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ABSTRACT OF DISSERTATION

THE INFLUENCE OF VARIATIONS IN PENETRATING SOLAR RADIATION ON 

THE DIURNAL AND INTRASEASONAL STRUCTURE OF THE OCEANIC 

BOUNDARY LAYER

 The upper portion of the ocean is fairly well mixed and turbulent.  The turbulence 

within the ocean boundary  layer (OBL) is regulated by many  mechanisms.  One process 

that is receiving a renewed interest is the effect of penetrating component  of surface 

shortwave radiation on ocean dynamics.  The influence of solar radiation has been 

parameterized in two ways.  A limited set of models force all the incoming solar radiation 

to be absorbed in the top model layer.  The second parameterization assumes that the 

irradiance (light) at a given level follows a multiple term exponential.  Most commonly it 

is assumed that shortwave radiation is absorbed in two bands: visible and near infrared.  

The strength of the infrared absorption is assumed to be fixed.  For the visible band, 

absorption depends on water clarity.  Until recently, water clarity could take six different 

values (Jerlov water types).  

 On climate scales, spatial and temporal variations in water clarity, based on 

surface chlorophyll, have a strong impact on the simulated ocean temperature, salinity, 
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and momentum.  For example, the sea surface temperature (SST) in the cold tongue is 

reduced.  In addition, the strength of the Walker circulation is increased.  However, this 

response is not consistent among different models and parameterizations.

 When chlorophyll is predicted, the influence of vertically variable water clarity on 

the thermodynamic and dynamic fields of the ocean can be examined.  Studies that have 

incorporated an ecosystem model find minimal changes relative to using observed 

surface chlorophyll.

 Previous research has focused on longer climate time scales and most models do 

not consider vertical variations in water clarity.  In this study the response of the ocean to 

diurnal and intraseasonal variations of water clarity  is examined.  The sensitivity to 

vertical variations in water clarity is also considered.  

 To study the impact of variable solar radiation a model that  accurately represents 

upper ocean physics is required.  A new ocean mixing model is proposed that addresses 

some of the known deficiencies in previous models.  The new model predicts entrainment 

based on turbulence at the OBL base, unlike other ocean models.  An over prediction of 

the vertical heat flux in previous mixed layer models is avoided.  The model framework 

discussed can be easily  extended to any coordinate system.  Further, this model can be 

coupled to an ocean biological model, which would determine the water clarity with 

depth, in a natural way.

 An evaluation of the new model against observations and a newly developed 

vector vorticity large eddy simulation (LES) model has shown that the new model 

preforms as well or better than previous OBL models in certain circumstances.  This is 
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especially with low vertical resolution.  Since this version of the new model is local, it 

does not perform as well in pure convective simulations as OBL models with non-local 

forcing 

 In this new model and K-Profile Parameterization (KPP), the temperature and 

velocity  is very sensitive to variations in water clarity.  Trapping more heat near the 

surface increases the temperature near the surface and confines daytime momentum input 

to a shallow layer.  In addition, the depth of the thermocline is reduced as water clarity 

decreases.

 The simulated temperature and velocity fields are insensitive to subsurface 

variations in water clarity.  The responses of the new model and KPP are similar when the 

turbidity of the column is taken as the near surface average.

 Two-dimensional simulations examining the influence of spatially variable 

turbidity lead to a slightly deeper thermocline and weaker near surface velocity  relative to 

simulations with a zonally constant water clarity.

 It is found that models must allow solar radiation to penetrate beyond the top 

model level.  Further, water clarity should be diagnosed from observed or predicted 

surface chlorophyll instead of the six Jerlov water types.

Luke P. Van Roekel
Department of Atmospheric Science

Colorado State University
Fort Collins, CO 80523

Summer  2010
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Chapter 1: 

The Dynamics of the Upper Ocean

 The top few hundred meters of the ocean is characterized by strong turbulence.  It 

is directly involved in the communication of fluxes (latent heat, sensible heat, and 

momentum) to the atmosphere and abyssal ocean.  Although upper ocean turbulence may 

end at the base of the ocean mixed layer (OML), it is possible for it to extend beyond this 

depth.  Figure 1.1 shows a schematic of ocean temperature with depth.  Turbulence 

extends to the thermocline.  This depth may not be identical to the depth of the OML 

base.  

1

Figure 1.1 - Cartoon of temperature profile.   Turbulence extends to the thermocline, mixing the top 50 - 
100 meters.  Taken from http://www.onrglobal.navy.mil/focus/ocean/images/water/temp.jpg

http://www.onrglobal.navy.mil/focus/ocean/images/water/temp.jpg
http://www.onrglobal.navy.mil/focus/ocean/images/water/temp.jpg


 Though the terms mixed layer and boundary layer tend to be used 

interchangeably, we define the near surface turbulent layer as the ocean boundary layer 

(OBL) and the well mixed region of the OBL as the OML. 

 The OBL is essential for many processes such as the meridional overturning 

circulation (Mohammad and Nilsson 2004), El Niño Southern Oscillation, and 

hurricanes.  Many physical processes regulate the thermodynamic and momentum fields 

of the upper ocean.  A few of these processes are illustrated in Figure 1.2.  There are two 

essential ingredients that models of upper ocean must consider.  First, a parameterization 

of entrainment across the OBL base is needed.  As the mixed layer expands, abyssal 

water is entrained into the upper ocean and can then be influenced by surface fluxes.  

2

Figure 1.2 - Cartoon schematic of a subset of the phenomena influencing the OBL (Taken from 
pmel.noaa.gov).  Incoming shortwave radiation can influence the entire boundary layer and part of the 
abyssal ocean (blue arrow).  The OBL is also influence by the net imbalance of downwelling longwave 
radiation and surface longwave radiation (green arrows).  Sensible (Yellow) and Latent (Purple) heat 
fluxes also influence the OBL.  Finally we must also consider the entrainment of waters from the abyssal 
ocean (Orange) and water that is detrained from the OBL (red). 



When the OBL shoals, the water that has been modified by surface fluxes becomes part 

of the deep ocean.  

 Second, models must correctly incorporate the influence of atmospheric forcing.  

In this work, we pay  particular attention to how surface shortwave radiation influences 

the OBL.

1.1 Penetrating Shortwave Radiation

 There are two ways to parameterize the remaining shortwave radiation.  The first 

approach is to absorb all the radiation in the top  model level.  When shortwave radiation 

is allowed to penetrated beyond the top layer, the depth dependence is assumed to follow

I(z) = Io I IRe−kir z + IVISe
−kvis z( ) . (1.1)

Here, Io is the surface irradiance, IIR and IVIS are the percentage of irradiance absorbed in 

the infrared and visible bands respectively, and kir and kvis are the attenuation coefficients.   

For many  years, kVIS was assumed to coincide with one of five different water types 

(Jerlov 1968, Paulson and Simpson 1977).  Instead of assuming a priori water types, 

calculating irradiance based on modeled quantities is desirable (Ohlmann et al. 1998).  

 Morel (1988), Morel and Antoine (1994), and Morel and Maritorena (2001) 

suggested that the extinction coefficient should be dependent upon the in situ chlorophyll 

concentration.  These studies propose that  the extinction should be computed as 

kVIS (λ) = KW (λ) + χc (λ)Ce(λ ) .  Here KW is the attenuation of clear water and C is the 
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chlorophyll-a concentration.  The functions χc (λ)and e λ( )  are determined by fitting the 

proposed equation to data.  

 The resulting parameterization is a function of wavelength and chlorophyll.  It is 

not feasible for ocean general circulation models to predict irradiance across all 

wavelengths.  Instead, this parameterization is usually  integrated across two bands to 

mirror the form of Paulson and Simpson (1977).  Manizza et al. (2005) proposed the 

following

I z( ) = Io 0.5e−kIR z + 0.5e−kCHL z( )
kIR = 2m−1

kchl = 0.0232 + 0.074C 0.674 .

(1.2)

The chlorophyll concentration in the parameterization of kchl is most often assumed to be 

a surface value.  Therefore, the extinction coefficient is taken to be horizontally  and 

temporally variable, but there is no change with depth.  To allow extinction to vary with 

depth phytoplankton, which can be taken as a proxy for chlorophyll, must be predicted.  

 It should be noted that this parameterization is just one of a large number 

previously  proposed in the literature.  For example, Ohlmann et al. (1998,2000) proposed 

a parameterization that has two more terms than equation (1.2).  Ohlmann et al. 

(1998,2000) proposed a relationship that depends on cloud fraction and solar zenith angle 

in addition to the chlorophyll concentration.  

 Despite extensive efforts to parameterize the relationship  between visible light 

extinction and chlorophyll, some have questioned (Siegel et al. 2005) if the extinction of 

visible light should depend solely on the chlorophyll concentration.  In addition to 
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chlorophyll, colored dissolved organic matter strongly absorbs solar radiation in the 

visible band and other particles scatter incident visible light.   This implies that use of 

surface chlorophyll measurements may not be sufficient in determining the influence of 

penetrating solar radiation on ocean dynamics.

 Even if we were to include other particles in a parameterization of visible light 

extinction the standard continuum approximation is invoked.  This may be a poor 

assumption when considering phytoplankton.  In a given parcel of water, a wide variety 

of phytoplankton species coexist.  Siegel (1998) argues that this paradox, where many 

species of phytoplankton coexist in a small space, is due to a highly discrete (i.e. non-

continuous) distribution within a parcel.  Siegel (1998) states that  the separation between 

individual phytoplankton is large enough to allow different species to coexist in a parcel 

and the continuum approximation should not be invoked for even the largest observed 

phytoplankton concentrations.

 If we are forced to abandon the continuum approximation for ocean biomass (e.g. 

phytoplankton), the interaction of solar radiation, biology, and ocean dynamics becomes 

exponentially more complex.  Regions of water within a GCM  grid box will not absorb 

solar radiation at  a constant rate.  This implies that knowledge of the sub-grid distribution 

of biomass would be required to accurately parameterize solar heating.  In spite of the 

results presented by Siegel (1998), we utilize the continuum approximation in this work.

 To low order, phytoplankton attempts to maximize light and nutrients.  The 

vertical distribution of phytoplankton could have an important influence on the profile of 

solar heating.  The flow of nutrients into the OBL is controlled by  two mechanisms.  
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McGillicuddy et al. (1998, 2007) propose that lifting due to mesoscale eddies is a large 

contributor to the nutrient budget in many regions of the ocean.  In addition, the 

entrainment of cold abyssal waters can move nutrient-replete waters into the upper ocean.  

In the simulations presented in this work, which are one- and two-dimensional, we cannot 

simulate the influence of mesoscale eddies.  However, the importance of the second 

mechanism confirms our belief that a model must accurately predict entrainment at the 

base of the boundary layer.

1.1.1 Influence of Penetrating Shortwave Radiation.

 The influence of allowing shortwave radiation to penetrate beyond the first layer 

is dramatic.  Schneider and Zhu (1998, SZ98) conducted a simulation where all the 

shortwave radiation is absorbed in the top model layer (15 m) and another using equation 

(1.1) with kvis=15 m-1.  The resulting OML depths for the sunlight penetration and no 

sunlight penetration runs are shown in Figure 1.3a and 1.3b respectively.

 The rough pattern of OML depths in Figure 1.3b is as expected.  The boundary 

layer is deeper in the extra-tropics and polar regions and shallower in the tropics.  When 

sunlight is allowed to penetrate beyond the first layer, the change is dramatic.  A realistic 

east-west tilt  of the tropical OML is now evident, and in general, the modeled mixed 

layer depths are deeper nearly everywhere.  

 When all of the sunlight is confined to the top layer, the static stability  is 

increased, prohibiting vertical mixing.  The overestimated seasonal cycle amplitude in the 

run where the sunlight is confined to the top layer is reduced when the sunlight is allowed 
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to penetrate, due to the increased OML depth, which increases the thermal inertia of the 

ocean.  

 The influence of kvis on the observed (or modeled) chlorophyll is not completely 

understood.  Many (e.g. Manizza et al. 2005; M05, Anderson et  al. 2007, Gnanadesikan 

and Anderson 2009; GA09, Anderson et al. 2009) find that the eastern tropical Pacific 

(cold tongue) sea surface temperature (SST) cools and the Walker circulation strengthens.  

A few others (e.g. Murtugudde et al. 2002 and one simulation from M05) find the 

opposite result.

 To study the influence of penetrating shortwave radiation on the upper ocean, a 

model is required.  Therefore, a survey of previous vertical mixing models is conducted 

7

Figure 1.3 - Sensitivity of annually averaged OBL depths to penetrating shortwave radiation. (a) Depth of 
the OBL base when sunlight is allowed to penetrate below the first model layer and (b) depth of the OBL 
base when all the sunlight is absorbed in the first model layer,  which is 15 meters thick.  Taken from 
Schneider and Zhu, their Figure 7.



to determine what is desirable in a model.  We also address why a new model is 

developed rather than using a previous mixing scheme.

1.2 Past OBL Models

 Modeling of the OBL began with the pioneering work of Kraus and Turner (1967; 

hereafter KT).   KT (and other works utilizing the type of model developed by Kraus and 

Turner 1967) assume that the upper ocean is a perfectly mixed slab.  To predict the 

position of the OBL base, KT considered an integrated turbulence kinetic energy (TKE) 

equation.  Further, KT assumed that  buoyant production of TKE is due to temperature 

fluxes only (no salinity).  This model was later extended by Niiler and Kraus (1977), 

Gaspar (1988), and numerous others.  Advances include the incorporation of salinity and  

refinement of the parameterizations of the integrated TKE production terms. 

 The model of Deardorf (1983) follows KT, but neglects the time change term in 

the integrated turbulence kinetic energy equation.  The resulting entrainment rate is 

proportional to three different diagnostic quantities.  These quantities depend on shear 

across the boundary layer base, and surface buoyancy and momentum forcing.  

 Modeling of the OBL moved in a different direction with the work of Price et al. 

(1986; hereafter PWP).  In this model, the mixing of properties is assumed to be 

proportional to a given function of the bulk Richardson number Ri =
gΔρH
ρo ΔV( )2

⎛

⎝⎜
⎞

⎠⎟
 and the 

base of the OBL is determined as the location where Ri = 0.65.  This critical Richardson 
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number was determined by comparing model output to observations of OBL deepening 

due to two storms near the Florida coast (Price et al. 1978).  

 The method for determining the boundary layer depths in these models is 

illustrated in Figure 1.4.  The critical Richardson number is given as the green dot.  Let us 

also assume that the density is equal in the top  two layers.  In one-dimension, it is 

assumed that the velocities and densities are co-located.  This implies that the natural 

location for Δρ = ρ2 − ρ1 and ΔU = U2 −U1 is the layer interface.  Beginning at the first 

interface, the Richardson number is calculated (Ri1 in the figure).  Since the value has not 

yet exceeded the critical Richardson number Δρ = 0( ) , the Richardson Number is 

calculated at the second model interface.  In this example we have assumed that the 

Richardson number calculated at the second interface is slightly  smaller than the PWP 
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Figure 1.4 - Schematic illustrating the boundary layer depth interpolation routine.  In this one-dimensional 
example, all quantities are computed at layer center.  The differences are defined at model edges.  This 
suggests that the Richardson number should also be defined at layer edges.  The green dot represent the 
critical Richardson number (e.g. 0.65 from PWP).



critical value.  When we calculate the Richardson number at the third interface, the value 

will exceed 0.65, therefore, we must use interpolation to find the depth of the boundary 

layer.  To the best of our knowledge, models similar to PWP use linear interpolation.  

This assumption becomes tenuous as the resolution coarsens.

 To this point, a perfectly uniform mixed layer has been assumed (for all predicted 

quantities), which implies an infinite efficiency of mixing.  Further, the assumption of a 

uniform OBL is contradicted by observations from the Tropical Oceans Global 

Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE; 

Webster and Lukas 1992).  

 Vertical structure in the salinity  and theta fields in the upper ocean can still result 

in a fairly well mixed layer in density.  Anderson et al. (1996) find that  the depth of the 

constant salinity  (isohaline) layer can deviate from that of the isothermal layer by as 

much as 30 meters.  A large precipitation even can create a shallow isohaline layer.  The 

influence on the temperature field would be minimal.  The resulting mixed layer would 

lie between the isothermal and isohaline layers.  Bulk mixed layer models cannot 

correctly predict the depth of the OML base in this situation.

 To address some of these assumptions, Large et  al. (1994), following on previous 

atmospheric modeling research (e.g. Troen and Mahrt 1986 and Holtslag et al. 1990),

proposed K-profile parameterization (KPP).  KPP does not assume a well mixed upper 

ocean.  In KPP, a polynomial profile of diffusivity is fit to match Monin-Obukhov 

similarity theory at the surface and the model predicted diffusivity at the OML base.  
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 KPP also included a non-local forcing.  The non-local term assumes a well mixed 

upper ocean and hence a linear flux profile that is related to the surface heat flux, 

convective velocity scale, and mixed layer depth is implemented in KPP.  Large et al. 

(1994) did not propose a non-local momentum flux, however, one has recently been 

suggested by Smyth et al. (2002).

 The non-local forcing is schematically illustrated in Figure 1.5.  As the surface 

fluxes change the temperature and salinity, these changes can be communicated to the 

deeper ocean by  two mechanisms.   When convection occurs (cooling or increasing 

salinity), an unstable gradient is created (temperature increasing with depth or salinity 

decreasing with depth).  This forcing needs to be communicated across very  weak (or 

unstable) gradients to the mixed layer base (illustrated in the top portion of Fig. 1.5a).  

Inclusion of non-local mixing can be important to correctly  simulating the diurnal cycle 

of the OBL.  
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Figure 1.5 - Illustrations of (a) non-local mixing in the upper ocean and down gradient mixing below.  
The result of this mixing is shown in (b).



 Mixing in the absence of convection is usually  down-gradient (bottom portion of 

Figure 1.5a).  The result of these two types of mixing is schematically illustrated in 

Figure 1.5b.  

 Despite advances in the model predicted diffusivity, KPP still determines the 

depth of the OML by a Richardson number criterion.  In KPP, the Richardson number is 

defined as

Ri =
Br − B h( )( )h

Vr −V h( ) 2 + Vt
2 h( )

; Vt
2 h( ) =

Cv −βT( )1/2

RiCκ
2 /3 cSε( )−1/6 hNw*. (1.3)

In this definition, the turbulent velocity shear squared Vt
2( )  is not only dependent on the 

boundary layer depth (h), stratification (N), and the convective velocity  scale, but it  also 

depends on a critical Richardson number (Ric).  In the original model, a value of 0.3 is 

proposed, which was chosen to match a high resolution KPP run.  Danabasoglu and Large 

(2003) suggest that this value should increase as resolution coarsens.  

 This critical Richardson number is also used to determine the boundary layer 

depth.  The same methodology described in reference to Figure 1.4 is used in this model.  

However, the current version of KPP has abandoned linear interpolation for a second 

order polynomial fit.  This change was implemented in the third version of the 

Community Climate System Model (Danabasoglu et al. 2006).  

 The influence of changing the accuracy of interpolation is shown in Figure 1.6, 

where the results have been zonally  averaged.  In this plot, HBL is the quantity 

determined by equation (1.3).  HMXL is the depth of the maximum buoyancy  gradient 
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(thermocline), which is opposite of what is defined in this work.  The thick lines are the 

result of using quadratic interpolation and thin lines result from linear interpolation.  At 

all latitudes, the zonally  averaged HBL and HMXL are deeper when using quadratic 

interpolation.  The systematic shallow bias noted in Appendix C of Large et al. (1994) is 

partially remedied by using quadratic interpolation.

 Although KPP is an improvement over previous OBL models, there are many 

shortcomings, the most glaring is the internal mixing algorithm.  Below the OML the 

mixing is simply  proportional to the Richardson number.  A number of papers (e.g. 

Jackson et al. 2008 and Zaron and Moum 2009) have noted that the dimensional 

coefficients in this parameterization yield unrealistically large heat fluxes (Zaron and 

Moum 2009).  Since the predicted mixing at the base of the OML affects the profile of 

diffusivity in the OBL, this problem could propagate through the entire upper ocean.
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Figure 1.6 - Sensitivity to the boundary layer depth interpolation routine in CCSM3.  HBL is determined 
by Equation (2), and HMXL is the depth of the maximum buoyancy gradient (thermocline).  In this plot, 
thicker lines represent quadratic interpolation and thin lines are linear interpolation.  Taken from 
Danabasoglu et al. (2006), their Figure A.2.



 The last  common option for modeling of OBL processes are k-ε (TKE - 

dissipation) models.  These models will predict  TKE (k) and the dissipation of TKE ε( ) .  

Once these quantities are predicted , the diffusivity is parameterized as Kh =
2k2

ε
Sh .  In 

this equation, Sh is referred to as a structure function (see for example, Canuto et al. 2001, 

2002, 2008).  

 In this framework, it is assumed that the third order moments and time tendency 

terms of the second order moment equations are small compared to other terms.  For 

example, consider the potential temperature variance (θ '2 ) equation, which is given by 

(see Appendix B)

∂θ '2

∂t
+
∂w 'θ '2

∂z
= −2w 'θ ' ∂θ

∂z
−

2θ '2

τθ

.

Here, the second term on the left-hand side is the non-locality  and τθ  is an eddy turnover 

time-scale.  If we assume the the left-hand side is zero, the potential temperature variance 

is given by θ '2 = −2w 'θ ' τθ
∂θ
∂z

.  If we make this assumption in the other second moment 

equations, we have a coupled set  of linear equations.  All of the second order moment 

equations are satisfied, assuming the time change and non-local terms are small.  This 

type of model is sometimes referred to as an algebraic Reynolds stress model and follows 

on the early work of Rodi (1976) and Gibson and Launder (1976). 
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  The solution of the system equations is very complex.  The resulting fluxes are 

proportional to  mean quantities (e.g. shear, N2), TKE, and dissipation.  Most of the terms 

are grouped into the structure functions for simplicity.

 Burchard et al. (1998) find that the use of a differential equation for dissipation 

led to an under prediction of TKE dissipation.  Thus, many k- ε  models have abandoned 

the equation for dissipation and have chosen to determine the dissipation from different 

parameterizations (most commonly ε = k 3/2 / l , where l is the turbulent length scale, 

which can be diagnosed or predicted).  

1.2.1 OBL Model Evaluations

 KPP and KT type models have been tested in many situations.  van Eijk (1998) 

tested a bulk (KT like) model and non-local diffusion (KPP) model in the Hamburg 

Ocean model.  The non-local diffusion model outperformed the bulk model in most 

simulations.  The only noted advantage of the KT model was speed.

 In a study  using Argo floats to verify predicted OML depths, Acreman and Jeffery 

(2007) found that KPP simulated mixed layer depths well, provided the vertical 

resolution was fine enough.  KPP did well at 2m resolution and outperformed KT and a 

two equation (k-ε ) model at  0.5m resolution.  As the resolution degrades (their Fig. 3), 

KPP is unable to correctly simulate the deepening phase of the annual cycle of the mixed 

layer depth.  

 Models following KT assume that the top model level is the mixed layer.  In 

summer months, the mixed layer depths are shallower and the model can respond quickly 

to atmospheric forcing. In the winter, when the mixed layer is thicker, the models 
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following KT are not able to respond to atmospheric forcing as rapidly as KPP.  The 

model predicted OML is closer to observations in the summer than in winter in bulk 

mixed layer models (Acreman and Jeffery 2007).

 In a study  of the response of the upper ocean to three separate hurricanes, Jacob et 

al. (2006) found that  the level 2.5 model of Mellor and Yamada (1982), which is a two 

equation turbulence model, outperformed bulk models when compared to observations.  

In one of the three hurricanes, KPP performed on par with the two equation mixing 

models.  

 In general, models following KT tended to be too warm and exhibit too little 

entrainment.  Some improvement was found by adjusting some of the constants in the 

parameterizations of the production terms in the layer integrated TKE equation.  Jacob et 

al. (2000) argue that the under prediction of entrainment rate in bulk mixed layer models 

can be linked to not considering the effect of shear across the OML base.

1.3 Vertical Coordinates

  In addition to model physics, discretization can impact the fidelity of model 

solutions.  The first  ocean models (e.g. Bryan 1969) were discretized on a cartesian (i.e. 

z-level) grid.  It is relatively  easy to formulate a model on a cartesian grid, but the model 

can be prone to spurious diapycnal mixing (Griffies et al. 2000).  This can degrade the 

representation of key  physical processes, such as overflows.  Cool waters in the far North 

Atlantic spill over the Greenland-Scotland Ridge.  These overflowing waters fill much of 

the abyssal ocean.  As they descend, entrainment occurs, modifying the volume and 
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density  of the overflow.  Accurate simulation of these waters and the corresponding 

entrainment is essential.  

 Hallberg and Adcroft (2009) have developed a new version of the GFDL ocean 

model that uses an isopycnal coordinate.  This model is nearly identical to the previous 

GFDL ocean model, except for the mixing schemes (a bulk model is used in the 

isopycnal model, where KPP is used for the cartesian model).  This allows for a cleaner 

examination of the influence of chosen vertical coordinate.  Figure 1.7, which is taken 

from Hallberg and Adcroft (2009), shows the horizontal mean temperature bias relative to 

observations from the World Ocean Circulation Experiment (WOCE).  Particularly in the 

mode water regions of the upper ocean, the errors in the density coordinate model 

(CM2G, black line in Figure 1.7) are much smaller than the other two GFDL z-coordinate 

models.  
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Figure 1.7: Horizontal mean temperature error for three different GFDL ocean models.  CM2G, which is 
the isopycnal model is Black.  CM2.1 and CM2M, which are two different z-coordinate models are Red 
and Blue respectively.  Taken from Hallberg and Adcroft (2009).



 Although density coordinate models eliminate numerical diffusion in adiabatic 

conditions, the resolution is degraded in regions of low stratification.  This is especially 

problematic in the OML and the far northern and southern oceans.  There are two 

possible remedies.  First, we could simply add more model layers.   

 The second option is to blend different types of vertical coordinates, creating a 

hybrid vertical coordinate.  The hybrid coordinate ocean model (HYCOM, Halliwell et al. 

1998) utilizes a density  coordinate in the stably stratified, adiabatic interior, a z-

coordinate in the OBL and weakly stratified interior, and a terrain following coordinate in 

shallow coastal regions.

 In this study, we operate under the assumption that z-coordinate model should be 

avoided.  Therefore, an OBL model that is easily adapted to other coordinate systems is 

required.  Bulk models and those similar to Canuto et al. (2001, 2002, 2008) can be 

adapted, where KPP is specifically designed for height based coordinates1.  

1.4 Where do we go from here?
 

 The previous section leads us to the conclusion that  there are many nice aspects of 

present OBL models.  However, we believe that there are areas for improvement.  The 

non-locality of KPP is important to many  regions of the ocean.  On the other hand, the 

interior mixing scheme is undesirable2.  Further, KPP is not easily adaptable to hybrid 

coordinates.
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1 Hybrid models that use KPP transform back to height coordinates when this routine is 
called. 
2 Alternate interior mixing algorithms for KPP have been proposed in Zaron and Moum (2009) and Jackson 
et al. (2008).



 Bulk models and two-equation turbulence models can be easily  derived in any 

coordinate.  However, both of these models lack the non-local terms in KPP.  In addition, 

two equation turbulence models do not explicitly consider the OBL depth.  Bulk models 

do predict an entrainment rate, but base this prediction on mixed layer integrated TKE.

 The design of a new model involves a series of choices.   In our design, the 

choices are primarily  informed by two goals.  First, we wish to be able to include biology 

in a natural way.  Phytoplankton is dependent on the nutrient supply  in the OBL.  The 

amount of nutrients in the upper ocean is primarily controlled by the entrainment rate of 

abyssal waters.  The model proposed here will explicitly predict  entrainment based on 

energy at the base of the OBL.  This new model is ideal for coupling to an ecosystem 

model.

 Second, the model should be easily adaptable to other coordinate systems.    

However, we must mention that inclusion of fully  interactive biology and hybrid 

coordinates is well beyond the scope of this dissertation.  But, the work done to this point 

is well along the road leading to these goals.  We have also avoided the problems 

associated with the internal mixing scheme of KPP and the interpolation issues associated 

with determining the depth of the boundary layer.

 As in-situ data is scarce for the ocean, we use a Large Eddy Simulation (LES) 

model as a means of model evaluation.  Chapter two will describe the LES model used in 

this study.  Chapter three will provide the details of the new model.  Particular attention is 

paid to the prediction of entrainment and the vertical coordinate.  Chapter four will 

present initial comparisons of the new model to LES and KPP.  In chapter five, we 
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examine the response of the diurnal cycle in the western tropical Pacific to variations in 

shortwave penetration.  The influence of spatially  varying penetrating shortwave 

radiation is discussed in Chapter six.  In Chapter seven we attempt to find the 

mechanisms that govern intraseasonal SST variability in the eastern Pacific warm pool 

(EPWP).  Finally, Chapter eight presents some concluding remarks and proposals for 

future work. 
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Chapter 2: 

A Vector Vorticity Large Eddy 

Simulation Model

 Due to the relative sparseness of in situ oceanographic data, we were unable to 

find a standard test case to evaluate the model framework developed in this work.  

Therefore, we have chosen to utilize a high resolution, Large Eddy Simulation (LES) .  

The model is cast in a vector vorticity framework.  We have dubbed it VVM-Aqua.  It 

follows the work of Jung and Arakawa (2008). 

 Our focus is on the upper ocean.  This is a region of very  active turbulence.  Since 

vorticity  is fundamental to an understanding of turbulence, we have adopted the Vector 

Vorticity  Model (VVM) developed by Jung and Arakawa (2008) as a benchmark in this 

study.  VVM should more accurately  represent the vortices associated with turbulence 

than other momentum predicting LES models.

2.1 Model Equations

 To convert  the model described in Jung and Arakawa (2008) for use in the ocean, 

a number of changes were necessary.  For example, the equation of state was altered to 
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include the effects of salinity.  We also wish to include the influence of Langmuir 

Circulation (Langmuir, 1938), which is modeled by the CLII mechanism (Craik 1977, 

Leibovich 1977, described below).   Langmuir cells are counter-rotating vortices, which 

are active in the upper ocean.  The middle of the two vortices is visible as windrows on   

a lake (Figure 2.1a).  

 Mathematically, the CLII mechanism is the cross product of the Stokes (or wave 

induced) drift with the three dimensional vorticity.  For very small waves, particle 

trajectories are closed ellipses.   As the waves grow in amplitude, the trajectories no 

longer close and the particle begins to move with the wave (Figure 2.1b).  This is the 

Stokes drift.  
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Figure 2.1 - Schematics to illustrate the CLII mechanism.  (a) Evidence of Langmuir Cells on a lake.  The 
white lines are called windrows and are the convergence zone of two Langmuir Cells, taken from 
www.umaine.edu/waterresearch/FieldGuide/onthewater.htm  (b) illustration of the wave induced (Stokes) 
drift (Taken from http://commons.wikimedia.org/wiki/File:Deep_water_wave.gif).   (c) Resulting force 
from the interaction of the Stokes drift and zonal velocity perturbation (adapted from Leibovich 1983).
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 Now let us imagine a small perturbation in surface zonal velocity (center of 

Figure 2.1c).  A zonal Stokes drift  is also imposed (Blue arrows in Figure 2.1c).  To the 

north of the velocity perturbation, the vertical vorticity −∂u
∂y( )  is positive (black 

arrows in Figure 2.1c).  Conversely, the vorticity is negative to the south of the velocity 

maximum.  If the Stokes drift (blue) is crossed with the vorticity (black), the resulting 

force, which is depicted as red arrows in Figure 2.1c, points toward the velocity 

maximum.  By continuity, there must be a downward velocity  (i.e. sinking) at  this 

position.  Away from the zonal velocity  perturbation, the force vectors diverge, which 

signifies upward motion.  The spacing and depth of these rolls are dependent upon wind 

speed and stratification (e.g. Pluedemann et al 1996).

  When the CLII mechanism is included, the equations of motion in momentum 

space are written as

Du
Dt

− f v + vs( ) = −
∂π
∂x

−
∂u 'u '

∂x
−
∂u 'v'

∂y
−
∂u 'w '

∂z
+ vsζ (2.1)

Dv
Dt

+ f u + us( ) = −
∂π
∂x

−
∂u 'v'

∂x
−
∂v'v'

∂y
−
∂v'w '

∂z
− usζ (2.2)

Dw
Dt

= −g ρ
ρo

−
∂π
∂x

−
∂u 'w '

∂x
−
∂v'w '

∂y
−
∂w 'w '

∂z
+ usη − vsξ (2.3)

Dθ
Dt

= −
∂u 'θ '

∂x
−
∂v'θ '

∂y
−
∂w 'θ '

∂z
+

1
ρoCp

∂I(z,t)
∂z

(2.4)

DS
Dt

= −
∂u 'S '

∂x
−
∂v'S '

∂y
−
∂w 'S '

∂z
(2.5)
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∇ ⋅u = 0 (2.6)

ρ = ρo 1−α θ −θo( ) + β S − So( )( ). (2.7)

In these equations, us and vs are the Stokes (or wave) drift in the zonal and meridional 

directions respectively.  The function I is the irradiance (i.e. light).  Finally, π  is the 

modified pressure, which is given (following McWilliams et al. 1997; M97) as

π = p / ρo +
1
2

u + us
2 − u 2⎡

⎣
⎤
⎦.

 In VVM-Aqua, the zonal, meridional, and vertical components of vorticity are 

defined (following Jung and Arakawa, 2008) as

ξ =
∂w
∂y

−
∂v
∂z

;η =
∂u
∂z

−
∂w
∂x

;ζ =
∂v
∂x

−
∂u
∂y

.

In these definitions we have used the Boussinesq approximation where Jung and Arakawa 

(2008) use the Anelastic approximation.

 To derive the vorticity equations for VVM-Aqua, we preform the operations given 

in Table 2.13.
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3 A derivation of the equation describing the x-component of vorticity is presented in 
Appendix A (the other two derivations are similar).



Equation Operation Performed

ξ
∂
∂y

2.3( ) − ∂
∂z

2.2( )

η ∂
∂x

2.3( ) − ∂
∂z

2.1( )

ζ
∂
∂x

2.2( ) − ∂
∂y

2.1( )

 The resulting vorticity equations are

∂ξ
∂t

+
∂u*ξ
∂x

+
∂v*ξ
∂y

+
∂wξ
∂z

+η ∂u*

∂y
−ζ ∂u*

∂z
− ξ ∂u*

∂x
=
∂B
∂y

+ f ∂u*

∂z
+
∂Fw

∂y
−
∂Fu

∂z
(2.8)

∂η
∂t

+
∂u*η
∂x

+
∂v*η
∂y

+
∂wη
∂z

−η ∂v*

∂y
+ ξ ∂v*

∂x
+ζ ∂v*

∂z
= − f ∂v*

∂z
+
∂B
∂x

+
∂Fw

∂x
−
∂Fu

∂z (2.9)

∂ζ
∂t

+
∂u*ζ
∂x

+
∂v*ζ
∂y

+
∂wζ
∂z

+η ∂w
∂y

− ξ ∂w
∂x

−ζ ∂w
∂z

= − f ∂u*

∂x
+
∂v*

∂y
⎛
⎝⎜

⎞
⎠⎟

+
∂Fv

∂x
−
∂Fu

∂y
(2.10)

∂ξ
∂x

+
∂η
∂y

+
∂ζ
∂z

= 0 (2.11)

In these equations, we have defined
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Table 2.1 - Operations performed to derive the vorticity equations in VVM-Aqua.



u* ≡ u + uS

v* ≡ v + vS

Fu ≡ −
∂u 'u '

∂x
−
∂u 'v'

∂y
−
∂u 'w '

∂z

Fv ≡ −
∂u 'v'

∂x
−
∂v'v'

∂y
−
∂v'w '

∂z

Fw ≡ −
∂u 'w '

∂x
−
∂v'w '

∂y
−
∂w 'w '

∂z

Fθ ≡ −
∂u 'θ '

∂x
−
∂v'θ '

∂y
−
∂w 'θ '

∂z

FS ≡ −
∂u 'S '

∂x
−
∂v'S '

∂y
−
∂w 'S '

∂z

B ≡ g ρ
ρo

.

The model is discretized on the grid illustrated in Figure 2.2.  The salinity and density is 

located at θ  points.  
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Figure 2.2 - Variable discretization for VVM-Aqua.  The red levels are considered model centers and the 
black layers are model edges.  At the surface, all quantities are assumed to be zero, which is the rigid lid 
approximation.



 Even though we can write an equation for the vertical vorticity ζ( )  at every level, 

the vertical vorticity is predicted at  one layer only.  After the vertical vorticity is predicted 

at the bottom layer, Equation (2.11) is used to obtain ζ at the remaining levels.  If we 

were to predict ζ at every level, there is no guarantee that equation (2.11) could be 

satisfied.

2.1.1 Sub-grid Scale Mixing

 Although VVM-Aqua is run at a resolution that captures most turbulent motions, 

we still require a sub-grid mixing parameterization.  We have chosen to follow an 

adaptation of the Smagorinsky scheme presented by Noh et al. (1999).  In this scheme, 

the friction terms in (2.8) - (2.10) are written as

Fu ≡ −∇ • νT∇u( )
Fv ≡ −∇ • νT∇v( )
Fw ≡ −∇ • νT∇w( )
Fθ ≡ −∇ • κT∇θ( )
FS ≡ −∇ • κT∇S( )

where the viscosity νT( ) is parameterized as νT ≡ C Sl
2 f Ri( ) 2SijSij .  In this equation, 

CS is a constant, l is a length scale, and Sij is the strain rate tensor Sij ≡
∂ui

∂x j

+
∂uj

∂xi

⎛

⎝⎜
⎞

⎠⎟
.  In 

the simulations presented in this work, CS is set to 0.17, following Noh et al. (1999).  

 Frequently the length scale is defined as l ≡ ΔxΔyΔz( )1/3 .  Mason (1989) 
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proposed a modification of the length scale to include the effects of buoyancy.  The 

resulting length scale, which is used in Noh et al. (1999) and VVM-Aqua, is 

l = min ΔxΔyΔz( )1/3 ,φκ z + zo( )⎡
⎣

⎤
⎦ .  

Here κ is von Karman’s constant, zo  is the surface roughness, and φ ≡ 1− 4γ Ri( )1/4 , 

where γ is an adjustable constant. 

 Finally, we have added a function of Richardson number that cuts off mixing 

whenever Ri > 0.25 .  The explicit form of this function is

f Ri( ) =

1 Ri < 0

1− 4Ri 0 ≤ Ri ≤ 0.25
0 Ri > 0.25

⎧

⎨
⎪⎪

⎩
⎪
⎪

.

Throughout this thesis, we assume that κT = υT .

 When discretized on the grid in Figure 2.2, the mixing coefficients are located 

with the tracers.  The coefficients are then interpolated to locations that facilitate the 

computation of frictional tendencies in momentum space.  For example, using Figure 2.2, 

we discretize the frictional term for zonal momentum as

−
∂
∂x

υT
∂u
∂x

⎛
⎝⎜

⎞
⎠⎟
−

∂
∂y

υT
∂u
∂y

⎛
⎝⎜

⎞
⎠⎟
−

∂
∂z

υT
∂u
∂z

⎛
⎝⎜

⎞
⎠⎟

= −
1
Δx

υTi , j ,k+1/2
ui+1, j ,k+1/2 − ui, j ,k+1/2{ } −(

υTi−1, j ,k+1/2
ui, j ,k+1/2 − ui−1, j ,k+1/2{ }) − 1

Δy
0.25 υTi , j ,k+1/2

+υTi , j+1,k+1/2
+υTi−1, j ,k+1/2

+υTi−1, j+1,k+1/2{ }(
ui, j+1,k+1/2 − ui, j−1,k+1/2{ } − 0.25 υTi , j ,k+1/2

+υTi , j−1,k+1/2
+υTi−1, j ,k+1/2

+υTi−1, j−1,k+1/2{ } ui, j+1,k+1/2 − ui, j−1,k+1/2{ })
−

1
Δz

0.25 υTi , j ,k+1/2
+υTi , j ,k+1/2

+υTi−1, j ,k+3/2
+υTi−1, j ,k+3/2{ } ui, j ,k+3/2 − ui, j ,k+1/2{ } −(

0.25 υTi , j ,k−1/2
+υTi , j ,k−1/2

+υTi−1, j ,k+1/2
+υTi−1, j ,k+1/2{ } ui, j ,k+1/2 − ui, j ,k−1/2{ }).
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After computing the tendencies at momentum points, we take the curl to obtain the 

frictional forcing at the vorticity points.

2.2 VVM-Aqua Evaluation

 After conversion of the original VVM  to VVM-Aqua, the initial test was a  

negatively buoyant bubble near the top of the domain.  The background state is at rest and 

is isothermal and isohaline.  The domain is 3.2 km x 3.2 km in the horizontal and is 2.4 

km deep.  Initially, we use a isotropic resolution of 50 meters.  The number of grid points 

is nx = ny = 64 and nz = 55.  The shape of the bubble is defined by (equation 27 of Jung 

and Arakawa, 2008)

Δθ =
0 if L > 1
Δθmax 1− L( ) if L ≥ 1

⎧
⎨
⎪

⎩⎪

where Δθmax = −0.5K , L ≡ sqrt x − xc

xr

⎛
⎝⎜

⎞
⎠⎟

2

+
y − yc

yr

⎛
⎝⎜

⎞
⎠⎟

2

+
z − zc

zr

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, xc = yc = 1.5875

km, xr = yr = zr = 200 m, and zc = −300 m.  

 The model is run for a short time (10 minutes) with the position of the bubble 

fixed to allow the motion fields to spin up.  Diffusion is not included in these simulations.  

The buoyant bubble is simply  advected.  Therefore, any reduction in the domain variance  

of potential temperature should be due to numerical diffusion.  The default advection 

scheme is third order accurate, but there is an option for a fifth order accurate scheme.
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 Figure 2.3 shows vertical cross sections of the temperature perturbation 

θ −θBackground( ) in time for the third (left column) and fifth order (right column) advection 

schemes at three different times.  The initial contour is zero and the interval is -0.05 K.  

At this resolution, there are eight grid points across the diameter of the bubble.
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Figure 2.3  - Slice through the center of the domain of a negatively buoyant bubble placed at the top of the 
domain through time for third order advection (Left column) and 5th order advection (right column).  The 
times of the slice are given between the two columns.



 At 25 and 40 minutes, there is more variance in the 5th order simulation (note the 

darker blues evident after 40 minutes of the fifth order plot  especially).  However, after 

80 minutes the variance in both the third and fifth order simulations is greatly reduced. 
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Figure 2.4  - As in Figure 2.3, but for doubled resolution.



 As previously  mentioned, ζ is obtained by integration of equation (2.11).  The 

numerical implementation of the equation (2.11) is second order accurate.  Therefore, we 

expect that there will be more numerical diffusion in VVM-Aqua at coarser resolutions 

when compared to other oceanic LES models.  

 Figure 2.4 is identical to Figure 2.3, but the resolution is doubled in every 

direction.  We now have 128 x 128 x 110 points, which is equivalent to 

Δx = Δy = Δz = 25 meters.  

 As expected, doubling the resolution improves the simulation of the descending 

bubble.  The maximum magnitude of the fifth order, high resolution, bubble is -0.25 at  80 

minutes compared to -0.1 K for the corresponding low resolution bubble.  

 Figure 2.5 shows the variance, which has been normalized by the initial variance, 

in time for the four simulations.  Since sub-grid diffusion is not used in this simulation, 
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Figure 2.5 - Plots of the normalized temperature variance.  The dashed lines are for the high resolution 
simulations.  The red lines are for fifth order advection and the black are for third order advection.
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all the diffusion results from the numerical discretization.  In Figure 2.5, the red lines are 

for fifth order advection, the black lines are third order advection, and the dashed lines 

are the high resolution runs.  There is a noted improvement when moving from third to 

fifth order advection, but the increase in resolution, given the same advection scheme has 

a greater impact on the numerical diffusion.

 Overall these initial tests offer nothing surprising and simply serve as a sanity 

check after converting the VVM for oceanic use.

2.2.1 Bubble in a Sheared Flow

 As noted above and in Appendix A, the CLII mechanism is easily  incorporated in 

a vorticity framework.  In VVM-Aqua, the CLII mechanism acts as an additional 

background flow.  Prior to a Langmuir simulation, with heat fluxes and wind stress, we 

conduct the high resolution, fifth order, simulation with a simple background flow.  The 

background flow is horizontally homogenous with a constant vertical shear.  The velocity 

is zero at the surface and linearly  increases to -0.5 ms-1 at the bottom of the model.  In 

this simulation, the Smagorinsky sub-grid mixing scheme is enabled.   

 Three time snapshots of the perturbation temperature field are shown in Figure 

2.6a-c.  In Figure 2.6d-f the y-component of vorticity η( ) multiplied by a reference 

density  is plotted in contours, the gray shaded region corresponds to vertical velocities 

less than -0.1 ms-1 and regions where the vertical velocity exceeds 0.1 ms-1 is black.  The 

contours of ρoη  run from -0.015 kg m-3 s-1 to 0.015 kg m-3 s-1 by 0.003 intervals.  Figures 

2.6a and 2.6d are at 25 minutes, Figures 2.6b and 2.6e are at  40 minutes, and Figures 2.6c 

and 2.6f are at 80 minutes.  
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 As time increases, the density perturbation now translates with the background 

flow, which is moving from right to left in each plot. Additionally, the temperature 

perturbation bows into the background flow (Figure 2.6a).  Near the end of the simulation 

without background shear, the temperature perturbation becomes concentrated in two 

regions connected by a thin filament-like structure.  This is the result of an increase in 

radius of the vortex ring that is advecting the bubble downward.  When background shear 

is included, the upwind portion of the vortex (solid lines) is stretched vertically, and the 

downwind vortex (dashed lines) is compressed.  These results are qualitatively similar to 

those obtained in a similar simulation conducted by Jung and Arakawa (2008).

2.2.2 Wind Driven Mixed Layer

 The final essential ingredient in any Langmuir cell (LC) simulation is wind driven 

mixing.  In VVM-Aqua, we implement the effect  of surface wind on vorticity  by first 

computing the tendency at momentum points in the first  model layer and then taking the 

curl.  

 In this test, the surface temperature is set to 293.15 K and the stratification is 4 x 

10-2 Km-1. The zonal wind stress is set to 0.037 Nm-2 (there is no meridional wind stress).  

There is no initial flow.  The model domain 80 m x 80 m x 30 m.  There are 30 points in 

the x- and y-directions and 60 points in the vertical.

 In addition to the Smagorinsky sub-grid mixing scheme, we have also included a 

sponge layer in the bottom third of the domain.  This layer is designed to relax properties 

back to their instantaneous horizontal average to minimize wave reflection.  Finally, a 
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small white noise forcing is added to the surface momentum forcing for the first thirty 

minutes of the simulation to initiate turbulent motions. 

 The model was run for six hours.  The temperature and zonal momentum fields 

are shown in Figure 2.7 for three times (black is hour one, red is hour three, and blue is 

hour six).  It is encouraging that the wind is successfully mixing the temperature field.  

The question is whether or not the simulated amount of mixing is appropriate.  We can 

get an analytic estimate from Denman (1973).  

 Denman (1973) was able to obtain an analytic solution under the assumption of 

no heat exchange between the atmosphere and ocean, no dissipation, and no vertical 

velocity.  Further, it is assumed that once the mixed layer forms it remains well mixed.  

Using these assumptions, the mixed layer depth is given by  (equation 33 of Denman, 

1973)

h t( ) =
12G
∂θ

∂z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/3

t1/3 .
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Figure 2.7 - Temperature (a) and Zonal Velocity (b) profiles through time for the wind induced mixed 
layer deepening simulation.  In both plots, the black plot is hour one, red is hour three, and blue is hour six.
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In this equation, t is the time and G is the energy input by  the wind.  In bulk mixed 

models G = gαm3u*
3 , where m3  is a constant (Denman 1973 and Gaspar 1988 choose a 

value of 0.3) and α is the coefficient of thermal expansion.  Using the parameters in this 

test, hhour1 = 3.35m , hhour 3 = 4.83m , and hhour 6 = 6.08m .  

 From Figure 2.7 it is evident that the bulk mixed layer assumption is tenuous.  

However, if we use the threshold criterion of Montegut et al. (2004) to determine a mixed 

layer depth and proceed with the comparison to the Denman (1973) estimate, we find 

fairly good agreement ( hhour1 = 3.33m , hhour 3 = 4.32m , and hhour 6 = 4.51m ).

 With the individual pieces tested, we assemble everything in an often used LC 

simulation.

2.2.3 LC Simulation

 The tests conducted to this point, although simple, suggest that VVM-Aqua is 

behaving appropriately.  We now turn our attention to a more “real world” problem.  The 

LC simulation we conduct is quite common (e.g. Skyllingstad and Denbo 1995, M97, Li 

et al. 2005, Polton et al. 2008, Harcourt and D’Asaro 2008).  The mixed layer is 33 

meters deep and below the mixed layer the stratification is set to 0.01 Km-1.  There is no 

initial motion field.  Although VVM-Aqua has salinity, among other passive tracers built-

in, we assign a constant salinity throughout the run.

 The Stokes drift is parameterized as the result of a monochromatic surface wave.  

In addition, the Stokes drift is assumed to be horizontally  homogeneous.  Using this 

assumption, the depth dependence of the Stokes drift Us z( )( ) is given as 
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US z( ) = US 0( )e−kz , where k is the wavenumber. The surface Stokes drift  is specified by 

the turbulent Langmuir number, which is defined (following M97) as Lat =
u*

US 0( ) .  

Therefore, specification of Lat and the surface friction velocity will give 

Parameter Value

u*
2 3.721x10−5 m2 s-2

Lat 0.3

k 0.105 m-1

US 0( ) 0.068 m s-1

w 'θ '
sfc 1.22 x10−6 m K s-1

w 'S '
sfc

0 m PSU s-1

f 10−4 s-1

  

the surface Stokes drift.  The simulation parameters are summarized in Table 2.2.

 The sub-grid mixing scheme is included, as is the sponge layer scheme described 

in Section 2.2.2.  Finally, we note that white noise is added to the heat flux for the first 

hour to initiate turbulence.

 In this section, we conduct two nearly identical simulations, in the first, we omit 

the CLII mechanism US z( ) = 0( ) .  In the second, LC is included.  In these initial 
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Table 2.2 - Summary of parameters relevant to this simulation.



simulations, we choose Δx = Δy = 5m and Δz = 1m.  The initial number of grid points is 

32 x 32 x 90.

 In these simulations, we have changed to a normalized depth coordinate, which is 

given as the actual depth divided by  the initial mixed layer depth zi( ) .   In Figure 2.8, the 

vertical velocity variance (normalized by u*
2 ) is plotted as a function of time for both 
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Figure 2.9 -  Horizontal slices of vertical velocity at two meters depth for the run with LC forcing (a) and 
the run without (b).  The color scale is identical in both plots.
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runs.  When the CLII mechanism (Figure 2.8a) is included, w ' 2
increases by nearly a 

factor of three when compared to the run without LC (Figure 2.8b).  

 Horizontal slices of predicted vertical velocity  at two meters depth for the run 

with LC forcing and no LC forcing are shown in Figures 2.9ab respectively.  The most 

apparent difference is the increase of coherent structures in the LC run.  The overturning 

cells, which are deflected to the right of the surface momentum forcing due to the 

Coriolis force, appear as neighboring regions of rising and sinking motion.  When the LC 

forcing is omitted (Figure 2.9b), the cells are no longer visible, and the magnitude of w is 

reduced.  These results are expected from the argument given in Section 2.1.  

 In Figure 2.10 the horizontally  averaged change in temperature from the initial 

profile is shown for the run with LC and without LC in Figures 2.10a and 2.10b 

respectively.  The inclusion of Langmuir Cells increases the entrainment at  the mixed 
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layer base.  This is evident from the increased warming below the mixed layer and 

cooling directly above in Figure 2.10a.

 Two key questions remain.  First, is our chosen domain large enough?  As can be 

seen in Figure 2.9a, the number of LCs present may not constitute a sample size large 

enough to obtain meaningful turbulence statistics.  Second, is the increase in the 

magnitude of w ' 2
correct?  

 To address the first question, we have conducted a simulation identical to the LC 

run shown here, but  the domain size has been doubled (nx = ny = 64, nz = 90, Δx = Δy =

5, and Δz = 1).  Doubling the domain size does increase the number of LCs in the domain 

(compare Figure 2.9a to Figure 2.11), but to examine the effect on turbulent statistics 

further analysis is required.  

 In M97, the turbulent quantities are averaged over many  eddy turnover times.   

Here, the eddy turnover time scale is defined as the eddy length divided by a velocity 

scale.  Mathematically, the time scale can be written as τ =
leddy

2e
.  For these tests, the 
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Figure 2.11 - Identical LC test as shown in Figure 2.9a, but here the domain size has been doubled.
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denominator is on the order of 1 cm s-1.  If the eddy fills half of the initial mixed layer 

depth, the eddy  turnover timescale is about 30 minutes.  Even though we can define an 

eddy turnover timescale, the use of many in M97 is ambiguous.  Therefore, we examine 

the influence of the averaging time period on the vertical heat flux, which has been 

normalized by the surface flux, in Figure 2.12.  In this figure, the green line is the 

normalized heat flux at a given instant.  We see strong wiggles below the mixed layer.  
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Figure 2.13 - Time and domain averaged zonal velocity plots for VVM-Aqua (a) and M97 (b).  In both 
plots, the dashed lines include LC forcing, the solid line does not.  In (a), the dashed blue line is the small 
domain (S/0.3 in M97) and the red line is the extended domain (E/0.3 in M97).
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Figure 2.12 - Effect of averaging interval on the profile of normalized heat flux.  In this plot, green is the 
instantaneous heat flux.  The black line is averaged over one hour, the red curve is averaged over two 
hours, and the blue curve is averaged over six hours.
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The result of averaging over 1 hour is given in black.  Most of the oscillations seen in the 

green curve below the mixed layer have averaged out.  However, a few remain.  The 

result of averaging over two hours is the red curve.  Most of the flux profile in the upper 

portion of the domain has remained the same, and the overshoot near -1.4 is diminished.  

Finally, the blue curve is the result of a six hour average.  The blue and red curves are 

nearly identical.  For the following analysis, we will choose to average over a three hour 

window.  

 The time and horizontally averaged zonal velocity for the no LC, small domain 

LC, and large domain LC runs are shown in Figure 2.13a.  The corresponding result from 

M97 is shown in Figure 2.13b.  In the following comparisons, the solid black line in the 

figures from M97 corresponds to the solid black line in our figures.  The dot dashed line 

corresponds to our dashed blue line (small domain), and the dashed line corresponds to 

the dashed red line (large domain).  

 The averaged zonal velocity profiles compare well.  As in M97, the inclusion of 

LC results in a well mixed layer of easterly momentum, although it is better mixed in 
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Figure 2.14 - As in Figure 2.13, but for the v-component of velocity.
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M97.  Without LC, the surface velocity  is positive.  The surface value is stronger in 

VVM-Aqua (0.065 ms-1 compared to 0.052 ms-1 in M97).  In our runs, the differences in 

the time and spatially averaged zonal velocity  between the small and large domain runs 

(red and blue dashed lines) is similar to what is observed in M97.

 The v-component of velocity is shown in Figure 2.14ab for VVM-Aqua and M97 

respectively.  The profiles for the run without LC forcing match fairly  well.  Again the 

surface v-velocity  is stronger in VVM-Aqua than in M97.  Within the mixed layer, the 

profiles remain similar.  

 Near the bottom of the mixed layer, the v-velocity decreases to zero in M97, but 

remains slight positive in VVM-Aqua.  Below the mixed layer base, the velocity 

decreases to zero rapidly in VVM-Aqua.  We believe that this may be related to the 

averaging interval.  Since Figure 2.14b is time averaged in addition to being horizontally 

averaged, the length of the averaging and the end points of the averaging window will 

alter the profiles in Figure 2.14ab (and Figure 2.13ab), due to the Coriolis force.  If we 
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Figure 2.15 -  Time averaged profiles of the normalized turbulent flux of u for VVM-Aqua (a) and M97 
(b).  The line styles and colors are as in Figure 2.13.

� � � � � 
 � � 	 � � � � � � � � � 	

�
� � � � ��



��
�
��
��
��
��
��
��



��
�
��
��
��
��
��
��

� �
�
� �

�
�



move the averaging window and alter the length, the structure below the mixed layer in 

Figure 2.14a disappears (not shown).

 The magnitudes of zonal and meridional velocity  are weaker in the LC run 

relative to the run without LC forcing.   The vertical profiles are also more mixed in the 

Langmuir turbulence runs.  

 The zonal momentum flux is shown in Figure 2.15 for VVM-Aqua and M97.  The 

two models agree well.  The profile of u 'w '
u*

2  for the run including Langmuir turbulence 

is slightly stronger at depth when compared to the run without LC forcing.  If we think of 

the Stokes drift as an additional source of shear, it is logical that the zonal momentum 

flux is stronger at depth in the run with LC included.  

 The aspect  ratios of Figure 2.15ab are different making it seem that the profiles of 

u 'w '
u*

2  are quite different in VVM-Aqua compared  to M97.  However, the values 
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Figure 2.16 - As in Figure 2.15, bur for v 'w '
u*

2
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through depth are similar.  For example, in the middle of the mixed layer, the zonal 

momentum flux is approximately -0.3 in both runs.

 Figure 2.16 displays v 'w '
u*

2 for the two models.  The comparison is quite good 

between VVM-Aqua and M97.  The increase in meridional momentum flux in the run 

with Langmuir turbulence is due to the Coriolis vortex term, as an increase in zonal 

velocity  at depth will also increase the southward velocity  at depth (see Figure 2.14).  An 

increase in the vertical shear of the meridional current would increase the value of 

v 'w '
u*

2 .  

 There are two primary differences between the results of our simulations and 

those of M97.  First, we observe a greater difference between the small and large domain 

runs than that  seen in M97.  Second, the vertical flux of meridional momentum is 
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Figure 2.17 - As in Figure 2.15, but for w 'θ '
w 'θ 'sfc
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stronger, albeit only slightly, below the mixed layer in our Langmuir turbulence 

simulation.

 The vertical heat flux, normalized by the surface heat flux, for VVM-Aqua and 

M97 are given in Figures 2.17a and 2.17b respectively.  Inclusion of the CLII forcing 

increases the upward heat flux in the lower portion of the mixed layer, confirming the 

increased entrainment due to LC observed in Figure 2.10a.  The VVM-Aqua fluxes are 

similar to those obtained in M97, except there is a slight upward heat flux near a 

normalized depth of -1.5, which is absent in M97.  The increase in the magnitude of the 

vertical heat flux through much of the mixed layer suggests there will be a larger value of 

eddy diffusivity associated with LC. 

 McWilliams and Sullivan (2000) have suggested that the mixing due to LC can be 

included in the KPP model by modifying the turbulent velocity  scale to include a factor 

given by 1+ 0.08Lat
−4( )1/2

.  This factor is derived from scalings from LES output that 

relate w ' 2
and the turbulent Langmuir number.  The scaling that leads to the proposal of 

McWilliams and Sullivan (2000) is not conclusive.  For example, Harcourt and D’Asaro 

(2008), using LES output from Li et al. (2005), found that the best fit for the mixed layer 

average of normalized vertical velocity variance scales as 1+ 0.098Lat
−2( ) .  This is 

consistent with McWilliams and Sullivan (2000) for large values of turbulent Langmuir 

number, but diverge as this number decreases, which is when the CLII forcing becomes 

important.  
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 It is important to note that these scalings are for a very specific circumstance, and 

there is yet no agreement.  Grant and Belcher (2009) have recently proposed that the 

correct scaling is u*
2us0( )1/3

, where us0 is the surface Stokes drift.  

 Despite the lack of conclusive evidence on which scaling is physically correct, 

M97 uses the same set up and forcing as Li et  al. (2005) and McWilliams and Sullivan 

(2000).  We have more faith in the scaling of Li et al. (2005).  The coefficients in the 

scaling proposed by McWilliams and Sullivan (2000) are chosen for mathematical 

elegance and are not fit to LES results. 
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Figure 2.18 - As in Figure 2.15, but for w
' 2

u*
2

� � � � � � � � �

�



��
�
��
��
�

�	
��
��



��
�
��
��
�

�	
��
��

� � � � ��

w
u

'

*

2

2



 In this simulation, Lat = 0.3 , implying that wML
' 2

u*
2 = 1.3 .  The VVM-Aqua output 

for the small and large domain runs is approximately 1.1, which is close to the Li et al. 

(2005) scaling.  

 The smaller magnitude of the mixed layer average of normalized w ' 2
 in VVM-

Aqua can be further elucidated by comparing the vertical profile of w ' 2
in VVM-Aqua 

(Figure 2.18a) to M97 (Figure 2.18b).  As expected from Figure 2.8, the time averaged 

vertical velocity  variance is much stronger when LC forcing is included than the run 

driven by surface forcing alone.  The peak in w ' 2
for the black curve in Figure 2.18a (no 

LC) is similar to the M97 result (0.57 for VVM-Aqua, compared to 0.6 for M97).  
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Figure 2.19 - Horizontally and time averaged profiles of u 'w '
u*

2 (a) and v 'w '
u*

2 (b).  In these plots, the 

blue line is the small domain LC run with one meter resolution and the dashed blue line uses 0.5 meter 
resolution.



 The differences are much larger for the Langmuir turbulence runs.  The peak 

value of w
' 2

u*
2  for the small domain VVM-Aqua run is 1.69 and is 1.61 for the large 

domain run.  In M97 the peak values for the small and large domain runs are 

approximately 2.8 and 2.6 respectively.  This is a non-negligible difference.  In addition, 

the maximum of w
' 2

u*
2 occurs at a deeper level in VVM-Aqua compared to M97 and 

other similar simulations (e.g. Skyllingstad and Denbo 1995 or Grant and Belcher 2009).  

In addition, it seems as though the profile is more diffuse, i.e. the fall off from the peak 

value is more gentle in VVM-Aqua than in M97.
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Figure 2.20 - As in Figure 2.19, but for the normalized heat flux.
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 The difference in vertical velocity  variance simulated by VVM-Aqua compared to 

M97 is not understood.  A detailed examination of LC simulated by  VVM-Aqua and that 

simulated by other momentum predicting LES models is left for future work.

 We have conducted a simulation identical to our LC simulations, except that the 

resolution is doubled (dz = 0.5).   The profiles of the vertical fluxes of u and v 

momentum, which are again normalized by  the surface friction velocity, are shown in 

Figure 2.19.  In these resolution comparisons, the solid black curve is the small domain 

Langmuir turbulence result, and the blue dashed line is from a high vertical resolution, 

small domain, run.  The profile of u 'w '
u*

2 in the low and high resolution simulations are 
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Figure 2.21 - As in Figure 2.19, but for w ' 2
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very similar, except near the surface.  The maximum magnitude of v 'w '
u*

2 is slightly  less 

in the high resolution simulation when compared to the lower resolution run.  

 The normalized heat flux is given in Figure 2.20.  Through most of the boundary 

layer, the heat fluxes are nearly identical.  Below the boundary layer, the small positive 

heat flux evident in the lower resolution simulation is reduced at the finer resolution.

 Finally, the vertical velocity  variances for the high and low resolution runs are 

shown in Figure 2.21.  The maximum in normalized w ' 2
has shifted toward the surface in 

the high resolution simulation.  The general shape now better resembles that in M97 

(Figure 2.18b).  However, the maximum magnitude is still approximately  half of that 

observed in M97.   

 

2.3 Conclusions

 We have successfully converted an atmospheric vector vorticity model (Jung and 

Arakawa 2008) to an ocean model.  Temperature, salinity, and two passive tracers are 

included.  The model utilizes a linear equation of state (equation 2.7).  We have 

implemented a fifth order accurate advection scheme, and the sub-grid mixing scheme 

follows Noh et al. (1999).

 Initial testing of the model shows that VVM-Aqua behaves as expected.  Simple 

tests of the formation of a mixed layer by wind stress agree with the analytic estimate of 

Denman (1973).  More rigorous testing, following M97, shows that VVM-Aqua seems to 

be slightly more diffusive than other LES models.  
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 The run with surface momentum forcing only compares well to M97.  Many of 

the VVM-Aqua simulated turbulent quantities for the run simulating Langmuir 

turbulence are similar to M97.  However, the variances w ' 2
andθ '2( )  tend to be weaker in 

VVM-Aqua.  Further, the location in the maximum of normalized vertical velocity 

variance is shifted downward from M97.  We have found that increasing the vertical 

resolution eases this bias.  

 The differences in the maximum simulated value of w
' 2

u*
2 in VVM-Aqua 

compared to M97 is not fully understood.  The large domain run with LC forcing is 

identical to M97 (except the vertical resolution is coarser), and many  turbulent statistics 

are very similar, yet the maximum value of w ' 2

u*
2  is much smaller in VVM-Aqua.  

 We have also examined the sensitivity to doubling the horizontal resolution in 

addition to doubling the vertical resolution.  The maximum in w
' 2

u*
2  does increase, but 

only to 1.9 (recall in M97 the normalized vertical velocity variance was nearly three) and 

the mixed layer average increases to 1.2.  The increased resolution does improve the 

result relative to M97, but it seems as though something else is missing.  

 Despite this unanswered question, we are encouraged by the comparison between 

VVM-Aqua and M97 in the simulation without LC forcing.
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Chapter 3:

A New Vertical Mixing Model with

Explicit Entrainment

 As previously mentioned, the model described in this chapter is designed with two 

guiding principles.  First, we desire a model that explicitly  predicts the entrainment rate. 

Second, we want the model to be easily adaptable to hybrid coordinates.

 The entrainment rate could be predicted via a layer integrated TKE equation, as in 

bulk models (e.g. KT, Gaspar 1988). This assumes that the vertical profiles of the mean 

and turbulent quantities within the upper ocean are well mixed.  Instead we expect that 

entrainment at the OBL base should be based on local turbulent fluctuations.

 To predict the entrainment rate based upon properties at the OBL base we follow 

the work of Lappen et al. (2010, L10).

3.1 Computation of the Entrainment Rate

 L10 have recently modified the Assumed Distribution Higher Order Closure 

(ADHOC3) model to include a prognostic PBL top.  ADHOC3 parameterizes 
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entrainment by  considering the budgets of w ' 2
and w 'w 'w ' near the PBL top. These 

turbulent moments are predicted by assuming a top-hat distribution within a grid cell.

 In this model, we write the budget equations for w ' 2
and w 'w 'w ' in a general η( )  

coordinate as4

∂mw ' 2

∂t
+ ∇ ⋅ mvw ' 2( ) +

∂mη
•
w ' 2

∂η
+
∂w ' 3

∂η
∂η
∂z

=
1
3

c1 − c2
⎛
⎝⎜

⎞
⎠⎟

u 'w ' ∂u
∂η

∂η
∂z

+ v'w ' ∂v
∂η

∂η
∂z

⎛

⎝⎜
⎞

⎠⎟
+

4g
3

αw 'θ ' − βw 'S '( ) + ε − 2τ pv
−1w ' 2

(3.1)

∂mw ' 3

∂t
+ ∇ ⋅ mvw ' 3( ) +

∂mη
•
w ' 3

∂η
+
∂w ' 4

∂η
∂η
∂z

= −
2c8

τ
w ' 3

+ 3g 1− c11( ) αw ' 2
θ ' − βw ' 2

S '{ } (3.2)

In these equations, η
•

is the vertical velocity in our general coordinate and m is the

pseudo-density m ≡
1
g

∂p
∂η

⎛
⎝⎜

⎞
⎠⎟

.  The remaining constants are defined in Appendix C.

 Since we are predicting the entrainment rate, the model layers will expand and 

contract. This implies that cartesian coordinates would be a very poor choice.

 Most of the interior oceanic flows are adiabatic and thus an isopycnal coordinate 

is logical. However, in weakly  stratified regions, isopycnal models lose resolution. A few 

ocean models, such as HYCOM, seek to combine the best qualities of different 

coordinate systems. HYCOM uses a cartesian coordinate in the mixed layer, an 

isopycnal coordinate in the adiabatic interior, and a terrain following σ( ) coordinate in 
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shallow coastal regions.  This allows the model to maintain high resolution in weakly 

stratified and coastal regions. Further, HYCOM avoids the spurious diffusion associated 

with advection in z-coordinate models (Griffies et al. 2000).

 The end goal for this model is a hybrid coordinate. In the first version of the 

model, the chosen vertical coordinate is a normalized height coordinate. The grid levels 

are schematically illustrated in Figure 3.1.  In the model, height (z) increases upward. 

Therefore, as we move down in a column, z becomes more negative.  In Figure 3.1, the 

dots signify the position of the mean quantities u,v,T ,S,m,ρ( ) .  In one-dimensional

simulations, all of the mean quantities are predicted at open circles. When the model is 

extended to two dimensions in Chapter 6, the grid is staggered and the velocities will be 

predicted at the red circles.

 In this example, the OBL depth zB( )  decreases from left to right. This implies the
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Figure 3.1 - Grid arrangement of the new model framework discussed here and in Chapter 6.



thickness of the layers in the OBL is larger on the left side of the domain than on the 

right. The opposite is true in the deep ocean. In Figure 3.1, we have assumed that the 

coordinate surfaces are equally spaced within each layer, however, this not required.

 The mathematical form of our chosen coordinate is given by

σ ≡

zs − z
zs − zB

for zs ≥ z > zB

zB − z
zB − zBOT

+1 for zB ≥ z ≥ zBOT .

⎧

⎨
⎪
⎪

⎩
⎪
⎪

(3.3)

Where zs , zB ,  and zBOT  are as defined in Figure 3.1. The pseudodensity  (m) can now be 

written as

m =
ρ zs − zB( ) for zs ≥ z > zB

ρ zB − zBOT( ) for zB ≥ z > zBOT .

⎧
⎨
⎪

⎩⎪

In this definition, the hydrostatic approximation has been used. We can now rewrite 

equations (3.1) and (3.2) as

∂mw ' 3

∂t
+ ∇σ ⋅ mvw ' 3( ) +

∂mσ
•

w ' 3

∂σ
+ ρ ∂w ' 4

∂σ
= −

2c8

τ
mw ' 3

+ 3mg 1− c11( ) αw ' 2
θ ' − βw ' 2

S '{ } (3.4)

∂mw ' 2

∂t
+ ∇σ ⋅ mvw ' 2( ) +

∂mσ
•

w ' 2

∂σ
+ ρ ∂w ' 3

∂σ
= −2τ PV

−1 mw ' 2
+

4mg
3

αw 'θ ' − βw ' S '{ }
− mu 'w ' ∂u

∂z
− mv'w ' ∂v

∂z
+ mε.

(3.5)

As a next step, it is useful to present these equations in a very general form as

∂mA
∂t

+ ∇σ ⋅ mvA( ) +
∂mσ

•
A

∂σ
+ ρ ∂FA

∂σ
= mSA .
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In this equation, A is some quantity  to be predicted, FA is the turbulent flux of A, and SA  

represents the sources and sinks of A. If we now take the special case of A=1, we recover

the continuity equation, which for the coordinate defined in equation (3.3) is given by

Dm
Dt

= −m∇σ ⋅v − m ∂σ
•

∂σ
. (3.6)

Where the material derivative for the σ − coordinate is defined as 

D
Dt

≡
∂
∂t

+ v ⋅∇ +σ
• ∂
∂σ

.

If we introduce the OBL definition of the pseudodensity, we can rewrite equation

(3.6) as

D
Dt

ρ zs − zB( )( ) = −ρ zs − zB( ) ∇ ⋅ v +
∂σ

•

∂σ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ρ D
Dt

zs − zB( ) + zs − zB( ) Dρ
Dt

= −ρ zs − zB( ) ∇ ⋅ v +
∂σ

•

∂σ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

Since ocean water is nearly incompressible, we can neglect the second term on the left 

hand side. Therefore, the final form of the model continuity equation is given as

∂π
∂t

+ ∇ ⋅ πv{ } +
∂
∂σ

π σ
•{ } = 0

π ≡
zs − zB for zs ≥ z ≥ zB

zB − zBOT for zB ≥ z ≥ zBOT

⎧
⎨
⎪

⎩⎪
.

If the continuity equation is integrated from the surface to the OBL base, we obtain
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∂π
∂t

+ ∇ ⋅ πv dσ
0

1

∫ = − π σ
•⎛

⎝
⎞
⎠ B

+ π σ
•⎛

⎝
⎞
⎠ S

.

Here, π σ
•⎛

⎝
⎞
⎠ B

and π σ
•⎛

⎝
⎞
⎠ S

are the fluxes of mass across the OBL base and surface BS

respectively. The mass flux across the surface could be non-zero for precipitation and 

evaporation. In this work, this term is neglected. The mass flux across the OBL base is 

due to the entrainment rate.

 To obtain the entrainment rate, we integrate equations (3.4) and (3.5) across a 

small layer centered on the OBL base (following Lilly  1968).  The result, with the 

additional assumption that the dissipation and restoring terms are small relative to the 

other terms, is

∂
∂t

mw ' 3
dσ

σB −ε

σB +ε

∫ + ∇ ⋅ mvw ' 3( )
σB −ε

σB +ε

∫ dσ +
∂mσ

•
w ' 3

⋅

∂σσB −ε

σB +ε

∫ dσ + ρ ∂w '4
⋅

∂σσB −ε

σB +ε

∫ dσ = mS
w' 3

σB −ε

σB +ε

∫ dσ

∂
∂t

mw ' 2
dσ

σB −ε

σB +ε

∫ + ∇ ⋅ mvw ' 2( )
σB −ε

σB +ε

∫ dσ +
∂mσ

•
w ' 2

∂σσB −ε

σB +ε

∫ dσ + ρ ∂w ' 3
⋅

∂σσB −ε

σB +ε

∫ dσ = mS
w' 2

σB −ε

σB +ε

∫ dσ .

Following Randall (2010), we can rewrite these equations as

EwB
' 2

= ρwB
' 3

+ ρS
w' 2

dz
zB −ε

zB +ε

∫

and

EwB
' 3

= ρwB
' 4

+ ρS
w' 3

dz
zB −ε

zB +ε

∫
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These equations assume that the turbulent moments vanish below the OBL base. 

 Plugging in the definitions of the source/sink terms (assuming that the dissipation

terms are small near the OBL base), the preceding equations become

EwB
' 3

= ρwB
' 4

+ ρ 3g 1− c11( ) αw ' 2
θ ' − βw ' 2

S '{ }{ }dz
zB −ε

zB +ε

∫ (3.7)

EwB
' 2

= ρwB
' 3

+ ρ 4g
3

αw 'θ ' − βw ' S '{ } − u 'w ' ∂u
∂z

− v'w ' ∂v
∂z

⎛

⎝⎜
⎞

⎠⎟
dz

zB −ε

zB +ε

∫ . (3.8)

To proceed, we must manipulate the buoyancy terms in the w ' 3
equation to obtain a

closed form equation. In this model, we invoke the assumption used in L10 and Canuto 

and Dubovikov (1998) that the buoyancy terms can be written as

w 'θ ' = DAF 1− DAF( ) wd − wu( ) θd −θu( ).

Where DAF is the area of the downward moving plume and subscript d signifies the 

quantity associated with downward moving plumes and u represents the values associated 

with upward moving plumes. Mathematically, this is the top-hat distribution. Using this

3 assumption, the source and sink term of w ' 3
can be written as

3g 1− c11( ) αw ' 2
θ ' − βw ' 2

S '{ } = 3g 1− c11( ) w ' 3

w ' 2
αw 'θ ' − βw ' S '{ }.

Using this relation, equations (3.7) and (3.8) become

EwB
' 3

= ρwB
' 4

+ 3ρg 1− c11( )w 'b ' w ' 3

w ' 2
dz

zB −ε

zB +ε

∫ (3.9)
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EwB
' 2

= ρwB
' 3

+ ρ 4g
3

w 'b ' − u 'w ' ∂u
∂z

− v'w ' ∂v
∂z

⎛

⎝⎜
⎞

⎠⎟
dz

zB −ε

zB +ε

∫ (3.10)

For simplicity, we have defined w 'b ' = g αw 'θ ' − βw 'S '( ) where b is the buoyancy. After 

partial evaluation of the integrals, the equations become

EwB
' 3

= ρwB
' 4

+ 3 1− c11( )EΔb w ' 3

B

w ' 2

B

δz  

EwB
' 2

= ρwB
' 3

+
4
3
δzEΔb − ρEΔu ∂u

∂z
dz

zB −ε

zB +ε

∫ − ρEΔv ∂v
∂z

dz
zB −ε

zB +ε

∫

= ρwB
' 3

+
4
3
δzEΔb − E Δu2 + Δv2( )

In these equations, the Δ operator is defined as Δx ≡ xB+ − xB− , and δz is the inversion 

thickness 2ε( ) , which will be defined later.

 To solve for the entrainment rate, we must decide on a closure for the fourth order 

moment term w ' 4( ) .The current incarnation of the model uses the quasi-normal

approximation (QNA), w ' 4
= 3w ' 2 2

(e.g. Andre et al. 1976). To test this approximation, a 

test case combining convection and shear forcing is conducted following Andre and 

LaCarrere (1985).  The plot of w ' 4
and 3w ' 2 2

diagnosed from VVM-Aqua, which was

described and evaluated in Chapter 2, is shown in Figure 3.2a. A similar plot from the 

Langmuir Circulation run described in the previous chapter is shown in Figure 

3.2b. In both of these plots, the blue shaded box signifies the inversion layer, which is 
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bounded by the positions where the value of θ ' 2
falls to 5% of its maximum value.   In 

both cases, the QNA holds well within the diagnosed inversion layer. 

 When the QNA is used in equation (3.9) we obtain

EwB
' 3

= 3ρwB
'2 2

+ 3ρ 1− c11( )EΔb w ' 3

B

w ' 2

B

δz

We can solve for the entrainment rate (E) by solving this equation and equation (3.10) for

w ' 3
.  This operation yields

wB
' 3

=
3ρw ' 2 3

Ew ' 2
− 3 1− c11( )EΔbδz( ) (3.11)

wB
' 3

=
EwB

' 2
− 4

3
δzEΔb − 1

3
c1 − c2

⎛
⎝⎜

⎞
⎠⎟ E Δu2 + Δv2( )

ρ
(3.12)
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Figure 3.2 - Plots of modeled w ' 4
and 3w ' 2 2

(a) is from the test of Andre and Lacarrere (1985) and (b) is 
from the LC forcing run described in Chapter 2.  The blue box in both figures represents the inversion 

layer. The thickness of this layer is bounded by the positions where θ ' 2
 falls to 5% of its maximum value.



If we equate (3.11) and (3.12) we obtain

3ρ2 w ' 2 3
= E2 w ' 2

− 3 1− c11( )Δbδz{ } w ' 2
−

4
3
Δbδz − 1

3
c1 − c2

⎛
⎝⎜

⎞
⎠⎟
Δu2 + Δv2( )⎧

⎨
⎩

⎫
⎬
⎭
.

The final entrainment rate equation is

E =
3ρw ' 2 3/2

sqrt w ' 2
− 3 1− c11( )Δbδz{ } w ' 2

− 4
3
Δbδz − 1

3
c1 − c2

⎛
⎝⎜

⎞
⎠⎟ Δu2 + Δv2( )⎧

⎨
⎩

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

. (3.13)

 Prior to using equation (3.13) in a model, we must parameterize the inversion 

thickness δz( ) .  L10 assume that the entrainment rate equation must reduce to the

parameterization used in the Colorado State University  GCM. The current version of the 

model follows this lead and we force equation (3.13) to be equal to the commonly used 

bulk mixed layer model entrainment parameterization of Gaspar (1988), which is given 

by

EG =
m1kavg w ' 2

avg

hΔb

The subscript avg denotes an average over the depth of the boundary layer. If we set this

expression equal to equation (3.13) we can derive an expression for the inversion

thickness δz( ) .  The general functional form is δz = f Δb,Δu,Δv,kavg ,wavg
2 ,w2( ) .  The 

complete expression is not simple and is given in Appendix E.

 The parameterized inversion layer thickness used here and in L10 is not 

completely satisfying.  There is no physical reason to expect our entrainment rate 
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parameterization to be equivalent to one based on boundary layer integrated quantities, 

but the dependence on quantities like the shear at the OBL base and buoyancy jump is 

expected. Despite our dissatisfaction, we will use this parameterization.

 In VVM-Aqua, the inversion layer is diagnosed as the position where ρ ' 2
 falls to 

5% of its maximum value.   If we were to predict θ ' 2
, S ' 2

, and hence ρ ' 2
, which is 

discussed in Chapter 8, the inversion layer thickness could be diagnosed as in VVM-

Aqua.

3.2 Prediction of the Vertical Velocity Variance and 

Turbulence Kinetic Energy.

 Equation (3.13) requires a method to determine w ' 2
 and to determine the 

inversion layer thickness, we must  predict k.  It  is nothing more than an algebraic 

exercise to write the predictive equations for these two moments (see Appendix 

B). When this is done we introduce many other second order moments and higher 

order moments. There are two possible solutions to this problem.  

 First, we could predict all of the second order moments (a total of 15 equations) 

and their respective third order moments (a total of 35 equations). The advantage is the 

inclusion of non-local effects. The major disadvantage is the computational burden 

(increased storage and computations).
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 The other option is to follow the recent work of Canuto et al. (2008, CEA08). 

CEA08 write the necessary equations for the second order moments (see equations B.80 - 

B.95) and assume that the time change and non-local terms of all the second order

moments (except k and w ' 2
) are small compared to the terms on the right hand side.  This 

yields a system of 13 equations, where w ' 2
and k are treated as known quantities.  

Solution of this matrix problem yields

u 'w ' = −τw ' 2
Am

∂u
∂z

(3.14)

v'w ' = −τw ' 2
Am

∂v
∂z

(3.15)

w 'θ ' = −τw ' 2
Ah

∂θ
∂z

(3.16)

w 'S ' = −τw ' 2
AS

∂S
∂z

(3.17)

The functions Am, Ah, and Ass are given in Appendix F. 

 The advantages and disadvantages of this simplified system are flipped from 

those mentioned in relation to predicting every second order moment. We now neglect 

the non-local effects (third moments), but the computational burden is smaller. Although 

model speed is important, fewer computations does not necessarily make one model

superior to another. Even though this model neglects the third order moments, a number 

of studies (e.g. Canuto et al. 2004, Halliwell 2004, Durski et  al. 2004, Jacob et al. 2006) 

have found that models similar to Canuto et al. (2008) perform as well as or better than 

KPP. For  initial testing, we retain both options for the prediction of k and w ' 2
.
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 Two tasks remain to complete the new model framework. We must predict or 

parameterize the dissipation and third order moments. When a predictive equation is 

used for dissipation, the result is often too weak (e.g. Burchard et al. 1998). Burchard et 

al. (1998) propose a minimum value of TKE to prevent this under-prediction. Instead we 

choose to follow Canuto et  al. (2002) and Jackson et al. (2008) and write the dissipation 

as ε = k 3/2Λ−1 .  The length scale is given by Λ ≡ 2−3/2 B1l , where 

l = min 0.53 2k
N

, 1
4

2k
Σ

, 0.17hκ z
0.17h +κ z

⎛

⎝⎜
⎞

⎠⎟

Here, N is the Brunt-Väisälä frequency, Σ ≡ sqrt ∂u
∂z

2

+
∂v
∂z

2⎛

⎝
⎜

⎞

⎠
⎟  and κ is von Karman’s 

constant.

 With a chosen parameterization of dissipation, the final task is to parameterize the 

third order moments.

3.2.1 Third order moments

 There are a few choices for the parameterization of the third order moments 

(TOMs).  We could completely neglect the equations for the third order moments and 

invoke the down gradient closure of Mellor and Yamada (1982).  The relevant TOMS 

become

ui
'uj

' uk
' =

3
5

Sql 2e
∂ui

'uj
'

∂xk

+
∂u j

' uk
'

∂xi

+
∂ui

'uk
'

∂x j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ (3.18)
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ui
'uk

'θ ' = −Sql 2e ∂ui
'θ '

∂xk

+
∂uk

'θ '

∂xi

⎛

⎝
⎜

⎞

⎠
⎟ (3.19)

ui
'uk

' S ' = −Sql 2e ∂ui
'S '

∂xk

+
∂uk

' S '

∂xi

⎛

⎝
⎜

⎞

⎠
⎟ (3.20)

ui
'θ ' 2

= −Sql 2e ∂θ ' 2

∂xi

(3.21)

ui
'S ' 2

= −Sql 2e ∂S ' 2

∂xi

(3.22)

This approximation is sufficient in certain circumstances and very poor in others. 

 Consider Figure 3.3. We have plotted the TKE profile for a convective dominated 

run (Figure 3.3a) and a wind driven simulation (Figure 3.3b). The arrows placed on the 

figure depict  the effect of the down gradient  approximation given above. Physically, we 

would expect the TOMs to transport energy from the surface to near the bottom of the 

boundary layer.  Under the down gradient approximation a portion of the energy is 

transported from the center of the domain to the surface in convective regimes (Figure 

3.3a). In wind driven flows, the down gradient approximation behaves as expected.
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Figure 3.3 - Schematics illustrating when the down gradient approximation fails (a) and when it works (b). 
In both plots, the TKE is plotted in black, and the arrows indicate the direction of the down gradient 
forcing. (a) is convectively dominated and (b) is shear dominated.



 The other option is to predict  some form of the TOMs.  In doing so, we must 

parameterize the fourth order moments.  The fourth order moments are often 

parameterized using the QNA, which in its most general form is

a 'b 'c 'd ' ≅ a 'b 'c 'd ' + a 'c 'b 'd ' + a 'd 'b 'c '.

The quasi-normal approximation is subject to two different problems in convective 

regimes. When the background density  profile is unstable the algebraic TOMs can grow 

rapidly. Andre et al. (1976) proposed a clipping condition to remedy this problem, which 

we would prefer to avoid.

 Under stable conditions, the mean gradient terms in the TOMs can cause spurious 

oscillations near the top of the boundary layer (Moeng and Randall 1984). To alleviate 

these problems, Cheng et al. (2005, CEA05) write the fourth order moments as

∂
∂z

a 'b 'c 'd ' ≡ ∂
∂z

a 'b 'c 'd '
QNA

+
∂
∂z

a 'b 'c 'd '
NG

.

Here, the second term is a non-gaussian contribution. CEA05 also assumed that the time 

change of the TOMs are negligible compared to other terms. The non-gaussian terms are 

defined in such a way as to eliminate the mean gradient terms in the TOM  equations, 

remedying the second problem associated with the QNA. The resulting expressions are 

given in equations (B.66) - (B.79).

 In the model described here, we make an additional approximation.   Since the 

eddy decay time scale τ ≡ 2k
ε( ) , in particular the turbulent dissipation, is a relatively
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uncertain quantity, we neglect terms proportional to τ 3  and greater.  For example, the 

original form of w ' 3
is

w ' 3
= −

3w ' 2

f1
+

3λθ w 'θ '

f1 f26

−
3λS w 'S '

f1 f20

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂w ' 2

∂z

−
6λθ w ' 2

f1 f26

+
12λθ

2 w 'θ '

f1 f11 f26

−
6gαλs w

'S '

f1 f14 f20

−
6gβλθ w 'S '

f1 f14 f26

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂w 'θ '

∂z

− −
6λS w ' 2

f1 f20

+
12λS

2 w 'S '

f1 f8 f20

−
6gαλs w

'θ '

f1 f14 f20

−
6gβλθ w 'θ '

f1 f14 f26

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂w 'S '

∂z

−
6λθ

2 w ' 2

f1 f11 f26

+
18λθ

3w 'θ '

f1 f11 f16 f26

−
6gβλθ

2 w 'S '

f1 f11 f17 f26

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂θ ' 2

∂z

−
6λS

2 w ' 2

f1 f8 f20

+
6gαλS

2 w 'θ '

f1 f8 f20 f23

−
18λθ

3w 'θ '

f1 f8 f15 f20

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂S ' 2

∂z

−
12gαλS

2 w 'S '

f1 f8 f20 f23

−
12gβλθ

2 w 'θ '

f1 f11 f17 f26

−
6gαλS w ' 2

f1 f14 f20

−
6gβλθ w ' 2

f1 f14 f26

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂θ 'S '

∂z
.

In this equation, fx ≡
cx
τ .   Our assumption neglects any term with three or more f’s in 

the denominator. The third order moment in the equation for w ' 2
used in the model is

w ' 3
= −

3w ' 2

f1
+

3λθ w 'θ '

f1 f26

−
3λS w 'S '

f1 f20

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂w ' 2

∂z
−

6λθ w ' 2

f1 f26

∂w 'θ '

∂z
+

6λS w ' 2

f1 f20

∂w 'S '

∂z
.

The cautionary  comment is that we have neglected a portion of the non-locality.  This 

may have a non-negligible influence on the simulations.
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 When all of the second order moments are predicted, use of the down-gradient 

approximation offers little advantage.   When we us the algebraic Reynold’s stress model, 

we choose to invoke the down-gradient approximation for the turbulent transport

of TKE and w ' 2
.

 We could use equations (B.66) - (B.68), but since only two second moments are 

predicted, the TOMs derived following Cheng et al. (2005) can be rewritten as down-

gradient.   All of the second moments in the equation for w ' 3
are directly proportional to 

TKE.  Therefore the new TOMs are essentially down-gradient in the simplified 

framework.

 Use of the new TOMs could inform the choice of the diffusion coefficient in 

equations (3.16) - (3.20). Mellor and Yamada (1982), and other authors who invoke 

this closure (e.g. Kantha and Clayson 1994, 2004), assume that Sq is a constant. The 

original value of 0.2 was chosen to match a few different simulations. The TOMS we 

have derived could make this choice more general, but initial tests have shown that 

simulations using equations (B.66) - (B.68) are similar to tests conducted with a fixed Sq.  

The two models are summarized in Table 3.1 at the end of this chapter.

3.3 Virtual Mass Flux

 We next consider the virtual mass flux, which is schematically illustrated in 

Figure 3.4.  There are six interfaces and the initial positions are black.  In this simple 

example, we assume that when there is entrainment into the ocean boundary layer (OBL). 

The thicknesses of the top three layers are and remain equal.  We also assume that the 
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thicknesses of the layers in the deep  ocean are equal.  This means that the layers in the 

upper ocean expand like the bellows of an accordion, while those below contract.  The 

positions of the interfaces after entrainment are shown by the red lines. Although the top 

three layers move different vertical distances, the thicknesses remain equal.

 The movement of these layers implies a corresponding mass flux.  Take the first 

layer as an example. After the coordinate interface has moved, the original mass of layer 

one is combined with the mass between the depths z1
'  and z1 to form a new layer one.  

The properties in this smaller region are combined with those in the original layer one. 

This is the virtual mass flux.
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Figure 3.4 - Schematic to illustrate the virtual mass flux. The original depths at the interfaces are given by 
unprimed z’s. Entrainment occurs at the layer three interface. After some Δt , the model interfaces move to 
the red lines (primed z’s). The new properties within the layer result from a combination of the original 
layer value, and those between the black and red lines.
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 The transfer of mass implies that  we must compute new values of layer properties 

(e.g. temperature, salinity, and momentum).  To do this, we must make assumptions about 

the profile of a given property within a grid cell. Consider the following example profile 

illustrated in Figure 3.5. Here we have plotted an observed temperature profile from the 

eastern tropical Pacific (black).  On top  of this profile, we have plotted two possible 

representations of the sub-grid scale temperature distribution.

 The simple choice is to assume that the distribution is piecewise continuous 

(green lines).  Using this assumption, we only consider one value in the box.  The new 

temperature is determined by the following sequence of equations

ρθ( )1
new =

z1 − zsfc( )ρ1θ1 + z1
' − z1( )ρ2θ2

z1
' − zsfc( )

ρ1
new =

z1 − zsfc( )ρ1 + z1
' − z1( )ρ2

z1
' − zsfc( )
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Figure 3.5 - Two possible representations of the sub-grid scale distribution of temperature. The original 
profile is black, a piecewise constant representation is green, and the piecewise parabolic representation is 
red.
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θ1
new =

ρθ( )1
new

ρ1
new . (3.23)

This can be repeated for all layer quantities.

 The primary drawback of this approach has been discussed in the context of how 

KPP determines the boundary layer depth (Chapter 1).  This method relies on linear 

interpolation, which may not be appropriate as the resolution degrades since this method 

is subject to strong numerical diffusion.  This can be seen by recasting the remapping 

problem as an advection problem. The corresponding equations are

∂ρθ
∂t

=
∂ρEθ
∂z

∂ρ
∂t

=
∂ρE
∂z

This is consistent with equation (3.23), when the above equations are discretized with the 

first order upstream method.  Since the upstream method is highly diffusive, we can 

expect equation (3.23) to be subject to similar diffusion.

 The second option considered is the piecewise parabolic method (PPM; Colella 

and Woodward 1984). The resulting reconstruction, which utilizes the limiter described in 

White et al. (2009), is plotted as the red dashed line. It is obvious that this is a much more 

faithful representation of the temperature profile and is third order accurate (Colella and 

Woodward 1984). Use of PPM requires more computations relative to the piecewise 

constant method (PCM) to ensure monotonicity and positive definiteness. It is possible 

to reduce the number of computations by  using a hybrid of these two schemes. When the 

model is entraining, the interfaces do not move rapidly over large distances, and the 
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numerical diffusion associated with the first order scheme is fairly minimal.  The 

interfaces move rapidly  over large distances when the boundary layer collapses and the 

diffusion associated with the first order scheme is large. We could therefore use PPM for 

shoaling and and PCM for entrainment to minimize both diffusion and the number of 

calculations. For simplicity we choose either PPM or PCM depending on the simulation.

3.3.1 PPM vs. PCM

 We have conducted two tests to illustrate the numerical diffusion associated with 

the PCM and PPM  methods.  The temperature profile shown in Figure 3.5 is discretized 

on a vertical grid with two-meter resolution.  We assume that six layers are in the OBL.  

The boundary layer thickness is doubled (12 m to 24 m).  The thickness of the top six 

layers becomes four meters and the remaining layers thin to 1.82 m.  The boundary  layer 

is then collapsed back to the original value.  The final PCM and PPM profiles are shown 

in Figure 3.6.  Here, PCM  is the black line, PPM is blue, and observed is red.  With no 
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Figure 3.6 - Profiles of temperature after one remapping cycle using the PCM (black) and PPM (blue) 
methods.  The observed temperature is red.  
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forcing, the profile should not change, despite the change in boundary layer depth.  After 

the cycle of entrainment and collapse, the PPM profile remains similar to the observed 

profile.  Near the thermocline, the PCM profile is diffused relative to observations and 

PPM.

3.3.2 Detrainment

 Equation (3.13) is only  applicable to an entraining boundary  layer.  W e m u s t 

parameterize boundary  layer shoaling.  In many regions of the extratropical ocean, the 

diurnal cycle is small and the boundary layer may or may not collapse. This suggests that 

we cannot let the modeled boundary  layer collapse whenever the surface buoyancy 

forcing becomes positive. Instead, we propose a somewhat ad hoc condition.  When the 

predicted value of w ' 2
at the boundary layer falls below a chosen threshold and the 

surface buoyancy forcing is positive, the boundary layer collapses to a depth given by the 

method in Montegut et al. (2004).  This threshold was determined by  experimentation. 

For two separate simulations, we began with a large (ocean) value of 10-5 m2s-2 and 

reduced this value until the simulated boundary  layer depth did not change.  These 

experiments led us to choose a threshold of 10-6 m2s-2.

3.4 Discretization

 We have laid out the conceptual pieces of two vertical mixing models. Both will 

predict an entrainment rate given by  equation (3.13).  One will predict all of the second 

order moments (equations B.80 - B.93), where the third order moments are given by a 
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simplified form of equations (B.66) - (B.79). The other model will only predict TKE and 

w ' 2
.  In this case, the TOMs of TKE and w ' 2

 are assumed to be down-gradient (equation

3.18).   Finally, both models use a normalized height coordinate (equation 3.3). We now 

discuss the numerical details of each model.

3.4.1 Vertical staggering

 For the mean variables there are two primary vertical grids, the Charney-Phillips 

(CP) and the Lorenz (L) grids. The difference between the two grids is in the placement 

of the tracer variables (e.g. θ  and S).  The tracer variables are located at cell interfaces on 

the CP grid and at  cell centers on the L grid. The L grid is susceptible to a computational 

mode due to the extra degree of freedom in determining the vertical fluxes of temperature 
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Figure 3.7 - Vertical discretization used in the new model framework.
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and salinity  (Arakawa and Konor 1996).  Despite this shortcoming, we have chosen the 

L grid. Mean quantities and the TOMs reside at cell centers and the vertical velocity σ
•⎛

⎝
⎞
⎠

and second order moments live at the interfaces (Figure 3.6).  The L grid allows the 

equations for the mean quantities and second order moments to be discretized in a 

straight forward manner. Consider the one-dimensional u momentum equation

∂u
∂t

= fv +
∂u 'w '

∂z
.

For layer k + 1 on the L grid, this equation is discretized in space as

∂uk+1

∂t
= f vk+1

n
+

u 'w '
k+3/2
n

− u 'w '
k+1/2
n

zk+3/2 − zk+1/2

(3.24)

The corresponding equation for the vertical momentum flux (B.82) is discretized as

∂u 'w '
k+3/2

∂t
+

u 'w ' 2

k+2

n

− u 'w ' 2

k+1

n

zk+2 − zk+1

=
1
2

uk+2
n

− uk+1
n

zk+2 − zk+1

c1 + c2 − 2( )w ' 2

k+3/2

n

+ c1 − c2( )u ' 2

k+3/2

n

+ 4 1
5
−

c1

3
⎛
⎝⎜

⎞
⎠⎟

kk+3/2
n⎡

⎣⎢
⎤
⎦⎥

u 'v'
k+3/2
n c1 − c2

2
vk+2

n
− vk+1

n

zk+2 − zk+1

+
g
2
αu 'θ '

k+3/2
n

− βu 'S '
k+3/2
n( ) − 5τ k+3/2

−1n

u 'w '
k+3/2
n

.

The remaining mean quantities and second order moments are discretized in a similar 

manner. In the simplified framework, the previous equation becomes

u 'w '
k+3/2
n

=
1
2
τ k+3/2

n εk+3/2
n Smk+3/2

n uk+2
n − uk+1

n

zk+2 − zk+1

. (3.25)
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3.4.2 Time discretization

 To discretize the model in time, we begin by defining a diffusion coefficient 

νk+3/2
n ≡

1
2
τ k+3/2

n εk+3/2
n Smk+3/2

n⎛
⎝⎜

⎞
⎠⎟

. Using this definition, we insert (3.25) into (3.24) to obtain

uk+1
n+1

− uk+1
n

Δt
= f vk+1

n
+

νk+3/2
n

zk+3/2 − zk+1/2( ) zk+2 − zk+1( ) uk+2
n

− uk+1
n( ) − νk+1/2

n

zk+1/2 − zkbot( ) zk+1 − zk( )
uk+1

n
− uk

n( )

This equation can be written implicitly, where all the terms on the right hand side except 

the Coriolis term are taken at time n+1.  Performing this operation yields

uk+1
n+1 1

Δt
+

νk+3/2
n+1

zk+3/2 − zk+1/2( ) zk+2 − zk+1( ) +
νk+1/2

n+1

zk+1/2 − zkbot( ) zk+1 − zk( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− uk
n+1 νk+1/2

n+1

zk+1/2 − zkbot( ) zk+1 − zk( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− uk+2
n+1 νk+3/2

n+1

zk+3/2 − zk+1/2( ) zk+2 − zk+1( )
⎛

⎝⎜
⎞

⎠⎟
=

uk+1
n

Δt
+ f vk+1

n

(3.26)

This has been written in such a way  to suggest that when similar equations are written for 

all grid points in the vertical, we obtain a tri-diagonal system of equations.  All the 

equations for the mean quantities can be written in a similar manner.  Thus, we are able to 

increase the implicitness of the model in the simplified framework.

 We still must discretize the TKE and vertical velocity variance equations for the 

simplified framework. We assume that the prediction of TKE can be done in two steps. 

The first step considers the buoyant and shear production and dissipation. In the second

2 step we apply the TOMs to the updated TKE and w ' 2
.
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 In the simplified framework, the TKE equation is discretized semi-implicitly as

kk+3/2
n+1 − kk+3/2

n

Δt
= − u 'w ' uk+2

n
− uk+1

n

zk+2 − zk+1

+ v'w ' vk+2
n

− vk+1
n

zk+2 − zk+1

⎛

⎝
⎜

⎞

⎠
⎟ − g αw 'θ '

k+3/2
n

− βw 'S '
k+3/2
n( ) − kk+3/2

3/2n+1

Λ
.

It seems that this equation is not tractable. We have a k3/2 and k at  time level n+1 to 

consider.  If we instead predict the square root of TKE q ≡ k( )  , we can rewrite the

previous equation as

qk+3/2
3( )n+1

+
Λ
Δt

qk+3/2
2( )n+1

−
Λkk+3/2

n

Δt
+ Λ u 'w ' uk+2

n
− uk+1

n

zk+2 − zk+1

+ v'w ' vk+2
n

− vk+1
n

zk+2 − zk+1

⎛

⎝
⎜

⎞

⎠
⎟ + Λg αw 'θ '

k+3/2
n

− βw 'S '
k+3/2
n( ).

Cardano’s formula can now be used to obtain the roots of this equation, but we have three 

possible answers.  To solve for the TKE, we must devise a method to choose the 

appropriate root.  This procedure is discussed in Appendix G.

 Once the TKE is updated, the vertical velocity variance is updated following

w ' 2

k+3/2

n+1 1
Δt

+ 5τ k+3/2
−1⎛

⎝⎜
⎞
⎠⎟
−

1
3

c1 − c2
⎛
⎝⎜

⎞
⎠⎟

uk+1
n

− uk
n

zk+1 − zk

u 'w '
k+3/2
n+1

−
1
3

c1 − c2
⎛
⎝⎜

⎞
⎠⎟

vk+1
n

− vk
n

zk+1 − zk

v'w '
k+3/2
n+1

−
4gα

3
w 'θ '

k+3/2
n+1

+
4gβ

3
w 'S '

k+3/2
n+1

=
w ' 2

k+3/2

n

Δt
+ εk+3/2

n

After this equation is invoked, the TOMs are applied.  The TOMs are discretized in a 

manner similar to equation (3.26). 

 Making the complete second order model more implicit  is not straightforward.  

We can no longer write equation (3.24) as a tridiagonal matrix since the vertical 

momentum flux is predicted. It is possible to make the system of equations (B.80) - (B. 
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93) more implicit  by writing them in matrix form. For example, equations (B.80) - (B. 

82) can be written (without the TOMs) in discrete form as

u ' 2

k+3/2

n+1
− u ' 2

k+3/2

n

Δt
=

1
3

c1 + c2 − 2⎛
⎝⎜

⎞
⎠⎟

u 'w '
k+3/2
n+1 uk+1

n
− uk

n

zk+1 − zk

−
2
3

c1v
'w '

k+3/2
n+1 vk+1

n
− vk

n

zk+1 − zk

+
g
3
αw 'θ '

k+3/2
n+1

− βw 'S '
k+3/2
n+1( ) + εk+3/2

n − 5τ k+3/2
−1 u ' 2

k+3/2

n+1
(3.27)

w ' 2

k+3/2

n+1
− w ' 2

k+3/2

n

Δt
=

1
3

c1 − c2
⎛
⎝⎜

⎞
⎠⎟

u 'w '
k+3/2
n+1 uk+1

n
− uk

n

zk+1 − zk

+ v'w '
k+3/2
n+1 vk+1

n
− vk

n

zk+1 − zk

⎛

⎝
⎜

⎞

⎠
⎟

+
4g
3

αw 'θ '
k+3/2
n+1

− βw 'S '
k+3/2
n+1( ) + εk+3/2

n − 5τ k+3/2
−1 w ' 2

k+3/2

n+1
(3.28)

u 'w '
k+3/2
n+1

− u 'w '
k+3/2
n

Δt
=

1
2

uk+1
n

− uk
n

zk+1 − zk

c1 + c2 − 2( )w ' 2

k+3/2

n+1
+ c1 − c2( )u ' 2

k+3/2

n+1⎡
⎣⎢

+

4 1
5
−

c1

3
⎛
⎝⎜

⎞
⎠⎟

kk+3/2
n+1 ⎤

⎦⎥
+

c1 − c2

2
u 'v'

k+3/2
n+1 vk+1

n
− vk

n

zk+1 − zk

+
g
2
αu 'θ '

k+3/2
n+1

− βu 'S '
k+3/2
n+1( ) − 5τ k+3/2

−1 u 'w '
k+3/2
n+1

.

(3.29)

Equations (3.27) - (3.29) can be arranged to

u ' 2

k+3/2

n+1 1
Δt

+ 5τ k+3/2
−1⎛

⎝⎜
⎞
⎠⎟
−

1
3

c1 + c2 − 2⎛
⎝⎜

⎞
⎠⎟

uk+1
n

− uk
n

zk+1 − zk

u 'w '
k+3/2
n+1

+
2
3

c1
vk+1

n
− vk

n

zk+1 − zk

v'w '
k+3/2
n+1

−
gα
3

w 'θ '
k+3/2
n+1

+
gβ
3

w 'S '
k+3/2
n+1

= εk+3/2
n +

u ' 2

k+3/2

n

Δt

(3.30)

u 'w '
k+3/2
n+1 1

Δt
+ 5τ k+3/2

−1⎛
⎝⎜

⎞
⎠⎟
−

1
2

uk+1
n

− uk
n

zk+1 − zk

c1 + c2 − 2( )w ' 2

k+3/2

n+1
−

1
2

uk+1
n

− uk
n

zk+1 − zk

c1 − c2( )u ' 2

k+3/2

n+1

2 uk+1
n

− uk
n

zk+1 − zk

1
5
−

c1

3
⎛
⎝⎜

⎞
⎠⎟

kk+3/2
n+1 −

c1 − c2

2
vk+1

n
− vk

n

zk+1 − zk

u 'v'
k+3/2
n+1

−
gα
2

u 'θ '
k+3/2
n+1

+

gβ
2

u 'S '
k+3/2
n+1

=
u 'w '

k+3/2
n

Δt
.

(3.31)
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u 'w '
k+3/2
n+1 1

Δt
+ 5τ k+3/2

−1⎛
⎝⎜

⎞
⎠⎟
−

1
2

uk+1
n

− uk
n

zk+1 − zk

c1 + c2 − 2( )w ' 2

k+3/2

n+1
−

1
2

uk+1
n

− uk
n

zk+1 − zk

c1 − c2( )u ' 2

k+3/2

n+1

2 uk+1
n

− uk
n

zk+1 − zk

1
5
−

c1

3
⎛
⎝⎜

⎞
⎠⎟

kk+3/2
n+1 −

c1 − c2

2
vk+1

n
− vk

n

zk+1 − zk

u 'v'
k+3/2
n+1

−
gα
2

u 'θ '
k+3/2
n+1

+

gβ
2

u 'S '
k+3/2
n+1

=
u 'w '

k+3/2
n

Δt
.

(3.32)

The remaining second order moment equations can be written in this manner5.  The result 

is a 15 x 15 matrix that is easily  solvable. Once we obtain the new second order 

moments, the influence of the third order moments (equations B.66 - B.79) is computed. 

Finally, the vertical momentum, heat, salinity, and passive tracer fluxes are plugged into 

the mean equations.

3.5 Summary

 In this chapter we have laid out the framework of two models, which are 

summarized in Table 3.1. The first model predicts all of the second order moments and 

compute TOMs following Cheng et al. (2005).  The most important aspects of these 

models are the ease of adaptability  to any  coordinate system and the explicit prediction of 

entrainment rate.  The latter will be especially important if this model is coupled to a 

ocean biology  model.  The second order model does retain some non-local effects, 

although a portion of these effects have been neglected (Section 3.2.1).  The simpler 

model is currently completely local.
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5 We can gain a slight increase in time step by writing the diffusion term as 
εk+3/2

n*
=

kk+3/2
n+1 kk+3/2

n

Λ , 
which follows Kalnay and Kanamitsu (1988). However, this introduces noise to the solution. Due to this 
noise, we choose to use the dissipation at time level n.



Second Order Down Gradient

Predicted Second Order 
Moments Equations (B.80) - (B.93) k and w ' 2

Diagnosed Second Order 
Moments None u 'w ' ,v'w ' ,w 'θ ' ,w 'S ' , and w 'P '

TOMs Simplified versions of 
Equations (B.66) - (B.79)

Down Gradient (equation 
3.18; Mellor and Yamada 
1982)

Dissipation
ε =

k 3/2

Λ
Same

Length Scale Λ = 2−3/2 B1l

l = min 0.53 2k
N

, 1
4

2k
Σ

, 0.17hκ z
0.17h +κ z

⎛

⎝⎜
⎞

⎠⎟
Same

Entrainment Rate Equation (3.13) Same

Vertical Coordinate Equation (3.3) Same

 We now turn our attention to an evaluation of these two models.  In our initial 

testing, the models described here will be compared against  VVM-Aqua results and a 

single column version of KPP from the most recent version of the Community Climate 

System Model.
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Table 3.1 - Summary of the key features of the two model frameworks that have been developed. The 
down gradient model is the simplified framework.



Chapter 4: 

Model Evaluation

 The initial evaluation of the two models described in the previous chapter follows 

case B of Andre and Lacarrere (1985, AL85).  AL85 conducted simple simulations of the 

OML with a third order, one-dimensional mixing model.  The model domain is 30 meters 

deep  and the vertical resolution is 0.5 meters.  The initial profiles of temperature and 

zonal velocity are shown in Figures 4.1a and 4.1b respectively.  AL85 does not consider 

salinity.  In all of our simulations, the initial salinity profile is held fixed.  

 The initial zonal velocity profile suggests an issue in using this set-up for model 

evaluation.  If we intend to compare our new model at varying resolutions to VVM-Aqua 

at 0.5 m resolution, the strength of the initial shear changes with the resolution.  To 
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Figure 4.1 - Initial temperature and velocity profile from AL85.  (a) Temperature and (b) zonal velocity.  
Below 15 meters, the stratification is constant (0.04 oCm-1) and the zonal velocity is zero.
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address this concern, we will conduct additional simulations without the background 

zonal velocity.  Although the initial strength of the shear changes with resolution, this test 

allows us to compare the TKE based mixing model and the full second order closure 

model proposed in the previous chapter.  In these initial tests, we utilized the PCM 

method for the virtual mass flux.

 We have conducted five simulations with the initial conditions shown in Figure 

4.1.  The remaining parameters for the initial simulations are summarized in Table 4.1. 

Heat Flux Salinity Tendency Resolution Solar Radiation

Case 1 -200 W m-2 0 1m None

Case 2 -200 W m-2 0 2.5 m None

Case 3 -200 W m-2 3.5 x 10-6 PSU s-1 2.5 m None

Case 4 -200 W m-2 -3.5 x 10-6 PSU s-1 2.5 m None

Case 5 -200 W m-2 0 2.5 m

None for first 15 
hours then 450 

Wm-2 in the second 
15 hours

 The temperature profiles at  two minutes (black), 10 hours (blue) and 15 hours 

(red) are shown in Figure 4.2a.  In these initial tests, the solid line is from VVM-Aqua, 

the long dashed line is KPP, the line with open circles is the TKE based model, and the 

dot-dashed line is the SOC model.  The agreement among the models is good, which is 

not incredibly  surprising at such a fine resolution.  The SOC model mixes more than 

KPP and the TKE model.  In this test, KPP seems to mix the least.  
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Table 4.1 - Summary of the five initial test cases.  The initial temperature and velocity profiles are given in 
Figure 4.1.  For salinity, there is no vertical variation and the initial value is 35 PSU.



 This is confirmed in a comparison of model mixed layer depths, which is defined 

as the location where the density changes (compared to the value at 2.5 meters depth) by 

0.01 kg m-3  (Figure 4.2b).  In the initial comparisons of MLD, the TKE model is blue, 

KPP is black, the SOC model is red, and VVM-Aqua is dashed.  The MLDs agree well, 

with KPP being shallowest and the SOC model being the deepest.  

 Since this simulation is only  driven by  surface cooling, we would expect that the 

SOC model and KPP to simulate the temperature profile and MLD better than the TKE 

model, which is down-gradient.  We believe that  the TKE model is able to do a good job 

in this case due to the background shear included in this test  (Figure 4.1b).  It  seems as 

though the background shear is more effective at generating sub-surface mixing than the 

surface fluxes.  

 When the resolution is decreased, the resulting temperature profiles and MLDs 

are shown in Figure 4.3a and 4.3b respectively.  The temperature profiles for the SOC 

and TKE models are not as well mixed at this coarser resolution.  Consistent with this 
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Figure 4.2 - Temperature (a) and mixed layer depth (b).  For Case 1.  In (a), the black curves are at two 
minutes.  The blue curves are after 10 hours and the red curves are after 15 hours.  At each time, the solid 
line is VVM-Aqua, the dashed line is KPP, the dashed-dot line is the second order model, and the circle 
line is the TKE based model.  In (b), the dashed line is VVM-Aqua, the black line is KPP, the red line is 
the SOC model, and the blue line is the TKE based model.



result, the mixed layer depth is slightly shallower.  It is also interesting that the KPP 

temperature profiles match VVM-Aqua better at a coarser resolution. 

 If surface evaporation is included (Case 3), we would expect the strength of 

convection to increase and the simulated mixed layer depths to be deeper.  The profiles of 

temperature (Figure 4.4a) are similar in this run compared to Case 2 (Figure 4.3a).  The 

profiles of salinity (Figure 4.4b) simulated by  the TKE model and KPP are similar.  KPP 

mixes salinity  better than the TKE model and is closer to the VVM-Aqua result.  This is 

most likely due to the non-local flux of salinity included in the KPP model.

 The salinity  profile simulated by the SOC model is more mixed than the other 

models.  It is possible that some of the timescales built into the TKE model (described in 

Appendix C) are better suited to the simulation of salinity than those in the SOC model 

(the timescales defined for the TKE model in Appendix C are fixed in the SOC model, as 

in Canuto et al., 2007).

 The mixed layer depths simulated by the models deepens faster than in the first 

two tests, as we expected.  The MLD simulated by the TKE and SOC models are nearly 
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Figure 4.3 - As in Figure 4.2, but for Case 2.



identical.  This result  implies that the mixed layer depth is not the only model evaluation 

metric.  The mixed layer depth can be consistent among models, but the temperature and/

or salinity profiles can be different due to compensating density effects.

 If we now freshen the surface, the simulated mixed layer depth should be 

shallower.  The profiles of temperature, which are shown in Figure 4.5a, are less mixed 

than in the previous cases.  The simulated salinity  profiles (Figure 4.5b) are similar for 

the TKE model, KPP, and VVM-Aqua.  Again, the SOC result is the least like the other 

three models.  In this stabilizing situation it does not mix enough, where in the convective 

situation it mixes too much.  In this run, the KPP and TKE model result is similar to 
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Figure 4.4 - Temperature (a), salinity (b), and mixed layer depths (c) for Case 3.  In (a) and (b), the colors 
and line styles are as in Figure 4.2a.  In (c), the colors are as in Figure 4.2b
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VVM-Aqua throughout the model column.  Since the surface salinity forcing is 

stabilizing, the strength of the non-local transport is reduced.

 The next case implements an incredibly  simple diurnal cycle.  There is no solar 

forcing for the first 15 hours of the simulation, and then the sun is immediately  up for the 

next 15 hours.  The surface solar radiation is 450 Wm-2, which represents a daily mean 

solar forcing.  Throughout this simulation, a -200 Wm-2 is included.  

 Since the first half of the simulation is identical to Case 1 and Case 2, we plot the 

temperature in Figure 4.6a at 15 hours (black), 22 hours (blue), 30 hours (red).   The line 

styles are as in the previous figures.   KPP and the new TKE model agree fairly  well with 

the VVM-Aqua output.  At 22 hours (blue lines Figure 4.6a), KPP is slightly warmer at 
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Figure 4.5 - As in Figure 4.4, but for surface freshening (Case 4).
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the surface and through the upper ocean.  The SOC model is even warmer than KPP at 

the surface, but the temperature near the OML base agrees well with VVM-Aqua.  

 Below the surface, the ghost  mixed layer is not as visible in the new models as in 

KPP and VVM-Aqua.  By 22 hours, the mixed layer depth (Figure 4.6b) has decreased 

dramatically in all the models.  Simulating this large and quick movement in the depth of 

the mixed layer using the PCM induces a large amount of numerical diffusion, which 

weakens the strong temperature gradient near three and 12 meters depth.

 At 30 hours, the surface temperature in KPP now agrees well with VVM-Aqua.  

In addition, the temperature profile simulated by  the TKE model in the upper few meters 

matches VVM-Aqua as well.  The general agreement between VVM-Aqua, KPP, and the 

TKE model is good.  The SOC model has a surface temperature that is much too warm.

 To this point, it  seems that the SOC model offers no advantage over the TKE 

based model.  We believe the simulated salinity could be improved in the SOC model by 

allowing the timescales in the model equations to vary with the Richardson number and 
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Figure 4.6 - Temperature (a) and simulated mixed layer depths (b).  In (a), the defined line styles are as in 
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the density ratio βSz
αTz

⎛
⎝

⎞
⎠ .  We are not convinced that this change will improve the 

SOC result enough to warrant the additional computational burden associated with this 

model.  Prior to dismissing this model, we have extended the Case 2 simulation to 150 

hours.  

 The mixed layer depths simulated by  each model are given in Figure 4.7 (Black is 

the SOC model and Blue is the TKE model).  The difference even after 150 hours is 

minimal.  We have also conducted a test without the background shear (i.e. pure 

convection), but again, the improvement in the SOC model is minimal (not shown).  It 

seems that the algebraic third order moments derived in Appendix B are not completely 

capturing the non-local aspects of convection.

 The results of these tests lead us to the conclusion that  the TKE model behaves 

nearly as well in surface cooling simulations, but better when salinity is included, than 
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Figure 4.7 - Mixed layer depths simulated by the TKE model (blue) and the SOC model (black) forced as 
in Case 2, but the simulation length is increased by a factor of ten.  
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the SOC model.  Therefore, throughout the rest of this work, we will only use the TKE 

based model.

4.1 Formation of a Mixed Layer

 The next set  of simulations have no initial mixed layer.  We have also eliminated 

the initial background shear.  The surface temperature is set to 20oC and the stratification 

is 0.04 oC m-1.  In the first  test, the wind stress is 0.037 Nm-2.  KPP and the TKE model 

are run at one, five, and 11 meter resolutions.  
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Figure 4.8 - Temperature (ab) and Zonal Velocity (cd) profiles for the no initial mixed layer, wind-driven, 
run.  In all these plots black lines are from VVM-Aqua,  blue lines are from KPP, and the red lines are from 
the TKE model.   The solid lines are at two hours, the dashed lines are from six hours, and the circle dashed 
lines are from 12 hours.  The vertical resolution for VVM-Aqua is 0.5 meters.  In (a) and (c), the initial 
vertical resolution for the TKE model and KPP is one meter.   The resolution is increased to five meters in 
(b) and (d).
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 The temperature and velocity  profiles for the two one-dimensional models and 

VVM-Aqua are given in Figure 4.8.  In these figures, VVM-Aqua is black, KPP is blue, 
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and the new TKE model is red.  The solid lines are the profiles at  two hours, the dashed 

lines are at six hours and the dashed line with circles is 12 hours.

 At one-meter resolution (Figures 4.8a and 4.8c), both one-dimensional models 

mix more strongly than VVM-Aqua.  The temperature at depth in the new TKE-based 

model agrees with VVM-Aqua better than KPP.  The profiles of zonal momentum from 

VVM-Aqua and the TKE model match quite well (Figure 4.8c).  The velocity profiles 

form KPP tend to be more strongly  mixed.  It is possible that this is related to the 

deficient interior mixing scheme.  

 At five meter resolution, the difference in the temperature of the top  model level 

of KPP and the new model and the corresponding temperature in VVM-Aqua is small 

(Figure 4.8b).  However, the agreement near the base of the mixed layer is not as good at 

this resolution.  Neither KPP or the TKE model mix as deeply as VVM-Aqua.

 The zonal momentum profile simulated by KPP is now closer to VVM-Aqua than 

the corresponding 1-meter resolution result  (Figure 4.8d).  The results here are the 

beginning of what will become a recurring theme.  For a given shear, KPP predicts too 

much mixing.  

 At five meter resolution, the agreement between the zonal momentum profiles in 

the new model and VVM-Aqua is good.  The visual deviation between the red dashed 

and black dashed lines near 10 meters depth is a result of linearly joining two data points.  

The zonal velocity predicted by the TKE model goes to zero prior to hitting the next 

model level.  At 11-meter resolution the change in the temperature and velocity  fields 

below layer one is minimal (not shown).
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 The next test imposes a constant cooling of -200 Wm-2 and ignores the surface 

stress.  The remaining initial conditions are the same as in the previous test.

 The temperature profiles at the three different resolutions are shown in Figure 4.9.  

At one-meter resolution (Figure 4.9a), the one-dimensional models mix rapidly near the 

beginning of the run, but then the LES model seems to catch up and the profiles at 12 

hours agree well.  

 When the resolution coarsens to five meters (Figure 4.9b), the upper ocean 

temperature in KPP and the TKE model are cooler than VVM-Aqua.  The temperature 

profile simulated by the TKE model is not as well mixed as VVM-Aqua or KPP.  

 At the coarsest resolution (Figure 4.9c), the KPP simulated temperature profile at 

12 hours is much cooler than VVM-Aqua or the new mixing model.  It is also interesting 

to note that the thickness of the well mixed layer in the KPP model is approximately 

equal to that in VVM-Aqua, except that the KPP result is shifted downward.  We believe 

that this is due to the design of KPP.

 In KPP, the shape of diffusivity is assumed to be a cubic polynomial and is fit  to 

the diffusivity predicted by the interior mixing scheme as well as the gradient of 

diffusivity  across the OML base.  At the surface the profile of diffusivity  matches 

similarity theory.  Therefore, the diffusivity predicted by  KPP is critically  dependent on 

the mixed layer depth determined by  the model.  At 11-meter resolution, the mixed layer 

depth is much deeper than what is predicted by  the model at higher resolution.  This leads 

to a diffusivity profile that is spread out over a greater depth than in the higher resolution 

runs.  At this resolution, quadratic interpolation may  be inadequate and is causing a deep 
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bias.  It is also possible that, as argued by Danabasoglu and Large (2003), the critical 

Richardson number used to determine the depth of the boundary layer should change 

with resolution.

 Prior to leaving this test we assess the influence of the non-local transport term in 

KPP.  Figure 4.10 shows the influence of this term on the temperature profile at each 

resolution.  In each figure, the black line is the result from Figure 4.9, the blue line is the 

companion simulation with the non-local forcing removed.  The general pattern is that 

once a mixed layer is formed, the non-local terms keep the temperature field well mixed 
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Figure 4.10 - Test of the influence of non-local forcing in KPP.  The line style is as in Figure 4.9.  The blue 
line is the result from Figure 4.9.  The black line removes the non-local forcing.  (a) one meter resolution, 
(b) five meter resolution, and (c) 11 meter resolution.



(as expected).  Without  the counter-gradient  flux, there is a slight temperature instability 

(although there is no static instability).  This is similar to what is seen in the TKE model 

(e.g. Figure 4.2a), which is a down-gradient model.  At the coarsest  resolution (Figure 

4.10c), we notice that the non-local term is not responsible for the overly deep and cold 

mixed layer seen in Figure 4.9c.  

 The results of this test suggest caution is needed when using KPP at coarse 

resolutions for regions of the ocean with shallow boundary layer depths.
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Figure 4.11 - Time averaged profiles of zonal velocity (a), meridional velocity (b), u 'w '
u*

2 , and (c) 

v 'w '
u*

2 .  In these figures, the black line is from VVM-Aqua, red is KPP and blue is the TKE model.  The 

results are plotted in a normalized depth coordinate (as in Chapter 2).



4.2 Established Mixed Layer

 The next series of evaluations utilizes the initial conditions of the M97 test 

described in Chapter 2.  Although a few parameterizations of LC have been proposed in 

the literature for KPP (e.g. Li and Garrett 1997 and McWilliams and Sullivan 2000) none 

has yet been widely accepted.  Here we will repeat the M97 simulation driven by surface 

stress with KPP and the TKE model, but not the Langmuir turbulence run.  

 The time averaged velocities (averaged over the same interval as in Chapter 2) 

and the corresponding momentum fluxes are shown in Figure 4.11.  In this figure, the 

black line is the VVM-Aqua solution, the blue line is the new TKE model and red is from 

KPP.  The resolution for all three models is one meter.  At high resolution (Figure 4.11a), 

the profiles of zonal momentum for all models agree pretty well, although the zonal 

97

Figure 4.12 - Time averaged profiles of normalized vertical heat flux.  The colors are as in Figure 4.11.
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velocity  becomes slightly negative at lower depths in VVM-Aqua, when the KPP and 

TKE models do not.  The profiles of v-velocity in the new model and VVM-Aqua, which 

are shown in Figure 4.11b, match fairly well.  Near the surface, the v-velocity from the 

TKE model is slightly too strong.  The meridional momentum profile simulated by KPP 

is more mixed than the TKE model.  This follows the previous observation that for a 

given level of shear, KPP appears to mix too much.

 The zonal momentum flux for VVM-Aqua and KPP match quite well (Figure 

4.11c).  The profile from the TKE model is too weak in the upper portion of the mixed 

layer and changes sign about halfway through the mixed layer.  The simulated profiles of 

v 'w '
u*

2 for all three models have a similar structure (Figure 4.11d).  Near a normalized 

depth of -1, the simulated fluxes in the one-dimensional models become zero and it 

remains slightly  positive in VVM-Aqua.  Within the mixed layer, the vertical gradient of 

v 'w '
u*

2  from the TKE model is sharper than both KPP and VVM-Aqua.  The peak value 

is also slightly stronger than the other models.  Visual inspection of Figure 3 from M97 

suggests that the KPP profile of  v 'w '
u*

2  is close to the correct result, but  is slightly  to 

strong.

 The normalized vertical heat  flux is given in Figure 4.12.  Immediately we notice 

the large difference in heat flux profile simulated by KPP compared to the other models.  

The positive heat flux near the surface in KPP changes sign quickly, signifying an upward 
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Figure 4.13 - Impact of changing vertical resolution on (ab) u, (cd) v, (ef) u 'w '
u*

2  , and (gh) v 'w '
u*

2 .  

In these plots, the black line is one-meter resolution, the blue line is five meter resolution, and the red line 
is 11 meter resolution.  The left column is the TKE model and the right column is from KPP.
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movement of cold water, or a stronger entrainment rate in KPP when compared to the 

other two models (and M97).

 The influence of vertical resolution on the time averaged quantities is given in 

Figure 4.13.  Here the simulation with one meter resolution is black, the five meter 

resolution is dashed blue, and the 11-meter resolution is dashed red.  The left column is 

output from the TKE model and the right column is from KPP.

 Overall, the change in zonal momentum is minor below the surface (Figures 

4.13ab).  The surface zonal velocity  in KPP and the new TKE model becomes weaker as 

the resolution decreases (Figures 4.13 ab).  

 With a weaker surface u-velocity, we expect, and observe (Figures 4.13 cd), a 

weaker y-component of velocity.  In the TKE model, the decrease in v-velocity between 

the one and five meter resolution runs is much stronger than that observed in KPP 

(compare Figure 4.13c and 4.13d).  The change from five to eleven meter resolution in 

the TKE model is much smaller.  

 The changes in the normalized u-momentum flux from KPP as the resolution 

coarsens are minimal (Figure 4.13f), but the change is noticeable in the TKE model 

(Figure 4.13e).  The vertical momentum flux penetrates through a deeper layer at the 

coarser resolutions in the TKE model than in the high resolution run.  This is not  an 

expected result.  As the resolution is increased, the simulation should approach “the 

truth”.  In the TKE model, the simulation at five meters compares with VVM-Aqua better 

than the one meter run.  This occurs in the momentum fluxes from this simulation only, 

which makes the conundrum even more difficult to understand.  It  is possible that the 
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coarser resolution is creating an extra transport of TKE that is physically important but is 

not simulated in the TKE model.

 Figure 4.13gh show that the normalized v 'w ' for the new model and KPP behave 

similarly  as the resolution decreases.  The general behavior is for the flux to weaken as 

the resolution becomes more coarse.  Again, the five meter simulation of the TKE model 

is closer to the VVM-Aqua result (and M97) than the one meter simulation (Figure 

4.12g).

 The effect of changing resolution on the vertical heat flux is shown in Figure 4.14.  

In the new model, the heat flux definitely gets worse as the resolution gets more coarse 

(Figure 4.14a).  The minimum in the profile of normalized heat flux shifts toward the 

surface at coarser resolution.  This region corresponds to where the momentum flux 

increases as well (4.13e).  Even though the vertical heat flux simulated by  the new model 

degrades with coarser resolution, the change in the KPP heat flux is larger (Figure 4.14b).  

 At five meter resolution (blue dashed line in Figure 4.14b) the change compared 
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to one meter resolution is not very big.  However, when the resolution is cut in half again, 

the vertical heat flux is greatly  magnified at depth.  Again we see that KPP tends to be 

more sensitive to resolution than the TKE model and others (e.g. Acreman and Jeffery 

2007).

4.2.1 Convectively driven simulation

 We now use the same initial conditions as in the previous test, but we omit the 

surface wind stress and increase the heat flux from -5 Wm-2 to -200 Wm-2.  In this test  we 

would expect that KPP will outperform the new model, as non-local effects are included.  

This simulation is run for 15 hours.  

 Figure 4.15 shows the change of temperature relative to the initial time.  This 

figure is constructed as in Figure 2.10.  The VVM-Aqua result is Figure 4.15a, the new 

model is 4.14b, and KPP is 4.15c.  The contour interval in 4.15a and 4.15b is 0.008oC and 

is 0.012oC in 4.15c.  

 The surface temperature change at the end of the simulation is similar among the 

three models.  The profiles at specific times (not shown) for the new model resemble the 

blue line in Figure 4.10a, which is the KPP result  without non-local forcing.  It is also 

similar to the profile seen in the very first test conducted in this chapter (the only 

difference is that in this run, the mixed layer depth is nearly five times greater).

 Although the temperature change near the surface seen in the three models is 

comparable, the rate of mixed layer deepening is different.  The entrainment velocity  in 

Figure 4.15(a-c) can be diagnosed by the area of warming water directly  below the mixed 

layer.  A visual comparison between VVM-Aqua and the new model shows that the TKE 
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based model under-predicts the entrainment  rate in this convective simulation.  The width 
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Figure 4.15 - Temperature change relative to the initial temperature through time for (a) VVM-Aqua, (b) 
TKE model, and (c) KPP.  In (a) and (b), the contour interval is 0.008oC and is 0.012oC in (c).
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of the warming region is smaller in the TKE model and it  does not slope downward as 

much as VVM-Aqua.  The entrainment rate for KPP is closer to what is seen in VVM-

Aqua than the TKE model.
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Figure 4.16 - Mixed layer depths through time for three different resolutions.  (a) one meter resolution, (b) 
five meter resolution, and (c) 11 meter resolution.  In all the plots, black is VVM-Aqua, red is KPP, and 
blue is the TKE model.
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 The better agreement between KPP and VVM-Aqua evident in Figure 4.15a and 

4.15c is definitely due to the non-local term in built into KPP.  This term takes a portion 

of the energy associated with the surface heat flux and communicates it to the bottom of 

the boundary  layer, allowing the mixed layer to deepen more rapidly than the TKE 

model.

 These observations are confirmed in a plot of the mixed layer depths, which for 

this high resolution simulation are plotted in Figure 4.16a.  Here, the black line is VVM-

Aqua, the blue line is the TKE model, and KPP is the red line.  The KPP and VVM-Aqua 

MLDs agree nearly perfectly, while the output from the new model is too shallow, but 

does seem to deepen at a fairly similar rate.  When the resolution is decreased to 5 meters 

(Figure 4.16b), the KPP and LES MLDs no longer agree.  The one-dimensional models 

now agree well, but are too shallow when compared to VVM-Aqua.  A similar story is 

seen at the coarsest resolution (Figure 4.16c).  In fact, the change between 4.16b and 

4.16c is minimal.   

 The three profiles of the normalized averaged heat flux agree well within the 

boundary layer (not shown).  At the bottom of the well mixed region, the heat flux in 

KPP and VVM-Aqua changes sign (similar to Figure 4.13a).  The new model does not.  

In a down-gradient model (such as our new TKE-based model), the heat flux is given as 

w 'θ ' =κ ∂θ
∂z .  Therefore, a positive heat flux occurs where there is mixing κ( )  and a 

positive (i.e. stable) temperature gradient.  Below the mixed layer, a positive temperature 

gradient is present in the TKE model, burt there is no mixing due to the lack of TKE.  
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Since the vertical heat  flux is counter-gradient, we expect  the TKE at the base of the 

OML to be generated non-locally.

 As we coarsen the resolution, the heat flux in the new model barely  changes.  The 

KPP simulated flux changes dramatically.  This change is similar to what happened in the 

shear driven case.  Unlike the test with no initial mixed layer, the predicted boundary 

layer depth in KPP is similar at  all three resolutions in this test and in the previous test.  

Further, the profiles of diffusivity and non-local source term are very similar at the 

differing resolution (not shown).  Thus for a given gradient, there is less change in the 

temperature profile at coarse resolutions.  Near a normalized depth of -0.5, there is a 

temperature gradient at coarser resolution.  As the resolution increases, the temperature 

profile becomes more mixed.  When we compute the heat  flux w 'θ ' ≡κ θz − γ( )( ) , it  is 

larger near a normalized depth of -0.5 at coarser resolutions due to the presence of a 

temperature gradient.

4.3 Conclusions

 At this point, we are able to draw three primary  conclusions.  First, the model 

proposed in the previous chapter seems to work well.  There are a few caveats, such as 

the assumption of down-gradient fluxes and the slight under prediction of TKE at depth 

in high resolution simulations.  Second, KPP seems to be more sensitive to changes in the  

vertical resolution than the new model.  When the resolution becomes coarse in regions 

of very shallow mixed layer depths, KPP mixes much more than VVM-Aqua.  
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 Finally, KPP outperforms the new TKE based model at high resolution in 

convective regimes, as we would expect.  For shear driven regimes, it seems as though 

the new model proposed here works as well, if not better than KPP.  

  We believe that non-local effects can be included in the new model in a manner 

similar to that suggested by Kantha and Clayson (1994) or Cheng et al. (2002).  This will 

be discussed later and implemented in a future version of the model.

 Overall, the tests conducted in this chapter lead us to the conclusion that both 

models work well, with advantages and disadvantages to each.  Therefore, we now turn 

our attention to an examination of how penetrating shortwave radiation influences the 

diurnal variability  of the mixed layer.  In the remainder of this work, we use the one-

dimensional models exclusively, but  will compare to previous studies and observations 

whenever possible.
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Chapter 5: 

The Effect of Turbidity on the 

Diurnal Cycle of the Ocean 

Boundary Layer. 

 As alluded to briefly in Chapter 1, the influence of variations in the penetration 

depth of shortwave radiation on the interseasonal ocean has been studied extensively  in 

one-dimensional models (e.g. Denman 1973, Martin 1985, Kirk 1988, Simonot et al. 

1988, Ohlmann et al. 1998, Strutton and Chavez 2004) and three-dimensional models 

(e.g. Schneider and Zhou 1998).  These studies have used the two band exponential 

profile of irradiance (equation 1.1), with fixed coefficients.  

 There has been a movement away from fixed extinction coefficients in the past 

decade.  The extinction coefficients are assumed to be functions of the spatial and 

temporal distribution of chlorophyll (e.g. Morel and Maritorena 2001, Manizza et al. 

2005, M05).  
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 Nakamoto et al. (2001) and Murtugudde et al. (2002) were the first to simulate the 

influence of surface chlorophyll on SST, surface salinity, and momentum.  Using a very 

simple regional three-dimensional model, Nakamoto et al. (2001; N01) found that the 

eastern tropical Pacific cools when surface chlorophyll is included in the model (a result 

confirmed by Manizza et al. 2005 and Gnanadesikan and Anderson 2009; GA09).  This is 
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Figure 5.1 -  Annual composite (2009) of surface chlorophyll observed by SeaWIFS.  Green colors are 
high chlorophyll and blue is low chlorophyll.  Figure is taken from oceancolor.nasa.gsfc.gov

Figure 5.2 -  Temperature of water in the Equatorial undercurrent for different strengths of chlorophyll 
forcing.  Taken from GA09, their Figure 6c.



a counter-intuitive result.  The cool eastern Pacific SST is caused by  upwelling of cold, 

nutrient rich water.  Therefore, this region is fairly  high in chlorophyll (see Figure 5.1).  

 In a region of high chlorophyll the direct effect is warming, yet many  find surface 

cooling.  The cooling observed in N01, M05, and GA09 is understood by Figure 5.2, 

which is taken from GA09 (their Figure 6c).  This figure plots the temperature in the 

Equatorial undercurrent  (EUC) for many different chlorophyll tests.  We are focusing on 

the blue curve, which is the test that excludes chlorophyll, and the full chlorophyll run 

(green curve).  When chlorophyll is included, the temperature in the EUC is much colder 

than in the run with fixed penetration depths.  The colder water in the EUC eventually 

upwells on the eastern boundary, causing a cold anomaly relative to the clear run.  Most 

interestingly, the temperature of waters in the EUC is most dependent on penetration 

depths in the relatively clear subtropical gyres (Anderson et al. 2009).

 The cooling of the eastern tropical Pacific observed in N01, M05, and GA09 is 

not robust.  Murtugudde et al. (2002) using a similar ocean model as N01, but a simpler 

atmospheric model found a warming in the eastern tropical Pacific.  It  is possible that the 

simple regional simulation of Murtugudde et al. (2002) is not correctly simulating the 

water flowing into the EUC.  In M05 it is briefly mentioned that use of a different 

irradiance parameterization results in a warmer tropical Pacific.

 The irradiance parameterizations used in N01, M05, and GA09 can be used to 

allow the extinction coefficient to vary vertically as well, but an ecosystem model is 

required for simulations longer than a few weeks.  Even with predicted phytoplankton 

(M05), which can be used as a chlorophyll proxy, the result is similar to GA09.
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 Although vertical distributions of chlorophyll had a limited impact on the 

interseasonal variability  of currents, temperature, and salinity, it is possible that an effect 

could be seen on shorter time scales.

 Lewis et al. (1983) argued that phytoplankton distributions can cause a 

distribution of shortwave heating that could create static instability.  The observed 

vertical distribution of phytoplankton has a subsurface maximum (Figure 5.3).  If this 

maximum is close enough to the surface, and the waters above the maximum are 

optically clear, unstable stratification can result.  In other words, the shortwave radiation 

passes through the top portion of the ocean with minimal heating, and then encounters the 

chlorophyll maximum, creating a strong local heating.  If the distribution persists long 

enough, the surface layer could become cooler than the water below.

 Despite some uncertainty  in the influence of chlorophyll on the ocean circulation, 

we can draw two conclusions from previous research.  First, variations, both in space and 
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Figure 5.3 -  Observed chlorophyll distributions.  The left figure is near the Southern California coast,  the 
middle is from the Scotian shelf, and the right profile is taken near the Azores.  Figure taken from Lewis et 
al. (1983), their Figure 4



time, of penetrating shortwave radiation are important to the climate system.  Second, 

models are sensitive to the specific parameterization of attenuation.  

 A detailed re-examination of how the climate responds to variations in shortwave 

radiation penetration is beyond the scope of this research.  However, previous literature 

has only briefly  examined the response of the ocean to variations in turbidity on 

intraseasonal time-scales.  Denman (1973) only examined changes in mixed layer depths 

and SST for two different Jerlov water types over a few days.  Simonot et  al. (1988) 

simulated the SST and MLD for OWS Romeo and Papa over a two year period.  To the 

best of our knowledge, no studies have examined how profiles of turbulence and mixing 

change for differing strengths of turbidity.  Further, studies that have considered the 

spatial variability  of turbidity only consider climate time scales.  The diurnal to 

intraseasonal response has not been examined in detail.

 In this chapter, the simulations will use the one-dimensional model developed in 

this work and KPP.  Even though the model we have developed is particularly well suited 

for the simulation of nutrient flow into the boundary layer (recall that nutrient flow is 

dominated by the entrainment rate), the inclusion of a moderately simple NPZD 

(Nutrient-Phytoplankton-Zooplankton-Detritus) model is beyond the scope of this work.  

This is why we only consider a short one week run.  

 The final complication of using a one-dimensional model to study  the influence of 

penetrating shortwave radiation on the tropical Pacific is the lack of an equatorial 

undercurrent (EUC).  Prior to presenting the results of our tests, we discuss how the EUC 

is maintained in the one-dimensional models.
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5.1 Large Scale forcing 

 In two and three dimensional simulations driven by surface wind stress, a surface 

zonal pressure gradient is balanced at the equator by a strong return current at depth.  To 

include the equatorial undercurrent in our one-dimensional model and KPP, we utilize the 

large scale forcing terms derived for the studies of Wang et al. (1998; W98) and Large 

and Gent (1999; LG99).  The forcing terms are derived from a combination of 

observations and model output (for details, see W98).  The equations for the one-

dimensional models become

∂u
∂t

= −
∂u 'w '
∂z

+ Gu

∂v
∂t

= −
∂v 'w '
∂z

+ Gv

∂θ
∂t

= −
∂w 'θ '
∂z

+ HT .

The large scale terms are given by Gu,Gv, and HT.  Their explicit functional forms are 

given as

Gu = −uUx −WUz − Px + Fu

Gv = −vVy −WVz

HT = −uTx −WTz + FT .

In these three equations, lowercase values are model predicted quantities and uppercase 

are large scale terms.    In these simulations (and those in W98) salinity is fixed in the 

vertical and in time.

 The initial conditions of zonal velocity and temperature, which are typical of the 

western tropical Pacific, are shown in Figure 5.4a and 5.4b respectively.  The profiles of 
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the components of the large scale forcing terms are shown in Figures 5.4c-f.  In these 

figures, and in the definition of the large scale forcing terms, Fu and FT are the eddy 

fluxes of momentum and temperature due to the large scale flow.
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Figure 5.4 - Initial profiles of (a) zonal velocity,  (b) temperature, (c) large scale vertical velocity, (d) 
divergence, (e) large scale pressure gradient (solid line) and eddy forcing term in the zonal momentum 
equation (dashed line), and (f) eddy forcing for the temperature equation.  Taken from Wang et al. (1998) 
their Figure 1.



 In these test cases, the model is run for seven days.  A constant cooling (-200 

Wm-2) and surface friction velocity  (u* = 0.0064 ms-1) is included, which is close to 

observed values (Moum et al. 1989).  The diurnal cycle of shortwave radiation is given 

by 

IS t( ) = 776sin 2t − 0.5( )π⎡⎣ ⎤⎦Η sin 2t − 0.5( )π⎡⎣ ⎤⎦⎡⎣ ⎤⎦ ,

where H is the Heaviside function.  The depth profile of irradiance is written as

I z,t( ) = IS t( ) 0.6e− z + 0.4e−kvis z{ } .

In the different tests, kvis will be varied.  The simulations will be conducted at  10 meter 

resolution and 4 meter resolution, which can be thought of as a practical upper bound for 

the vertical resolution of a large scale ocean model.

 We have conducted sensitivity tests that alter the partitioning of infrared and 

visible radiation in the irradiance equation within the bounds given in Paulson and 

Simpson (1977) and found minimal differences.

5.2 Baseline Simulation

 In this run, kvis is set to 1/17 m-1.  The temperature profiles through time for the 

new model, KPP, and the result  from W98 (their Figure 2) are given in Figure 5.56.  The 

LES result  is plotted in Figure 5.5a, the result  from the new model7  and KPP are 

presented in 5.5b and 5.5c respectively.  
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6 Our runs are seven days and W98 only ran for six days, hence the offset in the three 
figures.

7 In the rest of this chapter, the output from the new model is interpolated to a uniform 
grid using a spline routine from Matlab.



 The initial observation is that the large scale forcing terms derived in W98 are not 

perfect at balancing the energy input at the surface.  The thermocline continues to deepen, 
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Figure 5.5 - Temperature profiles through time from LES output of W98 (a), the new model (b), and KPP 
(c).  The contour interval in every plot is 0.1oC.  The plots have been sized and offset such that the length 
of the run in W98 matches that conducted here.
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even at  the end of the sixth day  of the LES run.  However, the rate of deepening has 

slowed and the mixed layer exhibits a regular diurnal cycle (dashed line in Figure 5.5a).  

 In Figure 5.5b, we have plotted the depth of the boundary layer predicted by the 

new model (dashed black line).  This line is slightly shallower than the thermocline 
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Figure 5.6 - Zonal velocity profiles through time from LES output of W98 (a), the new model (b), and 
KPP (c).  The contour interval in every plot is 0.05 ms-1.  The plots have been sized and offset such that 
the length of the run in W98 matches that conducted here.
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predicted by the new model (and the thermocline predicted by LES).  This highlights the 

difference between the boundary layer depth and mixed layer depth.  The mixed layer is 

much shallower, oscillating between 30 meters and 5 meters depth for this run, while the 

boundary layer continues to deepen.  Thus as previously argued, the model framework 

laid out in Chapter 3 predicts the depth of the boundary  layer, and not the depth of the 

mixed layer (unless they are equal).

 In a general sense, the comparison between the three models is good.  The depth 

of the thermocline at  the end of day  6 (hour 144) in KPP and the new model nearly  match 

LES.  In the upper ocean, KPP is predicting more mixing, and thus cooler temperatures 

than the other models.  The 24.3oC isotherm surfaces during the nighttime cooling phase 

of day four in W98 and the new model, while in KPP it  surfaces the previous day.  The 

new model predicts a weaker mixing of temperature when compared to the other models.  

If we again examine the 24.3oC isotherm, but on day  three in the new model (Figure 

5.5b) and LES (Figure 5.5a), the isotherm is deeper in the new model compared to W98.

 The zonal velocity profiles through time are shown in Figure 5.6.  The LES result 

is Figure 5.6a, the new model is Figure 5.6b, and KPP is 5.6c.  By the end of day six, the 

zonal velocity near the core of the EUC (~100 meters) has increased to slightly over 0.8 

ms-1 in all models.  In all the models, the zonal velocity  has a strong diurnal cycle in the 

upper 30 meters.  During the day, turbulence decreases and the surface momentum input 

is confined near the surface.  Once convection begins, the strong stratification near the 

surface erodes, and this region couples to the fossil mixed layer below.  This allows the 

momentum to be rapidly mixed.
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 It seems that the new model is doing a slightly  better job at simulating the 

velocity  field than KPP.  The 0.75 ms-1 isotach approaches 85 meters depth at the end of 

day 6 in W98 and the new model but in KPP it is at 90 meters depth.

 The momentum flux, which has been normalized by u*
2 , is plotted in Figure 5.7.  

In general, the KPP flux (Figure 5.7c) is closer to the LES result (Figure 5.7a) than the 
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Figure 5.7 - u 'w '
u*

2
profiles from day six from LES output of W98 (a), the new model (b),  and KPP (c).  

The contour interval in every plot is 0.2.  
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new model (Figure 5.7b).  During the daytime (hours 126 - 138), KPP simulates the 

momentum flux at depth better than the new model.  The TKE predicted by  the new 

model (not shown) is nearly zero at depth during the daytime, which implies that the 

momentum flux is also zero.  It seems that the TKE is overly  dissipated at depth in the 

new model.  This suggests that the dissipation length scale used in the new model may 

have to be reevaluated.  When the solar heating ceases, KPP simulates the rapid mixing 

seen in the LES, while the new model does not do as well.  This discrepancy may be due 

to unrepresented processes in the one-dimensional model.  Gravity and internal waves are 

simulated in the LES model.  Since there is a shear layer near the thermocline, these 

waves could break and increase the momentum and heat flux at depth.  Even though KPP 

has this slow decay of turbulence at depth, it may be the right answer for the wrong 

reason.  This could be anomalously strong mixing that looks similar to the LES result.  

We are running the W98 simulation in VVM-Aqua to analyze the structure of the 

momentum and heat fluxes in more detail.

 Despite these shortcomings, the new model solution is better than KPP in certain 

areas.  For example, during the transition from night to day, the new model maintains the 

momentum flux in the upper ocean longer than KPP.  In addition, even though the 

momentum flux does not become very strong as the sun sets, it spins up  a flux that 

becomes stronger and closer to LES at the end of the day than KPP.

 These observations hold true for the heat flux as well (not shown).  It seems that 

the new model is slower at spinning up fluxes than KPP and LES, but maintains fluxes 

more effectively in the transition from night to day than KPP.
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5.2.1 Resolution comparisons

 Figure 5.8 shows the result from an identical simulation as that conducted in the 

previous section, but at 10 meter resolution.  Here the left column is the new model and 

the right is from KPP.  The results for the temperature field are similar to those seen in 

Figure 5.4bc.  Again, the upper ocean temperature in KPP (Figure 5.8b) is overly  mixed, 

while the new model is less mixed (Figure 5.8a).  The boundary layer depth at this 

resolution (dashed line in Figure 5.8a) is slightly shallower (by about five meters) than 
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Figure 5.8  Time-depth profiles of temperature for the new model (a) and KPP (b).  Zonal velocity for the 
new model (c) and KPP (d), and Normalized momentum flux for the new model (e) and KPP (f).  The 
results from the new model are interpolated to a uniform grid and KPP is not, this accounts for the white 
space in the plots in the right column.
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that simulated at four meter resolution at the end of day seven.  The thermocline in both 

models at day seven is near a depth of 80 meters.

 The zonal velocity profile for KPP (Figure 5.8d) below the surface is similar to 

that in Figure 5.6c.  Near the surface, the velocity  is weaker in both models.  As in the 

previous test, the momentum is more mixed in the new model (Figure 5.8c) than KPP.  

 The momentum fluxes for the new model (Figure 5.8e) and KPP (Figure 5.9f) are 

fairly similar to those at four meter resolution.  Again, the new model does not have the 

fluxes at depth during the daytime that are seen in KPP.  The strong fluxes that occur as 

the layer influenced by the diurnal cycle rejoins the mixed layer from the previous night 

are again absent in the new model.  We believe that this is due to the lack of non-local 

effects.  During the daytime, mixing is down-gradient (the turbulent eddies are small), but 

once the upper ocean couples with the fossil mixed layer, the eddies are large and non-

local effects become important.  

 LG99 conducted identical runs to W98 with an older version of KPP and a down-

gradient mixing scheme described in Gent (1991), which is a modified form of 

Pacanowski and Philander (1981).  When the down-gradient, Richardson number based, 

scheme is used the large fluxes at the onset  of convection are absent (see Figure 4c or 5c 

of LG99).  This is similar to what is seen in the new model.

5.3 Sensitivity Tests 

 Although the diagnosed fluxes from the new model are weaker than KPP and 

LES, the model temperature and velocity fields are similar.  With a base state in hand, we 

move on to examine how the simulated fields change as the parameterization of 
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penetrating shortwave radiation changes.  In all of our tests, the irradiance at depth is 

governed by the dual band exponential form discussed in previous chapters. 

 The key parameter we vary  in these tests is kVIS z,t( ) .  In particular, we examine 

three parameterizations for this extinction coefficient.  In the first set  of tests, kVIS is fixed 

to a constant value.  The second parameterization, which follows GA09 and M05, is 

given as kVIS z,t( ) = 0.0232 + 0.074Chl z,t( )0.674 where Chl is the Chlorophyll 

concentration (mg L-1).  

 The third parameterization is kVIS z,t( ) = 0.025 + 0.101Chl z,t( )* .  In this equation, 

Chl* is a normalized passive tracer, which can be taken as Chlorophyll.  This 

parameterization is a linear fit through the five Jerlov water types (Jerlov 1968, Paulson 

and Simpson 1977).  When the normalized tracer is zero, the resulting extinction 

coefficient is equal to very clear water kVIS
−1 = 40m( ) , as the normalized tracer goes to one, 

kVIS  approaches Jerlov type III water.  This parameterization will cause the strongest 

response for a given level of passive tracer.

 These two parameterizations require an input profile of chlorophyll.  For the 

GA09 formulation, we use a tropical Pacific profile of chlorophyll from the 2005 World 

Ocean Atlas data set (Boyer et al., 2006).  For the latter parameterization, we construct a 

very simplified profile that is zero at the surface, moves to a normalized value of one at a 

depth of eight meters and returns to zero at  30 meters.  This profile is designed to test the 
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assertion of Lewis et  al. (1983) that certain profiles of chlorophyll can cause unstable 

stratification.  

   The two normalized profiles of chlorophyll are shown in Figure 5.9a (the 

observed profile is Black, and the constructed profile is dashed).  The resulting irradiance 

profile, computed from their respective equations, is shown in Figure 5.9b.  In this figure, 

we have included another curve (blue) that results from fixing the visible extinction 

coefficient to 0.05 m-1.

 There are still some ocean GCMs that assume that all of the incident surface 

shortwave radiation is absorbed in the top layer.  Therefore, the final sensitivity test 

conducted invokes this assumption.  In Section 5.2.1 we found that the model result at 

four meter resolution is not very different from that at ten meter resolution.  

 All the sensitivity tests we discuss in this Chapter are conducted at four meter 

resolution.  The one exception is this final test.  There is a non-negligible difference 

between a run with all of the shortwave radiation being absorbed in the top four meters 

than one with the radiation being absorbed in the top 10 meters.
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Figure 5.9 - Profiles of Chlorophyll normalized by their respective maximums (a) and their resulting 
irradiance profiles (b).  In these figures, the black line is is from observations, and the dashed line is 
constructed.  In (b) we have plotted the irradiance profile resulting from a constant kVIS = 0.05 m-1.



 In Figure 5.10, we plot  the change in temperature from a given sensitivity  test  to 

the baseline simulation for the new model.  In Figure 5.10a, the coefficient of extinction 

for the visible band is fixed to 40 m-1 (hereafter referred to as low k).  In the top 40 

meters, the temperature is cooler when the extinction coefficient is reduced.  Since we 

allow heating to penetrate to deeper depths, there is less heating near the surface.  When 

the sun sets convection begins sooner and lasts longer due to the decreased stratification. 

This results in the negative anomalies near the surface.

 At slightly deeper depths, there is a warm anomaly that deepens throughout the 

length of the run.  This is related to the position of the top of the thermocline in the low k 
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Figure 5.10 - Profiles of simulated temperature anomalies (oC) relative to the four meter resolution control 
run for  (a) low k, (b) high k, (c) Chlorophyll II, and (d) top simulations.  The Chlorophyll I anomalies are 
very small and are not plotted.

!"#$%&'()*

+
$,
-'
%&#
*

!

!

./ 0/ 1/ 2/ 3// 3./ 30/ 31/

/

/

!"#$%&'()*

+
$,
-'
%&#
*

!

!

./ 0/ 1/ 2/ 3// 3./ 30/ 31/

/

/

!"#$%&'()*

+
$,
-'
%&#
*

!

!

./ 0/ 1/ 2/ 3// 3./ 30/ 31/

/

/

!"#$%&'()*

+
$,
-'
%&#
*

!

!

./ 0/ 1/ 2/ 3// 3./ 30/ 31/

/

/

&4* &5*

&6* &7*



simulation versus the depth in the control run.  If the thermocline is deeper in this run, 

warmer temperatures exist at deeper levels than in the control simulation.  

 When the extinction coefficient is increased to 5m-1 (hereafter high k), the 

resulting temperature anomalies (Figure 5.10b) are essentially the opposite of Figure 

5.10a.  Now we are confining much more heating to the surface, which results in a 

positive anomaly.  The penetration of heat to deeper depths is the result of the nighttime 

cooling, which will mix out a portion of the increased surface heating.  The cold 

anomalies increasing with depth are what would be expected from a shallower 

thermocline.  However, the slight warm anomalies near hour 110 are unusual.  Near hour 

100, the boundary layer depth from the high k simulation is slightly  greater than that from 

the control run.  This could explain the warm anomaly.  The overlying cold anomaly 

could be a result of the decreased heating at  this depth.  It is also possible that the virtual 

mass flux scheme is causing some of the anomalies, where differing entrainment/

detrainment rates cause different amounts of numerical diffusion.  

 The temperature anomalies from the Chlorophyll II test relative to the control run 

are shown in Figure 5.10c.  The basic picture is very similar to what is shown for the high 

k test.  This test suggests that the vertical profile of chlorophyll does not have a 

significant impact on the temperature profiles.

 In this simulation, we again see the warm anomalies near 80 meters depth and 

hour 110.  Despite the unusual anomalies at depth, the basic picture is that when the 

extinction coefficient is increased.  More heat is trapped near the surface and the 

thermocline is shallower.  
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 When the solar radiation is confined to the top model level (hereafter top 

simulation), the surface temperature is much warmer (~0.8oC) and the thermocline depth 

is much shallower in this test.

 The change in temperature and velocity  in the Chlorophyll I simulation from the 

control is very small and is not plotted.

 The change in zonal velocity for the sensitivity tests relative to the control 

simulation is shown in Figure 5.11.  In the low k simulation (Figure 5.11a), the near 

surface velocity is greater than in the control run.  The surface momentum input, which is 

negative, is not as effective in balancing the imposed large scale pressure gradient.  The 

momentum near the surface is easier to mix in the vertical due to the decreased 

stratification.  The pressure gradient dominates the wind forcing.

127

Figure 5.11 - As in Figure 5.10, but for zonal velocity

!"#$%&'()*

+
$,
-'
%&#
*

!

!

./ 0/ 1/ 2/ 3// 3./ 30/ 31/

/

/

!"#$%&'()*

+
$,
-'
%&#
*

!

!

./ 0/ 1/ 2/ 3// 3./ 30/ 31/

/

/

!"#$%&'()*

+
$,
-'
%&#
*

!

!

./ 0/ 1/ 2/ 3// 3./ 30/ 31/

/

/

!"#$%&'()*

+
$,
-'
%&#
*

!

!

./ 0/ 1/ 2/ 3// 3./ 30/ 31/

/

/

&4* &5*

&6* &7*



 Near the thermocline, the velocity anomalies become negative.  This is due to the 

decreased stratification in the low k simulation.  During the daytime, the mixing is 

stronger in the low k simulation.  This causes the negative anomaly in the region of the 

thermocline.

 In the high k test, the picture is reversed.  Now the velocity  near the surface is 

more easterly.  Increased surface stratification and decreased mixing traps more negative 

momentum near the surface.  At depth, the velocity is stronger in the high k run than in 

the control simulation.  With less mixing during the daytime, the zonal velocity is 

dominated by the large scale forcing, which is positive.  Therefore, the zonal velocity is 

more westerly in the high k test.

 As seen in the temperature field, the velocity anomalies from the Chlorophyll II 

test relative to the control run behave similar to the high k test, although the response is 

weaker.  The irradiance profile in Figure 5.9b (dashed line) does not exactly behave like a 

constant exponential, but a best fit constant coefficient profile is achieved for kvis = 0.1 

m-1.

 The top  simulation has the strongest surface anomalies of all the sensitivity tests.  

As in the temperature fields, the surface anomalies weaken during the length of the run.  

This is due to the deepening of the predicted boundary layer depth.  Recall that as the 

boundary layer deepens, the thicknesses of the model layers within the upper ocean 

expand and the shortwave radiation is absorbed over a larger layer.
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 The temperature anomalies relative to the KPP control run are shown in Figure 

5.12.  Again, we have not plotted the response from the Chlorophyll I simulation, as the 

resulting anomalies were very small.

 The basic response for decreasing the extinction coefficient (low k, Figure 5.12a) 

is similar to what was seen in the new model.  The temperature is cooler near due to the 

increased penetration of shortwave radiation.  The warm anomalies at depth are again 

caused by a deeper thermocline compared to the baseline result.

 In Figures 5.12bc, which are the high k and Chlorophyll II anomalies respectively,   

the near surface temperature is warmer than the control and the temperature near the 

thermocline is colder.  This was seen in the new model framework, except we do not see 

the warm anomalies beneath the cold anomalies present in Figures 5.12bc.  The vertical 
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Figure 5.12 - As in Figure 5.10, but for KPP.
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variation of observed chlorophyll has a minimum impact in KPP, as we have seen in the 

new model result.

 In the KPP top  simulation (Figure 5.12d), the response behaves similarly to what 

is seen in Figure 5.12b and 5.12c.  The response is weaker than that  observed in the new 

model.  This is due to the collapse of the boundary layer in the new model top  test.  When 

the boundary layer collapses, the surface is strongly heated.  Despite the differences in 

the magnitude of the new model and KPP responses, the general picture is similar for the 

two models.  The surface is warmer and the thermocline is shallower than in the control 

simulation.

 The zonal velocity  anomalies for the sensitivity  tests in KPP are shown in Figure 

5.13.  In the low k test  (Figure 5.13a), the zonal velocity anomaly is positive near the 
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Figure 5.13 - As in Figure 5.11, but for KPP.
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surface and negative at depth, which is what was seen in the companion simulation 

conducted in the new model.  One difference seen in Figure 5.13a, which is partially 

evident in Figure 5.11a, is the extension of the negative velocity  anomalies at  depth 

toward the surface.  These fingers are evidence of the joining of the surface layer and the 

decoupled mixed layer.  With a weaker near surface stratification at sunset in the low k 

run convection occurs sooner than in the control simulation.  The easterly  momentum 

input at the surface mixes downward earlier in the day than in the control simulation, 

which decreases the momentum at depth when compared to the baseline simulation.

 The opposite occurs when the extinction coefficient is increased (Figure 5.13b).  

The stronger stratification near the surface allows static stability to remain longer into the 

night.  This results in the positive anomalies at mid depths (approximately 20 to 50 m) in 

the three remaining runs.  The increased strength of these structures compared to the new 

model result is most likely due to the non-local forcing in KPP.

 Near the surface, the velocity anomaly is negative during the daytime in the high 

k, Chlorophyll II (Figure 5.13c), and top (Figure 5.13d) simulations due to the strong 

surface stratification.  The anomalies at depth in these simulations are the result in the 

differences in the depth of the thermocline in the sensitivity test and the control run.

 The general result is that  decreasing the penetration depth of solar radiation limits 

the thermocline depth, warms the surface, and the zonal velocity becomes more easterly.  

Further, we have seen a very  limited dependence of the temperature and velocity fields on 

the vertical distribution of chlorophyll.
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5.3.1 Resolution dependence

 In this section we examine the influence of coarsening the resolution in the Top 

sensitivity test.  We expect that the resolution will influence the temperature and velocity 

fields respective to the baseline simulation.  If we coarsen the resolution to 10 meters, the 

surface shortwave radiation is distributed over more than double the thickness as that in 

the original top simulation.

 In this section, the anomalies are computed relative to the baseline simulation run 

at 10 meter resolution (Figure 5.8).  The resulting temperature and velocity anomalies for 

the new model are shown in Figures 5.14a and 5.14b respectively.

 The temperature anomalies near the surface (Figure 5.14a) are not as positive as 

the top test at four meter resolution (Figure 5.10d).  This is an expected result.

 The temperature anomalies at depth are not as similar to what is seen in Figure 

5.10d.  We now see a tri-polar structure (warm anomalies under cold anomalies under a 

different warm anomaly).  The lowest temperature anomaly  is very weak (less than 0.05 

oC), but the overlying anomalies are of order 0.1oC.  
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Figure 5.14 - Profiles of simulated temperature anomalies (a) and velocity (b) at ten meter resolution 
relative to the ten meter control run for the top test.



 A close examination of the raw fields show that the thermocline deepens in the 

baseline simulation sooner than in the top simulation.  The deepening of the thermocline 

brings warmer water to greater depths.  This creates a negative temperature anomaly  in 

Figure 5.14a.  When the thermocline deepens in the top simulation, the upper ocean water 

that moves downward is warmer than in the baseline simulation, which leads to the 

positive anomalies at a given depth.

 The zonal velocity anomalies, which are shown in Figure 5.14b, are similar to 

Figure 5.11d near the surface (with a smaller magnitude).  We now have a slightly 

different behavior at depth when compared to Figure 5.11d.  In the raw fields, we see that 

stronger westerly momentum from the EUC diffuses upward more than in the baseline 

simulation.  As the thermocline deepens, the positive velocity  anomaly  is pushed 

downward.  The thermocline deepens sooner in the baseline run than in the sensitivity 

test.  This causes the positive anomalies in Figure 5.14b.  When the thermocline deepens 

in the top simulation, the negative anomalies mix downward.

 The final structure to address are the strong vertical lines that appear to be 

discontinuities in Figure 5.14.  We believe that this could be an artifact of our 
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Figure 5.15 - As in Figure 5.14, but for KPP.



interpolation to a uniform grid.  Use of a different interpolation method reduced the 

magnitude of these drastic shifts in the anomalies.  Since large shifts in the boundary 

layer depths occur at the same time as these vertical lines in Figure 5.14 the grid is highly 

non-uniform.  This magnifies any problems associated with interpolation.

 The KPP anomalies for this simulation are shown in Figure 5.15.  The qualitative 

result is the same as in the new model.  It is important to recall that we cannot make a 

direct comparison to Figure 5.14 as the layer thicknesses are changing in the new model, 

but are nearly constant in KPP.  

 As in the top simulation at four meter resolution, the temperature anomaly (Figure 

5.15a) near the surface is warmer in this test than in the control run.  At depth we see the 

same qualitative pattern seen in Figure 5.14a.  Near the beginning of the run at about 60 

meters depth, the temperature anomaly is negative and then becomes positive.  This is 

again caused by the thermocline depth simulated in each test.  The thermocline deepens 

sooner in the baseline simulation than in the sensitivity test, which was also seen in the 

new model.

 The zonal velocity  anomalies, which are plotted in Figure 5.15b, are similar to 

Figure 5.13d, but  with a smaller magnitude.  In the upper 50 meters, the anomalies have 

the same structure seen in Figure 5.13d.  Near the thermocline, the structure is similar to 

Figure 5.15a.  The reason for the deep structure in the velocity  anomalies is the same as 

discussed in relation to Figure 5.14b.

134



5.4 Conclusions

 In this chapter we have used KPP and the new model framework to reproduce the 

results of W98 and LG99.  As seen in LG99, down gradient models, such as the model 

developed here, do not accurately  simulate the fluxes associated with the surface layer 

mixes joining the fossil mixed layer.  However, the model constructed here better 

simulates the heat  flux than the control model (Gent 1991) of LG99.  In addition, certain 

portions of the momentum flux simulated by the new model are closer to the LES result 

of W98 than KPP.  In these simulations, similar to what we have seen throughout this 

work, KPP tends to over-mix when compared to LES and the new model tends to under 

predict mixing, which is most likely attributable to the lack of counter gradient mixing.

 The resolution dependence of the baseline simulation is relatively minor.  In both 

models, the depth of the thermocline is slightly shallower in the coarser resolution 

simulation.

 The primary influence of changing the penetration depth of shortwave radiation is 

a change in the depth of the thermocline.  An increase in the surface stratification will 

decrease the time of active convection, which will decrease the energy  at the boundary 

layer base available for entrainment.  For this reason, it was not terribly  surprising that 

the tests with  the  largest  extinction coefficients have the shallowest thermocline depths.  

 The results presented here suggest that shortwave radiation must be allowed to 

penetrate beyond the top  model layer.  If the top model layer is 10 meters thick, forcing 

all the radiation to absorb in this layer is equivalent to an extinction coefficient of 2 m-1, 

or Jerlov Mud (Jerlov, 1968).  In this run, the upper ocean is much warmer than all the 
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other cases, but the thermocline depth is not as strongly impacted.  The thermocline 

deepens to a depth similar to the control run, but the deepening happens at a later time.   

This result is consistent in both the new model and KPP.

 If a model is designed with constant extinction coefficients for the visible 

spectrum, they must be chosen carefully  to match the local water properties.  This is a 

similar conclusion reached by  Ohlmann et al. (1998), where it was argued that the 

extinction coefficients should be calculated from in situ water mass properties.  

 In the spirit of the argument presented in Ohlmann et al. (1998), we have 

conducted a few tests with differing optical parameterizations and chlorophyll profiles.  

When we use the parameterization of GA09 along with a profile of chlorophyll typical of 

the western tropical Pacific, the resulting temperature and velocity profiles are nearly the 

same as the baseline simulation.  Since the observed profile of chlorophyll has very 

limited variability in the upper ocean, this test case is essentially a constant extinction 

coefficient case.  In addition, the observed chlorophyll in the upper ocean results in a 

value of kVIS that is nearly  identical to that used in the baseline run.  This is seen in the 

irradiance profiles in Figure 5.9b.

 The second chlorophyll test is designed to maximize the potential response of the 

mean fields to variations in penetrating shortwave radiation.  The profile is also designed 

to test  the assertion of Lewis et al. (1983) that certain profiles of chlorophyll can create 

unstable stratification.  The chlorophyll II test behaves very similar to tests with a 

stronger extinction of shortwave radiation in the upper ocean.  We were able to find no 

evidence that this profile created an unstable stratification.  Further, this test was repeated 
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at various resolutions to see if the degree to which the profile is resolved in the vertical 

changes the result seen at four meter resolution.  Even at 10 meter resolution, when the 

maximum in chlorophyll is not resolved, the change relative to the baseline is similar to 

that at higher resolutions.  

 Lewis et al. (1983) assumed that the radiation penetrated following a single 

exponential, instead of the dual band exponential formulation we have used.  The  

resulting instability condition for a single band exponential profile is given by  equation 

(6) of Lewis et al. (1983).  If we input our profile of chlorophyll there should be 

instability near z = 6.5 m.

 The single band assumption is the critical difference that explains why we see no  

static instability.  To understand the difference, we begin with the equation for 

temperature forced by solar radiation only, which is written as

∂θ
∂t

= −
Io

ρCp

∂
∂z

0.6e− z + 0.4e− z 0.025+0.013467z( )( ). (5.1)

For instability to result, the necessary  (but not sufficient) condition is 
∂2θ
∂t∂z

> 0 .  The 

vertical derivative of equation (5.1) is

∂2θ
∂t∂z

= −
Io

ρCp

0.6e− z + 0.4e− z 0.025+0.013467z( ) 0.000725z2 + 0.001347z − 0.026308( ){ }.

It is not possible to analytically determine if the term on the right hand side could result 

in an instability.  If it  is graphed (not shown), we see that the right hand side never 

becomes positive.  Even if we change the coefficient for the attenuation of infrared 

137



radiation to 2 m-1 the conclusion remains the same.  Therefore, the absorption of infrared 

radiation prevents the change in sign of the right hand side.

5.4.1 Caveats and future work

 In these tests, we have assumed a one way interaction between the large scale 

forcing terms and the vertical mixing models.  This may not hold for a change in the 

surface temperature and velocity.  For example, if the tropical Pacific experiences 

different levels of surface heating (due to spatially variable chlorophyll), the surface 

pressure gradient would be affected.  The most difficult, but most  effective, method to 

address the interaction question is to conduct these sensitivity tests in a three-dimensional 

domain.  

 Since the leap from one-dimension to three is very large, we next move to an 

intermediate two-dimensional framework.  Two-dimensional models have been widely 

used for the tropical atmosphere (e.g. Bretherton and Sobel 2002, Sobel et  al. 2004) and 

for various regions of the ocean (e.g. Bleck et al. 1988, and Walker and Holland 2007).  

We can use a two-dimensional framework to examine the sensitivity to spatial variations 

of surface chlorophyll and can abandon the large scale terms necessary for these one-

dimensional runs.  In the following simulations we are unable to study the impact of 

vertical variations of chlorophyll.  The spin-up necessary in the 2-D model will be long 

enough that biological sources and sinks would be important.  Therefore, we discuss the 

two-dimensional model in the next chapter and leave an examination of the influence of 
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vertically varying chlorophyll on the two- and three-dimensional temperature and 

momentum fields for future work.
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Chapter 6: 

Two-Dimensional Simulations

 In this chapter we turn our attention to how the variability in space (and time) of 

penetrating shortwave radiation can influence the diurnal to intraseasonal structure of the 

OBL.  As discussed in the previous chapter, the ocean circulation (and the atmosphere) is 

sensitive to penetrating shortwave radiation on interseasonal time scales.  However, the 

actual dependence of the OBL on shortwave radiation is not fully  understood.  Recall that 

GA09 and Anderson et al. (2007) find that the tropics cool when penetrating shortwave 

radiation depends on surface chlorophyll, while M05 found tropical cooling for one 

parameterization of light extinction and warming for another.  

 In this chapter, we extend portions of the analysis carried out in the previous 

chapter to two-dimensions.  This will allow us to, at least partially, assess the dependence 

of the tropical ocean circulation on zonal variations in surface chlorophyll.  Prior to 

discussing the simulations, we discuss the discretization of advection and the pressure 

gradient force.
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6.1 Two-Dimensional Framework

 We will retain the coordinate defined in equation (3.3).  The equations of motion 

and thermodynamics in this coordinate system are given in Appendix D.  They are

Du
Dt

− fv = −
1
ρo

∂p
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

+
gρ
ρo

∂z
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

−
∂σ
∂z

∂u 'w '

∂σ
(6.1)

Dv
Dt

+ fu = −
∂σ
∂z

∂v'w '

∂σ
(6.2)

Dθ
Dt

= −
∂σ
∂z

∂w 'θ '

∂σ
+

1
ρoCp

∂σ
∂z

∂I
∂σ

(6.3)

DS
Dt

= −
∂σ
∂z

∂w 'S '

∂σ
(6.4)

1
m

Dm
Dt

+
∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

+
∂σ

•

∂σ
= 0 (6.5)

D
Dt

( )σ ≡
∂
∂t

( )σ + u ∂
∂x

( )σ +σ
• ∂
∂σ

( )σ . (6.6)

The vertical velocity σ
•⎛

⎝
⎞
⎠  is calculated as described in Section 3.1.  The turbulent fluxes 

are predicted via the TKE method outlined in Chapter 3.  The remaining numerical details 

to discuss are the horizontal and vertical advective terms and the pressure gradient force.

 The advective terms are discretized using the van Leer (1974) flux limiter.  The 

necessary  boundary conditions to discretize the vertical advection are a simple linear 

extrapolation with the limits suggested by Thuburn (1993).  The discretization of the 

pressure gradient force in our normalized height coordinate is trickier.  It is discussed in 

the following section.
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6.1.1 Pressure gradient force

 The two-term pressure gradient force is a well known bane to ocean and 

atmosphere models (e.g. Janjic 1977, Messinger 1982, Haney 1991, Mellor et  al. 1994, 

Song 1998).  The two terms can become large and of opposite sign whenever the σ

surfaces are sufficiently tilted.  In our coordinate system this can occur without 

topography.  If the boundary layer depth becomes strongly tilted, the corresponding σ

surfaces become tilted as well.  For this reason we must address this issue in our two-

dimensional model.

 Janjic (1977) and Messinger (1982) have shown that this problem can be reduced 

with sufficiently  high horizontal resolution relative to the vertical resolution.  However, 

this can be a very large burden for large scale ocean models (Mellor et al. 1994).

 Two different remedies have been proposed to alleviate this problem.  Some 

propose calculating a horizontally  averaged background density and subtracting this from 

the density field (e.g. Gary  1973).  This can be effective at removing the error when the 

deviation from the computed reference state is small, such as in small domain 

simulations.  At the global scale, the departure from the reference state is much larger and 

more of the error remains.

 Others propose reformulating the pressure gradient force as a Jacobian (e.g. Song 

and Haidvogel 1994, Song 1998, Shchepetkin and McWilliams 2003; SW03).  In crude 

terms, this reformulation increases the order of accuracy of the discretized pressure force.
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 In our model, we have chosen to follow the work of SW03.  SW03 derive the 

pressure gradient as would be done from first principles.  The pressure force is the sum of 

the forces across all the faces of a control volume.  

 In this system of SW03, as in all hydrostatic models, the pressure at a depth z is 

given by

P x, y, z( ) = g ρ x, y, z '( )dz '
z

ζ

∫ .

Where ζ is the free surface height.  Utilizing this definition, we can know rewrite the 

pressure gradient force as

−
1
ρo

∂p
∂x

⎛
⎝⎜

⎞
⎠⎟ z

= −
gρ ζ( )
ρo

∂ζ
∂x

−
g
ρo

∂z
∂σ

∂ρ
∂x

⎛
⎝⎜

⎞
⎠⎟

z

ζ

∫
σ

−
∂ρ
∂σ

∂z
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

ds .

In this equation, the integrand is the Jacobian J A, B( ) ≡ ∂A
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

∂B
∂σ

−
∂A
∂σ

∂B
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

⎧
⎨
⎩

⎫
⎬
⎭

 in our 

σ − coordinate.  Using Green’s theorem, the pressure gradient force is equivalent to a 

contour integral around the shaded area in Figure 6.1 (adapted from SW03, their Figure 

7).  In this figure, a new horizontal and vertical coordinate ξ, s( )  has been introduced.  

The vertical (horizontal) coordinate is zero on the bottom (at  the left) edge of the cell and 

one on the top  (right) edge of the cell.  The pressure gradient force is now rewritten as the 

sum of the fluxes across each wall or

PGF = FX
i,k+

1
2

+ FC
i+ 1

2
,k+1

− FX
i+1,k+

1
2

− FC
i+ 1

2
,k

.
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In this equation, FX is the horizontal flux and FC is the vertical flux.  These terms are 

written as

FX
i,k+

1
2

= ρ ∂z
∂s

ds
si ,k

si ,k+1

∫ ; FC
i+ 1

2
,k

= ρ ∂z
∂ξ

dξ
ξi ,k

ξi+1,k

∫ .

Both of these terms are line integrals.  

 From here, it  is assumed that  z and ρ  can be represented by monotone cubic 

polynomials, which increases the accuracy of the pressure force.   Use of cubic 

polynomials requires the knowledge of vertical and horizontal derivatives of the mid 

layer depth (z) and density ρ( ).  SW03 discretize the horizontal and vertical derivatives as

∂
∂ξ ξ=±1/2

=
2Δ+Δ−

Δ+ + Δ− ; ∂
∂s s=±1/2

=
2Δv

+Δv
−

Δv
+ + Δv

+ .
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Figure 6.1 - Schematic of the contour interval to be evaluated in the model pressure gradient force.   The 
solid curved lines represent constant σ surfaces.  This figure has been adapted from SW03, their Figure 7
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In these equations, we have defined four elementary  differences, they are given for a 

general function f as

Δ+ = fi+3/2,k − fi+1/2,k ; Δ− = fi+1/2,k − fi−1/2,k ; Δv
+ = fi,k+3/2 − fi,k+1/2; Δv

− = fi,k+1/2 − fi,k−1/2 .

If Δ+ and Δ− are of opposite sign, the derivative is set to zero.  Using these new 

definitions, the fluxes are given by

FCi+1/2,k =
ρi+1,k + ρi,k

2
zi+1,k − zi,k( ) − 1

10
dρi+1,k − dρi,k( ) zi+1,k − zi,k −

dzi+1,k + dzi,k

12
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

− dzi+1,k − dzi,k( ) ρi+1,k − ρi,k −
dρi+1,k + dρi,k

12
⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

and

FXi,k+1/2 =
ρi,k+1 + ρi,k

2
zi,k+1 − zi,k( ) − 1

10
dρi,k+1

' − dρi,k
'( ) zi,k+1 − zi,k −

dzi,k+1
' + dzi,k

'

12
⎡

⎣
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⎤

⎦
⎥

⎧
⎨
⎪
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⎣
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⎥
⎫
⎬
⎪

⎭⎪
.

In these equations, dρ and dz are the horizontal derivatives of density and layer depth 

and dρ ' and dz ' are the corresponding vertical derivatives.

At the topmost grid box, FX is given by 

FXi,1/2 = ρi,1 +
1
2
ζ i − zi,1( ) ρi,1 − ρi,2

zi,1 − zi,2

⎡

⎣
⎢

⎤

⎦
⎥ ζ i − zi,1( ) .

 The FC and FX terms complete the PGF.  SW03 also derived a simpler, but 

equivalent version of the PGF.  If the pressure in the first layer is computed by 

Pi,1 = g ρi,1 +
1
2
ζ i − zi,1( ) ρi,1 − ρi,2

zi,1 − zi,2

⎡

⎣
⎢

⎤

⎦
⎥ ζ i − zi,1( )
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and the pressure in the middle of the remaining layers is calculated following

Pi,k = Pi,k−1 + g
ρi,k−1 − ρi,k

2
zi,k−1 − zi,k( ) − g

10
dρi,k−1

' − dρi,k
'( ) zi,k−1 − zi,k −

dzi,k−1
' + dzi,k

'

12
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

− dzi,k−1
' − dzi,k

'( ) ρi,k−1 − ρi,k −
dρi,k−1

' + dρi,k
'

12
⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪
.

The pressure gradient force at each momentum point, which is defined on the grid given 

in Figure 3.1, is given by

∂P
∂x z

⎛
⎝⎜

⎞
⎠⎟ i+ 1

2
,k

=
Pi+1,k − Pi,k

Δx
+ g

FC
i+ 1

2
,k

Δx
.

This is the form of the PGF used in our model.

 The final addition we make to the two-dimensional model is to allow for user 

defined mass sources and sinks in the continuity equation (6.5).  Currently, this is simply 

set as a constant.  For example, if we blow a easterly wind over our ocean, we need a way 

to remove mass from the OBL on the western boundary.  A negative constant, which 

represents column integrated divergence, is added to the continuity equation (6.5).  

Whenever this option is used, we must  have compensating convergence.  We choose to 

have this occur at the eastern boundary, in the deep ocean.

 As a final note, we use the PCM  for the virtual mass flux in all the simulations in 

this chapter.  The only reason for this is computational speed, but we do not expect there 

to be very large and quick movements of the boundary layer depth in these simulations.
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6.2 Simple Tests of the Pressure Gradient Force.

 In this section, a very simple test is conducted to evaluate the model pressure 

gradient force.  The constant mass source/sink option is not used in these runs.  In these 

two simulations, the temperature profile is uniform θ = 20 0C( ) in the upper 20 meters.  

Below this mixed layer the temperature decreases at a constant rate of 0.04 oCm-1.  There 

is no initial velocity and the initial surface is flat.  

 In the first test, we use a constant seven meter resolution, with three layers in the 

boundary layer.  In the second test, the resolution is increased to 2.5 meters and the 

number of layers in the boundary layer is increased to eight.  In both runs, the horizontal 

resolution is 2o.  The surface is forced by a constant easterly forcing u* = −0.0064 ms−1( ) , 

which is similar to observed wind stresses in the tropical Pacific.  In addition to a surface 

momentum forcing, we impose a very  idealized surface temperature restoring.  On the 

western boundary, the restoring temperature is set to 21oC and we assume there is a linear 

decrease to 19.5oC on the eastern boundary.  A restoring timescale of 30 days-1 is used.  

The simulation is run for two years.

 The temperature and velocity   fields at the end of year two for both tests, are 

shown in Figure 6.2.  Superimposed on top of these figures is the boundary  layer depth 

predicted by the model.  The longitude-depth profiles of temperature are qualitatively 

similar between the low (Figure 6.2a) and high (Figure 6.2b) resolution runs.  The 

thermocline is deeper in the west and shallower in the east.  However, as we move away 
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from the western boundary, the temperatures cool much more quickly in the high 

resolution run.  

 We can see in the velocity plots, which are given in Figure 6.2c for the coarse 

resolution run and Figure 6.2d for the high resolution run, that the surface velocity is 

stronger in the high resolution run compared to the low resolution run.  The stronger 

easterly current pulls isotherms up toward the surface more effectively in the high 

resolution simulation.  In addition, the mixing is stronger in the high resolution run, 

leading to a slightly weaker gradient in boundary layer depth than seen in the coarse run.

 The EUC simulated in the coarse resolution simulation (Figure 6.2c) is spread out 

more in the vertical than what is seen in the Figure 6.2d.  Further, the high resolution 

EUC is nearly double the strength of the coarse simulation.
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Figure 6.2 - Longitude-Depth plots of Temperature at (a) seven meter resolution and (b) 2.5 meter 
resolution (b).  Plotted in (c) is the zonal velocity at seven meter resolution.   In (d) is the zonal velocity at 
2.5 meter resolution.  The contour intervals for the temperature plots is 1oC and is 0.05 ms-1 for velocity.
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 Since we are not  using the mass source/sink terms, the boundary layer in both 

runs will continue to deepen, but the rate of deepening is very  small (not shown).  Despite 

the continued OBL deepening, the surface height is nearly steady after six months (see 

Figure 6.3).  Using Figure 6.3, we can explain a small portion of the difference in the 

strength of the EUC between the two tests.  The final surface height is slightly higher 

near the boundaries in the high resolution simulation (Figure 6.3b) than the low 

resolution run (Figure 6.3a).  This creates a slightly stronger pressure gradient force at the 

surface, which must be balanced by a slightly stronger EUC.

 These two tests have shown us that the model PGF is behaving appropriately.  The 

results are encouraging and we feel confident in using this model framework to evaluate 

how the predicted temperature and velocity responds to the spatial and temporal 

variability of chlorophyll.
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Figure 6.3 - Sea surface height in the coarse resolution simulation (a) and the simulation with 2.5 meter 
resolution (b).  In both models, the black line is one quarter the way through the run, the red line is one 
half through the run, blue is three quarters through the run, and green is at the end of the run.



6.3 More Realism

 In the remaining simulations, we have chosen to initialize the model using data 

from Levitus and Boyer (1994, LB94).  The annually averaged equatorial Tropical Pacific 

temperature is shown in Figure 6.4a (160 to 275oE).  The initial temperature field is taken 

as the zonal average of this section, and is shown in Figure 6.4b.  In these runs, salinity is 

fixed, and there is no initial motion.  

 We cannot feasibly use the high resolution from the previous section.  Further, 

since we are now extending our domain to 6000 meters, we cannot use a constant 

thickness throughout a model column.  Thus, in the remainder of this chapter, we use the 

thicknesses from LB94; (see Table 6.1).  The top three layers are taken as the initial 

boundary layer thickness.

 The model is forced in two ways.  First, the surface friction velocity used in the 

previous test is included.  The temperature field is again restored, but here the model 

temperature is restored to the annually  averaged LB94 SST.  Instead of restoring directly 
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to data (black line in Figure 6.5), we fit a third order polynomial through the data, which 

is the blue line in Figure 6.3.  The functional form is given by

TRestore = −62.98 +1.468λ − 7.55x10−3λ2 +1.23x10−5λ 3 .

For all of the runs, the restoring time scale is set to 30 days-1.

 When solar forcing is included, we are including a large input of heat to the 

system that is not easily dissipated.  Therefore, we include a cooling of 100 Wm-2  at  the 

surface to represent the influence of evaporation.  This cooling is also included in the run

Layer 
Number

Thickness 
(m)

Layer 
Number

Thickness 
(m)

Layer 
Number

Thickness 
(m)

1 10 12 100 23 100

2 10 13 100 24 250

3 10 14 100 25 250

4 20 15 100 26 500

5 25 16 100 27 500

6 25 17 100 28 500

7 25 18 100 29 500

8 25 19 100 30 500

9 50 20 100 31 500

10 50 21 100 32 500

11 50 22 100 33 500

without solar forcing.
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Table 6.1 - Thickness of model layers used in the simulations conducted in this chapter.



 The pressure gradient formulation outlined in Section 6.1.1 will require a short 

time step, due to surface gravity waves.  In the previous section, we had to use a 60 

second time step, even at 2o resolution.  

 Many ocean models predict the barotropic and baroclinic components of the flow 

separately.  While this would allow a much longer time step, the complexity of this 

endeavor is beyond the scope of this dissertation.  Instead, we pursue a middle ground.  

The pressure gradient force in this model can be written in a crude sense as

∂P
∂x

⎛
⎝⎜

⎞
⎠⎟ z

=
∂ζ
∂x

+ B .

Where B is the baroclinic contribution and ζ is the free surface height.  The most 

straightforward, explicit discretization is given as

Pi+1,k
n − Pi,k

n

Δx
=
ζ i+1,k

n −ζ i,k
n

Δx
+ B

i+ 1
2

,k

n .
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Figure 6.5 - Levitus (1994) SST along the section in Figure 6.4a (solid black), and the restoring function 
used in the model simulations (blue line).
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If we compute the pressure gradient force at the end of the time step, we can use a 

partially implicit surface height field (e.g. Haltiner and Williams 1984).  With this 

change, we are able to increase the time step by roughly a factor of two. 

 At the end of each time step, the sigma levels are remapped such that the value of 

sigma at a given model level remains constant  in longitude.  The model is run at 2o 

resolution.

 The model is run for 10 years.  The temperature and velocity fields, which are 

averaged over the final month of the run, are shown in Figures 6.6a and 6.6b respectively.  

The near surface temperature is very similar to the Levitus SST due to the restoring 

included in the model.  The longitude-depth section of temperature looks similar to the 

LB94 data (Figure 6.4a).  Some of the surface features in the Levitus result are missing 

here, most notably the slight increase in temperature from about 250oW to the eastern 
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Figure 6.6 -  Time averaged longitude-depth profiles of temperature (a) and zonal velocity (b) for the 
baseline Levitus simulation.  On both plots, the modeled boundary layer depth is plotted as a dashed line.  
As in the previous plots, the output from the model has been interpolated to a uniformly spaced vertical 
grid.  The contour intervals are as in Figure 6.2.



boundary.  The model predicted thermocline (dashed line in Figure 6.6) is flatter than 

what is observed in LB94.  

 The EUC in this model is weaker than observations, most  likely due to missing 

three-dimensional processes.  A portion of the EUC strength is due to the two-

dimensional ocean attempting to balance the surface height gradient.  In reality, a 

significant portion of the EUC is fed by waters that originate in the extratropics (Blanke 

and Raynaud 1997, Sloyan et al. 2003, Goodman et al. 2005).  In this framework we rely 

on water returning at depth, since it cannot move down from the surface.  For this reason, 

we expect  that the EUC in two-dimensions will be significantly weaker than its three-

dimensional counterpart without some additional ad hoc forcing. 

 Despite some departures from observations, the new model is doing many things 

correctly.  The observed temperature structure is close to LB94.  The surface height 

gradient predicted by  the model, which is plotted in Figure 6.7 at four separate times, is 

similar to what is seen in TOPEX-Poseidon data (not  shown).  This confirms that our 
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Figure 6.7 -  Surface height predicted by the new model at 2.5 years (black), 5 years (red), 7.5 years 
(blue), and 10 years (green).
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choice of wind stress in these simulations is similar to observations.  We are also able to 

simulate a stable EUC in basically the right spot, although it is weaker than observed.

6.3.1 Diurnal cycle

 We now add a diurnal cycle that is more complex than what was used in the 

previous chapter.  Since longitudinal variations are allowed, the sun will rise at different 

times at different model locations.  In these runs, we have borrowed the solar forcing 

routine from the CSU-OGCM.  This is only  a minor detail and does not influence the 

results.  

 The maximum surface shortwave radiation is set to 900 Wm-2.  The shortwave 

radiation is allowed to penetrate following the dual band exponential profile used 

throughout this work.  In this first simulation, the extinction coefficients for infrared and 

visible bands are set to 1 m-1 and 0.05 m-1 respectively.  A part from the addition of solar 

forcing, this simulation is identical to the one we have just conducted.

 The longitude depth cross sections, which have been averaged over the final year 

of the run, for temperature and zonal velocity  are shown in Figure 6.8a and 6.8b 
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Figure 6.8 - Time averaged (year 10) latitude-depth plots of temperature (a) and zonal velocity (b).  The 
contour intervals are as in Figure 6.2.



respectively.  When we add surface heating, the depth of the boundary layer is shallower 

in general than the OBL depth in Figure 6.6.  With solar radiation, the upper ocean is not 

as easily mixed.  Convection occurs constantly in the base simulation, which increases 

the mixing.

 In this simulation, the east to west gradient of the thermocline is stronger.    The 

depth of the thermocline near the western boundary is nearly 50 meters shallower  in the 

run with solar forcing.  The depth right next to the eastern boundary is similar between 

the two runs.  The ocean is also much colder (the 11oC isotherm is above 500 meters in 

the no-solar simulation).

 The boundary  layer velocity near the eastern boundary is much stronger in the 

solar forcing run.  Since there is less mixing in this simulation, more of the momentum 

input near the eastern boundary is confined near the surface than in the run without solar 

forcing.  The maximum strength of the EUC is greater in this simulation, most likely due 

to the increased thermocline gradient.  This also causes the EUC to spread through more 

of the domain.

 In this simulation, the surface height field, which is plotted at four separate times 

in Figure 6.9, is not quite as steady as that in the simulation without solar forcing.  In the 

previous simulation, the surface height gradient was nearly fixed after the first three 

years.  In this simulation, the surface height is essentially constant in the first  half of the 

simulation (black and red curves) and then the circulation is able to smooth the strong 

height gradient  on the western boundary.  In the second half of the run, the profile of 

surface height has changed slightly and the gradient is now smoother.

156



 Despite the lack of a number of three-dimensional processes, the model is 

behaving quite well.  In runs without solar heating, the upper ocean is more mixed, as 

would be expected with no heating to prohibit strong night time mixing.  The position of 

the EUC looks appropriate, despite the weaker strength.

 Prior to examining the influence of surface chlorophyll on the modeled circulation 

and temperature, we have repeated this solar forcing run with the simple large scale 

convergence terms switched on.  In this run, we add a constant divergence (10-6 s-1) on 

the western boundary in the boundary layer, and a compensating convergence at  the 

bottom of the ocean on the eastern boundary.  The strength of the divergence chosen is 

similar to what is found from output of the global ocean data assimilation system near the 

surface in the vicinity of 160oE.

 The change in the temperature and velocity  fields relative to the previous 

simulation are shown in Figure 6.10a and 6.10b respectively.  The fields have again been 

averaged over the final year of the run and interpolated to a uniform grid.  The upper 
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Figure 6.9 - Surface height predicted by the model in the run with constant coefficient solar forcing.  The 
colors of the curves are as in Figure 6.7.
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ocean temperature (Figure 6.10a) is slightly warmer when upwelling is included.  This 

may be due to less mixing in this run.  The negative anomalies below the warm 

anomalies are the result of a shallower thermocline in the upwelling run.  In the raw 

fields, colder isotherms outcrop when upwelling is strengthened, as expected.  The 

included upwelling has decreased the rate of deepening during year 10.  On the western 

boundary, the thermocline deepens by about 12 meters during the final year without 

upwelling.  When our very simple parameterization is included, the deepening decreases 

to five meters during the year.  This is what was desired.  Unfortunately, there are some 

undesirable effects.  The strength of the EUC with parameterized convergences is smaller 

than the previous run, hence the negative anomaly in the depth range of the EUC in 

Figure 6.10b.  The positive velocity anomalies result from a shift in the EUC to shallower 

depths in this test.

 In this simulation, the final surface height gradient, as well as the eastern and 

western boundary heights, are very similar to the run without convergences (not shown).
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Figure 6.10 - Time averaged (year 10) latitude-depth plots of the change in temperature (a) and zonal 
velocity (b) relative to the previous simulation (Figure 6.8).  The contour interval in (a) is 0.25oC and is 
0.05 ms-1 in (b).
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 As suggested by the previous research, our parameterization of convergences and 

divergences should be redesigned.  It is observed that water diverges near the western 

boundary of the tropical Pacific.  This is what we have included in our parameterization.  

Instead of having the compensating convergence in the deep ocean next to the eastern 

boundary, we should have convergence over a larger zonal extent, beginning near the 

western boundary.  This would feed the EUC, similar to what is seen in observations.  

Refinement of this condition is left for future work.

6.3.2 Sensitivity to monthly varying surface chlorophyll.

 Due to the uncertainty in the chosen parameterization of unrepresented sources 

and sinks of mass, we conduct this simulation without those terms.  This simulation is 

similar to the baseline Levitus run with solar forcing in every way except for the 

parameterization of the extinction coefficient of the visible band of solar radiation.  

 In this section, we utilize the parameterization of GA09.  The chlorophyll is taken 

from a monthly climatology of sea-viewing wide field of view sensor (SeaWIFS) data.  
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Figure 6.11 - Attenuation coefficients resulting from the GA09 optical parameterization.  The chlorophyll 
is from a SeaWIFS monthly climatology.
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The resulting extinction coefficients are shown in Figure 6.11, where the contour interval 

is 0.0025 m-1.  In general, there is more chlorophyll in the cold tongue region (see Figure 

5.1) and there is a decrease toward the west.  In this framework, we will trap more 

shortwave radiation near the surface in the cold tongue region than near the western 

boundary.  In this simulation the chlorophyll resets every year for the entire 10 years.

 In Figure 6.12, we have plotted the differences in temperature and velocity, e.g. 

ΔθFig 6.12 = θChl −θnochl  averaged over year ten.  The temperature change near the surface 

(Figure 6.12a) is positive near the eastern boundary and becomes negative on the western 

boundary.  If we refer to Figure 6.11, the extinction coefficient is larger than that used in 

the simulation without chlorophyll kvis ≡ 0.05m−1( ) on the eastern boundary and is smaller 

on the western boundary.  Over the course of the simulation, the difference in surface 

extinction coefficients could cause the difference in surface temperature seen in Figure 

6.12a.  The warm anomaly seen near the surface is similar to what is expected in a one 

160

!
"#
$%
&'(
)

*+,-.$/0"&'+1)

!

!

234 544 554 564 574

4

4

*+,-.$/0"&'+1)

!
"#
$%
&'(
)

"
#

!

!

234 544 554 564 574

4

4

2

5

6

'8) '9)

Figure 6.12 - Time averaged (year 10) latitude-depth plots of the change in temperature (a) and zonal 
velocity (b) due to the addition of surface chlorophyll relative to the previous simulation (Figure 6.8).  The 
contour interval in (a) is 0.5oC and is 0.05 ms-1 in (b).



dimensional heat balance.  This is opposite to what is seen in GA09, where the cold 

tongue region cools.  This suggests that it is the clarity  of the water in the extratropics 

that influences the surface temperature of the eastern tropical Pacific (cold tongue).

 The deeper ocean (near 500 meters depth) is colder when chlorophyll is included.  

This result is consistent with increased convection (as seen in Figure 6.6a), most likely 

due to weaker shortwave absorption near the western boundary.

 The zonal velocity differences (Figure 6.12b) near the surface are very strong near 

the eastern boundary.  The strong easterly  velocity seen in Figure 6.8b is not seen in the 

run with chlorophyll included.  Instead, the velocity  is much more uniform in the upper 

ocean.  The equatorial undercurrent is shallower and broader in the run without 

chlorophyll, but the maximum magnitude is similar in each run.  The shallower 

thermocline in the run without chlorophyll results in a negative velocity  anomaly about 

150 meters below the surface.  The deeper EUC in the chlorophyll run gives the positive 

anomaly below the negative anomaly.

 The increased breadth and strength of the EUC in the run without chlorophyll 

seems to be a result of the stronger thermocline and surface height gradient.  In the run 

with chlorophyll, the surface height gradient is weaker than the run without surface 

chlorophyll (not shown).  

6.4 Conclusions

 In this chapter we have constructed a two-dimensional model in a normalized 

height coordinate.  This is a large step toward a fully  three-dimensional model.  The 
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pressure gradient in the meridional direction is simply a rotation of what was discretized 

in this chapter.  

 The flux limited advection scheme used in the horizontal in this chapter does not 

translate to two dimensions very well.  Use of a one-dimensional limiter in two 

coordinate directions leads to biases in the advected field (e.g. Thuburn 1996).

 The modeled temperature and velocity  fields have many qualitative similarities to 

the observed fields.  We simulate an EUC directly  below the thermocline, although it is 

weaker than observed.  To achieve the correct strength in this framework, we need to 

parameterize extratropical sources of water flowing into the EUC.  The surface height 

gradient simulated in the two-dimensional model is similar to what is observed.

 When a diurnal cycle is imposed, the thermocline gradient increases due to the 

decrease in convection.  The sharpening of the thermocline increases the strength and size 

of the EUC, which is what we would expect.

 When monthly  averaged surface chlorophyll is included, the surface temperature 

near the eastern boundary  warms relative to the run without chlorophyll.  The opposite is 

true near the western boundary.  The EUC becomes narrower in this test, even though the 

maximum strength remains the same as in the run without chlorophyll.  This may be due 

to a decrease in the surface height gradient in the run with surface chlorophyll.

 The general behavior agrees with what is expected from a one-dimensional heat 

balance.  As seen in Chapter 5, an increase in turbidity warms the surface and decreasing 

the turbidity cools the surface.  This was seen in the chlorophyll simulation conducted in 

this chapter.  
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 The results found in this chapter confirm the results of Anderson et al. (2009) and 

GA09.  These studies found that the water clarity near the equator is not as important in 

determining the surface temperature of the eastern tropical Pacific as the shortwave 

penetration depths in the extratropical regions.  With a local heat balance imposed, we 

found a warmer cold tongue compared to the run without chlorophyll.

 The upwelling condition used for the simulation, which is shown in Figure 6.10, 

could be used with surface chlorophyll.  We have found this condition to be imperfect.  

Instead, we should allow the convergence to happen over most of the western portion of 

our domain.  To implement this, we would not only need to know the flow strength at 

depth as a function of longitude, but also the temperature of the water flowing toward the 

equator.  Once we specify  the temperature of the water flowing into the EUC, we should 

see a cooler cold tongue when chlorophyll is included (assuming the EUC temperature is 

adjusted appropriately).
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Chapter 7: 

Regulation of Intraseasonal SST 

Variability in the East Pacific 

Warm Pool by Vertical Mixing

7.1 Introduction

	

 A number of recent studies have shown significant intraseasonal variability of sea 

surface temperature (SST) in the east Pacific warm pool during boreal summer (e.g. 

Maloney and Kiehl 2002ab, Maloney et al. 2008).  These studies, using the Reynolds and 

Smith (1994) SST product, TRMM Microwave imager SSTs, and buoy SSTs found 

regular oscillations with a time scale of about 50 days in most boreal summers.  Maloney 

et al. (2008) have also shown that the variability is maximized near the Costa Rica Dome 

(CRD) region and in the northern portion of the eastern Pacific warm pool.  In these 

areas, the amplitude of the SST oscillations can reach 1oC in a given event.  

Approximately 30 - 40% of this variance can be explained by the Madden-Julian 

oscillation (Maloney and Kiehl 2002a).  Examination of SST, precipitation, and wind 
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anomalies lead to the conclusion that enhanced west winds and precipitation lead SST by 

about 7 - 10 days (e.g. Maloney et al. 2008).

	

 The heightened SST variability in the region of the CRD is associated with a 

shallow annual mean thermocline and mixed layer depth.  The thermocline depth is 

dominated by Ekman suction, driven by a positive wind stress curl.  Figure 3 of Xie et al. 

(2005) shows that the positive wind stress curl is associated with small scale wind jets 

(e.g. Gulf of Papagayo) during the winter.  In boreal summer, the CRD is near the 

northern edge of the monsoon westerlies, which would also input a positive wind stress 

curl.

	

 Observed thermocline depths near the center of the CRD in northern hemisphere 

summer are less than 30 meters.  Maloney and Kiehl (2002a), utilizing a slab ocean 

model forced by NCEP reanalysis with a fixed mixed layer depth, which was set to the 

annual mean, found that the variability in the slab model is overestimated relative to the 

Reynolds and Smith SST.  This suggests that a more physical representation of the 

oceanic mixed layer is necessary.  It should be noted that the quality of the Reynolds and 

Smith product may be suspect (Maloney et al. 2008).  

	

 A number of studies have been conducted using one-dimensional and more 

complex models to simulate intraseasonal SST variability in the western Pacific (e.g. 

Anderson et al. 1996, Shinoda and Hendon 1998).  These studies have documented that 

strong OML variability occurs during intraseasonal oscillations.  For example, anomalous 

precipitation (perhaps associated with the MJO) and its freshening effect on the upper 

ocean could limit the diurnal penetration of the MLD (described in Anderson et al. 1996).  

Also, in times of weak wind and strong insolation the thermal stratification is increased, 
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limiting the depth of the OML base.  This suggests that correct simulation of the 

insolation, the solar heating profile, and surface stress is important to accurately simulate 

of ocean MLDs (Shinoda and Hendon 1998).  

Finally, Bernie et al. (2005) suggest that nighttime deep mixing can enhance 

mixing across the thermocline, altering the MLD.  This implies a model with nonlocal 

convective fluxes should more accurately simulate ocean MLDs, especially in regions 

where the diurnal cycle is important.

As in previous chapters, we utilize the newly developed model framework and the 

KPP model.  The models are driven by surface forcing derived from 8oN 95oW TAO buoy 

observations during the boreal summer of 2002 (Figure 7.1).  Strong and regular 
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Figure 7.1 - Surface forcing derived from observations at the 8oN 95oW TAO buoy from 2002.  (a) 
Surface heat flux (Black) and Surface Shortwave radiation (Red).  (b)  Zonal (red) and Meridional (blue) 
wind stress.  (c) Precipitation.
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SST oscillations are evident with a period of about 50 days (Maloney et al. 2008).  

	

 The summer of 2002 also featured a nearly continuous surface meteorology and 

radiative flux data set, associated with the East Pacific Investigation of Climate 

experiment (EPIC2001; e.g. Raymond et al. 2004).

7.2 Model Details

 In the model, the long-wave radiative, sensible, and latent heat fluxes are applied 

to the top model layer, while the shortwave radiation penetrates to depths given by Jerlov 

type IB water (Paulson and Simpson 1977).  The attenuation coefficients for the infrared 

and visible bands of shortwave radiation are 0.5 m-1 and 20 m-1 respectively.

 The fluxes have been computed from TAO buoy  surface radiation and 

meteorology  data using the COARE algorithm (Fairall et al. 2003).  During the summer 

of 2002, much of the buoy data was of low quality  or missing.  When the data was of low 

quality, the air temperature was set to 1.3oC below the SST, representing the average June 

- October air-sea temperature difference from 2001, 2003, and 2004.  The relative 

humidity is set to 85% in these circumstances as well.  These conditions are similar to 

that used by Shinoda and Hendon 1998.  

 The model is initialized from interpolated T and S buoy profiles with two meter 

resolution.  A one hour time step will be used for the KPP simulations.  The new model 

framework requires a 15 minute time step.
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7.2.1 GCM tendencies

	

 Two sets of initial runs will be conducted.  First, the model will be tested in a 

configuration that only considers one-dimensional atmosphere and ocean physics.  In the 

second, vertical and advective tendencies (for temperature and salinity) from the coupled 

Colorado State model (CCoSM) will be added to the model, which represent processes 

like Ekman pumping.  Although there is some evidence that horizontal advective 

tendencies are weak (McPhadden et al. 2008), the cumulative effective over the length of 

the simulation may be non-negligible.

	

 CCoSM is the general circulation model from Colorado State University.  Unlike 

other models, the grid structure is geodesic (Dazlich et al. 2010).  This model can be run 

with a fully interactive atmosphere, ocean, land surface, and sea ice.  For this study, the 

ocean and sea ice are dynamic.  The dynamic model components are driven by ERA-

Interim reanalysis surface forcing fields (2001-2005).  The resolution of the model is 

approximately 2.25o.  

	

 The advective tendencies used in these experiments are taken as the average of 

the eight nearest grid points to 8oN, 95oW.  We then average over the final four years of 

the run (2002 - 2005), the first year is ignored as spin up8.

7.3 Results

	

 In our results, the one-dimensional model results and buoy data will be de-trended 

(using a 59 day running mean) for an easier comparison.  Small errors in the calculation 
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fully developed after one year.



of the fluxes or the neglect of large scale forcing can cause a model drift relative to 

observations, especially given the shallow mixed layer depths in this region.  Figure 7.2a 

shows the raw, daily averaged SST fields for KPP (blue), the new model (black), and the 

buoy data (dashed red).  There is some drift in the new model near the beginning of the 

simulation (~day 120), but KPP follows the observed data well.  The drift in the new 

model may be the result of diffusion associated with the virtual mass flux scheme.  To 

allow for an easier comparison, the data is filtered with a 59-day running mean (Figure 

7.2b).

	

 The SST anomalies for the new model and KPP compare well to the observations 

and to each other.  The major structure of the intraseasonal SST oscillations are captured.  

There are a few times (especially near day 250) where the modeled SST deviates from the 

observed value.  In the new model, there is a noticeable warm bias near day 290.  We will 

return to this anomaly later.

	

 The daily averaged MLDs for the new model and KPP versus observations are 

plotted in Figures 7.3a and 7.3b respectively.  In Figure 7.3 the modeled MLDs are red 
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Figure 7.2 - Raw (a) and 59-day running mean filtered SST (b) for TAO data (dashed red), KPP (blue), 
and the new model (Black).  In this plot and all others, the Day refers to days since January 1, 2002.



and the diagnosed buoy MLD is black.  In general, the new model predicts an overly deep  

mixed layer and the KPP result is a bit better.  Near day 250, the average MLD is deeper 

in the new model (and to a lesser extent KPP) compared to observations.  It is possible 

that part of the model bias in SST near day 250 (Figure 7.2b) could be explained by an 

overly deep ML, as a shallower ML can be heated more effectively.  If this were true, it is 

surprising that the SST simulated by the new model and KPP are so close despite the 

seven meter discrepancy in MLDs.  

	

 In these comparisons against buoy data, caution is required.  Ideally, the MLD 

should be determined by a maximum density gradient criterion (as in Anderson et al 

1996).  The coarseness of the observed temperature and salinity profiles does not allow 

this method to be used, since buoy observations are only available at one, five, 10, 20, 

and 40 meters depth in the upper ocean.  Instead the daily averaged buoy temperature and 

salinity profiles are interpolated to one-meter resolution and then the MLD is defined as 

the depth where there is an density increase from the surface value equivalent to a 0.5oC 

change in temperature, holding salinity fixed.  Given the coarseness of the profiles, this 

method may introduce non-negligible errors in the MLD.  To test this method, the 
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Figure 7.3 - (a) MLD predicted by the new model (red) versus observations (black) (b) MLD predicted by 
KPP (red) versus observations (black) 



monthly averaged buoy MLD from Figure 7.3 is compared to the monthly averaged 

Monterey and Levitus (1997) data set.  This comparison shows biases on the order of four 

to five meters an error of nearly 25% in some months.

	

 Near day 290, the simulated MLDs agree fairly well with the TAO diagnosed 

value.  However, the SST anomaly in the new model is approximately 1oC higher than 

observed.  This is a time of weak wind stress and a stabilizing buoyancy flux.  Little 

mixing near the surface is expected, but our model may not be representing all the 

sources of mixing (e.g. shear instability, breaking internal waves, etc...).  Though shear 

instability is included in the new model through shear production of TKE, breaking 

internal waves are not included.  To include the influence of breaking internal waves, 

KPP enforces a minimum value for the mixing coefficient.  The minimum diffusivity is 

10-5 m2s-1 and the minimum viscosity is 10-4 m2s-1.  To this point we have not enforced a 

minimum viscosity or diffusivity in the new model framework.  Figure 7.4 repeats the 

initial simulation, but we have now included the KPP minimum mixing coefficients.  In 

Figure 7.4, the initial result from Figure 7.2b is replotted in blue.  The new model 
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Figure 7.4 - Sensitivity to a minimum mixing coefficient in the new model.  The simulated SST anomaly 
is in black.  The result from Figure 7.2b has been replotted (blue).  Again the TAO observation is the 
dashed red line.
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framework with the inclusion of background mixing is plotted in black (the buoy data is 

again dashed red).  The inclusion of the new mixing terms has decreased the amplitude of 

the warm anomaly near day 290 by nearly 0.5 0C.  Apart from day 290, the minimum 

mixing coefficients have little effect on the intraseasonal SST variability.

	

 The sensitivity of the SST anomalies to advective tendencies from CCoSM in the 

new model and KPP are plotted in Figures 7.5a and 7.5b respectively.  In these figures, 

the initial test is plotted in blue for comparison.  Overall, the pattern remains relatively 

unchanged.  However, KPP seems to be slightly more sensitive to the tendencies than the 

new model framework (Figure 7.b).  The simulation improves slightly near days 200 and 

260, but degrades near day 225.  In the new model (Figure 7.5a), there is a slight 
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Figure 7.5 - Sensitivity of the simulated SST anomalies to advective tendencies diagnosed from CCoSM.  
(a) New model framework, (b) KPP.  In (a)-(b), the baseline result is plotted in black, the run with 
advective tendencies in blue, and the dashed red line is from the TAO buoy.  (c) OML depths simulated in 
the new model and (d) KPP.  In (c)-(d), the observations are plotted in black,  the control simulation is 
dashed gray, and the sensitivity test is in red.



improvement during the initial warm anomaly (day 170) and the cold anomalies at days 

200 and 250.  The overall conclusion is that the influence of large scale advective 

tendencies on intraseasonal SST variability is minor.

	

 The sensitivity of the modeled mixed layer to advective tendencies are shown for 

KPP and the new model in Figure 7.5c and 7.5d.  In both of these figures, the mixed layer 

depth from the control run is plotted as the dashed gray line and the new result is red.  

The tendency is a shallowing in both models.  This makes physical sense as the large 

scale vertical advection tends to be upwelling in this region, which counteracts the 

downward diffusion of heat and salt.

7.4 Sensitivity Tests

	

 We now conduct tests to determine how: shortwave and latent heat flux, wind 

stress, diurnal, and surface salinity flux variability influences the intraseasonal SST.  

Further, the influence of surface intensified diffusivity and the non-local KPP fluxes on 

the SST variability are examined.  In the remaining tests, we now compress the result of 

the KPP model and new model onto a single plot.  In these plots, KPP is plotted in blue 

and the new model is plotted in black (the data is again a dashed red line).

	

 The first test fixes the latent heat flux to the summer time average.  The resulting 

SST is plotted in Figure 7.6a.  In both models, the magnitude of intraseasonal SST 

variability is greatly reduced.  The warm anomaly near day 290 is almost non-existent.  

The cold anomaly near day 250 has also disappeared.  Overall, there are very few times 

during the simulation where the SST remains similar to the initial test.  This suggests that 

intraseasonal variability of latent and sensible heat fluxes strongly influence the SST near 

the CRD.  
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 The simulated mixed layer depth for the new model (Figure 7.6b) and KPP 

(Figure 7.6c) is nearly identical to the original result (dashed gray).  It seems that in this 

case, the MLD is not dependent on variations in the surface heat flux.

	

 The next test fixes the incoming solar radiation to the summer average.   As in the 

previous sensitivity test, there are some dramatic changes in the modeled SST (Figure 
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Figure 7.6 - Sensitivity to fixing the surface heat flux (Sensible plus Latent) to the summer time average. 
(a) SST anomaly, (b) OML depths simulated by the new model, (c) OML depths simulated by KPP.  The 
colors are as in Figure 7.5.
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7.7a).  Referencing Figure 7.2b, the magnitude of the cold event near day 170 is reduced 

in this run.  The warm anomaly at day 290 is partially reduced in both models.  In this 

test, an increased warm bias is noted at the end of the run in KPP and the new model.   

Again, the modeled mixed layer depths (Figures 7.7bc) stay relatively close in most 

instances (with the notable exceptions near days 160 and 305).
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Figure 7.7 - Sensitivity to fixing the surface shortwave radiation to the summer time average.  (a) SST 
anomaly, (b) OML depths simulated by the new model, (c) OML depths simulated by KPP.  The colors are 
as in Figure 7.5.
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 The most extreme test is to fix all fluxes to their summertime average.  When this 

test is run (not shown), the resulting SST variability in both models is essentially non-

existent.  If we then subtract the simulated SST anomalies from this test from the 

simulated SST in the baseline run, we obtain the blue line in Figure 7.8 (in this figure we 

have only plotted the output from the new model framework).  If we now subtract the 

SST simulated in the fixed heat flux test from the baseline and add it to the SST 

difference from the fixed shortwave test relative to the baseline, we obtain the black curve 

in Figure 7.8.  Schematically, these lines are defined as

Blue Line = SSTcontrol − SSTAll Fixed

Black Line = SSTcontrol − SSTLH /SH Fixed + SSTSW Fixed( ).

These two curves are nearly identical, suggesting that intraseasonal variations in surface 

heat fluxes and shortwave radiation are the primary control on intraseasonal SST 

variability near the CRD during boreal summer 2002.  In KPP and the new model, 

intraseasonal variability in the surface heat flux and surface shortwave radiation do not 

control the variability of the OML base.	
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Figure 7.8 - Sum of SST changes due to fixing all fluxes to the summertime average (black).  The blue 
line is the sum of SST changes due to fixing the surface heat flux and shortwave radiation to the summer 
average.
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 In the previous tests we have allowed shortwave radiation to penetrate with a dual 

band exponential profile, with a visible band extinction coefficient of 20 m-1.  In this test, 

we increase the absorption coefficient such that 99% of the incoming solar radiation is 
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Figure 7.9 - Sensitivity to increasing the absorption of the visible component of shortwave radiation 
k = 5m−1( ) .  (a) SST  anomaly, (b) OML depths simulated by the new model, (c) OML depths simulated 

by KPP.  The colors are as in Figure 7.5.
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absorbed in the top 20 meters (previously it was 85%), which is equivalent to setting the 

extinction coefficient for visible light to 5 m-1.  

	

 Figure 7.9 shows the resulting SST anomalies and MLDs for this sensitivity test.  

Qualitatively, the SST variability is similar to the control run (Figure 7.9a).   The most 

common trend is for the SST anomalies to be greater in this test case then those in the 

control run.  The modeled mixed layer depths simulated by the new model (Figure 7.9b) 

are slightly shallower in this sensitivity test.  There are a few places where the modeled 

mixed layer base is deeper (e.g. near day 150).  In KPP (Figure 7.9c), the mixed layer is 

relatively unchanged, except for a few place where it is slightly deeper.

	

 Shallower mixed layer depths and warmer temperatures are expected.  The places 

where the mixed layer base is deeper and SST cooler (e.g. near days 200 and 290) are 

counterintuitive.  We believe that this result can also be explained by increased heat 

absorbed at the surface.  With limited solar heating at depth, there is less destruction of 

TKE.  Therefore, there is more TKE available for mixing.  This is seen in the new model 

output.  Figure 7.10a shows the TKE near day 200 for the baseline run and Figure 7.10b 

shows the TKE for this sensitivity test.  We see some bursts of TKE in this sensitivity 
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Figure 7.10 - Profiles of TKE near day 200 for (a) Baseline simulation,  (b) and increased absorption test.  
The units are m2s-2.
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test, most likely associated with wind stress at the surface.  It is possible that these fingers 

of TKE help mix the temperature and cool the SST.

	

 Figure 7.11a shows the influence of fixing the surface stress to a summer average.  

Overall the effect is minimal.  The only readily observable changes are evident near days 

200 and 290.  Near day 200, the strength of the cold anomaly in the model is significantly 
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Figure 7.11 - Sensitivity to fixing the surface wind stress to the summer time average.  (a) SST anomaly, 
(b) OML depths simulated by the new model, (c) OML depths simulated by KPP.  The colors are as in 
Figure 7.5.
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increased in the new model framework.  The amplitude of the warm anomaly near day 

290 is greatly reduced in KPP and the new model.  The changes in intraseasonal 

variability is understood by comparing the summer average of surface stress to the stress 

at a given time.  For example, day 290 is characterized by weak wind stress and a strong 

heat flux into the ocean.  When we replace this weak stress with the summer average, we 

add a new source of TKE and hence mixing.  

	

 Conversely, near day 190, the wind stress is strong and the summertime average is 

weaker.  Further, the heat flux is strongly out of the ocean (reference Figure 7.1).  It 

seems that near day 290 the mixing was shear driven in the baseline run, but has become 

convective in this test.

	

 The simulated mixed layer depths for the new model (Figure 7.11b) tend to be 

shallower, especially in regions where the summertime average of wind stress is smaller 

than the actual observed wind stress.  The change in modeled mixed layer depths is far 

more dramatic in KPP (Figure 7.11c).  The intraseasonal variability in the depth of the 

OML base is greatly reduced.  It seems that KPP is very sensitive to the strength and 

variability of the wind stress.  

	

 Since changing the wind forcing alters the Richardson number, the lack of mixed 

layer depth variability could be tied directly to the intrinsic parameterization.  As a check, 

this test has been run with the PWP model (not shown), and strong mixed layer 

variability remains.  Since both of these models determine the boundary layer depth by a 

critical Richardson number, we do not believe that the lack of variability in KPP is 

directly tied to the boundary layer depth scheme.
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 Instead, we hypothesize that the cause is indirect and is a result of the internal 

mixing scheme.  This parameterization is designed to represent unresolved shear 

instabilities and is known to be a model deficiency.  As discussed in Chapter 1, mixing at 

the base of the boundary layer influences mixing through the upper ocean.  This implies 

that stronger shear at depth will increase mixing in the boundary layer.  It is possible that 

less shear (and less variability in the shear) changes the mixing through the upper ocean.  

This changes the profile of momentum, temperature, and salinity, which amplifies the 

changes in Richardson number.  This in turn would influence the mixed layer 

depth.	
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Figure 7.12 - Modeled viscosity for the baseline run (a) and (c) and the sensitivity test fixing wind stress 
to the summertime average (b) and (d).   The top row is for KPP and the bottom is the new model 
framework.  The units are m2s-1.
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 To better illustrate this mechanism, we have plotted the model predicted viscosity 

for the KPP baseline run and wind stress sensitivity test in Figures 7.12a and 7.12b 

respectively.  The companion results for the new model are given in Figure 7.12cd.

	

 As seen in previous chapters, the mixing predicted by KPP extends through a 

larger depth than the new model, however, the maximum magnitude is roughly 

equivalent.  In this sensitivity test, both models predict less mixing.  The striking 

difference is the difference in variability of mixing between the two models.  In KPP, the 

viscosity remains fairly constant through the entire run.  On the other hand, the new 

model retains more of the variability evident in the control simulation.  As we have seen 

throughout this work, KPP is very sensitive to the amount of shear.  

7.4.1 Sensitivity to model design

	

 In the next test the mixing between the first and second model layers is artificially 

increased by a factor of five for the entire run.  This increase is intended to represent 

missing model processes, such as wave breaking.  Kantha and Clayson (1994) conducted 

a similar sensitivity test in their simulation of the western Pacific warm pool (Section 4.8 

of Kantha and Clayson 1994).  They found that an increased diffusivity improved the 

model simulation of MLDs.  

	

 Figure 7.13a shows the intraseasonal SST variability for this test.  The only 

significant change in this run is at day 290.  If we are thinking of the artificially elevated 

mixing as a representation of wave breaking, it seems that breaking would not occur near 

day 290.  As previously mentioned, day 290 is a period of weak surface stress, so local 

wave generation is unlikely.  This does not preclude the possibility of waves entering the 

region from afar and breaking locally.  
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 The results of this test confirm the hypothesis explaining the reduction of the 

warm anomaly at day 290 in the previous sensitivity test..  The constant wind stress value 

is greater than the actual forcing near day 290.  This elevated wind stress increases the 

mixing strength, similar to what was artificially done in Figure 7.13a.  In general the 
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Figure 7.13 - Sensitivity to fixing the artificially increasing the diffusivity in the top model layer.  (a) SST 
anomaly, (b) OML depths simulated by the new model, (c) OML depths simulated by KPP.  The colors are 
as in Figure 7.5.
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modeled mixed layer depths (Figures 7.13bc) are either unchanged or deeper, which is 

what we would expect when extra mixing is introduced.

	

 We have also assessed the influence of the non-local source term on the KPP 

simulated SST anomalies.  In this test, we use the forcing from the control simulation.  

Without the nonlocal forcing, KPP should behave similarly to PWP or Pacanowski and 

Philander (1981).  The result (Figure 7.14) is nearly identical to the control run.  We do 

not want suggest that non-local effects are not significant.  The subsurface temperature is 

better mixed when the non-local terms are included (see Figure 4.10).

	

 In addition to the test shown to this point,  the impact of diurnal variability of the 

surface forcing was evaluated.  The change in the simulated SST anomalies was minimal 

(not shown).  	

The influence of salinity flux variability was also examined.  While other 

studies have shown that intense precipitation can form barrier layers, which limit the 

diurnal penetration of the mixed layer base (e.g. Anderson et al. 1996), our sensitivity test 
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Figure 7.14 - Evaluation of the impact of non-local effects on KPP simulated SST.   Black is the control 
run and Blue is the result from the test.
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shows very little change from the control run.  It may be possible that the precipitation is 

too weak in the vicinity of the CRD to initiate a barrier layer or that the MLDs are 

shallow enough to minimize the effect of barrier layers.

	

 We have evaluated intraseasonal SST variability in two fairly complex vertical 

mixing models.  Further, similar results were obtained in a less complex mixing model 

(PWP)9.  A logical question would be, how much complexity can we strip out of the 

model while retaining the observed variability?  To answer this question, we have 

constructed two different slab models, the first assumes an annual mean mixed layer 

depth of 11 meters.  The second allows for some variability of the mixed layer depth.  

This is accomplished by changing the mixed layer depth monthly according to the 

Monterrey and Levitus (1997) dataset.  
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9 These runs were conducted by Dr. Eric Maloney

Figure 7.15 -  SST anomalies simulated by a slab model.  The black line is for a constant mixed layer 
depth.  The blue line allows the mixed layer to vary according to the value given by the Monterrey and 
Levitus dataset.
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 The results from the control case are shown in Figure 7.15.  In this figure, the 

black line uses the constant mixed layer depth.  The initial observation is that the slab 

model does a decent job capturing the SST variability.  There are some strong biases, 

especially between days 240 and 270 and during the last warm anomaly.  The bias in the 

vicinity of the strong warm event is not surprising as previous tests have shown that the 

simulated SST is sensitive to the mixing parameterization.

	

 Allowing the mixed layer to change monthly does slightly improve the result 

(most notably near day 200), but the change is minor.  It is possible that the slab model 

could be improved by a mixed layer depth data set with higher temporal resolution.

7.5 Conclusions

	

 Three intraseasonal SST oscillations with a magnitude of about 1oC were 

observed during boreal summer of 2002 in the data.  One dimensional simulations using 

the KPP model, and the newly developed mixing model, forced by the observed fluxes at 

an eastern Pacific TAO buoy (8oN 95oW) show that intraseasonal variability in the latent 

heat fluxes and shortwave heating are primarily responsible for the SST variability 

observed during boreal summer of 2002.  Variations in surface stress are occasionally 

important to SST variability.  This effect is most notable near the warm peak at day 290.  

When wind stress variability is neglected, the amplitude of this warm anomaly is reduced 

by about 50%.  We again find that KPP is very sensitive to the model shear, and mixes 

momentum more rapidly than the new model and PWP.

	

 A test where diffusion is artificially increased between layers one and two has a 

similar impact as fixing the wind stress to the summertime average on the third warm 

anomaly.  Since the averaged value of wind stress used in the sensitivity test is greater 
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than that observed at day 290, an increased wind stress will also increase the amount of 

mixing near the surface. 

	

 To account for large scale processes that are missing in a one-dimensional run, 

advective tendencies derived from monthly mean output of CCoSM, a coupled geodesic 

ocean sea-ice model driven by ERA-Interim reanalysis, are added to the simulation.  

Including advection improves the SST field slightly, validating the use of one-

dimensional models to study SST variability in the vicinity of the CRD.  

	

 There are a few potential caveats that should be mentioned in association with the 

GCM results.  First, there may be issues with the reanalysis itself.  There are a number of 

assumptions inherent in the reanalysis.  For example, there must be some 

parameterization of how clouds interact with radiation to produce a shortwave forcing.  

Second, it is important to note that the resolution of the run is quite course (2.5o x 2.5o).  

It is possible that small scale fluctuations in wind jets (e.g. the Gulf of Papagayo) may not 

be resolved.    Since the reanalysis resolution is 1.25o x 1.25o, repeating the OGCM 

simulation at this resolution may improve the tendencies used in the one-dimensional 

models.  Finally, we are also neglecting a negative feedback in our one-dimensional 

simulations.  When the thermocline in an OGCM deepens to much, the pressure gradient 

changes.  The depth anomaly is smoothed in a three-dimensional model.  Any anomalous 

deepening in the one-dimensional model proceeds without this correction.

	

 The CRD is associated with mean upwelling and shallow MLDs.  It is possible 

that mechanisms for intraseasonal variability are different in other portions of the eastern 

Pacific warm pool, especially to the northwest where mean MLDs are deeper and ocean 

dynamics are less prominent.  This, along with the caveats associated with the advective 
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GCM tendencies lead to the conclusion that a broader, regional, study is warranted to 

determine if the proposed mechanism for intraseasonal SST variability is evident in other 

portions of the eastern Pacific. 
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Chapter 8: 

General Conclusions and Future 

Work

 The upper ocean is very important to many coupled processes.  It is responsible 

for the transmission of fluxes between the atmosphere and the deep  ocean.   Accurate 

simulation of the depth of the boundary layer is integral to processes such as the 

meridional overturning circulation (Mohammad and Nilsson 2004) and El Niño.  Further, 

hurricanes create an intense local coupling between the atmosphere and ocean.  It  is 

hypothesized that the maximum potential intensity of hurricanes is dependent on the SST

(Emmanuel 1988).  This implies that accurate simulation of the upper ocean is important 

for hurricane studies.

 A wide variety of processes influence the dynamics of the mixed layer; such as 

surface fluxes, wave induced effects (i.e. Langmuir Cells), and entrainment at the base of 

the boundary layer.  In this work, we have focused in on one of the processes influencing 

the upper ocean, the penetrating component of short wave radiation.
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 Studies of how penetrating short  wave radiation influences the three-dimensional 

ocean circulation began with Schneider and Zhou (1998).  Schneider and Zhou (1998) 

found that the simulated distribution and depths of the annually averaged mixed layer 

depths was greatly  improved when the solar radiation was allowed to penetrate beyond 

the top model layer.  

 In this past decade, attention has shifted to how spatially variable attenuation 

coefficients influence the properties of the large scale ocean.  The coefficients vary 

according to the amount of chlorophyll at a given location.  The tropical response is not 

robust in previous work.  Some, such as GA09 and Nakamoto et al (2001), find that the 

tropical Pacific cools relative to a chlorophyll free ocean.  While others, such as 

Murtugudde et al. (2001), find the tropical Pacific warms.  Manizza et al. (2005) found 

tropical Pacific cooling for one bio-optical parameterization and warming for another.

 Most of the prior work has neglected vertically  variable attenuation, with a few 

exceptions (e.g. Ohlmann et al. 1998).  In addition, the focus has been on the 

interseasonal response of the ocean to spatially variable chlorophyll.  Here we examined 

the response on shorter time scale.   

 Previous mixed layer models have some very well known biases.  For example, 

models that predict the mixed layer depth by a critical Richardson number (e.g. KPP) 

have a deep  bias for coarse resolution and shallow mixed layers (as seen in Chapter 4).  

The interior mixing scheme in KPP is far from perfect (e.g. Zaron and Moum 2009, 

Jackson et  al. 2008).  Since the mixed layer diffusivity  is assumed to fit  to the interior 

predicted value, the deficiencies in the interior scheme can affect the result  in the upper 

190



ocean.  KPP is also more sensitive to resolution than other mixed layer models (e.g. 

Durski et al. 2004, Acreman and Jeffery 2007).

 Bulk mixed layer models (e.g. KT) do not exhibit as strong of a resolution 

dependence as KPP.  However, assumption of perfectly mixed properties in the upper 

ocean is not confirmed in observations and precludes potentially important processes.  

The entrainment rate predicted by these models is dependent on the layer integrated TKE.  

Physically, we expect that the entrainment should depend on energy at the boundary layer 

base and not throughout the entire layer.

 To address some of these issues, we have developed a new mixing model that 

explicitly predicts the depth of the boundary layer base, like bulk models.  Unlike bulk 

models, the entrainment rate is dependent on energy at the boundary layer base.  The 

specific form of entrainment follows L10, but has been extended to include shear at the 

base of the boundary layer.  The new model does not require the boundary layer to 

coincide with the mixed layer, as is assumed by bulk mixed models.  The unrepresented 

mixing follows Canuto et al. (2002, 2008).  This model is also easily adaptable to any 

coordinate system, unlike KPP.

 To evaluate the model, we have developed VVM-Aqua, which follows Jung and 

Arakawa (2008).  This model naturally incorporates the CLII mechanism for Langmuir 

Cell generation.  Currently the model utilizes a linear equation of state and the sub-grid 

mixing scheme follows Noh et al. (1999).  This model was evaluated by shear turbulence 

and Langmuir turbulence simulations that have been conducted by  many previous authors 

(e.g. M97, Li et  al. 2005, Polton et  al. 2005, Harcourt and D’Asaro 2008).  The general 
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conclusion is that VVM-Aqua is slightly more diffusive than previous results.  We also 

find that the shear turbulence results matched well, but the Langmuir turbulence 

simulation did not.  

 In our initial evaluations, KPP outperforms the new model in pure convective 

situations.  This is due to the lack of a counter gradient fluxes in the new model.  In shear 

dominated regimes, the new model behaves as well, and sometimes better, than 

KPP. 

 In the simulations that followed W98, we found that the simulated temperature 

and velocity fields are sensitive to the chosen attenuation coefficient.  If the short wave 

radiation is confined to the top level the thermocline depth is much shallower than the 

baseline run.  For lower values of kVIS, the near surface stratification is diminished and the 

velocity  is more easily mixed.  The surface pressure gradient is able to overwhelm the 

momentum input.

 When observed chlorophyll profiles were utilized, there was little change relative 

to the baseline simulation.  The irradiance profile that resulted from the optical 

parameterization of GA09 was nearly identical to that obtained when using a constant 

kVIS of 20 m-1.

 The second chlorophyll profile was designed such that  the necessary  condition for 

instability derived in Lewis et al. (1983) is satisfied near seven meters depth.  This profile 

did result in velocity  and temperature changes relative to the baseline simulation, but the 

resulting behavior was similar to the runs with high extinction coefficients.  Repeating 

the test at one, four, and ten meter resolution did not  significantly alter the result relative 
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to the baseline simulation at those resolutions.  This may be expected given the 

similarities in the results of Manizza et al. (2005) and GA09.  Using a full ecosystem 

model slightly modulated the tropical ocean response.

 When spatial (and temporal) variability  of surface chlorophyll was considered, we 

found that surface temperature near the eastern boundary is warmer when compared to 

the baseline run.  This is consistent with previous one-dimensional results.  When 

chlorophyll is included, the two-dimensional model behaves similar to what is expected 

from a purely local heat balance.  In other words, where the chlorophyll is increased, the 

temperature is warmer, and the temperature is cooler when there is less chlorophyll.  This 

validates the result of GA09 and Anderson et al. (2009) that the water clarity in the 

subtropical gyres is more important to the temperature of waters in the EUC and the cold 

tongue than water clarity at the equator.

 In the final test, all the different pieces were brought together to determine what 

controls the intraseasonal SST variability  in the eastern pacific.  Since the large scale 

terms were small, both in our companion GCM simulation and some observations 

(McPhadden et al. 2008), we were able to accurately  simulate the intraseasonal SST 

variability.  We found that the intraseasonal (not  diurnal) variability of surface heat fluxes 

and shortwave radiation dominate the SST variability near the Costa Rica dome.  When 

the attenuation coefficients were changed, the basic picture remained the same, although 

some of the variability is slightly reduced.
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8.1 Future Work

 The new model designed in this research behaves well, but as with many models, 

there are things to change.  First and foremost is the inclusion of non-local terms in the 

turbulent fluxes of tracer.  Currently, we parameterize the turbulent flux of theta as 

w 'θ ' = −K ∂θ
∂z

.  With a non-local term, the heat flux becomes w 'θ ' = −K * ∂θ
∂z

− γ⎛
⎝⎜

⎞
⎠⎟

.  

Kantha and Clayson (1994) use a form of γ suggested by  Deardorff (1972).  This form is 

used in KPP.  However, implementing a non-local forcing in this manner does not seem 

correct.  Change of the algebraic equation for the heat  flux would change the structure 

function.  This is why we include an asterisk on the mixing coefficient.  

 Instead, we believe that counter gradient  effects are best added when we 

implement the algebraic model as a level 3 model.  In this framework, the variance of 

temperature and salinity would be prognostic.  This was done in Cheng et al. (2002) for 

atmospheric applications (i.e. no salinity).  It  seems reasonable to assume that a similar 

method could be followed when salinity is included. 

 In addition to non-local forcing, we would like to rework how the layers expand 

and contract for a given virtual mass flux.  Currently the number of layers in the 

boundary layer and the deep ocean are fixed through the length of the run.  This would 

imply that as we entrain, the resolution in the boundary layer decreases and the resolution 

in the deep ocean increases.  Take the two-dimensional simulations as an example.  With 

wind only, the western boundary  will continue to entrain unchecked.  In Figure 8.1 we 
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have plotted the initial model layer thicknesses (top 15 layers) in black circles.  At the 

end of the 10 year run (blue circles), the three layers in the boundary  layer have gone 

from five meters in thickness to nearly 60.  In the deep ocean, the layers thin.  In most 

cases we would prefer that  the resolution within the boundary  layer to be higher than the 

deep ocean.

 Instead of the current implementation, we could “absorb” some of the layers from 

the deep ocean into the boundary layer.  When the boundary layer thins, the extra layers 

would be moved back to the deep ocean.  On the other hand, when the boundary layer 

collapses there is a lot of variation in a small thickness and high resolution could be 

important.  The proposed method of moving layers in and out of the boundary layer may 

not improve the simulation relative to our original scheme.

 In addition to model improvements, there are many remaining physical questions.  

We have only examined a single bio-optical parameterization, many more remain.  

Manizza et al. (2005) found a completely  opposite response with a new parameterization.    
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Figure 8.1 - Layer thicknesses, of the top 15 layers, adjacent to the western boundary for the baseline two 
dimensional run.  The black circles are the initial thicknesses and the blue circles are thicknesses at the end 
of the ten year run.
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Without  interactive biology, we are unable to examine some critical questions.  As more 

nutrient rich water is injected into the upper ocean by  entrainment or mesoscale eddies, 

phytoplankton populations increase and more heat is trapped near the surface.  This could 

shut off the entrainment and kill the phytoplankton.  On the other hand, if the population 

is concentrated, secondary circulations could develop  that  enhance entrainment.  The 

influence of bio-optical parameterization and the possible stabilizing feedback could be 

examined in one-dimension.  The influence of secondary circulations require an 

extension to three dimensions.

 When studying the influence of vertical variations of chlorophyll on the model 

temperature and velocity, we assumed a one-way  interaction between the vertical mixing 

model and the large scale forcing.  To relax this assumption there are two requirements.  

First, we need to use the two-dimensional framework developed in this work, or move the 

model to three dimensions.  The easiest option is the former.  However, the physical 

mechanism that maintains the EUC is different than what is observed and may be 

difficult to accurately parameterize.  Use of the two dimensional framework also ignores 

the important influence of extratropical water clarity.

 The second requirement is independent of the first.  To simulate the distribution of 

phytoplankton beyond more than two weeks, an ecosystem model is required.  The most 

straightforward option is to couple a NPZD ecosystem model to the two-dimensional 

framework developed in this dissertation, but the eventual goal would be a move to three-

dimensions.
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 In addition to simply simulating the vertical distribution of phytoplankton, and 

hence chlorophyll, it would also be interesting to take up the question of how sensitive 

the ocean is to the bio-optical parameterization. 

 It has been hypothesized by  Anderson et  al. (2007) that variability in penetrating 

shortwave radiation associated with surface chlorophyll influences the period and 

magnitude of El Niño Southern Oscillation (ENSO).  To accurately simulate ENSO, it is 

important for a model to capture the boundary layer deepening and shoaling associated 

with wave propagation.  The depth of the thermocline is essential to the discharge-

recharge mechanism proposed by Jin (1997) to explain an ENSO cycle.  We believe that 

the model developed in this work is very well suited to simulate the movement of the 

thermocline associated with wave propagation.  Simulation of ENSO would require a 

coupled atmosphere.  This could be accomplished in our two-dimensional framework by 

coupling to an atmospheric model similar to what is described in Sobel et al. (2003).
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Appendix A: 

D e r i v a t i o n o f t h e Vo r t i c i t y 

Equations with CLII Forcing

 The derivation of the equation describing the x-component of vorticity ξ( )  begins 

as suggested in Table 2.1. Performing 
∂
∂y

2.3( ) − ∂
∂z

2.2( )  yields

∂
∂y

∂w
∂t

+ u ∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

⎛
⎝⎜

⎞
⎠⎟
−

∂
∂z

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

=
∂B
∂y

−
∂usη
∂y

−
∂vsξ
∂y

+
∂Fw

∂y
+ f ∂

∂z
u + us( ) +

∂usζ
∂z

−
∂Fv

∂z

Where we have again defined

Fv ≡ −
∂u 'v'

∂x
−
∂v'v'

∂y
−
∂v'w '

∂z

Fw ≡ −
∂u 'w '

∂x
−
∂v'w '

∂y
−
∂w 'w '

∂z

B ≡ g ρ
ρo

.

For the moment, we turn our attention to the left hand side only.  When the derivative 

operation is performed, we obtain
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∂
∂t

∂w
∂y

−
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

+
∂u
∂y

∂w
∂x

+ u ∂2w
∂x∂y

−
∂u
∂z

∂v
∂x

− u ∂2v
∂x∂z

+
∂v
∂y

∂w
∂y

+ v ∂
2w
∂y2 −

∂v
∂z

∂v
∂y

− v ∂2v
∂y∂z

+
∂w
∂y

∂w
∂z

+ w ∂2w
∂y∂z

−
∂w
∂z

∂v
∂z

− w ∂2v
∂z2 = RHS.

Rearranging, we obtain

∂
∂t

∂w
∂y

−
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

+ u ∂
∂x

∂w
∂y

−
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

+ v ∂
∂y

∂w
∂y

−
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

+ w ∂
∂z

∂w
∂y

−
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

+
∂u
∂y

∂w
∂x

−
∂u
∂z

∂v
∂x

+
∂w
∂y

−
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟
∂v
∂y

+
∂w
∂y

−
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟
∂w
∂z

= RHS.

Using the definitions of vorticity and adding and subtracting 
∂u
∂z

∂u
∂y

yields

∂ξ
∂t

+ u ∂ξ
∂x

+
∂vξ
∂y

+
∂wξ
∂z

−η ∂u
∂y

−ζ ∂u
∂z

= RHS

Next, we add and subtract ξ ∂u
∂x

, which gives

∂ξ
∂t

+
∂uξ
∂x

+
∂vξ
∂y

+
∂wξ
∂z

− ξ ∂u
∂x

−η ∂u
∂y

−ζ ∂u
∂z

= RHS.

Now we return to the RHS

LHS =
∂B
∂y

+
∂usη
∂y

+
∂usζ
∂z

−
∂vsξ
∂y

+
∂Fw

∂y
−
∂Fv

∂z
+ f ∂

∂z
u + us( )

LHS =
∂B
∂y

+η ∂us

∂y
+ us

∂η
∂y

+ us
∂ζ
∂z

+ζ ∂us

∂z
−
∂vsξ
∂y

+
∂Fw

∂y
−
∂Fv

∂z
+ f ∂

∂z
u + us( )

Using equation (2.6), we can write

LHS =
∂B
∂y

+η ∂us

∂y
− us

∂ξ
∂x

+
∂ζ
∂z

⎛
⎝⎜

⎞
⎠⎟

+ us
∂ζ
∂z

+ζ ∂us

∂t
−
∂vsξ
∂y

+
∂Fw

∂y
−
∂Fv

∂z
+ f ∂

∂z
u + us( )

LHS =
∂B
∂y

+η ∂us

∂y
−
∂usξ
∂x

+ ξ ∂us

∂x
+ us

∂ζ
∂z

−
∂vsξ
∂y

+
∂Fw

∂y
−
∂Fv

∂z
+ f ∂

∂z
u + us( )
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We are now ready to reinstate both sides of the equation.  After rearranging terms our 

equation becomes

 

∂ξ
∂t

+
∂uξ
∂x

+
∂usξ
∂x

+
∂vξ
∂y

+
∂vsξ
∂y

+
∂wξ
∂z

− ξ ∂u
∂x

− ξ ∂us

∂x
−η ∂u

∂y
−η ∂us

∂y
−ζ ∂u

∂z

−ζ ∂us

∂z
=
∂B
∂y

+
∂Fw

∂y
−
∂Fv

∂z
+ f ∂

∂z
u + us( )

∂ξ
∂t

+
∂u*ξ
∂x

+
∂v*ξ
∂y

+
∂wξ
∂z

− ξ ∂u*

∂x
−η ∂u*

∂y
−ζ ∂u*

∂z
− f ∂u*

∂z
=
∂B
∂y

+
∂Fw

∂y
−
∂Fv

∂z
.

This is a similar form to that used in the atmospheric version of the VVM, except the u 

and v velocities are modified to include the Stokes drift.  The derivations of the η and ζ

equations are similar and thus they are not presented.
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Appendix B: 

Higher Order Moments

B.1 Second Moment Equations

 The momentum, temperature, salinity and passive tracer equations to be 

considered are given by

∂ui

∂t
+ uj

∂ui

∂x j

− 2εijku jΩk = −
1
ρo

∂P
∂xi

+ gi αθ − βS( ) +
∂Fi, j

∂x j
(B.1)

∂θ
∂t

+ uj
∂θ
∂x j

+
∂Vj

θ

∂x j

= Qθ (B.2)

∂S
∂t

+ uj
∂S
∂x j

+
∂Vj

S

∂x j

= QS (B.3)

∂P
∂t

+ uj
∂P
∂x j

+
∂Vj

P

∂x j

= 0. (B.4)

In the ocean, the continuity equation can be written as 
∂u j

∂x j

= 0 .  In these equations we 

have assume that the buoyancy term can be approximated as follows
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gi
ρ − ρo

ρo

≅ gi αθ − βS( ) .

In other words, a linear equation of state has been used.  Fi, j is the viscous stress tensor, 

and is approximated as Fi, j = ν ∂ui

∂x j

+
∂uj

∂xi

⎛

⎝⎜
⎞

⎠⎟
.  In the ocean, we can simplify this 

expression further.  Consider the last term in (B.1).

∂Fi, j

∂x j

=
∂
∂x j

ν ∂ui

∂x j

+
∂uj

∂xi

⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= ν ∂2ui

∂xi
2 +

∂2uj

∂xi∂x j

⎛

⎝⎜
⎞

⎠⎟
= ν ∂2ui

∂xi
2

Where we have used the continuity  equation in the last  equality.  This suggests that Fi, j  

can approximately be written as 

Fi, j ≅ ν
∂ui

∂x j

.

In the tracer equations, Vj
Z represent the molecular diffusion of that tracer.  It  is given by 

Vj
Z =κ Z

∂Z
∂x j

.  

 If (B.1) - (B.4) are averaged, we obtain

∂ui

∂t
+ uj

∂ui

∂x j

− 2εijk u jΩk = −
∂
∂x j

ui
'uj

' − Fi, j( ) − 1
ρo

∂p
∂xi

+ gi αθ − βS( ) (B.5)
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∂θ
∂t

+ uj
∂θ
∂x j

= −
∂u j 'θ '
∂x j

−
∂Vj

θ

∂x j
(B.6)

∂S
∂t

+ uj
∂S
∂x j

= −
∂u j 'S '
∂x j

−
∂Vj

S

∂x j
(B.7)

∂P
∂t

+ uj
∂P
∂x j

= −
∂u j 'P '
∂x j

−
∂Vj

P

∂x j
(B.8)

Subtraction of the mean equations from their respective counterparts in (B.1) - (B.4) 

yields

∂ui
'

∂t
+ uj

∂ui
'

∂x j

+ uj
' ∂ui

∂x j

+ uj
' ∂ui

'

∂x j

− 2εijku j
'Ωk = −

1
ρo

∂p '
∂xi

+ gi αθ '− βS '( )

−
∂
∂x j

ui
'uj

' − Fi, j
'( )

(B.9)

∂θ '
∂t

= −u j
' ∂θ '

∂x j

−
∂u j

'θ '

∂x j

− uJ
∂θ '

∂x j

− uj
' ∂θ
∂x j

−
∂Vj

θ '

∂x j

(B.10)

∂S '
∂t

= −u j
' ∂S '

∂x j

−
∂u j

' S '

∂x j

− uJ
∂S '

∂x j

− uj
' ∂S
∂x j

−
∂Vj

S '

∂x j

(B.11)

∂P '
∂t

= −u j
' ∂P '

∂x j

−
∂u j

' P '

∂x j

− uJ
∂P '

∂x j

− uj
' ∂P
∂x j

−
∂Vj

P '

∂x j

(B.12)

There are two more useful equations for the derivations to follow.  Equation (B.9) is 

equally valid if the i index is swapped for another value (not j or k  as they  are present in 

the equation already).

∂ul
'

∂t
+ uj

∂ul
'

∂x j

+ uj
' ∂ul

∂x j

+ uj
' ∂ul

'

∂x j

= −
1
ρo

∂p '
∂xl

+ gl αδθ '− βδS '( )

−
∂
∂x j

ul
'uj

' − Fl , j
'( )

(B.13)
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∂um
'

∂t
+ uj

∂um
'

∂x j

+ uj
' ∂um

∂x j

+ uj
' ∂um

'

∂x j

= −
1
ρo

∂p '
∂xm

+ gm αδθ '− βδS '( )

−
∂
∂x j

um
' uj

' − Fm, j
'( )

(B.14)

To derive the equation describing the Reynolds stress, equation (B.9) is multiplied by ul
'

and equation (B.13) is multiplied by ui
' , then the resulting equation are summed.  This 

yields

ul
' ∂ui

'

∂t
+ ui

' ∂ul
'

∂t
+ ul

' uj
∂ui

'

∂x j

+ ui
' uj

∂ul
'

∂x j

+ ul
'uj

' ∂ui

∂x j

+ ui
'uj

' ∂ul

∂x j

+ ul
'uj

' ∂ui
'

∂x j

+ ui
'uj

' ∂ul
'

∂x j

= −
ul

'

ρo

∂p '
∂xi

−
ui

'

ρo

∂p '
∂xl

+ ul
'gi αθ '− βS '( ) + ui

'gl αθ '− βS '( ) −

ul
' ∂
∂x j

ui
'uj

' − Fi, j
'( ) − ui

' ∂
∂x j

ul
'uj

' − Fl , j
'( )

After some manipulation, this equation is can be written as 

∂ui
'ul

'

∂t
+

∂
∂x j

ui
'uj

' uk
' + ujui

'ul
' − ui

'Fl , j
' − ul

'Fi, j
'( ) = −u j

' ul
' ∂ui

∂x j

− uj
' ul

' ∂ui

∂x j

+ gi αul
'θ ' − βul

'S '( ) + gl αui
'θ ' − βui

'S '( ) − Fi, j
' ∂ul

'

∂x j

+ Fl , j
' ∂ui

'

∂x j

⎛

⎝⎜
⎞

⎠⎟

−
ul

'

ρo

∂p '

∂xi

−
ui

'

ρo

∂p '

∂xl

+ ul
' ∂ui

'uj
'

∂x j

+ ui
' ∂ul

'uj
'

∂x j

(B.15)

Averaging (B.15) yields the Reynolds stress equation, which is given by 
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∂ui
'ul

'

∂t
+

∂
∂x j

ui
'uj

' uk
' + uj ui

'ul
' − ui

'Fl , j
' − ul

'Fi, j
'( ) = −u j

' ul
' ∂ui

∂x j

− uj
' ul

' ∂ui

∂x j

+ gi αul
'θ ' − βul

'S '( ) + gl αui
'θ ' − βui

'S '( )
−

ul
'

ρo

∂p '

∂xi

−
ui

'

ρo

∂p '

∂xl

− Fi, j
' ∂ul

'

∂x j

+ Fl , j
' ∂ui

'

∂x j

⎛

⎝
⎜

⎞

⎠
⎟

(B.16)

To derive the expression for the turbulent heat flux, we first multiply (B.10) by ui
'  and 

(B.9) by θ ' .  The resulting equations are summed, yielding

∂ui
'θ '

∂t
+
∂ui

'uj
'θ '

∂x j

= −u j
∂ui

'θ '

∂x j

− uj
'θ ' ∂ui

∂x j

− uj
' ui

' ∂θ
∂x j

−
θ '

ρo

∂p '
∂xi

+ gi αθ '2− βθ 'S '( ) − ui
' ∂u j

'θ '

∂x j

−θ ' ∂
∂x j

ui
'uj

' − Fi, j
'( ) − ui

' ∂Vj
θ '

∂x j

(B.17)

After rearranging and averaging, we obtain

∂ui
'θ '
∂t

+
∂ui

'uj
'θ '

∂x j

= −u j
'θ ' ∂ui

∂x j

− ui
'uj

' ∂θ
∂x j

− uj
∂ui

'θ '

∂x j

+ gi αθ ' 2
− βθ 'S '( )

− ui
' ∂Vj

θ '

∂x j

+θ ' ∂Fi, j
'

∂x j

−
θ '

ρo

∂p '

∂xi

(B.18)

The derivation of the turbulent fluxes of salt and passive tracer proceed identically.  The 

unaveraged equations are

∂ui
'S '

∂t
+
∂ui

'uj
' S '

∂x j

= −u j
∂ui

'S '

∂x j

− uj
' S ' ∂ui

∂x j

− uj
' ui

' ∂S
∂x j

−
S '

ρo

∂p '
∂xi

+ gi αθ 'S '− βS '2( ) − ui
' ∂u j

' S '

∂x j

− S ' ∂
∂x j

ui
'uj

' − Fi, j
'( ) − ui

' ∂Vj
S '

∂x j

(B.19)
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∂ui
'P '

∂t
+
∂ui

'uj
' P '

∂x j

= −u j
∂ui

'P '

∂x j

− uj
' P ' ∂ui

∂x j

− uj
' ui

' ∂P
∂x j

−
P '

ρo

∂p '
∂xi

+ gi αθ 'P '− βS 'P '( ) − ui
' ∂u j

' P '

∂x j

− P ' ∂
∂x j

ui
'uj

' − Fi, j
'( ) − ui

' ∂Vj
P '

∂x j

(B.20)

Averaging these equations yields

∂ui
'S '
∂t

+
∂ui

'uj
' S '

∂x j

= −u j
' S ' ∂ui

∂x j

− ui
'uj

' ∂S
∂x j

− uj
∂ui

'S '

∂x j

+ gi αθ 'S ' − βS ' 2( )
− ui

' ∂Vj
S '

∂x j

+ S ' ∂Fi, j
'

∂x j

−
S '

ρo

∂p '

∂xi

(B.21)

∂ui
'P '
∂t

+
∂ui

'uj
' P '

∂x j

= −u j
' P ' ∂ui

∂x j

− ui
'uj

' ∂P
∂x j

− uj
∂ui

'P '

∂x j

+ gi αθ 'P ' − βP 'S '( )
− ui

' ∂Vj
P '

∂x j

+ P ' ∂Fi, j
'

∂x j

−
P '

ρo

∂p '

∂xi

(B.22)

The equations for tracer variance are derived by  multiplying the respective tracer 

equation by  twice that tracer.  For example, consider potential temperature variance.  

Multiplying (B.10) by yields

∂θ ' 2

∂t
+
∂uj

'θ ' 2

∂x j

= −u j
∂θ ' 2

∂x j

− 2uj
'θ ' ∂θ

∂x j

− 2θ ' ∂u j
'θ '

∂x j

− 2θ ' ∂Vj
θ '

∂x j

(B.23)

The equations for S '2 and P '2 can be written as

∂S ' 2

∂t
+
∂uj

' S ' 2

∂x j

= −u j
∂S ' 2

∂x j

− 2uj
' S ' ∂S

∂x j

− 2S ' ∂u j
' S '

∂x j

− 2S ' ∂Vj
S '

∂x j

(B.24)
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∂P ' 2

∂t
+
∂uj

' P ' 2

∂x j

= −u j
∂P ' 2

∂x j

− 2uj
' P ' ∂P

∂x j

− 2P ' ∂u j
' P '

∂x j

− 2P ' ∂Vj
P '

∂x j

(B.25)

The final variance equations are

∂θ ' 2

∂t
+
∂u j

'θ ' 2

∂x j

= −u j
∂θ ' 2

∂x j

− 2uj
'θ ' ∂θ

∂x j

− 2θ ' ∂Vj
θ '

∂x j

(B.26)

∂S ' 2

∂t
+
∂u j

' S ' 2

∂x j

= −u j
∂S ' 2

∂x j

− 2uj
' S ' ∂S

∂x j

− 2S ' ∂Vj
S '

∂x j

(B.27)

∂P ' 2

∂t
+
∂u j

' P ' 2

∂x j

= −u j
∂P ' 2

∂x j

− 2uj
' P ' ∂P

∂x j

− 2P ' ∂Vj
P '

∂x j

(B.28)

The equations derived to this point have introduced the need for three cross correlations 

θ 'S ' ,S 'P ' ,θ 'P '( ) .  The operations necessary to derive these moments are summarized in 

Table B.1.

Moment Equation Operation Performed

θ 'S ' θ '* B.11( ) + S '* B.10( )

θ 'P ' θ '* B.12( ) + P '* B.10( )

S 'P ' S '* B.12( ) + P '* B.11( )

The unaveraged equations are

Table B.1: Operations performed to derive the cross correlations
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∂θ 'S '

∂t
+
∂uj

'θ 'S '

∂x j

= −u j
∂θ 'S '

∂x j

− uj
'θ ' ∂S

∂x j

− uj
' S ' ∂θ

∂x j

−θ ' ∂Vj
S '

∂x j

− S ' ∂Vj
θ '

∂x j

− S ' ∂u j
'θ '

∂x j

−θ ' ∂u j
' S '

∂x j

(B.29)

∂θ 'P '

∂t
+
∂uj

'θ 'P '

∂x j

= −u j
∂θ 'P '

∂x j

− uj
'θ ' ∂P

∂x j

− uj
' P ' ∂θ

∂x j

−θ ' ∂Vj
P '

∂x j

− P ' ∂Vj
θ '

∂x j

− P ' ∂u j
'θ '

∂x j

−θ ' ∂u j
' P '

∂x j

(B.30)

∂S 'P '

∂t
+
∂uj

' S 'P '

∂x j

= −u j
∂S 'P '

∂x j

− uj
' S ' ∂P

∂x j

− uj
' P ' ∂S

∂x j

− S ' ∂Vj
P '

∂x j

− P ' ∂Vj
S '

∂x j

− P ' ∂u j
' S '

∂x j

− S ' ∂u j
' P '

∂x j

(B.31)

The final equations are given by

∂θ 'S '

∂t
+
∂u j

'θ 'S '

∂x j

= −u j
∂θ 'S '

∂x j

− uj
'θ ' ∂S

∂x j

− uj
' S ' ∂θ

∂x j

−θ ' ∂Vj
S '

∂x j

− S ' ∂Vj
θ '

∂x j

(B.32)

∂θ 'P '

∂t
+
∂u j

'θ 'P '

∂x j

= −u j
∂θ 'P '

∂x j

− uj
'θ ' ∂P

∂x j

− uj
' P ' ∂θ

∂x j

−θ ' ∂Vj
P '

∂x j

− P ' ∂Vj
θ '

∂x j

(B.33)

∂S 'P '

∂t
+
∂u j

' S 'P '

∂x j

= −u j
∂S 'P '

∂x j

− uj
' S ' ∂P

∂x j

− uj
' P ' ∂S

∂x j

− S ' ∂Vj
P '

∂x j

− P ' ∂Vj
S '

∂x j

(B.34)

Equations (B.5) - (B.8) and (B.15) - (B.34) describe the mean fields and second order 

moments for momentum, theta, salinity, and a passive tracer.  There are a total of 21 

equations.  However, the equations are not completely  closed, third order moments have 

appeared in the equations and must be determined.  Further, assumptions must  be made 
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about certain terms, such as pressure correlation, rotation, and viscosity.  We return to the 

third order moments after a discussion of some model assumptions.

B.2 Simplifying Assumptions

 The closures for the second moment equations follow directly from Canuto et  al. 

(2001,2002).  The pressure correlation terms contain three parts: the slow (or return-to-

isotropy), a fast term, which acts to damp the moments described by the equation they 

appear in.  Finally, a buoyancy contribution is included.   The viscous terms all have the 

form  κB' ∂
2C '

∂x j
2 +κB' ∂

2C '

∂x j
2 , and can be rewritten using the product rule as 

κ ∂2B'C '

∂x j
2 − 2κ ∂B'

∂x j

∂C '

∂x j

.  The first term represents molecular diffusion and is assumed 

small compared to the second (dissipation) term (Stull 1988).  The parameterization for 

the dissipation terms follow Canuto et al. (2001,2002) for momentum, temperature, and 

salinity.  In the case of a passive tracer, the pressure correlation terms are found by 

analogy to those for salinity.

 Finally, we limit our focus to vertical variations in turbulence.  To this end, where 

the index ‘j’ appears in equations (B.5) - (B.8) and (B.15) - (B.34), it is set to 3.  Terms 

involving advection by  the mean horizontal flow are also neglected.  The resulting second 

moment equations are given by
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In these equations, we have introduced the turbulence kinetic energy 

k ≡ 0.5 u ' 2
+ v' 2

+ w ' 2{ }⎛
⎝

⎞
⎠ , and the eddy turnover time τ ≡ 2k

ε( )  , where ε is the 

dissipation rate of k.  The definition of the remaining tensors are summarized in Table B.2 

(in these definitions, δ il is the Kroenicker delta).
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We are also going to assume that the equations describing the second moments of passive 

tracer (equations (B.38), (B.41), (B.43), and (B.44)) can be treated algebraically.  In other 

Table B.2 - Tensor forms of functions introduced in equations (B.35) - (B.44)
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words, the time derivative and third order moment terms are neglected.  Under this 

assumption the vertical flux of passive tracer is given by

w 'P ' = −τ pP
∂P
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(B.45)

The constants introduced in equations (B.35) - (B.44), including the values of 

τ pv ,τ pθ ,τ pS ,τθ ,τ S ,τθS , and τ pP  are discussed in Appendix B.

B.3 Third Order Moments

 The third order moments can be derived in a similar manner to that used in 

Section B.1.  However, in this derivation fourth order moments will emerge.  The 

equations for fourth order moments will contain fifth order moments.  At some point, a 

closure must be invoked.  We will invoke a closure similar to that presented in Cheng et 

al. (2005).  A complete discussion of this closure follows a presentation of the prognostic 

equations for the third order moments.  The necessary  operations for the derivation of the 

third order moments (TOMs) are given in Table B.3.  Recall that we are assuming 

production equals dissipation for the passive tracer in the second moment equations.  

Therefore equations for the TOMs of passive tracer are not derived.
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Moment Equation Operation Performed
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The resulting equations are
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(B.46)

Table B.3 - Operations performed to derive the third order moments.
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Limiting ourselves to the vertical only  is equivalent to setting j = 3 in equations (B.46) - 

(B.55).  Utilizing the pressure correlation and dissipation parameterizations from Canuto 

et al. (2007) and Cheng et al. (2005), the TOM equations are
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At this point, the system is closed, except for the fourth order moments.  Here we choose 

to follow the framework discussed in Cheng et al. (2005) and Canuto et al. (2007).  The 

commonly used quasi-normal approximation (e.g. Andre et al. 1976, Moeng and Randall 

1984, Canuto et al. 1994), which can cause unphysical behavior in buoyancy driven 

regimes, is abandoned.  Instead, each fourth order moment is assumed to be the sum of a 

quasi-normal contribution and a non-gaussian contribution.  Further, the time change 

terms in equations (B.56) - (B.65) are ignored.  This yields a system of coupled linear 

equations.  The resulting matrix can be solved to yield the algebraic third order moments.  

The missing TOMs needed in equations (B.35) - (B.37), (B.39) - (B.40), and (B.42) are 

given by
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∂S ' 2

∂z

−
12gαλS

2 w 'S '

f1 f8 f20 f23

−
12gβλθ

2 w 'θ '

f1 f11 f17 f26

−
6gαλS w ' 2

f1 f14 f20

−
6gβλθ w ' 2

f1 f14 f26

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂θ 'S '

∂z

(B.66)

u ' 2
w ' = −

2u 'w '

f2

∂u 'w '

∂z
−

λθ w 'θ '

f2 f24

+
w ' 2

f2

−
λS w 'S '

f2 f18

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂u ' 2

∂z
+

2λS u 'w '

f2 f18

∂u 'S '

∂z

−
2λθu 'w '

f2 f24

∂u 'θ '

∂z

(B.67)
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v' 2
w ' = −

2v'w '

f3

∂v'w '

∂z
+

2λS v'w '

f3 f19

∂v'S '

∂z
−

2λθ v'w '

f3 f25

∂v'θ '

∂z

−
w ' 2

f3

+
λθ w 'θ '

f3 f25

−
λS w 'S '

f3 f19

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂v' 2

∂z

(B.68)

u 'w ' 2
= −

u 'w '

f4

∂w ' 2

∂z
+

2λS u 'w '

f4 f21

∂w 'S '

∂z
−

2λθu 'w '

f4 f27

∂w 'θ '

∂z
+

2λS
2u 'w '

f4 f6 f21

∂S ' 2

∂z
−

2λθ
2u 'w '

f4 f9 f27

∂θ ' 2

∂z

−
2w ' 2

f4

+
2λθ w 'θ '

f4 f27

−
2λS w 'S '

f4 f21

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂u 'w '

∂z
+

2gαλS u 'w '

f4 f12 f21

+
2gβλθu 'w '

f4 f12 f27

⎛

⎝
⎜

⎞

⎠
⎟
∂θ 'S '

∂z

−
4λθ

2 w 'θ '

f4 f9 f27

+
2λθ w ' 2

f4 f27

−
2gαλS w 'S '

f4 f12 f21

−
2gβλθ w 'θ '

f4 f12 f27

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂u 'θ '

∂z

−
4λS

2 w 'S '

f4 f6 f21

−
2λS w ' 2

f4 f21

−
2gαλS w 'θ '

f4 f12 f21

−
2gβλθ w 'S '

f4 f12 f27

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂u 'S '

∂z

(B.69)

v'w ' 2
= −

v'w '

f5

∂w ' 2

∂z
+

2λS v'w '

f5 f22

∂w 'S '

∂z
−

2λθ v'w '

f5 f28

∂w 'θ '

∂z
+

2λS
2 v'w '

f5 f7 f22

∂S ' 2

∂z
−

2λθ
2 v'w '

f5 f10 f28

∂θ ' 2

∂z

−
2w ' 2

f5

+
2λθ w 'θ '

f5 f28

−
2λS w 'S '

f5 f22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂v'w '

∂z
+

2gαλS v'w '

f5 f13 f22

+
2gβλθ v'w '

f5 f13 f28

⎛

⎝
⎜

⎞

⎠
⎟
∂θ 'S '

∂z

−
2λθ w ' 2

f5 f28

+
4λθ

2 w 'θ '

f5 f10 f28

−
2gαλS w 'S '

f5 f13 f22

−
2gβλθ w 'S '

f5 f13 f28

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂v'θ '

∂z

− −
2λS w ' 2

f5 f22

+
4λS

2 w 'S '

f5 f7 f22

−
2gαλS w 'θ '

f5 f13 f22

−
2gβλθ w 'θ '

f5 f13 f28

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂v'S '

∂z

(B.70)

u 'v'w ' = −v'w ' ∂u 'w '

∂z
− u 'w ' ∂v'w '

∂z
− w ' 2 ∂u 'v'

∂z
− 1− c11( ) u 'w ' 2 ∂v

∂z
+ v'w ' 2 ∂u

∂z
⎛

⎝⎜
⎞

⎠⎟
(B.71)

w ' 2
θ ' = −

2w ' 2

f26

+
4λθ w 'θ '

f11 f26

−
2gβw 'S '

f14 f26

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂w 'θ '

∂z
+

2gβw 'θ '

f14 f26

∂w 'S '

∂z
−

w 'θ '

f26

∂w ' 2

∂z

−
2λθ w ' 2

f11 f26

+
6λθ

2 w 'θ '

f11 f16 f26

−
2gβλθ w 'θ '

f11 f17 f26

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂θ ' 2

∂z
+

2gβw ' 2

f14 f26

+
4gβλθ w 'θ '

f11 f17 f26

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂θ 'S '

∂z

(B.72)

w 'θ ' 2
= −

2w 'θ '

f11

∂w 'θ '

∂z
+

2gβw 'θ '

f11 f17

∂θ 'S '

∂z
−

3λθ w 'θ '

f11 f16

+
w ' 2

f11

−
gβw 'S '

f11 f17

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂θ ' 2

∂z
(B.73)
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w ' 2
S ' = −

w 'S '

f20

∂w ' 2

∂z
−

2gαw 'S '

f14 f20

∂w 'θ '

∂z
−

2w ' 2

f20

+
2gαw 'θ '

f14 f20

−
4λS w 'S '

f8 f20

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂w 'S '

∂z

−
6λS

2 w 'S '

f8 f15 f20

−
2gαλS w 'θ '

f8 f20 f23

−
2λS w ' 2

f8 f20

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂S ' 2

∂z
+

4gαλS w 'S '

f8 f20 f23

−
2gαw ' 2

f14 f20

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂θ 'S '

∂z

(B.74)

w 'S ' 2
= −

2w 'S '

f8

∂w 'S '

∂z
−

gαw 'θ '

f8 f23

+
w ' 2

f8

−
3λS w 'S '

f8 f15

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂S ' 2

∂z
−

2gαw 'S '

f8 f23

∂θ 'S '

∂z
(B.75)

u 'w 'S ' = −
∂u 'S '

∂z
w ' 2

f21

−
2λS w 'S '

f6 f21

+
gαw 'θ '

f12 f21

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−

u 'w '

f21

∂w 'S '

∂z
−

gαu 'w '

f12 f21
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∂z

+
λS u 'w '

f6 f21

∂S ' 2

∂z
−

gαw 'S '

f12 f21

∂u 'θ '

∂z

(B.76)

v'w 'S ' = −
∂v'S '

∂z
w ' 2

f22

−
2λS w 'S '

f7 f22

+
gαw 'θ '

f13 f23

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−

v'w '

f22

∂w 'S '

∂z
−

gαv'w '

f13 f22

∂θ 'S '

∂z

+
λS v'w '

f7 f22

∂S ' 2

∂z
−

gαw 'S '

f13 f22

∂v'θ '

∂z

(B.77)

u 'w 'θ ' = −
∂u 'θ '

∂z
w ' 2

f27

−
gβw 'S '

f12 f27

+
2λθ w 'θ '

f9 f27

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−

u 'w '

f27

∂w 'θ '

∂z
−

gβu 'w '

f12 f27

∂θ 'S '

∂z

+
λθu 'w '

f9 f27

∂θ ' 2

∂z
−

gβw 'θ '

f12 f27

∂u 'θ '

∂z

(B.78)

v'w 'θ ' = −
∂v'θ '

∂z
w ' 2

f28

−
gβw 'S '

f13 f28

+
2λθ w 'θ '

f10 f28

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−

v'w '

f28

∂w 'θ '

∂z
−

gβv'w '

f13 f28

∂θ 'S '

∂z

+
λθ v'w '

f10 f28

∂θ ' 2

∂z
−

gβw 'θ '

f13 f28

∂v'θ '

∂z

(B.79)

In these equations, the constants in the denominator ( fx ) have the general form 

fx = by
τ , where the values of by follow Cheng et al. (2005).  The complete set of second 

moment equations (with TOMs given by equations (B.66) - (B.79)) is now given by
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∂u ' 2

∂t
+
∂u ' 2

w '

∂z
=

1
3

c1 + c2 − 2⎛
⎝⎜

⎞
⎠⎟

u 'w ' ∂u
∂z

−
2
3

c1v
'w ' ∂v

∂z
+

g
3
αw 'θ ' − βw 'S '( ) − 2

3
ε

− 2τ pv
−1 u ' 2

−
2
3

k⎛
⎝⎜

⎞
⎠⎟

(B.80)

∂w ' 2

∂t
+
∂w ' 3

∂z
=

1
3

c1 − c2
⎛
⎝⎜

⎞
⎠⎟

u 'w ' ∂u
∂z

+ v'w ' ∂v
∂z

⎛

⎝⎜
⎞

⎠⎟
+

4g
3

αw 'θ ' − βw 'S '( ) − 2
3
ε

− 2τ pv
−1 w ' 2

−
2
3

k⎛
⎝⎜

⎞
⎠⎟

(B.81)

∂u 'w '

∂t
+
∂u 'w ' 2

∂z
=

1
2
∂u
∂z

c1 + c2 − 2( )w ' 2
+ c1 − c2( )u ' 2

+ 4 1
5
−

c1

3
⎛
⎝⎜

⎞
⎠⎟

k⎡
⎣⎢

⎤
⎦⎥

+
c1 − c2

2
u 'v' ∂v

∂z

+
g
2
αu 'θ ' − βu 'S '( ) − 2τ pv

−1u 'w '

(B.82)

∂v'w '

∂t
+
∂v'w ' 2

∂z
=

1
2
∂v
∂z

c1 − c2 − 2( )w ' 2
+ c1 − c2( )v' 2

+ 4 1
5
−

c1

3
⎛
⎝⎜

⎞
⎠⎟

k⎡
⎣⎢

⎤
⎦⎥

+
c1 − c2

2
u 'v' ∂u

∂z

+
g
2
αv'θ ' − βv'S '( ) − 2τ pv

−1v'w '

(B.83)

∂u 'v'

∂t
+
∂u 'v'w '

∂z
= − 1− 1

2
c1 + c2( )⎡

⎣⎢
⎤
⎦⎥

u 'w ' ∂v
∂z

+ v'w ' ∂u
∂z

⎛

⎝⎜
⎞

⎠⎟
− 2τ pv

−1u 'v' (B.84)

∂k
∂t

+
1
2
∂
∂z

u ' 2
w ' + v' 2

w ' + w ' 3( ) = − u 'w ' ∂u
∂z

+ v'w ' ∂v
∂z

⎛

⎝⎜
⎞

⎠⎟
+ g αw 'θ ' − βw 'S '( ) − ε (B.85)

∂u 'θ '

∂t
+
∂u 'w 'θ '

∂z
= − 1+ c3( )w 'θ ' ∂u

∂z
− u 'w ' ∂θ

∂z
− τ pθ

−1u 'θ ' (B.86)

∂v'θ '

∂t
+
∂v'w 'θ '

∂z
= − 1+ c3( )w 'θ ' ∂v

∂z
− v'w ' ∂θ

∂z
− τ pθ

−1 v'θ ' (B.87)

∂w 'θ '

∂t
+
∂w ' 2

θ '

∂z
= − 1− d1( )g αθ ' 2

− βθ 'S '( ) − w ' 2 ∂θ
∂z

−
c3

4
u 'θ ' ∂u

∂z
+ v'θ ' ∂v

∂z
⎛

⎝⎜
⎞

⎠⎟
− τ pθ

−1 w 'θ ' (B.88)
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∂u 'S '

∂t
+
∂u 'w 'S '

∂z
= − 1+ c3( )w 'S ' ∂u

∂z
− u 'w ' ∂S

∂z
− τ pθ

−1u 'S ' (B.89)

∂v'S '

∂t
+
∂v'w 'S '

∂z
= − 1+ c3( )w 'S ' ∂v

∂z
− v'w ' ∂S

∂z
− τ pθ

−1 v'S ' (B.90)

∂w 'S '

∂t
+
∂w ' 2

S '

∂z
= − 1− d1( )g αθ 'S ' − βS ' 2( ) − w ' 2 ∂S

∂z
−

c3

4
u 'S ' ∂u

∂z
+ v'S ' ∂v

∂z
⎛

⎝⎜
⎞

⎠⎟
− τ pθ

−1 w 'S ' (B.91)

∂θ ' 2

∂t
+
∂w 'θ ' 2

∂z
= −2w 'θ ' ∂θ

∂z
− 2τθ

−1θ ' 2 (B.92)

∂S ' 2

∂t
+
∂w 'S ' 2

∂z
= −2w 'S ' ∂S

∂z
− 2τ S

−1S ' 2 . (B.93)

This closes the system, where the vertical flux of passive trace is given by equation (B.

45). 
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Appendix C: 

Model Parameters

 The most important terms to discuss are the eddy turnover time scales 

τ pv ,τ pθ ,τ pS ,τ pP ,τθ ,τ S ,τ P ,τθS ,τθP ,τ SP( )  and the values of π1,π 2 ,π 3,π 4 , and π 5 .  The time 

scales follow directly from Canuto et al. (2007) and are given as

In the original models developed by Canuto and colleagues, the values of π1,π 2 ,π 3,π 4 , 

and π 5 were defined as

Using constant values would give mixing for all Richardson numbers (see Appendix F).    

Canuto et al. (2001;2002) derived expressions for the critical Richardson number, above 

τ pv =
2
5
τ; τ pθ = π1τ; τ pS = τ pP = π 4τ; τθ = π 3τ

τ S = π 5τ; τ P = π 5τ; τ Sθ = τθP = τ SP = π 2τ;

π1 = π 4 = 0.084226; π 3 = π 5 = 0.72; π 2 = 1 / 3

222



which no mixing is allowed.  To derive this value, the limit of the steady state TKE 

equation as the TKE goes to zero is taken.  This results in a fairly complex equation for 

the case of variable salinity (see Appendix C of Canuto et al. 2002).

 Canuto et al. (2008) tested the assumption of constant values π x  against 

laboratory and oceanic data.  As expected, the assumption was not valid.  A fit to this data 

gave the following relations 

The functions are plotted in Figure C.1.  Now as the Richardson number and diffusivity 

ratios change, the value of  the constants defined above change as well.  In general, as the 

Richardson number increases, the value of the constant decreases.  As the diffusivity ratio 

increases, the decrease with increasing Richardson number is slowed.  This is meant to 

mimic double diffusive convection.  In this model, we will assume that the diffusion of 

the passive tracer will be limited in a way similar to salinity.  

 The remaining constant introduced in Appendix B are defined as 

π1 = π1
0 1+

Ri
1+10Rρ

−1

⎛

⎝
⎜

⎞

⎠
⎟

−1

; π 4 = π 4
0 1+

Ri
1+ 10Rρ

⎛

⎝
⎜

⎞

⎠
⎟

−1

;

π 2 = π 2
0 1

2
Rρ + Rρ

−1⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟
−1

; π 3,5 = π 3,5
0 .

c1 = 0.984; c2 = 0.568; c3 = 0.29; d1 = 1 / 3
c11 = 0.1; c8 = 5.
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Figure C.1 - Plot of functions from Canuto et al. (2008) (a) π1 , (b) π 4 , and (c) π 2 .  In all of the 
plots, the constant value assumed in Canuto et al. (2002) is signified by a blue dot.
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Appendix D: 

Two-Dimensional Equations

 The conversion to the coordinate given by  equation (3.3) is easiest by first writing 

the model equations, which are given as

∂u
∂t

+
1
2
∂u2

∂x
+ w ∂u

∂z
− fv = −

∂π
∂x

−
∂u 'w '

∂z
(D.1)

∂v
∂t

+ u ∂v
∂x

+ w ∂v
∂z

+ fu = −
∂v'w '

∂z
(D.2)

∂θ
∂t

+ u ∂θ
∂x

+ w ∂θ
∂z

= −
∂w 'θ '

∂z
+

1
ρoCp

∂I
∂z

(D.3)

∂S
∂t

+ u ∂S
∂x

+ w ∂S
∂z

= −
∂w 'S '

∂z
(D.4)

1
ρ

Dρ
Dt

+
∂u
∂x

+
∂w
∂z

= 0 , (D.5)

in a generalized η( )  coordinate.  The first step  is to transform the necessary derivatives to 

the η -coordinate.  These are given by
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∂
∂t

⎛
⎝⎜

⎞
⎠⎟ z

=
∂
∂t

⎛
⎝⎜

⎞
⎠⎟η

+
∂η
∂t

⎛
⎝⎜

⎞
⎠⎟ z

∂
∂η

(D.6)

∂
∂x

⎛
⎝⎜

⎞
⎠⎟ z

=
∂
∂x

⎛
⎝⎜

⎞
⎠⎟η

+
∂η
∂x

⎛
⎝⎜

⎞
⎠⎟ z

∂
∂η

(D.7)

∂
∂z

=
∂η
∂z

∂
∂η

.
(D.8)

To transform the vertical derivative in equation (D.5), we begin with

∂η
•

∂η
≡

∂
∂η

Dη
Dt

=
∂
∂η

∂η
∂t

+ u ∂η
∂x

+ w ∂η
∂z

⎡
⎣⎢

⎤
⎦⎥

=
∂z
∂η

∂
∂z

∂η
∂t

+ u ∂η
∂x

+ w ∂η
∂z

⎡
⎣⎢

⎤
⎦⎥

.

We now pull in the z-derivative, and rearrange the first derivative.  This yields

∂z
∂η

∂
∂z

∂η
∂t

+ u ∂η
∂x

+ w ∂η
∂z

⎡
⎣⎢

⎤
⎦⎥

=
∂z
∂η

∂
∂t

∂η
∂z

+
∂z
∂η

∂
∂z

u ∂η
∂x

⎛
⎝⎜

⎞
⎠⎟

+
∂z
∂η

∂
∂z

w ∂η
∂z

⎛
⎝⎜

⎞
⎠⎟

=
∂z
∂η

D
Dt

∂η
∂z

⎛
⎝⎜

⎞
⎠⎟

+
∂z
∂η

∂u
∂z

∂η
∂x

+
∂z
∂η

∂w
∂z

∂η
∂z

=
∂z
∂η

D
Dt

∂η
∂z

⎛
⎝⎜

⎞
⎠⎟ z

+
∂u
∂η

∂η
∂x

⎛
⎝⎜

⎞
⎠⎟ z

+
∂w
∂z

.

This can be arranged to give

∂w
∂z

=
∂η

•

∂η
−
∂z
∂η

D
Dt

∂η
∂z

⎛
⎝⎜

⎞
⎠⎟η

−
∂u
∂x

∂η
∂x

⎛
⎝⎜

⎞
⎠⎟ z

. (D.9)

We now plug (D.7) and (D.9) into the continuity equation (D.5).  This yields
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1
ρ

Dρ
Dt

+
∂η

•

∂η
−
∂z
∂η

D
Dt

∂η
∂z

⎛
⎝⎜

⎞
⎠⎟η

−
∂u
∂η

∂η
∂x

⎛
⎝⎜

⎞
⎠⎟ z

+
∂u
∂η

∂η
∂x

⎛
⎝⎜

⎞
⎠⎟ z

+
∂u
∂x

⎛
⎝⎜

⎞
⎠⎟η

= 0 . (D.10)

The next step is to cast the first term on the left hand side in the generalized coordinate.  

Using the hydrostatic approximation, we can write

ρ = −
1
g
∂p
∂η

∂η
∂z

= m ∂η
∂z

.

In the second equality, we have defined the pseudodensity  m =
1
g
∂p
∂η

⎛
⎝⎜

⎞
⎠⎟

.  Using this, we 

can write

1
ρ

Dρ
Dt

=
1

m ∂η
∂z

D
Dt

m ∂η
∂z

⎛
⎝⎜

⎞
⎠⎟

=
1
m

Dm
Dt

+
1
∂η
∂z

D
Dt

∂η
∂z

⎛
⎝⎜

⎞
⎠⎟

.

This is then plugged into D.10 to yield the continuity equation in the η -coordinate, given 

by

1
m

Dm
Dt

+
∂u
∂x

⎛
⎝⎜

⎞
⎠⎟η

+
∂η

•

∂η
= 0 . (D.11)
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The material derivative in (D.11) is given by 
D
Dt

( )η ≡
∂
∂t

( )η + u ∂
∂x

( )η +η
• ∂
∂η

( )η .  

The  pressure gradient force in the zonal momentum equation is written in the general 

coordinate as

1
ρ

∂p
∂x

⎛
⎝⎜

⎞
⎠⎟ z

=
1
ρ

∂p
∂x

⎛
⎝⎜

⎞
⎠⎟η

−
1
ρ
∂p
∂z

∂z
∂x

⎛
⎝⎜

⎞
⎠⎟η

.

The dynamic and thermodynamic equations in the η -coordinate are given by

Du
Dt

− fv = −
∂π
∂x

⎛
⎝⎜

⎞
⎠⎟η

+
∂π
∂z

∂z
∂x

⎛
⎝⎜

⎞
⎠⎟η

−
∂η
∂z

∂u 'w '

∂η

Dv
Dt

+ fu = −
∂η
∂z

∂v'w '

∂η

Dθ
Dt

= −
∂η
∂z

∂w 'θ '

∂η
+

1
ρoCp

∂η
∂z

∂I
∂η

DS
Dt

= −
∂η
∂z

∂w 'S '

∂η

1
m

Dm
Dt

+
∂u
∂x

⎛
⎝⎜

⎞
⎠⎟η

+
∂η

•

∂η
= 0

D
Dt

( )η ≡
∂
∂t

( )η + u ∂
∂x

( )η +η
• ∂
∂η

( )η

These equations can now be converted to our chosen coordinate.  Using equation (3.3), m 

and 
∂η
∂z

 are defined as
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m ≡
ρ zsfc − zBL( ) zsfc ≥ z ≥ zBL

ρ zBL − zBOT( ) zBL ≥ z ≥ zBOT

⎧
⎨
⎪

⎩⎪

and

∂η
∂z

≡
∂σ
∂z

=

−1
zsfc − zBL( ) zsfc ≥ z ≥ zBL

−1
zBL − zBOT( ) zBL ≥ z ≥ zBOT

⎧

⎨

⎪
⎪

⎩

⎪
⎪

.

Using these definitions, the equations of motions in our coordinate are

Du
Dt

− fv = −
1
ρo

∂p
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

+
1
ρo

∂p
∂z

∂z
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

−
∂σ
∂z

∂u 'w '

∂σ
(D.12)

Dv
Dt

+ fu = −
∂σ
∂z

∂v'w '

∂σ
(D.13)

Dθ
Dt

= −
∂σ
∂z

∂w 'θ '

∂σ
+

1
ρoCp

∂σ
∂z

∂I
∂σ

(D.14)

DS
Dt

= −
∂σ
∂z

∂w 'S '

∂σ
(D.15)

1
m

Dm
Dt

+
∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ σ

+
∂σ

•

∂σ
= 0 (D.16)

D
Dt

( )σ ≡
∂
∂t

( )σ + u ∂
∂x

( )σ +σ
• ∂
∂σ

( )σ . (D.17)
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Appendix E:

Equation Predicting the Inversion 

Layer Thickness

 As discussed in Chapter 3, the inversion layer thickness is determined by equating 

our expression for entrainment (equation 3.11) to the form given by Gaspar (1988).  

Performing this operation gives

3w ' 2 3

w ' 2
− 3 1− c11( )Δbδz{ } w ' 2

− 4
3
Δbδz − 1

3
c1 − c2

⎛
⎝⎜

⎞
⎠⎟ Δu2 + Δv2( )⎧

⎨
⎩

⎫
⎬
⎭

−
m1

2kavg
2 wavg

' 2

h2Δb2 = 0. (E.1)

In these equations, we have defined

kavg =
1
h

k dz
−h

0

∫ ; wavg
' 2

=
1
h

w ' 2
dz

−h

0

∫ ,

where h is the boundary layer depth.  If equation (E.1) is solved for δz , we obtain
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δz = −
9SP
24Δb

+
13− 9c11( )w ' 2

24 1− c11( )Δb
±

1

24 1− c11( )Δbm1kavg wavg
' 2

sqrt 432Δb2h2 w ' 2 3
1− c11( ) +⎛

⎝⎜

81m1
2SP2 kavg

2 wavg
' 2 2

1− c11( )2 −18m1
2SPkavg

2 w ' 2
wavg

' 2 2
1− c11( ) 5 − 9c11( )

+m1
2kavg

2 w ' 2 2
wavg

' 2 2
5 − 9c11( )2 ⎞

⎠⎟

In the previous equation, SP ≡
1
3

c1 − c2
⎛
⎝⎜

⎞
⎠⎟
Δu2 + Δv2( ) .  If we plug in the values of the 

three constants c1,c2 ,c11( )  given in Appendix C, the equation for inversion thickness is 

now

δz =
2.16 Δu2 + Δv2( )

24Δb
+

13.44w ' 2

24Δb
±

1.11

24Δbkavg wavg
' 2

sqrt 388.8Δb2h2 w ' 2 3
+⎛

⎝⎜

3.78 Δu2 + Δv2( )2
kavg

2 wavg
' 2 2

+15.94 Δu2 + Δv2( )kavg
2 w ' 2

wavg
' 2 2

+16.81kavg
2 w ' 2 2

wavg
' 2 2 ⎞

⎠⎟ .

We make two brief observations.  First the radical is guaranteed to be positive, precluding 

the possibility of imaginary numbers.  Second, there are some dependencies we expect in 

this equation (e.g. Δb , Δu2 , Δv2 , and to a certain extent w ' 2
).  However, we have no a 

priori reason to expect that the inversion layer thickness is dependent on layer integrated 

TKE and vertical velocity variance.
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Appendix F:

Structure Functions

 The form of the structure functions (Ah, AS, and Am) are given by

Ah = π 4 1+ px + π 2π 4x 1− γ −1( ){ }−1

AS = π1 1+ qx + xπ1π 2Rρ γ −1( ){ }−1

Am =
4
75

12 + a1n + a2nc + a3c
2 + a4n + a5c( ) / D .

D = 24 + d1yn2 + d2ync + d3yc2 + d4n
3 + d5n

2c + d6nc2 + d7c
3

+ d8yn + d9yc + d10n
2 + d11nc + d12c

2 + d13y + d14n + d15c

Here, we have introduced seven new variables (p, q, x, n, c, y, and γ ) they are written as

p ≡ π 4π 5 − π 2π 4 1+ Rρ( ) q ≡ π1π 2 1+ Rρ( ) − π1π 3Rρ

x ≡
τN( )2

1− Rρ( ) γ ≡
1
Rρ

π 4

π1

1+ qx
1+ px

y ≡ 4
25

x 1− Rρ( )Ri−1 n ≡ −π 2π 3x

c ≡ π 3
2Rρx
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where we have introduced the density ratio Rρ ≡
β ∂S
∂z

α ∂θ
∂z

.  The values of the subscripted a’s and 

d’s are given in Appendices A and B of Canuto et al. (2002).  The remaining constants, 

π1,π 2 ,π 3,π 4 ,π 5( )  are defined in Appendix C.  
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Appendix G: 

Implicit Treatment of the Discretized 

TKE Equation

In the simulations, the equation for TKE will be given as

∂e
∂t

= −u 'w ' ∂u
∂z

− v 'w ' ∂v
∂z

+ gαT w 'θ ' − gαS w 'S ' − ∂
∂z

w 'u 'u '+ w 'v 'v '+w 'w 'w '( ) − ε                                                                                                           

In this model framework, we assume that the second moments can be written as

u 'w ' = −2 e ΛSm
∂u
∂z

; v 'w ' = −2 e ΛSm
∂v
∂z

;

w 'θ ' = −2 e ΛSH
∂θ
∂z

; w 'S ' = −2 e ΛSS
∂S
∂z

;

where the Sm,H ,S  are the structure functions given in Canuto et al. (2002, 2008) and Λ is the 

dissipation length scale.  Plugging in our relations, the TKE equation becomes,

∂e
∂t

= 2 e ΛSm
∂u
∂z

⎛
⎝⎜

⎞
⎠⎟

2

+
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− 2g e Λ αT SH

∂θ
∂z

−αSSS
∂S
∂z

⎛
⎝⎜

⎞
⎠⎟
−

∂
∂z

w 'u 'u ' + w 'v 'v ' + w 'w 'w '
2

⎛

⎝⎜
⎞

⎠⎟
−

e3/2

Λ

The next step  is to write this in a finite difference form.  For simplicity, I am going to only treat 

dissipation implicitly.  Therefore, define the production terms as
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Pn ≡ 2 e ΛSm
∂u
∂z

⎛
⎝⎜

⎞
⎠⎟

2

+
∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− 2g e Λ αT SH

∂θ
∂z

−αSSS
∂S
∂z

⎛
⎝⎜

⎞
⎠⎟
−

∂
∂z

w 'u 'u ' + w 'v 'v ' + w 'w 'w '
2

⎛

⎝⎜
⎞

⎠⎟

where the n signifies the current time level.  Using this, the TKE equation is discretized as

en+1 − en

Δt
= Pn −

en+13/2

Λ
.

Throughout this derivation, we keep the length scale in its general form, but will use the fact that 

it is always positive or zero.  The TKE equation becomes

en+1 − en

Δt
= Pn −

en+13/2

Λ

Λ
en+1 − en

Δt
= ΛPn − en+13/2

en+13/2
+
Λ
Δt

en+1 −
Λ
Δt

en + ΛPn⎛
⎝⎜

⎞
⎠⎟

= 0

en+1
3
+
Λ
Δt

en+1
2

+ C = 0

q3 +
Λ
Δt

q2 + C = 0

                (G.1)

In these equations, we have made the following definitions

C = −
Λ
Δt

en + ΛPn⎛
⎝⎜

⎞
⎠⎟
; q = en+1

Updating the TKE involves the solution of a cubic equation.  There are three possible situations 

that can occur based on the sign of the polynomial discriminant, which in this case is given as

D =
Λ
Δt

⎛
⎝⎜

⎞
⎠⎟

3 C
27

+
C 2

4
.  If D > 0, there is one real root and two imaginary  roots.  If D = 0, then 

there are three real roots with at  least two being equal, and if D < 0 then all roots are real and 
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unequal.  The hope is that D is greater than zero at all times, however, efforts to prove this is true 

for the TKE equation (G.1) have been unsuccessful. 

 A different approach must be taken.  To have three real roots of a cubic equation, the plot 

of the function will be similar to one of the four cases in Figure G.1.

Of course these plots could shift in different directions.  Since we are predicting TKE, in 

particular the square root of TKE, we can add an extra realizability  requirement that the root is 

greater than or equal to zero.  The question that must be answered is whether or not, the cubic 

can shift such that the roots are realistic.
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Figure G.1 - Four different cases of a cubic function defined by equation G.1



 We wish to argue from the reconstruction of the cubic from the location of maximums 

and minimums.  The location of the local maximums and minimums are given by where the first 

derivative is equal to zero. The local maximums and minimums of equation (G.1) will be

f q( ) = q3 +
Λ
Δt

q2 + C

f ' q( ) = 3q2 +
2Λ
Δt

q = 0

q 3q +
2Λ
Δt

⎛
⎝⎜

⎞
⎠⎟

= 0

q1 = 0 or q2 = −
2Λ
3Δt

In this problem, the cubic will have a maximum or minimum at zero regardless of the value of 

production or past value of TKE.  Also, q2 will always be negative, since the length scale is 

greater or equal to zero and the denominator is also positive.  Therefore the cubic equation will 

have one positive (or zero) root.  There will not be any cases that will give two positive real 

roots.  In order for this to happen, a local maximum or minimum would have to occur at  a value 

greater than zero.  For this problem, there is an extremum at zero and a negative number.  

Further, the concavity (or the location where the second derivative is equal to zero) changes at a 

negative value as well.  

 In this situation, the solution of the equation (G.1) can be computed with closed form 

equations (Cardano’s Formula)..  The physically  appropriate solution will be the lone positive (or 

zero) root.
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