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Abstract

Resource Allocation Optimization in the Smart Grid and

High-performance Computing

This dissertation examines resource allocation optimization in the areas of Smart Grid

and high-performance computing (HPC). The primary focus of this work is resource alloca-

tion related to Smart Grid, particularly in the areas of aggregated demand response (DR)

and demand side management (DSM). Towards that goal, a framework for heuristic opti-

mization for DR in the Smart Grid is designed. The optimization problem, denoted Smart

Grid resource allocation (SGRA), controls a large set of individual customer assets (e.g.,

smart appliances) to enact a beneficial change on the electric power system (e.g., peak load

reduction). In one part of this dissertation, the SGRA heuristic framework uses a proposed

aggregator-based approach. The aggregator is a for-profit entity that uses information about

customers’ smart appliances to create a schedule that maximizes its profit. To motivate the

customers to participate with the aggregator, the aggregator offers a reduced rate of elec-

tricity called customer incentive pricing (CIP). A genetic algorithm is used to find a smart

appliance schedule and CIP to maximize aggregator profit. By optimizing for aggregator

profit, the peak load of the system is also reduced, resulting in a beneficial change for the

entire system. Visualization techniques are adapted, and enhanced, to gain insight into the

results of the aggregator-based optimization. A second approach to DR in the Smart Grid

is taken in the form of a residential home energy management system (HEMS). The HEMS

uses a non-myopic decision making technique, denoted partially-observable Markov decision

process (POMDP), to make sequential decisions about energy usage within a residential

household to minimize cost in a real-time pricing (RTP) environment. The POMDP HEMS
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significantly reduces the electricity cost for a residential customer with minimal impact on

comfort.

The secondary focus of the research is resource allocation for scientific applications in

HPC using a dual-stage methodology. In the first stage, a batch scheduler assigns a number of

homogeneous processors from a set of heterogeneous parallel machines to each application in a

batch of parallel, scientific applications. The scheduler assigns machine resources to maximize

the probability that all applications complete by a given time, denoted the makespan goal.

This objective function is denoted robustness. The second stage uses runtime optimization in

the form of dynamic loop scheduling to minimize the execution time of each application using

the resources allocated in the first stage. It is shown that by combining the two optimization

stages, better performance is achieved than by using either approach separately or by using

neither.

The specific contributions of this dissertation are: (a) heuristic frameworks and mathe-

matical models for resource allocation in the Smart Grid and dual-stage HPC are designed,

(b) CIP is introduced to allow an aggregator profit and encourage customer participation,

and (c) heuristics and decision-making techniques are designed and analyzed within the two

problem domains to evaluate their performance.
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CHAPTER 1

Introduction and Overview

Many resource allocation problems are heterogeneous in nature, such as allocating het-

erogeneous compute resources to incoming tasks. Optimal heterogeneous resource allocation,

in general, is known to be NP-complete [4–6], leading to the use of resource allocation heuris-

tics that try to find near-optimal solutions. This dissertation addresses two heterogeneous

resource allocation problems. In Chapters 2 – 6, resource allocation in the Smart Grid

is studied, denoted Smart Grid resource allocation (SGRA). Resource allocation in high-

performance computing (HPC) is presented in Chapters 7 and 8. Concluding remarks and

future directions of research are given in Chapter 9.

The primary focus of this work is resource allocation related to Smart Grid. As Smart

Grids introduce profound changes in the operation of the electric power industry, the need for

efficient and robust resource allocation algorithms arises, especially due to the increasingly

stochastic nature of availability of highly dispersed resources. A framework for solving the

SGRA problem using a heuristic approach (e.g., a genetic algorithm) is presented in Chapter

2. Similar challenges exist in resource allocation in the realm of computing. A comparison is

drawn between SGRA and resource allocation in computing. Its application to a multi-agent-

based distribution management system, used as an environment model, is also proposed. A

path forward will conclude the chapter.

A for-profit aggregator-based approach to the SGRA problem is introduced and used

in Chapter 3. The aggregator entity, using a given set of schedulable residential customer

assets (e.g., smart appliances), must set a schedule to optimize for a aggregator profit. To

encourage customer participation in the residential DR program, a new pricing structure
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named customer incentive pricing is proposed. The aggregator profit is optimized using a

proposed heuristic framework, implemented in the form of a genetic algorithm, that must

determine a schedule of customer assets and the customer incentive pricing. To validate the

heuristic framework, the optimization of a large-scale system consisting of 5,555 residential

customer households and 56,642 schedulable assets is simulated using real pricing data over a

period of 24-hours. By optimizing purely for economic reasons it is shown that the aggregator

can enact a beneficial change on the load profile of the overall power system.

Real-time pricing (RTP) is a utility-offered dynamic pricing program to perform demand

response. In such an RTP market, a customer can make changes in their energy usage

behavior to drastically reduce their electricity bill. A home energy management system

(HEMS) is an automated way for managing energy usage within the home in response to

utility pricing signals, such as the RTP. Three new HEMS techniques are designed in Chapter

4 — one myopic approach and two non-myopic partially-observable Markov decision process

(POMDP) approaches — for minimizing the household electricity bill in such an RTP market.

In a simulation study in Chapter 4, the performance of the new HEMS methods are compared

with a mathematical lower bound and the current status quo. The non-myopic POMDP

approach can provide, at the high end, a 30% monthly savings. More modest results show

an average of 10% savings over the status quo. A case is also made for RTP programs even

in lieu of a HEMS or changes in energy usage.

With the influx of data in the emerging Smart Grid due to technologies such as smart

meters and demand response programs, it is more difficult to analyze and discover relevant

and interesting information. Visualization methods are adapted in Chapter 5 for quantifying

and comparing the effectiveness and profitability of a given set of solutions to a demand re-

sponse problem. Using these visualization methods, it becomes possible to answer: whether
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or not the demand response plan worked effectively; at what times the demand response

resulted in a profit or a loss; and, how multiple demand response solutions compare. The

visualization methods are presented using data from a simulation of 5,555 customer house-

holds at 26 loadpoints using the Roy Billinton Test System mapped onto the city of Fort

Collins, Colorado, USA.

As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed

electric vehicle charging) are integrated into distribution grids, static distribution simulations

are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-

based distribution system simulation environment that allows fine-grained end-user models,

including geospatial and network topology detail. A problem exists in that, without outside

intervention, once the GridLAB-D simulation begins execution, it will run to completion

without allowing the real-time interaction of Smart Grid controls, such as home energy

management systems and aggregator control. This lack of runtime interaction is addressed in

Chapter 6 by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie),

that uses Python to pass messages between one or more GridLAB-D instances and a Smart

Grid simulator. Chapter 6 describes the design and implementation of Bus.py, discusses its

usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-

based residential demand response system interacting with GridLAB-D through Bus.py. The

small scale example demonstrates the validity of the interface and shows that an aggregator

using said interface is able to control residential loads in GridLAB-D during runtime to

cause a reduction in the peak load on the distribution system in (a) peak reduction and (b)

time-of-use pricing cases.
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The secondary focus of the research is resource allocation for scientific applications in

HPC using a dual-stage methodology. Scheduling parallel applications on existing or emerg-

ing computing platforms is challenging, and, among other attributes, must be efficient and

robust. A dual-stage framework is proposed in Chapter 7 to evaluate the robustness of

efficient resource allocation and dynamic load balancing of scientific applications in het-

erogeneous computing environments with uncertain availability. The first stage employs

robust resource allocation heuristics, while the second stage incorporates robust dynamic

loop scheduling techniques. The combined dual-stage framework constitutes a comprehen-

sive framework that enables and provides guarantees for the robust execution of scientific

applications in computing systems where uncertainty is caused by various unpredictable per-

turbations. The chapter reports on studies for determining the best techniques to be used

for each stage that: (a) maximize the probability that the system makespan satisfies a dead-

line, and (b) minimize the system makespan for every given availability level in the system.

The usefulness and benefits of the proposed framework are demonstrated via a small scale

example.

The scheduling of moldable parallel applications to clusters of processors is challenging,

where the number of processors on which a moldable application executes is decided by the

scheduler. When the application execution times are stochastic in nature, and the availability

of the resources is uncertain, this becomes an even greater challenge. A model is presented

in Chapter 8 for the stochastic execution times of moldable parallel applications that are as-

signed to heterogeneous parallel resources, incorporating the change in execution times when

applications are mapped to different numbers of processors. To account for the uncertainties

in both application execution times and resource availability, a robustness model that com-

bines the two sources of uncertainties is proposed. Using this robustness model, three novel
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iterative-greedy heuristics are developed to allocate heterogeneous resources to batches of

parallel applications to maximize the probability of completing by a designated time, called

the makespan goal. To verify the performance of the proposed heuristics, a simulation study

is conducted using different batch and system sizes. To showcase the benefit of using the

proposed iterative-greedy heuristics, their performance is studied against two comparison

heuristics. The five heuristics are evaluated against the upper bound on robustness.
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CHAPTER 2

A Proposed Framework for Heuristic Approaches

to Resource Allocation in the Emerging Smart Grid

2.1. Introduction

As power systems and information technologies are converging to revolutionize the way

electricity is generated, delivered, managed, and consumed, new challenges arise, such as:

how to integrate storage efficiently, how to use demand-response of residential customers to

mitigate peak demand, etc. [8]. Succinctly this can be surmised as: how should resources be

allocated in the emerging Smart Grid as the stochastic nature of the availability of resources

(generation, storage, and loads) becomes prevalent?

Contrary to the transmission level, where relatively few numbers of assets, albeit rated

large, are used, the Smart Grid is expected to revolutionize the distribution side, where

a multitude of smaller assets will be available for controlled deployment. Distributed and

intermittent renewable energy sources, distributed storage elements such as plug-in electric

hybrid vehicles (PHEVs), and the ability to schedule loads require utilities to rethink the

conventional procedures of scheduling and dispatching the resources.

A similar challenge exists for computer scientists in allocating resources for computing.

Several similarities can be drawn between the challenges in the domains of Smart Grids and

computing. In computing, it is beneficial to allocate tasks to machines that the tasks perform

well in order to optimize some system performance measure. Similarly in the emerging Smart

This work was performed jointly with the full list of co-authors available in [7]. This work was supported by
the University of Technology of Belfort-Montbéliard, a seed grant from the CSU Energy Supercluster, the
National Science Foundation under grant number CNS-0905399, and the CSU George T. Abell Endowment.
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Grid, the availability of the resources may also be stochastic in nature. For example, this

may arise due to the uncertainty in task execution times as well as the sharing of machine

resources [9]. These similarities indicate the possibility of adapting approaches used in the

computing realm to the resource allocation problem in the emerging area of Smart Grids.

The main contribution of this chapter is to propose a framework for addressing the large-

scale distributed Smart Grid resource allocation (SGRA) problem using heuristics adapted

from resource allocation methods utilized in computing. Specifically, a genetic algorithm is

used to showcase the framework for the heuristic approach.

Section 2.2 describes the environment model, in which a multi-agent-based distribution

system model is presented. In Section 2.3, the resource allocation problem in Smart Grids is

described. An example of how heuristics have been used in the field of computing is shown

in Section 2.4. Section 2.5 proposes a framework for a heuristic approach to the resource

allocation problem in the emerging smart grid. In Section 2.6, a path forward to continue

with the framework proposed in this chapter is indicated.

2.2. Multi-Agent-Based Distribution System Model

2.2.1. Overview. Contrary to wide-area transmission systems that have a long history

of automation and smart functionalities, most Smart Grid activities are focusing more on

the automation of end-user distribution systems [10]. In such an emerging Smart Grid, a

multitude of assets, including local generation sources, distributed energy sources, special

loads such as PHEVs, and other schedulable loads, are available for control and deployment.

It is imperative to schedule and deploy such assets properly, to minimize additional stress on

the grid. These activities, usually called unit commitment and economic dispatch, are used

in transmission systems [11, 12], but the algorithms and constraints utilized for transmission
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systems are not well suited for large distribution systems with thousands of resources. It is

in that regard that a multi-agent framework for a highly distributed distribution system is

presented.

2.2.2. Multi-agent Modeling. Distribution systems connect the transmission system

to end-users and, therefore, include a large number of customers with various profiles that

are spread over the entire distribution network. Traditional power system modeling tools

usually focus on transmission and utilize data that has been aggregated from the distribution

system. However, as customers are expected to play an increasingly important role in Smart

Grids, new tools that take into account the diversity and stochasticity associated with the

end-user must be developed to comprehensively quantify and analyze the operation of the

smart grid.

Multi-agent systems (MASs) offer a solution to study such large systems by creating a

model for each element of the system (called an agent) and interconnecting them to create

a MAS. A MAS is thus a group of agents interacting with each other and their environment

[13]. This approach also enables modeling each element separately; e.g., each customer can

be modeled, with individual dynamic profiles (loads, output of local generation, PHEV, etc.),

and not just the aggregated or lumped static versions of the load.

At the same time, MASs help define the interactions between the individual elements

(agents) of the system. This facilitates estimating the required communication infrastructure,

enabling faster real-scale deployment, and is particularly relevant as Smart Grids rely on a

highly dispersed and efficient communication.

2.2.3. Multi-agent Distribution System Architecture. A multi-agent model of

a distribution system is thus proposed and serves as an environment model for the resource
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allocation problem. In this model, each market player of the system is modeled as an agent.

The independent system operator (ISO) is a non-profit entity that maintains the balance be-

tween supply (generation) and demand (system load) at the transmission level. Distribution

system operators (DSOs) are connected to the ISO, and are responsible for distributing

power to their customers. Each DSO has many physical assets, such as substations and

feeders, that transfer electric energy to the end user (residential, commercial, or industrial).

Typically the DSOs and ISOs also share assets at their point of common coupling – substa-

tions. Each end customer has traditional loads, and may also have specialized assets such as

PHEVs, and local distributed generator (DG) assets that may be more-or-less controllable,

such as photovoltaic (PV) systems or standby generation units, and often, controllable loads,

including, for example, heating and ventilation equipment or lighting.

Every asset in the distribution system is expected to be under the control of an agent.

Fig. 2.1 presents a typical smart distribution system that could be represented by the

hierarchical structure of communication flow shown in Fig. 2.2. Aggregators can act as

interfaces between end-users and DSOs, notably for PHEVs charge-recharge scheduling and

for provision of certain ancillary services [14]. Additionally, large DGs and storage units may

also be connected directly to substations.

Each agent is in charge of controlling the actuators of the asset associated with it, using

inputs from other agents and from local measurements, and subscribing to local goals. An ex-

ample of a local goal could be maximizing economic return by buffering energy between lower

and higher prices specified by time-of-use (ToU) rates. Inputs from other agents may include

set point requests from a central controller; upon receipt, the agent can decide to implement

certain actions based on local objectives. Although this approach might seem contrary to

traditional MAS concepts, it enables the developed system to account for communication
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Figure 2.1. An illustration of an example smart distribution system with
distributed assets.

Figure 2.2. Architecture of the agent-based distribution system model.
Dashed lines indicate connections with more agents of the same kind [15].

aspects that are an essential topic in smart grids. Based on the environment model shown

in Fig. 2.2, algorithms to allocate resources (generation, storage, loads) efficiently need to

be developed.
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2.3. Resource Allocation in Smart Grids

2.3.1. Resource Allocation in Present Day Power Grids. Resource allocation

methods such as unit commitment (i.e., scheduling the use or non-use of generators a day

in advance) and economic dispatch (i.e., optimizing the scheduled generator outputs) have

been used for decades in electric grids at the transmission level for centralized assets [11].

As power grids evolve to include highly dispersed assets at the end-user domain available for

control and deployment, the resource allocation problem may require some departures from

the traditional techniques of optimization used for solving unit commitment and economic

dispatch; such departures include heuristic optimization methods like genetic algorithms

[16–19] and particle swarm optimization [20].

2.3.2. Smart Grid Resource Allocation Problem Complexity. The resource

allocation problem in Smart Grids is more complex than in traditional grids for the following

reasons: (a) the number of schedulable assets in the decentralized distribution system is

exceptionally large compared to the traditional centralized model of the grid, and (b) the

stochastic nature of loads, generation, and storage. This stochasticity is due, in part, to

the following mechanisms. First, at the transmission level, loads and DG are aggregated

over a large number of units, which inherently reduces the short-term variability, while the

variability in large units is well understood and characterized. For example, while loads

vary in real-time with customers’ activity, aggregate load can be forecast using well-known

artificial intelligence techniques that have been used by utilities for decades [21].

Second, the behavior of distributed assets is part of a feedback loop, where monitoring

and controlling behavior may influence future behavior. For example, a customer with a

variable-rate utility contract such as ToU tariffs [8] may note that certain behaviors increase
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or decrease their cost of electricity, and modify their behavior in response to the tariff’s

built-in incentives. The very Smart Grid technologies which allow control over the resources

also provides the information required for customers to make these choices, thus increasing

inherent variability.

Lastly, the increase of distributed renewable energy sources in the electric grid, especially

those with intermittent inputs as wind and solar, introduces a shift from the status quo, where

a smaller number of large, controllable centralized generators are dispatched concomitantly

with greater certainty in output than renewable energy sources.

The deployment of storage in the grid – from PHEVs to large utility-scale storage –

enables new energy management possibilities. However, maintaining the state-of-charge

(SOC) of battery energy storage system units introduces a time-dependence; e.g., to be able

to provide power during a demand peak, a unit has to charge as much as possible several

hours in advance. In the case of PHEVs, the need for maintaining a certain SOC for enabling

the primary function (transportation) of the asset introduces yet another constraint in the

energy management scheme. Only PHEVs will be considered for storage in this paper, due

to their distributed nature and relatively lower capital cost for the end-user arising from the

dual use of this asset compared to dedicated energy storage devices. However, the proposed

technique can be readily extended to storage units attached throughout the distribution

system, whether they are large units at substations or PHEV-sized units distributed to

homes.

While the end-user sector of the grid is undergoing unprecedented transformation through

the “Smart Grid Initiative” [22], the transmission sector, which forms the backbone of the

interconnected grid, is seeing reduced investments. Concomitantly, projected demand for

electricity is expected to grow. This dichotomy is expected to result in reduced available
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transmission capacity in the electrical grid [23] which may impact the system in the following

ways: (a) increased bulk electricity prices, (b) reduced reliability and security of supply to

the end-users, and (c) increased price differences between transmission nodes, with supply-

constrained nodes seeing higher peak prices than less constrained nodes.

One of the ancillary services that the PHEV fleet could provide when functioning in the

vehicle-to-grid (V2G) mode is the ability to locally supply the demand, thus alleviating the

congestion scenario; however, for this ancillary service to provide distribution congestion,

several things must happen: (a) high penetration of the PHEV fleet, (b) the willingness

of end-user to allow centralized charging and discharging, (c) an infrastructure built on

information exchange via control and communication, (d) the evolution of a fully deregulated

retail electricity market that recognizes this ancillary service, and (e) support from vehicle

manufactures, who are concerned about additional stress on the vehicle battery.

A more highly developed distributed resource is demand response (DR), typically imple-

mented as programs that provide incentives to consumers for deferring or curtailing the local

demand during peak system periods [24]. This is usually triggered by the service provider

(i.e., the utility) based on information related to system reliability or market conditions.

However, future development may rely on customer action, triggered by smart controllers

monitoring customer preferences and real-time pricing signals from the utility. As a conse-

quence of this evolution in the operation of emerging Smart Grids, newer algorithms for unit

commitment and economic dispatch must be explored.
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2.4. Heuristic-based Approaches to Resource Allocation in Computing

In a heterogeneous computing environment, a collection of machines that have different

computational capabilities are utilized to execute tasks that have diverse computational re-

quirements [25]. Because the environment is heterogeneous, each task will perform differently

on each of the different machines. It is beneficial to allocate tasks to machines that they

perform well on to optimize some system performance. In general, the problem of optimally

allocating tasks to machines in a heterogeneous environment is known to be NP-complete

[4–6], which leads to the use of heuristics.

The characteristics of each task, such as execution time, on each machine can be modeled

either deterministically or stochastically. In the deterministic model, each task characteristic

on each machine is given as a discrete value. In the stochastic model, the characteristics

are represented as a probability mass function (pmf) [26] or a probability density function

(pdf). In both models, the information for each task on each machine is assumed to be

known beforehand.

Using the information about each task, the scheduling heuristics are used to optimize

some system performance metric, such as minimize energy consumed or minimize system

completion time. In the stochastic model, the resulting optimization would be a probabil-

ity based on the pmfs of each task. Like in the unit commitment problem, both genetic

algorithms [25, 27] and particle swarm optimizations [27] have been used. In addition, many

other heuristics have been used such as Tabu [25, 27], simulated annealing [25], and k-percent

best [28, 29].

Given the similarities between resource allocation in the realms of heterogeneous com-

puting and the Smart Grid (which also involves heterogeneous resources), it makes sense to

adopt similar heuristics to the emerging smart grid problem. The large, distributed nature
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of the Smart Grid matches well with the high complexity of previously solved heterogeneous

computing resource allocation problems. The stochasticity of resources in heterogeneous

computing has been modeled as well [26] and could be adapted to the stochastic nature of

the availability of resources in the Smart Grid.

2.5. Proposed Heuristic Framework for use in Smart Grids

2.5.1. Problem Formulation. The SGRA problem can be summarized as an op-

timization problem with the following objectives and constraints. The main objective is

usually to minimize costs for design (for planning applications) and/or operations and main-

tenance (for DR applications). In the latter case, these costs usually include fuel costs, which

do not apply for renewable energy sources. Additional objectives can include any subset of

the following: (a) maximizing the share of renewable energy sources, (b) minimizing the

total greenhouse gases emissions, (c) optimizing customer preferences, or (d) maximizing

the reliability of the system. The system reliability may also be used as a constraint to

meet, and can be considered as a robustness metric for the system [30]. To formulate the

problem, let Ctot and Etot be the total cost and total emissions for the system, respectively,

ci(pi) and ei(pi) be the cost and the emissions, respectively, for the ith asset producing an

electrical power output of pi, and I be the total number of assets, where an asset is either

a conventional generator, a storage unit in the form of a PHEV, a renewable energy source,

or a schedulable load. (1) describes an example with two such objectives: minimizing Ctot

and Etot.

(1) min


Ctot =

∑I
i=1 ci(pi)

Etot =
∑I

i=1 ei(pi)

15



These additional objectives can be handled either using a multi-objective Pareto-optimality

based approach, in which each objective is a dimension of the Pareto front [31], or as a

single-objective problem in which the additional objectives are transformed into constraints

(e.g., by setting emissions or stability limits). Several constraints need to be met for the

system to operate properly:

• Let pg, ps, pls, plf , pres, and pcong be the asset power for conventional generators,

PHEVs, schedulable loads, fixed loads, renewable energy sources, and congestion

needs, respectively. Similarly, let Ig, Is, Ils, Ilf , and Ires be the number of con-

ventional generators, PHEVs, schedulable loads, fixed loads, and renewable energy

sources, respectively. A balance between generation (supply) and the load (demand)

has to be maintained at all times, as shown in (2).

(2)
∑
Ig

pg +
∑
Is

ps −
∑
Ils

pls =
∑
Ilf

plf −
∑
Ires

pres + pcong

• Let pg,max, ps,max, and pls,max, be the maximum power output of the conventional

generators, PHEVs, and schedulable loads. Spinning reserve requirements should

be met, as shown in (3).

(3)
∑
Ig

pg,max +
∑
Is

ps,max −
∑
Ils

pls,max ≥
∑
Ilf

plf −
∑
Ires

pres + pcong

• Let pi,min and pi,max be the minimum and maximum power output for asset i. The

minimum and maximum operation range for each asset must be respected, as shown

in (4) [12].

(4) pi,min ≤ pi ≤ pi,max
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• Let Rdi and Rui be be the ramp up and ramp down rates, respectively, for asset

i. Let dpi
dt

be the current ramp rate for asset i. The ramp rates of all conventional

generators and PHEVs must be respected, as shown in (5) [12].

(5) Rdi ≤
dpi
dt
≤ Rui

• Let Tdi and Rui be the current down and up times for generator i, respectively. Let

Tdi,min and Tui,min be the minimum down and up times for generator i, respectively.

The minimum up and down times for each generator must be met, as shown in (6)

and (7) [12].

(6) Tdi ≥ Tdi,min

(7) Tui ≥ Tui,min

• For the energy storage elements considered here, i.e., the PHEVs, in addition to the

power operation and ramp ranges, as shown in (4) and (5), they also have a few

additional constraints. Let SOC be the usable state-of-charge, Nc be the number

of daily battery cycles, and T be the charging target (i.e., the PHEV should be

charged when the customer wants to use it, at time T ). The constraints on SOC

bounds, battery cycling, and charging are shown in (8)–(10), respectively.

(8) SOCmin ≤ SOC ≤ SOCmax

(9) Nc ≤ Nc,max
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(10) SOCt=T = 100%

• Let Vj be the voltage magnitude on bus j. Let Vmin and Vmax be minimum and

maximum bounds on the bus voltage magnitudes. The proper operation of the

system with regard to the bounded bus voltage magnitudes must be respected, as

shown in (11).

(11) Vmin ≤ Vj ≤ Vmax

• Let f be the frequency of the system. Let fmin and fmax be minimum and maximum

bounds on the system frequency. The proper operation of the system with regard

to the frequency must be respected, as shown in (12).

(12) fmin ≤ f ≤ fmax

• Let Sk be the power flow on line k. Let Sk,max be the maximum power flow on line

k. The proper operation of the system with regard to the maximum power flow

must be respected, as shown in (13).

(13) Sk ≤ Smax

• The constraints resulting from the preferences set by customers for their assets, such

as: the time for enabling DR and the set of loads available of scheduling should be

met.

• The impact of DR on the customer should be as low as possible (i.e., it should

ideally be as transparent as possible).
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The problem at hand is thus non-linear, and the solution space may potentially reach un-

manageable sizes for distribution systems [30]. Heuristics, such as genetic algorithms, are

well suited for this kind of problem.

2.5.2. Genetic Algorithm Approach to Smart Grid Resource Allocation.

To show how a heuristic approach to solving the resource allocation and scheduling problem

in the Smart Grid could be used, a possible setup for a genetic algorithm is presented. As

stated in Sections 2.3.1 and 2.4, a genetic algorithm has already been shown to solve both the

unit commitment problem and the heterogeneous resource allocation and scheduling problem

for computing. As such, the genetic algorithm is thought to be an apt choice to showcase

the framework for a heuristic approach to resource allocation in the Smart Grid.

To properly utilize a genetic algorithm in different domains, the encoding mechanism of

the genetic algorithm must be created to represent the optimization problem’s variables. In

the case of the Smart Grid, the variables in question are the on/off states of each of the

assets, as well as their power output. The assets that we are modeling as controllable in

this problem are the conventional generators, the PHEVs, and the schedulable loads. These

represent the left hand side of (2) and (3). The values that we are assuming are fixed are the

fixed loads, the uncontrolled renewable energy sources, and the congestion needs as requested

by the ISO. The three fixed values represent the right hand side of the same equations.

At the lowest level in the genetic algorithm exists the gene. To model the SGRA problem,

each gene represents an asset that is controllable, i.e. the values on the left hand side of

(2) and (3). Let ûi be a vector whose jth element is a binary value representing the on/off

value of asset i at time j ∗ 0.25 (i.e., the vector elements represent a 15-minute block of

time). Let ôi be a vector whose jth element is a real value representing the discrete output

power of asset i at time j ∗ 0.25. The gene of each asset is then comprised of a 96 × 2
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Figure 2.3. Chromosome representation for the SGRA framework.

matrix, [û ô], representing the on/off state and the output values for an asset over a 24 hour

period. Additionally, each asset has a fixed availability vector, Ai, associated with it whose

jth element is a binary value representing whether or not a given asset is available at hour

j∗0.25. The availability vector is separate from the asset gene and is assumed to be provided

by the consumer for each asset. Thus, the power output for asset i at time j is given by

(14).

(14) p(i, j) = Ai[j]× ûi × ôi

One entire solution to the SGRA problem is represented in a chromosome. The chromosome

is made up of Ig + Is + Ils genes, each representing one asset of the system. Let Gi be the

gene for a conventional generator i, EVi be the gene for PHEV i, and LSi be the gene for

schedulable load i. One chromosome, or solution, is shown in Fig. 2.3.

Each solution has a fitness value, or values, associated with it. These values are used to

evaluate the chromosome in the dimensions that are trying to be optimized. For example, if

trying to optimize for the values in (1) there would be a fitness value associated with both the

Ctot and Etot objectives (if using a multi-objective Pareto-optimality based approach). As

stated before, the multi-objective optimization problem can be turned into a single objective

optimization problem by optimizing over one objective representing the other objectives as

constraints. Another way to accomplish this is to place weights on each of the objectives

and combine them into a single fitness value.
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Figure 2.4. An example of how the penalty weight for violating a constraint
will increase with the number of generations.

To accommodate for the constraints in the SGRA problem, penalty functions will be used.

If a constraint is violated, a penalty will be included in the chromosome’s fitness value.

The penalty value is a function of the magnitude of violation and the current generation

of the genetic algorithm. The reason that the penalty is a function of the generation is

because at earlier generations it is beneficial to keep a variety of genetic material. Even

if a chromosome violates a constraint, it might have a partial solution that performs well

with respect to the objectives. A chromosome is kept in the population even though it may

violate a constraint because it might be able to produce a child that performs well and fixes

the constraint violation as it evolves. As the number of generations increases, however, the

genetic algorithm is less likely to keep a chromosome that violates any of the constraints. In

the final Pareto front (if multi-objective), none of the solutions should contain any constraint

violations. An example of a possible penalty weight is shown in Fig. 2.4.
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Figure 2.5. Basic genetic algorithm procedure.

Let Fa(x) be the fitness function associated with objective a for chromosome x, F
′
a(x, t) be

the fitness function, including penalty weights, associated with objective a for chromosome

x in generation t, nc be the number of constraints, vb be a binary value representing whether

or not constraint b is violated, mb be the magnitude that constraint b is violated, and Xb(t)

be the penalty weight associated with constraint b in generation t (i.e., what is shown in Fig.

2.4). The fitness value being optimized with the genetic algorithm is shown in (15). Note

that F
′
a(x, t) = Fa(x) if no constraints are violated (i.e., vb = 0 ∀ b = 1, ..., nc).

(15) F
′

a(x, t) = Fa(x) +
nc∑
b=1

vbmbXb(t)

The basic genetic algorithm procedure is shown in Fig. 2.5 [32]. In the initial population,

it is usually beneficial to have some type of genetic preconditioning in the form of seeding.

This seeding uses some number of solutions in the initial population that are not generated at

random. This can be done by running less computationally intensive heuristics to generate

some initial seeds. In the case of the SGRA, it might be beneficial to precondition the

population with some initial seeds that do not violate any constraints.

There are many different ways to perform crossover selection (such as tournament selec-

tion [32] or linear bias [33]), crossover, and mutation. For the purpose of the framework,
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these will be left as generic genetic operators in the scope of this chapter. It is important to

note that the crossover and mutation operators should take into account the change in power

outputs from the changed assets to meet the power balance constraint in (2). It should be

noted that this will most likely not be a trivial matter to produce crossover and mutation

operators that will respect the power balance constraint.

A genetic algorithm is a valid heuristic approach to solving large-scale optimization prob-

lems and as such was used as an example. In addition to the ability to find near-optimal

solutions, in one run of the genetic algorithm many solutions are found (equal to the popula-

tion size) with different characteristics. In the SGRA problem, solutions might have similar

fitness values, but one might have, for example, a much larger spinning reserve that might

be beneficial to the system in question.

2.6. Path Forward

Going forward there are many aspects of the proposed framework to be explored. Perhaps

the most obvious is to implement and evaluate the proposed genetic algorithm (including

developing smart crossover and mutation operators) and against realistic distribution sce-

narios. In this light, other heuristics will be implemented as comparisons to the genetic

algorithm. For practicality purposes as a day-ahead scheduler, the performance of the differ-

ent heuristics should be explored as well as how their execution time scales with the size of

the problem. It would also be interesting to explore the temporal and spatial stochasticity

of the renewable energy sources, PHEVs, schedulable loads, and conventional generators.

With this added stochasticity, metrics of robustness (as defined in [26]) would be useful for

characterizing the system.
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Certain asset characteristics extend beyond the 24-hour planning period, which open

questions and approaches which support coarse, long-term optimization in conjunction with

day-ahead scheduling. For example, emissions limits on generation units, storage capacity

in pump-hydropower units, and thermal ride-through in commercial buildings all include

multi-day dynamic.

As the applicability of any resource allocation algorithm to the Smart Grid domain has to

be tested using power systems analysis software, a co-simulation framework introduced in [15]

may be used. This unique test bed available at Colorado State University enables coordinated

simulation of communication, control, and power system aspects of energy management

systems.
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CHAPTER 3

Heuristic Optimization for an Aggregator-based

Resource Allocation in the Smart Grid

3.1. Introduction

According to the United States Department of Energy, since 1982 the growth in peak

electricity usage has exceeded the growth in transmission capacity by almost 25% each

year [35]. Furthermore, electricity sales in the residential sector in the United States is

expected to grow 24% from the 2011 reference case to 2040 [36]. Given these trends, peak

energy demands are expected to exceed the available transmission capability. This can be

dealt with by increasing transmission capability, creating distributed generation, or curtailed

load. As shown in [35], it is unlikely that additional spending will be allocated for increasing

transmission capability, leading to research in the areas of distributed generation (DG) and,

in the case of this chapter, curtailing load during peak hours.

In addition to the physical considerations, there is also an economical motivation. By

curtailing load during peaks, electricity costs could be drastically reduced by eliminating the

need for peaking power plants. In a study from [37], “a 5% reduction in peak demand during

the California energy crisis of 2000–2001 would have reduced the highest wholesale prices

by 50%.” To reduce peak demands, the scheduling of customer appliances are intelligently

coordinated away from the peak time, alleviating the peak demand, and offering a benefit

to all parties.

This work was performed jointly with the full list of co-authors available in [34]. This work was supported
by the National Science Foundation under grant numbers CNS-0905399 and CCF-1302693, the CSU George
T. Abell Endowment, and the University of Technology of Belfort-Montbéliard.
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Given both the physical and economical motivations, an aggregator-based residential

demand response (DR) program is presented. The aggregator is a proposed for-profit entity

in a deregulated market structure that interfaces a DR market (DRX) and a set of customers.

The aggregator will possess information about the schedulable assets of the participating

customers. In many, if not all energy markets, there is a minimum power rating required

to bid into the market (e.g., 0.1 MW in PJM [38]). By aggregating the customer assets,

the aggregator is able to enact a noticeable change on the overall system by scheduling the

assets of many customers and bidding the aggregation of their assets, where a single customer

would not be able to do so.

As presented in [39], incentives can influence customer behavioral changes. To encourage

customers to participate with the aggregator on a daily basis, a new day-ahead price is

proposed for electricity offered by the aggregator, in the form of customer-incentive pricing

(CIP), to offset the customers’ inconvenience of the aggregator controlling their assets.

Additionally, if the inconvenience of rescheduling the load is not worth the reduced price,

the customer may refuse the aggregator and instead pay the utility company for electricity.

The SGRA problem in this chapter is formally stated as given a set of customers and

information about their respective assets, subject to customer constraints (i.e., availability of

customer assets and customer incentive requirements), how can the aggregator find the CIP

and schedule of assets to maximize aggregator profit? In this chapter, it is demonstrated

that by optimizing solely for the profit of the aggregator, a change on the peak load of the

system will be enacted because this is where most of the profit can be made due to the high

cost of peak generators.

To solve the SGRA problem, concepts are borrowed from resource allocation in comput-

ing where tasks must be allocated to machines to optimize a performance metric, such as
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completing all tasks as quickly as possible. It has been shown, in general, that such problems

are NP-complete [4–6] and, as such, use heuristic optimization to find near-optimal solutions.

Similarly in this chapter, heuristic optimization techniques are used to find near-optimal so-

lutions to the SGRA problem in a time frame that is reasonable with the large number of

assets considered for use as a day-ahead scheduler.

Related prior work on demand side management in Smart Grid has occurred in the areas

of optimization and aggregation of end-user resources. The optimization of scheduling end-

user resources has been approached as linear programming [40, 41], dynamic programming

[42], and mixed integer programming [43]. Heuristic-based methods also have been used in

the form of particle swarm optimization [44], evolutionary algorithms [45], and multi-agent

systems [46]. However, increasing DR technologies and allowing retail customers direct

access to wholesale market prices may increase the price-elasticity of demand, leading to

increased volatility in power systems [47]. Aggregators are an intermediary entity that offer

centralized coordination of many entities [14, 48–50]. The SGRA differs in that many more

distributed residential customer assets are scheduled and a new time-variant customer pricing

mechanism in the form of CIP in introduced, that exists in conjunction with the utility price,

to encourage customer participation.

According to the California Energy Commission (CEC), residential loads are not easily

controlled and need to be composed of a large portfolio of assets to provide a strategic DR

product [51]. The CEC identified strategies to fulfill its DR requirements including: direct

DR participation with the independent system operator (ISO), new market and auction

mechanisms (e.g., the proposed DRX), improving customer willingness to participate, and

the introduction of time-variant pricing. The work in this chapter directly addresses each

of these strategies, offering direct DR participation through the customer-aggregator-DRX
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relationship (see Fig. 3.1) and encouraging customer participation with the time-variant CIP

mechanism.

In this chapter it is theorized that by using an aggregator placed between the customer

and bulk power market the volatility in the power system can be reduced. In Chapter 2

(based on [7]), the use of a heuristic approach to the SGRA was hypothesized. In this chapter,

the heuristic framework is designed and implemented using a simulation test bed of 5,555

customers to simulate the scheduling of over 56,000 consumer devices centrally controlled

by the aggregator. This chapter makes the following contributions that is believed to be

missing in prior work:

(a) A new customer pricing structure is proposed in the form of customer-incentive

pricing to encourage customer participation in residential demand response.

(b) A heuristic optimization framework is designed to implement and solve the SGRA

problem.

(c) An analysis of the heuristic framework using actual electricity pricing data and a

large-scale simulation test system consisting of 5,555 customers and 56,642 schedu-

lable assets is conducted.

(d) An aggregator-based approach for a residential demand response program for use

in scheduling customer assets in a large-scale manner.

In the simulation study, by optimizing for profit, the aggregator was able to reduce

the peak load of the 5,555 participating customers by 12.5%. It is demonstrated that this

change benefits the customer of the aggregator (in the form of reduced cost of electricity for

schedulable loads), the aggregator (in the form of a profit), and also those customers not

participating with the aggregator (because the overall system peak is lowered as a common

good).
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The rest of the chapter is organized as follows. Section 3.2 describes the system model

and the enabling technologies. In section 3.3, a heuristic framework and genetic algorithm

implementation are presented. The setup for the simulation study is discussed in Section

3.4. Section 3.5 examines the simulation results. Section 3.6 concludes.

3.2. System Model

3.2.1. Cyber-physical System. The proposed cyber-physical system (CPS) for the

aggregator-based residential DR program is shown in Fig. 3.1. On the right of Fig. 3.1 is the

traditional power system and market structure that flows from the ISO to the distribution

system operator (DSO) for delivering electricity to the residential customer. The left-hand

side of Fig. 3.1 encapsulates our proposed residential DR program. The DRX is an ancil-

lary market in a fully deregulated market structure that provides DR services to the ISO.

The aggregator interfaces the DRX and the residential customer, and provides the positive

attributes (e.g., load shifting, distributed storage) of the aggregated customer assets (e.g.,

distributed generation, electric vehicles) to the ISO. Each participating customer has a home

energy management system (HEMS) that controls the assets, connected to a smart meter.

The aggregator coordinates the use of the participating customer assets and brings the re-

sult (e.g., load reduction) to the DRX for market exchange. The aggregator and customer

interactions will be expanded on in the following subsections.

For realizing the market interactions in Fig. 3.1, several enabling technologies are first

expected to penetrate the electric power system, and are assumed to exist in this work. As

previously mentioned, the retail electricity market must be fully deregulated, allowing for

the customer to choose between suppliers. The control and communication infrastructure,

including the requisite cyber-security, for the exchange of information and coordination of
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Figure 3.1. The architecture and communication for the cyber-physical sys-
tem of the proposed aggregator-based residential demand response program.

customer assets must be developed and implemented. Lastly, the customer must be willing

to participate with proper incentive.

3.2.2. Aggregator. The aggregator is a for-profit market entity engaged in interacting

with the customer and the bulk power market in a fully deregulated market structure. As

shown in Fig. 3.1, the aggregator is situated between the DRX and the customer (in a fully

deregulated market structure). Note that the DRX can exist in conjunction with existing

deregulated market structures. The aggregator energy management system interacts with

each of the customer HEMSs. In this chapterwe are only considering one aggregator entity,

but it is expected that several aggregators may exist within the same distribution area.
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The existence of an aggregator would depend on legislative policies, but this is beyond the

immediate scope of this research.

The aggregator coordinates a set of participating customers, each with a set of schedulable

loads. In this chapter, only schedulable loads in the form of smart appliances are being

considered, but this approach could be extended to other types of assets such as DG, thermal

loads (e.g., electric water heaters [52]), and PHEVs (in the form of vehicle-to-grid [53] or

scheduling vehicle charging cycles [44]).

The scheduling problem is proposed as a day-ahead optimization. To make decisions,

the aggregator requires information about the customer loads, the forecast utility pricing,

and the forecast spot market pricing in the bulk electricity market. Using this information,

the aggregator must find a CIP and a schedule of loads to maximize its profit. Because it

is a day-ahead optimization, there are constraints on the execution time of the optimization

technique used. This time constraint, along with the complexity of the scheduling problem

(i.e., the class of problems is, in general, NP-complete) due to the large number of customer

assets leads to the use of heuristics. Other objectives could be considered, such as minimizing

the peak load, or considering multiple objectives in the form of a multi-objective optimization

using Pareto-fronts [54]. In this chapter, only aggregator profit is optimized to demonstrate

that a purely economic motivation will affect the desired change of reduced peak demand on

the entire system.

CIP is a proposed pricing structure that the aggregator would offer all customers to allow

the rescheduling of their loads. That is, instead of paying the utility company, the customer

pays the aggregator the CIP for electricity. The customer paying the CIP for electricity to

the aggregator at the time the asset has been rescheduled to is one part of the profit of

the aggregator. The sum of these payments over all customers and all rescheduling events is

31



denoted S. The other two components to the aggregator profit are: (a) the aggregator selling

a negative load to the spot market where the assets have been rescheduled from (denoted N),

and (b) the aggregator buying spot market electricity where the assets have been rescheduled

to (denoted B). This exchange is outlined in Fig. 3.2. The aggregator would, perhaps, need

to enter into a leasing agreement with the utility company for the use of the distribution

assets, but modeling this and other potential fixed costs are beyond the immediate scope of

this chapter.

Figure 3.2. The money flow with respect to the aggregator, customer, spot
market, and utility. The customer has a choice of electricity provider. Cus-
tomers {1 . . . y} pay the customer incentive pricing to the aggregator for their
schedulable loads. Customers {y+1 . . . Y } decide the customer incentive pric-
ing is not worth the inconvenience and purchase electricity from the utility
company. The solid arrows represent the money flowing in the system. The
dashed red arrow indicates the possible need for a relationship between the
aggregator and utility company, which is beyond the scope of this research.

3.2.3. Customer. Each customer under agreement with the aggregator has a set of

schedulable loads. In this chapter, as mentioned in Subsection 3.2.2, only flexible, non-

interruptible smart appliances, according to the definitions given in [55], are being considered.

Each customer load has an availability window associated with it. The availability window

describes the times during the day that a customer will allow their schedulable load to be

rescheduled. In addition to the availability window, each customer has a pricing point that
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must be met on each load to allow it to be rescheduled. That is, if the price reduction to

be received from a rescheduled load at the given CIP is not worth the inconvenience to the

customer, the customer may choose to not have their load rescheduled and instead pay the

utility company for electricity for that load. This is shown in Fig. 3.2 as the set of customers

(y+ 1) to Y interacting with the utility instead of the aggregator. Only those loads that are

agreed for DR between the customer and aggregator utilize the CIP. The base load and those

loads not agreed upon will utilize the status quo of the utility company, e.g., real-time price

and time-of-use. This choice of supplier is a powerful new tool for the customer and offers

the customer an avenue to participate in the spot market (through the aggregator entity),

which may reduce the customer electricity bill and offer freedom of choice.

3.3. Heuristic Framework

3.3.1. Framework.

3.3.1.1. Overview. The SGRA problem is solved in this chapter using a heuristic opti-

mization framework, borrowed from concepts in resource allocation in computing, that finds

near-optimal solutions to problems. Heuristic optimization methods are used because, in

general, the class of problems is NP-complete. In this chapter, the heuristic framework is

designed to be a day-ahead optimization, using a resolution of 15-minute intervals. This im-

plies that a given heuristic would need to have a runtime of less than 24-hours to be useful.

This also gives each vector 96 entries (96 15-minute intervals for a complete 24-hour period).

3.3.1.2. Schedulable Loads. To reschedule load, the aggregator requires information on

the set of schedulable loads. These schedulable loads represent a subset of the system load.

For each schedulable load i, the aggregator receives information from the customer on:

• δi, the runtime duration (in 15-minute intervals)
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• pi, the average power rating (in kW)

• ti start, the customer scheduled start time

• (Ai start, Ai dur), a 2-tuple that represents the customer-defined availability window

for load i determined by the availability window start time, Ai start, and the avail-

ability window duration, Ai dur.

In this chapter, it is assumed that the aggregator knows the exact time a load will run

(i.e., from ti,start for δi time intervals) if it is not rescheduled by the aggregator (i.e., the start

time is deterministic).

3.3.1.3. Aggregator. Let λ be the CIP vector containing 96-elements, where each element

λt gives the aggregator determined CIP at time interval t. In addition to the information

about the schedulable loads, the aggregator possesses information on:

• γ(i,λ, t), a binary function that represents whether the customer will allow load i

to be rescheduled to time t with CIP λ (γ = 1) or not (γ = 0)

• s(t), the forecast spot market price of electricity in the bulk electricity market (in

cents/kWh)

• r(t), the forecast price of electricity from the utility company (in cents/kWh).

Because the customer also has access to the forecast utility price (e.g., real-time price

and time-of-use), if the CIP, λ, does not offer enough of a reduction in pricing to justify

the inconvenience of rescheduling the load, the customer has the opportunity to refrain

from participation, as represented by the binary function, γ. Therefore, the position of the

aggregator is to find the following:

• L, the set of loads the aggregator is rescheduling

• ti resch, the rescheduled start time for load i

• λ, the CIP vector
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so as to maximize profit, given in the following subsection. Let I be the total number of

schedulable loads. The cardinality of L is less than or equal to I (i.e., |L| ≤ I) because the

aggregator has information about all I schedulable customer loads, but it does not necessarily

have to reschedule all loads.

3.3.1.4. Objective Function. The monetary exchange, representing the aggregator profit,

is shown in Fig. 3.2. For the aggregator, let S be the total income received for selling

electricity to customers, given by (16), N be the total income received for selling negative

load to the spot market given by (17), and B be the total cost paid to the spot market for

buying electricity given by (18). The exact payment received from N would depend on policy,

such as the outcome of FERC Order 745 [56] and its future iterations; however, energy policy

is not addressed in this work. It is assumed that the aggregator is a well-behaved agent that

does not manipulate the market (such as by misrepresenting the sum of the negative load)

and is paid the difference from a deterministic baseline load. The calculations for S, N , and

B are given as:

(16) S =
∑
i∈L

[
γ(i,λ, ti resch)

ti resch+δi−1∑
t=ti resch

λtpi
4

]
,

(17) N =
∑
i∈L

[
γ(i,λ, ti resch)

ti start+δi−1∑
t=ti start

s(t)pi
4

]
,

(18) B =
∑
i∈L

[
γ(i,λ, ti resch)

ti resch+δi−1∑
t=ti resch

s(t)pi
4

]
.
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The forecast aggregator profit P is given as:

(19) P = N + S −B.

The heuristic optimization problem is set up as follows:

max
ti resch∀i∈L,λ=(λ1,...,λ96)

P(20)

subject to

Ai start ≤ ti resch ≤ Ai start + Ai dur ∀i ∈ L(21)

and

ti resch ∈ Z ∀i ∈ L(22)

λt ∈ R t = 1, ..., 96.(23)

3.4. Simulation Setup

3.4.1. Overview. The following section describes parameters and models that are used

to conduct the simulation study for analysis. The heuristic framework introduced above

can be used with any optimization technique, utility pricing mechanism, customer behavior

model, and set of customer smart appliances. Although the results show a profit for the

aggregator in the considered distribution system, this does not indicate that an aggregator

entity would be profitable in all distribution systems; however, the proposed framework can

be used to determine this profitability using relevant data.
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3.4.2. Genetic Algorithm. In this research, a Genitor [33] version of genetic algo-

rithm (GA) is used to implement the heuristic framework. A GA is used as an example

global search heuristic, but any optimization method can be used with the described frame-

work. GAs have been shown to work well in many optimization problems, such as resource

allocation in computing [57, 25, 58], economic dispatch [16], and unit commitment [18]. If

multiple objectives are used, the GA can easily be extended to generate Pareto fronts, e.g.,

with NSGA-II [54, 59].

The implemented chromosome structure is broken into two parts, each with its own

gene type, shown in Fig. 3.3. The first portion of the chromosome is dedicated to the CIP

vector, λ, containing 96 genes representing the price (in cents/kWh) for the corresponding

15-minute interval. The second portion of the chromosome represents the schedule of loads,

containing one gene for each of the I customer schedulable loads. Let ti sch be a real value in

the interval [0, 1] representing the scheduled start time of load i. To obtain the time interval

that each load i is scheduled, the following equation is used: ti resch = Ai start+ ti schAi dur. If

ti resch = ti start, then the load is not being rescheduled (i.e., i /∈ L). The [0, 1] representation

of ti sch is used to avoid violating the customer-defined availability constraints of the loads

given in (21).

Figure 3.3. The chromosome structure for the genetic algorithm. The genes
λ1..λ96 represent the customer incentive pricing vector, one element for each
15-minute interval in the 24-hour period. The genes t1 sch..tI sch represent the
schedule for the I customer loads that are schedulable.

The Genitor version of the GA has a few defining characteristics. In the initial pop-

ulation, no duplicates are allowed to prevent premature convergence. The Genitor is a
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steady-state algorithm that maintains a ranked list of chromosomes (in our study, ranked by

(19)), leading to implicit elitism, i.e., between generations, the best solutions are kept. In

each generation, two parents are selected using the linear bias function (as defined in [33])

leading to the creation of two new children. The linear bias selection function requires a

linear bias parameter that is a real value in the interval (1, 2]. A linear bias parameter of 1.5

means the best-ranked solution has a 50% greater chance of being selected than the median

solution.

After two chromosomes are selected using the linear bias function, two search operators

are applied: crossover and mutation. The former uses a two-point crossover performed on

each of the two portions of the chromosome separately. After the crossover is performed, two

new children are created. Within each child, every gene has a probability of mutation that

will randomly generate a new value for that gene. These two new children are then evaluated

in terms of the objective function (given in (20)), inserted into the sorted population, and

the worst two chromosomes are trimmed, leading to a fixed population size. The complete

algorithm is shown as pseudocode in Fig. 3.4. A parameter sweep was used to determine the

1: initialize population
2: order population by (19)
3: repeat
4: select two chromosomes via linear bias
5: crossover creating two new chromosomes
6: mutation
7: insert children chromosomes
8: trim the two worst performing chromosomes
9: until stopping criterion

10: return best chromosome

Figure 3.4. Genitor algorithm.

best parameters to use for the GA in the scope of this problem. The population size was 100,

the linear bias parameter was 1.4, and the probability of mutation was 0.01. The stopping
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criteria was defined as 500,000 total iterations or 10,000 iterations without an increase in

the objective function.

Let ω be a real value in the interval [0, 1]. To seed the CIP vector, λ, in 50 chromosomes

in the initial population, a seeding function was used, denoted σ(t, ω), for each time-window

t = 1, ..., 96, given by (24). The schedule for the customer load was randomly generated for

each seed. The 50 seeds were generated using values ω = n
49
, n = 0, ..., 49.

(24) σ(t, ω) =


ωs(t) s(t) ≥ r(t)

ωr(t) s(t) < r(t)

The rest of the chromosomes in the initial population are randomly generated. For each

gene in the CIP vector, representing the cost in cents/kWh at time t, a random value is

generated in the interval [0,max (r(t), s(t))]. For each gene in the schedule, representing the

scheduled time of load i, a random value in the interval [0, 1] is generated.

3.4.3. Pricing Data. The utility pricing and spot market pricing information used in

the simulation were real data from Saturday July 9, 2011, obtained from ComEd Residential

Real-time Pricing [1] and PJM [2], respectively. This data is given as 24 one-hour intervals.

The day-ahead forecast pricing is given in Fig. 3.5(a) and the actual pricing is given in

Fig. 3.5(b). The data in Fig. 3.5(a) is used by the GA to determine λ and the schedule of

loads. In Section 3.5, we will evaluate the aggregator profit using the actual price data in

Fig. 3.5(b) with the solution obtained using the forecast price data.

3.4.4. Customer.

3.4.4.1. Customer Overview. In the simulation study, 5,555 customers were considered.

Each customer has a baseline load and a set of schedulable loads, as described in Subsection
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Figure 3.5. Real-time [1] and spot market pricing [2] from July 9, 2011. (a)
The day-ahead forecast price. (b) The actual price.

3.4.4.3. When the aggregator wants to reschedule a customer load, the customer may veto

(i.e., γ = 0) using the process described in the following subsection. In this case study,

56,642 loads were available to be rescheduled from the 5,555 customers.

3.4.4.2. Customer Behavior. A key assumption in the proposed DR methods is customer

participation. The behavior of each customer is modeled for determining whether or not they

will allow the aggregator to reschedule their smart appliances using the proposed α-model.

In the α-model, each schedulable load i has an associated threshold metric for “customer

comfort” in percent, αi. Let ci 0 be the original cost of running load i at the utility real-

time price and ci sch be the rescheduled cost of running load i at the CIP offered by the

aggregator. For the owner of load i to allow it to be rescheduled (i.e., γ = 1), the inequality

ci sch ≤ αici 0 must hold. This new model allows flexibility for the customer on a load-by-

load basis. Additionally, the customer is always guaranteed (if its loads are used by the

aggregator), to save 1−αi times the cost of running load i compared to paying the real-time

price. The user inconvenience of the rescheduling of loads is captured through the γ value as
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opposed to the time dependent models in [60] and [61]. The customer γ values are private,

and the aggregator is assumed to operate without receiving this information explicitly.

The coefficient-of-variation-based method is used to generate the α values for each load

i, similar to generating task execution times for a heterogeneous suite of machines [62].

An analogous method of generating load α values for a heterogeneous suite of customers is

offered. Let µa be the desired average load α value for all loads, σa be the desired coefficient-

of-variation of the load types, and σc be the desired coefficient-of-variation of the customers

within a load type. For each load type k (given from the rows of Table 3.1), a Gamma

distribution is sampled with mean µa and standard deviation σa to obtain the mean α value

for load type k, denoted µa,k. For each customer that owns load type k, obtain αi by sampling

a Gamma distribution with mean µa,k and standard deviation σc. This gives similar α values

for each type of load, and thus similar customer behavior. This approach was taken because

it is assumed that customers will act similar regarding the use of load types (e.g., more

flexible with laundry, less flexible with the TV).

A parameter sweep was performed on the input values µa, σa, and σc. A representative

result is shown in Section 3.5 using the inputs µa = 0.75, σa = 0.10, and σc = 0.05. In

general, the magnitude of the CIP is sensitive and positively correlated to µa (i.e., as µa

increases, the CIP proportionally increases with respect to the real-time price). Values of σa

and σc are positively correlated with the noise level of the CIP.

3.4.4.3. Customer Loads. Two types of loads are assumed to be available for each cus-

tomer in this study: baseline and schedulable (smart) appliances. The baseline load is

divided into thermal, modeled as air conditioning [63] and electric water heaters [64], and
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Table 3.1. Schedulable Smart Appliances

Penetra-
tion
(%)

Mean
power
(kW)

Power
std. dev.

(kW)

Duration
(15-minute
intervals)

Start
mean
(hour)

Start std.
dev.

(hour)

70 0.5 .05 4 7 1
70 0.5 .05 4 14 3
70 0.5 .05 4 17 1
50 0.75 .1 3 7 1
50 0.75 .1 3 14 3
50 0.75 .1 3 17 1
30 1.0 .2 2 7 1
30 1.0 .2 2 14 3
30 1.0 .2 2 17 1
100 0.25 .01 8 7 1
100 0.25 .01 8 14 3
100 0.25 .01 8 17 1
10 1.5 .3 2 7 1
10 1.5 .3 2 14 3
10 1.5 .3 2 17 1
80 0.4 .05 6 7 1
80 0.4 .05 6 14 3
80 0.4 .05 6 17 1

other non-schedulable loads. The non-schedulable loads are probabilistically generated for

each customer based on the data in [46], given in Appendix A as Table A.1.

A probabilistic model for 18 generic schedulable appliance types is given in Table 3.1.

The penetration level gives the probability that an appliance is present for a given customer;

if it is present, the rated power of the appliance, as well as the start hour, is obtained from

a normal distribution. Values in Table 3.1 were chosen so that the total load reflects actual

energy use of an average household. Similar to the non-schedulable loads, a set of schedulable

loads corresponding to each customer is generated probabilistically using the data in Table

3.1.

Each probabilistically generated load i has an associated availability window, (Ai start, Ai dur),

that describes the time-window that the customer has allocated for load i to be scheduled.
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Recall that ti start is the originally scheduled starting time for load i. Let U(δi, 96) be a

uniform random variable in the interval [δi, 96]. In this study, to generate the availability

window for each load i, an interval of duration U(δi, 96) is generated around the starting

time ti start. That is, Ai dur = U(δi, 96) and Ai start = ti start − Ai dur

2
.

3.5. Results

A total of 56,642 schedulable loads (i.e., I = 56, 642) from the 5,555 customers were ran-

domly generated using the data from Table 3.1. The schedulable customer loads correspond

to 11.2% of the total energy used by the 5,555 customers. To capture the algorithm in steady

state, a two-hour window was added to the start and end of the simulation. Any appliance

load that occurs within these windows did not contribute towards the objective function

(i.e., only the 24-hour window was used for the objective function calculation). The genetic

algorithm ran for 375,000 iterations before terminating, taking 113 minutes on an Intel i7

4900MQ processor running at 2.8 GHz using a C++ implementation in Ubuntu Linux. The

final objective value, i.e., forecast aggregator profit, was P = $813.92 (based on Fig. 3.5(a)).

When evaluated for the actual real-time and spot market pricing, the schedule determined

by the genetic algorithm resulted in an aggregator profit of $947.90 (based on Fig. 3.5(b)).

This increase in profit from forecast to actual is because the actual spot market pricing at

the peak period was much larger than forecast (as shown in Fig. 3.5), leading to an increase

in profit from the N component of the profit function. From a customer standpoint, the total

savings of all 5,555 customers was $460.31 and $794.93 when using the forecast and actual

data, respectively, for the 24-hour period under consideration. The increase in savings is also

due to the large increase in peak real-time price that the customer no longer has to pay. For

the settlement of the customer DR, the aggregator uses the actual spot market price data.
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The total customer savings implies an average saving of $0.14 per customer with a range of

savings between $0.02 and $0.33. This range is indicative of the possible monetary benefits

from the customer being more flexible with their loads (in the availability of the load and

the customer α values) and bringing more energy (i.e., a greater number of assets) to the

aggregator to participate in DR. Although the average daily savings may appear small, in

this chapter we are focusing on the viability of the aggregator.1 In general, the aggregator

makes less profit and the customer saves more when the µa value is decreased, and vice-versa.

Fig. 3.6 shows the change in the load before and after the optimization occurs. Fig. 3.6(a)

compares the system load before and after the optimization. As hypothesized, if the aggrega-

tor entity optimizes purely for economic reasons, the overall change in the system peak load

may be beneficial, as is the case in this study. The aggregator-based residential DR program

was able to reduce the peak of the participating 5,555 customers by 12.5%, resulting in a

2.66 MW reduction at 4:45 p.m. In Fig. 3.6(b), the portion of the load that is schedulable is

shown. The area under the curve is 11.2% of the total system energy, with 19.4% of the total

load reschedulable at the peak. This figure shows in greater resolution when the rescheduling

of customer loads occurs. Over half of the schedulable load at the peak is moved off-peak.

The reason this value is not higher is due to the customer availability windows described in

Subsection 3.3.1.2. Because of this constraint, not all of the load can be moved to off-peak

hours. Fig. 3.6(c) explicitly shows the difference in load between the system before and after

the DR. The green shaded regions with the “/” hashing are the areas that the load was

reduced, corresponding to the reduction in the peak. In the other areas, shaded red with “\”

hashing, the load was increased, corresponding to the load moving to off-peak hours. The

1Monetary benefits, however, are not the only reason that early adopters may want to participate. It has
been shown that often customers are motivated by altruistic reasons, such as environmental benefits (i.e.,
“being green”) [65].
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Figure 3.6. The change in load from before and after the aggregator demand
response action. (a) The overall system load of the 5,555 customers. (b) The
schedulable load. (c) The difference in load (i.e., after minus before).

large negative difference in load directly corresponds to the component of aggregator profit

obtained by selling negative load, N , to the spot market. The positive difference in load is

the portion of the load that contributes to the S − B component of the aggregator profit

function.

The customer pricing incentive obtained by the optimization, is shown in Fig. 3.7.

Fig. 3.7(a) shows the incentive pricing compared to the forecast real-time and spot mar-

ket prices. The CIP is lower than the forecast real-time price and, in general, the actual
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Figure 3.7. Real-time and spot market pricing compared to the customer
incentive pricing. (a) The customer incentive pricing compared to the day-
ahead forecast price. (b) The customer incentive pricing compared to the
actual price.

real-time price (Fig. 3.7(b)). This indicates the customer receives a competitive, and re-

duced, rate of electricity for participating with the aggregator (including a hedge against the

risk of large price spikes in the real-time price, such as at 4 p.m. in Fig. 3.7(b)).

To estimate the response of the spot market to the aggregator DR, a pseudo-spot-market-

response is emulated. A sixth-order polynomial was fit to the PJM forecast spot market price

for July 9, 2011 describing the spot market price (in cents/kWh) as a function of the load

(in MW). The coefficients of the polynomial are given in Appendix B. The adjusted R2

value for the polynomial to the data is 0.987, indicating a close fit. The l2-norm of the

difference between the price determined by the polynomial and the original forecast price is

0.516 cents/kWh. Note that this is a simple model for quantifying the changes the DR has

on the market for July 9, 2011, and should not be generalized as a predictive tool.

The difference in system load due to the DR action (i.e., Fig. 3.6(c)) was added to the

forecast PJM clearing load (available in [2]) and the polynomial fit was used to determine

the resultant spot market price. The change in spot market price due to the DR is visualized
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Figure 3.8. The results of the pseudo-market-response derived from the
sixth-order polynomial regression model. (a) The predicted change in forecast
spot market price as a result of the demand response. (b) The spot market
price that will make aggregator break-even (no profit).

in Fig. 3.8(a). The l2-norm of the difference between the emulated pseudo-spot-market-

response and the forecast spot market price is 0.517 cents/kWh. When compared to the

original l2-norm of 0.516, this indicates the change in spot market price from the DR from

one aggregator entity is small. However, when many aggregators exist within the purview

of a single ISO, this market response will need to be investigated further.

To determine the breakeven point for the profit of the aggregator with the given DR, the

forecast price was scaled until P = $0. A scalar value, β, was applied in a positive manner at

the times the load was increased and a negative manner at the times the load was decreased,

the red and green areas in Fig. 3.6(c), respectively. This was done to increase the cost from

the B term in the red shaded areas and to decrease the profit from the N term in the green

shaded areas. The breakeven price was determined with β = 1.141, given in Fig. 3.8(b).
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3.6. Conclusions

An aggregator-based residential demand response approach was proposed for scheduling

residential customer assets. A customer incentive pricing (CIP) structure was proposed

to compensate the customer for the inconvenience of rescheduling their assets. This new

pricing structure gives the customer a near real-time choice of electricity supplier in a fully

deregulated market scenario. A heuristic framework was designed to perform an optimization

on the profit of the aggregator. To validate the heuristic framework, a system comprised

of 5,555 customer households and 56,498 schedulable loads was simulated using a genetic

algorithm implementation of the framework. The CIP found by the genetic algorithm was,

in general, lower at all times than the customer would pay via real-time pricing. Despite this,

the aggregator was able to make a profit by selling negative peak load to the spot market.

This showed an example of optimizing for purely economical reasons in the form of aggregator

profit, and enacting an overall change on the system peak load. This change benefits the

customer of the aggregator (in the form of reduced cost of electricity for schedulable loads),

the aggregator (in the form of a profit), and also those customers not participating with the

aggregator (because the overall system peak is lowered as a common good).

48



CHAPTER 4

A Partially-Observable Markov Decision Process

Approach to Residential Home Energy Management

4.1. Introduction

The United States Energy Information Administration predicts a 21% increase in resi-

dential electricity use from a 2012 reference case to the year 2040 [67]. Studies show that

small and targeted reductions in peak demand can have large impacts on wholesale elec-

tricity prices [37]. Given that residential customers can account for over half of the system

peak demand in summertime, such as in markets like the Electric Reliability Council of

Texas (ERCOT) [68], residential demand response (DR) programs are attractive solutions

for relieving the stress on the system and market.

Dynamic pricing programs are one such way to accomplish DR. These utility-offered

programs, such as time-of-use (TOU) and real-time pricing (RTP), fluctuate the price of

electricity throughout the day in accordance with system load levels to elicit a change in

the consumption of electricity [69]. Residential customers can take advantage of these time-

varying rates by changing electricity use to reduce their electricity bill. An automated

method for changing electricity usage in response to time-varying price is a residential home

energy management system (HEMS), a form of demand-side management (DSM). The chal-

lenges of an effective HEMS are (a) the uncertainty in the time-varying price of electricity,

and (b) that as a customer, the benefit received from changing energy usage must exceed the

This work was performed jointly with the full list of co-authors available in [66].
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inconvenience caused. To overcome these challenges and to maximize the benefit of the dy-

namic price, a HEMS is designed using a non-myopic sequential decision technique known as

a partially observable Markov decision process (POMDP). The POMDP HEMS determines

energy use at each point in time to minimize the electricity bill under the uncertainty of the

time-varying price and customer comfort constraints.

The area of HEMS and DSM is an active research area [70, 71, 64, 72, 55, 73–79]. HEM

has been approached through dynamic programming [72], stochastic optimization [55, 77],

two-horizon algorithms [79], MILP [55, 73], convex programming with integer relaxation [75],

and heuristic optimization [78, 34]. The HEMS optimize for cost [64, 55, 73, 75, 78, 79], user

preference [64, 74], power caps [74, 77], and peak-to-average ratio [78]. The POMDP HEMS

is a stochastic control process for making non-myopic decisions when the underlying state

is uncertain. This delayed gratification approach to HEMS, combined with a continuously-

updating RTP prediction method, results in significant cost savings in an RTP market. This

work also presents a new method for accurately modeling appliance usage within a household.

The considered time-period of one-month for quantifying results is also significantly longer

than previous studies.

Markov decision processes (MDPs) have been used in other problems relating to power

systems. [80] presents an MDP approach for commercial building energy management. Mul-

tiple energy systems (i.e., wind, photovoltaics (PV), combined cooling, heating, and power

generation (CCHP), batteries) are jointly scheduled to match the load requirements of a

commercial building to minimize cost. An MDP approach is used in [81] to schedule the use

of residential pool pumps. The pool pump MDP is used to provide distributed ancillary ser-

vice to the grid, such as self-supplied balancing reserves, without synchronization. A HEM

unit plays a game with a central energy management unit that provides a dynamic price
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to meet its energy needs within a desired budget in [82]. This work differs from previous

power system MDP papers in that the partially observable framework is used and different

decisions are made within the POMDP framework to exist at the purely customer-level in

an existing RTP market. The POMDP HEMS presented here manages the use of flexible,

non-interruptible smart appliances according to the definition in [55].

The primary contributions in this work are:

(a) The design of a non-myopic residential HEMS using a sequential decision technique

(i.e., POMDP) that optimizes energy usage over a long time-horizon to minimize

cost,

(b) The creation of a new appliance energy usage pattern based on queueing theory

that models residential household usage for smart home simulations, and

(c) The comparison of the POMDP HEMS against three methods, including a new

myopic algorithm, using month-long simulation studies.

The rest of the chapter is organized as follows. The system model and problem statement

are described in Section 4.2. Section 4.3 introduces the design of the optimization meth-

ods. In Sections 4.4 and 4.5, the setup and results of the simulation study are presented.

Concluding remarks are given in Section 4.6.

4.2. System Model

4.2.1. Overview. This work relates to changing the energy usage within a single resi-

dential household in response to dynamic pricing of electricity. The house exists in an RTP

market, where the price for electricity varies every hour in response to demand. Flexible,

non-interruptible smart appliances [55] are dynamically arriving (i.e., the residential cus-

tomer wants to use the appliance) to be scheduled by the HEMS. The goal of the HEMS is
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to minimize the total cost of electricity. Cyber-security (e.g., [83]) is a concern moving for-

ward in the implementation of smart homes — and, more generally, the Internet-of-Things

(IoT) — but it is out of the immediate scope of this work.

4.2.2. Appliance Model. For each appliance i that arrives at time ti−arr, knowledge

is assumed of the power rating in kW (pi), the duration in hours (di), and the start-time

deadline (ti−dead). The start-time deadline is a customer provided input indicating when the

latest the appliance can be started. This allows the customer to be more or less flexible

depending on the specific appliance and the customer comfort. The goal of the HEMS is to

find the start-time of each appliance (ti−start).

For simulation purposes, ti−arr must be determined for each appliance that accurately

models residential energy usage. A novel probabilistic model is introduced for the usage

pattern of a residential household based on queueing theory, specifically an Mt/G/∞ queue.

It is posited that a household can be modeled as an infinite computing server with appliance

usage analogous to application arrivals. The Mt/G/∞ queue states that applications arrive

non-homogeneously with Markovian probability (i.e., Poisson distribution), generally dis-

tributed execution times, and infinite capacity [84]. In the smart home realm, the run-time

of an appliance is analogous to the execution time of an appliance.

Let D be a random variable describing the duration of the set of appliances and m(t)

be the average number of running appliances at time t. The appliances arrive into the

system according to a Poisson distribution with the time-varying rate λ(t). Using the linear-

with-time-shift (LIN-S) approximation of m(t) from [84], the average number of appliances

running in the household at time t is given as

(25) m(t) = λ(t− E[D])E[D].
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To obtain the time varying rate of the Poisson distribution describing the appliance arrivals,

solve for λ:

(26) λ(t− E[D]) =
m(t)

E[D]
.

Because this is for simulation purposes, causality does not have to be assumed. Substitute

the current time as t =⇒ t+ E[D], then the required rate equation is given by

(27) λ(t) =
m(t+ E[D])

E[D]
.

To obtain a realistic number of simultaneously running appliances, m(t) must be determined.

Let L be a random variable describing the power rating of the set of appliances and l(t) be

the desired aggregate household load at time t. The average number of running appliances

is then

(28) m(t) =
l(t)

E[L]
.

Substituting (28) into (27), the time-varying arrival rate of the appliances according to a

Poisson distribution is determined by

(29) λ(t) =
l(t+ E[D])

E[L]E[D]
.

An example generation of appliance arrivals is presented in Fig. 4.1. The generated usage

pattern is very close to the desired usage pattern. The discrepancies can be explained

because (a) the arriving appliances are a random process and inherently have some form

of stochasticity, and (b) the LIN-S is an approximation of the average number of running
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appliances and is not exact. The generated pattern is averaged over 500 samples to minimize

the impact of (a).

Figure 4.1. An example usage pattern generated by the Mt/G/∞ queue
model. The dashed green line represents the desired load (l(t)). The solid
blue line is the generated usage pattern averaged over 500 samples.

4.2.3. Real-time Pricing Model. The RTP market used in this study is modeled

after the ComEd Residential RTP program [1]. In this market, the price of electricity

changes every hour in response to the PJM real-time hourly market price. At approximately

4:30 p.m., a forecast for the next day’s hourly prices are provided to the customer. At the

start of each hour, the actual price of electricity for that hour is provided.

To better explain the market, a visual representation of the RTP market is given in

Fig. 4.2. At 11:00 a.m. in Fig. 4.2, the price of electricity is known until noon. Additionally,
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a forecast price is known for each hour until midnight. At 4:30 p.m., the price of electricity

is still known until 5:00 p.m., but an additional 24-hours of forecast information is provided.

To the left side of the red-dotted line in Fig. 4.2, the actual and forecast prices are much

different. At time (0, 1) and (2, 3), the price of electricity is actually negative. This occurs

when the demand for electricity is low compared to the available supply and it is cheaper

for large generators to pay for the consumption of electricity than it is to shut the generator

down and re-start it at a later time. The non-myopic HEMS can take advantage of this

phenomenon to provide superior cost savings on the electricity bill.

Figure 4.2. An example of the operations of the ComEd Residential RTP
market [1].

At the current time t, let c(t) be the cost of electricity (in cents/kWh) and cf (t, τ) be the

forecast price of electricity at time τ given the current forecast. The maximum forecast time,
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τmax, corresponds to the latest forecast provided by the utility (according to the operation

in Fig. 4.2).

4.2.4. Problem Statement. In the residential house there is a vector of dynamically

arriving appliances to be used by the customer at times t̂arr. Only information about ap-

pliances with an arrival time before the current time t is known. There is a corresponding

vector with information about the start-time deadlines (t̂dead). Let the ith element in the

vectors correspond to the ith appliance. The goal is to find the vector of start-times, t̂start,

to minimize the total cost of using the appliances.

Let C(t̂start) be the cost to run appliances at the scheduled start-times, t̂start.

(30) C(t̂start) =

|t̂start|∑
i=1

∫ t̂start[i]+di

t̂start[i]

pic(t)dt

The formal problem statement is

min
t̂start

C(t̂start)(31)

s.t.

(32) t̂arr ≤ t̂start ≤ t̂dead.

4.3. Optimization Methods

4.3.1. Overview. To compare the benefit of using a delayed gratification approach, a

myopic comparison algorithm is designed, denoted minimum forecast cost (MFC). These

new methods are evaluated against the status quo (appliances are used without regard to

price) and the mathematical lower bound on cost.
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4.3.2. Immediate. The status quo of energy usage within the household is to maximize

personal comfort, often with little or no regard to price. In the simulation, this is analogous

to using an appliance as soon as it arrives. The status quo optimization method, denoted

immediate (imm), is then t̂start = t̂arr.

Figure 4.3. The general POMDP framework. The underlying belief state
is split between observables and unobservables. The addition of unobservable
portions of the state require the formulation of the POMDP, as opposed to
an MDP. The unobservables are measured, and the conditional probability of
their true state is determined with a measurement filter. The combination of
the observable state and conditional probability of the unobservable state are
used to select actions to take.

4.3.3. Minimum Forecast Cost. The obvious optimization approach is to run the

appliances at the minimum forecast cost, as provided by the local utility. When an appliance

i arrives at time ti−arr, this optimization method, denoted MFC, schedules the appliance to

run at the cheapest time over its duration, di, that satisfies ti−start ≤ ti−dead. Let Ci(t) be

the cost of running appliance i at time t, given by (33).

(33) Ci(t) =

∫ t+di

t

pic(t)dt

57



The forecast cost of running an appliance i at time t, if the current time is tcur, is then:

(34) Ci−fore(t) =

∫ t+di

t

picf (tcur, t)dt.

The goal of the myopic MFC algorithm is, for each appliance i, to set ti−sched to the time

that minimizes (34). Formally, MFC solves (35) for each appliance i.

(35) ti−sched = argmin
t

Ci−fore(t)

subject to

(36) tcur ≤ t ≤ min{τmax − di, ti−dead}.

4.3.4. Partially observable Markov Decision Process.

4.3.4.1. Overview. The POMDP optimization approach is adopted from [85] that is a

non-myopic receding horizon control method that balances the trade-off between immediate

knowledge and future performance (in this case, cost). By approaching the price of electric-

ity as a stochastic input using historical information, the conditional probability (posterior

probability distribution) of the future prices of electricity based on the current actual price

and the error from the utility forecast can be determined.

To balance the trade-off between immediate and future decisions, Q-value approximation

is used in the form of Bellman’s equation [86]. For each appliance currently ready to run,

the customer can take an action, ai, from the set of possible actions A (i.e., ai ∈ A). Let â

be the vector consisting of the actions of the individual appliances (henceforth known as the

action) to be determined by the HEMS, x be the current state, x′ be the next state (after

taking action â), R(x, â) be the immediate reward for taking action â in state x, and V ∗(x)

58



be the optimal cumulative reward value over the time-horizon given an initial state x. The

goal is to find the optimal action policy, π∗(x), that maps states to actions to maximize the

Q-value, Q(x, â), given by

(37) Q(x, â) = R(x, â) + E[V ∗(x′)|x, â].

π∗(x) is based on Bellman’s principle [86], and given by

(38) π∗(x) = argmax
â

Q(x, â).

The HEMS will take actions â = π∗(x) at each state x. A graphical overview of the POMDP

framework is given in Fig. 4.3, adapted from [85].

In formulating the HEMS problem as a POMDP, there are two types of output from the

home energy system: (a) the observables and (b) measurements of the unobservables. The

measurements of the unobservables are filtered to determine the posterior distribution of the

unobservables that, along with the observables, determine the belief state. At time t, let yt

represent the underlying state of the POMDP HEMS, Ψ̂t be a vector of random variables

describing the future prices of electricity, εt be the error between the utility forecast and cur-

rent price of electricity, and Ht be the set of appliances ready to start. The underlying state

is then yt = (c(t), Ψ̂t, εt, Ht), where Ψ̂t is unobservable. The measurement for future price,

Ψ̂t, is the utility forecast price, cf (t, τ), where |Ψ̂t[τ ]| = τmax. Given measurements cf (t, τ),

P
(
Ψ̂t|cf (t, τ)

)
can be determined using a filtering method. Here, particle filtering [87] —

a sequential Monte Carlo sampling method that maintains a set of representative samples

(particles) — is used to calculate the posterior distribution.
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The action set available for each appliance is to either run now or wait to run at a later

time, i.e., A = {run,wait}. At each decision event at time t, â must be determined where

|â| = |Ht| and each ai corresponds to appliance Ht[i], to maximize Q(x, â). This decision is

performed in the action selector of Fig. 4.3. The action selector is comprised of two parts:

the Q-value approximator and a search algorithm. To approximate the Q-value, Monte Carlo

sampling is used in conjunction with the particle filter and a rollout-based search algorithm.

4.3.4.2. Particle Filter. Two separate particle filters are used within the POMDP frame-

work to create two distinct POMDP HEMS algorithms. The first, denoted POMDP-Gauss,

keeps track of the mean and standard deviation of a Gaussian estimate of the error between

the forecast and actual RTP at each hour of the day. The second, denoted POMDP-GARCH,

keeps track of the parameters in an autoregressive (AR) process with a generalized autore-

gressive conditional heteroskedastic (GARCH) error process. Let the set of particles in the

filter be denoted K.

For the POMDP-Gauss particle filter, an estimate can be constructed of the error from

previous errors for each hour of the day. For each hour of the day h, there is an associated

error δh ∼ N (µh, σh), where N (µh, σh) is a normal distribution with mean µh and standard

deviation σh. To determine the initial mean and standard deviation, the sample mean and

standard deviation from the previous Nd errors is calculated. Assuming the simulation start

time t0 starts at hour 0, and h = t mod 24. At the current time t, given a measured

observation cf (t, τ), then each particle ρi ∈ K is defined by

(39) ρi = cf (t, τ) + δh.

Assuming each particle has the same weight, the particle samples are used to estimate the

conditional probability of the price c(t+ τ) given cf (t, τ).
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The second filter, POMDP-GARCH, an AR process with GARCH error is used to model

the error in RTP. The GARCH model has been used previously to estimate high variability

in power markets [88]. In an AR process, the current output depends on a linear combination

of prior values, plus some error term. At time t, let car(t) be the cost output of the AR

process, k be the AR constant, car(t − i) be the ith previous output, γi be the coefficient

corresponding to car(t− i), m be the number of modeled coefficients, and εt−ar be the error.

The AR process is given as

(40) car(t) = k +
m∑
i=1

(
γicar(t− i)

)
+ εt−ar.

The error in (40) is modeled as a GARCH process. The GARCH process is a specialized

AR process that has a conditional variance based on prior inputs. At time t, let σt be

the standard deviation and zt be a Gaussian random variable with mean 0 and standard

deviation of 1. The GARCH error process is given as

(41) εt−ar = σtzt.

The term σt is itself a linear combination of prior inputs, hence the conditional heteroskedas-

ticity of the GARCH process. At time t, let χ be the GARCH constant, σ2
t−i be the ith previ-

ous variance, φi be the coefficient corresponding to σ2
t−i, P be the number of GARCH terms

(i.e., prior variances), ε2t−j be the jth previous square-error, qj be the coefficient corresponding

to ε2t−j, and Q be the number of ARCH terms (i.e., prior square-errors). A GARCH(P,Q)

process is fully described by (41) and

(42) σ2
t = χ+

P∑
i=1

φiσ
2
t−i +

Q∑
j=1

qiε
2
t−j.
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The AR + GARCH process to be used in the POMDP-GARCH is obtained by substituting

(41) into (40), resulting as

(43) car(t) = k +
m∑
i=1

(
γicar(t− i)

)
+ σtzt.

At time t, the each particle ρi ∈ K of the particle filter corresponding to POMDP-GARCH

has its own list of the prior m AR outputs, P error variances, and Q square-errors. It uses

this to determine the conditional probability of the next τmax prices given cf (t, τ).

4.3.4.3. Action Selector. The action selector, shown as the red dotted box in Fig. 4.3,

consists of an estimate of the Q-value of taking a set of actions and an optimization algorithm

that maximizes this value. The Q-function maps an action at a belief state to the Q-value.

The HEMS problem is relatively unique in that an accurate cost of taking a given action

is known and that the actions may be evaluated independently for their cost, reducing the

search space at each belief state. Recall that (37) consists of the summation of the immediate

reward for taking an action, R(x, â), and the expected future reward, E[V ∗(x′)|x, â] (also

known as the expected reward-to-go). These map directly to the action set, A = {run,wait}.

Because each appliance action can be evaluated individually, the maximum number of

evaluations is reduced from |H|2 to 2|H|. At state x, there is an estimate of the price of

electricity through τmax, denoted c′(t), tcur ≤ t ≤ τmax. The cost of running appliance i at

time t using c′(t) is:

(44) C ′i(t) =

∫ t+di

t

pic
′(t)dt
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To map this state x to a Q-value given an action ai corresponding to appliance i,

(45) Qi(x, ai) =


−C ′i(tcur) ai = run

maxt−C ′i(t) t > tcur ai = wait

.

The costs of running the appliances are negated because the HEMS is a cost minimization

problem. The total Q-value determined from the Q-function is

(46) Q(x, â) =

|H|∑
i=1

Qi(x, â[i]).

Note that the Q-value in (46) captures the effect of the current action â on the future of the

system through (44). Recall from Bellman’s principle that the future effect represented by

the expected future reward depends on the optimal policy. Because the optimal policy is

unknown, the usual approach is to approximate the Q-value. To approximate the Q-value,

the method denoted policy rollout [85, 89] is used. In policy rollout, the optimal future

reward V ∗ is replaced in (37) with the future reward associated with a base policy Vπbase.

This gives the rollout-approximate Q-value

(47) Qπbase(x, â) = R(x, â) + E[Vπbase(x
′)|x, â].

This gives the rollout policy

(48) π(x) = argmax
â

Qπbase(x, â).

To compute the output of this policy, Monte Carlo sampling is used to estimate the expected

future reward, E[Vπbase(x
′)|x, â], which works well with the output of the particle filter, where

each particle represents a single sample of the unobservable state. For each appliance i, the
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action ai is determined at time tcur as

(49) ai = argmax
A

Qi(x, ai)

where C ′i,j(t) is the sample cost of appliance i in particle j, and

(50) Qi(x, ai) =


|K|−1

∑|K|
j=1−C ′i,j(tcur), ai = run

|K|−1
∑|K|

j=1 maxt−C ′i,j(t), ai = wait,

tcur ≤ t ≤ min{τmax − di, ti−dead}.

The complete POMDP HEMS controller is given in Fig. 4.4.

Figure 4.4. The POMDP-GARCH HEMS. The measurements of the unob-
servable state are provided by the utility-forecast cost. The GARCH process
combined with the particle filter provides an estimate of the actual RTP. Along
with the appliances ready-to-run, the output of the particle filter are used to
determine which action to take for each appliance. The GARCH block can
be replaced with the Gaussian-noise estimate to obtain the POMDP-Gauss
HEMS.
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4.3.5. Lower Bound. The lower bound (LB) can be calculated similarly to the MFC

and POMDP rollout method in the previous subsections. If absolute knowledge of the

system is assumed, i.e., the actual cost is known for each time interval of interest, then

optimal scheduling decisions can be made with regards to cost minimization. The LB is

obtained by scheduling each appliance i at the absolute minimum cost time given by

(51) ti−sched = argmin
t

Ci(t)

s.t.

(52) tcur ≤ t ≤ ti−dead.

Note the difference in the scheduling constraint between (36) and (52). The MFC can

only make decisions up to the forecast information provided by the utility where the LB

assumes perfect information of the RTP up to each appliance start-time deadline, providing

mathematical lower bound.

4.4. Simulation Setup

4.4.1. Overview. This section describes the models, input data, and simulation param-

eters used. The methods introduced up to this point can be used on any inputs for a HEMS,

including dynamic pricing markets. To generalize the above methods for time-varying loads,

pi can be replaced by pi(t) in (30), (33), (34), and (44).

4.4.2. Appliance Types. For simulation purposes, abstract appliance types are mod-

eled. Let Na be the number of appliance types. Each appliance type j has a power rating in

kW (pj) and a random variable modeling the duration in hours (φj). The reason that the

65



duration is stochastic is that, although appliance run times may be similar between uses, the

run time of an appliance usually has some variance. To generate pj and φj for each appliance

type, a Gaussian distribution and the coefficient-of-variation-based (CVB [34, 62]) method

are used, respectively. Let pj ∼ N (µp, σp), where µp and σp are the mean and standard

deviation, in kW, of the distribution of appliance power ratings. Let φj ∼ G(µj−t, θt) where

G(µj−t, θt) is a Gamma distribution with mean µj−t and coefficient-of-variation θt (where the

relationship to the shape is θ−2
t and the scale is µj−tθ

2
t ). µj−t is itself generated by a Gamma

distribution, G(µd, θd). The parameters Na, µp, σp, θt, µd, and θd are determined empirically,

and given in Appendix C.

4.4.3. Household Usage Pattern. Recall from (29) in Section 4.2.2 that theMt/G/∞

queue requires the desired load curve for the household, l(t), as an input. To obtain a time-

varying household load curve that accurately models the daily, weekly, and seasonal change

in energy usage, the ComEd system load is scaled to match the load of a single household.

Let lsys(t) be the ComEd system load at time t, obtained from [90]. Let f(l) be a function

that scales lsys(t) to l(t), where l(t) = f(lsys(t)). The function f(l) is comprised of two

parts: (a) normalizing the system load to [0, 1], and (b) upscaling the normalized load to

the desired l(t). Let Sscale(l) be the normalizing function for a given load l, given by

(53) Sscale(l) =
l −mint lsys(t)

maxt lsys(t)−mint lsys(t)
.

Let omin and omax be the minimum and maximum household usage, in kW, respectively. The

scaling function is then defined as f(l) = omin +Sscale(l)(omax− omin). Defining the previous

equation in terms of household load through time, l(t) = omin + Sscale(lsys(t))(omax − omin).
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To obtain specific appliance arrivals from the appliance types and the Mt/G/∞ queue,

at a given time t, the next appliance arrival, i, is sampled from a Poisson distribution with

rate λ(t) to obtain tnext. This gives appliance i an arrival time of ti−start = t + tnext. The

appliance type j corresponding the the arrived appliance i is selected randomly from the Na

types with equal probability. This sets pi = pj and di to a sample of φj. The start-time

deadline, ti−dead, is set by randomly sampling from the set of ti−start + {1h, 2h, 4h, 8h}. The

varying length of the deadlines represents the flexibility the customer may have with a given

appliance.

4.4.4. Minimum Cost Time. Many of the proposed optimization techniques require

scheduling an appliance to run at the minimum time. Because the price of electricity is

constant per hour and the load of an appliance is constant, the search space can be reduced

for determining the minimum cost time. If the run-time of an appliance is less than an hour,

it is trivial to calculate the minimum cost. Let dres be the residual duration of an appliance

greater than the highest hour (i.e., for an appliance running 2 hours 20 minutes, dres = 20

minutes). The scheduling times of interest are then tcur, each hour h, and dres before each

hour for each h less than the appliance start-time deadline. This reduces the number of

possible scheduling times from a continuous t to a small set of possible start-times.

4.4.5. Simulation Scenarios. For the simulation study, scenarios were chosen that

represent one month of electricity usage to obtain a monthly electricity bill. The actual and

forecast pricing data from ComEd [1] between 2007 and 2013 was used. The GARCH model

was trained on the errors in 2007, the parameters can be found in Appendix D. For the

POMDP-Gauss model, Nd = 60. Both particle filters used 1000 particles to estimate the

posterior distribution of unobservables.
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Three scenarios were chosen, each representing one month in the ComEd system. The

scenarios (A, B, and C) correspond to the minimum, median, and maximum months in the

input data in terms of root-mean-square (RMS) error between the forecast and actual price

and are summarized in Table 4.1. Each scenario was run for 50 trials. For a given scenario,

the actual and forecast RTP (from the ComEd data) and the scaled household load stay the

same. Between trials, appliance types and appliance arrivals differ.

Table 4.1. Simulation Scenarios

Name Month
RMS
Error
(cents)

Min.
Price

(cents/kWh)

Avg.
Price

(cents/kWh)

Max.
Price

(cents/kWh)

A Oct. 2009 0.72 -1.6 3.00 8.1
B Jan. 2011 1.46 -7.5 3.93 20.7
C June 2008 4.22 -21.1 5.94 48.7

4.5. Simulation Results

The different HEMS algorithms were evaluated against the three scenarios. Before con-

ducting the simulations, it is expected that the POMDP methods to improve over the myopic

MFC in situations where the forecast and actual price diverge (as in scenario C). Table 4.2

compares the average price of electricity paid by the customer during the scenario time peri-

ods between the different HEMS methods. The three intelligent HEMS methods are bounded

by the LB and status quo. The MFC performs slightly better than POMDP-GARCH in sce-

nario A, but slightly worse than POMDP-Gauss. The GARCH technique is well suited to

signals with high variance, leading to a slightly worse prediction in the non-variable scenario

A. The POMDP-Gauss method is able to take advantage of the delayed gratification over

the myopic MFC. In general, as the RMS-error of the RTP increases, the POMDP-GARCH
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(a)

(b)

(c)

Figure 4.5. A comparison of the monthly electricity bills for each optimiza-
tion method for scenarios A, B, and C, respectively. The violin plots show the
probability density of each cost. The dashed line corresponds to the median
cost and the dotted lines correspond to the quartiles.
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(a)

(b)

(c)

Figure 4.6. A comparison of the distance to the lower bound for scenarios
A, B, and C, respectively. The box plot shows the median, quartiles, and 10th
percentiles. The lines between the box plots connect individual trials.
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performs better relative to the other techniques. As the variance of the RTP signal increases,

the Gaussian assumption made by POMDP-Gauss begins to degrade performance. It is im-

portant to note that all methods, including the status quo, resulted in a lower per-kWh price

than the tariff-based ComEd pricing ( ∼7.5 cents/kWh).

Table 4.2. Average Price of Electricity (cents/kWh)

Name
Energy
(kWh)

LB
POMDP-
GARCH

POMDP-
Gauss

MFC imm

A 1037 2.56 2.82 2.74 2.77 3.10
B 1576 3.40 3.60 3.69 3.67 4.04
C 1524 4.27 5.18 5.26 5.22 7.14

The monthly electricity bills across scenario A, B, and C are presented in Figs. 4.5(a),

4.5(b), and 4.5(c), respectively. Each violin plot shows the probability distribution of obtain-

ing a specific monthly electricity bill (the wider the figure, the higher the probability). The

dashed line indicates the median cost and the dotted lines indicate the quartiles. The average

monthly electricity bill on the tariff-based rate is $77.78, $118.20, and $114.30 for scenarios

A, B, and C, respectively. As a customer, just opting-in to the RTP program with no change

in energy usage offers the potential for significant savings. By combining an RTP program

with a smart HEMS, the savings are improved. In general, the shapes of the distributions

and coefficient-of-variation between the methods within the same scenario are similar, in-

dicating a strong correlation between an individual trial and the monthly cost (within a

trial, the appliance arrival patterns are the same and the overall energy usage is the same).

This trial-cost correlation explains the large overlap between some of the distributions. The

relative performance of the methods to the lower bound are presented in Fig. 4.6 where each

box plot shows the median and quartiles, and the whiskers show the 10th percentile. The
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lines between the optimization methods connect the individual trials. In general, the relative

performance of a trial is similar between the methods (e.g., the median trial for one method

is close to the median trial for another).

Figure 4.7. (a) A 48-hour sample of the actual and forecast RTP. (b) Statis-
tical time-series of the household load compared between the immediate and
POMDP-GARCH methods.

The change in energy usage in the household between the status quo and the POMDP-

GARCH HEMS is presented in Fig. 4.7. Fig. 4.7(a) shows the difference between the actual

and forecast RTP for a 48-hour period in scenario C. The curves in Fig. 4.7(b) present the

HEMS response to the pricing signals. The cloud around the plot represents the statistical

differences between trials. A drastic change in electricity usage occurs when switching to
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a HEMS algorithm–the POMDP-GARCH in this case–from the status quo. The POMDP-

GARCH HEMS actively prevents using appliances during high-price times, but also predicts

low-price times, such as at t = 25 hours. It is interesting to note that the new peak is worse

than the old peak. This is not a problem for a single 5 kW household, but if many households

within a given area act in a similar way it may cause problems such as the rebound effect [15].

4.6. Conclusions

Reducing the peak demand of the electric power system provides benefits by reducing

the cost of electricity by lowering the number of expensive generators needed. By reducing

the peak, the capacity factor of dirty diesel-fired peaking generators can be reduced. Lastly,

as peak demand increases, the available transmission capacity will also need to increase.

By reducing the peak demand, building new transmission lines can be deferred; a costly,

long-term project. Utilities are offering real-time pricing programs, passing ISO prices to

customers, such as the ComEd residential real-time pricing program. Customers can take

advantage of this real-time pricing to drastically reduce their monthly electric bill.

The partially observable Markov decision process is a promising non-myopic method for

home energy management. On the high-end, the POMDP-GARCH HEMS resulted in a $30

cost savings over the status quo for June 2008. Even for more modest months, savings of

10% were shown. It should be noted that these large savings were obtained just using flexible

appliances. As more asset types with more capabilities, such as electric vehicles and HVAC,

are added, the savings can be expected to increase.
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CHAPTER 5

A Visualization Aid for Demand Response Studies in

the Smart Grid

5.1. Introduction

Each day, power systems engineers are inundated with information. As Smart Grid

technologies, such as smart meters and DR programs, evolve and become more widely im-

plemented, the amount of data available will increase drastically [92]. The abundance of data

and information available makes it difficult to assess the state of power systems in a fast

and user-friendly manner [93]. In the field of visualization, it is known that as the amount

of data increases, it becomes more difficult to sift through the data to find key information

and present it clearly [94]. By using proper information visualization techniques, it becomes

easier for humans to recognize patterns and analyze information [95]. These facts, in part,

led to the United States Department of Energy to recognize the importance of visualization

in power systems [96]. This chapter attempts to address these issues in the form of new

visualization techniques for DR programs.

The economic benefit of small reductions in peak load through DR programs is well under-

stood [37, 97]. One method of DR that is currently being researched is an aggregator-based

method that implements centralized control of many smaller-rated loads whose aggregation

enables a noticeable change on the load profile of the power system [48, 49, 34]. We use data

This work was performed jointly with the full list of co-authors available in [91]. This work was supported
by the National Science Foundation under grant numbers CNS-0905399 and CCF-1302693, and by the CSU
George T. Abell Endowment. The datasets, example Python and Matlab GIS graphing code, and color-
blind-friendly figures may be found at http://www.engr.colostate.edu/sgra/
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involving the DR action of over 65,000 aggregated small-rated appliances from [34] to design

new visualization techniques. The visualization techniques enable a better understanding of

the effectiveness of the aggregator-based DR method. The effect of DR programs are com-

monly shown as the difference in load curves [34, 45]. A standard representation of a DR

load curve is given in Figs. 5.1(a) and 5.2(a). We believe that this presentation of the data

has some limitations, leading to our objective to develop user-friendly visualization tools for

quantifying and comparing the effectiveness, the profitability, and the schedule for a given

set of solutions to a demand response problem both temporally and spatially.

In the past, work on power system visualization has focused on “quick-look” informa-

tion about the system in the form of graphic overlays on one-line diagrams. This includes

spatial contours for visualizing power system voltage data [93], contingency analysis data

[98], market power assessment [99], and power flows [100, 101]. Other research on spatial

visualizations of power systems has occured using geographic information systems (GIS). In

[102], the contours of real-time voltage magnitude and phase angle measurements, obtained

from phasor measurement units, were overlaid on top of the contiguous United States. A

neighborhood of photovoltaic (PV) arrays in Anatolia, California, and their real-time out-

put were graphically overlaid on the Google Earth geographic area of Anatolia in [103]. The

power-flow software PowerWorld allows the mapping of voltage contours and network flow

information onto maps and exporting this to Google Earth. As far as I am are aware, no

work has occurred to provide the same type of easy-to-understand information for DR pro-

grams. This makes it difficult to understand the large quantities of data created by DR

programs to determine the effectiveness of the response. With regard to policymakers and

other non-technical entities, it becomes more difficult to clearly explain the benefits of DR

programs. In that regard, three new visualization techniques have been designed that, at a
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glance, can provide more information about a set of DR solutions to both system operators

and non-technical entities. The first two new techniques provide another temporal dimension

of information without obfuscating the graph. The third technique adds a spatial component

using GIS in addition to the temporal dimension.

The following contributions are made in this chapter:

(a) The design and description of two new temporal visualization techniques for a given

set of solutions to a demand response problem that answer the following:

(i) Did the demand response plan work effectively?

(ii) When did the demand response entity (aggregator in this work) make a profit

or loss?

(iii) How does the difference between the forecast and actual price of the spot market

affect the profit margin of the demand response entity?

(b) The creation of a spatial visualization of demand response using GIS that answers

where in the distribution system did the demand response plan affect load.

(c) A discussion of how the visualization methods can be used to analyze the effective-

ness of demand response optimization techniques.

The remainder of the chapter is organized as follows. The system model and associated

data are provided in Section 5.2. In Section 5.3, the visualization techniques are described

and analyzed. Concluding remarks are discussed in Section 5.4.

5.2. System Model

According to [47], by increasing DR technologies and directly allowing retail customers

to access the wholesale market, the price elasticity of demand may increase, leading to an

increased level of volatility in power systems. An aggregator, which is an intermediary entity
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that offers the coordination of many entities centrally [48, 34], is an alternative to uncon-

trolled DR [34]. This chapter uses the same system model as Chapter 3 and is summarized

below.

The work in Chapter 3 directly addresses the concerns of the CEC where the aggregator

is presented as a for-profit entity that coordinates the schedule of a set of smart appliances

belonging to a set of customers and brings the aggregated DR to the market. To encourage

customer participation with the aggregator and to offset the inconvenience of a rescheduled

appliance, a customer incentive pricing structure was proposed. The customer incentive

price is a time-variant electricity rate structure that offers the customer a competitive rate

of electricity, as determined by the aggregator, for those appliances they allow to be resched-

uled as part of the DR action. If the rate is not worth the inconvenience of rescheduling

the appliance, the customer is allowed to refuse the aggregator and instead pay the utility

company real-time price for electricity (i.e., the status quo) at each time interval for each

appliance in the DR. The aggregator-based residential DR program, denoted as Smart Grid

Resource Allocation in [34], is formulated as an optimization problem where the objective

function is to maximize the aggregator profit. The decisions the aggregator can make in order

to maximize profit are the customer incentive pricing and the smart appliance schedule.

Recall from Chapter 3 thatN is the income received by the aggregator for selling negative

load to the spot market at the times the smart appliances were rescheduled from, S is the

income received by the aggregator for selling electricity to the customer at the customer

incentive price at the times the smart appliances were scheduled to, and B is the cost paid by

the aggregator for buying electricity from the spot market at the times the smart appliances
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(a) (b)

Figure 5.1. (a) Load curves of the schedulable load before and after the DR
action in the system in the constrained case. A significant portion of the peak
load is moved to off-peak hours in a valley-filling manner. This is a common
way to present DR results. (b) A heat map showing the temporal source and
destination of the schedulable load in the constrained case. The color of a
given point at position (x, y) indicates the load moved from time x to time y,
as represented by the accompanying color bar. The white box diagonal, i.e.,
x = y, indicates the amount of load that was not rescheduled. If you sum
all loads at a given x-value across all y in (b), the total load will equal the
load at the same x-value on the blue dotted line in (a). Similarly, the sum of
load across all x will equal the green solid line. To highlight the fact that the
magnitude of the load that is not moved from time 5-9 is much greater than
the typical amount of load moved from any other time x to time y in (b), it is
shown in greater detail.

were scheduled to. The aggregator profit, denoted as P , is given by Eqs. 19 and 54.

(54) P = N + S −B

The optimization was implemented in the form of a genetic algorithm in Chapter 3 [34]

based on a heuristic framework presented in Chapter 2 [7]. The simulation from Chapter

3 used a probabilistic method adapted from [46] (summarized in Appendix A) to generate

56,642 total smart appliances, amongst 5,555 customers, to be scheduled. The visualization

methods presented in this paper use the data from the results of the genetic algorithm
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optimization of these smart appliances and customer incentive pricing [34]. For comparison,

there are two sets of data: one that is constrained on where loads can be rescheduled to and

one that is unconstrained.

To map customers to a spatial location on the distribution network, the Roy Billinton Test

System (RBTS) [104] is used. The RBTS is a standard six-bus test system with accurately

modeled distribution assets that is commonly used for distribution network modeling and

simulation [46, 105, 106]. For simulation purposes, RBTS Bus 5 is modeled, containing 26

loadpoints along four feeders for the 5,555 customers. The customers are probabilistically

assigned to the loadpoints according to the probabilities in Table E.1 in Appendix E. The

probabilities were calculated by normalizing the number of customers on each load point

to the total number of customers provided in [104]. The nodes in the bus were mapped

onto Fort Collins, Colorado, using the power line lengths described in the RBTS (the node

coordinates are described in Table E.1). The DR from Chapter 3 was overlaid onto the

loadpoints using the same 15-minute intervals over a period of 24-hours, creating a unique

spatio-temporal DR visualization.

5.3. Demand Response Visualization

Demand response actions are usually shown as load data in two dimensions as a load

curve, shown in Figs. 5.1(a) and 5.2(a). Although this provides a glimpse at the aggregate

load before and after the DR action, there is information missing about what loads were

scheduled when, how much profit was made, the spatial coordination of DR, etc. To overcome

the deficiency of this missing information, three additional graph types are proposed that

have one or more extra dimensions of information. The first is a heat map representation

where the (x, y) coordinates indicate the magnitude of the event where smart appliances
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(a) (b)

Figure 5.2. (a) Load curves of the schedulable load before and after the DR
action in the system in the unconstrained case. (b) A heat map showing the
temporal source and destination of the unconstrained schedulable load. To
highlight the fact that the magnitude of the load that is not moved from time
5-9 is much greater than the typical amount of load moved from any other
time x to time y in (b), it is shown in greater detail.

were rescheduled from time x to time y. The heat map representations can be seen in

Figs. 5.1(b), 5.2(b), 5.3, and 5.5. The second type of graph is a three-dimensional (3D)

representation where the coordinate (x, y, z) indicates the magnitude z of the DR event

where smart appliances were rescheduled from time x to time y, shown in Fig. 5.4. The

last type of graph represents the DR spatially using GIS, as shown in Fig. 5.7. The heat

maps and 3D load curves were created using the Matplotlib library in Python, with the 3D

graphs using the Mplot3d variant. Figures using color-blind-friendly color palettes were also

created, although omitted due to space constraints. The GIS figures were created using the

Keyhole Markup Language (KML) toolbox in MATLAB to generate overlays for Google

Earth.

Fig. 5.1(b) contains the same information as Fig. 5.1(a), but it adds a new dimension

of data using color as magnitude. Both figures are for the case where the smart appliances
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have a constraint on what times they can be scheduled to in the DR action. The color at

the (x, y) coordinate in Fig. 5.1(b) indicates the magnitude of the load moved from time x

to time y. The white squares around the diagonal, i.e., x = y, correspond to the amount of

load that was not rescheduled. In the case when x > y, i.e., below the diagonal, the load was

scheduled for a time earlier than originally scheduled. Conversely, a value of x < y indicates

the load was scheduled for a later time. At a given original scheduled time of x, the larger

the value of |y − x|, the further away the load was scheduled via the DR action. Most of the

scheduling activity occurs around the peak times, which can be seen in the total schedulable

load in Fig. 5.1(a), around 8:00 and 17:00. This is because there is a greater amount of

load to be scheduled at those times. Because of the constraint on scheduling times, however,

the distance from the original scheduled time is limited, leading to the smaller, but still

noticeable, peak observed in Fig. 5.1(a) after the DR action. If you sum all loads at a given

x-value across all y in Fig. 5.1(b), the total load will equal the load at the same x-value on

the blue dotted line in Fig. 5.1(a). Similarly, the sum of load across all x will equal the green

solid line. To highlight the fact that the magnitude of the load that is not moved from time

5-9 is much greater than the typical amount of load moved from any other time x to time y

in Fig. 5.1(b), it is shown in greater detail.

Fig. 5.2 is similar to Fig. 5.1, except it relaxes the constraint on times to which the

smart appliances can be rescheduled. This case is used as a comparison of constrained

versus unconstrained scheduling. The total electric energy consumed in each heat map is

the same (no load shedding), however the relaxation of the constraint on scheduling times

leads to a stark difference in the distribution of the load. Fig. 5.2(a) shows that the first

peak actually increases the amount of energy consumed. This occurs because in the case

that was studied, the spot market and real-time price were lowest during the first peak.
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(a) (b)

Figure 5.3. Heat maps showing only the load that was moved (so the diag-
onal, by definition, is zero) for (a) the constrained DR in Fig. 5.1(b); and (b)
the unconstrained DR in Fig. 5.2(b). In general, the magnitudes of points in
(b) are lower than the corresponding points in (a), as indicated by the labels
on each color bar.

This may seem counter-intuitive because of the large load at that time, but recall that this

is for residential households only and does not take into account commercial and industrial

loads. This would most likely change in a residential-heavy distribution area such as that

run by ERCOT in Texas where residential loads during summer account for approximately

50% of the total load [68]. To better represent the difference between the load curves in the

constrained and unconstrained case in Fig. 5.1(b) and Fig. 5.2(b), respectively, only the load

that was moved is plotted in Fig. 5.3. The load moved from the second peak is much larger

in the unconstrained case and is spread throughout the day. Because of the spreading effect

obtained by relaxing the constraint, the magnitude at each data point is lower in Fig. 5.3(b)

than in the constrained case in Fig. 5.3(a) (as indicated by the different scales on the color

bars).

The same information in Figs. 5.3(a) and 5.3(b) can be found in Figs. 5.4(a) and 5.4(b),

respectively, but with a third dimension. Any point on the surface (x, y, z) gives the load
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Figure 5.4. The 3D load graph shows the temporal displacement of the
schedulable loads in both the (a) constrained and (b) unconstrained cases.
Any point on the surface (x, y, z) gives the load z, in MW, displaced from time
x to time y. Graphs (a) and (b) show the same information as Figs. 5.3(a)
and 5.3(b), respectively, but with an extra dimension. The colors directly
correspond to those in Fig. 5.3(a).

z, in MW, displaced from time x to time y. By using the z-axis in addition to color, this

presentation of data is better for determining the disparity in magnitude of the schedule at

a glance. The color information directly correlates to the heat map in Fig. 5.3(a). In this

presentation, the difference in magnitude between the constrained and unconstrained cases

is more apparent than in Fig. 5.3. By relaxing the constraint on what times smart appliances

can be scheduled to, there is near uniformity along the scheduled to axis around time 20 in

Fig. 5.4(b), indicating the magnitude of the appliance loads are near-uniform throughout

the day. Because of the magnitude of the load not moved, for presentation purposes, the z

values of the four datapoints closest to each x = y datapoint are averaged to create a smooth

graph.

The graphs in Fig. 5.5 are similar to those in Fig. 5.3, but instead of showing load

information they show profit information for the constrained case. The color at a point

(x, y) in Figs. 5.5(a) and 5.5(b) show the profit, in USD, from the smart appliances with
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start times rescheduled from time x to time y. The white dotted diagonal line show the

times when x = y. There is no profit made at these times because the smart appliances

were not rescheduled, therefore there is no income or cost associated. Fig. 5.5(a) shows

the profit when calculated using the forecast for both the spot market and real-time price

information. The former is obtained from the bulk electricity spot market and the latter is a

dynamic pricing scheme from the local distribution company. In this work, actual dynamic

pricing and spot market pricing data was used from Saturday July 9, 2011 [1, 2]. This is the

data that the aggregator would use for optimization in the day-ahead scheduler. Fig. 5.5(b)

shows the profit when the appliance schedule and customer incentive price are evaluated

using the actual spot market price. The background color (i.e., when the magnitude is equal

to zero) in Figs. 5.5(a) and 5.5(b) is lighter than in Figs. 5.3(a) and 5.3(b) because the

color scale contains negative values (i.e., a loss is experienced). Because it can be difficult

to pick out the differences between Figs. 5.5(a) and 5.5(b), Fig. 5.5(c) shows the difference

between the actual profit and forecast profit. The color at point (x, y) shows the difference in

the aggregator profit between using the actual and forecast spot market pricing information

from the smart appliances rescheduled from time x to time y. The black dotted diagonal

line shows the times when x = y. The red areas show the rescheduling events where the

aggregator made more profit than forecast while the blue areas show those events where less

profit was received than expected.

Additional insight into Fig. 5.5(c) is provided by Fig. 5.6, which shows the difference in

the spot market price between the actual and forecast values. The red areas in Fig. 5.5(c) are

vertically skewed around 16:00, i.e., they correlate to smart appliances scheduled from 16:00

to any other time during the day. As shown in Fig. 5.6, this time directly relates to a large

increase in the actual spot market price compared to the forecast price. Because these loads
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Figure 5.5. Heat map of times that the aggregator made a profit in the
constrained case. Graph (a) gives the aggregator day-ahead forecast profit
when using forecast price information. In graph (b), the actual aggregator
profit is shown by replacing the forecast information with the actual pricing.
To emphasize the contrast between graphs (a) and (b), graph (c) shows the
difference between the actual profit and the forecast profit (i.e., actual minus
forecast). The color at position (x, y) on the heat map in graphs (a) and (b)
gives the profit made, in USD, from moving the loads from time x to time y.
The color in graph (c) gives the difference in profit between using the actual
and forecast pricing information, in USD, from moving the loads from time
x to time y. The red areas in (c) indicate where the aggregator made more
profit than forecast, while the blue areas indicate less profit. The white dotted
diagonal line in graphs (a) and (b), as well as the black dotted diagonal line
in graph (c), show where x = y.

are moved from these times, they are part of the N term in (54), leading to an increased

income from selling these smart appliances as negative loads as part of the DR. Conversely,

the blue areas in Fig. 5.5(c) are horizontally skewed around times 16:00 and vertically skewed

around 6:00. The horizontally skewed decrease in profit is due to electricity purchased at a

higher spot market price, leading to increased cost from the B term. The vertically skewed

profit decrease at time 6 occurs because of a reduction in spot market price, leading to a

decreased profit from selling the negative load represented by the N term. The densest areas

of blue are below the diagonal line, indicating that the smart appliances resulting in this loss

were scheduled earlier in the day.
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Figure 5.6. The price difference between the actual and forecast spot market
prices [2] is given as the solid bold green line. The solid red horizontal line
indicates no difference. If the difference curves are positive, i.e., above the
red line, the price of electricity is more than forecast. If negative, the price of
electricity is less than forecast.

The plots in Fig. 5.7 show the spatial variation of the DR using GIS overlays. Four

figures are displayed to represent the entire 24-hour period, but a time-varying movie can

be found with the code at the SGRA website1. The top two figures show the entire RBTS

bus and the bottom two figures zoom in on an area of interest. The left two figures show an

off-peak time (10:00-10:15) and the right two figures show a peak time (16:45-17:00). The

red lines show the branches between the nodes of the RBTS bus, with the white and black

numbers describing the node numbers (GIS coordinates for the nodes are described in E).

The nodes that have the side-by-side bar graphs are the customer loadpoints with the yellow

bar on the left representing the load before the DR action and the blue-green bar on the

right representing the load after the DR action. A scale and compass rose are presented

in the bottom-left and top-right corners, respectively, to provide orientation. As shown in

Fig. 5.7(d), the DR action is non-uniform in space. Comparing Fig. 5.7(c) to Fig. 5.7(d), the

DR action is also non-uniform in time (also shown in the heat maps and 3D load graphs).

1http://www.engr.colostate.edu/sgra/
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Without properly mapping the DR information onto a spatial system, such as GIS, these

unique spatio-temporal characteristics are lost.

In addition to providing more information to the system operator, these new visualization

methods also can help understand how the optimization technique, in this case the genetic

algorithm [34], is performing. By examining the load graph in Figs. 5.1(a) and 5.2(a),

one only gets the aggregate information about the load and DR action. The optimization

technique, however, makes decisions on individual loads, each with their own initial schedule

and constraints. The heat map and 3D graphs help show at a finer grain of detail the

decisions being made by the genetic algorithm and their impact on schedules and profits,

while the GIS graphs show the spatio-temporal characteristics of the decisions.

5.4. Conclusions

Three visualization methods (heat maps, 3D load graphs, and GIS) were adapted for a

given set of solutions to a demand response problem. Using these visualization methods, it

becomes possible to answer: whether or not the demand response plan worked effectively;

at what times the demand response resulted in a profit or a loss; how multiple demand

response solutions compare; and where in the distribution system the demand response

actions occurred. This allows greater insight into the effectiveness and profitability of the

demand response programs and the effect of optimizing for the forecast price and data. The

three visualization methods were examined in depth, describing what is being shown and

the usefulness of each method. The figures shown here are not exhaustive and represent a

subset of the visualization capabilities of the heat map, 3D load graph, and GIS techniques.
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CHAPTER 6

Bus.py: A GridLAB-D Communication Interface

for Smart Distribution Grid Simulations

6.1. Introduction

In Title XIII of the Energy Independence and Security Act of 2007, the U.S. Congress set

forth the tenets of modernizing the electricity grid through the Smart Grid initiative [108].

Some of these tenets include the deployment, development, and integration of distributed

energy resources, “smart” technologies and appliances, and advanced storage devices. The

integration of these technologies requires new modeling and simulation tools, but it is difficult

for a single tool to model all power systems domains in adequate detail. This leads to the

use of co-simulation tools where multiple individual tools, each modeling a single domain in

detail, interact while running simultaneously [15].

This work introduces Bus.py (pronounced bus-dot-pie), an abstract software transmission

bus interface that facilitates the co-simulation of tools, e.g., customer home energy manage-

ment systems and the distribution feeder. One such simulation tool is GridLAB-D: a flexible

distribution system simulator that allows fine-grain modeling of distribution assets from the

substation transformer down to the individual household [109]. This fine-grained modeling

of the distribution system makes it an ideal tool to perform Smart Grid technology studies at

This work was performed jointly with the full list of co-authors available in [107]. This work was supported
by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable
Energy Laboratory. See Bus.py project updates at http://www.engr.colostate.edu/sgra/.
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the distribution level. Bus.py leverages the fine-grained modeling and inter-process commu-

nication of GridLAB-D to enable a myriad of future-grid scenarios. To demonstrate Bus.py’s

effectiveness for performing co-simulation studies, two illustrative examples are presented.

In the last few years, there has been relevant related work in the area of electric power

grid co-simulation tools, specifically GridLAB-D. GridMat is a Matlab-GridLAB-D interface

for residential controllers for use in a residential microgrid [110]. GridMat includes a similar

GridLAB-D control interface for residential control only. In addition to residential control,

Bus.py enables additional use cases, such as transmission-distribution integration through

the use of high-performance computing. In [111], another Matlab-GridLAB-D co-simulation

framework was introduced. This work differs in that Bus.py offers dynamic interaction with

GridLAB-D while [111] performs all optimization offline to be used as a static GridLAB-D

simulation. GridSpice [112] is a GridLAB-D cloud infrastructure that enables the deployment

of many GridLAB-D instances to the Amazon cloud for the purpose of transmission-level

power analysis with MATPOWER [3]. In contrast, Bus.py allows the dynamic simulation

of multiple grid use-cases without relying on a cloud infrastructure, but can be enabled by

many computing platforms (e.g., personal computer, high-performance computing). In this

work, the following unique contributions are made.

(a) The design of Bus.py, a software transmission bus interface for use in Smart Grid

co-simulation studies,

(b) the creation of a flexible communication interface with the distribution simulator

GridLAB-D,

(c) a discussion of the usefulness of the interface, and

(d) a demonstration of Bus.py interacting with GridLAB-D simulating a small set of

customers on a distribution feeder and an aggregator entity.
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The rest of this chapter is organized as follows. Section 6.2 describes the Bus.py interface.

The usefulness of Bus.py is presented in Section 6.3 by illustrating how one can simulate

the control of multiple residential households with a residential aggregator using Bus.py and

GridLAB-D. Concluding remarks are given in Section 6.4.

6.2. Bus.py

6.2.1. Overview. The name Bus.py derives from the fact that its purpose is to emu-

late a transmission-level bus. To accomplish this goal, an abstract interface is provided in

Python that includes inter-process communication to the distribution simulator GridLAB-

D. To facilitate interactive simulation, GridLAB-D currently provides an HTTP server for

inter-process communication. Other provided implementations of the Bus.py interface are

a constant load bus, time-series load bus, and resistance-based load bus (where a Thévenin

equivalent resistance is used in conjunction with Ohm’s law to determine the load at a bus).

This chapter focuses on the implementation of the Bus.py interface with GridLAB-D, de-

scribed in the following subsection. A few interesting co-simulation use cases, made possible

with Bus.py, are given in Subsection 6.2.3.

6.2.2. Interface. The principle of Bus.py is a flexible, easy-to-use interface to enable

the co-simulation of electric power system tools. Pseudocode that describes the operation of

Bus.py with a generic co-simulator (e.g., microgrid controller, HEMS controller) is presented

in Fig. 6.1. Bus.py has four main functions: load bus, start bus, transaction, and stop bus

(given as lines 1, 3, 6, and 9 in Fig. 6.1, respectively), each described in detail below.

The load bus function reads from a bus input file all relevant parameters for Bus.py

to be used during the co-simulation process. The input file will specify which type of bus

will be modeled (e.g., a GridLAB-D bus), simulation time information (i.e., start time, stop
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1: Bus = load bus(input file)
2: cosimulator.initialize()
3: Bus.start bus()
4: repeat
5: bus inputs = cosimulator.optimize()
6: bus outputs = Bus.transaction(bus inputs)
7: cosimulator.process(bus outputs)
8: until Bus.finished
9: Bus.stop bus()

10: cosimulator.postprocess()

Figure 6.1. Bus.py pseudocode with an abstract co-simulator process.

time, and timestep), and any other relevant parameters for that bus type. The input file

is specified using the JavaScript Object Notation (JSON), an easy-to-read set of key-value

pair strings. Load bus will return a Bus object to be used for the co-simulation.

Once a Bus object is loaded and the co-simulator is initialized, start bus will start the

bus co-simulation environment. In the case of a GridLAB-D bus, this will start a GridLAB-

D simulator process and start its HTTP server for inter-process communication with the

Bus.py interface.

After the co-simulation environment is started with start bus, the main simulation loop

begins (lines 4–8 in Fig. 6.1). Each iteration of the loop represents one timestep in the

simulation. The basic order of operation at timestep t is: (1) obtain the inputs to the Bus

for timestep t from the co-simulator, (2) perform a transaction with Bus, and (3) process

the outputs of Bus using the co-simulator. The transaction function passes the inputs to

the Bus, steps time forward, and returns the specified outputs. For GridLAB-D, this will

(1) send key-value pairs (e.g., customer1.load=10 kW) to GridLAB-D using HTTP, (2) step

GridLAB-D forward one simulation timestep, and (3) request and return the GridLAB-D

simulated output (e.g., substation power). The single transaction function simplifies the

communication with GridLAB-D to present a powerful co-simulation tool.
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After the stop time of the simulation is reached (line 8 in Fig. 6.1), the simulation loop

will end. The stop bus function will stop any associated processes/files used by the Bus

object (e.g., stop the GridLAB-D process in the case of a GridLAB-D Bus). Once the main

simulation loop ends and Bus is stopped, it may be useful to perform post-processing with

the co-simulator, such as visualization of the time-series output.

6.2.3. Use Cases. The following subsection will describe a non-exhaustive list of pos-

sible use cases for Bus.py-enabled co-simulation. The first use case is the co-simulation of a

transmission-level simulator, such as MATPOWER [3], and a Bus instance at each bus in

the transmission system. This interaction is depicted in Fig. 6.2. The physical simulation of

the bulk power system and distribution systems have traditionally been modeled as separate

with simplified representations of their interaction in each individual simulation. As more

Smart Grid technologies (e.g., demand response technologies, distributed energy resources)

are implemented in the distribution system, these separate simulations may no longer be ad-

equate, such as in the case with bi-directional power flow resulting from a high penetration

of distributed photovoltaic generation [113]. Bus.py enables bi-directional power flow studies

resulting from increased distributed energy resources.

A second use case is presented in Fig. 6.3. In this use case, many customer HEMS are

optimizing and interacting on a single distribution feeder, modeled by GridLAB-D. Because

each house is located at a separate physical location on the distribution feeder, each will

have slightly different physical interactions with said distribution feeder (e.g., different volt-

age levels, different phases). Increasing the number of integrated Smart Grid technologies

and allowing retail customers direct access to market prices may increase the price-elasticity

of demand, leading to an increased volatility in power systems [47]. If many HEMS are sim-

ulated individually (i.e., without modeling the effect of the distribution grid), this volatility
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Figure 6.2. Bus.py interfacing a bulk power simulator, such as MAT-
POWER [3], and many Bus instances (e.g., GridLAB-D, time-series). This
scenario could be used to integrate transmission and distribution system sim-
ulators.

Figure 6.3. Bus.py interfacing a GridLAB-D feeder with many customer
home energy management systems (HEMS). This scenario could be used to
determine the effect of many HEMS on a distribution system.

may not be properly modeled. Bus.py allows the study of the physical responses on dis-

tribution feeders from a multitude of customer HEMS and other Smart Grid technologies.

Additionally, because the distribution system properties (e.g., voltage, retail prices in a real-

time pricing environment) change through time, a static simulation of customer HEMS is

not sufficient. Bus.py facilitates the dynamic co-simulation of Smart Grid technologies and

their respective distribution feeder.
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This list of use cases is not exhaustive but is meant to illustrate the usefulness of the

Bus.py interface to enable the co-simulation of tools. Additional use cases could include

market (with a bulk power market simulator such as FESTIV [114]) and communication

(with a communication simulator such as ns-3 [115]) co-simulations.

6.3. Residential Aggregator Demand Response

6.3.1. System Model. To demonstrate the usefulness of the Bus.py interface, two il-

lustrative co-simulation examples are presented. The first is a common load shifting problem

to reduce the peak system load, presented in Subsection 6.3.3. The second example quan-

tifies the effect of time-of-use (ToU) pricing on the system load profile, presented in Sub-

section 6.3.4. In both examples, an aggregator-based residential demand response is used

(different from the one described in Chapter 3), described in detail below and presented in

Fig. 6.4.

On a given distribution feeder, N customer households are modeled. Each household i

has a set of ni loads (e.g., smart appliances) that are made available to an aggregator for

rescheduling. For each load j of customer i, the aggregator is assumed to know:

• pij – the average load, in kW,

• δij – the duration of the load’s operation,

• Aij,min – the start of the customer-defined rescheduling window, and

• Aij,max – the end of the customer-defined rescheduling window.

The time period from Aij,min to Aij,max is a customer-defined rescheduling window that is

used to take into account customer comfort [65]. The aggregator-based residential demand

response is set up as an optimization problem. For each customer load, the aggregator must

find the rescheduled time, Tij , subject to Aij,min ≤ Tij < Aij,max, that optimizes an objective
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function (described in Subsections 6.3.3 and 6.3.4). To perform the optimization, a genetic

algorithm is used, described in the following subsection.

The simulation is set up for a 24-hour period with a time step, ∆t, of 15-minutes (i.e.,

96 simulation periods) occurring on June 1, 2012. For the GridLAB-D inputs, 206 houses

were placed on a Pacific Northwest National Laboratory taxonomy feeder (using the method

from [116]) representing a lightly populated rural area (R4-25.00-1) [117]. Weather data for

Charlotte, North Carolina, was used to match the location of the taxonomy feeder in the

non-coastal southeast United States. Each customer has between one and four schedulable

loads leading to a total of 543 loads. Let N (µ, σ) represent a normal distribution with mean

µ and standard deviation σ. Each load has the duration and power generated randomly from

N (4, 2) and N (0.8, 0.2), respectively. A baseline load is determined by randomly assigning

each load to start at one of the 96 simulation periods. The duration of the customer-defined

rescheduling window is randomly generated around this baseline time for each load from

N (16, 4). Note that these values are used for simulation purposes only and do not have any

bearing on the usefulness of the Bus.py interface.

6.3.2. Heuristic Approach. In this example, a Genitor [33] version of genetic algo-

rithm (GA) implemented in Python was used to perform the aggregator optimization in

conjunction with Bus.py. The GA is a global search heuristic that has been shown to work

well in many optimization problems in power systems, such as economic dispatch [16] and

unit commitment [18]. A gene within the chromosome represents an individual schedu-

lable load. Let sij be a real value in the interval [0, 1] representing the Tij. To obtain

the time interval that each load was scheduled, the following equation was used: Tij =

Aij,min + sij (Aij,max − Aij,min). The [0, 1] representation of sij was used to avoid violating

the customer-defined rescheduling window constraint of the loads [34].
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Figure 6.4. The proposed aggregator system model. At each 15-minute time
step, the aggregator determines the total schedulable load at each customer
household and passes the information of the loads to GridLAB-D through the
Bus.py interface. The aggregator then requests the substation apparent power
following the scheduling of the loads to verify and quantify the change in load.

The Genitor is a steady-state algorithm that maintains a ranked list of chromosomes,

leading to implicit elitism, i.e., between generations, the best solutions are kept. In each

generation, two parents are selected using the linear bias function (as defined in [33]) for

crossover. The linear bias selection function requires a linear bias parameter that is a real

value in the interval (1, 2]. A linear bias parameter of 1.5 means the best-ranked solution

has a 50% greater chance of being selected than the median solution. A two-point crossover

method is used. The mutation operator on a gene will randomly generate a new sij between

[0, 1]. In this simulation study, the genetic algorithm runs for 10,000 iterations using 50

chromosomes with a probability of mutation of 0.05 and a linear bias of 1.5. Note that these

values are used for simulation purposes only and do not have any bearing on the usefulness

of the Bus.py interface.

6.3.3. Peak Load Minimization. The first illustrative example involves peak load

minimization through load shifting using Bus.py as in Fig. 6.4. Load or demand shifting is
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a well-known demand response technique [118, 119]. Let κt be the known fixed load of the

distribution system at time t in kW (i.e., the unschedulable load). The peak load version of

the aggregator-based residential demand response problem is defined as: find Tij∀i, j, subject

to Aij,min ≤ Tij < Aij,max, to minimize:

(55) max
t=1...96

κt +
N∑
i=1

ni∑
j=1


pij Tij ≤ t < (Tij + δij)

0 else

.

The resulting substation apparent power throughout the simulation period is presented in

Fig. 6.5. Because the optimization was peak reduction, the peak load between 3:00 to 6:00

pm is shown in more detail in the inset in Fig. 6.5. The solid blue line represents the

baseline load of the system (i.e., the system load in the absence of the aggregator demand

response). The dashed green line represents the substation apparent power, in kVA, after

the aggregator-based residential demand response was performed. The peak system power at

5:15 pm was reduced by 19.2 kVA, the total schedulable load available for demand response

at that time. This corresponds to a 2.5% decrease in peak system load, which aligns with

the Federal Energy Regulatory Commission (FERC) expectations for demand response in

the residential sector [120].

6.3.4. Customer Cost Minimization. The second illustrative example involves total

customer cost minimization of the schedulable demand response loads (i.e., smart appliances

in this work) in a ToU market using Bus.py as in Fig. 6.4. The effect of ToU on load profiles is

a common optimization problem [121]. Let ct be the cost of electricity at time t in $/kW∆t

(where ∆t was 15-minutes). Because the distribution feeder modeled is using inputs for

North Carolina, the ToU pricing from Duke Energy in North Carolina was used [122]. Note

that only the energy charge was considered. Modeling the monthly demand charge would
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Figure 6.5. The comparison of the substation apparent power, in kVA, be-
tween the baseline (solid blue line) and aggregator demand response (dashed
green line) cases resulting from peak minimization. Because the optimization
was peak minimization, the peak of the system is shown in more detail in the
inset.

require a longer simulation period, which is possible using Bus.py but not shown here for

brevity. The energy cost minimization version of the aggregator-based residential demand

response problem is defined as: find Tij∀i, j, subject to Aij,min ≤ Tij < Aij,max, to minimize:

(56)
96∑
t=1

ct

N∑
i=1

ni∑
j=1


pij Tij ≤ t < (Tij + δij)

0 else

.

The resulting load of only the schedulable loads, which represents 450 kWh of the distribution

feeder, throughout the simulation period is presented in Fig. 6.6. The solid blue line repre-

sents the baseline schedulable loads of the customers. The dashed green line represents the

customer schedulable loads, in kW, after the aggregator-based residential demand response

was performed while optimizing for the minimization of customer energy cost. The solid

black curve shows the ToU pricing used in the optimization, with the corresponding y-axis

values on the right, in cents/kWh.
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Figure 6.6. The comparison between the load, in kW, of the customer
schedulable loads made available to the aggregator between the baseline (solid
blue line) and aggregator demand response (dashed green line) cases resulting
from customer cost minimization. The time-of-use pricing used is given as the
solid black curve.

During the ToU peak-pricing period, from 1:00 to 7:00 pm, the total schedulable loads

of all the customers pushed off-peak and resulted in a reduction from 123 kWh to 52 kWh.

This makes sense because the only way to reduce customer cost in the ToU pricing scheme is

to move load from on-peak to off-peak. The reason that all schedulable load was not moved

off-peak is because of the customer-defined rescheduling window, from Aij,min to Aij,max. It

is interesting to note the resulting rebound effect—the change in the consumption pattern

of electricity from the changing cost of electricity [123]—that occurs on either side of the

transition from off-peak to on-peak pricing at 1:00 pm and at 7:00 pm. In our problem, the

total energy remains the same because the loads are just shifted, but if thermal loads were

considered sometimes more or less total energy is consumed because of this effect [124].
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6.4. Conclusions

Bus.py is an abstract software transmission bus interface that facilitates the co-simulation

of electric power system tools. As more Smart Grid technologies are implemented in the dis-

tribution system, it becomes infeasible for a single tool to simulate all electric power system

domains at a detailed level. Bus.py enables the dynamic simulation of multiple electric

power systems tools, such as GridLAB-D and customer home energy management systems.

The Bus.py interface interaction with GridLAB-D, a distribution system simulator, was de-

scribed. The existence of Bus.py enables the co-simulation of transmission and distribution

systems, customer home energy management systems and the distribution system, as well

as many other use cases. A demonstration of residential demand response resulting from

multiple residential homes on a single distribution feeder through an aggregator in a sin-

gle distribution area was achieved using the new Bus.py interface with GridLAB-D. The

demonstration consisted of two examples: (a) system peak minimization and (b) customer

cost savings in a time-of-use pricing scheme. The residential demand response resulted in (a)

a 2.5% peak reduction and (b) an on-peak reduction from 123 kWh to 52 kWh, respectively.
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CHAPTER 7

A Combined Dual-stage Framework for Robust

Scheduling of Scientific Applications in

Heterogeneous Environments with Uncertain

Availability

7.1. Introduction

The rapid development of computing technology has increased the complexity of com-

putational systems and their ability to solve large, and more complex, scientific problems.

These computing systems often are heterogeneous and operate in uncertain environments,

consisting of computing resources that differ in number and availability over time. Machine

availability is the percentage of the machine’s total computational resource that can be used

for a given application. A machine is said to be loaded when its availability is less than

100%.

Scientific applications express the solutions to complex scientific problems, which often

are data-parallel and contain large loops. The execution of such applications in heterogeneous

computing environments is computationally intensive and exhibits an irregular behavior, in

general due to variations of algorithmic and systemic nature [125]. Distribution of input

data and variations of algorithmic nature cause intrinsic imbalance, while variations of sys-

temic nature cause extrinsic imbalance [126]. Load imbalance in computationally intensive

This work was performed jointly with the full list of co-authors available in [9]. This work was supported
by the German Research Foundation in the Collaborative Research Center 912 “Highly Adaptive Energy-
Efficient Computing,” the National Science Foundation (NSF) under grant numbers CNS-0905399 and NSF
IIP-1127978, and the CSU George T. Abell Endowment.
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scientific applications is often their major performance degradation factor [125, 126]. Tra-

ditionally, solutions that address load imbalance in scientific applications involve dynamic

data and/or work re-distribution.

The problem statement for this chapter has two components. First, given a collection of

applications with uncertain input data and a heterogeneous computing system with uncertain

availability, how can resources be assigned to maximize the probability that applications can

complete by a common deadline? Second, given this allocation of resources, how can we

minimize the makespan for this collection of applications?

The work presented herein demonstrates that using robust resource allocation (RA)

heuristics [127] and application load balancing via dynamic loop scheduling (DLS) tech-

niques, in concert, will enhance the execution of computationally intensive scientific applica-

tions in uncertain heterogeneous systems. The goal of this chapter is to assign applications to

heterogeneous computing systems and execute them in such a way that all applications com-

plete before a common deadline, and their completion times are robust against uncertainty

in input data and system availability.

To accomplish this goal, the approach proposed herein is to divide the execution of

scientific applications on heterogeneous computing systems into two stages, as outlined in

Fig. 7.1:

• Stage I initial mapping–resources are allocated to each application according to a

given robust RA policy.

• Stage II runtime application scheduling–the execution of each application is opti-

mized, for the set of resources allocated in the previous stage, according to a given

robust application scheduling strategy.

103



Figure 7.1. Schematic illustration of the proposed dual-stage framework. A re-
source allocation heuristic is employed in stage I to assign each application from a
batch of N applications in the queue to one of the N groups of processors of a large-
scale heterogeneous system. Dynamic loop scheduling techniques are used in stage
II for runtime scheduling of each application onto the processors of their respective
assigned group.

Initial mapping (IM) can be defined as the problem of finding a mapping of a batch

of applications onto a set of resources to maximize robustness against uncertain input data

and system availability. Robustness here is defined as the probability that applications are

completed on the allocated resources by a common deadline [26].

Motivation for Stage I. The motivation for solving the IM problem via robust RA is to

avoid the runtime resource reallocation problem, i.e., reallocating resources already assigned

to applications to avoid violations of the performance objective. The robustness of an RA

can be quantified as the joint probability that all applications will complete by their deadline

given the uncertain input data and system availability.
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Motivation for Stage II. Just as in stage I, uncertain runtime availability of resources

allocated to an application, as well as uncertain input data, are known sources of uncertainty

in stage II and may impact the applications execution times. The motivation for this stage

is based on the assumption that a specific runtime application scheduling (RAS) policy

exists that avoids the runtime resource reallocation problem and that satisfies the stated

performance objective, while possibly allowing a larger degree of uncertainty in input data

and system availability.

RAS is defined as the problem of selecting the DLS technique for dynamic load balancing

of applications during their execution on the resources already allocated in stage I that

maximizes robustness against uncertain input data and system availability [128, 129], defined

as the maximum allowable decrease in the expected availability of the resources allocated in

stage I before a performance objective violation occurs.

Employing a robust DLS technique for an application during stage II will allow the

application to begin and complete its execution on the same set of resources that have

been allocated during stage I, while in case of perturbations, only iterations (of the same

application) will be migrated between the processors of the allocated resource set.

Usefulness. The usefulness of the proposed combined dual-stage framework is based on

the following hypothesis: using an intelligent approach in both stages will result in better

overall system performance than using an intelligent approach for either stage in isolation

or neither. The dual-stage framework allows investigation of the overall degree of tolerable

uncertainty, such that the desired performance objective is satisfied, for each application

individually and the entire collection of applications running on the heterogeneous computing

system.
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Contribution. The main contribution of this chapter is the design of an intelligent two-

stage framework to solve the problem of allocating resources to applications to maximize the

probability that the applications can complete by a common deadline given uncertainty in

the input data and system availability, including developing a mathematical model of this

environment.

The next section presents a review of related work, RA heuristics, and DLS techniques.

The proposed combined dual-stage framework is described in Section 7.3. The usefulness and

benefits of the proposed framework are demonstrated via a small scale example in Section 7.4.

The conclusions and insights into future work are summarized in Section 7.5.

7.2. Related Work

7.2.1. Overview. This work spans two major research areas: resource allocation and

dynamic application scheduling in heterogeneous computing systems. The following is a brief

summary of some work relevant to both research areas.

A framework for resource allocation and task scheduling is proposed in [130] for efficient

allocation of heterogeneous grid resources to resource-intensive applications that minimizes

their makespan and allocates the minimum number of resources. This approach is static and

based on the current state of the grid resources. In contrast to the work in this chapter, the

resource allocation and application scheduling strategies are intertwined, application tasks

are assumed to take one unit of time, and no source of uncertainty is considered.

The problem of mixed resource allocation and task scheduling has been addressed via a

constrained-based approach as a temporally constrained and a resource constrained prob-

lem [131]. Time constraints can be limit times and precedences, while resource constraints

concern allocation and sharing. Constraints propagation mechanisms have been proposed

106



that led to the removing of some task assignments, or that determined inconsistent alloca-

tions between pairs of tasks. In contrast to the work in this chapter, it is assumed that

the durations of the unassigned tasks are correlated and constant, and that resources are

homogeneous.

Extensions to application and performance models used in compile-time task and re-

source allocation have been proposed that capture applications with statistical variations in

execution times and task dependencies [125]. In contrast to the work in this chapter, the

focus is on compile-time mapping of single applications onto homogeneous multiprocessor

platforms.

The approach proposed herein to satisfy the stated performance objective in the presence

of uncertainties is to divide the execution of scientific applications into two stages: stage I

employs a RA heuristic to allocate a set of resources to every application, while in stage II,

DLS techniques are employed (one for each application) to ensure an effective application

execution on the set of resources allocated in stage I. Existing work on RA and DLS is

reviewed next.

7.2.2. Review of RA Heuristics. In general, the resource allocation and the appli-

cation scheduling problems are both known to be NP-complete [4–6], which leads to the use

of scheduling heuristics. In the stochastic resource allocation model, the historical comput-

ing time of each task to be run on each of the machines in the system is said to be known

beforehand and is represented as a probability mass function (pmf) [26]. The use of pmfs

allows for the calculation of the probability of a machine finishing its tasks before a specified

time. Because each of the machine’s execution times are independent, the overall probability

of the system completing by a specified time can be obtained by their joint probability.
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Due to the fact that the example given later in the paper (in Section 7.4) is illustrative and

represents a small scale case, no particular RA heuristic is actually needed, as the optimal

allocation can be determined exhaustively. As a comparison metric between possible resource

allocations, a simple load balancing technique is used, in which each application is allocated

an equal number of resources.

7.2.3. Review of DLS Techniques. The most efficient dynamic load balancing ap-

proach for improving the performance of scientific applications employs DLS. This approach

is effective in scientific applications that contain computationally intensive parallel loops.

The DLS techniques are based on probabilistic analyses and ensure a high performance exe-

cution of the applications. Using DLS, a new size for the next chunk of ready-to-be-executed

loop iterations is computed at runtime, and thereupon offered for execution to the first

processor that finished executing other assigned chunks.

DLS methods provide two alternative approaches, non-adaptive and adaptive, for achiev-

ing good load balancing on variably loaded resources, as well as for executing iterations with

varying execution times. Most of the techniques described in [132] are based on probabilistic

analyses and are non-adaptive. Other non-adaptive techniques, not contained in the above

survey, include fractiling and weighted factoring (WF) [133]. Subsequent efforts resulted in

more elaborate techniques, called adaptive. A few examples include adaptive weighted factor-

ing (AWF), and its variants: AWF-batch (AWF-B) and AWF-chunk (AWF-C), and adap-

tive factoring (AF) [134]. Most of these methods are derived from factoring (FAC) [135],

and hence, employ rules similar to those of FAC to achieve dynamic load balancing.

The above adaptive methods are also based on probabilistic analyses. Their goal is to

achieve the best possible scheduling that optimizes application performance (minimizing the

makespan) via dynamic load balancing. The adaptive DLS techniques use a combination of

108



runtime information about the application (e.g., input data) and the system (e.g., availabil-

ity) to (i) predict the system capabilities for the next computational assignments, or (ii) to

estimate the time the remaining application iterations will require to finish execution. These

techniques dynamically compute the size of chunks (a collection of iterations) at runtime,

such that they are completed within their optimal time with high probability.

The DLS techniques considered in stage II in this work are two non-adaptive methods,

FAC and WF, and two adaptive methods, AWF-B and AF. The usefulness of the proposed

dual-stage framework is not limited to this choice of DLS techniques. Due to space limita-

tions, the interested reader is referred to the appropriate references for further details of the

above DLS techniques.

7.3. A Combined Dual-stage Framework

7.3.1. Uncertainty and Performance Objective. A novel combined dual-stage

framework (CDSF) is proposed herein, with the goal of assigning applications to heteroge-

neous computing systems and executing them in such a way that all applications complete

before a common deadline, and their completion times are robust against uncertain input

data and system availability. The robust execution involves two stages: initial mapping us-

ing robust RA heuristics, in stage I, and runtime application scheduling using robust DLS

techniques, in stage II. The CDSF provides a certain level of guarantee for satisfying the

stated performance objective against uncertainties.

Uncertainty: The uncertainty is assumed to be caused by a 2-tuple of perturbation param-

eters [127] (π1, π2), in which π1 pertains to stage I, while π2 pertains to stage II.

The execution time of each application is considered stochastic due to its dependence

on input data. More specifically, the execution time of each application is modeled as a
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random variable and assume that we are given a pmf describing the possible execution time

values and their probabilities for each combination of application and processor type. That

is, the execution time of each application i when executed alone on a single, unloaded (fully

dedicated) processor of type j is modeled as a random variable. The list of applications that

the user may select from is assumed limited to a set of frequently requested algorithms such

as may be found in companies or government research lab environments [26]. Consequently,

the execution time random variable for each application is assumed to be well characterized.

That is, a pmf is assumed to be available for each application execution time random variable

on each processor type (determined by historical, experimental, or analytical techniques

[136, 137]). In addition, each application execution time is assumed independent, i.e., there

is no inter-application communication. Similarly, the system availability for each processor

type j is modeled as a random variable, αj, with a given pmf describing the possible system

availability percentages and their probabilities, generated using historical usage data of the

heterogeneous computing system.

Let ε̂ be a matrix where the (i, j)th element is a random variable modeling the execution

time for application i on processor type j, as described above. Â is a vector where the jth

element is αj, denoting the availability of processors of type j, also described above. The

perturbation parameter for stage I, π1, is given by π1 = {ε̂, Â}. If a given application is

executed on a single processor of a given type, its computation can be modeled based on ε̂ and

Â. However, because each application will be executed using parallelism, its computation

time is more complex, and its modeling is described in Section 7.4.

Let Λ be the system load fluctuation at runtime [128, 129, 133]. Given A = 1−Λ as the

runtime system availability in stage II, the perturbation parameter for stage II is π2 = {A}.

In general, the runtime system availability can be higher or lower than the expected system
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availability, i.e., A 6= E[Â]. A system is said to be loaded when it is less than 100% available.

For example, a system having a load of 30% during a certain period of time, is said to have

a 100%− 30% = 70% availability for that period of time.

The uncertainty in this chapter is assumed to be caused by the 2-tuple (π1, π2) =

({ε̂, Â}, {A}).

Performance objective: The performance objective has two components, called perfor-

mance features [127]. These performance features are expressed as a 2-tuple, denoted (φ1, φ2),

in which φ1 is the performance feature related to stage I, and φ2 is the performance feature

of interest in stage II.

Let T be the system makespan, defined as the completion time for an entire collection

(or batch) of applications, determined by the maximum of the actual finishing times of all

machines for all applications. T represents the time when the next batch of applications will

require resources given an RA heuristic used in stage I and a set of DLS techniques (one

for each application) used in stage II. Let ∆ be the system deadline. Then φ1 is defined as

Pr(T ≤∆) given π1 = {ε̂, Â}, and φ2 = {T} given π2 = {A}.

Given a batch of parallel scientific applications executing on the resources of a hetero-

geneous system, the performance objective in this work is given by the 2-tuple (φ1, φ2) =

({Pr(T ≤∆)}, {T}), and is described as: (1) maximize the probability that all applications

complete before the system deadline, i.e., maximize φ1 given ε̂ and Â (Stage I); and (2)

minimize the system makespan that satisfies the deadline for every given availability in the

system, i.e., minimize φ2 given A (Stage II).

7.3.2. Outline of the Proposed Framework. The proposed CDSF for robust ex-

ecution of scientific applications on heterogeneous uncertain computing systems is schemat-

ically illustrated in Fig. 7.2.
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Initial mapping conducted in stage I is the problem of finding a static mapping (i.e.,

one found in an offline planning phase) of a batch of applications onto a set of resources to

maximize robustness of the allocation against uncertain input data and system availability,

by maximizing the probability that all applications will complete before the deadline, given

a pmf for system availability Â. Runtime application scheduling carried out in stage II is

the problem of finding a dynamic scheduling policy for each application that minimizes the

parallel time to complete of an application for every given runtime system availability A.

Figure 7.2. Schematic illustration of the proposed combined dual-stage frame-
work: a robust resource allocation heuristic is employed in stage I, and robust
dynamic loop scheduling techniques are employed in stage II. A number of N appli-
cations are mapped onto N groups of processors, which compose into a large-scale
heterogeneous system with

∑N
i=1 maxi processors.
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7.3.2.1. Stage I – Initial Mapping. Scientific applications arrive at random intervals in the

queue of a resource manager, in view of assignment for execution onto any one of a group of

resources of a heterogeneous computing system. The applications queue consists of different

scientific applications, which can represent different instances of the same application.

As the applications arrive, their assignment to available resources is made in batches.

After assignment, an application is placed in the input queue of the resource designated as

coordinator (master) of the assigned group of resources. Any required data are staged at

the master, in advance of application execution. Let N be the number of applications in the

batch. Each application is assumed to be data parallel (with no interprocessor communica-

tions needed) and to contain large computationally intensive parallel loops.

Robust heuristics are employed for the IM, and the intention is to conduct studies to

determine the best heuristic to use in this stage. The best heuristic will provide the most

robust mapping of groups of resources to applications, i.e., maximize the probability that an

application completes before ∆, assuming a certain system availability Â.

The resource allocation actions are pre-planned before the actual execution of the appli-

cations begins and the goal is to minimize (or to prevent) the immediate effects of uncertain

perturbation in ε̂ and Â on the system makespan T, such that φ1 = {Pr(T ≤ ∆)} is max-

imized. Regardless of the type of allocated resources, once an allocation decision has been

made, it cannot be adjusted for a currently executing application. Perturbations during the

actual execution of applications are expected and addressed (or compensated for) in stage

II via the use of robust DLS techniques.

Let maxi, i = 1, N be the number of resources allocated to application i, and T expmaxi,i
be

the expected time to complete of application i on maxi processors.
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7.3.2.2. Stage II – Runtime Application Scheduling. Each application from the current

batch of N applications is executed on its group of resources allocated in stage I. A robust

DLS technique from the set {FAC, WF, AWF-B, AF} [128, 129, 133] is employed to define

the rules for executing an application at runtime. The intention is to conduct studies to

determine the best DLS technique to employ for each application in the batch, such that the

completion time of an application is minimized for every given runtime system availability

A, and consequently, the system makespan is smaller than or equal to the deadline. A single

DLS technique may be employed for several applications as several distinct instances of the

particular DLS technique. In general, the runtime system availability is expected to be

different than the estimated system availability. In this work, it is assumed that A ≤ E[Â].

The most robust DLS technique will provide the best runtime scheduling decisions for

executing an application on the allocated group of processors that minimize the system

makespan while tolerating a larger degree of perturbation in system availability than the

one assumed in stage I. The goal of the robust DLS technique is to detect any runtime

perturbation in system availability as soon as it occurs, and to take appropriate scheduling

decisions for the remaining unexecuted application iterations. Stage II can, thus, be con-

sidered a runtime approach for the detection and recovery from the uncertain effects of the

perturbation expected to occur in A, on the performance feature φ2 described earlier.

To guide the scheduling decisions at runtime and to tune the performance of an appli-

cation, the DLS techniques use runtime estimations of the time required to compute loop

iterations. These times are determined using probabilistic analyses and are influenced by

the application input data and the availability to compute of the resource executing the

iteration(s). The execution of an application using a DLS technique is non-preemptive, and,

therefore, the choice of the DLS technique cannot be changed during runtime.
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The overhead associated with employing a robust DLS technique is higher than that of a

robust RA heuristic. The actions are not pre-planned and are taken dynamically during the

application execution, as soon as perturbation occurs. The benefits are expected to, and in

general do, compensate the overhead of employing robust DLS techniques.

7.3.3. Questions regarding the CDSF robustness. To claim robustness for a

system, the following questions must be answered [138]:

1. What behavior of the system makes it robust?

Answer: The system considered in this work is robust if all applications complete before a

common deadline ∆, given uncertainty in input data (which impacts application execution

time) and system availability. The system robustness is achieved via the CDSF employing

robust RA and robust DLS in two consecutive stages.

A robust RA heuristic is one that is capable of maximizing the probability that all appli-

cations complete before the deadline. A DLS technique is said to be robust if it facilitated

the execution of an application in the smallest amount of time, and if this time satisfies the

deadline when the runtime system availability may vary from the one assumed initially.

2. What uncertainties is the system robust against?

Answer: Given uncertain variations in input data and system availability, application execu-

tion times are a known source of uncertainty in the system, and may have a significant impact

on the stated performance objective. The uncertainty against which the system considered

in this work is assumed to be robust is the 2-tuple (π1, π2).

3. How is the system robustness quantified?

Answer: The robustness of the system using the CDSF can be quantified as the joint ro-

bustness of the initial mapping in stage I and the runtime application scheduling in stage II.

The robustness of stage I is quantified as the joint probability of all applications completing
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by the common deadline, i.e., φ1. Let Ai be the pmf for a given case study. The robustness

of stage II is quantified as the percent decrease in weighted system availability that can be

tolerated by all applications without violating the deadline, i.e., 1− (E[Ai]/E[Â]) for which

T ≤∆.

Let Ψ1 be the largest robustness value of stage I. Also, let Ψ2 be the largest robustness

value of stage II. The system robustness is quantified as the 2-tuple (Ψ1,Ψ2).

7.4. Usefulness of Proposed Framework

7.4.1. System Setup. The assessment of the usefulness of the proposed CDSF requires

an investigation of the impact of the different possible RA heuristics and DLS techniques on

the performance objective of interest. A small scale example is provided next to illustrate

the usefulness of the proposed CDSF. The data that was chosen for this example was used

to demonstrate the efficacy of the CDSF. The relevant assumptions for this example are

described below.

Consider a heterogeneous system with twelve processors of two types, i.e., j = 1, 2: four

processors of type 1, and eight processors of type 2. Processors of type 1 are assumed to

have a different computational capacity and availability than processors of type 2. Case 1

in Table 7.1 describes the system availability as it was historically collected and aggregated

over a given period of time, to form the expected system availability Â used in stage I,

and is taken as a reference case. Cases 2–4 correspond to systems with decreased weighted

availability compared to the reference case, i.e., E[A1] > E[A2] > E[A3] > E[A4]. Let pj

be the number of processors of type j, and ej be the expected availability of processor type
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j. The weighted system availability can be calculated as shown in (57).

(57)

2∑
j=1

(pj)(ej)

3∑
i=1

maxi

Table 7.1. Processor Availabilities by Type and Weighted System Availabil-
ities. Case 1 corresponds to Â. Square brackets indicate 1− (E[Ai]/E[Â]).

Processor Availability
(%)

Probability
(%)

Expected
Availability

(%)

Weighted
System

Availability
(%)

Case 1
Type 1

75 50
87.50

75.00
100 50

(A1 = Â)
Type 2

25 25
68.7550 25

100 50

Case 2
Type 1

50 90
52.50

53.8775 10

(A2)
Type 2

33 45
54.55

[28.17]
66 45
100 10

Case 3
Type 1

52 50
60.58

51.9269 50

(A3)
Type 2

17 25
47.60

[30.77]
35 25
69 50

Case 4
Type 1

33 75
41.25

50.4266 25

(A4)
Type 2

20 50
55.00

[32.77]
80 25
100 25

A batch of N = 3 applications is considered, having different sizes and serial/parallel

component ratios (see Table 7.2). Serial iterations can only be executed on a single processor

and parallel iterations can be executed on multiple processors of the same type. The system
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deadline is ∆ = 3, 250 time units, and was chosen to help illustrate the differences between

using intelligent stages versus näıve stages in the dual-stage framework.

Table 7.2. Characteristics of a batch of applications

App. # Serial
iterations

# Parallel
iterations

% Serial
iterations

% Parallel
iterations

1 439 1024 30 70
2 512 2048 20 80
3 216 4096 5 95

The single processor execution times for each of the three applications on each of the

two processor types are represented as pmfs; this is the ε̂ used in stage I. For this study, the

pmfs were generated by sampling a normal distribution with the mean values (µ) shown in

Table 7.3. Each normal distribution used a standard deviation (σ) of one-tenth of its mean

value, i.e., σ = 1
10
µ. These values were considered to be the expected serial times required

for each application to execute on one processor of a given type and were chosen to highlight

the usefulness of the proposed CDSF.

It is assumed that all applications must be assigned and that they are assigned to a

power-of-2 number of processors of one type. For application i on processor type j, let Tijx

be the time of pulse x in the pmf, sij and pij be the serial and parallel fractions, respectively,

and nij be the number of processors. Let Tijxn be the pulse in the parallel execution time

pmf of application i assigned to nij processors of type j. This specific parallel execution

time pmf is obtained by recalculating each pulse of the single processor execution time pmf

according to (58).

(58) Tijxn = (sijTijx) + (pijTijx)/nij
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For each pulse x, the time associated with Tijxn will differ from Tijx, while the probability

will remain the same.

Table 7.3. Normal distribution mean values for single processor execution
times of each application on each processor type

Processor T exp1,1 T exp1,2 T exp1,3

Type 1 1,800 2,800 12,000
Type 2 4,000 6,000 8,000

Once the pmf modeling the parallel execution time of an application on a certain number

of processors of one type is calculated, it is multiplied with the pmf modeling the historical

system availability (Â) of processors of that type (αj), to determine the pmf used in stage

I to calculate the resource allocation robustness values. To calculate the probability that

for a given resource allocation, an application will meet the common deadline ∆, each pulse

in this resulting PMF corresponding to a time less than the deadline is summed together.

Due to the fact that each application’s finishing times are independent, the probability that

the entire system will complete by the common deadline is given their joint probability of

completing by ∆.

To demonstrate the benefits and usefulness of the proposed CDSF for allocating the

twelve heterogeneous processors of two types, executing with uncertainties shown in Ta-

ble 7.1, to the three applications, four scenarios have been identified: 1) näıve IM−näıve

RAS, 2) robust IM−näıve RAS, 3) näıve IM−robust RAS, and 4) robust IM−robust RAS.

In all scenarios, the IM problem is solved assuming a system availability equal to Â = A1,

while the RAS problem is solved assuming the runtime system availability A, is one value

from the set {A1,A2,A3,A4}.

In näıve IM, a simple load balancing technique is used to allocate an equal share of the

available processors to each application. The load balancing allocation with the highest
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probability that all applications will complete before the deadline was chosen. In the system

as described by the example, the load balancing technique allocated resources as described

in Table 7.4. Given this resource allocation, the system has a 26% chance of completing the

applications before the deadline, i.e., Pr(T ≤∆) = 26%.

Table 7.4. Resource allocation for näıve and robust IM

RA App. i Proc. type
j

# Procs
maxi

näıve IM
1 2 4
2 1 4
3 2 4

robust IM
1 1 2
2 1 2
3 2 8

In the robust IM case, all possible resource allocations are compared and the one with the

highest probability of all applications completing before the system deadline is chosen. This

results in resources being allocated as shown in Table 7.4. Given this resource allocation,

the system has a 74.5% chance of completing the applications before the deadline, i.e.,

Pr(T ≤ ∆) = 74.5%. It is important to note that this exhaustive search for the robust

resource allocation is only feasible in the case of the small demonstrative example. More

advanced and scalable RA heuristics are required for larger problem sizes, and our future

work will include designing such robust RA heuristics.

Given the two resource allocations, näıve and robust, each application’s expected comple-

tion time calculated in stage I is shown in Table 7.5. These values were obtained by taking

the expected value of the pmf relating to the assigned resources for each application. It is

interesting to note that T expmax2,2
is larger in the robust IM than in the näıve IM.
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Table 7.5. Parallel pmf estimated values of applications completion times
for näıve and robust IM (in time units)

RA T expmax1,1
T expmax2,2

T expmax3,3

näıve IM 3800.02 1306.39 4599.76
robust IM 1365.46 1959.59 2699.86

In näıve RAS, straightforward parallelization is employed for each application to schedule

its iterations in equal shares, which are then assigned to processors in a single step. This

technique is called STATIC.

In robust RAS, a DLS technique from the set {FAC, WF, AWF-B, AF} is employed to

execute an application on its allocated resources. The DLS techniques implement dynamic

load balancing mechanisms based on probabilistic analyses to ensure minimal impact of

runtime uncertainties on the application performance. For a given application and a runtime

system availability, the DLS technique resulting in the smallest parallel execution time that

satisfies the system deadline is considered best.

The usefulness of the proposed CDSF is based on the hypothesis that any of the first

three scenarios will result in solutions that tolerate much less perturbations variations in the

overall system, and therefore, are less robust. Thus, the fourth scenario (robust IM−robust

RAS) is expected to be superior to the first three scenarios. The CDSF allows investigation

of the overall degree of tolerable uncertainty for which the stated performance objective is

satisfied, at the level of each individual application and for the entire batch of applications

executing on the heterogeneous system.

7.4.2. Example Scenarios.

7.4.2.1. Scenario 1 – Näıve IM−näıve RAS. In this scenario, each stage employs näıve

heuristics to allocate resources to each of the three applications, namely simple load balancing

and STATIC, respectively. The application execution times are shown in Fig. 7.3.
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Figure 7.3. Scenario 1) Stage I: resource allocation using simple load balancing,
Stage II: straightforward parallelization using STATIC. ∆ = 3, 250 time units is
the system deadline. T1 = 3, 800.02 time units, T2 = 1, 306.39 time units, and
T3 = 4, 599.76 time units where Ti = T expmaxi,i

(see Table 7.5).

For the given resource allocation and application scheduling, φ1 = 26% and φ2 > ∆ for

all system availability cases. This scenario shows that a naive RA policy in stage I and a

straightforward parallelization in stage II cannot prevent the violation of the system deadline

given the system availability cases considered. Therefore, the system is not robust.

7.4.2.2. Scenario 2 – Robust IM−näıve RAS. The interest in this scenario is to inves-

tigate how much perturbation can be tolerated when only the robust IM ensures a certain

level of robustness for all applications. Thus, an optimal RA heuristic is employed in stage

I to allocate resources to each application, such that they all complete before ∆, with a

probability of 74.5% assuming the system availability equals Â (see Table 7.1). The use of

robust RA is recommended when the assumptions made using a näıve RA are not sufficient

to guarantee the satisfaction of ∆, as is the case in the previous scenario. Each application

is parallelized using STATIC in stage II, and their execution times are plotted in Fig. 7.4.
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Figure 7.4. Scenario 2) Stage I: resource allocation using optimal RA, Stage II:
straightforward parallelization using STATIC. ∆ = 3, 250 time units is the system
deadline. T1 = 1, 365.46 time units, T2 = 1, 959.59 time units, and T3 = 2, 699.86
time units where Ti = T expmaxi,i

(see Table 7.5).

Given the robust resource allocation, φ1 = 74.5%. This means that the system makespan

has a higher probability of meeting the deadline when π2 = E[A1] than in the previous

scenario. However, Fig. 7.4 shows that the performance of each application using STATIC

degrades with decreasing system availability after the RA decisions have been taken in stage

I, and φ2 > ∆ for all four system availability cases. Thus, it can be stated that the system

is not robust.

7.4.2.3. Scenario 3 – Näıve IM−robust RAS. In this scenario, the interest is to investigate

how much perturbation can be tolerated when only the DLS policy ensures a certain level of

robustness for each application. Thus, the allocation decisions are made in stage I according

to a näıve RA heuristic. A robust DLS technique, i.e., FAC, WF, AWF-B, or AF, is employed

in stage II, and uses knowledge obtained during the execution of the application about

the system, to guide the scheduling decisions in such a way that the performance of the
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application suffers a minimal degradation with varying (decreasing) system availability. The

application execution times for this scenario are illustrated in Fig. 7.5.
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Figure 7.5. Scenario 3) Stage I: resource allocation using simple load balancing,
Stage II: robust DLS using FAC, WF, AWF-B, and AF. ∆ = 3, 250 time units is
the system deadline. T1 = 3, 800.02 time units, T2 = 1, 306.39 time units, and
T3 = 4, 599.76 time units where Ti = T expmaxi,i

(see Table 7.5).

For the näıve resource allocation the probability of all applications completing before ∆

is φ1 = 26%. Even when the most robust DLS technique is used in stage II, one can note

that certain applications finish earlier than others. This causes the violation of the system

deadline, as it is the case for application 3 in case 1, and applications 1 and 3 in cases 2-4.

Given that φ2 > ∆ for all four system availability cases, a more robust RA heuristic is,

hence, required in stage I to complement the robust DLS technique used in stage II. It can

be stated that the system in this scenario is not robust.

7.4.2.4. Scenario 4 – Robust IM−robust RAS. The previous two scenarios show an im-

provement over the first scenario. This improvement is, however, insufficient to ensure that
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the system deadline is met for all applications. Therefore, in this scenario the largest amount

of tolerable perturbation in system availability is considered, while ensuring that the system

deadline is met for the entire batch of applications. This scenario, is also referred to as the

scenario that best illustrates the usefulness of the proposed CDSF.

The robust IM from the second scenario (robust IM−näıve RAS) is employed in stage

I to allocate a more suitable set of resources to each application than in scenarios 1 and 3.

Just as in scenario 3, robust DLS algorithms are employed in stage II to minimize the impact

on the application performance assuming unforeseen variation in the system availability, and

to support the probability given by the robust IM in stage I that all applications complete

before the system deadline.

The application execution times for this scenario are shown in Fig. 7.6. One can note

that the system deadline is met for all applications when the weighted system availability

decreased by 28.17% (case 2) and 30.77% (case 3), respectively, compared to that assumed

in stage I (case 1). When the weighted system availability decreased by 32.77% (case 4),

the deadline is met for application 1, while it is violated for application 2 using any DLS

technique and for application 3 using FAC, WF or AWF-B. This indicates that in case 4

and for application 3, AF is more robust than FAC, WF, or AWF-B when executing on

the resources of type 2 allocated in stage I, with an expected availability of 55% for this

processor type. Therefore, the system is said to be robust for system availability cases 1-3,

while it is not robust for case 4, and the robustness value for stage I is Ψ1 = 74.5%.

It is important to note that the above observations are valid only for the combination

of type 1 and type 2 processors availabilities shown in Table 7.1 (third column), and not

for any general combination that may result in the weighted system availability values in

Table 7.1 (sixth column).
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Figure 7.6. Scenario 4) Stage I: resource allocation using optimal RA, Stage II:
robust DLS using FAC, WF, AWF-B, and AF. ∆ = 3, 250 time units is the system
deadline. T1 = 1, 365.46 time units, T2 = 1, 959.59 time units, and T3 = 2, 699.86
time units where Ti = T expmaxi,i

(see Table 7.5).

Table 7.6. Scenario 4) DLS techniques providing best application perfor-
mance and meeting the system deadline for all cases of system availability

Application Case 1 Case 2 Case 3 Case 4
1 WF AF AF AF
2 WF WF AF –
3 AF AF AF AF

Table 7.6 shows the DLS techniques that result in the best application performance and

that at the same time satisfy the system deadline. It can be noted that from all the cases

considered in Table 7.1 the largest tolerable decrease in overall system availability compared

to the reference case is 30.77% (case 3) and the system deadline is met for all applications.

The most robust DLS technique in this case is AF for all applications (cf. Table 7.6, fourth

column), and, hence, the robustness value for stage II is Ψ2 = 30.77%.

The system robustness for this scenario is quantified as (Ψ1,Ψ2) = (74.5%, 30.77%).
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7.5. Conclusions

The goal of this chapter was to study the allocation of resources to applications and

the completion of their execution before a system deadline in the presence of uncertainty in

input data and in system availability. A CDSF has been proposed towards this goal. The

framework enables the robustness of resource allocation used in a first stage to be enhanced

via the use of dynamic loop scheduling techniques used in a second stage. The usefulness of

the framework has been demonstrated via a small scale, illustrative example.

Extensions to this work may consider the impacts of employing previously developed

static [26] and dynamic [139] stochastic resource allocation heuristics in stage I, and other

DLS techniques in stage II [134]. Designing novel robust and scalable resource allocation

heuristics to be employed in stage I is also a noteworthy extension to the present work.

A study of the factors to be considered in guiding the choice of heuristics used in either

stage is another potential extension of interest to the current work. Exploring the possible

correlation between the availabilities for different processor types on the overall robustness

of the system is also of interest for future work because it would help in better quantifying

the system robustness.

In Chapter 8, a larger scale problem is used to demonstrate the necessity of more advanced

RA heuristics in stage I. This larger scale problem incorporates more applications, i.e., in

a larger batch or in multiple batches, on a larger computing system, i.e., one with more

processors and processor types. Probabilistic studies are performed on this larger problem

to determine the benefit of Stage I on a range of application and system parameters.
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CHAPTER 8

Heuristics for Robust Allocation of Resources to

Parallel Applications with Uncertain Execution

Times in Heterogeneous Systems with Uncertain

Availability

8.1. Introduction

Today’s computing systems are often heterogeneous in nature, comprised of machines

with differing computational capabilities to satisfy the diverse computational requirements of

applications [141, 142]. For example, a mixture of general purpose and programmable digital

machines, along with application-specific systems-on-a-chip, were shown to solve parallel jobs

with real-time constraints [143, 144]. The scheduling of applications on such heterogeneous

systems has been shown, in general, to be NP-complete [5]. Scheduling decisions become

more difficult in systems with uncertain processor availability (this can be due to system

jitter/noise [126], or the time sharing of resources [145]) and with application execution

times that are modeled as stochastic due to uncertain input data [26].

A batch of scientific moldable parallel applications with stochastic execution times are

considered, where a moldable parallel application is one that differs in execution time as a

function of the numbers of processors (determined by the scheduler) on which it executes.

This work was performed jointly with the full list of co-authors available in [140]. This work was supported by
the National Science Foundation (NSF) under grant numbers CNS-0905399, CCF-1302693, and IIP-1034897;
the CSU George T. Abell endowment; and the German Research Foundation in the Collaborative Research
Center 912 “Highly Adaptive Energy-Efficient Computing.” This research utilized the CSU ISTeC Cray
HPC System supported by NSF Grant CNS-0923386.
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These applications need to be allocated resources from a set of heterogeneous processor

types, where the processor types are heterogeneous in both their computational capabilities

(affecting the application execution times) and the number of processors available. All

applications in the batch should be scheduled in such a way as to finish executing close to a

given makespan goal (a soft version of the deadline from Chapter 7).

To allocate resources to applications, a new batch scheduler is proposed. The batch

scheduler must allocate resources in the presence of the two uncertainties of application

execution times and system availability. To minimize the impact of the two sources of un-

certainty on achieving the makespan goal, our resource allocations should be robust against

these uncertainties. To accomplish this goal, a model that combines the impact on perfor-

mance of two sources of uncertainties into a single performance metric of robustness [138]

is introduced, where in this chapter robustness is defined as the probability that a batch of

applications finishes by the given makespan goal. Three iterative-greedy resource allocation

heuristics that use this measure of robustness were designed. The allocation decisions that

need to be made for each application are: (1) on what processor type to run, and (2) on

how many processors of a given type to run. The resource allocation heuristics are designed

to maximize robustness by using stochastic knowledge of the uncertain execution times and

uncertain system availability to intelligently allocate processors to applications.

This chapter is based on the first stage of the dual-stage optimization framework intro-

duced in Chapter 7 (based on[9]). In the first stage, which is the focus of this chapter, a

batch of applications is allocated resources from a set of heterogeneous processor types. The

second stage, which is not included in this chapter, performs fine-grain runtime optimization

for each application given the allocated resources from the first stage. The system and the

flow of information is shown in Fig. 8.1. In this chapter, novel resource allocation heuristics
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are designed and evaluated. The heuristics presented here utilize a more realistic parallel

execution time model and a much larger system than those discussed in Chapter 7.

Figure 8.1. Dual-stage optimization framework with a focus on Stage I.
In the first stage, a batch of Na scientific moldable parallel applications are
allocated resources from heterogeneous processor types according to a given
resource allocation heuristic. In Stage II, a runtime optimization is performed
for each application using the allocated resources from Stage I.

Related prior work on resource allocation and scheduling for heterogeneous systems has

occurred in the areas of heuristic optimization and modeling. Uncertainties in application

execution times were taken into account in [146–148]. These uncertainties lead to robustness

as a performance measure (e.g., [26, 138]). The uncertainty in the availability of computing

resources was studied as system noise [126] and operating system (OS) overhead [149].

Iterative-greedy heuristics have been shown to perform well for scheduling problems [150]

and balanced resource allocation techniques are often used in practice [151]. This chapter

differs from previous work in that new heuristics are designed that take into account the

uncertainty in system availability as well as the uncertainty in application execution times.

In this chapter, the following contributions are made:
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• The design of a model for moldable parallel applications with stochastic execution

times running in a heterogeneous computing environment.

• A new robustness model and measure dealing with, and combining, two sources of

stochastic uncertainties for use in the resource allocation of processors to applica-

tions and the performance evaluation of said resource allocations.

• The design and analysis of three novel iterative-greedy heuristics across three dif-

ferent platforms of a varying number of processor types compared to two reference

heuristics and an upper-bound.

The rest of the chapter is organized as follows. The system model is described in Section

8.2. In Section 8.3, the developed heuristics are presented in detail. The parameters used

for the analysis are given in Section 8.4 with the analysis results being shown in Section 8.5.

Finally, concluding remarks and a brief description of future work are summarized in Section

8.6.

8.2. System Model

8.2.1. Batch Scheduler. The proposed model for the batch scheduler is given in Fig.

8.2. There are three times of interest shown: the time the assignment of resources for batch

z starts (t0), the time batch z starts executing (t1), and the time that batch z finishes

executing (t2). Thus, the resource allocation heuristic executes from t0 to t1. Without a

loss of generality, a workload of one batch is assumed so the subscript denoting the batch

number will be dropped from the notation. This research is applicable for any number of

subsequent batches.
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Figure 8.2. Proposed batch scheduler model. At some time t0, the applica-
tions in batch z will be assigned resources using a given heuristic. At t1, the
last application of batch (z − 1) finishes executing and batch z can begin exe-
cuting using the resources allocated by a given heuristic. Time t2 denotes when
batch z finishes executing and batch (z + 1) begins executing, ad infinitum.

Given a batch of Na moldable parallel applications, a scheduling heuristic is used to

allocate computing resources to each application. The applications are assumed to be inde-

pendent and without precedence constraints. The allocation decision that needs to be made

for application i is twofold. First, application i must be assigned to one of Np processor

types (denoted processor type j). Second, the application must be allocated a number of

processors, k, of processor type j. Let I be a vector of length Na representing a complete

resource allocation, where the ith entry is a (j, k) tuple that represents application i being

assigned to k processors of type j (i.e., I[i] = (ji, ki)).

To avoid fragmentation of the system resources, all Na applications start executing at

the same time (i.e., each batch of applications can leverage the ability of the entire set of

system resources), shown as t1 in Fig. 8.2. In addition to avoiding fragmentation, other

scenarios in which this holds true are in scatter-gather operations and MapReduce [152].

Because all applications in the batch start executing at the same time, the next batch of

applications cannot start executing until the current one is finished (t1 and t2 in Fig. 8.2).

This implies that the scheduling heuristics should try to allocate resources so applications
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finish at approximately the same time to prevent the waste of system resources (i.e., idle

machines).

8.2.2. Applications.

8.2.2.1. Heterogeneity. The execution time for each application i in the batch of appli-

cations differs across heterogeneous processor types. For a fixed number of processors, if

processor type A is faster than processor type B for a given application, it is not necessarily

true that processor type A is faster than processor type B for all applications. The appli-

cation execution time distributions are assumed to be known a priori. This information, in

practice, can be obtained by analytical, historical, or experimental techniques [26, 137].

8.2.2.2. Parallel Model. We use Downey’s parallel speedup model [153] to describe how

the execution times of real applications change as a function of the number of processors

allocated. Given k processors, the speedup of an application is denoted S(k). If S(k) = x

for a given resource allocation, application i will execute x times as fast in parallel on k

processors (k > 1) of type j than if it was run serially (i.e., k = 1). This model takes

into account the different finishing times of each processor and the execution time of the

application is determined by the longest running processor.

8.2.3. Uncertainties.

8.2.3.1. Application Execution Time. Each application on a given processor type has an

uncertain execution time, for example because of differing input data. Because the system

is modeled as heterogeneous, each application has a probability distribution describing its

execution time on each processor type. These execution time distributions are assumed

to describe the serial execution times of the applications. Let Ti,j be a random variable

describing the serial execution time of application i on processor type j. To obtain the
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parallel execution time distribution, the Downey model is used by scaling the time axis of

the probability distribution of Ti,j by 1
S(k)

.

8.2.3.2. System Slowdown. In addition to the uncertainty in application execution times,

the system availability of each processor type is uncertain. The set of system resources

available are Np processor types, where processor type j has nj processors. Each processor

type is assumed to have an associated system slowdown (defined as the reciprocal of the

system availability). This could be due to OS jitter or system noise [126], or the time

sharing of resources [145].

Because the slowdown of a processor type is uncertain, slowdowns are modeled prob-

abilistically. That is, given historical data of a processor type, a probability distribution

describing the likelihood of a given system slowdown occurring is obtained. Let Sj be a

random variable describing the slowdown of processor type j. A system slowdown of x will

scale the execution time of the application by x.

8.2.3.3. Combining Uncertainties. Let Xi,j,k be a random variable describing the final

execution time distribution of application i running on k processors of type j. To obtain

the final execution time distribution, multiply the parallel execution time distribution by the

system slowdown distribution [9], Sj, as defined by (59). Once Xi,j,k is obtained, it can be

used to calculate the probability that a given resource allocation will result in application i

finishing by a given time on k processors of type j. The multiplication of the distributions

was performed discretely in the simulation code, not using a closed form solution (as one

does not exist for the types of distributions used).

(59) Xi,j,k = Sj
Ti,j
S(k)
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8.2.4. Robustness. A “robust” resource allocation is defined as a resource allocation

that mitigates the effect of uncertainties on a given performance objective. To claim ro-

bustness for a system, the following three questions must be answered [138]: (1) What

performance feature makes the system robust? (2) What uncertainties is the system robust

against? (3) How is robustness quantified?

To answer the robustness questions, the makespan goal, ∆, is defined as a target time

for all applications to attempt to complete executing by, as well as a time used to calculate

the probability that a given resource allocation will complete by a given ∆. Therefore,

the performance feature that makes the system robust is applications completing by the

makespan goal, ∆. The system is robust against uncertainties in application execution times

and the uncertainties in system slowdown.

Let P (i, (j, k)) be the probability that application i allocated resources (j, k) completes

by the makespan goal ∆, obtained by evaluating the cumulative distribution function (cdf)

of Xi,j,k at ∆. The robustness of the resource allocation I, denoted Ψ(I), is quantified in

(60).

(60) Ψ(I) = min
i=1..Na

P (i, I[i])

8.2.5. Formal Problem Statement. A batch of Na moldable parallel applications

needs to be allocated resources from Np heterogeneous processor types, where processor type

j has nj processors. The parallel characteristics and serial execution time distribution for

each application i on each processor type j is known. The system slowdown distribution for

each processor type j is also known. Within the constraint of an allocation not exceeding

the total number of processors of each type and the constraint that each application can

only be assigned processors of one type, the goal of the resource allocation heuristics is to
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find a resource allocation I to maximize Ψ(I), given in (61) as the performance objective ρ.

(61) ρ = max Ψ(I) = max min
i=1..Na

P (i, I[i])

8.3. Heuristics

8.3.1. Processor Balance.

8.3.1.1. Overview. The goal of the processor balance heuristics is to give equal resources

(i.e., processors) to each application. Let the total number of processors in the system be τ

(i.e., τ =
∑Np

j=1 nj) and let M be the average number of processors per application in the

system (i.e., M = τ
Na

). It is assumed that M is an integer value and each nj is a multiple

of M for each processor type. These assumptions allow the comparison of the proposed

robustness floor heuristics to the processor balance heuristics, but the assumptions are not

necessary for the robustness floor heuristics.

The processor balance heuristics will then split the total number of resources into Na

blocks of M processors, where each block is comprised of processors of a single type. This

reduces the dimensionality of the problem to just assigning an application to a processor

type. The two variants of how this assignment is accomplished are random and smart.

These two heuristics will be used as a comparison to the performance of the robustness floor

heuristics, as a layperson might assign a fair share of resources to each user [151].

8.3.1.2. Random. The processor balance – random (PB-R) variant of the processor bal-

ance heuristic assigns the Na applications to the Na groups of processors randomly. That is,

for each of the Na groups of M processors, randomly select an application to be assigned.

The application and processor group are removed from further allocation decisions and the

process is repeated until no applications remain.
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8.3.1.3. Smart. Unlike the PB-R variant, processor balance – smart (PB-S) greedily

assigns applications to processor groups. Each of the Na groups of M processors has an

associated processor type j. Randomly select a group and assign the application i that

maximizes P (i, (j,M)). The application and processor group are removed from further

allocation decisions and the process is repeated until no applications remain.

8.3.2. Robustness Floor.

8.3.2.1. Overview. The proposed robustness floor algorithm, shown as pseudocode in Fig.

8.3, is an iterative-greedy heuristic with three variants. For each algorithm iteration l, the

robustness floor algorithm performs a binary search over the minimum value of robustness

an application should achieve, Ωl (i.e., each application should have at least a probability

of Ωl of completing by the makespan goal). Let Π(Ωl) be a function that returns a matrix

where the i, j element gives the minimum number of processors k required for application i

on processor type j to meet P (i, (j, k)) ≥ Ωl. Also let greedy(Π(Ωl)) be a greedy heuristic

that takes the application-processor pairings from Π(Ωl) and returns a complete resource

allocation I. These greedy heuristics are described in Subsections 8.3.2.2 to 8.3.2.4. After

the greedy heuristic returns a resource allocation I, the function v(I) returns true or false

depending on whether I is valid (i.e., every application is assigned a set of resources). If λl

is the current binary search residual, defined as Ωl − Ωl−1, the next robustness floor value

will be changed by λl
2

. If v(I) returns true, then the robustness floor of the next iteration

Ωl = Ωl + λl
2

, but if v(I) returns false, Ωl = Ωl − λl
2

. Finally, let Λ be the minimum residual

considered (i.e., when λl < Λ, stop iterating).

8.3.2.2. Min-Min Processors. The min-min processors greedy heuristic is a two-stage

greedy heuristic (e.g., [25, 29]) that describes one of the greedy functions from line 4 in Fig.

8.3. In the first stage, for each application i, find the processor type j in row i of the matrix
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1: Ωl = 1.0
2: Ωl−1 = 0.0
3: repeat
4: I = greedy(Π(Ωl))
5: λl = Ωl − Ωl−1

6: Ωl−1 = Ωl

7: if v(I) == true then Ωl = Ωl + λl
2

8: else if v(I) == false then Ωl = Ωl − λl
2

9: until λl < Λ
10: return I

Figure 8.3. Robustness floor algorithm

returned by Π(Ωl) that uses the minimum number of processors. In the second stage, from

the application to processor type pairs found in the first stage, assign the application, imin,

to the processor type, jmin, that uses the minimum number of processors, kmin. Remove

application imin from further allocation decisions and decrement the number of processors

of type jmin by kmin. Repeat the two stages until all applications are assigned (i.e., v(I) =

true) or until there are not enough remaining processors to make any more allocations (i.e.,

v(I) = false).

By utilizing the min-min processors greedy heuristic in step 4 of the robustness floor

algorithm, the robustness floor min-min (RF Min-Min) heuristic is formed.

8.3.2.3. Min-Max Processors. The min-max processors heuristic is a two-stage greedy

heuristic similar to the min-min processors heuristic in that the first stage is the same. In

the second stage, however, from the application to processor type pairs found in the first

stage, assign the application, imax, to the processor type, jmax, that uses the maximum

number of processors, kmax. Remove application imax from further allocation decisions and

decrement the number of processors of type jmax by kmax. Repeat the two stages until

all applications are assigned (i.e., v(I) = true) or until there are not enough remaining

processors to make any more allocations (i.e., v(I) = false).
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The intuition behind assigning those applications that need more processors first is that

as more applications are assigned, it is harder to find room for those requiring more processors

to meet the robustness floor. By utilizing the min-max processors greedy heuristic in step 4

of the robustness floor algorithm, the robustness floor min-max (RF Min-Max) heuristic

is formed.

8.3.2.4. Duplex. The final greedy heuristic is a combination of the min-min and min-max

processors heuristics, referred to as duplex. At step 4 in Fig. 8.3, duplex runs both min-min

and min-max processors at each iteration and returns I such that the performance objective,

ρ, is maximized. By utilizing the duplex greedy heuristic in step 4 of the robustness floor

algorithm, the robustness floor duplex (RF Duplex) heuristic is formed.

8.4. Simulation Parameters

8.4.1. Overview. The following section describes parameters that are used only to con-

duct a simulation study for analysis. The techniques introduced above can be used for any

real system. Regardless of the input data, a system administrator utilizing these techniques

would need to evaluate their effectiveness for their exact system. The performance from the

simulation analysis does not imply the same performance on all systems.

8.4.2. Application Parameters. To model the stochastic execution times, Gamma

distributions are used [147]. Gamma distributions were chosen to represent the application

execution times as they are non-negative and their shape is flexible, allowing the represen-

tation of execution time distributions of a myriad of different applications. To generate the

serial execution time distributions for each application on each processor type, the Coeffi-

cient of Variation (COV) method was used [62] to obtain the mean and standard deviation
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of each application on each processor type. To generate the parallel characteristics for the

Downey model for each application, the distributions from [154] are used.

8.4.3. System Slowdown. To represent the slowdown of a given processor type, a

modified form of a Beta distribution was used because it is a flexible distribution on the

interval [0,1] that was similar to the shape of small scale slowdown studies we conducted on

actual systems. It can be used to model the system availability, defined as the inverse of the

system slowdown, where in this context 0 corresponds to no availability and a slowdown of

∞, 1 corresponds to a fully available system and no slowdown, and a processor type that is

50% available would have a slowdown of 2. To use the Beta distribution as a model for the

system slowdown, the reciprocal of the x-axis is used (i.e., the x-axis is now on the interval

[1,∞) instead of [0, 1]). We denote the overall system slowdown as Γ, defined as the weighted

average (weighted by the number of processors for each type) of the mean system slowdown

of the processor types.

8.4.4. Makespan Goal. Let µi,j,k be the mean execution time of application i using

k processors on processor type j. The calculation of the makespan goal, ∆, is described in

(62).

(62) ∆ =

∑Na

i=1

∑Np

j=1 µi,j,M

NaNp

The intuition behind using (62) is that it represents an average of the applications’ perfor-

mance in the given heterogeneous system. The inner summation averages the mean execution

time of an application across all processor types. The outer summation averages across all

applications. This allows different scenarios (e.g., number of applications, number of proces-

sor types) to be compared by using the same makespan goal calculation. The determination
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of the makespan goal will have an impact on the resource allocation determined by the

heuristics and needs to be explored in the future, but is out of the scope of this chapter.

8.4.5. Upper Bound on Robustness. Because robustness is defined across all appli-

cations as the minimum probability P (i, (j, k)) that an application i in resource allocation

I completes by the makespan goal ∆, it is possible to find an upper bound on robustness

based upon the worst performing application. The upper bound (given in (63)), B, states

that for each application i, find the processor type j that maximizes its probability of com-

pleting by the makespan goal if it is given all processors of that type (i.e., nj). Out of all of

those probabilities, the application that has the minimum probability of completing by the

makespan goal sets the upper bound on system robustness.

(63) B = min
i=1..Na

max
j=1..Np

P (i, (j, nj))

8.5. Simulation Results

For the simulation analysis, three different batch sizes (i.e., Na) of 8, 32, and 128 applica-

tions are considered. The total number of processor types (i.e., Np) explored for each batch

size were {1, 2, 4, 8}, {1, 2, 4, 8, 16}, and {1, 2, 4, 8, 16, 32}, respectively. The total number of

processors in the system (i.e., τ) with batch sizes of 8, 32, and 128 were 64, 256, and 1024,

respectively, where nj varies between types. The overall system slowdown, Γ, was broken

into categories of low, mixed, and high corresponding to Γ of 1.1, 1.36, and 1.6, respectively.

Each scenario (where a scenario is a batch size, system size, and system slowdown category)

was run for 48 trials for each of the five heuristics with the 25th, median, and 75th quartiles

shown. The plus symbols show all trials outside of the 25th and 75th quartiles. Between

trials, the application characteristics and the makespan goal differed. The stopping criterion
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for the robustness floor heuristics, Λ, was set to 0.01. This led to each robustness floor

variant running for seven iterations (dlog2(Λ−1)e).

Figure 8.4. A typical result in the comparison of the five heuristics and the
upper bound. The batch size was 32 applications with four processor types
with high system slowdown. The box plot shows the distribution of 48 trials
with the 25th, median, and 75th quartile trials represented by the box. All
trials outside of the 25th and 75th quartile are shown with the plus symbol.

A typical result is presented in Fig. 8.4. This figure shows the robustness compared be-

tween the five heuristics and the upper bound. The batch size was 32 applications with four

processor types with high slowdown and 256 total processors. The two processor balance

heuristics do not perform as well as the three robustness floor heuristics. This is because

the processor balance heuristics only make decisions on which processor type to allocate an

application to, where the number of processors per application is fixed as M . The PB-S

heuristic performs better than the PB-R heuristic because at each allocation decision it as-

signs the application that will have the highest probability of completing by the makespan

goal where PB-R makes random allocation decisions. Out of the robustness floor heuristics,
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RF Min-Max, in general, performs better than RF Min-Min. This is because as more ap-

plications are allocated, there is less room and it becomes harder to assign the applications

that need more processors. RF Min-Max assigns these larger applications first, leading to

better performance in most cases. RF Duplex will always perform at least as well as RF

Min-Min and RF Min-Max because it runs both greedy algorithms at each iteration. By

using intelligent calculation optimizations, running this algorithm only requires 5 to 10%

longer than either RF Min-Min and RF Min-Max. The upper bound is not overlapped by

any of the heuristics because, in general, it is not achievable as it assumes an application

occupies an entire processor type. This does not leave enough resources for the remaining

applications to have an ample opportunity of completing by the makespan goal.

Figure 8.5. The trend in performance, in terms of Bnorm, when increasing
the number of processor types in the system. A Bnorm value of zero indicates
that the robustness exactly equals the upper bound (i.e., Ψ(I) = B). The
batch size was 32 applications and the system had a low system slowdown.
The number of processor types varied between 1, 2, 4, 8, and 16.

Because RF Duplex was the best performing heuristic in all scenarios with respect to

robustness, the rest of the discussion is focused on it. In the simulations, the upper bound
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was noticed to remain mostly constant for any given number of processor types. This is

because the upper bound is only set by one application on one processor type, therefore the

number of processor types does not matter in that calculation, but rather the heterogeneity

and performance of a single processor type in the system. Where the number of processor

types does matter, however, is with the heuristics. The more processor types there are, the

more the heuristics can leverage the benefit of the heterogeneity in the system.

The heuristics leveraging the heterogeneity in the system is apparent in Fig. 8.5. Let

Bnorm be difference between the upper bound and the robustness, normalized by the upper

bound (i.e., Bnorm =
(
B−Ψ(I)

B

)
). As Bnorm approaches zero, the performance of the resource

allocation approaches the upper bound. Fig. 8.5 shows how Bnorm changes when the number

of processor types are varied in a system with a batch size of 32 and low system slowdown.

The increase in the number of processors in the system leads to better performance by RF

Duplex with respect to the upper bound.

Figure 8.6. Three complete resource allocations for the RF Duplex heuristic.
Each graph shows the cumulative distribution function of each application in
the batch. The vertical red line shows the makespan goal. The horizontal blue
line shows the upper bound on robustness. Graph (a) shows the trial that had
the worst performance in terms of robustness. Graph (b) shows the median
trial and graph (c) shows the best performing trial. The results are for a batch
size of 128 applications with eight processor types with mixed slowdown.
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Fig. 8.6 is different than the previous figures in that each graph only shows one complete

resource allocation. The graphs show the cdf of all the allocated application execution times.

The vertical red line shows the specific makespan goal of the trial while the horizontal blue

line shows the upper bound. The results are for a batch size of 128 applications with eight

processor types with mixed slowdown. The three graphs, from left to right, show the worst

performing trial (Fig. 8.6.a) in terms of robustness, the median trial (Fig. 8.6.b), and the

best performing trial (Fig. 8.6.c).

In the worst performing trial, the RF Duplex heuristic does a poor job of setting the

applications to finish near the makespan goal. This could be due to the specific parameters

of the applications in that particular trial. The upper bound is much lower in the worst-

performing trial in comparison to the others, meaning that a high robustness measure for

that set of applications would be harder to achieve. In the median and maximum graphs,

RF Duplex sets the applications’ probability of completing at the makespan goal to be close

to the same.

8.6. Conclusions

A robustness metric was presented that combines the uncertainties of moldable paral-

lel applications with stochastic execution times and heterogeneous resources with uncertain

availability. Using knowledge of the parallel characteristics of the application in conjunc-

tion with the robustness metric, three iterative-greedy heuristics were designed and studied

through simulation. In practice, the RF Duplex heuristic should be used. For a small increase

in computation time, it combines the benefits of RF Min-Min and RF Min-Max.

In the future, additional resource allocation heuristics will be designed, implemented,

and analyzed. The sensitivity of the performance of the heuristics to the setting of the
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makespan goal will be explored. Last, as in Chapter 7, the resource allocation techniques

will be combined with a second stage that implements dynamic loop scheduling, a suite of

runtime performance optimization techniques [133].
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CHAPTER 9

Conclusions and Future Work

9.1. Conclusions

Two different areas of resource allocation optimization were explored: Smart Grid and

High-performance computing. The primary area of research in this preliminary dissertation

was in Smart Grid resource allocation with a heuristic framework being presented in Chapter

2. Smart Grid resource allocation was studied from the perspective of the aggregator entity

in Chapters 3 and 5. The aggregator in this dissertation is a for-profit entity that interfaces

the electricity market and the end-user (customer), allowing the end-user the chance to par-

ticipate in a fully deregulated electricity market by offering control of their assets to the

aggregator. To encourage customer participation, a new pricing mechanism called customer

incentive pricing was created. Customer incentive pricing is an alternative pricing structure

for the customer if they allow their assets to be controlled by the aggregator. Results in

Chapter 3 show that this new pricing structure is, in most cases, cheaper than the alter-

native distribution company price. The aggregator-based Smart Grid resource allocation

of customer smart appliances was formulated as an optimization problem (optimizing for

aggregator profit) and implemented using a genetic algorithm in Chapter 3. The genetic

algorithm was run using real pricing data from a distribution company and independent

system operator and it was shown that the aggregator is able to make a profit, participating

customers saved money, and the peak load of the system was reduced as a common good.

Two new visualization methods for demand response programs were presented in Chapter 5.

The visualization methods, load heat maps and three-dimensional load curves, were used to

analyze the results from the aggregator-based Smart Grid resource allocation. The analysis
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allowed greater insight into whether or not the demand response plan worked effectively; at

what times the demand response resulted in a profit or a loss; and how multiple demand

response solutions compared.

A customer-approach to the SGRA problem was presented in Chapter 4. Three new home

energy management systems were designed, one myopic (denoted minimum forecast cost) and

two non-myopic approaches based on a partially observable Markov decision process decision

making framework. Results in Chapter 4 show significant savings in monthly electricity cost

by using the proposed home energy management systems in a real-time pricing market. To

enable the co-simulation of electric power system simulation tools, Bus.py (a Python-based

abstract software transmission bus interface) was designed and presented in Chapter 6.

The secondary area of research was resource allocation for parallel scientific applications

in high-performance computing. A combined dual-stage framework was presented in Chapter

7 for allocating heterogeneous compute resources with uncertain performance to parallel

scientific applications to maximize their performance. In the first stage, batch resource

allocation heuristics were used to allocate processors to parallel applications to maximize

the probability that they all finish by a given deadline. The second stage performs a finer-

grain optimization during runtime to minimize the application execution times given the

resources allocated from the first stage. A small scale example was given to show the benefit

of the dual-stage approach. The problem was improved and the first stage was studied

in greater depth in Chapter 8. A mathematical model was designed for the stochastic

execution times of moldable parallel applications that are assigned to heterogeneous parallel

resources, incorporating the change in execution times when applications are mapped to

different numbers of processors. A metric for robustness was proposed that combined the

uncertainty in application execution times and the uncertainty in machine performance.
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Three novel iterative greedy heuristics were designed to optimize for the robustness and

their benefit was shown by comparing to two heuristics from literature across a myriad of

system sizes.

9.2. Future Work

The future directions of this work lie in combining the system and end-user approaches.

To accomplish this, different tools from the bulk power market to the individual end-user

appliance must be co-simulated (enabled by Bus.py from Chapter 6). More end-user assets

with enhanced capabilities, such as distributed generation, electric vehicles, and thermal

loads (including their inherent uncertainty) should be considered and modeled.

In Chapter 3, a for-profit aggregator-based CPS was presented. Future work can extend

the CPS market structure, where each aggregator submits bids to a day-ahead DR market

that co-exists with the bulk power market. The ISO uses these inputs to determine the

day-ahead spot market prices and perform unit commitment and economic dispatch.

In Chapter 3, only one aggregator entity on one distribution system was considered. In

future work, the complex problem of multiple-interacting aggregators will be addressed. The

aggregators are spatially dispersed, existing on the distribution level, across a transmission

network. To fully quantify the meaningful impact of DR programs across a large geographi-

cal area and over long time periods, unique HPC simulation tools will be used. These tools,

including Bus.py, enable the parallel co-simulation of the transmission and distribution net-

works using MATPOWER and GridLAB-D, respectively.

The use of HPC is critical to the tractability of the future CPS studies. Fig. 9.1 shows

the proposed multi-core HPC simulation test bed. All transmission-level computations (i.e.,

power flow, markets, system information) occur at the master core. Each transmission
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bus simulates the associated distribution system using a GridLAB-D instance—each on a

separate core, communicating with the master core. Each distribution system contains one

or more aggregator simulations—each on a separate core. Let B be the number of load buses

and Di be the number of aggregators on bus i. The total number of cores required for the

simulation are 1 +B +
∑B

i=1Di.

Figure 9.1. The high-performance computing architecture and communica-
tion for the parallel simulation of the CPS. The transmission-level simulator
communicates voltages (Vi), locational marginal price (pi), and load (Li) to
and from each bus i. Each distribution bus i passes pi to each aggregator j
and receives a set of asset controls Ĉi,j.

The spatial network considerations are locational marginal pricing, bus voltages, and

line flows. The transmission system considered is the IEEE 118-bus test case. Data for

generators, bus loads, and weather come from real sources. Locational marginal pricing is

determined by the bulk power market with a simulated real-time pricing program at each

bus.

Another future consideration is sustainability in electric power systems. The underlying

premise of sustainability is “that economic well-being is inextricably linked to the health

of the environment and the success of the world’s communities and citizens” [155]. Ac-

cording to [156], the three pillars of sustainability are: economics (profits), environment
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(planet), and society (people). In 1999, a federal advisory committee propounded that en-

vironmental sustainability is the cornerstone of economic and societal sustainability [157].

In future work, methods for environmental sustainability through deferral of transmission

infrastructure investments and reduction of the output of dirty diesel peaking units, and

economic sustainability through the aggregator DR programs should be explored. Two new

metrics for quantifying the long-term wide-area impact of such programs on sustainability

are proposed here.

The first proposed sustainability metric quantifies the reduction in peak load through the

use of DR. Because, in a real power system, the peak before a DR action cannot be directly

measured, using the reduction in capacity factor of peaking generators (typically running

on “dirty” fuels such as diesel) is proposed as a proxy measurement for the environmental

benefit of peak reduction. In terms of peaking generators, to reduce the wholesale cost of

electricity and reduce environmental emissions, the capacity factor of the peaking generators

should ideally be zero. Let Cpk,ref and Cpk,τ be the capacity factors of the peaking generators

for a reference case (i.e., before DR was implemented) and the case of interest, respectively.

The proposed metric that addresses the environmental resilience pillar of sustainability is

given by Cpk,ref − Cpk,τ and should be maximized. The time interval considered for the

reference case and case of interest should be the same.

The second proposed sustainability metric is designed from the perspective of customer

economic well-being. Because there is information about the cost of electricity the customer

would have paid if not participating with the aggregator from Chapter 3 (i.e., the local

utility’s price), it is possible to calculate the customer savings. Let γ(i, d) indicate whether

(i.e., 1) or not (i.e., 0) asset i was rescheduled on day d, H be the number of days of interest,

I be the total number of assets, and ci,d,0 and ci,d,sch be the cost of using asset i on day d
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at the local utility price and customer-incentive price, respectively. The cost terms, ci,d,0

and ci,d,sch, are calculated using information about asset power, asset duration, and cost of

electricity. The proposed metric that addresses the economic demand pillar of sustainability

is quantified as

(64)
H∑
d=1

[∑I
i=1 [γ(i, d)ci,d,sch + (1− γ(i, d))ci,d,0]∑I

i=1 ci,d,0

]
.

Note this is an aggregate measurement for all customers, but it could easily be calculated

for each individual customer.
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APPENDIX A

Baseline Customer Loads

As described in Section 3.4.4.3, the non-schedulable baseline loads are generated using

Table A.1 from [46]. The penetration level indicates the probability that a given customer

owns a given load. If a customer does own a load, the rating is determined using a normal

distribution, N(µ, σ), with mean µ and standard deviation σ. The start time of the load

is determined by sampling either a normal distribution or a uniform distribution, U(a1, a2),

between a1 and a2. If the load is run multiple times in the day (i.e., occurrences > 1),

then the start time is sampled from each of the corresponding distributions. If the load is

continuous, the rating is assumed to be constant throughout the day.
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Table A.1. Baseline Appliance Model Parameters [46]

Appliance
Penetration

(%)
Rating
(kW)

Occur-
rences

Start time
(hour)

Duration
(15-minute
intervals)

Electric cooker 100 N(3.00,1.00) 2 N(12,1), N(18,1) 3
Water kettle 95 N(2.00,0.20) 2 N(8,1), U(14,18) 1
Dishwasher 95 N(1.60,0.10) 1 N(14,2) 4

Coffee maker 80 N(1.00,0.20) 2 N(7,1), U(14,18) 2

Microwave 85 N(1.00,0.10) 3
N(8,1), N(12,2),

N(18,2)
1

Toaster 92 N(1.00,0.10) 1 N(9,1) 2
Fridge-freezer 100 N(0.13,0.03) – – Continuous

Freezer 45 N(0.10,0.03) – – Continuous
Other kitchen

appliances
95 N(0.50,0.10) 3

N(8,1), N(13,2),
N(19,2)

1

Washing
machine

99 N(1.60,0.20) 1 U(8,20) 4

Laundry-dryer 80 N(2.50,0.25) 1 U(10,22) 5
Vacuum cleaner 97 N(1.50,0.50) 1 U(10,20) 2

Hair dryer 80 N(2.00,0.10) 2 N(8,1), N(18,2) 1
Circulation

pump
100 N(0.05,0.01) – – Continuous

TV 1 99 N(0.15,0.03) 2 N(13,5), N(19,2) 16
TV 2 80 N(0.15,0.03) 2 N(13,5), N(21,2) 8
PC 1 84 N(0.15,0.03) 1 N(14,7) 16
PC 2 40 N(0.15,0.03) 1 N(14,7) 8

Hi-fi system 81 N(0.03,0.01) 1 N(19,3) 4
Other goods 100 N(0.05,0.03) – – Continuous

Lighting 100 N(0.20,0.05) 2 N(7,1), N(19,3) 12
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APPENDIX B

Market Response Approximation

This appendix describes the market response from Chapter 3. Let sp(x) be the predicted

spot market price in cents/kWh for a given load x in MW. The sixth-order polynomial

approximation of sp(x) for ComEd within PJM for July 9, 2011, is given in (65). Note that

the regression fit is empirical over the domain x = [69200, 112000] MW and should not be

used for loads outside of these values.

(65)

sp(x) = 1.84× 10−26x6 − 9.60× 10−21x5+

2.07× 10−15x4 − 2.38× 10−10x3+

1.52× 10−5x2 − 0.516x+ 7230

for 69200 ≤ x ≤ 112000
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APPENDIX C

Parameters for Appliance Type Generation

For this simulation study, we set Na = 10, µp = 1 kW, σp = 0.25 kW, θt = 0.05, µd = 1

hour, and θd =0.5. This corresponds to an average appliance load of 1 kW and duration

of 1 hour. The coefficient-of-variation between appliance types (θd) is relatively large, while

the variation within an appliance type is small (θt). This is because there is usually a large

variation in the run times of different appliances, but when using the same appliance it

usually runs for similar times. For scaling the load, we set omin = 0.5 kW and omin = 6 kW.

This implies that at the ComEd system minimum, the house will be drawing approximately

500 W, and at the ComEd system maximum the house will be drawing approximately 6 kW.

These parameters may be changed to simulate differently rated households.
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APPENDIX D

AR + GARCH Model

For our AR+GARCH model for the POMDP-GARCH HEMS optimization method, we

set m = 504, P = 1, and Q = 3. These parameters come from previous research on power

system markets [88]. The values for the coefficients, provided in Table D.1, were determined

by minimizing the log-likelihood function using MATLAB. If a coefficient is missing, then

the corresponding value is 0.
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Table D.1. AR + GARCH Parameters

AR Coefficient Value
GARCH

Coefficient
Value

k -0.070 χ 0.960
m1 0.435 φ1 0.064
m2 0.072 q1 0.578
m3 0.074 q2 0.148
m4 0.012 q3 0.059
m5 0.033
m6 0.011
m22 0.031
m23 -0.025
m24 0.065
m25 0.007
m26 -0.013
m27 -0.032
m47 0.025
m48 0.009
m71 -0.003
m72 0.018
m73 -0.001
m95 -0.008
m96 0.011
m97 -0.003
m119 -0.014
m120 0.015
m121 0.008
m143 0.025
m144 -0.010
m145 0.022
m167 0.002
m168 0.038
m169 0.004
m170 -0.020
m191 -0.027
m192 0.029
m193 -0.015
m215 -0.018
m216 0.032
m217 0.004
m239 0.002
m240 -0.021
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AR Coefficient Value
GARCH

Coefficient
Value

m241 -0.018
m264 0.010
m287 -0.067
m288 0.038
m311 0.037
m312 0.015
m322 0.002
m336 0.030
m337 -0.021
m338 -0.006
m358 -0.025
m359 0.014
m360 -0.003
m408 -0.029
m503 -0.012
m504 0.001
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APPENDIX E

Customer Load Points and GIS Data

The customer load points for Chapter 5. Table E.1 describes the physical location of

each of the numbered nodes from the RBTS bus mapped onto Fort Collins, Colorado (in

Fig. 5.7). The coordinates are given in degree-minute-second format. The buses 22–47 are

nodes that contain customer loads, with the probability that each of the 5,555 customers

exist on a specific node given by “Prob.” The buses 1–21 do not contain customer loads and

as such do not have an associated probability of containing customers.
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Table E.1. Customer Load Points

Bus Latitude Longitude Bus Latitude Longitude Prob.

1 N40◦32’40.10” W105◦6’53.12” 22 N40◦31’58.21” W105◦6’53.12” 0.0335

2 N40◦33’21.94” W105◦6’53.12” 23 N40◦33’21.94” W105◦6’18.77” 0.0434

3 N40◦33’55.63” W105◦6’53.12” 24 N40◦33’21.94” W105◦7’37.52” 0.0503

4 N40◦34’29.15” W105◦6’53.12” 25 N40◦33’55.63” W105◦6’18.97” 0.0434

5 N40◦34’54.74” W105◦6’53.12” 26 N40◦33’55.63” W105◦7’47.86” 0.0503

6 N40◦32’12.37” W105◦5’44.32” 27 N40◦34’29.15” W105◦5’58.46” 0.0380

7 N40◦32’54.00” W105◦5’44.32” 28 N40◦34’29.15” W105◦7’47.68” 0.0380

8 N40◦33’19.85” W105◦5’44.32” 29 N40◦31’38.50” W105◦5’44.32” 0.0353

9 N40◦33’53.83” W105◦5’44.32” 30 N40◦32’12.37” W105◦6’18.34” 0.0281

10 N40◦34’19.89” W105◦5’44.32” 31 N40◦32’54.00” W105◦6’28.84” 0.0353

11 N40◦34’53.75” W105◦5’44.32” 32 N40◦33’19.85” W105◦6’38.85” 0.0353

12 N40◦32’38.08” W105◦4’36.43” 33 N40◦33’53.83” W105◦6’28.57” 0.0353

13 N40◦33’11.69” W105◦4’36.43” 34 N40◦34’19.89” W105◦6’18.60” 0.0503

14 N40◦33’45.66” W105◦4’36.43” 35 N40◦32’4.20” W105◦4’36.43” 0.0281

15 N40◦34’11.40” W105◦4’36.43” 36 N40◦32’38.01” W105◦5’10.92” 0.0335

16 N40◦34’52.93” W105◦4’36.43” 37 N40◦33’11.69” W105◦5’30.84” 0.0503

17 N40◦32’44.10” W105◦3’21.60” 38 N40◦33’45.66” W105◦4’1.92” 0.0281

18 N40◦33’25.32” W105◦3’21.60” 39 N40◦33’45.66” W105◦5’20.95” 0.0434

19 N40◦33’52.33” W105◦3’21.60” 40 N40◦34’11.40” W105◦5’31.15” 0.0281

20 N40◦34’17.85” W105◦3’21.60” 41 N40◦32’2.26” W105◦3’11.60” 0.0353

21 N40◦34’51.79” W105◦3’21.60” 42 N40◦32’44.18” W105◦2’47.19” 0.0434

43 N40◦33’25.32” W105◦2’37.45” 0.0335

44 N40◦33’52.33” W105◦2’26.82” 0.0503

45 N40◦33’52.33” W105◦4’6.23” 0.0335

46 N40◦34’17.85” W105◦3’55.85” 0.0380

47 N40◦34’17.85” W105◦2’22.90” 0.0380
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