl ng station. It I s recommended that

ani y records that represent rei atlvel y constant watershed condl tl ons be used

for frequency analysis <U.S. Interagency Advisory Canmlttee, 1982; Searcy,

1959) •

A variety of techniques are avaIlable to test homogeneIty of flQl

records. Daubl e-mass anal ysl s ev I de nce s non- homage ne I tl es as ch ange s of

slope I n the pi at of massed f I ow at the pol ntot Interest aga I nst massed

flQl at an unaffecte_d gage or gages I n the general vlcl nl ty or agal nst

massed precIpItation (Pl tman, 1978). Other ways to detect non-homogeneItIes

Include examination of plots of annual 7-day low flows versus tIme, or

comparl son of annual 7-day lew fl QI S at the pol nt of I nterest to a reference

flow record (Riggs, 1976), One problem with these techniques Is the

possibility that the timing of wet and dry periods may Introduce bias

(Pliman,1978). For example, If a flow record begins with a dry period

(lower than average flews) and ends with a wet per l od (higher than average

f l ces) , then there wlll be a bias tQlard a trend of Increasing flews.

Another approach to detect I ng non-homogeneity of a flew record Is to

spilt the record Into two groups defined by a suspected change In the flow

regl me, and to test for dl fferences between sam pi e statl stl cs such as the

varl ances and between the means of each group. The groups shaul d be chosen

50 as to reflect a suspected change In the flow regime, such as that
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resul tl ng fran the oonstructlon of a dam upstream from the gage. If both

groups have the same varIance and the same mean, then there Is suffIcient

JustIfIcatIon that the perIod of record may be saId to be hanogeneous.

01 fferences between the varl ances of two dl fferent segnents of a gIven

flOll reoord may be tested usl ng a varl ance ratIo test, or F test (Zer,

1974), The F statIstIc Is calculated as f ol l cesr

(5 )2
J

(5 )2
2

where F =F statIstIc

2 2
(51) and (52) = varl ances for sampl es 1 and 2

The ca I cu I ated F-statl stl c may be compared to a tabl e of val ues for a gl ven

level of significance and degrees of freedom (a functIon of the number of

data) for each sampl e. If the cal cuI ated val ue I siess than the tabl e

value, then the hypothesis that the "two varIances are not significantly

dl fterent I s accepted. The varl ance ratIo test assunes that the popul atl ons

bel n9 sampl ed are normally dl str I buted, and may be adversel y affected by

nonnormal popul atl ens, Data transformatIons (such as a log transformation)

may be made to make skewed flOll data more normally dIstrIbuted.

01 fferences I n the means of two sampl es may be detected wIth a two­

sampl e t-test CZar, 1974) • A t statl stl cIs cal cul ated as fol fOIls:

t =

where Xl - X2 = the dl fference between the two means

s - - = the standard error of the dl fterence be"tween the
(x l - x2) means
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If the cat cui ated t statf stl c t s 'ass than a comparabl e tebl e val ue, then

the iwo means are not sIgnifIcantly different as defIned by this statistIcal

test. The assumptions r eq ut red for the t test to be valId are for the

samples to have equal variances, to be randan, and to be derIved fran normal

popul erl ons, In many cases, these assumptions are not always correct.

Ho«ever, the t test has been shewn to be robust enough to renal n vat l d even

wIth vIolatIons of these assunptlons. In other words, the assumptIon of

normal Jiy Js not ebsol utel y necessary (Zar, 1974) •

In this study, hanogenelty of all flQ1 records was analyzed fIrst by

looking at plots of annual low flow statl~tlcs versus tIme. For records

whEtre a dIstinct change In flQi regIme was suspected, F and t tests were

conducted. Homogenel tv testl ng usl ng these tests was conducted at the

L Ittl eton and Engl ElWood st res, The operatIon of Chatf lei d reservol r on the

South PI atte River begInning on May 29, 1975 was suspected to produce a

detect,3bl e change I n the f 1011 regl mes at these sl tes whI ch are I oca ted Just

dow nstrean. The 109 transformed val ues of annual lew fl ew s at L Ittl eton and

Engl ~ood fa- the perIod 1956-1975 were tested agal nst those for 1976-1985.

The StatistIcal Package for the Social Sciences (SPSS, Nle, et al , , 1975)

was used on the O(ber mal nfrane computer at CSU to campi ete th l s anal y sl s,

Val ues for the "two-tal' pr obab l I Ity were cal cui ated and compared to a

reference I evel of 0.05. Val ues greater than 0.05 were cons! dered to show

no sIgnificant dIfference In varIances or means.

~bJll:ty of lew-F} Cd Anal ysJ s

Errors may be I ntroduced to I o«-fl o« anal ysl s fran a number of

different sources to produce estimates which may dtffer fran the true

val ues, The degree of reliability of flew estimates depends on the qualIty
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of the flew record and al so on the applicability of various statf s'r l ca l

anal y ses,

The quality of a fl~ record for use In IQt-flat analysIs may be

affected by two major 1ypes of errors, measuranent errors and ratl ng curve

error s (McMahon, 1985). Measuranent error 5 may be eIther systanatl c, due to

rnstr unerrts of measuranent methods, or accl dental, due to observers. Rati n9

curve err-cr s may result fran Inaccurate rating curves based on InsuffIcIent

10iI fl ~ dl scharge measuranents, a- fran changl ng 5tage-dl scharge rei atJ ons

due to sh IttT ng control s, Errors are generally consl dared a random process

w Tth a reI at' vel y SInal I var r ance (U. S. 1nter age ncy Adv I sory Ccmm l ttee,

1982) •

Error s t n statl stl cal anal y 51 s of lew f I cw scan resul t f ran a rumbar of

sources. Whenever necessary statl stl cal essunpr l ons are" 101 ated, error t s

Introduced. The magnrtude at the error wfll be related to the degree of

violation of given assimpt l ons, FItting a gtven flew record to sane sort of

underlying probabl\ 11y dl srr Ibut l on to predict frequency statistic flews may

al so rntroduce errors. Parameter estrmates may rnclude errors, and a

: dl strlbutTon may not al ways pr ov Ide a good f It and may make Inaccurate

predl ctl ons of lew fl cw s,
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a-tAPfER3 - FL~ DATA ANJ'l YS IS FOR OOLORAOO SlREAMS

SITE OESeR Irr IONS

Flew data at eIght sItes on four dIfferent rIvers In Colorado l ncl udl ng

the South PI atte RIver, Boul der Creek, St. Vral n Creek, and the Cache 1a

Poudre RIver were analyzed In thIs study. Flew analysIs of the South Platte

RIver was made at three sl tes - Llttl eton and Engl atood I n segment 1 4, and

Henderson r n segment 15. Boul der Creek anal ysr s was made Just above the

CI tv of Boul der wastewater treaiment facl I I ty near 75th Street. FI 011 s of

the SaInt VraIn Creek were analyzed at lyons, Longnont, and Platteville.

The Cache I a Poudre River was analyzed at L l nco l n Street I n Fort Coil Ins.

Analysis of theoretical effluent limits based on various design flews was

made fer four dl fferent wastewater treatment f acl I I tl es adm I nl stered by:

the CItIes of LIttleton and Englewood, the City of BOUlder, the CIty of

longnont, and the City of Fort Coil Ins. Specl fie de scr I pt Ions of each of

the sl tes toll ew bel oe,

$Qutb PI atte Rlyer {segnent 141

The South Platte RIver Is classified for the follewlng uses In segnent

14: class II recreation, class I warm-water equart c life, water supply, and

agr I cui fur e, Chatf lei d dam and r eserv ot r began regul atl on of the rIver

upstrean of LIttleton and Englatood on May 29,1975. The U.S. Geological
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Survey (USGS) gage at Littleton (06710000) has a draInage area of

approximately 3069 square mil es and a per led of record fran 1941 to current.

The period of record analyzed at LIttleton Included the years 1955-1985.

The USGS gage at EnglEWood (06711565), located about four mIl es downstream

of L Ittl eton, was recently Install ed and has a record fran 1982 to current.

A water bal ance technique was used to extend the fl 011 record at Engl EWood by

us I ng th e recor d at L I ttl eton and accountl ng fa- gaI ns and losses to the

river between L1ttl eton and Engl EWood. Three maJ or tr I butar I es enter th e

South PI atte RIver dow nstream fran L lttl eton and upstrean fran Engl EWood.

Bear Q-eek Is gaged (USGS at Sheridan 06711500) and has a drainage area of

260 SCI uare miles. The other two creeks are not gaged. Two maJ or dl versions

are made fran the rIver between LIttleton and EnglEWood. Figure 3.1 gives

the I oeatl on of these features.

The wastew ater treatment f acll I ty of the CI tl es of L I ttl eton and

Eng' ewood consl sts of two pi ants that discharge I nto the South PI atte at a

sIngle poInt. The Joint Use Plant has a rated design capacity of 27 MGD

(million gallons per day), and uses an activated sludge process with

chlorination and dechlorination. The Englewood plant uses a trickling

fIlter, chlorination, and dechlorination and Is rated for eIght M'D. Total

dl scharge for both pi ants based on the actual record for 1982-1985 averaged

22 M3D on an annual basi s and varied from 19.6 to 24.1 tJGD on a monthly

basi s,

South Platte River (segment 1;0

Segment 15 of the South PI atte River Is cl assl f led for the same uses as

segment 14, except that It Is cl ass II warm-water equett c life, rather than

cl ass I. The USGS gage at Henderson (06720500) has a long record, fran 1895
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Figure 3.1 Straight-line diagram for the South Platte River (segment 14).



to current, and drains 4713 square miles. Flew data for the period 1955­

1985 was analyzed at Henderson. The Denver gage at 64th Avenue (06714215>,

nine miles upstrean fran Henderson, drains 3829 square miles and has a very

short record, 1982 to current. The prediction of flOt1/s at 64th Avenue Is

compl leated by a number of facta'S. The Burlington Ditch diverts water fran

the South PI atte River Just upstrean fran 64th Avenue at an average of about

200 cf s, Water that Is diverted at the Burlington headgate In excess of the

al located right I s returned to the South PI atte River v I a Sand Cr eek, Just

downstream fran the gage at 64th Avenue. Major tributaries Include Sand

Creek (ungaged) and Clear creek (U$S 06720000) which flOt1/ Into the South

Platte River downstrean of 64th Avenue. Two maJor ditches divert flews fran

the river bel ew 64th Avenue and upstream fran Henderson. FI gure 3.2 shOt1/ s

the I oeatl ons of these features.

The wastewater trea1ment f acl l liy for Metro Denver (MoSoo) consl sts of

two treatment complexes. The north can pi ex uses a conventional activated

51 udge process and the south compl ex uses a high pur liy oxygen process. The

tw 0 pi ants together are rated for 185 flGo desl gn eapacf iy fl o«, Average

annual fl QtlS based on actual records for 1981 to 1985 were about 140 fIG 0,

whIle monthly flows ranged from 126 to 157 M3D. DIscharge fran the Metro

Denver sewage plant may be routed to two different locations - the South

Platte River or the Burlington Ditch, depending on water right requirements.

Boul der: Creek

The segment of Boulder Creek that was analyzed In this sf udy Is

classified for the follewlng uses: class I recreation, cl ass I warm water

aquatic life, agriculture, and water supply. Flews In Boulder Creek were

anal yzed at a pol nt Just upstream fran the 75th Street Brl dge and above th e

outfall fran the City of Boul der wastewater trea1ment facllliy. There Is
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currently no U$S gage at thIs sIte, al though future pi ans call for a gage

at 75th Street. The closest gage Is approximately 10 miles upstream,

located near Orodell (06727000). A number of major dl versIons and I nf I cw s

occur between thIs gage and the 75th Street location. The nearest

dow nstream gage I s located at th e mouth of th e cr eek near L ongm ont

(06730500) approxImately 14.5 mil es awClf. These features are III ustrated In

FI gure 3.3.

The wastewater trea1ment facIlIty of the CIty of Boul der Is a trIcklIng

fllter type wIth a rated capacity of 15.6 toGO. Average annual flows based

on actual records for 1983 to 1985 were approximately 15.3 MGO with monthly

averages rangl ng fran 13.1 to 16.9 M30.

St. Yeal n Creek

Use cl asstf lcatl ons for St. Vral n Creek I n the area anal yzed In th I s

study are as follows: class II recreation, and class I warm-water equert c

l Ife, Three 51 tes at streanfl ew-gagl ng statIons along th eSt. Vral n 'II ere

analyzed. The fIrst site Is at Lyone (U$S gage 06724000), wIth a drainage

area of 212 square mlles and a period of record beginning In 1895. FIQ\'s at

Lyons were analyzed for the period 1955-1985. Approximately 16 miles

downstrean Is the next site, the U$S gage below Longnont (06725450). More

than 30 dIversions tor Irrigation water take water fran the creek beiween

Lyons and Longnont. The St. Vral n dr al ns an area of 424 sq uare mtI es at

Longmont gage'll h I ch has a seven year period of recor d v hi ch I ncl udes 1977­

1982 and 1985. The gage below Longnont Is located approxl matel y four mil es

downstream from the outfall fran the CIty of Longmont wastewater treatment

facility. Major tributary Inflews Incl ude Spring Gulch and South Dry Creek

which enter the St. Vrain beiween the gage and the outfall. The third sIte

on the St. Vrain Is Plattevll Ie (USGS gage 06731000). This gage has a
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Figure 3.3 Straight-line diagram for Boulder Creek.
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FL~ DATA REOORDS

The data base used fa- f I art anal ysl sin th I s study consl sted of USGS

dally records for five of the eight sites (Littleton, Henderson, Lyons,

PI attev III e, Fort Col I Ins).. Two of the other sl tes (Engl ewood and Longnont)

had perIods of record too short to analyze and a thIrd site (Soul dar) was

ungaged. Flew records of appropriate length for these three sItes were

cleveloped usl ng three dl fferent technlq ues. The technlq ues I ncl uded a water

baJ ance used at Engl ewood, a streamf Jow model used at Soul de r , and

regressIon ana/ysl s used at Longnont. These techniques wIf I be dl scussed In

detat I •

U93S Ga~s

FI art data coil ected at the USGS stations used In th I s study consl st of

mean dally flews. The dally averages are based on stage helghtmeasuranents

that are taken on a contInuous basis or at 5,15,30 a- 6(}-mlnute Intervals.

Stage her ght measurements are converted Into dl scharges through the use of

ratl ng tabl es, which are prepared by the USGS fran stage-dl scharge rei atl on

curves. Correction factors may be appl led to dIscharges by using the

sh I ttl ng-control method to account fa- changes In stage-dl scharge rei atl ons

over time (Duncan, 1984).

US'S strean-gaglng stations are checked on a regular basis to see that

eq ul pment Is f un cr l onl ng correctl y and that readl ngs are accurate.

General Iy, th I s occur s once or tw I ce a month. I nan urn ber of ca se s, th e

USGS cooperates with another agency, such as the Chi orado State Depariment

of Natural Resources (DNR), to administer a gage. At a cooperatively

adm I nI stered gage the lJ.4R Is responsl bl e to take gage readl ngs and the U$S

rev lewsand publ Ish es the flew recor d.

50



The accur acy of streanfl ew data records has. been rated by the U$S at

each of the gages they adm Inlster. The ratl ngs I nct ude four degrees of

accuracy. "Excel I ent" means that about 95 percent of the dally dl scharges

are within 5 percent of the true value; "good" means withIn 10 percent,

lIfalr" means wIthIn 15 percent, and "poor" means greater than 15 percent

(Duncan, 1984). Dall y mean dl scharge I s gIven to the nearest hundredth of a

cfs for dl scharges I ess than 1.0 cf s, to the nearest tenth for dl scharges of

1-10 cf s and to the nearest whoi e for dl scharges of 10-1000 cf s, All of the

gages used In thIs study were rated lIgood" by the U$S, except for the gage

at L1ttl eton, whIch Is rated "f al r" during the wInter pertod, and the gage

at Fort CollIns, whIch Is rated "poor" for certaIn perIods with no gage­

hel ght record. It shoul d be noted that these gage ratl ngs appl y to the

dally flCJjf record as a whole. Typically, extrane lew and hIgh flews are

more dlfflcul t to measure accurately than average flews. As a resul t, Icw­

fl ew gage data probabl yare I ess accurate than gage ratl ngs woul d I ndl cafe,

Eng! €Mood EI at Rac;QLd

A dally reconstructed flew record for the U$S statIon at Engl~ood

(06711565) was developed for the perIod 1955-1985 usIng a water balance

procedure. Another valId approach at thIs sIte woul d be to use regressIon

ana! y 51 s to correl ate f I c:w 5 at Engl €Wood to flew s at L t ttl eton. The water

balance method was used here for IllustratIve purposes sInce regressIon

analysIs was applIed at another sIte. Flews were routed fran the USGS

statIon at LIttleton (06710000) approximately four miles downstrecm to

Engl€Wood by accounting for six factors whtch affect flew In the South

Platte River (Figure 3.1). These factors Include four sources - Bear Creek,

Big Dry Creek, L1ttl e Dry Q-eek, and groundwater I nf I cw; and two losses ­

Engl€Wood FIlter Plant and Arapahoe Power Plant.
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Dall y f I Ott recor ds were not av et I abl e for any of th e above I I sted

factors except for Bear Creek (U$S statIon 06711500). Flats for BIg and

Little Dry Q-eek were based on regressions using four data poInts for each

creek and on average monthI y fl at S at L1ttl eton.

Data on groundwater recharge I n the South PI atte Basi n are I 1m I ted to

one sectIon of a study made on segment 14 of the South PI atte RIver (Let Is,

1986). However, groundwater plays an Important role In the low-flow

hydrology of the rIver and should not be Ignored. The above-mentioned study

was used as a basIs for assunlng that the South Platte receIves an average

of five cfs per mil e for the four mil es beiween LIttleton and Engletood.

AI though th I s assumpt Ion Is wIthout a strong ba sl s, I t does prov I de an

Initial estImate of groundwater flows untfl further studIes can be

conducted.

Diversion records for the Engl ewood FI I ter PI ant and Arapahoe POtter

PI ant were based on monthly averages for the years 1975-1985. It was

assumed that flOtts for both dIversions are relatively constant fran day to

day throughout a given month. With this assumption, dally flow values

within a gIven month were assIgned the average monthly flew for the entire

month. A second assunpt l on was made that diversion f l os s for the period

1975-1985 are fairly representative of f l oss which might occur In the near

future. To achieve a longer period of record that Is consIstent wIth

existing conditions, monthly average diversion flews were used to predict

dally flats for the perIod 1955-1974.

The goodness of fIt to actual data of the dally flat record predIcted

by a water bal ance procedure at Engl ewood was eval uated I n two ways - by

usIng F and t-tests, and by comparing summary statistIcs for actual and

predIcted flews for 1982-1985. The results of the F test at a 5 percent
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level of significance shOfled no sIgnIfIcant dIfference In variances. The ~

test shcwed no signifIcant dIfference In means.

A second eval uatl on of the goodness of f It I s gIven I n the canparf son

of slJllmary statl stl cs ca I cu I ated f or both sets of da I I y f I C1rI data. th e

resul ts are I t sted In Tabl e 3.1. Both the mean and madt an are higher for

the water balance record as 15 the mlnlmun flew. The standard deviation Is

somew hat h t gher for th e water ba I ance record meant ng that the flew s vary

more fran the mean. Kurtosl s and skew ness val ues are quite close, whI ch

Indicates that the distrIbutIon shapes are quite sImIlar. The 95 percent

conf Idence Interval s overl ap one another, with the water bal ance record

be I ng sI Ightl Y hIgh er,

In general, the flOll record derIved fran the water bal ance method seems

to represent actual flQrts fairly well, though there are sane dIfficulties.

The water balance may produce flews greater than the actual, particularly

I~er t l oes, as Indicated by the summary statistIcs. The addItIon of a

constant groundtfater recharge facta- to a stochastl c process may have caused

the predIcted low flQls to be slIghtly hIgher than actual flews. FIOt

predictions for 819 Dry Creek and L Ittl e Dry Creek ware made on a very

limIted data base and may al so Introduce errors I nto the anal ysl s,

Assunpt'l cns made about dIversIon data may have caused I naccuracl es as

wei I. The assumption of consl stent f (Qrt s f ran day to day throughout a 91 ven

month may be a reasonabl e one for the power pi ant which consumes

approxl aef-el vone ct s, but may be less reasonable for the filter plant which

diverts average monthly flOls rangl ng fran 7-21 cf s, The second a SSLlTlptl on,

th at f low s for th e per f od 1975-1 985 are representatl va may at so be

f naccurate, al though f I o« s do seem to vary I ass over th e year s th an fran

month to month.
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Table 3.1. Comparison of actual flow record
to flow record derived from water balance
at Englewood for the period 1982-1985
( 973 0 bs e r vat Ion s ) •

Engl ew ood
Summary USGS Water

statlstlcs* station bal ance

Mean 754 792

Median 418 425

Std dey 780 849

Minimum 28 45

Maximum 3910 3716

95~ Conf Idence 705 738
Interv al to 803 to 845

Skew ne ss 1.4 1 .5

Kurtosis 1.2 1 .2

* Units = ct s (except skewness and kurtosl s )
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Even with all the above-mentioned sources of Inaccuracy there appears

to be no 51 gn I fica nt dl fference In varl ances or means of the monthI y 7-day

10« flo«s and sllnmary statistics of dally flews are relatively consistent.

The accuracy of the flew data set Is suffIcIent for the needs of thIs study,

whIch 15 focused on a canpar I son of varIous desl gn fl ews and not on clef Irtl ng

f l os s without a gaging record at gIven points. Hew ever, further work on

groundwater and other ungaged factors coul d be dane to ref I ne the accur acy

of daII y fl cw est I mates at Engl EWood.

Boul der FI cw ReCQ.[Jj

The flcw record at Boulder was estImated using a model of dally flews

that was run for a 12-year period fran 1959 to 1970. The model was

developed by a consultant for the City of Boulder (HardIng, 1986>­

DIversion records, US;S gages and varIous methods to estl mate ungaged f I cw s

were I ncor per ated I nto the model. The 12-year daII Y fl ew record at Boul der

I ncl udes 364 val ues for each year with the 365th val ue dropped. Leap years

are th e same as al loth er years with no val ue for Febr uary 29. A more

complete description of the model Is Included In a memo given In Appendix A.

Longnoot FI cw Record

FI cw s at Longnont were estl mated on the ba st s of mul tl pi e regr ess Ion

analyses. The analyses were made with the StatistIcal Package for the

SocIal Sciences (SPSS) (Nle, et el , , 1975) on the CSU Cyber maInframe

computer. FI ew data at the U$S station belo« Longnont for the years 19]7­

1982 and 1985 were used along with data from USGS stations at Lyons and

PI attev III e for the same per I od to def I ne the regression eq uatl ens,

Three different approaches were used for the regression anal ysl s at

Longmont. The first regression was based on dally flOlis. MultIple

regression anal ysl s was made to regress dafl y I c.w f I cw s at Longmont wIth
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flows at Lyons and Platteville. The flews evaluated were restricted to lew

flcws, defIned by a flew occurrIng on a day when the flew at Lyons was less

than 100 cf s, An equatIon was developed fa- flews at Longnont and was used

to extend seven years of actual data at Longmont to a 31-year record for

1955-1985. The equation produced Is as follews:

Longnont = (0.32 PI attev I II e) + (0.53 Lyons) - 4.47.

The coeffIcIent of varIation Cr2 value) for the equatIon fs equal to 0.77,

whIch I s I ndl catlve of an acceptabl e f It of the data to the eq uatl on. A

second measure of the accuracy of the predIcted data Is given by a

com par I son of sunmery statl stl cs cal cui ated for predl cted and actual records

fa- a seven-year per lod (Tabl e 3.2) • Fran these statl stl cs, It appears that

the predIcted values based on a regressIon of dally f l os s are reasonably

accurate. The medIans of the two sets of data are quIte close, though the

predl cted mean Ish Ighar than the actual. The predf cted standard dev I atl on

Is hIgher than the actual, Indicating greater varlablllty In predicted than

actual val ues. The ranges of the two data sets overl ap, but the mini mllll and

maxImum of the predIcted val ues are both lewer than actual. It could be

that the 1011 val ues of the predl cted data record are sl Ightl y lower than the

actual. Th I s woul d tend to produce I CWer than actual frequency statl stlc

1011 fl 011 s.

One weakness of a regressIon of dally flcws Is that the assumptIon of

I ndependent events I s v lol ated. Th I s v Iol atl on may I 1m I t the accuracy of

the analysis. In additIon, the assumptIon of normalIty of the data may not

be met.

A second regressIon at Longmont was similar to the fIrst except that

the dally flows were transformed to log values before an equatIon was

developed and all the data were used. This transformation was made In an
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Table 3.2. ComparIson of actual flow record to flow
records based on two different regressIons
of dally flows at Longmont tor the perIod
1977-1982,1985 I( 1095 observatIons).

Summary USGS RegressIon of Regr ess Ion of
statlstlcs* statIon da II y f low 5 log-transformed

da II y f low s

Mean 72 88 111

Median 51 52 62

Std dey 78 97 157

MInImum 24 19 15

. Max l mum 663 584 1634

95~ Confidence 55 67 105
I nterv al to 89 to 1 09 to 117

Skew ne ss 5.6 3.2 . 4 . 8

KurtosIs 40.4 11 .9 29.9
~

* Units = cfs (except skewness and kurtosl s )
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effort to normalIze the data. The equatIon fran this analysis Is as

fol I QrI S.

log Longmont = (0.7518 log Plattevllle) + (0.2418 log Lyons) - 0.2171.

The coefficient of var-t ert on fer the equation Is 0.90. Summary statistIcs

on the predIcted f l oss based on thIs regression of log-transformed val ues

are given In Table 3.2. 2
Even though the r val ue Ish Igher fer th Is second

equation, the statistIcs show that It provIdes less accurate predIcted

val ues than the first regression. The val ues are much more ver l abl e, and

appear to be generally higher than actual val ues,

A third approach at Longmont Involved regression analysis on log­

transformatIons of specifIc monthly or annual frequency statIstIc lOll flews.

Six separate regression equatIons were c1eveloped for monthly 1-, 4- and 7­

day flQlls and fer annual 4-,7- and 3D-day flOlis as given In Table 3.3. No

equation was developed for annual 1-day flows since they were not

significantly correlated. The range of coefficIents of determination

(r2val ues) for all of the equations was fran 0.80 to 0.91. These val ues

Indicate that each of the equett cns should be able to predict monthly or

annual I QrI fl QIIS at Longmont with reasonabl e accuracy.

One strength of th Is th I rd approach to regression anal y sl s at Longmont

Is that the essenptt on of Independence of events Is mere v al l d wIth monthly

or annual flews than with dally flQrls. The log-transformation shoul d make

th e assumptl on of normality more val I d as wei I. A weakness of the approach

Is the I Jmlted mmber of data pol nts to correl ate tor regression eq uatl ons

(7 for annual fl QIIS, 84 for monthI y). Another dl sadvantage I s that sl nce a

dally flew record Is not developed, certaIn analyses like the bioi oglcally-

based calculation of design f l or s and excursion analysis are not possible.
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Table 3.3. Regression equations for annual and monthly low
flow treq uency statl stl cs at Longmont.

low flows

Annual:

4-day

7-day

30-day

Monthly:

l-day

4-day

7-day

Eq ua tl on*

Y = 0.228 + 0.671 X

Y = 0.133 + 0.726 X

Y = -0.49 + 1.031 X

Y = 0.016 + 0.691 X + 0.185 Z

Y = 0.427 + 0.459 X + 0.155 Z

Y = -0.057 + 0.686 X + 0.232 Z

Coef fie I ent of
determ I natIon

0.88

0.89

0.91

0.88

0.80

0.90

--_._------------ ----* Definition of variables In equations:
Y = log (Longmont moving average flow)
X = log (PI attev III e rnov I ng average f I ow)
Z = log (lyons movIng average flow)
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The "two regression equations fa- dally flews at Longmont were used to

ge nerate a da" y flow recor d f a- the period 1955-1976 and 1983-1984, thus

extending the actual record to cover a 3O-year period. These generated flew

data records were treated just as a record fran a U$S gage In the remainder

of the analysis. Monthly and annual low flows for each year of record

generated fran the six equatIons whIch were developed In the third approach

to regression analysl s, Frequency statl stlc flews were cal cui ated fran this

set of data usl ng Log-Pearson Type III anal ysl s,

The resul ts of the anal ysl 5 by each of the three reg-esslon methods are

gIven In tables A1.11-A1.16 and figures A1.16-A1.18 fa- annual flews and

tables Kl..3-Pil..5 and A2.24rPi2.32 for monthly flows. A comparison of the

val ues Indicate that the two regressions of dally flews produce frequency

statistic flews that are very similar. The flews calculated with the set of

six different regression equatIons do not seem to be as valid as either of

the other "two resul ts. ThIs Is wei I ev I denced by the odd patter n of the

annual frequency curves In Figure Al.18 and the Inconsl stency of val ues In

the tables of annual and monthly flews (e.g. 4-day flews frequently smaller

th an 1-day fl ew sr , These I nconst stencl es can probabl y be attr I buted to the

fact that a serIes of regression equations, each wIth Its own errors, was

used rather than a slngl e equation.

It appears, that at Longnont the most valid approach to the regression

Is a simple lInear regression of dally flows below a given level. this

resul t may not hoi d true at other sl tes, hcwever. Each of th e methods may

be valid, but should be checked fa- appropriateness In a specific Instance.
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HanQgeneliy at the FJ at Record

Many of the streans along the Front Range have been heavily Influenced

by man's activities and may exhibit changes In the lew-fie. regime or non­

homogenel tl es, as a resul t. Two approaches were used In th I s study to

Identify changes In lew-flew characteristics - plots of annual 7-day low

flows versus time, (FIgure 3.6 and A1.1-A1.8) and F and t-testlng for

changes In mean and variance. The plots show a variety of patterns In

annua I low f lows. Sane sl tes seem to exh I bl t a trend, whfl e others appear

to have eycl es I n lew fIOfS. The causes for these patterns are unknow n,

though they are not necessarily IndIcative of non-hanogeneltles and have not

been conf Inned statI stl cally.

For most of th e sl tes there seem s to be a dI st I nct per lod of I ew er th an

average flews fran 1956-1965. this Is particularly well Illustrated In the

tabl es of one-day excursions, whIch show many more excursIons for the

perIod, than for the remafnder of the record (Tables 3.17 and A4.1-M.B). A

rankl ng of the annual 7-day IOf fl ew s by year at all of the sl tes I ndl cates

that 50-90 percent of the 10 dr I est years at each sl te occurred from 1956­

1965. This could well be IndIcative of a dry lew flew per Iod throughout the

state of Col crado during that decade.

Tests for the homogeneity of flew records at LIttleton and EnglEWood

shewed no sIgnifIcant dIfference In varIances or means of Ie. f l oe s at

either site before and after the construction of Chatfield Dam. Causative

agents for step changes In the lew flOf regimes at the other sites In this

study were I ackl ng. As a resul t, the data were assimed to be hanogeneous at

each of the sItes and a 30 year perIod of record was utilized where

aval I abl e. More work coul d be done to Improve detection of non­

hanogenel tl es and methods to deal with non-hanogeneous records.
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Figure 3.6 Annual 7-day low flows versus time at Littleton.



The resul ts of th e I ow- f low anal y 51 5 show that the cl assl c 7Ql0 was

hardly ever experienced durIng the wet years of the record I ndlcatl ng that

thIs particular statistic may be too strIngent at times, while during the

dry perIod It was experIenced quIte a nunber of times indicating that this

statl stl cs may be too hIgh.

The treatment of eyel es and trends I s an Important I ssue I n the

generatIon of low flow statistics. For analysis of data that exhibits a

trend, It Is reasonabl e to sel ect a subset of the total data set from the

most current data for analysis. ThIs subset should be SUffIciently large to

pr ov fde a reasonabl e basi s fa'" I ew-fl 011 statl stl cal anal ysl s (I. e. at I east

10 year s long). For data that appears to be eyel lc, It Is more reasonabl e

to use a longer data set (I.e. 30 years) wIth the asstmpt l on that the longer

perIod of record Is hanogeneous and more accurately reflects the flew regIme

of the 51 tee

At some sl tes, It Is dl ff lcul t to determ Ine whether an apparent change

In the flew regime Is Indicative of a trend or cycle. ThIs makes the chol ce

of an appropriate perIod of record for analysIs dIffIcult. As mentIoned, a

nunber of the 51 tes In th I s study seem to exh I bit a "dry" .per I od for th e

first ten years of anal y sl s (1956-196 5) •

On the one hand, It woul d be easy to el 1m Inate the earlIer data, sl nce

1t appears to be dl sslmll ar to the more recent data (non-hanogeneous), and

determ tne the 10iI flOil statl stl cs with the more recent "wet" years. On the

oth er hand, for th e "dry" per I od sInce the I ow f low per I od coul d occur

agal n, cal cui atl ng the low flow statl stl cs us I ng the dry year data wI II

pr cv lce a margt n of safety for the env tronnent.
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Distribution of~Iy LCM Elcws

Resul ts of dl str I butl on testl ng on annual day, 4 day, 7 day and 30

day flews, monthly 7-day IQI f l os s and seasonal 7 day flows are shown In

Table3.4A. The results Indicate that the log-Pearson type III distribution

reasonably fit the various flQl statistics at all the sites. If the number

I n the tabl e I s Less than the Ch I-sq uare statl stl c of 6.0 then It woul d be a

reasonable assertion that the flow data are log-Pearson type III

dI str I buted.

The results of distribution testing for annual 7-day low flows are

given In Table 3.48. these results Indicate that, with the exception of

Henderson, annual 7-day IQI flews were normally distributed at all sites

using the ChI-square and Shaplro-Wllk test. Henderson flews failed the

Shaplro-Wllk test at 5 percent level of signIficance when no data

transformations were uti I lz ed, Annual 7-day lOti fl cws at Henderson appeared

to have had a lognormal dl str I butl on.

RESUL TS OF FREQUENCY STATISTIC FLO\' ftNPL YS IS

Lew flew analysis was made for flews of various durations to correspond

to Instrecm equatl c life criteria based on acute and chronic concentrations.

Design flews were calculated with two different methods - distribution-based

frequency statistics, and the EPA biologically-based empirical method.

Annual, seasonal, and monthly design t l os s were calculated and compared.

Low flow events were analyzed for l-day excursions (moving average flews

belew a given level), and for run lengths. The results of each type of

analysis t oll oe, with specific Illustrations given throughout the chapter

for various sites (primarily Englewood). Canplete IO#-flew analysis results
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Table 3.4A. Ch ,- square stat' sr l cs for goodness of f It to the log-Pearson type III
dl str I but Ion.

Annual FI cws Month I y 7-day fl cws Seasonal 7-day fl cws
Site l-day 4-day 7-day 30=:day Mar Jun Sap Dec lcw Iran High

LIttleton 1.0

Engl ewood 3.7 2.3 7.3 5.8 2.7 0.8 1.1 2.4 2.3 1.8 2.7

Henderson 1.0

Boulder 4.0 4.6 2.8 2.2 1.3 4.0 5.8

Lyons 1.3

Longnont 3.7 1.4 5.3 5.9 2.1
(da II y reg.)

Longmont 1.7 0.4 3.0 2.9 3.4

PI attev III e 1.7 1.7 3.7 4.3 6.9

Fort Col I Ins 6.0 3.0 7.0 5.0 6.0 2.0 0.0 0.0 3.8 1.5

- ----
*Reference Chi-square statistic = 6.0
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Table 3.4B. Relative scores of normality testing using the Chi-square
Goodness-of-Fi£and theShapiro-Wilk Test on annual 7-day
low flows for the period of record at each site.

Log-
No trllns- Logar- WII son- WII son-

Site formation Ithmlc Hllferty HII ferty
All Bltlt A B A B A B

Littleton
Passed 1 1 t t 1 t 1 1
failed 0 0 0 0 0 0 0 0

Englewood
Passed 1 1 1 1 1 1 1 1
fa 11 ed 0 0 0 0 0 0 0 0

Henderson
Passed t 0 1 1 1 1 1 1
fa II ed 0 1 0 0 0 0 0 0

Boulder
Passed 1 1 1 1 1 1 1 1
fa II ed 0 0 0 0 0 0 0 0

Lyons
Passed 1 1 1 1 1 1 1 1
Fa I led 0 0 0 0 0 0 0 0

Longmont
Pa ssed 1 t 1 1 1 1 1 I
Fa I led 0 0 0 0 0 0 0 0

PI attev If Ie
Passed 1 1 1 1 1 1 1 1
Fa II ed 0 0 0 0 0 0 0 0

Fort Col I Ins
Passed 1 1 1 1 1 1 1 1
Fa II ed 0 0 0 0 0 0 0 0

It A = Chi-square goodness-of-flt test.
It* B = Shaplro-Wllk test for normalIty.

Passed = 5% significance level.
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for each of th e sl tes are gl ven I n the form of tabl as and f I gur as I n

Appendl x A.

Annual De sl gn FI ew s

The resul ts of the annual lew flew frEGuency analyses are presented In

two famats - as a tabl e and as a set of frequency curves for each sIte

<Table 3.5, Figure 3.7 and Tables A1.1-A1.20, FIgures A'."-A'.20). Lew­

flew fr€quency statIstIcs are given for durations of 1-, 4-,7- and 30-days

and recurrence Intervals of 2, 3, 5, 7,10 and 15 years. As an example, the

7-day mov Ing average lew fl ew occurrlog once every 10 years on the average

C7Ql0) from Tabl e 3.5 for Engl e'IIood Is 28 ct s, Bel ew the annual frequency

statistic table Is a table of the annual lew flews (Table 3.6>' An annual

lew flew may be defIned as the lewest movIng average of a gIven duration for

any gl ven year. The val ues In Tabl e 3.6 were f It to a log-Pearson Ty pe I II

dl str Ibut Ion to produce the f req uency statl stl c flew s gl ven In Tabl e 3.5.

Fr equencv curves, which are plots of flew magnitudes versus recurrence

Interval s for 1-, 4-, '7- and 30-day durations, are given tor each site

(Figures 3.7, A1."-A1.20). As the recurrence Interval Increases, the

slopes of the curves flatten out I n every case. Th I s t s an I ndl catIon that

the dIfference In magnItude beiween a 7Q2 and a 7Q3 lew flew Is much greater

than the dl fference between a 7Q1 0 and 7Q15.

The frequency curve may be used wIth Interpol atlon to approxImate

f req uency statf stl c f lows of dl Hereot recurrence f oterv al s than those

previously calculated. For example, a 30Q4 for Englewood may be

approximated as 48 cf s (Figure 3.7). In addItIon, frequency curves may be

used to defIne comparable annual frequency statf stlcs, by draw Ing a

horizontal line through the graph at a gIven flew value. For example, a
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Table 3.5. Annual low f low f req ue ncy statl st I c s
at Engl ewood.

Recurrence Low flow ( cf s )
Interv at Duration
(years) 1-day 4-day 7-day 30-day

2 43 48 52 61
3 35 40 43 53
5 30 33 35 44
7 27 30 32 41

10 24 26 28 36
15 22 25 26 34

Table 3.6. Annual low f low s for each year of
record at Engl ewood.

CI Imatl c Low f low (cfs)
year Duration

(4/1-3/31> 1-day 4-day 7-day 30-day

1956 27 33 35 38
1957 14 14 15 18
1958 54 68 71 78
1959 38 42 44 51
1960 27 31 33 49
1961 29 34 36 46
1962 92 11 4 11 9 133
1963 28 30 32 41
1964 19 22 26 44
1965 29 35 36 41
1966 60 65 67 85
1967 40 43 48 50
1968 48 54 60 87
1969 40 43 46 57
1970 66 69 73 99
1971 85 92 95 11 2
1972 47 65 66 72
1973 60 63 65 73
1974 44 55 64 104
1975 37 45 53 70
1976 38 40 44 51
1977 45 50 60 75
1978 45 47 50 58
1979 38 40 41 54
1980 43 47 51 64
1981 46 46 48 54
1982 38 40 43 54
1983 35 35 37 53
1984 73 75 76 87
1985 79 94 98 136
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line drawn through 40 cfs 8T Englewood shows that the same flow Is

approximated by a 102.4, a4Q3, a7Q3.8, anda30t;6.

The annual freq uency statl stl c f lows for 1-, 4-, 7 - and 30-day

durations and 2, 3, 5 and 10 year recurrence Interval s were ranked fran lew

to high fer eaeh sIte <Table 3.7). The 1Q10 flew statistIc Is consIstently

the I~est, follewed by the 4Q10 er 1Q5. The 3002 and 30Q3 flew statistics

are consistently the highest and second highest f l os s, In general, the

order of the ranked flQfs varies with the pattern of IQI flew events. At

sane sl tes, duration I s a mere cr I tl cal facter In determ I nl ng flew magn I tude

and at other sItes the recurrence Interval Is the crItIcal facter.

A second comparIson of annual frequency statIstic lew flews Is given In

Table 3.8. Percent Increases In flON magnitudes varIed fran site to site.

For acute 1Q10 and 1Q3 flews the average Increase OIer all the sites was 81

percent and ranged from 36 percent to 175 percent. The Increase In

magn I tude fran ehronl c 7Q10 to 30Q1 0 f I Qt S average 59 perce nt and ranged

from 0 percent to 177 percent. Increases fran chronic 7Q10 to 30Q3 flews

averaged 160 percent and ranged fran 89 percent to 362 percent.

The period of record chosen for IQf-fIQf analysis had a sIgnificant

effect on the annual frequency statl stlc flews. This was well-ev Idenced at

Engl ewood and Longmont. At these sl tes, anal ysl s was conducted for "two

different perIods of record - a 3D-year period fran 1956-1985 and a 10-year

perIod from 1976-1985. The results of the analysis are canpared In Table

3.9.

The flew s cal cui ated with the shorter, more recent per I od of record are

consl stently hIgher than the fl ews cal cui ated with the longer record. Th I s

dl fference averages about 30 percent and general I y Increases wIth I ncreasl ng

recurrence Interval. The cause for this signIfIcant difference In flew
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Table 3.7. Ranking of annual low flow frequency statl stl cs ,

----_._------_.__._---------------------------------------------------------------------------_._-------Rank L I ttl eton Engl ewood Henderson Boul der Lyons Longmont- Longmont-- PllIttev" Ie Fort Collins
n"low) cf s stilt cf s stat cfs stat cf s stilt cfs stilt cts stat cfs stilt ct s stilt cts stilt
-----------_._--------------------------_.---------_.-._------_._---_._--- ---------------

1 10 1 Q1 0 24 IQ10 17 1Ql 0 5.1 1Ql 0 0.8 I Ql 0 10 IQIO 12 lQ10 27 lQl0 0.9 1Ql0
2 12 lQ5 26 4Q10 22 4Q10 6.9 4Q10 1.2 4QIO 12 4Ql0 13 4Ql0 29 4QIO 1.2 1Q5
3 12 4010 28 7010 26 7010 7.2 I Q5 1.3 7010 12 7Ql0 14 7Ql0 31 7Ql0 1.3 4Ql0
4 12 7QIO 30 1Q5 27 105 8.4 7Ql0 1.4 1Q5 12 1Q5 14 1Q5 35 1Q5 1.4 7Ql0
5 , 3 4Q5 33 4Q5 36 405 9.0 4Q5 2.1 4Q5 15 103 17 1Q3 38 4Q5 1.4 30Ql0
6 14 1 Q3 35 1Q3 40 1Q3 9.6 lQ3 2.2 I Q3 15 4Q5 17 4Q5 40 7Q5 1.5 1Q3
7 15 7Q5 35 7 Q5 41 7 Q5 10.4 7Q5 2.4 7Q5 16 7Q5 18 7Q5 42 1 Q3 1.5 4Q5
8 16 30QIO 36 30QIO 46 30Q10 11.5 4Q3 3.3 4Q3 18 30Ql0 19 30Ql0 43 30Ql0 1.6 7Q3
9 17 lQ2 40 4Q3 51 4Q3 11.7 l Q2 3.6 1Q2 19 lQ2 20 4Q3 47 4Q3 1.8 4Q3

10 18 4 Q3 43 1Q2 60 IQ2 12.7 7Q3 3.6 30Q10 19 4Q3 21 7Q3 50 7Q3 1.9 lQ2
11 19 7Q3 43 7Q3 61 7Q3 , 4.3 30Ql0 3.8 7Q3 20 7Q3 21 lQ2 53 lQ2 2.0 7Q3
12 22 4Q2 44 30Q5 67 30Q5 14.7 4Q2 4.7 30Q5 22 30Q5 22 30Q5 55 30Q5 2.0 30Q5
13 22 30Q5 48 402 76 402 16.1 7Q2 5.2 4Q2 23 4Q2 24 4Q2 59 4Q2 2.2 4Q2
14 25 7Q2 52 702 89 702 17.1 30Q5 5.9 702 25 702 26 3003 64 7Q2 2.4 702
15 27 3003 53 30Q3 89 30Q3 20.1 3003 6.0 30Q3 26 3003 26 7Q2 67 30Q3 2.9 30Q3
16 34 30Q2 61 30Q2 126 30Q2 24.1 30Q2 7.8 30Q2 30 30Q2 31 30Q2 83 30Q2 4.8 30Q2

-_._-----------------------------_._-----------------_.----_._----_._-----_._-----------_._- -_._--_._-_._----
....., - val ues based on regression of dally flows •
l-' .. values based on regression of log-transformed dally flows.



Table 3.8. Comparison of annual frequency statistic low flows.

Site
1Q1 0

to 1Q3

Percent Increase Inflow magnltude*
7 Q1 0 3 0Q1 0 7 Q1 0 7 Q3

to 7Q3 to 30Q3 to 30Q1 0 to 30Q3
7Q10

to 30Q3
_._--~_.__ ._...,~_.__ ._._~._~--.__ .__ ._~--------_.---_._--_ .__ .__._-._- _._-..- .
Lfttleton 50 58 59 42 42 125

Eng lew ood 46 54 47 28 23 89

Henderson 135 135 93 77 46 242

Boulder 88 51 40 70 58 139

Lyons 175 192 67 177 58 362

Longmont 50 67 44 50 30 11 7

PI a ttev I I I e 36 61 56 26 34 116

Fort Col If ns 67 43 t 07 0 45 1 07
--~-_._._._---_._~-..-.__.- . .- - ,_.-..------_._.--_.----_.~_._-_ .__.-..-- -_._ .__.-

* Percent J ncrease = (larger f low - sm el ) er f low) / .sm aI I er f J ow
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Tabl e 3.9. Comparl son of annual low flow frequency statl stl cs usl n9 two
different perIods of record at Englewood and Longmont.

a. Eng I ew 00 d
- ._- - -- - -- - ----
Recurrence
Interval 1-day 4-day

(years) A* B* A B
7-day

A B
30-day

A B
_._--------_._--_.__._---_._ - - -.--- _.__._-_._._---- -_.--_._._._.__._._--.-

2
3
5

1 0

43
35
30
24

44
40
36
34

48
40
33
26

46
41
38
36

52
43
35
28

49
45
41
38

61
53
44
36

60
54
51
49

b. Longmont (based on a regressIon of dally flows)

Recurrence
I nterv al

(years)
1-day

A* B*
4-day

A B
7-day

A 8
30-day

A B
._--------_._._._.__._-_._._---------- - -----_._- - _ ._---- _.- --- -_ .- ._.

2
3
5

10

21
17
1 4
1 2

26
22
20
18

24
20
17
13

28
26
23
21

26
21
18
1 4

30
27
24
22

31
26
22
1 9

34
30
27
23

*A parlod of record 1956-1985
*B perIod of record 1976-1985
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records can be rei ated to el ther natural dry and wet eycl es (dry years

occurring in the first 10 years of record), a- to a trend In the flew data.

Careful analysis of these facters should be incorporated into the choice of

a length of record fa- IQi-fIQi analysIs, as was dIscussed in the section on

hanogenei iy of the f I Qi record.

MonthI y Pest gn FI ew S

Monthly frequency statIstIc IQi flQis are sunmarlzed In Table 3.10 for

Englewood. The table Includes desIgn flQiS for each month of the year for

1-, 4-, and 7-day dur atl ons at 2, 3, 5 and 10 year recurrence I nterval s, As

an example, the monthly 7(l5 for August at Englewood is equal to 79 cf s, On

the average, percent I ncr eases fran one month I y desi 90 flew to another (I. e.

fran 1Q10 to 103) are comparable to percent Increases for annual flews given

I n Tab) e 3.8. How ever, percent I ncr eases are greater for high f J 0/1 months

(e.g. June) than for annual flows and less for IOff flOff months (e.g.

January) •

Monthly 7-day lew flews for each water year of record at Engl ewood are

presented In Table 3.11. The values In this table are the lew flews that

were fIt to a log-Pearson Type III dIstributIon to define the frequency

statistics given In Table 3.10. ExamInatIon of Table 3.11 and sImIlar

tables In the appendIx for other sItes shows how flows may vary f r om one

month to anoth er on a fal rl y const stent basl s, For exampl e, at Engl ewood,

the average of monthly 7-day lew flQis fer January Is 72 cfs and for June Is

398 cf s, AI though f I Ott s v ary fr~ month to month there may be even more

significant differences fran year to year. The month of June at Engl ewood

Is a good exampl e, wIth 7-day lew fl ews rangl ng fran 34 to 2259 cfs.

Figure 3.8 prw t de s a graphical illustration of the differences In

frequency statistic flows fr~ one month to another at Englewood. The
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Table 3.10. Monthly 10" flO'l frequency statistics at Engle"ood.

7-day \0" flo" (ds) 4-dllY 10'1 fl<l'l (c15) l-dlly low flow (c15)
Month Recur rence I nterv III ( yellrs) Recurrence Interval (years) Recurrence Interva' ( yellrs)

2 3 5 10 2 J 5 10 2 3 5 \0

Jan 67 56 48 4\ 65 55 47 40 62 53 46 39

Feb 69 58 50 42 66 56 48 41 63 53 46 40

Mar 74 61 52 44 7\ 58 50 42 67 55 47 40

Apr 107 78 58 43 10\ 74 56 41 93 67 50 37

'-J May 246 159 110 77 230 148 \ 02 70 204 130 89 60
(J1

Jun 234 144 94 60 212 130 85 52 188 113 73 45

Jul 186 137 95 63 162 120 84 55 133 98 69 47

Aug 159 112 79 54 150 101 71 47 130 89 63 43

Sep 76 56 43 32 69 52 40 30 64 48 37 28

Oct 67 50 40 32 63 48 38 31 62 47 37 28

Nov 73 62 52 46 70 60 51 45 66 55 48 43

Cec 70 62 52 46 69 59 51 45 66 56 49 43



Table 3.11. Monthly 7-day low flows for each year of record at Englewood.
-- ----- -------------------- ---

Water year Oct Nov Dec Jan Feb Mar Apr May Jun J u l Aug Sep

---------
1955 24 45 38 37 38 34 34 110 62 40 261 130
1956 36 59 50 37 37 43 42 215 153 65 39 15
1957 18 41 37 33 37 41 62 270 1190 753 535 73
1958 86 158 95 74 78 71 217 585 307 123 53 44
1959 56 53 51 46 60 61 121 263 232 131 82 33
1960 82 75 65 61 71 94 483 485 245 222 43 36
1961 50 75 83 77 74 102 132 324 130 196 432 274
1962 278 338 \ 50 119 \80 \ 55 286 229 282 195 72 35
1963 32 44 60 52 55 50 35 39 34 26 34 107
1964 46 6\ 68 50 50 58 \ 05 196 118 145 72 40
1965 36 60 5\ 43 44 60 87 284 402 520 670 335
1966 190 117 80 76 85 66 99 109 85 72 84 49
1967 56 8\ 68 75 53 47 50 86 135 125 206 96
1968 72 96 86 81 83 83 97 198 154 165 213 108

"-J 1 969 105 79 70 46 50 68 73 158 722 488 341 103
0'\ 1970 137 308 219 169 119 126 314 2129 1461 597 220 143

1971 142 129 109 95 120 113 114 427 368 309 230 78
1972 66 75 78 84 82 70 68 117 239 153 139 65
1973 65 78 75 79 93 111 164 11 43 961 461 266 64
1974 120 117 97 109 123 222 322 280 153 165 80 53
1975 68 75 75 76 76 79 82 186 352 531 236 119
1976 44 48 64 78 74 74 78 121 100 247 220 113
1977 89 87 88 78 60 64 102 153 60 72 122 58
1978 50 55 58 58 60 56 47 78 53 121 104 48
1979 55 49 41 46 61 63 151 253 493 226 105 51
1980 54 67 84 85 112 100 175 2155 1203 407 166 53
1981 48 71 64 54 62 64 59 115 48 69 74 89
1982 77 54 57 56 46 43 37 79 94 138 305 248
1983 141 59 59 53 48 136 405 1887 2259 845 556 92
1984 76 93 115 107 140 154 292 1393 758 312 664 265
1985 529 281 208 112 98 110 182 1214 572 393 277 64

--- ----------------------------------------------------------
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figure Includes four bars fer each month of the year which give monthly 7­

day lew fl ew s at 2, 3, 5 and 10 year recurrence Interval s,

Monthly lew flews fer this study were cal cui ated usl ng an overl appl ng

procedure as descrtbed tn the methodology chapter. Thts procedure produced

val ues that dl ffer from val ues cal cui ated without overl appl ng. The

differences In monthly 7-day lew flew frE:Guency statistics at Littleton with

and without oterlapplng are 111,ustrated In Table 3.12 (see also Tables A2.10

and A2.11>. In general, with the OIerlapplng procedure, monthly lew flews

for each year had I ewer means, snail er standard dev Iatl ons and vary I ng skews

when compared to I CJtI flows cal cui ated without oteri appl ng. The f requency

statistic flQtls In Table 3.12 are stmllar, with values occasionally higher

with overlapping but more often lewer, particularly for high flew months.

In most cases, monthly frequency statIstIc flews are hIgher than annual

flows. Percent Increases of monthly 7Ql0 flews over annual 7Q10 flews are

given for each month at five sites In Table 3.13. The Increases range fran

o percent for several months at Fort Collins to 1914 percent for the month

of June at Fort Col I Ins.

SeasonaL Pest gn EI cw s

Months were grouped I nto seasons to cal cui ate seasonal desl gn f I o« s at

four sl tes - Engl ewood, Soul der, Longnont and Fort Coil Ins. The year was

separated Into two to four seasons of lew, transition or high fl"" months,

depending on the specific flow characteristics of each site. The

statistIcal crtterla used to group the months Into seasons at Englewood are

sr.mmarlzed In Table 3.14 (see also Tables A3.1-A3.4). The selection of flew

seasons using these criteria Is a rei atlvely subjective trial and error

process. Once an I nl tl al sel ectl on was made, seasonal fl cw s were cal cui ated

78



Table3.12. Comparison of monthly 7-day low flow frequency statistics
(with and without overlapping) at LIttleton.

7-day low flow (cfs)
Recurrence I nterv al (years)

Month 2 :5 5 10
A* B* A B A B A B

Jilln 32 32 25 25 20 20 15 16

Feb 34 36 27 29 21 23 16 18

MiIlr 39 43 30 34 24 25 18 19

Apr 65 76 44 51 31 35 21 24

MIlY 162 198 97 I I 4 62 70 39 42

J un 154 168 94 102 62 66 40 42

Jul 157 164 107 112 75 79 50 53

Aug 130 145 87 103 61 70 40 47

Sap 52 54 38 40 28 29 20 21

Oct 40 39 28 27 21 20 15 15

Nov 38 38 31 30 24 25 21 21

Dec 34 35 26 27 21 21 17 17

*A clliculated wIth overlapping.
B ca l cu l a t e d without over l epp l ng.
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Table 3.13. ComparIson of monthly to annual 7Ql0 flows.
------------~_._.__._._---~_.__._--_._--_._----_._---_.--_.-..---_.-..
Month % Increase of monthly over annual 7Q10's*

Engl ewood Soul der Longmont Fort Col I Ins

Jan

Feb

Mar

Apr

May

J un

J uI

Aug

Sep

Oct

Nov

Dec

46

50

57

54

175

11 4

125

93

14

14

64

64

31

90

114

126

233

590

662

328

221

67

55

126

42

58

42

42

67

358

358

275

175

67

75

75

o

o

21

o

29

191 4

1507

429

50

7

o

o

*Percent Increase = «monthly) - (annual» X 100/ (annual)
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Table 3.14. Monthly 7-day low flow statistics used to group
months I nto seasons at Engl ewood.

Month

Jan

Feb

Mar

Season

Low

Low

low

Flow Ccfs) Monthly Seasonal
Me an Me d I an SD* 7 Q3 7 Q3

72 75 29 56 45

76 71 34 58 45

84 70 41 61 45

Apr Transition 146 102 116 78 78

May

Jun

J ul

Aug

Sep

Oct

Nov

Dec

High

High

HIgh

HIgh

low

low

low

Low

493

434

268

223

99

95

98

82

229

239

195

206

73

66

75

70

619

511

213

181

78

97

75

42

159

144

137

11 2

56

50

62

62

80

80

80

80

45

45

45

45

* Standard deviation
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and compared to check the appropr I ateness of the seasons. Where necessary,

months were regrouped I nto more appropr I ate seasons.

For the sl tes anal yzed, the gr oup I ng of month s I nto seasons v ar led.

Low season month s consl stentl y I ncl uded December, January, February, and

MaF"ch. At sane sl tes, September, October, November, Apr II and/or May were

al so grouped with the low season. High season months I ncl uded May, June,

July and August. The only month that was consistently high at each of the

four sites was June. Transl tl on month s I ncl uded ~1arch, Apr I I, May, August,

September, October and November. The def Inl tl on of I ow-flow seasons I s a

site-specific process and should be based on characteristics at a given

site. In this study, the grouping of months was based on flew alone. other

factors that should be considered In the definition of seasons for discharge

permitting Include varIatIon fran month to month In effluent quantIty and

quality and I nstrean water quality.

Seasonal 7-day lew-flew frequency statistics at 2,3,5 and 10 year

recurrence Intervals at Englewood are given In Table 3.15 with seasonal lew

flcws for each year given belcw In Table 3.16 (see also Tables A3.5-A3.12>.

The critical Importance of ha« months are grouped Is Illustrated In Tables

3.15 and 3.16. Seasonal flows for two dIfferent sets of seasons were

calculated wIth the first set Including low (September-March) and high

(Apr I I-August) seasons and the second set addl ng a transl tl on season

(AprIl). When April Is grouped In the high flcw season, the high season

f l or s are much I ewer than when April Is not Incl uded In that season (e.g.

7Q2 of 78 cf s compared to 111 cf s) , The reason for this significant

dl fference I s III ustrated In Tabl e 3.16. The I cwest f I QII S for the high f I cw

seasons (April-August) may occur In either April or May-August, depending on

the year. When Apr I I I s grouped wIth May-August, the I cwest f I QII In e I th er
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Table 3.15. Seasonal 7-day low flow frequency statistics
at Engl ewood.

Recurrence
I nterv al
( years)

Low
(Sep-Mar)

Low flow Ccf s )
Transition High

(Apr) (May-Aug)
H Igh*

(Apr- Aug)

2
3
5

10

54
45
37
30

107
78
58
43

111
80
60
44

78
60
49
40

*Based on : wc seasons only, low and high.

Tab I e 3.16. Seasona I 7 -day low f low 5 f or each year
of record at Engl ewood.

Year
(endl ng)

Low
(Sep-Mar)

Low . f I ow ( c f 5 )

Transition High
(Apr) (May-Aug)

HI gh*
(Apr-Aug)

1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

37
15
71
44
33
36

11 9
32
46
36
66
47
72
46

103
95
66
65
64
53
44
60
50
41
51
48
43
48
76
98

42
62

217
121
483
132
286

35
105

87
99
50
97
73

314
11 4

68
164
321

82
78

102
47

1 51
175

59
37

405
292
182

39
270

53
82
43

130
72
26
72

284
72
86

154
158
220
230
117
268

80
186
100
60
53

1 05
166

48
79

556
312
277

39
62
53
82
43

130
72
26
72
87
72
50
97
73

220
11 4

68
164

80
82
78
60
47

1 05
166

48
37

405
292
182

*Based on two seasons only, low and high.
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season Is chosen. ComparIson of the last three columns of Table 3.16

Illustrates thIs poInt.

A comparIson of monthly, seasonal, and annual frequency statIstIc lew

flows shows that annual flOtfs are consIstently less than or equal to

seasona I f I Otf s wh I ch are consl stentl y less than or eq ual to month I y fl QoI s

(FIgure 3.9). ThIs pattern Is due to the varIatIon of flews fran one month

to another and to the occurrence of mlnlmun flews In dIfferent months, for

varIous years. The reasonIng for thIs Is slmll ar to that gIven above for

seasonal flews. The lewest values occurrIng In a year-long period are used

to calculate annual statistIcs and will almost always be l os er than any

sIngle monthly low-flow statIstIc whIch Is based on the lowest flo«s

occurrIng wIthIn a much shorter period.

ANJll YS IS OF LCW-FLCW EVENTS

Excucslon Anal ysl s

The analysl s of low-flOtf events based on l-day f l os s belcw a given

annual or monthly flow (l-day excursions) was used to help defIne the

patterns and duratIons of such events for varIous low-flow statIstIcs.

Four- and thIrty-day excursions were also calculated for comparison at one

s l teo The anal ysl s of one-day excur s l on s may be used to het p sel ect an

appropr I ate acute desl gn f I QoI (l-day dur atf on) , The one-day excur sl ons are

not as useful for selectIng a chronic design flow, whIch Is of a longer

duration (e.g. 4-,7-, or 3Q-days). Four- or thirty-day excursions may be

used to help select an appropriate ch r on l c design flew, but run lengths,

which are dl scusse d In the next section, provide more InformatIon and are

thus more useful for that purpose.
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The resul ts of the 1-day Icw-fiOli excursion anal ysl s are sunmarlzed for

all the sites In Tables A4.1-A4.10. The analysis of 4-day and 30-day

excursIons at Englewood <Table 3.17) Is sunmarlzed.ln Tables A4.9 and A4.10.

The number of excursions for each year of record Is gIven for six dIfferent

annual fl Qts, two acute and four ehronl c. Total nunber s of years and day s

wIth excursIons are lIsted at the botton of the table. With reference to

Table 3.17, It can be seen that the flOli of the South Platte at Englewood

dId not go lewer than any of the various desIgn annual flews In the years

1984 and 1985. Hewever, In 1964, the lQl0 of 24 cfs was not exceeded seven

times. Whll e the 30Q3 of 53 cfs was not exceeded 100 times; In other words,

almost one day In three the river flOli was less than the 30Q3.

SummarIes for one-day excursIons for all the sites are gIven In Tables

3.18 and 3.19 as percent of total years and total days wIth excursIons,

respectIvely. The number of years wIth excursIons ranges fran 3 to 82

percent. The average rumber of years with excur sl ons over al I th e sl tes

are: acute flQts - lQl0 average 11 percent, lQ3 average 31 percent; chronic

flews - 7Ql0 average 20 percent, 30Ql0 average 47 percent, 7Q3 average 49

percent, and 30Q3 average 74 percent. The nunber of days with excursIons

varIes fron 0.1 to 13.4 percent wIth the follOlilng averages: acute flows­

lQl0 average 0.25 percent, lQ3 average 1.1 percent; chronIc flews - 7Ql0

average 0.5 percent, 30Ql0 average 1.9 percent, 7Q3 average 3.2 percent, and

30Q3 average 9.0 percent.

An analysIs of excursions belcw monthly frequency statistIc flews for

each month of the year shewed many more excur sl ons bel ew month I y fl 011 s than

belOli annual flQts <Tables 3.20 and 3.21>. The Increase In the number of

excursions ranged fran 500 percent to 850 percent. ThIs Increase Is the

result of a narrcsed range between annual mean flews and monthly design
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Table 3.17. One-day low-flow excursions at Englewood.

CI Imatl c
Year

(4/1-3/31)

Number of excursIons for a given annual flow*
Acut e f I ow s Ch ron I c f I ow s

1Ql 0 1 Q3 7Q10 30Q10 7Q3 30Q3
(24 c f s ) <35 c f s ) (28 cf s ) (36 cfs) (43 c f s ) (53 c f s )

_._-.-.-------_._._--_._-_._----_.----.-----_._----
1956
1957
1958
1959
1960
1 961
1962
1963
1 964
1 965
1966
1 967
1968
1 969
1970
1 971
1972
1 973
1 974
1 975
1976
, 977
'978
1 979
1980
1 981
1982
1983
1 984
1 985

Years wIth
excursions
(30 tota I )

Days wIth
excursIons

( 10958
tota I )

o
41
o
o
o
o
o
o
7
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

2

48

12
63
o
o
9
5
o

18
26

4
o
o
o
o
o
o
a
o
o
o
o
o
o
a
o
a
o
1
o
o

8

138

2
47
o
o
1
o
o
a

17
o
o
o
o
o
o
o
a
o
o
o
o
o
o
o
o
o
o
o
o
o

4

67

16
69
o
o
9
6
a

18
28

8
o
o
o
o
o
o
a
o
o
o
o
o
o
o
a
o
o
4
o
o

8

158

74
169

o
4

15
19
a

36
41
46
o
3
o
2
o
o
o
a
o
4
5
o
o
9
o
o
8
6
a
a

1 5

441

1 45
232

o
40
22
33

o
79

100
96
o

38
2

1 1
o
o
1
o
2
9

29
3

11
76
11
24
48
24
o
o

22

1 036

-------_.__._._._.__ . --------------------_._--_._._----_._-------
*Excurslon = sIngle l-day flow below a given level.
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Table 3.18. Percent of years with one-day low flow
excursions for the period of record.

-------_._-----_._---- --------------------------
Percent of years with one-day excurslons*

Site Acute f I ow s Ch ron I c f I ow s
lQl0 lQ3 7Ql0 30Ql0 7Q3 30Q3

Littleton 3 33 17 73 57 73

Engl ewood 7 27 13 73 50 73

Henderson 1 0 30 27 30 50 70

Boul der 18 27 27 54 36 82

Lyons 17 27 20 43 43 70

L ongm 0 nt 13 27 20 47 50 77

PI attevll Ie 10 30 13 33 47 67

Fort Col I Ins 11 44 22 22 56 78
----_._---_._._---"---_.----.----_._-_._------_._._._._----
*Excurslon = 51 ngl e l-day f low below a gl yen level.

Table 3.19. Perce nt of days with one-day low f low
excursions for the per I od of recor d.

--------_._.-._._._--_.-.__._--_.__._.- -- - ._.__._-_._-_._._-
Perce nt of day s with one-day excurslons*

Site Acute f low s Chronic f I ow s
1Ql 0 1Q3 7 Ql 0 3 OQl 0 7Q3 30Q3

Littleton 0.3 1.7 0.6 2.5 3.5 8.8

Eng lew ood 0.4 1 .2 0.6 1.4 4.0 9.4

Henderson 0.3 1 • 1 0.6 1.6 4.2 12.9

Boulder o•1 0.6 0.3 2.9 1 .6 6.3

Lyons 0.3 0.9 0.7 1.7 1.8 5.0

Longmont 0.2 1.5 0.5 2.9 4.0 8.5

PI attev II Ie 0.3 1.7 0.5 1 .8 3.4 8.0

Fort Col I Ins 0.1 0.3 0.2 0.2 3.5 13.4
----------_._.__ .__ ._ ---- --_ ._-----_._--_._.----------_ ._--~--

*Excurslon = single l-day flow below a given J ev eJ •
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Table 3.20. One-day low flow excursions below monthly 7Ql0 flows.

-----_.__ .__._._._-_._----_._--_._---

Month

Total number of excurslons*
Site

Englewood Boulder Longmont Platteville Fort ColI Ins
(30 Years) <11 Years) DO Years) DO Years) (9 Years)

-----------------------_._---------_._--------
Jan

Feb

Mar

Apr

May

Jun

J u I

Aug

Sep

Oct

Nov

Dec

46

31

27

30

29

30

47

26

41

30

15

47

11

14

28

13

4

17

8

2

16

12

10

54

39

54

41

23

47

26

32

43

50

25

36

53

35

60

22

31

20

35

36

66

38

37

48

o

o

o

o

o

9

22

14

10

7

o

*Excurslon" sIngle I-day flow below a given level.

Table 3.21. ComparIson of one-day low flow excursIons
below monthly and annual 7010 flows.

Perce nt of aay s
Monthly Annual
7010's 7Ql0

Total number
of excur s I ons*

Monthly Annual
7010's 7010

Flow
record
(years)Site

---_._-_._-------_._._---_._------------------

Engl ewood

Boulder

Longmont

Plattevll Ie

Fort Coil Ins

30

11

30

30

9

397

148

470

481

63

67

25

52

58

6

3.6

3.7

4.3

4.4

1.9

0.6

0.3

0.5

0.5

0.2
-----------------._-_.-----_._-_._.-----------------
*Excurslon = single I-day flow below a given level.
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flows. The ImplIcatIon of thIs analysis Is that a more restrIctIve monthly

flOit statfstfc l s r equl red to provfde a comparable level of protection to

that prov I ded by a gl ven annual statl stl c. A comparabl e I evel of rl sk for

excursIons belOit an annual 7Q10 freq uency statl stl c woul d be prov f ded by a

monthly 7Ql15 statIstIc. A monthly 7Ql15 flOit may be hIgher or l oser than

an annual 7Q10, dependl ng on the month.

The use of a monthly fl~ statIstIc for dIlutIon purposes may be quIte

effectIve In usIng the natural assImIlatIve capacfty of a rIver durIng

higher flows. DurIng hIgh flows less treaiment would be requlred at the

point of dIscharge whfle stfll maIntaIning downstream uses. Hosev er , In

order for the use of a monthly desIgn flew to be acceptable It must al l oe

protection of the aquatIc system and strecrn uses. at a I evel of, at I east,

the conventional 7Q10 usl n9 annual val ues,

Usl ng the concept of equality of rl sk, the recurrence I nterval for an

equIvalent monthly fl~ can be determIned. The assimpt l ons made are:

1) 10 years of daII y fl o« ;

2) Monthly data are Independent; and

3) EqualIty of the risk of one a: more excursfons In a 10 year per Iod,

The rIsk f cr one er mere excursIons of the 7Q10 Is found using the equatIon

given bel 011:

where: R = risk of one or more excur sl ons InN outcomes

N = number of outcomes, 10 when anal yz I ng annual data and 120

when anal yz Inq monthly data

TR = recurrence Interval of the f I o«,

For the risk of one or mere excursions of the 7Q10:
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R = 1 - (1 - L) 10 =0.65.
10

this means there Is a 65 percent chance In the next ten years that

th ere w I I I be one or mor e f lows eq ual to or I ess than the 7Q10. fq uatl ng

the level of rIsk to monthly flQis and solvtng for the monthly recurrence

Interval

0.65

TR = 114.81 years

As a result of this analysIs, the 7Qt15 flQi should be calculated for each

month. This would then be used as the design flQi available for dilutIon.

It shoul d be noted that estl matI on of an 115 year recurrence I nterv al f low

.f r om only 30 years of data or lesswlll requIre extrapolation of the data

Increasing more uncertainty In the results as compared to estImatIng a 10

year recurrence Interval flQi which requIres InterpolatIon of the data and

less uncertal nty I n the resul t s,

The monthly recurrence Interval could also be determined by esstm l nq

eq ual r l sk with the annual flOll that one or less excur sl ons occur I n a ten

year period. This risk Is equal to the probability of no excursion of the

10 year flQi In 10 years (0.35) plus the probability of only one excursion

In 10 years (0.39>' The monthly recurrence Interval which will

theoretically have the Identical risk Is approximately 120 years. It woul d

appear that the difference of the recurrence Intervals are suffIciently

small when consl derl ng the probl an of uncertal nty In the data anal y 51 s that

the 115 year recurrence Interval shoul d suff Ice.

Run length

Run lengths of IQi-fIQi events, or the rumber of consecutIve days wIth

f l oes bel 011 a given level, were cal cui ated at each of the sl tes for two
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acute flats (lQl0 and lQ3) and four chronic flews <7Ql0, 703, 30Q10, and

30Q3). The resul ts for PI attev I I I e are gl ven In Tabl e 3.22 and for th e

other sites In Tables A5.1-A5.8. For comparison purposes, run lengths belew

the annual 30Q3 flew for all the sites are given In Table 3.23. Medl an run

lengths below the30Q3 In Table 3.22 range fran two to four days, as

foil cws: two days - Boul dar and Lyons; three days - LI ttl eton, Engl ewood,

Henderson and Fort Collins; four days - Longnont and PI attev III e.

The run I ength anal ysl s may be used to eval uate the appropr I ateness of

various chronic or acute design flOtl/s for use In discharge permitting.

Given specific criteria for the allewable duration of the design flOtl/ and

frequency of excursions belOtl/ the design flew, one can select a flew that

will meet these requirements. As an example, assune that the criteria allcw

a chronic design flew duration of 30 days and a frEGuency of occurrence for

excursions belQi this flew of once every three years. For a 3O-year period,

30/3 or 10 excursions would be allcwed. At PlattevIlle, the nimber of 30­

day excur sl ons bel o« the 30Q3 Is eq uaI to 1 4.87 (81/30 + 53/30 + 52/30 +

50/30 + 42/30 + 40/30 + 34/30 + 33/30 + 31/30 + 30/30). ThIs exceeds the 10

excursions all OtI/ed based on an all atabl e frequency of once every three

years. The number of 30-day excursions belQl the30Q10 at Platteville Is

zero, andthenumberof30-day excursions be i os the7Q3 Is 1.57 (47/30).

This kind of analysis can be appl led to other sites with various duration

and frequency criteria to define appropriate chronic design f l cs s,

BIOL a; IO\LLY-BAS ED DES IGN FL ()\'S

Design flOtl/s were calculated with the U.S. EPA biologically-based
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Tllble }.22. · Run lengths of 'ow-flow ."ents for the perIod of record lit Pllltte"II'e
('956-1985) •

tQl0
(27 c f s )

t Q3
(42 ets)

7QIO--- 7Q3
(32 efs) (50 ets)

}OQIO
U

(43 eh)
30Q3

(67 cis)

Rut! NUI/lber Run Number Run Number Run Number Run Number Run Number
I eng"th of rUlls length of runs length of runs length of runs IOllgth of run s longth of runs
(dlly s ) (day s) (days) (day s ) (days) (days)

2 5 2 9 7 23

2 2 2 7 3 2 to 2 4 2 14

5 3 3 " :5 " ;5 4 3 7

17 4 8 5 2 " 4 " 6 " 6

9 5 3 7 5 4 5 :5 5 5

() 13 6 6 2 6 4

7 t 9 7 3 7 7 "
8 8 8 2 8

9 9 2 9 2 9 :5

13 10 2 13 10 2

15 11 19 11 :5

25 12 2 25 12 :5

26 \3 2 26 13 2

17 15

18 16

20 17

27 23

29 26

47 30

31

33

34

40

42

50

52

53

81
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Table 3.23. Run lengths of low flow events for flows below the annual 30Q3 for the period of record.

Fort Col J Ins
( 1977-1985)

PlattevIlle
( 1956-1985)

longmont
(1956-1985 )

Lyons
(1956-1985 )

._----_._-----
Soul ce r

(1961-1970)
Engl ewood

(1956-1985 )
Littleton

(1956-1985 )

----------------------------

Run Number
I ength of runs
(day s )

Run Number
I ength of runs
(day s,

Run Number
I ength of runs
(day s )

Run Number
I ength of runs
(day s )

Run Number
I ength of runs
(day s )

Run Numbe r
I ength of runs
(day sl

Run Number
I ength of runs
(day s )

Run NUIIl ber
I ength of runs
(day s )

,- - _ ._- - - -- - - - - -- - - ---- - - - - - ,

1.0
~

2

3

4

5

6

7

8

9

10

13

14

15

16

17

18

19

20

22

28

35

46

43

21

17

8

6

7

6

5

3

3

2

3

3

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

22

34

55

71

41

18

15 '

7

12

8

5

2

4

4

3

6

3

2

2

2

3

4

5

6

7

8

9

10

I I

12

13

14

15

16

20

21

25

29

:53
37

78

26

18

12

7

5

3

2

4

4

2

5

2

2

3

4

2

3

4

5

6

8

9

10

11

13

17

43

16

7

3

2

3

2

3

2

3

4

5

6

7

8

9

10

11

12

15

16

18

21

23

24

29

50

51

23

14

8

2

4

2

2

3

2

2

2

2

3

4

5

6

7

8

9

10

11

12

13

16

18

21

22

27

30

32

38

43

45

30

II

7

11

5

,
3

3

3

3

5

2

2

2

3

4

5

6

7

8

9

10

11

12

13

15

16

17

23

26

30

31

33

34

40

23

14

7

6

5

"
"
3

2

3

3

2

2

3

4

5

6

7

6

10

12

13

17

23

24

40

70

113

17

8

3

4

2

2

2

2

2

:5

50

51

129

137 87

108

138

203

11 I

116

42

50

52

53

61



method for acute and chronic conditions. this method Is based on partlal­

ser l es analysis as compared to the annual series analysis used to define

f requency statl stl c 1011 fiOli.

Biologically-based design flows were calculated for acute (l-day

duration) and chronic (4- and 3D-day durations) concentrations at all the

sites. The values are given In Tables 3.24-3.26 along with comparable

f req uency statl stl c f lOlls and percent dl fferences. The f I 011 statl stl c used

to compare to the acute 1-day, 3-year flow was the 1Q10. The chronic 4-day,

3-year and 30-day, 3-year flows were compared to the7Q10 and 30Q10,

respectively. The number of acceptable and actual excursions are also

listed for each flow. Excursions are defined differently for each type of

cal cui atl on (acute and chronl c) as descr I bed I n the methods sect I on.

Acute 1-day 3-year design flews were slmJlar In magnitude to the 1Q10

or 1Q1 5 freq uency statl st I c f lows. Ch ron I c 30-day 3-year f I ow s wer e

approxImated by 30QI0 or 30QI5 flews. These fIndings correspond closely to

the resul ts of an EPA study which anal yzed 60 streams across the nation,

Including a number In this regIon <u.S. EPA, 1966).

In four out of eight cases, or 50 percent, the 1Q10 flow was higher

than the I-day, 3-year flow. ThIs compares to 65 percent of 60 streans

tested I n a recent EPA study (U. S. EPA, 1986). The 7 Q1 0 f low'll as high er

than the 4-day, 3-year flow at six out of eight sites or 75 percent, as

compared to 77 percent I n the EPA study. The 30Ql 0 flOli was higher than the

30-day, 3-year f low In fIve out of el ght cases or 62 percent, as compared to

o percent In the EPA study.

Coef f I cl ents of var I atl on based on the compl ete daII y flOli record were

cal cui ated at each site and are listed I n the first col umn of Tabl e 3.26.

The val ues range from 1.51 to 2.82 and are within the range of val ues for
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Table 3.24. BIologIcally-based acute design f low sand ccmpar t son to
1Ql 0 f I ows,

B I o-ba sed
SIte 1Ql 0 Number of l-day Number of ~ DIfference

(acceptebJe t low J -day 3-yr flow l-day In flows.
1'\0 of exc s ) (cf 5) excursions (cf 5) excursions

L( ttl eton 10 9 10.0 9 0.0
(10 •.17>

Engl ewood 24 10 26.0 10 1.7
(10.17)

Henderson 17 16 12.0 9 -41.1
( 1O. 17)

Boul der 5 6.0 3 16.7
(3.49)

lyons 0.8 f 9 0.5 5 -60.0
(10.17)

Longmont 10 f 5 9 10 -11 .1
( 10.17)

PI attev 1/ Je 27 11 26.0 8 -3.8
(10.17 )

Fort Col J los 0.9 3 1.3 3 30.8
(3.17)

* %DIfference :: « '-day 3-yr flow) - (1 Ql 0) ) * 100 / C l-day 3-yr flow)
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Table 3.25. Blologlcally-b8sed ch ron I c de sign flows and com pa r l son to
7Ql0 f low s ,

Blo-based
SIte 7Q10 Number of 4-day Number of ~ DIfference

(acceptable f low 4-day 3-yr f I ow 4-day In flows*
no of exes) tcf s ) excursJons (cf s ) excursions

LIttleton 12 16.25 10.7 8.50 -12.1
(10.17)

Eng lew ood 28 10.00 29.9 10.00 6.4
(10.17 )

Hender son 26 17 .25 15.9 10.00 -63.5
(10.17)

Boulder 6 5.00 6.9 2.75 -15.9
(3.49)

Lyons 1.3 21.00 0.6 9.50 -62.5
( 10.17)

Longmont 12 20.00 10.6 10.00 -11 .1
( 10.17 )

Plattevll Ie 31 15.50 27.9 9.50 -11 .1
(10.17)

Fort CollIns 1.4 1.50 1.5 3.00 6.7
(3.17 )

* %Difference = «4-day 3-yr flow) - (7Ql0» * 100 / (4-day s-s« f low)
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Table 3.26. BIologIcally-based chronIc design flows based on a 30-day
moving average and comparison to 30Ql0 flows.

SIte
(acceptable
no of exes)

Littleton
(10.17)

Engl ewood
(10.17)

Henderson
( 10.17)

Boul der
(3.49)

Lyons
(10.17>

longmont
10.17

PI attev II Ie
(10.17>

For t Co I I Ins
<3.17>

Coefficient
of

variatIon

1.84

1.77

1.52

1.38

1.61

1.51

1.51

2.82

30Ql0
f low
(c f s )

17

36

46

14

3.6

18

43

1 .4

Number of
30-day

excursions

1 t .07

4.17

13.03

3.30

15.83

17 .93

8.57

0.00

B I o-ba sed
30-day

3-yr f low
(cf s )

16.5

38.3

43.0

14.8

2.5

15.7

44.5

1.9

Num ber ot
30-day

excursions

10.17

10.17

8.67

3.47

9.80

9.63

10.17

3.17

% Difference
In flows·

-3.1

6.0

-7.0

5.7

-44.0

-86.2

3.4

-27.3

* % Difference = (DO-day 3-yr flow) - (30Ql0» * 100 / DO-day 3-yr flow)
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the 60 rivers In the EPA study (U.S. EPA, 1986). Coefficients of variation

as mentioned previously have been used as criteria for determining whether

or not 3D-day flows may be used In place of shorter duration flows for

ch ron I c f I ow ca I cu I atl ons, A I ow coef f I cl ent of var I atl on Is consl dared

Indicative of a relatively stable flow regime. In the EPA report, a

coefficient of variation of approximately 1.0 or belcw was used to define

sets of flew data appropriate for a3O-day averaging period Instead of the

four day averagl ng per I od,
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O1APTER 4 - DESIGN FLOiIS mD EFFLUENT LIMITS

The relatIonshIp beiween gIven desIgn flews and correspondIng dIscharge

permIt lImIts was examIned to help evaluate the approprIateness of various

fla«s. Theoretical effluent limits were calculated on the basis of various

annual and monthly design flews to assess the potentl al ImplicatIons for

dIschargers. Two water qualIty varIables were Included In the analysls­

un- Ionized ammonl a and a conservatIve el anent, copper.

AMM)N IA

Currently In the State of Colorado, un-Ionized ammonl a I s of great

concern to water quality managers and dischargers. The State of Col crado

Water Quality Control Commission has recently rev Ised nItrogenous water

qualIty standards, Incl udl ng standards for ammonl a. It appears that a

number of munIcipal wastewater treatment facIlitIes throughout the state may

have diffIculty In meetIng new Instream un-Tonlz ed ammonia limits without

the addition of addItIonal treatment faclllties. The Issue Is a mul r t ­

mIl I Ion dollar concern.

Behay Icr and Effects

Ammonia Is a naturally occurring substance In most stream ecosystans,

although concentratIons may be hIgher due to human actIvIty, specIfIcally
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d l scharges from munl ct pal wastetlater treatment pI ants. Sources of anmonl a

Include: organIc matter decomposItIon, surface r.unof t and groundwater,

wastewater treatment pi ants, and I ndustr I al processes (NRC, 1gJ9) • I n an

aqueous ammonia scl ut l on, un-IonIzed ammonIa (NH
3)

exists In equl I Ibrlum

+ -with the anmonlum Ion (NH4) and the hydroxIde Ion (OH). It should be noted

that un- IonIzed ammonl a concentrations are freq uentl y expressed as

mI I I I gr ams per I Iter of anmonl a as nl trogen (N~ mgt I-N). Th I s means that

the weight of nitrogen alone Is considered In concentration val ues, The

value of ammonia as nitrogen Is equal to (0.822) x (ammonIa as ammonIa)

based on the ratIo of atan Ic weI ghts.

The un-IonIzed form of anmonla Is primarIly responsible for Its toxIc

effects on aquatIc life <u.S. EPA, 1984a). A nlJrlber of factors affect the

perce nt of tota I ammon I a th at Is un- Ion I z ed, I ncl udl ng pH# temperature,

IonIc str enqth, and total dissolved sol Ids (U.S. EPA# 1984a). pH and

temperature are considered the most critical f ecr or s, with percent un-

lonlz ed ammonia IncreasIng as either faetor Increases. A tabl e of val ues

for percent un-IonIzed ammonl a at temperatures ranging fran 0-30°C and at

pH's rangIng fran 6.0-10.0 was developed by Emerson (lgJS) and Is reproduced

In Table 4.1. +The percent of total anmonla (NH
3

+ NH4) that I s made up by

the un- lonlz ed ferm ranges fran I ess than 0.01 to approxl matel y 90 perce nt

CNer the range of possl bl e pH and temperature condl tl ons.

The toxicity of ammonia In solutIon Is dependent not only on the

percent un- Ionized ammonl e, but on a number of other factors as well.

Anblent condItIons may pr ov Ide faeters that eIther Increase er decrease the

overal I toxl cf ty of un- IonIzed ammon I a. These facters I net ude: dl 5s01 ved

oxygen concentr ert on, pH# temperature# carbon dioxide content, and salinIty.
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Table 4.1 Percent NH3 in aqueous ammonia solutions for 0-30 C and pH 6-10.

Temp. pH
(e) 6.0 5:5 7.0 7.S 8.0 8.S 9.0 9.S 10.0

0 .00821 .0261 .0826 .261 .820 2.5S 7.64 '20.7 45.3
1 .00899 .0284 .0898 •284 .891 . 2.77 8.25 22;..:1- 47.3
2 .00977 . .0309 .0977 .308 .968 3.00 8.90 23.6 49.• 4
3 .0106 .0336 .106 .335 1.05 3.25 9.60 25.1 51.5
4 .0115 .0364 .115 .363 1.14 3.52 10.3 26.7 53.5
5 .0115 .0395 .115 .394 1.23 3.80 11.1 18.3 55.6

6 .0136 .0429 .135 .427 1.34 4.11 11.9 30.0 . . 57.6
1 '.0147 .0464 .147 .462 1.45 4.44 12.8 31.7 59.5
8 .0159 .0503 .159 .501 1~57 4.79 13.7 33.5 61.4
9 .0172 .Q544 .172 .542 1.69 5.16 14.7 35.3 63.3

10 .0186 .0589 .186 .586 1.83 5.56 ·IS.7 37.1 65.1

11 .0201 .0637 .201 .633 1.97 5.99 16.8 38.9 66.8
11 .0118 .0688 .217 .684 2.13 6.44 17.9 40.8 .&8.5
13 .0135 .0743 .235 .738 2.30 6.92 19.0 42.6 70.2
14 .0254 .0802 .153 .796 2.48 7.43 10.2 44.5 71.7
15 .0174 .0865 .273 .859 1.61 . 7.97 21.5 46.4 73.3

16 .0295 .0933 .294 .925 2.87 8.54 22.8 48.3 74.i
17 .0318 .101 .317 .996 3.08 9.14 14.1 50.2 76.1
18 .0343 .l08 .342 1.07 3.31 9.18 25.5 52.0 77.4
19 .0369 .117 .368 1.15 3.56 10.5 27.0 53.9 78.7
20 .0397 .125 .396 1.24 3.82 11.2 28.4 55.7 79.9

21 .0427 .135 .425 1.33 4.10 11.9 29.9 57.5 81.0
22 .0459 .145 .457 1.43 4.39 12.7 31.5 59.2 82.1
23 .0493 .156 .491 1.54 4.10 13.5 33.0 60.9 83.2
24 .0530 .167 .527 1.65 5.03 14.4 34.6 62.6 84. t
25 .0569 .180 .566 1.77 . 5.38 15.3 36.3 64.3 85.1

26 .0610 .193 .607 1.89 5.15 11L2 37.9 65.9 85.9
27 .0654 .207 .651 2.03 6.15 17.2 39.6 67.4 86.8
28 .0701 .221 .697 2.17 6.56 18.2 41.2 68.9. 8i.5
29 .0752 .237 .141 2.32 7.00 19.2 42.9 70.4 88.3
30 .0805 .254 .199 2.48 7.46 20.3 44.6 71.8 89.0

(from "Ambient Water Quality Criteria for Ammonia," U.S. EPA, 1985)
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tn addition, acclimation of populations to ammonia, changing perIods of

exposure, and varIous levels of physical activity may Influence toxIc

effects on fIsh (Subcommittee on Ammonia, 1979; U.S. EPA, 1984a).

The effects of un- IonIzed ammonl a on aq uatl c speer es has been wIder y

research ed f or a v ar t eiy of condt tl ons, Many of the resur ts have recentl y

been conpl r edt n the EPA document, rrAmbt ent Aquatic Life Water Qual ltv

CrIterIa for AmmonIa" (U.S. EPA,1984a). Acutely toxic effects have been

detected In rnvertebr ate spect es at I evel 5 of 0.53-22.8 mgt I NH
3,

and I n

fIsh species from 0.083-4.60 mg/I NH3• Acute effects on fIsh may Include:

loss of equl l lbr lun, hyperexcItability, Increased breathing, cardiac output,

and oxygen uptake and In extreme cases - convulsIons, coma and death.

Chronl c effects In 1nvertebrates have been detected at level s of 0.304-1.2

mg/I NH
3

and In fish at 0.0017-0.612 mg/I NH
3•

These effects Include:

reductIon In hatching success, reductIon In growth rate and development, and

pathol 091 cal changes.

Water Qual [iy Mo~

A nunber of model s have been developed for predl ctl ng concentrations of

water qualIty varIables, IncludIng total and un-IonIzed ammonIa. A general

descr I ptr on of f tve dl fferent approaches to model I I ng ammonI a are presented,

wIth anphasl s on the method used In th f s study.

Th e QUAL2 E model, developed for the U. S. EPA, Is capabl e of sl mul atl n9

15 different water qual t1'y constituents In a dynamic or steady state. The

model Is based on a one-dimensional advection-dispersion mass transport

equatIon that Is nuner lcal lv Integrated over space and tIme for each water

qual tty const1 tuent. Analyst s by the model tncl udes the effects of

advectIon, dIspersIon, dIlutIon, constituent reactions and InteractIons, and
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sources and sInks (Broe n, 1985>' Although, total anmonla may be analyzed,

the model does not cal cui ate percent un-Ionized ammonl a.

The USGS has used another model developed by BauerCl979), called a

one-dl mensl on steady-state water-qualIty model. It I s based on the Streeter

Phel ps oxygen-sag equatIon wIth addItional consIderatIons fer nItrogenous

and conservative compounds. The model was used I n a recent study of the

effects of wastewater effluent on the South Platte (Spahr, 1985). In the

South PI atte study, un- lcnlz ed ammonl a concentratIons were cal cui ated us I ng

a method reported by Skarhel m C1973) • Val ues sl mul ated by the model for

temperature, pH, total ammonia, and dIssolved sol Ids were used wIth

equilIbrIum dIssociatIon constants for anmonla to predIct un-Ionized ammonia

levels downstrean of an effluent dIscharge. To account for varIations In

pH, a range of val ues was used to represent worst and best cases for col d

and warm water conditions. The pH cases were defined by using various

val ues for: 1) pH depressIon caused by the wastewater effluent, and 2) pH

recovery dosnsfreen 'Spahr, 1985).

Another model has been developed by the EPA to cal cui ate present un­

Ionized ammonIa, and allowable dIscharge concentrations. The model Is

ca I led WlANH3 and was developed by WIII I nghan (1985). I nputs to the model

Include InformatIon about uostr een and effluent water qualIty (temperature,

pH, upstr ean anmonl a al kal I nl ty, and total dl ssol ved sol Ids) and flew s, An

admixture pH value for the comblned upstream and effluent flows Is

determ I ned on the basi s of the al kal I nl ty and total carbonate carbon level 5,

usl ng a modI f led graph I cal procedur e CStumm and Morga n, 1981). Comb I ned

val ues forth e oth er water qua I I ty var I abl es are computed usl ng a 51 mpl e

mI xl ng equatl on for upstrean and eff I uent f I Oil s,
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AI though the model does account fer the four majer factors affectl ng

the percent un-Ionized ammon I a, accuracy of the resul ts may be I fm fted due

to the model s I nabll Ity to I ncorporate pH changes da.nstre(lll. It appears

that pH In sane streams Is highly variable both spatially and over time due

to biological actlvliy and buffering capacities (Spahr, 1985; Lewis, 1986).

As a resul t, pH and percent un-Ionized ammonl a at the end of the mIxf ng zone

may be very dl fferent fran those val ues predicted by the model.

The recent recommendations of the Colorado State Nftrogen Cycle

Canmlttee (Nitrogen Cycle, 1986) provfde a new approach to the determfnatlon

of ammonl a eft I uent limits. The method r equl res three mal n steps to go fran

Instream ammonia criteria to permit limits. The first step Is to calculate

total ammonia allcwed Instream for various pH-temperature pairs and

correspondl ng percents un- fonfzed ammonf a. The eque tl on to be used I s as

foil 011 s:

Total hnmonl a All OIled = NH
3

mg/ I - N (1 + 10PK- pH )

where pK = -0.03242T + 10.063

T = temperature at °C

The second step takes the range of total ammonia val ues and applies a

statfstfcal evaluatfon to determfne a sfngle value for total ammonfa

all cwed. If the set of val ues for total ammonl a val ues I s normal I y

dl str I buted, then the fol 1011 Ing equatl on Is appl led.

Single Total Jlrnmonla Val ue =X- s

where X =mean of total ammonfa values

5 = standard devfatlon of total ammonia values
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If the set of CII1monla values Is skewed to the right (with more IOf values),

then onl y the val ues belOfi the 15th percentl Ie shoul d be used I n the

foil 0111 ng eq uatl on.

Slngl e Total Jlmmonl a Val ue = )(15

where )(15 = mean of total CII1mon.1 a val ues bel Of the 15th percentll e

The sl ngl e total anmonl a val ue cal cuI ated In th I s manner represents the

maximum l-day (acute) or 4-day (chronic) total ammonia concentration al lOlled

I nstream at the end of the mlxl ng zone.

The third step In the procedure Is the calculation of a permit limit

using the follOillng mixing equation.

where Ar = single total ammonia values dOfinstream from discharge point

Q
U

= upstream f 1011 (desl gn f 1011)

Q
E

= effluent flOf

Au = upstreCll1 CII1monla concentration

Permit limits may be calculated with this method for either acute or chronic

level s of protection, dependl ng on the Instream criteria and design f l oss

used. One drat/back of the method Is that It does not account for changes In

pH dow nstr-ean of the dl scharger.

EPA Un-Ionized Ammon I a Progrem

The EPA Region VIII Office Is currently using a simplified computerized

approach to determining ammonia effluent limits for various pH and

temperature conditions. The method requires the Input of upstream un­

Ionized ammonia levels, Instream criteria, upstream flew and effluent fiOfi.
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Given these val ues, the progran produces a ma1rlx of effl uent ammon I a lImIts

for a specl f led range of pH and temperature val ues. The cal cui atl ons made

by the progran appl y to the pol nt of mlxl ng, near the eff I uent dIscharge and

do not appl y to pol nts downstrean where var f abl e pH and ammonf a decay may

need to be consl dered. The equatl ons used I n the EPA progran are I ncl uded

In AppendIx B. calculations are made on the basts of a weIghted mixture of

the effluent fl~ and streanflcw.

The slmpl If led EPA ammon I a progran was used In th I s study because It

allows a rei atlvel y dl rect focus on the effect of design flews on ammonl a

eff I uents. pH and temperature effects may be anal yzed separateJ y by

exam I nl ng the matr I x for a gIven desf gn f I oe, rather than bet ng I ncor porated

directly Into a single effluent limit that masks the effect of various

f I c:w s,

The analysIs of effluent ammonia limIts was cerr t ed out at four study

sItes, wIth wastew ater treatment f acl I Itl es nearby. The 51 tes I ncl uded:

Engl ewood, Boul der, Longnont, and Fort Col I. I ns, For the purposes of th Is

study, upstream un- l onl z ed ammonl a level s were set equal to zero. A fart

program runs wIth more real I stl c upstream concentrations were run for

comparison purposes. Effluent flows from the four municIpal wastewater

treaiment facilIties In the analysIs were set equal to the rated design

capacl tv f I Oil fer each pi ant. ThI sis the val ue ge neral I y used I n wr ttl ng a

dl scharge permIt. I n some cases, actual or predt cted future eft I uent f I Off s

are used I n perm Ittl ng. For comparl son, runs were made at a fat of the

sites with actuaI ef f I usnt f I OAs,

Effluent analysts was made for both chronIc and acute cond l t l ons,

Three dl fferent chronl c upstrean or dest gn f I 0fI 5 (7Q10, 30Ql 0, 3 OQ3) were

ana I yzed at each sf tee For each of th ase f lows, two val ues for chronl c
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lnstream ammonIa lImIts were used (0.06 and 0.10 rng/l-N of un- IonIzed

ammonIa). These are values currently being considered for future use wIthIn

th e State of Color ado. Acute f lOlls (1 Q1 0, 1Q3) were ana I yzed with an

I nstr eem acute cr 1ter 1on of 0.20 mg/I-N. The val ue for an acute a I ter I on

may vary greatl y depend1 ng on the gl ven cond1 tl ons, and 0.20 was chosen onl y

as a val ue 'wtth t n the range of possl bl e val ues.

Results of AmmonIa Effluent LImIt AnBlysls

The results of the analysis of ammonIa effluent lImIts by the EPA

progran are presented as a set of tables In a matrIx format (Table 4.2).

AmmonIa effluent lImIts wIthIn the matrIx correspond to specIfIc pH and

tanperature pairs (fer canblned upstrean and effl uent) for val ues rangIng

fran 6.5-9.0 pH unIts and 3.0-25.0 degrees centigrade. Each print-out I l sts

the 1nputs used: stream, dl scherger, upstream fi C1tI, upstream ammon1 a

concentratIon, un-IonIzed ammonia Instream crtterla (or standard) and

effluent or discharge flow. All ammonia values are gIven as mg/l-N.

Eff t uent ammon I a I 1m Its that are below 15.0 oog/I-N f cl I 0rI a stal r-step

pattern that Is del Jneated In Table 4.2. Advanced treatment requIrements

are lIkely for pH-temperature condItIons to the right of this 15.0 mg/I-N

l Ine, TypIcal eff) uent and upstrean val ues for pH and temperature at three

of the 51 tes are gIven 1n Tab' e 4.3 to prOt( Ide a franework for the anal ysf s,

To altON for a better compartson of v er t ous desIgn flows, pH­

temperature matrIces have been drawn from the original tables te Include

ettl uent I rmlts for three dl fferent ehrenl c flows or two dl fferent acute

fl~s at a sIngle site (FIgures 4.1-4.4 and AppendIx B fIgures). FIgure 4.1

Is shaded to shew the pH-tEmperature conditIons which would r equl re advanced

treatment gtven an Jnstream standard of 0.06 oog/I-N. The areawtthrn the

fIgure that has no shad1 ng at all represents condt tt ons where secondary
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Table 4.2 Ammonia effluent limits for the Cities of Littleton and Englewood given in a pH-
temperature matrix as calculated by the EPA ammonia program.

-:_- .- - -_ . -. - , .~

DISCt4lRGER : ENGLEwOOD STREAM: SJUiH PJlTTE
VPSTREHM FLOW IN CFS: 28.0
UPSTRE~~ A~MONIA IN ~g /l: 0.0
UN- IO~Il£D ~~~ONiH ST~NDARD IN mg/l X10 0.6
DISCr~KGE F~OA IN MGD: 28.0 ·

oH
6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.B 7.9 B.O 8.1 6.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

DE:GREES
CENTIG~DE

3.0 fHtHttIHHtffIHHUH93.5 74.3 53.1 4&.9 37.3 29.6 23.6 18.7 14.9 11.9 9.4 7.5 6.0 4.8 3.8 3.1 2.4 2.0 1.6 1.3 1.0
4.0 t*ttttt*tttttttttttttttttB&.2 68.5 54.4 43.2 34.4 27.3 21.7 17.3 13.7 10.9 8.7 6.9 5.5 4.4 3.5 2.8 2.3 1.8 1.5 1.2 1.0

I-' 5.0 It***tttttltttttflfi*t***79.4 &3.150.239.9 3t.7 25.220.0 15.9 12. 7 10. 1 8.0 6.4 5.1 4.1 3.3 2.6 2.1 1.7 1.4 1.1 0.9
0 6.0 ffffffffff***fff* f*f92.2 73.3 58.2 46.3 3&.8 29.2 23.2 18.5 J4.7 Jl.7 9.3 7.4 5.9 4.7 3.8 · 3.0 2.4 1.9 1.6 1.3 1.0 0.81.0

7.0 ttft**fftf *'ff ~ft'1f85. I 67.6 53.7 42.733.927.0 21. 4 17. J 13.6 10. B 5.6 6.8 ~.5 ~ . 4 j,5 2.8 2.2 1.8 1.4 1.2 0.9 0.8
e.o *f*fttfttfftfft98.9 78.5 62.4 49.6 39. 4 31. 3 24. 9 19.6 ;5. 8 12.5 10.0 7.3 6.3 5.1 4.0 3.2 2.6 2.1 1.7 1.3 1.1 0.9 0.7
9.0 *fff**.I.'f••f~91.4 72.6 57.7 45.8 36.4 23.0 23.0 18.3 14. 6 11.6 9.2 7.3 5.9 4.7 3.7 3.0 2.4 1.9 1.5 1.2 1.0 0.8 0.7

10.0 tff**I*f*fffi tfB4.5 67.1 53.342.4 33.7 26.821.3 16.9 13.5 10.7 8.5 6.B 5.4 4.3 3.5 2.B 2.2 1.8 1.4 1.2 0.9 0.8 0.6
11.0 1*1*1*1*1*98.378.1 62.1 49.339.231.224.8 19.7 15.712.5 9.9 7.9 6.3 5.0 4.0 3.2 2.6 2.1 1.7 1.3 1.1 0.9 0.7 0.6
12.0 **********91.0 72.3 57.4 45.7 36.328.8 22.9 18.2 14.5 11.5 9.2 7.3 5.8 4.7 3.7 3.0 2.4 1.9 1.5 1.2 1.0 O.B 0.7 0.6
13.0 fffffftfff84.2 66.9 53.2 42.3 33.6 26. 721. 2 16.9 13.4 10.7 8.5 6.8 5.4 4.3 3.4 2.8 2.2 1.8 1.4 1.2 0.9 0.8 0.6 0.5
14.0 t*I**98.2 78. 1 62.0 49.3 39.2 31. 1 24.7 19. 7 ~ ~ :2. 5 9.9 7.9 6.3 5.0 4.0 3.2 2.6 2.1 1.7 1.3 1.1 0.9 0.7 0.6 0.5
15.0 Iflll91.1 72.3 57.5 45.7 36.3 20. 9 22.9 13.2 14.5 11.5 9.2 7.3 5.8 4.7 3.7 3.0 2.4 1.9 1.5 1.2 1.0 0.8 0.7 0.6 0.5
16.0 *fiff84.4 67.1 ~3.3 42.4 33.7 26.B 21.3 16.9 13.5 10. 7 8.5 b.B 5.4 4.3 3.5 2.8 2.2 1.B 1.4 1.2 0.3 0.8 0.& 0.5 0.4
17.0 98.6 78.4 62.3 49.5 39.3 31.3 24.8 19.8 15.7 12.5 10.0 1.9 6.3 5.0 4.0 3.2 2.6 2.1 1.7 1.3 1.1 0.9 0.7 0.6 0.5 0.4
18.0 91.672.757.845.9 36.5 ZS.O 23.1 18.3 14.6 11.6 9.2 7.4 5.9 4.7 3.7 3.0 2.4 1.9 1.5 1.3 1.0 0.8 0.7 0.6 0.5 0.4
19.0 85.067.653.742.733.927.021.4 17.0. 13.6 10.8 8.S 0.8 5.5 4.4 3.5 2.8 2.2 1.8 1.4 1.2 0.9 O.B 0.6 0.5 0.4 0.4
20.0 79.0 62.8 43.9 33.731.525.1 19.9 15.8 12.6 10.0 8.0 6.4 5.1 4.1 3.2 2.6 2.1 1.7 1.3 1.1 0.9 0.7 0.6 0.5 0.4 0.3
e1.0 73.5 58.4 46.4 35. 9 23.3 23.3 18.5 14.7 11.7 9.3 7.4 5.9 4.7 3.B 3.0 2.4 1.9 1.6 1.3 1.0 0.8 0.7 O.S 0.5 0.4 0.3
22.0 £8.4 54.3 43.2 34.3 27.3 21.7 17.2 13.7 10.9 8.7 6.9 5.5 4.4 3.5 2.8 2.3 1.8 1.5 1.2 1.0 0.8 0.6 0.5 0.4 0.4 0.3
23.0 63.6 50.640.231.9 25.4 20.2 16. 1 12. 8 10. 2 8. 1 6. 5 5.1 4.1 3.3 2.6 2.1 1.7 1.4 1.1 0.9 0.7 0.6 0.5 0.4 0.4 0.3
24.0 59.247.1 37.4 29. 7 23. 6 18.8 ~ 11. 9 9.5 7.5 6.0 4.8 3.8 3.1 2.5 2.0 1.6 1.3 1.0 0.8 0.7 O.b 0.5 0.4 0.3 0, 3
25.0 55.2 43.934.9 27. 7 22.0 17.5 13.9 11.1 8.8 7.0 5.6 4.5 3.6 2.9 2. 3 1.8 1.5 1.2 1.0 O.B 0.6 0.5 0.4 0.4 0.3 0.3



Teble 4.3. HistorIcal pH and temperature val ues for _ftl uent and upstrealll q ua l Ity at three sl tes
(based on data for 1983-19851.

Jan Feb Mar Apr May Jun J ul Aug Sep Oct Nov Dec

Cl ty of Boul del'
temperature

ef flue nt 11.0 12.3 12.2 12.2 12.8 15.3 18.4 20.2 20.5 18.5 15.8 12.3
upstream 0.5 3.0 8.3 7.3 10.2 10.8 16.1 19.8 16.4 7.8 4.6 0.0

pH
ef flue nt 7.2 6.8 7.0 6.7 6.9 7.3 7.3 7.1 6.9 6.9 6.9 6.7
upstream 7.3 7.6 8.1 8.6 7.8 7.7 7.7 8.2 8.0 7.9 8.4 7.2

Engl ewood Jar nt-use
temperature

af flue nt 14 13 14 16 17 19 20 21 21 19 17 15
upstr eam 1.5 3.4 5.4 8.0 11.2 14.8 18.5 19.2 15.5 10.4 4.7 1.4

~ pH
~

0 effluent 6.9 6.9 6.9 7.0 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0
upstream 7.8 7.8 7.9 8.0 7.8 7.8 7.8 7.9 7.9 7.9 7.8 7.8

Fort CollIns WWTFI
temperllture

af flue nt 10.1 10.4 11.4 12.6 14.1 15.7 17.7 18.6 17.8 16.2 13.4 11.4
upstrellm 1.4 4.2 8.2 10.5 13.7 13.2 17.2 16.5 15.9 10.7 4.7 3.3

pH
ef flue nt 6.9-7.4 7.0-7.5 7.1-7.4 7.1-7.4 7.1-7.4 7.1-7.3 7.0-7.4 7.0-7.3 7.0-7.3 6.iI-7.3 7.0-7.5 7.1-7.4
upstream 7.8 7.8 8.1 7.7 7.6 7.4 7.7 7.9 8.0 8.0 7.8 7.8
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Figure 4.1 Ammonia treatment requirements for Englewood based on
chronic design flows and a chronic instream ammonia
standard of 0.06 mg/l-N.
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Figure 4.2 Ammonia treatment requirements for Englewood based on acute
design flows and an acute instream ammonia standard of 0.20
mg/l-N.
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Figure 4.3 Ammonia treatment requirements for Englewood based on the
7Q10 design flow and chronic instream ammonia standards
of 0.06 and 0.10 mg/l-N.
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Figure 4.4 Ammonia treatment requirements for Englewood based on the
7QI0 design flow, a chronic instream ammonia standard of
0.06 mg/l-N, and effluent flows based on design capacity
and actual historical use.
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treaiment onl y Is r equl red. The area shaded with the fIrst pattern 1net udes

any pH-temperature condItions that woul d r eq ul re advanced treatment, tf.

I lm1ts were based on a dest gn flew eq uat to the 7Ql 0 or I esse For exampl e,

at Engl ElWood given the use of the 7Q1 0 flOli of 28 cfs and a temperature of

lS oC, advanced treatment woul d be r equt red at any pH of 7.4 a- more. The

area Ov'erl at n with the second pattern t ncl udes condl tl ons that woul d requl re

advanced trea1lnent If 1tmtts were based on the 30Ql 0 design flew. The area

shaded wtth all three patterns l ncl udes those condItIons that woul d requt re

advanced treaiment If lImIts were based on the 30Q3 desIgn flQl.

Say t ngs in advanced treaiment req ul rements Is ev I danced by the areas of

the shaded boxes with I n the matr Ix. " The I arger the box, the greater the

savJngs netted by the use of a hIgher design fiOfi. The pH-temperature

matr 1ces shew that advanced treaiment requt rements are hlghl y varl abl e with

dt fferent pH-tanperature condltJons. In many cases, It appears that acute

or chronl c design flew Is a less critical factor than pH. A comparIson of

the chronIc flews at Engl ewood In Figure 4.1 prov Ides a good exampl e of

rh t s, GIven a temperature of 15°C, advanced treaiment would be trIggered at

pH 7.4 for a 7Q1 0 fl o«. Changf ng the dest gn f I Qf to a 30Q10 woul d sh rft the

condl tl ons for advanced tr eatment over one-tenth of a pH unl t, to 7.5 or

hIgher. A 30Q3 flew woul d r equl re advanced treatment at pH 7.6 or more.

Thus, lncreasl ng the desl qn flQtl fran the 7Q1 0 to the 30Q3, by 89 percent.

shIfts the condl tl ons for advanced treaiment requl rernents over by onl y two­

tenth 5 of a pH unIt (3 percent).

Temperature al so pi ays an Important rol e f n def i nl ng treatment

req ul rements. GIven a pH of 7.4 at Engl ewood, advanced treatment woul d be

required at temperatures of 15°C or hlgher using a 7Ql0 desIgn flow.

Changing the flow to a 30Q10 would shift the requirement for advanced

115



treaiment up to temperatures of 17°C or h I ghar. A 30Q3 fl cw woul d sh I ft the

r eq uI rement up to 1 9° C. The total ch ange t n temperatur e condt tt ons

r-eq ul rl ng advanced treaiment ach laved by I ncreasl ng the desl gn f I ow from a

7Q10 to a 30Q3, woul d be 4°C.

A comparison of 'hio acute desIgn flcws (lQ10 and fQ3) at Englewood also

show mInor savIngs In advanced treatment requlranentswlth an Increase In

the design flew. The matrices of effl uent limits based on chronic and acute

design flows at Boul der, Longmont, and Fort CoIl Ins shew sImIlar results.

Changes In the chrontc desIgn flow have a mtnor effect on treatment

r eq ul ranents reI atlve to the effect of pH and temperature.

The effect of usl ng a ehronl c I nstrean un-IonIzed ammonl a standard of

0.10 versus 0.06 mg/I-N In the effluent analysIs are shewn In FIgure 4.3.

Advanced treatment r equl ranents are shlfted over an average of about two­

tenths of a pH unit, and up 2-4°C when a standard of 0.10 mg/I-N Is used,

rather than 0.06. ThIs same effect occurs at the other sItes as seen by a

comparison of the Tables In Appendix B. Effluent lImIts based on an

Instrean standard of 0.08 mg/I-N can be Interpol ated between the I tmlts

based on 0.06 and 0.10 mg/I-N. The effect of changing the effluent flew

value fran design capacity rating to actual flews at Englewood 15 shown In

Ft gure 4.4. A 21 percent decrease rneff I uent f r ow produced rei atrvely

mInor sav Ings I n advanced treatment requl ranents.

COPPER

E.Q uatl on Use..d.. to Determ I ne Eft I uent LImits

The ana I y sis of a conserv att ve el anent, such as copper, t s I ncl uded In

thIs srudv to examIne the relatIonshIp between desIgn flows and effluent

I 1m I ts more dl recti y than the un- IonIzed ammon I a anal ysl s permIts. For the
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analysIs of copper, a sImple mass balance equation was used Clnterlm Report,

1986), Solving the equation for the permIt lImit gives the follewlng:

where C
E

= eft I uent permIt lImIt

Co = downstrean concentratIon (water qualIty crIterIa)

Cu = upstrean anbl ent concentration

Qu = upstrean flOti (design flew)

QE = eft 1uent dl scharge

For thIs analysIs, a sIngle water qualIty crIterIa for copper was

arbitrarily chosen as 0.01 mg/I. This val ue Is based on CI ass 1 col d and

warm-water requIrements for alkalinity of 100-300 mg/I as found In current

water quality crIterIa documents of Colorado (Colorado WQCC, 1984). The

val ue used for upstrean copper concentratIon was arbItrarIly chosen as zero

sl nce I nstrecm copper data are I 1m Ited and al so to reduce the I nf I uence of

other factors on the analysis. Effluent discharge values were generally

taken as desl gn capacl tl es, al though a few tests were made wIth actual

dl scharges for com par I son.

Results of Copper Effluent LImIt Analysis

The results of the copper effluent limit analysis are presented In

three tables. The first table (Table 4.4) gives theoretIcal effluent lImIts

for copper based on fIve different annual design f l oss (lQ10, 7Ql0, lQ3,

30Q3, and 30Ql0). A change fran the lQl0 to the 30Q3 chronic design flew at

Engl ~ood (89 percent Increase) prov Ides a 50 percent I ncr ease I n the copper

eft I uent I Im It. The effect of changl ng the acute desl gn flew fran a 1Ql 0 to
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a 1Q3 (46 percent I ncrease) I s a 26 percent I ncr ease I n the copper eft I uent

lImIt. SImIlar results are gIven for the other sites.

Theoretical copper effluent lImits based on monthly 7Q10 desIgn flOtis

are glven In Table 4.5. Effluent I lmlts at Engl~ood range fran a mInimum

of 0.028 mg/I In September and October to a maxlmun of 0.053 mg/I In May.

In thIs example, an Increase In monthly 7Q10 flOtis of 141 percent produced

an I ncr ease In effl uent I 1m Its of 89 percent.

In Table 4.6, total al Los ebl e copper loads are compared for monthly

versus annual 7Ql0 design fICNS. The use of monthly 7Q10 design flOtis at

Engl6l'iood produced a 31 percent Increase In the total al l ce ab l e load over

the annual load. The Increase In al l cs ebl e loads resultIng t ron the use of

monthly design flOtts ranged t rcn 31-80 percent CNer the four sites analyzed"
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Tllble 4.5. TheoretlclIl copper effluent lImIts ba se d on monthly 7QIO flows.

Ef f I Uti nt I ImIt

Site J lin Feb Mllr Apr May Jun J ul Aug Sep Oct Nov Dec

-
Eng' ewood

(mgl I I 0.033 0.033 0.034 0.034 0.053 0.043 0.045 0.040 0.028 0.028 0.035 0.035
( I bs/day I 7.7 7.7 7.9 7.9 12.4 10.0 10.5 9.3 6.5 6.5 8.2 8.2

( I bs/month I 237 221 248 237 381 303 324 289 194 201 248 248

Boulder
(mg/l) 0.014 0.017 0.017 0.018 0.022 0.034 0.036 0.025 0.021 0.016 0.015 0.018

(Ibs/dayl 1.9 2.2 2.3 2.3 2.8 4.4 4.8 3.2 2.8 2.0 2.0 2.3
( I bs/month I 59 61 70 70 87 133 147 100 83 64 60 72

longmont
I-' (mg/l I 0.018 0.019 0.019 0.019 0.024 0.057 0.052 0.040 0.027 0.022 0.022 0.021
N (Ibs!day) 1.8 1.9 1.9 1.8 2.4 5.5 5.0 3.9 2.6 2.1 2 .1 2.0
0 ( I bs/mO /lth) 55 53 58 55 73 164 157 120 79 65 63 62

Fort Co, I Ins
(mg/ I) 0.013 0.013 0.014 0.013 0.014 0 .072 0.060 0.026 0.015 0.013 0.013 0.013

( I bs/day I 0.76 0.76 0.82 0.76 0.82 4.20 3.50 1.52 0.87 0.76 0.76 0.76
(I bs/mO/lth) 24 22 25 23 25 127 109 48 26 24 23 24



Tabl e 4.6. ComparIson of theoretical allowable copper
loads based on monthly and annual 7Ql0 flows.

Total I bs , of al low ab I e copper lyr Percent
Site Monthly 7Ql0 Annual 7 Ql 0 I ncrease*

Engl ewood 3130 2173 31

Boulder 1006 641 57

Longmont 1003 588 71

Fort Col I Ins 498 278 80

* Percent Increase = «monthly) - (annual) x 100)/ annual
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OiAPrER 5 - CONQUSIONS

fvEIHOOOLOO IES OF LO'I-FLO'I ~AL YS IS

Per I od of Recor d

The period of record for frequency/duratIon analysl s that has been

recommended In the lIterature Is 30 years of dally flews. PerIods of record

as sha't as 10 years may al so be used for frequency/duratIon analysl s, but

coul d I ntroduce I arger errors. Because the data set for bioi ogl cally-based

analysis Is I arger, usIng all the flew data Instead of the annual lew flews,

a perIod of record shorter than 20 or 30 years can be used to produce

resul ts wIth good conf Idence. Two major probl ems lImIt the I ength of

avaIlable data sets - man-Induced changes In the flew regIme cause non­

hanogenel tl es and records at many gagl ng statIons close to dl sch arge s are

of ten shor t. To avol d probl em s wIth non- homoge ne I tl es and sh ort data

records It Is recommended that 10 years of the most recent dally flow data

avaIlable be used to calculate desIgn flews and that the design flQl values

be updated every fIve years wI,th NPrES permIt renewal s,

ExtensIon of FI at Records and Predl ctl ODS at Ungaged S (t!il~

Two methods were appl led to extend short periods of record or predIct

flows at ungaged sites - regressIon analysis and a water balance procedure.

Other methods may al so be appropr I ate. The use of one method over the other
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to gener ate f I CIfI recor ds at th e poI nt of I nterest I s both sl te and data

specl f lc, If there are a nunber of dIversIons, unmeasured tr I butar I es and

I nteraetl on wIth groundwater, water bal ance methods may be I nappropr I ate, as

was the case fa- est I matI ng f I C1fI at the Denver STP outf all. Regression

analysIs can be quIte useful If long perIods of record exist nearby and

there Is a short perIod of record at the sIte to verIfy the model s ,

HClflever, when there I s a chol ce of one model over another and dl fferent

measures of goodness of fIt appear equIvalent then reasonableness of the

model at a zero upstrean flo-l condition should pr eval l In the choice of the

most appropr I ate model.

CI Imatl c Year

The cl Imatl c year (Apr II 1-March 31) rather than the water year I s the

recommended period for frequency/duration analysis of low flows. The

clImatic year Is used because It does not usually break up the low-flow

period. In sane cases where 1011 f l oes occur In March or April, a different

period of analysIs may be more approprIate.

Er~ uenQ' Analysl s

There are a mmber of drcwbacks to the use of math ematl ca 1/ y def I ned

frequency/duration statistIcs to calculate design t t os s, First, the'

estimate of a distribution function that fits ICIfI-flow data Is dIfficult.

The log-Pearson Type III distribution has been appl led widely by the U.S.

Geological Survey and the U.S. EPA In both flood and ICIfI-flow frequency

analysis. It was used In this study to maIntain consistency with prevail Ing

practice. Hos ev er , the resul ts of th I s study have shown that the log­

Pearson Type III distribution did not fit annual 1000-f1Oft data at any of the

sItes tested and fIt monthly data at only a few of the sites. Normal or

log-normal dIstributIons were more approprIate In a mmber of cases. It
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should be noted that for every sIte selected In thIs study, the 7Q10

determ I ned us I ng th e normal dl str I butl on was I ess than the 7Q1 0 usl ng the

Log-Pearson Type III dIstributIon nable AS.9L No one dIstrIbutIon was

adequate to cover all the sItes fa- both annual and monthly flews. The use

of an Incorrect dIstrIbutIon functIon to analyze the flew data can Introduce

sIgnIfIcant errors, but It may requIre extensIve statIstIcal analysIs to

avol d such probl ans.

Anoth er sour ce of error In f req uency ana I y st sIs th e v 101 atl on of

necessary statl stl cal assunptlons of randomness and I ndependence of events.

These assumptIons are often vIolated by serially correlated annual or

monthly low flows. Errors In parameter estImates may also affect the

ana I y sl s, As an exampl e, the frequency facta- used I n the log-Pearson Type

III equatIon may be Impr oved and based on a combInatIon of the regIonalIzed

and statfon skews of low-tlow data as fn the case when e~lmatlng skew

coeff lei ents fa- dl str I butl ons of f I cod events. Hew ever, regIonalIzed skews

have not been defIned for low flows In the state of Colorado. ThIs

potentf al source of error has not been addressed prev fousl y, but coul d h ave
,

a s l gnl f Icant effect on the outcome of I ow-flow analysl s. EstImates of

sampl e means and varl ances m8)' al so Introduce addItIonal errors due to lack

of data.

The graphIcal method of frequency analysIs m8)' be a vIable alternatIve

to the mathanatlcal method because It elImInates sane of the problans Just

descrIbed. No assumption as to a theoretical distribution function and no

parameter estImates are r equl red for the graphIcal method. Hewever, there

renal n two maJa- drcwbacks to f requancv statl stl c desl gn f lows. The fIrst

I s that frequency/duratIon flews do not pr", Ide equal level s of protection

fran one sIte to another. As I II ustrated In th I s and other studl es, the
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number of one day excursIons belew a given flew statIstIc, like the 7Q10,

may vary by a facta- of 1'«0 to three fran strean to stream, even along the

Front Range In Colorado. In addition, frequency statistics do not relate

directly to aquatic life criteria because they are based on the extreme low

flow event for each year and do not account for any other low flows

occurring durIng that same year.

U. S. EPA B fot ogl cally-Based Desl go EIOds

The biologically-based method Is an empirical, distribution-free

approach to cal cui atl ng desl gn f lows. The method I s based on the actual

hlstalcal flow record rather than on f l os s predicted by a statistical

distribution. Being an empirical method utfllzlng only past flews, the

bioi ogl cally-based method does not r equl re th e str I nge nt assumptions th at

the data has a specific distribution, that the parameters of the

dl str I butl on such as the skew can be estl mated with a snail sampl e size, and

that Independence exists and correlation does not exist.

Biologically-based design flews relate to aquatic life criteria more

directly than frequency/duration statistics. The reason for this Is that

biologically-based analysis considers all flows that fall below a given

threshold level, whereas frequency/duration analysis Is based on the

extrane I ew-fl ew event fa- each year. Bioi ogl cal I y-based anal ysl s may be

used to define design flews of acute or chronic durations that will occur at

given allowable frequencies. The criteria for allowable duration and

frequency recommended by the U.S. EPA are 1-day for acute and 4-day for

chronic durations, and a frequency of once I n three years. However, s l te

specific conditions may be used to Justify other criteria (e.g. longer

chronic durations or greater frequencies of occurrence). Implanentatlon of

the bIologically-based approach on an annual basis Is relatively simple wIth
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exl stl ng prograns developed by the U. S. EPA and STORET data f II es. The

applicatIon of thIs analysis to monthly or seasonal design flews, hew ever,

wtl I requl re sane adaptation of existing prograns.

Rellablllb' of LOll-flew Analysis

Major sources of error In Icw-flcw analysIs Include: Inaccurate gage

measurements, InsuffIcient data (short record or long distance fran site),

non-hanogeneous data, violations of assumptions In statistical analysIs, and

poor fIts to probabllliy distrIbutions. These errors were not quantIfIed,

but may be sIgnifIcant for lew-flew analysIs.

AI though all flow data used were fran USGS gagIng statIons wIth

appropr I ate ratl ng of the qual liy of data, these ratl ngs were ba sed on al I

the data and not Just low flows. Unless the flcws are measured at sane

sort of control dev Ice, a spIll way or weI r, th e low f low measur es w II I be

very Imprecl se and I n many cases not measured but estl mated. Conventional

gagIng techniques (depth of flow and a rating curve) without a control

structure probably cannot measure f l os s accurately below 10 cfs and

certa I nJ y cannot measur e f I cw s to th e nearest tenth of a cf s,

FLO\' DATA ANPL YS IS

Month I y and SeasonaI FI ew s

Monthly and seasonal design flows have been applIed In a mmber of

states to more fully utilize strean assImilative capacities. A major Issue

that has receIved lIttle attentIon thus far Is the sIgnIficant Increase In

the number of excursIons that occur below monthly or seasonal frequency

statistic flows than belcw annual flews. this Increase was well evidenced

by the results of this study. The Implication of this analysis Is that a

more restrictive monthly flcw statIstic Is r equl red to prO/Ide a comparable
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level of protection to that prCNlded by a given annual statistic. As an

exampl e, It was shewn that a oomparabl e I evel of risk fa- an annual 7Ql0 Is

def I ned statl stl cally by a month' y 7Ql15. How ever, a comparabl e l ev el of

risk may not be appropriate. It makes ma-e sense to define an et l cs ebl e

frequency of excursions occurrIng In each month a- season and choose monthly

or seasonal flo«s to achieve those cr l ter l e, The allo«abie number of

excursions coul d vary CNer the year to pr ov t de a high I evel of protect I on

during crItIcal seasons for aquatic life In the same way that seasonal

standards have been appl led. Greater use of asslmll atlve capacity and more

excursIons could be al lewed durIng non-crItIcal periods.

A new technique was developed In this study to deal with the

cal cuI atlon of mov Ing averages for monthly design flews. The technique,

termed an overl appl ng procedure, Is used to el 1m Inate b I as of the ana I y sl s

toward the middle values of the month. In this study, CNerlapplng was used

onl y to ca I cui ate month I y freq uency statl stl c f I Off s, but coul d al so be

appl ied to biologIcally-based or excursIon analysIs. Use of the OIIerlapplng

procedure com pi lcates the anal ysl s, but It shoul d be recogn lz ed that without

overlapping a bias Is Introduced. This bias becomes more Important as the

duration of the mOIl Ing averages I ncr eases. The resul ts of th I s stUdy shcwed

that the bIas tended to produce higher monthly frequency statistic flews

without the OIerl appl ng procedure.

EFFLUENT LIMIT H4fll YS IS

,Aroma"1 a

The concentratIons of ammonl a used In th I s project were based upon

existing criteria a- recommendations by the U.S. EPA and were not subject to

analysis as to the adequacy or appropriateness of the criteria to affect
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exl stl ng r Iverl ne bioi ogy. Un-Ionized ammonl a was chosen because of Its

known Impact on fIsh, because It Is not conservative and Is In the effluent

of fJtIery sewage outfall. Probl ens dl d art sa, hc:wever, due to the dependence

of un-Ionized ammonl a concentrations on temperature and pH. Th Is dependence

was so large as to make the assessnent of the relatIonshIp of design t l os ,

effl uent I cad, and downstrean concentratIons very dlff Icul t to present. On

one hand, for a gIven combl nation of pH and tanperature, regardl ess of the

dll uti on f I 011 aval I abl e, advanced treaiment processes waul d be requl red. On

the other hand, a slight decrease I n temperature and/or pH waul d negate

treaiment beyond secondary. ·

It was found using Engl~ood flOll and water quality data that during

lOiI flQl excursions the calculated concentratIons of un-Ionized ammonia

ver l ed fran a lew of 0.018 mg/I for a flQl of .53 cfs and a hIgh of 0.074

mgt I for a f low of 28 cf s, There was a questJ on whether there coul d be a

relationshIp beiween duratIon of excursions, concentration of un-i l onl z ed

ammonl a and the f I QI statl stl c. However, usl ng the limited data base a

rei atr onsh I p coul d not be found. Th Is was due I n part to th e poor water

qualIty data avar I abl e and the fact that the pH and tanperature have a more

dom (nant rol e l n determ rn' ng the downstrean un-IonIzed ammonl a coneentr atl on

than dIlutIon effects; probably only moreconservatlvevarlablas such as

copper waul d sho« th Is ef fect.

Copper

Copper was chosen to be used as an example II I ustratlng the

rei atl onsh I p betw een de sl gn flew s and the concentr atl on of a conserv atl ve

water qual rry varlabl e. It Is a heavy metal, can be toxIc, can be found In

sewage ef f I uents and there are cr I terl a associ ated with It. The Increased

128



loading Into streams that resulted In the analysis did not take Into account

the passl btll1y that It coul d settl e out downstrean.

It was found that changIng the design flOlis could affect the allo«able

copper ef fluent concentrations sl gnIf lcantl y. A 26 percent I ncr ease I n thE!

eft I uent concentration I s all OIled I f the desl gn flo« were changed f rom a

1Q1 0 to a 1Q3 at Engl eIIOod. Usl ng a month I y 7Q10 versus an annual 7Q10 at

Engl ElWood all OIled an I ncrease of 31 percent of the total annual dl scharge of

copper.

saECTION OF APFROPR lATE DESIGN FLO'lS FOR DISOtAAGE ~RMITTING

The cr Iter I a for the sel ectl on of appropr I ate desl gn f lOlls I n the state

of Colorado are based on the requl rements of the most sensl tlve water use,

which Is aquatic life In most cases. Economic Impl tcatlons of various

desIgn flOlis may temper the selectIon, but current water quall1y regulations

requIre that prIority be gIven to the maintenance of exIsting Instream uses.

To protect aq uatl c I tfe, the U. s. EPA has recommended that dual desl gn f l oss

be used to ref I ect acute and chronl c condl tl ons, and has recommended 1-day

for acute and 4-day or 30-day for chronl c. The recommended all owabl e

f req uency of occurrence I s once I n every three years. AI ternatl ve duratIon

and frequency criteria may be Justified as long as Instream uses are

protected.

Given a set of duratIon and frequency crIterIa, the selectIon of annual

desIgn flows Is a relatively straIghtforward process. Hlstcrlcal 1000-f10il

data can be evaluated by either the biologically-based method or by

e x cur s Ion a na I y sis t 0 de fine f I ow s t hat me e t the c r I t e r I a.

Frequency/duratIon statIstIcs can be used to approxImate the flo« values
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defined by thIs analysIs at a gIven sIte, but do not prO/fde consistent

I fN el s of pr otect I on f ran one str ean to anoth er•

In thIs study, It was found that the desIgn flews meetIng the alterla

recommended by th e U. S. EPA were the 1Q10 for acute f lOlls and 7Ql 0 or 7Ql 5

for chronic flows. These desIgn flews are very restrIctive and pr ov Ide no

rei l ef for dIschargers from current limits. However, based on the

recommended crIteria, these f l oss maintain the required levels of protectIon

for equetl c lite. If the econanlc Implications ot such stringent design

flows warrant a change, then the first factor to adjust must be the

a Itert a. If the all ewabl e frequency were 91 Itched to once every two years

or If the chronic duratIon were switched fran 4-day to 3O-day, the effect on

the desl gn flew coul d be sl gnIf lcant.

Monthly and seasonal design flews can be used effectively to t ncr ease

the use of assl mII atl ve capacl ty and still mal ntal nexT st l ng l nsfr eam use s,

The applicatIon of monthly or seasonal design f l oss will requIre further

research I n a rnmber of areas, I ncl ud I ng th e ada ptatl on of bioi og I ca I I y­

based analysis and the def l nl f l on of allcwable excursIons on a monthly a­

seasonal basi s, It t s recommended that seasonal vart atl ons 1n water qualIty

and ef fluent qual rty al so be ref I ected I n the cal cui att on of seasonal

effl uent limits. The choice of whether to use monthl y or seasonal desr gn

flows may be a compromIse between Increased complexIty and greater

utilizatIon of asstmll atlve capact tv , The results of this study have shewn

th at the dl fferences between annual and month I y desl gn f lOllS are much

greater than between annual and seasonal desr gn t Jcws. The use of month I y

desIgn flows could result In substantIally higher permIt limIts than

seasonal tlQis, depending on the number of flow excursIons allowed. The

abll rty of dl schargers to adJ ust thel r treatment processes on a monthly
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basis and the Increased coapl exl tv of Implementation, hc:wever, may restrict

the use of monthI y limits.

The selection of design f l oss fer use In discharge permitting In the

state of Colorado Is a multi-million dollar Issue. A number of the

mun I cI pal ItI es throughout the state currentl y may face advanced treatment

req ul rements to ach leve ammonl a effl uent limits based on annual 7Q10 desl gn

f I OtIs. AI ternatl ves to annual 7Q10 have been anal yzed with respect to f I CM

magnitude, level of protection, and potential Impact on dIschargers. The

choice of acute and chronic design flows must take these factors Into

account as wei I as the bioi ogl cal req ul ranents of equatl cl Ife commun I tl es

reflected In Instrean water quality criteria.

It shoul d be noted that ba sl ng a pol I ut Ion control progr am on the

number of streamflow excursions I s not the same as the number of water

quality excursions. If a flow below the 1Q3 flow were to occur on a

specific day, It does not necessarily follow that an I nstream standard Is

viol ated. In fact, I n the case of un-Ionized ammonl a, the comb I nation of pH

and temperature must a/50 be above thresho/ d val ues before a standard Is

viol ated. The sensItivity of the concentratIon of un-Ionized ammonia to

these varl abl es I s so strong that I n many cases the I nstrean flOll has I Ittl e

effect on whether or not the standard I s v l cl ated. Until a more

quantitatIve method Is avaIlable to account for all the factcrs that affect

downstream water quality, a given design flOll may be used as an Indlcatcr

fer pollution control rather than an Indication that a standard has been

viol ated.

It Is worthwhile to note that the analyses presented In thIs report

gIve very good estimates of the magnItude and f req uency of 1000-f10ll events

for the respective municipalities and since much of the uncertainty of these

131



estimates are diminished, It may be prudent to reassess other facta-s whIch

Include the frequency dIstributions of the upstrean and effluent un-Ionized

ammonl a concentratIons. Under the exl stl ng I nstl tutl onal franework of

regul atl on and enforcement usl ng onl y Engl ewood data, I f the ammonl a

standard (un-Ionized) were enforced at 0.02 mgtl or 0.06 mgtl, many

communi tl es I n the state wIII be I ookl ng at NT at I east part of the year.

REroMtENDAT IONS

TIle recommendations that foll~ are those of the authors onl y, based

upon the InterpretatIon of the hydrologic data available and the analysis

procedures uti I lz ed, Extrapol atl on of the recommendations beyond condl tl ons

exper I enced I n the research or essun lnq that these recommendatlosn have the

consensus support of the steer I ng comm lttee are both not Just I fled at th I s

tIme.

l ) Fol l os the guidelines to compute the design flows given at the end of

th I s chapter.

2) Develop a data base of actual conditions of pH, temperature, upstream

ammonia concentration and downstream ammonia concentrations,

particularly during perIods of low-flow excursions to see If In fact

water quality concentrations are: 1) violating the existing stream

standard, and 2) dlmlnl sh Ing downstrean benef lei al uses.

3) A monthly flow statistic may be quite beneficial as a means to better

use strecm asslmll atlve capacl tv. However, Interm Ittent PflT may be

necessary during periods of I~ fl~s. If a monthly statistic Is to be

used, a month I y freq uency cr I ter I a Is r ecommende d.

4) Both regression methods and mass bal ance are appllcabl e for generatl ng

f I~ data, but the chol ce of one cver the other wIII depend on th e 51 te
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and data avaIlable. RegressIon methods appear quIte adequate for

predIctIng fl~ at a gIven outfall where I Imlted streamfl~ data ext sr,

but they are sIte and data specIfIc requiring sound Judgement by the

pr act I tl onere

5) Because mass bal ance for predIctIng flow at an outfall area was a

problem due to lack of kna«ledge of the many small ungaged streams and

the effect of groundwater It Is recommended that more research be

undertaken to estImate flews fran ungaged watersheds. and return flows

varIatIon In tIme and space. Develop a data base specIfically to

estimate the relationship beiween groundwater flew and surface discharge

dur i ng per I ods of I ew flew.

6) The present method of us l ng streamf·low excur sl ons as a means of

protectIng downstream uses Is not adequate In the case of un-IonIzed

ammoni a; pH. temperature and background ammonl a must al so be consi dered,

7) Develop better procedures for estImating the skew coefficient used In

the statIstIcal dIstrIbutIon for estImatIng IQ(-fl~ statistics.

8) The Log-Pearson Type III dIstrIbutIon may not be the best distrIbutIon

for frequency/duration analysis of ION flows. Other distrIbutions

shoul d al so be I nvestl gated.

9) There may be suffIcIent JustIfIcatIon to loosen the stream standard if

the recommended f low statlstl cs are used' n the future for di scharge

permitti ng si nee there will be much fEWer f I cw excur sl ons,

10) The state must foresee future water qual liy probl ems and regul atlons and

collect data and research to prove/dIsprove efficacy of the

institutional procedures to amelIorate the water qual tiy problems before

the fact. not after.
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REro~NDED GUIDEL INES TO OOMRJTE ~S IGN Fl~S

The foil Ott Ing I s the procedure recommended to be used to estImate

desl gn flew sIn Col a-ado.

1) Sel ect data set.

Use 10 years of the most recent dally flew data avaIlable, and update

design flew values every fIve years with the permIt renewal. This approach

shout d reduce probl EmS wIth no~hanogenel1'f and sha-t data records. If data

are not avail abl e upstream of the pol nt of dl scharge, use regression

analysIs or a water balance analysIs to transfer f l os s to the correct

I ocatl on.

2) Def Ine seI ect I on cr I ter I a.

First, determIne whether the desIgn flOtts are to be cal cui ated on

annual, month I y, or seasonal basIs. Then det Ine duratIon and t reque ncy

criteria to protect the most sensitive strean use, which Is usually eq uert c

lIte.

a) Dyratlon. Use -two duratIons, 1-day for acute condItions and 4-day

for chronIc conditIons as r ecommended by the U.S. EPA. A longer chronIc

duratIon may be Justified If the f l oe and water quality conditions are

relatIvely stable. Check coefficients of variation for lew flews (flews

I ess than the mean annual flcw) and for major water qual liy varl abl es to see

I f a longer dur atl on Is warranted. Rei atl vel y 1011 Cv val ues, fran 0.8 to

1.0 can be used to JustIfy longer dur atl ons,

b) Frequency. Sel act an e l l cs ebl e f req uency of excursions that will

protect Indl genous aq uatl c popul atl ons on a 51 te- spec! fie ba 51 s, The U. S.

EPA has recommended once rn three years to al IOtt popul atl ons to recover

fully after perIods of stress. However, once I n two years may be

suf f I cl ent, dependl ng on the characterl stl cs of the specl es present.
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Scfentlflc ratIonale fa- the sel ectlon of a frequency other than once In

three years shoul d be prov l de d, If monthly or seasonal flews are to be

used, choose seasonall y vary 1ng f req uencf es that ref I ect cr I tl ca I or non­

critIcal condItions fa- equetl c life. During crItIcal perIods, use once In

th ree years or a more restr I ct I ve f req uency, and dur I ng non-cr I tl ca I per I ods

use I ess restrIctive frequencIes. Account for cumul atlve effects of

excursions durIng the course of several seasons wIthIn a year. The use of

seasonal treq uencf es will req ul re further research Into acceptabl e level s of

protectI on fa- partl cuI ar uses.

3) Cal cuI ate desl gn f I~ s wIth the bIoI ogl cal I y-based method.

Use the progr an developed by the U. S. EPA fa- personal canputer s, or a

sImilar version, along with STORET data flies to calculate blologlcally­

based design fl~s. Calculate flo«s on an annual, monthly, and seasonal

basis InItIally to see whIch Is the most effectIve. Monthly fl~swlll

pro.' Ide for the greatest use of streans' asslmll atlve capacl tv, but may be

dl ff Icul t to Impl ement on such a short-term basI s, Seasonal f l oes are

recommended as a pr act I cal comprom I se between annual and month I y val ues,

Seasonal variatIons In water qualIty and aquatic life requIrements should

al so be I ncorporated I nto the anal y 51 s,

a) Annual f1~s. Use exIstIng prograns and annual frequency crIterIa.

b) Monthly fl9ls. Adapt prograns to a monthly basi s and use monthly

freq ue ncy cr I ter I a. I f a mov I ng average I s used I n the anal ysl s, use the

overl appl ng procedure to cal cui ate averages for longer duration f I cw s ( l, e.,

7-dayor longer). OverlappIng Is not r-eq ul r-ed for l-day a- 4-day duratIons.

c) Seasonal f10«5. Group months Into low, high, and transitIon

dl scharge seasons based on fl~, water qualIty and eftl uent quality. FI rst,

make the I nl tl al sel ectl on of seasons based on f I~ s, Use basI c statl st I cs
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(mean, medl an, and standard dev latlon) on mov Ing averages of acute or

chronic durations for each month to separate the seasons. Next, look at

seasonal variations In the controlling water qualliy variables (e.g., pH and

tanperature for un-IonIzed ammonl a JeveJ s). At th 1s stage, al so Jncorpor ate

consideration of critical seasons (e.g., spawnIng per-Iods) fer equatl c [ Ife,

FInally, check for large varIatIons In effluent quality or quantIty and

adjust the sel ectlon of seasons If necessary. These I ast two steps may hel p

to group transition flew months with high or lew discharge seasons, or may

actual I y change the desl gnatl ons of high or I ew given I n the first stage of

flOft analysIs. If water and effl uent quality data are limited, base the

se I ect Ion of season s on flew s alone. Cal cui ate seasonal desl gn f l oss with

prograns adapted to a seasonal basi sand with seasonal freq uency cr I ter I a.

Apply overlapping to longer duratIon flews, especially wIthin short, one or

two month long, seasons.

4) Eval uate potentl al sources of error. Oonsl der potentl al errors based

on the qualliy of the data set and the analysis. Factors to consider In the

quality of data I ncl ude: accuracy and compl eteness of the flOli record,

specifically during IQtI-flew periods; the proxlmliy of the gage to the point

of Interest; and the hanogenelty of the data. Further research may be

requl red to eval uate data errors quantitatively, but errors shoul d be

accounted fer qualitatively at the least. ErrCf's stanmlng fran the analysIs

should be less when applying the biologically-based approach versus the

frequency/duration methodol ogf.
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APPENDIX A
Memorandum from Ben Harding of WBLA, Inc., Boulder, Colorado

To the CI"ty of Boulder; Re: Wasteload AllocatIon on Boulder Creek
Date: February 26, 1986

EstImation of Inflows and DIlutIons Flows

We have estimated ungaged I nfl ows to Boul der Creek above the 75th
Street WWTP. Usl ng those estImated I nf I OIfS we haye model ed Boul der Creek on

' a dally basis for the 12-year period 1959 through 1970. There are 1wo major
"types of ungaged InflQis to Soul der Creek; surface and subsurface. There
are two sources of water; precIpItatIon, IncludIng snowmelt, and return
flQis fran agrIculture. We have used three methods to estImate flows from
the dIfferent sources. For ungaged surface Inflows fran precipItation,
whIch come fran the low el evatl on trl butarl es, we have used a correl atl on
with Coal Creek. For return flCMs we have used an analysis of Irrigation
effIciency and flO# routing. For excess flows not accounted for by these
two methods, we have used a mass ba l ance method based on measured
dIversIons.

1. Ungaged I nf I 0If s

There are three ungaged Inflows to the Boul der network. They are 1)
Four Mile Creek; 2) the small, ungaged tributaries on the north side of
Boul der Creek, Incl udl ng Bear Canyon Creek, Skunk Canyon Creek, BI uebel I
Canyon Creek, KIng's Gulch and Gregory Creek; 3) the smal I, ungaged
tributarIes on the south sIde of Boulder Creek, Incl udlng SunshIne Canyon
Creek, Goose Creek, Wonder I and Creek, Twom II e Canyon Creek and Fourm I Ie
Canyon Creek.

The dally Inflows from these three sources were synthesized by
mUltiplying the monthly Coal Creek gaged flow (In acre-feet) by the ratio of
the particular tributary drainage area to the Coal Creek drainage area and
then dIviding by 59.4 to obtain an average dally flow In cfs.

In the network, the northern tributaries come Into the system at the
pol nt of dIversIon of the Green 01 fch, The southern tr I butar I es come Into
the system above the confluence of South Boulder and MIddle Boulder Creeks.

2. Return FI CMS

A monthly dIstrIbution of average agriCUltural return flows was
calculated usIng the data presented In a report prepared by Rocky MountaIn
Consul tants, Inc. entl tl ed, Anal ysl s of Transfer of North Boul der Farmers
Ditch Shares. In this report, the authors calculate an average monthly
return flow rate (using data fran 1945 to 1965) attributable to 15.5 shares
of the North Boul der Farmers Ditch. FI rst, the return f low rates for each
of five separate propertIes whIch al I contribute to Boulder Creek are
calculated using the Glalfer method. The resultIng lag tImes for 95% of the
return f I ow to reach Boul der Creek vary fran 2 to 13 months, dependl ng on
the dIstance of each of these properties from the stream. The average
return flow rates, In cfs., for all five propertIes combined are presented
In Table 1:
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Table

81 .1

81.2

B1.3

Bl .4

Bl .5

B1.6

B1 .7

Bl.8

B1.9

Bl .10

B2.1

82.2

LIST OF TJlBLES FOR APPEND I X 8

TItle

Penmoni a effl uent limits fa- the Cltl es of L1ttl eton and Engl ewood
based on a 1Ql 0 chronic design f I Orland an I nstream ammonia
standard of 0.06 mg/I-N.

Ammonia effluent lImIts fa- the CItIes of LIttleton and Englewood
based on a 30Q10 chronIc design flow and an Instream ammonIa
standard ot 0.06 mg/I-N.

Mimonl a eftl uent lImIts for the CI ti es of L Ittl eton and Engl ewood
based on a 30Q3 chronIc desIgn flow and an Instream ammonIa
standard of 0.06 mg/I-N.

AmmonIa effluent lImIts for the CItIes of LIttleton and Englewood
based on a 7Ql0 chronic design tlOrl and an Instream ammonIa
standard of 0.10 mg/I-N.

Penmonla effluent lImIts for the Cities of LIttleton and Englewood
based on a 30Ql0 chronIc desIgn flOrl and an Instream ammonIa
standard of 0.10 mg/I-N.

Ammonia effluent I tmtts fa- the Ctttes of Ltttieton and Englewood
based on a 30Q3 chronIc desIgn flow and an tnstream ammonia
standar d of 0.1 0 mg/I-N.

Ammonia effluent lImIts for the CitIes of Littleton and Englewood
based on actual effluent flQis, a7Ql0chronic desIgn flQi and an
I nstream anmonla standard of 0.06 mg/I-N.

Ammonia effluent I imlts tor the Cities ot Littleton and Englewood
based on an upstream anmonia concentration of 0.10 mg/I-N, a 1Ql0
chronIc design flQi and an Instrean anmonla standard of 0.06 mg/I­
N.

Ammonia effluent lImits for the CitIes of Littleton and Englewood
based on a lQl0 acute design flow and an Instream ammonIa standard
of 0.20.

Mimonl a eft I uent I 1m Its for the Cltl es of L Ittl eton and Engl ewood
based on a 1Q3 acute desl gn f I ow and an I nstream ammonI a standard
of 0.20.

Ammonia effluent I imlts for the Cli)' of Boul der based on a 7Q10
chronic design flow and an Instream ammonia standard of 0.06 mg/I­
N.

Jlfnmonl a eft I uent I 1m Its fa- the CI ty of Boul der ba sed on a 30Ql 0
chronic design flow and an Instream ammonia standard of 0.06 mg/I­
N.

B-2



Table Tltt e

82.3 JWmonla effluent limits for the City of Boul der based on a 30Q3
chronic design flow and an Instream ammonia standard of 0.06 mg/I­
N.

82.4 AmmonIa effluent limits for the City of Boulder based on a 7Ql0
chronIc desIgn flow and an Instream ammonIa standard of 0.10 mg/I-
N. .

82.5 JWmonla effluent limits for the City of Boulder based on a 30Ql0
chronic design flow and an Instream ammonia standard of 0.10 mg/I­
N.

82.6 Ammon I a effl uent I 1m Its for the City of Boul der based on a 30Q3
chronic design flow and an Instream ammonia standard of 0.10 mg/I­
N.

82.7 Ammonia effluent limits for the City of Boulder based on a lQl0
acute design flow and an Instream ammonia standard of 0.20 mg/I-N.

82.8 JWmonl a effl uent I 1m Its for the CI ty of Boul der ba sed on a 1Ql 0
acute design flow and an Instream ammonia standard of 0.20 mg/I-N.

83.1 Mlmonla effluent limits for the City of Longmont based on a 7Q1 0
chronic design flow and an Instream ammonia standard of 0.06 mg/I­
N.

83.2 Ammon I a ef fl uent I 1m Its for the CI ty of Longmont based on a 30Ql0
chronic design flow and an Instream ammonia standard of 0.06 mg/I­
N.

83.3 Mlmonla effluent limits for the City of Longmont based on ,a 30Q3
chronic design flow and an Instream ammonia standard of 0.06 mg/I­
N.

83.4 Ammon I a ef fluent I 1m Its for the CI ty of Longmont based on a 7Ql0
chronic design flow and an Instream ammonia standard of 0.10 mg/I­
N.

83.5 Mlmonl a eft I uent limits for the City of Longmont based on a 30Q1 0
chronic design flow and an Instream ammonia standard of 0.10 mg/I­
N.

83.6 Ammonia effluent limits for the City of Longmont based on a 30Q3
chronic design flow and an Instream ammonia standard of 0.10 mg/I­
N.

B3.7 Ammonl a eft I uent I 1m Its for the CI ty of Longmont ba sed on act ua I
effluent flows on a 7Q10 chronic design flow and an Instream
ammon I a standard of 0.06 mg/I-N.

83.8 Ammonia effluent limits for the City of Longmont based on a lQl0
acute design flow and an 'nstream ammonia standard of 0.20 mg/I-N.
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83.9

84.2

84.3

84.4

84.5

84.6

84.7

85.1

85.2

85.3

85.4

Iltle

hnmonl a eft Iuent lImits for the CI ty of longmont based on a 1Q3
acute design flow and an Instream ammonIa standard of 0.20 mg!I-N.

Ammonia effluent lImits for the CIty of Fort Col I Ins based on 7Ql0
and 30Ql0 chronic design flows and an Instream ammonia standard of
0.06 mg!I-N.

Ammon I a effl uent limits for the City of Fort Coil Ins based on a
30Q3 chronIc design flows and an Instream ammonIa standard of 0.06
mg!I-N.

Ammonia effluent lImits for the City of Fort Col I Ins based on 7Ql0
and 30Ql0 chronic design flows and an Instream ammonia standard of
0.1 0 mg!I-N.

Ammon Ia effl uent limits for the City of Fort Coil Ins based on a
30Q3 chronic design flows and an Instream ammonIa standard of 0.10
mg!I-N.

Jlmmonla effluent limIts for the City of Fort Collins based on
actual effluent flows, 7Ql0 and 30Ql0 design flows and an Instream
ammonia standard of 0.06 mg!I-N.

AmmonIa effluent limits for the City of Fort Collins based on a
lQl0 acute design flow and an Instream ammonia standard of 0.20
mg!I-N.

Ammonia effluent limits for the City of Fort Coil Ins based on a
1Q3 acute design flow and an Instream ammonia standard of 0.20
mg!I-N.

Estimates of downstream unIonized ammonIa concentratIons for
Engl ewood.

Estimates of downstream unionized ammonia concentrations for
Engl ewood.

Estimates of downstream unIonIzed ammonia concentrations for
EnglElftood.

Estimates of downstream unionized ammonia concentrations for
Engl ewood.
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