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ABSTRACT 
 
 
 

VISUAL HULL METHOD FOR REALISTIC 3D PARTICLE SHAPE RECONSTRUCTION 

BASED ON HIGH-RESOLUTION PHOTOGRAPHS OF SNOWFLAKES IN FREEFALL 

FROM MULTIPLE VIEWS 

 
 
 

 Proposed and presented is a visual hull method and technique for reconstruction of 

realistic 3D shapes of snowflakes and other hydrometeors based on high-resolution photographs 

of particles in freefall from multiple views captured by a multi-angle snowflake camera (MASC), 

or another similar instrument. The visual hull of an object is the maximal domain that gives the 

same silhouettes as the object from a certain set of viewpoints. From the measured fall speed and 

the particle shape reconstruction, the particle density and dielectric constant are estimated. This 

is the first time accurate realistic shape reconstructions based on high-resolution photographs of 

real (measured) snowflakes are performed. The results are clearly much better than any similar 

data in the literature. They demonstrate – in experiments involved in real snow storm 

observations and those with simulated and fake 3D printed snowflakes – sufficient silhouette 

information from the five cameras of the expanded MASC system and excellent performance of 

the implemented mechanical calibration and software self-calibration of the system. In addition 

to enabling realistic “particle-by-particle” computations of polarimetric radar measurables for 

winter precipitation, the visual hull 3D shape reconstructions of hydrometeors can be used for 

microphysical characteristics analyses, hydrometeor classification, and improvement of radar-

based estimations of liquid equivalent snow rates. 
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1. Introduction 
 
 
 

In-situ measurements, remote sensing, and modeling of winter precipitation, which 

contains a large variability of ice particles, are being heavily investigated to better understand the 

microphysical characteristics of such particles [1, 2]. This paper focuses on in-situ measurements 

of hydrometeor shape, size, and composition using advanced optical instrumentation and 

methods, techniques of image and computational analysis, and processing of these measured 

characteristics to arrive at geometrical, physical, and scattering models of natural snow and ice 

particles. These models can further be processed and analyzed to compute realistic particle 

scattering matrices and full polarimetric radar measurables, namely, horizontal reflectivity, Zh, 

differential reflectivity, Zdr, linear depolarization ratio, LDR, specific differential phase, Kdp, and 

co-polar correlation coefficient, ρhv, to analyze microphysical characteristics of particles, 

perform studies of snow habits, and develop and use classifications of hydrometeor types.  

The use of dual-polarized radar observables in conjunction with the microphysical 

properties of ice crystals and aggregates has been demonstrated as a useful and promising 

approach to classification of winter precipitation [3]. Conversion of these idealized 

microphysical characteristics of ice particles into a model that can be used to compute a 

scattering matrix and in turn radar observables poses great challenges due to the large amount of 

uncertainty in how accurately the proposed models represent winter precipitation. For instance, 

the scattering matrix is influenced by the winter particles density, a parameter that can vary 

substantially based on the type of particle as well as other factors, and when an incorrect density 

is used, large errors can be introduced [4, 5]. Furthermore, assuming idealized spheroidal shapes 

for ice particles instead of the more complicated realistic three-dimensional (3D) shapes can also 
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cause errors in the scattering matrix and in the determination of the snow water equivalent 

(SWE) [6, 7]. Some scattering models assuming spheroidal shapes for plate or column-like 

crystals have shown consistency with radar measurements [6, 8, 9, 10, 11, 12].  

Kim showed that the use of spheroid approximations is only valid for smaller particles; as 

the snowflakes become electrically larger, the shape properties of the particles start to play a 

large role in scattering calculations [13]. Ishimoto performed the finite-difference time-domain 

scattering calculations of the backscattering cross-sections of ice particles using fractal based 

snowflake models [14]. These results showed large differences between equivalent-volume 

spheres and hexagonal columns, giving rise to the need for more accurate snowflake models. 

Furthermore, the evaluation of the sensitivity of snowfall characteristics at high frequencies, 

using idealized simulated snowflake models, indicated a need for a scattering database for large 

particles and aggregates as their shapes vary immensely and play a large role in determining 

snowfall characteristics [15]. Kim et al. created idealized ice crystal models in the form of 

hexagonal columns, four-arm rosettes, and six-arm rosettes, and used the discrete dipole 

approximation (DDA) method to calculate scattering effects of these geometries [16]. Multiple 

other papers present the use of the DDA method to compute single-scattering properties of 

synthetic randomly oriented idealized simple ice crystals. The results show that the scattering 

parameters of these idealized snowflakes are highly sensitive to shape and electrical size, again 

leading to the need for accurate and realistic models [16, 17, 18, 19, 20, 21]. Kuo et al. use the 

DDA method to compute the single-scattering properties of individual synthetic snowflakes, 

where each snowflake is simulated and averaged over 900 different directions [22]. These 

synthetic 3D snowflakes are created by a random aggregation, based on a sophisticated 

collection algorithm, of different pristine ice crystal models. The created synthetic 3D models 
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of aggregates have mass-versus-size and fractal properties that are consistent with field 

observations. A main conclusion of this work is that spherical particle models cannot be used to 

simulate single-scattering properties in a way that is consistent with the nonspherical snow 

particles of the same mass, across a very large frequency range, from 10 GHz to 183 GHz [22]. 

The discrepancies shown between complex snowflake models and spherical representations in 

this work give rise to the need for complex 3D models that accurately represent the snow that is 

falling at any given time.  

However, even for Rayleigh scattering, while an assumption of spheroidal shape may 

provide reasonable results for the computation of reflectivity Ze, it is not sufficient to accurately 

compute the full scattering matrix and the dual-polarization radar measurables such as Zdr, LDR, 

and hv [23]. So even at the S-band (all WSR-88D radars), these radar measurables, which play 

an integral role in radar-based particle classification schemes, are highly shape dependent; this 

once more leads to the need for better and more realistic models of the winter precipitation 

particles.  

Indeed, better and more realistic models of the winter precipitation particles can be 

obtained based on observations using advanced optical imaging disdrometers, which can record 

and measure actual geometrical shape, size, and composition properties of natural snowflakes 

and other hydrometeors in freefall. The 2D-video disdrometer (2DVD) measures fall speed along 

with projected hydrometeor views in two planes, namely, it gives two mutually orthogonal 

contour images of the particle, using high-speed line-scan cameras [24]. The multi-angle 

snowflake camera (MASC) captures high-resolution photographs of snow and ice particles in 

freefall from three views, while simultaneously measuring fall speed [25]. Teschl et al. used the 

2DVD to create reconstructions of a snowflake based on two orthogonal views [26]. The two 
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orthogonal contours obtained from the 2DVD are intersected with a sphere that just encases the 

recorded particle, and parts of the sphere that do not intersect with the contours are deleted. 

Huang et al. use a similar method of creating reconstructions of particles imaged by a 2DVD by 

modeling the particle as an ellipsoid that just encloses the boundaries of the two orthogonal 

views obtained from the 2DVD [27]. Work by Garret et al. has involved creating a separate 3D 

reconstruction of a snowflake for each individual MASC image by extruding the 2D silhouette of 

the image until an equivalent volume, based off an equivalent radius determined from the image, 

is reached [25].  

This paper proposes and presents a visual hull method and technique for reconstruction of 

realistic 3D shapes of snowflakes and other hydrometeors based on high-resolution photographs 

of particles in freefall from multiple views captured by a multi-angle snowflake camera. The 

visual hull of an object can be interpreted as the maximal domain that gives the same silhouettes 

as the object from a certain set of viewpoints. The 3D reconstructed snowflakes are represented 

by fine surface meshes of flat triangular patches, which capture a large amount of detail about 

the shape of the free-falling snowflakes. In order to improve the 3D reconstructions obtained 

from the visual hull method, two additional cameras are added to the three original cameras of 

the MASC, “externally,” to provide additional 3D spatial information about the hydrometeor’s 

shape. An improved mechanical calibration procedure of the MASC system involving all 

cameras of the system together is performed. Furthermore, a five-camera software self-

calibration of the MASC is performed, to obtain a matrix describing the cameras internal and 

external parameters, which is then used as an input to the visual hull code to correct for a non-

perfect mechanical calibration, a crucial step for the accuracy and reliability of shape 

reconstructions based on the MASC photographs. The fall speed measured by the MASC and the 
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horizontal cross-sectional projected area of the visual hull 3D reconstruction of the particle are 

used, along with state parameters measured at the MASC site, to estimate the particle mass, 

according to Böhm’s method [28]. From the mass and volume of the meshed particle, an 

estimate the density is obtained, and then the dielectric constant for each snowflake, based on a 

Maxwell-Garnet formula. These scattering models of snow and ice particles can be used for 

computation of realistic particle scattering matrices and full dual-polarized radar observables; for 

instance, this can be done using a computational electromagnetics technique based on the higher 

order method of moments (MoM) in the surface integral equation (SIE) formulation [29]. To be 

able to perform scattering analysis by the MoM-SIE scattering code, the visual hull generated 

triangular mesh is converted to a mesh with curved generalized quadrilateral patches [29]. In 

addition, from these triangular patch meshes, representing realistic complex 3D shapes of snow 

and ice particles, the volume, surface area, shape characteristics, and spatial complexity of the 

hydrometeor are able to be computed, all extremely useful for various microphysical 

characterizations of winter precipitation.  

Although this paper presents the methodology and technique for reconstruction of 

realistic 3D shapes of snowflakes and other hydrometeors based on MASC images, it can be 

adapted for use in conjunction with any other instrument providing high-resolution photographs 

of particles in freefall from multiple views. In addition, while the results in the paper are mostly 

for the snowflake shape reconstructions using five photographs of a hydrometeor collected by 

five cameras of the improved five-camera MASC system, the proposed technique can be applied 

to any number of photographs obtained by any number of cameras that provide sufficient spatial 

information about the object for the desired or sufficient accuracy of the reconstruction.  
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In addition to enabling realistic computation of “particle-by-particle” scattering matrices 

and polarimetric radar measurables for winter precipitation, the 3D shape reconstructions of 

hydrometeors by the proposed visual hull technique, in conjunction with the MASC or another 

similar instrument, can as well be used for studies of snow habits, for advanced analyses of 

microphysical characteristics of particles, and for hydrometeor classification. Finally, more 

accurate and realistic estimates of the particle volume, mass, and density, in conjunction with 

measurements of the particle size distribution (PSD), can significantly improve the radar-based 

estimation of liquid equivalent snow rates near the surface. 
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2. Multi-Angle Snowflake Camera, Modified MASC System, MASCRAD 
Instrumentation Site 
 
 
 

The context of the proposed and presented visual hull method for reconstruction of 3D 

shapes of snowflakes and other hydrometeors is constituted by remote sensing observations and 

surface measurements, followed by analysis, of winter precipitation at an in-situ instrumentation 

site such as the newly built and established surface instrumentation field site for the MASCRAD 

(MASC + Radar) project [30, 31, 32, 33]. The MASCRAD Field Site, shown in Figure 1, at the 

Easton Valley View Airport, in La Salle, near Greeley, Colorado, includes a double wind fence 

housing a multi-angle snowflake camera (MASC), a two-dimensional video disdrometer 

(2DVD), a PLUVIO snow measuring gauge, a VAISALA weather station, and several other 

advanced instruments, such as a precipitation occurrence sensor system (POSS) and a 

meteorological particle spectrometer (MPS), as well as the collocated NCAR GPS advanced 

upper-air system sounding system trailer. These instruments operate under the umbrella of the 

state-of-the-art polarimetric weather radar, CSU-CHILL Radar, with the instrumentation site 

being very conveniently located at a range of 12.92 km from the radar.  

At the heart of the MASCRAD project is the MASC, shown in Figure 2, which is a new 

instrument for capturing high-resolution photographs of snowflakes in freefall from three views, 

while simultaneously measuring their fall speed [25]. For Colorado State University’s 

customized system, the horizontal resolution is 35µm for all three cameras and the vertical 

resolution at 1-m/s fall speed is 40µm, and the virtual measurement area is 30cm2. It has three 

identical cameras, 5 Megapixel (MP) Unibrain Fire-i 980b digital cameras, with identical lenses, 

Fujinon 12.5 mm. In a MASC, the angular separation in the horizontal plane between each of the 

two adjacent cameras is 36 and the camera-to-common focal center distance of 10 cm. Particles 
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that fall through the lower near-IR emitter-detector pair array simultaneously trigger each of the 

three cameras and the bank of LEDs. In addition to taking pictures, at a maximum triggering rate 

of 2 Hz, the fall speed of a particle is calculated from the time taken to traverse the distance 

between the upper and lower triggering arrays, which are separated vertically by 32 mm. In order 

to improve the 3D reconstruction obtained from the visual hull method, two additional lower-

resolution cameras (1.2 MP Unibrain Fire-i 785b cameras, with 12.5-mm lenses) were added to 

the MASC, “externally” on an elevated plane with respect to the original three MASC cameras, 

as shown in Figure 2, to provide additional views – this will be discussed in detail later in the 

paper. Figure 3 shows three examples of MASC snowflake five-image sets collected at the 

MASCRAD Field Site.  

 
Figure 1. Field Site: MASCRAD Snow Field Site at Easton Valley View Airport, near Greeley, 
Colorado: 2/3-scaled double fence intercomparison reference (DFIR) wind shield housing 
various surface instrumentation; shown are MASC, 2DVD, Pluvio gauge, and MPS. 
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Figure 2. MASC: Multi-angle snowflake camera (MASC), with three cameras in horizontal 
plane for capturing high-resolution photographs of snowflakes in freefall and measuring their fall 
speed; CSU MASC system has two added “external” cameras (in temperature controlled 
enclosures) on an elevated plane, at about a 55° angle above horizon, to improve 3D 
reconstruction of snowflakes.  
 

 
Figure 3. Example Flake Images: Three example sets, in three horizontal panels, of five 
photographs of three different snowflakes collected by five cameras of the new five-camera 
MASC system, in Figure 2, at the MASCRAD Field Site, in Figure 1. Each hydrometeor, in each 
horizontal panel, is imaged from five different views. 
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3. Visual Hull Method for 3D Shape Reconstruction of Snowflakes from 
Multiple Images 
 
 
 

Proposed is the use of the visual hull geometrical method to reconstruct 3D shapes of 

hydrometeors based on the sets of five (or a different number) photographs obtained by the 

MASC (see Figure 1-Figure 3), or another similar instrument, and the corresponding 2D 

silhouettes of an object [34, 35]. This enables realistic computation of “particle-by-particle” 

scattering matrices, and can as well be used for studies of snow habits, for advanced analyses of 

microphysical characteristics of particles, and for particle classifications. The visual hull of an 

object can be interpreted as the maximal domain, or largest volume, that gives the same 

silhouettes as the object when viewed from a certain set of viewpoints (theoretically, from any 

viewpoint) [36]. The visual hull is obtained as an intersection of five visual solid cones formed 

by back-projecting, from the set of viewpoints, the previously found silhouettes in the 

corresponding image planes situated in front of the cameras, as illustrated in Figure 4. The visual 

cone of each silhouette refers to the projected volume of space extending from the camera’s lens 

that the observed object lies completely inside. A limitation of the visual hull method is the 

inability to capture concave features due to these features not affecting the silhouette obtained 

from each image. This leads to the perfectly calibrated visual hull always being an overestimate 

of the object’s volume as will be shown in the calibration section. In particular, an open-source 

MATLAB, C++ Visual Hull Mesh Code, which generates a visual-hull mesh from silhouette 

images and associated camera parameters, created initially for identifying stones based on certain 

shape parameters obtained from 3D reconstructions is used [37]. This code has been modified to 

work for the purpose of reconstructing snowflakes which are of a much smaller size scale. 
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Figure 4. VH Method: Illustration of visual hull method with three cameras and their 
corresponding silhouettes projected and intersected with each other to obtain a 3D shape 
reconstruction of a hydrometeor. 
 

The intersection of the visual solid cones creates a surface that reconstructs the 

hydrometeor’s geometry. Each visual solid cone creates at least one closed surface region on the 

exterior of the hydrometeor’s geometry; more than one surface region per visual cone is created 

if there are holes, or air gaps, present in the hydrometeor’s silhouette. Points where the surface 

regions have a width of zero are called frontier points and are intersections of two or more visual 

solid cones. Frontier points lie directly on the actual hydrometeor’s surface and regions near 

these frontier points are very accurately reconstructed. It is desired to have frontier points well 

distributed over a sphere in order to accurately reconstruct arbitrary shapes. As will be shown in 

a later section, the positions of the original three cameras in the MASC did not create 

representative reconstructions of snowflakes so two additional cameras were added (Figure 2) to 

aid in the even distribution of these frontier points.  

Before the visual hull code can be run on a set of five (or three) images, a number of 

preprocessing steps must be taken to ensure quality 3D reconstructions. In order to determine 

what is part of the background and what is part of the foreground, a mean and standard deviation 
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of the background for all five (three) cameras is calculated over an hour period that corresponds 

to the image set being processed. The calculated mean and standard deviation are given as 

follows: 











N

i

i

N

i

i

imim
N

imSTD

im
N

im

1

2

1

)(
1

1
)(

1

 

where �̅݉̅̅̅  is the mean, STD is the standard deviation, imi is the matrix of the ith image, and N is 

the number of pictures within the hour of calculation. 

These calculated background values are used to subtract the backgrounds from the five 

images being processed to account for any variations in lighting conditions, changes in the 

background, the visible infrared bulbs, and all other variations that might occur from hour to 

hour and be mistaken as part of the foreground. Figure 5 shows an example of the mean and 

standard deviation calculated for use in background removal from MASC images. The IR bulbs 

used in sensing snowflakes can be seen by two of the five cameras (Figure 5, Cam3 and Cam 5) 

and appear as white dots in the image that visual hull will mistake for snowflakes. During 

daytime observations, the ground and DFIR fence slats (Figure 1) can be seen in the images. The 

background removal technique removes these bright spots, the fence slats, as well as other 

variations that might be mistaken for hydrometeors and allows for high quality reconstructions of 

snowflakes form the visual hull method.  
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Figure 5. Background Removal: Mean (top) and standard deviation (bottom) of MASC 
background images for five cameras over one hour period on December 26th, 2014, hour 18 
UTC. A total of 237 images were used in calculating the mean and standard deviation in this 
case. 
 

The majority of the images collected by the MASC contain more than one snowflake per 

image, as shown in Figure 6. Before these images can be processed by the visual hull method, 

the snowflakes need to be counted, separated, and matched. If the images are input into visual 

hull without any pre-processing, the visual hull code will fail to create reconstructions for every 

snowflake. To do this, an image processing code has been created that boxes and counts the 

individual snowflakes present in each of the five images. Edge detection techniques are used to 

find where the snowflakes start and background ends and a box is placed around each individual 

snowflake, as depicted in Figure 7. Each camera’s field of view (FOV) does not perfectly 

overlap, so the number of snowflakes imaged by each camera may be different. For the visual 

hull method to successfully create a 3D reconstruction, the snowflake must be present in each of 

the five camera’s FOV. After the snowflakes have been boxed, the number in each image is 

counted and the image with the least number of snowflakes present is selected as the “starting 

image” for visual hull. In Figure 7, the image that contains the least number of snowflakes is 

seen by Camera 5 and contains 3 snowflakes and is called the starting image. This starting image 

is then dived into individual images where each image only contains one snowflake, while the 

other snowflakes are blacked out and removed (Figure 8). Each of these separated individual 
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snowflakes, three in this example, are run through visual hull with the remaining four images. If 

these three snowflakes are present in the FOV of the other 4 cameras, a 3D reconstruction will be 

created for each of them.  

 
Figure 6. Multiple Flake Images: Examples of multiple-snowflake images recorded by the 
MASC from varying snow events, on December 26th, 2014 (left panel), February 16th, 2015 
(central panel), and March 3rd, 2015 (right panel), respectively. 
 

 
Figure 7. Boxing and Counting: Set of MASC images with snowflakes boxed and 
corresponding number observed in each image. Camera that contains the least number of 
snowflakes is used as starting image for visual hull, Cam 5 in this example.  The snowflakes 
were observed on March 3rd, 2015. 
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Figure 8. Starting Image: Camera 5 from Figure 7 split into 3 individual images with only one 
snowflake per image. 
 

Along with the five images input to the visual hull code, many parameters that define the 

camera properties and positions must also be defined and input to the code. These parameters 

include the camera rotation and translation in 3D space, called the extrinsic parameters, and the 

focal point, principal points, and distortion, called the intrinsic parameters. A self-calibration 

code described in the following section gives a way to accurately compute these extrinsic and 

intrinsic parameters. Other parameters given as inputs to the visual hull code include the 

resolution of each camera and the size of each camera’s charge-coupled device (CCD). For the 

CSU MASC (Figure 2), the original three “internal” cameras have a 5 MP resolution, 2448 x 

2048 pixels, a 12.5 mm focal point, a 2/3” CCD sensor, and a working distance (to the point at 

which the cameras are focused) of 10 cm. The additional two “external” cameras have a 1.2 MP 

resolution, 1288 x 964 pixels, a 12.5 mm focal point, a 1/3” CCD sensor, and a working distance 

of 16 cm.  

After background removal process, multiple-snowflake image preprocessing, and 

specification and input of all camera parameters, the working volume, i.e., the volume 
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intersection of all five camera’s FOVs, is discretized into voxels of a desired size to adequately 

represent the hydrometeor’s geometry. The five images are transformed into silhouettes made up 

of polygons of a desired size. The visual hull code then randomly searches for a center point of a 

voxel that can be projected to each of the five camera’s silhouettes that represents the snowflake 

within each of the images. Once a point is found, the code starts to build a voxel grid around the 

projected point until no more voxel center points can be projected to all five cameras. These 

voxels are then polygonised into a triangular surface mesh using the method developed by J. 

Bloomenthal [38].  After the 3D surface reconstruction of the hydrometeor is generated, it is re-

projected onto the 2D images as green silhouettes to check how well the geometry matches and 

represents the 2D images. An example of the 3D reconstruction from a set of five MASC 

photographs and the 2D re-projection of the reconstructed shape onto the original five images is 

shown in Figure 9. The size of the voxel grid and triangular mesh patch can be set to capture the 

desired amount of details and fine features, as depicted in Figure 10.  

 
Figure 9. 3D Reconstruction Example: Example of the visual hull 3D reconstruction of a 
snowflake (right) based on five MASC images (top left); the corresponding 2D re-projections of 
the 3D reconstructed shape onto images are also shown (bottom left). 
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Figure 10. Mesh Refinement: Visual hull 3D reconstructions of the same snowflake shown in 
Figure 9 using several decreasing voxel sizes. Number of triangular elements, volume (V), 
surface area (SA), and aspect ratio (AR) are given for each reconstruction.  
 

As can be seen in Figure 10, changing the voxel size in visual hull changes the volume, 

surface area, shape and aspect ratio of the snowflake.  Decreasing the voxel size leads to a more 

accurate representation of the snowflake at the expense of more computational time. To 

determine what voxel size should be used, a random set of snowflakes was reconstructed 

multiple times with a decreasing voxel size. The percent change after each refinement of the 

reconstruction’s volume and surface area are plotted in Figure 11. The level of refinement 

number corresponds to the number of divisions along one side of a box that bounds the working 

volume of the five cameras. After a level of refinement of 500, the change in volume, surface 

area, and aspect ratio is less than 5%, and for this reason a level of refinement of 500 is adopted 

as a general parameter in the method for all further reconstructions.  

 
Figure 11. Convergence of Mesh Refinement: Convergence of volume (left panel), surface 
area (central panel), and aspect ratio (right panel) of a random set of 150 snowflake 
reconstructions with a decreasing voxel size (increasing level of refinement). 
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The final 3D model is represented by a mesh of flat triangular patches. These triangular 

patch meshes, representing realistic complex 3D shapes of snow and ice particles, are used for 

scattering computations by means of the method of moments computational electromagnetics 

code, to obtain “particle-by-particle” scattering matrices and polarimetric radar observables. In 

addition, from these meshes, the volume, surface area, shape characteristics, and spatial 

complexity of the hydrometeor are able to be computed, all extremely useful for various 

microphysical characterizations of winter precipitation.  

As shown in Figure 2, the original MASC is a 3 camera system where all of the cameras 

are coplanar and separated by 36 with respect to each other in the azimuthal direction, covering 

only 72 in front of the object. The visual hull method works best when cameras are well 

distributed over a sphere and focused at the sphere’s center [39]. When looking at a large number 

of reconstructions generated when only using three coplanar cameras, the 3D reconstructed 

snowflakes from the three MASC photographs are, generally, not close enough to the real shapes 

of the hydrometeors. For this reason, two additional cameras were added to the MASC externally 

on an elevated plane, 55 with respect to the horizon and 72 away from the outer original 

cameras. The positions of these additional cameras were chosen based on two main 

requirements:  obtaining the most new information, i.e., new azimuthal angles and a different 

elevation plane; and the mechanical constraints of placing the cameras keeping in mind where 

the light sources are. Table 1 gives the azimuthal and elevation positions of all five cameras in 

the new MASC system. 
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Table 1. Camera Positions: Azimuthal and elevation angles of all five cameras in the new 
MASC system, in Figure 2. 

 Azimuth [degrees] Elevation [degrees] 
Camera 1 (original) 0 0 
Camera 2 (original) 36 0 
Camera 3 (original) 72 0 
Camera 4 (addition) 144 55 
Camera 5 (addition) 288 55 
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4. Mechanical Calibration and Software Self-Calibration of the Five-Camera 
MASC System 
 
 
 

The visual hull 3D reconstruction method assumes that the camera system is perfectly 

calibrated, meaning that the intrinsic and extrinsic parameters of the system are perfectly known. 

The extrinsic parameters refer to the rotation matrix, ܴ௜ and translation matrix, ݐ௜ for each of the 

five camera positions, and to the positions and orientations of the five cameras in physical space. 

The intrinsic parameters of the cameras refer to the focal length, principal points, and distortion, 

and are dependent on the camera body and the camera lens.  

These extrinsic and intrinsic parameters were initially estimated and input into the visual hull 

code. The estimation of the extrinsic parameters was based on the theoretical camera positions as 

determined by the manufacturer of the device. The intrinsic parameters were estimated using 

theoretical equations that relate them to the camera and lens parameters as follows:  

௥௘௦ܯ = ܴܸܱܨ , ௥௘௦ܯ = ௦ܲ ∗ ௦ܸܱܵܨ , ܴ = ݀௙ܲ௦  

 

ܸܱܨ = ʹ ∗ ݀௦ ∗ tan (�ܱܸʹ ) , �ܱܸ = ʹ ∗ arctan⁡ሺ ݀௙ʹ ∗ ݂ሻ 

 

ܴ = ͳͲͲͲ ∗ ͳͲ−6ʹ ∗ �ܲ ⁡ , ݀௙ = �ܲ ∗ ܴ⁡ 
 

with description of variables given in Table 2. 

Table 2. Camera Parameters: Description of variables used in intrinsic camera parameter 
equations, resulting in estimates for a starting point in the self-calibration software.  ܯ௥௘௦ ݊݋݅ݐݑ݈݋ݏܴ݁⁡݊݋ݎܿ݅ܯ 
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 ݈݀݁݅ܨ⁡݂݋⁡ℎݐ݌݁ܦ ܨܱܦ hܿݐ݅ܲ⁡݈݁ݔ݅ܲ ܲ� hݐ݃݊݁ܮ⁡݈ܽܿ݋ܨ⁡݁ݒ݅ݐ݂݂ܿ݁ܧ ݂ ሻܦሺͳ݁�݅ܵ⁡ݎ݋ݏ݊݁ܵ ሻ ݀௙݁ܿ݊ܽݐݏ݅݀⁡݃݊݅݇ݎ݋ݓ⁡ሺݐ݆ܾܿ݁ݑܵ⁡݋ݐ⁡݁ܿ݊ܽݐݏ݅ܦ ሻ ݀௦ܦܥܥ⁡݂݋⁡ݎ݁ݐ݁݉ܽݎܽ݌⁡ሺ݁�݅ܵ⁡݈݁ݔ݅ܲ ௦ܲ ݓܸ݁݅⁡݂݋⁡݈݁݃݊� ܸܱ� ݓܸ݁݅⁡݂݋⁡݈݀݁݅ܨ ܸܱܨ ሻܦ⁡ͳݏ݈݁ݔ݅݌⁡݂݋⁡ݎܾ݁݉ݑ⁡ሺ݊݊݋݅ݐݑ݈݋ݏܴ݁ ܴ
 

These estimations may be acceptable for 3D reconstructions of larger objects such as 

fruits or people; however, for the size scale of snowflakes, every pixel counts and they are not 

sufficient. The 3D reconstructions of snowflakes created using estimated intrinsic and extrinsic 

parameters are not representative of the actual snowflakes geometry. Reconstructions are rarely 

able to be created when these estimation of camera parameters are used. When projecting the 3D 

reconstruction, if it is able to be created, as silhouettes onto the original image set, the coverage 

of the re-projection is very poor and much of the snowflakes geometry is cut off and ignored. To 

fix these mismatches and poor reconstructions, mechanical and software calibrations of the 

camera system were implemented. 

The mechanical calibration procedure involves positioning the five cameras in such a 

way that they are focused on a single point as close as possible. To do this, instead of a standard 

procedure of using a target grid that is moved between all of the five cameras separately, one 

calibration grid is placed in the center of the observational area at a 30 angle so that it is 

completely visible to all five cameras simultaneously. A 5 x 5 calibration grid, with crosshairs in 

the center grid, created with known black and white box sizes of 5 mm, is used as the calibration 

target. The cameras are then individually run in a video mode so their image can be seen in real 

time on a computer screen. Using MB-Ruler, a reference grid is overlaid on the computer screen 

with crosshairs at the center of the screen [40]. For each camera, the camera mount is 
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mechanically adjusted, as precisely as possible, to overlap the physical crosshairs on the 

calibration grid with the crosshairs on the computer screen, as shown in Figure 12. The focal 

point of the camera is then adjusted to be as close to the center of the crosshairs as possible. The 

mechanical calibration allows for the depth of field (DOF) of all cameras to overlap as much as 

possible, which leads to a greater number of image sets where all 5 images are in good focus. 

Another parameter that is experimentally calculated based on the grid used in the mechanical 

calibration is the horizontal and vertical field of view (FOV) of the cameras. After mechanical 

calibration is complete, a new test to characterize the DOF and its relationship with the size of 

the particle was implemented based on previous work related to the snowflake video imager 

(SVI) [41]. The DOF along with the FOV are very important parameters used to calculate the 

observed volume, which is needed when calculating the particle size distribution of snowflakes 

from the individual cameras. 

 
Figure 12. Calibration Grids: Calibration grid used in the mechanical calibration for the five 
cameras (three main, original “internal”, MASC cameras and two additional, “external”, 
cameras, Figure 2): matching of the physical calibration grid in camera’s working volume with 
the grid on computer screen. 
 

However, even with this mechanical calibration procedure implemented, the visual hull 

reconstructions still miss parts of the snowflakes geometry, as shown in Figure 13. A software 

calibration was implemented to adjust for this imperfect mechanical calibration. Namely, an 

open source multi-camera software self-calibration is utilized with modifications to accurately 

estimate the internal and external parameters of each camera, which, in turn, are used to calculate 
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the position matrix, needed as an input for visual hull [42]. The main functionality and 

implementation of the self-calibration algorithm is laid out below. 

 
Figure 13. Re-projection Errors: 2D re-projections (green areas) of the 3D reconstruction of a 
snowflake over the images (gray areas) from the three original MASC cameras. Coverage of 
projections is poor due to an imperfect calibration of the camera system.  
 

The input to the self-calibration code is a collection of “point images” that adequately fill 

up the working volume of the cameras, i.e., the volume that is visualized by all five cameras 

simultaneously.  A thin bamboo stick that is painted black with a small white tip is moved 

around the working volume while the cameras are manually triggered. The projections of these 

points in each of the 2D images are initially detected by first computing the mean and standard 

deviation of the background and comparing the actual image to these computed background 

images. If the detected point is much larger than expected, if the pixels of the detected point are 

not connected, or if the detected point contains motion blur based on the eccentricity of the point, 

the image is discarded and is considered a mis-detected point. The detected points are resampled 

to obtain higher resolution and then a 2D Gaussian function is fit to the point to determine its 

position. Constraints based on epipolar geometry, in the form of geometric relations between 3D 

points and their 2D projections based on 2 cameras, further remove any mis-detected points. A 

random sample consensus (RANSAC) method is used to iteratively determine epipolar geometry 

of camera pairs and removes any points that do not fit within the epipolar constraints of the 

cameras. A scaled measurement matrix ௦ܹ is constructed as  
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௦ܹ = ௝௜ ௝௜ͳݒ௝௜ݑ] ] = ௝௜�௝� = ܲ��௝  

where �௝ corresponds to the 3D coordinates of the j detected points, �௝� are the pixel u-v 

coordinates, ݑ௝௜ and ݒ௝௜, of the 2D projected j points for camera i, ௝௜ is the projective depth for the 

jth point on the ith camera, and ܲ� is the projection matrix for the ith camera that contains the 

cameras position, internal parameters, and external parameters [42]. The variables being 

estimated in the self-calibration code are the projective depths ௝௜ and the projection matrices ܲ�
.  

Initially it is assumed that λ = 1 and then an estimate of the projective depth is obtained from the 

images iteratively according to the method of Sturm and Triggs to obtain the optimized⁡ ௦ܹ, and 

in turn the projection matrices ܲ� [43]. Once the projection matrices are known they can be 

decomposed into an internal and external parameter matrix, and a position matrix that is needed 

as an input to the visual hull code.  

This corrected position matrix is input into the visual hull code and is used to correct for 

the non-perfect mechanical calibration. After both mechanical and software self-calibration have 

been implemented, the projections of the 3D reconstructed geometries as silhouettes onto the 

original snowflake images show over 90% coverage in all cases, as can be seen in the results 

section.  

Another method to obtain the images needed for the software calibration code is being 

developed based on a similar calibration grid that is used for mechanical calibration, the only 

difference being the grid size is increased to 8 x 8 to facilitate the ease of obtaining multiple 

points. The calibration grid is moved around the measurement volume of the cameras while the 

cameras are manually triggered. The code is being modified to accept the grids instead of point 

images, and now treats each white square on the grid as the point images. A large enough set of 
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images is easily obtained due to the large number of white squares on the grid, and these images 

are input into the software calibration code. Once completed, this method will be much faster 

and will require much fewer input images, with 64 points per image, as compared to the method 

using the bamboo stick, which only contains one point per image and so requires a large number 

of images.  
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5. Meshing, Dielectric Constant Estimation, Scattering Analysis, and 
Automatization of Process 
 
 
 

Our scattering models of snow and ice particles and computation of realistic particle 

scattering matrices and full polarimetric variables are based primarily on the higher order method 

of moments (MoM) in the surface integral equation (SIE) formulation [29, 44, 45]. In this 

technique, the surface of a dielectric scatterer (precipitation particle) is modeled using 

generalized curved quadrilateral patches, with unknown electric and magnetic equivalent surface 

currents over the patches being approximated by means of known polynomial basis functions 

with unknown current-distribution coefficients. These coefficients are determined by solving 

surface integral equations (SIEs) based on boundary conditions for electric and magnetic fields 

on the surface of the particle, employing the Galerkin method.  

Since our MoM-SIE scattering code uses curvilinear quadrilateral meshes of particles, 

and the final output of the visual hull 3D reconstruction code is a mesh of flat triangular patches, 

a method based on ANSYS ICEM CFD meshing software has been created to convert the 

VHMC-generated mesh to a mesh with curved generalized quadrilateral patches [46]. Due to the 

number of snowflakes that need to be meshed, the ability to automate the meshing process was a 

necessity. ANSYS has the ability to be controlled via TCL scripts and batch files. This feature 

was utilized and TCL scripts were written to perform the multiple meshing steps within ANSYS 

all the way from file import to exporting a good quality mesh. The script file automates the 

multiple step process of obtaining a good quadrilateral mesh with no user input. First the STL 

(stereolithography) file obtained from the visual hull code is imported as a solid geometry 

instead of a triangular mesh. Then the geometry is checked for errors and a watertight volume is 

created. The size of the snowflake is analyzed and meshing parameters are specified based on 
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this size to create a mesh with the desired number of elements to adequately represent features of 

the geometry. A maximum element count can be set, and if the mesh exceeds this limit the 

snowflake is re-meshed using larger elements. The TCL script file was written to take as an input 

a folder containing multiple STL files and convert them to quadrilateral meshes with no user 

input. The script utilizes many of the built in mesh quality checks and auto repair features that 

ANSYS contains in order to correct any misshaped or poor quality elements. The mesh is 

checked for intersecting elements, negative determinants, size uniformity, and angles of 

connecting elements, as well as other parameters needed for a good quality mesh. Note that such 

mesh checks and improvements would be needed even if a scattering code based on a mesh of 

flat triangular patches as input were used.  

Figure 14 shows examples of 3D shape reconstruction of real snow particles using the 

VHMC code and ANSYS ICEM CFD meshing software. The script then extracts and saves node 

and element data that is needed for the MoM-SIE input file. These node and element files are 

passed to a MATLAB code that automatically reorders and formats the data to match the MoM-

SIE input file. The MATLAB code then creates a folder containing all of the MoM-SIE input 

files that are run via a batch file.  

 
Figure 14. VH and ANSYS Meshes: Visual hull 3D reconstructions of hydrometeors, shown in 
green, represented using triangular patches and the corresponding conversion of the 
reconstructions to quadrilateral meshes, shown in purple, using ANSYS meshing software.   
 

In addition to the realistic representation of the 3D shape of a hydrometeor, an estimate of 

its dielectric constant is needed, to be able to perform scattering computations using the MoM-

SIE code. From the triangular patch meshes (e.g., in Figure 9), the volume of the 3D 
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reconstructed particle is able to be computed, within the visual hull code, thus obtaining the 

volume estimation for the hydrometeor, which is needed for the estimation of the dielectric 

constant. Furthermore, the horizontal cross sectional drag information is obtained from the 3D 

particle reconstruction, i.e., the particle’s projected area presented to the flow, that is used in 

Böhm’s method, in conjunction with the recorded fall-speed of the particle and environmental 

conditions such as air density, viscosity, and temperature measured at the MASC site, to estimate 

the particle’s mass [28]. This is done similarly to the approach described in Huang et al. [27]. 

From the mass and volume, the effective density or porosity of the particle (snowflake) is 

determined, from which, in turn, its effective dielectric constant, r, is obtained based on a 

Maxwell-Garnet formula. Such r takes into account air inclusions and partly melted regions of 

ice crystals, apart from some of the porosity of the ice particle captured by the MASC/visual 

hull, along with its complex shape.  

Scattering analysis of the 3D reconstructed snowflakes, with the estimated dielectric 

constants, is performed on a particle-by-particle basis by means of the MoM-SIE method and is 

used to compute polarimetric radar measurables (Zh, Zdr, LDR, Kdp, and ρhv), which are then 

analyzed and compared against the corresponding data collected by the CSU-CHILL radar.  

Due to the large quantity of data collected, e.g., approximately 500,000 snowflakes captured and 

recorded at the MASCRAD Field Site (shown in Figure 1) during the 2014/2015 winter season, 

the data processing must be completely automatic from the collection of the image sets to the 

generation of the radar observables. To do this, a MATLAB control code was created that 

connects and automates all of the individual processes. The only user input is determining which 

snowflakes to process, in terms of snowflake IDs, a parameter defined during MASC image 

capture, or a time range. Once the range is specified, the image processing code that boxes, 
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counts, and separates snowflakes is run. The output of this code is used as an input to the visual 

hull code and triangular patch meshes are generated for all possible cases. These meshes are used 

in conjunction with the TCL script as an input to ANSYS meshing software, which performs re-

meshing as described above and outputs the corresponding quadrilateral patch meshes. The 

quadrilateral meshes are then converted into a suitable format that can be input into the MoM-

SIE scattering code, which, in turn, computes and outputs “particle-by-particle” scattering 

matrices. The final step is a conversion of these matrices into the polarimetric radar observables. 

The automatic process is outlined in Figure 15 below.  

 
Figure 15. Automatic Control Process Flow: Outline of steps of the automatic MASC/visual-
hull/meshing/scattering observation/analysis process for each collected and analyzed snowflake 
starting from collection of data to computation of radar observables. 
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6. Results and Discussion  
 
 
 

First, to test the accuracy of 3D reconstructions based on three cameras (three main, 

original “internal”, MASC cameras) vs. five cameras (with two additional, “external”, cameras) 

in Figure 2, simulated images of a sphere with a 3 mm diameter were generated and input into 

the visual hull code. The sphere was assumed to lie at the exact center of all cameras focal point. 

At this point, the micron resolution of the cameras, the size of each pixel in the image in 

micrometers, is 35.9 m for the 5 MP cameras and 89.6 m for the 1.2 MP cameras. This leads 

to the simulated 3 mm diameter sphere 2D image to have a diameter of approximately 83.5 

pixels and 33.5 pixels in the 5 MP, and 1.2 MP cameras, respectively. The volume, surface area, 

aspect ratio, and parameters relating to the deviation of the 3D points, nodes, of the reconstructed 

sphere were compared to the theoretical value. The results are shown in Table 3. 

Table 3. Sphere Reconstruction Comparison: Comparison of sphere reconstruction based on 
the original three-camera MASC and the new five-camera MASC (Figure 2). 

 3 Camera 5 Camera 
Volume [% Error] 27.03 5.31 

Surface Area [% Error] 27.35 6.43 
Aspect Ratio 0.5974 0.8569 

Average Deviation of Nodes 
from Surface [% Error] 

12.45 2.54 

Maximum Deviation of Nodes 
from Surface [% Error] 

66.79 26.98 

Standard Deviation of Nodes 
[mm] 

0.25 0.064 

Percent Nodes < 10% Error 
from Surface 

65.19 92.91 

Percent Nodes < 5% Error 
from Surface 

56.10 85.37 

Percent Nodes < 1% Error 
from Surface 

26.10 51.72 

 
As can be observed from Table 3, the five-camera MASC outperforms the three-camera 

MASC drastically with lower percent error in every category as well as having an aspect ratio 
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much closer to one. In both cases, the volume and surface area of the reconstructed sphere are 

overestimates of the actual values. The deviation from surface parameter gives a value relating to 

how far a node on the reconstructed geometry is from the actual theoretical sphere. A deviation 

from surface value of 0% indicates the reconstructed node lies exactly on the theoretical sphere’s 

surface. The camera positions and 3D views of the corresponding sphere reconstructions for the 

three- and five-camera MASC systems are shown in Figure 16 and Figure 17, respectively. The 

five-camera reconstruction more closely represents a sphere from the different angles as opposed 

to the three-camera version, which shows a diamond like shape in some views. 

 
Figure 16. 3 Camera Sphere Reconstruction: (three left panels) Three-camera sphere 
reconstruction viewed from three different spatial directions defined by (azimuth angle, elevation 
angle). (right-most panel) Spatial positions of the three cameras and their FOV intersection, i.e., 
measurement volume. 
 

 
Figure 17. 5 Camera Sphere Reconstruction: The same as in Fig. 16 but for five-camera 
sphere reconstruction.  
 

In order to further demonstrate and evaluate the improvement achieved by adding the two 

upper cameras, Figure 18 shows 3D visual hull reconstructions of several snowflakes of complex 

shapes, captured at the MASCRAD Field Site (Figure 1), based on photographs from three and 

five MASC cameras, respectively, along with the computed volume, surface area, and aspect 
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ratio values. As can be observed from the figure, the reconstructions based on five cameras all 

have smaller volume and surface area than the corresponding three-camera reconstructions. In 

some cases, as can be seen in Figure 18, the addition of the two cameras drastically changes the 

reconstructed shape. 

 
Figure 18. 3 Camera versus 5 Camera reconstructions: 3D reconstructions of five different 
recorded snowflakes based on three-camera (top panels) and five-camera (bottom panels) MASC 
instruments. For each reconstruction, the corresponding computed volume (V), surface area 
(SA), and aspect ratio (AR) are given as well. 
 

Next, to show how well the visual hull method can reconstruct complicated snowflake-

like shapes in cases where the actual shapes of the objects are known, fake snowflakes that were 

3D printed were dropped through the five-camera MASC. These fake snowflakes were created 

using 3D CAD modeling, so they have known volumes and surface areas. The images of these 

objects obtained by the MASC were run through the visual hull code and 3D reconstructions 

were generated. Sources of error in this method and measurement include the resolution of the 

3D printer, and the unknown volume and surface errors of the 3D printed snowflakes. Another 

source is dependent upon at what angle the fake snowflake falls through the MASC and how 

well it is resolved in each image. Namely, the volume and surface area of the 3D reconstructed 
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snowflake will somewhat vary depending on the entrance angle of the object as it is dropped 

through the MASC. The reconstructed shapes, their corresponding MASC images, the 2D 

projections of the 3D reconstructions, as well as comparisons between the volume, surface area, 

and aspect ratio of the reconstructions and the respective values of the 3D CAD models of 3D 

printed snowflakes, are shown in Figure 19, where very good results of the visual hull shape 

reconstruction can be observed in all cases. For reference, Figure 19 also gives the percent error 

with respect to the CAD models for the volume if the fake snowflakes are reconstructed using a 

spheroid approximation in place of the visual hull method.  
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Figure 19. 3D Printed Flakes VH reconstruction: Visual hull reconstructions of 3D printed 
fake snowflakes and the corresponding MASC images, along with the projections of 3D 
reconstructed shapes onto 2D images. Percent errors of the volume (V), surface area (SA), and 
aspect ratio (AR) of the 3D reconstructions relative to the V, SA, and AR values of the 3D CAD 
models of 3D printed snowflakes are given as well. The volume percent error with respect to the 
V of the CAD models is shown also for the reconstructions of fake snowflakes using spheroids 
instead of the visual hull method. 
 

Further, Figure 20 shows 20 examples of 3D reconstructions of different snowflakes 

collected at the MASC site, near Greeley, Colorado, during a snow event that occurred on 

February 23rd, 2015. For each snowflake, the five images (photographs) obtained by the modified 

MASC system are shown along with the 3D reconstructed shape triangular mesh obtained by the 

visual hull method and its back projections onto the original images, as well as the information 

about the volume, surface area, and aspect ratio of the reconstructed snowflake. Observed from 

the results, is an ability of the presented visual hull method to successfully and accurately 
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perform 3D reconstruction for snowflakes of very realistic, complicated, and diverse shapes and 

compositions, and very different sizes and complexities, which in addition to demonstrating the 

power of the visual hull approach, confirms – in experiments involved in a real snow storm 

observation – availability of sufficient silhouette information from the five cameras of the 

modified MASC system for 3D reconstruction and excellent mechanical and software self-

calibration of the system. Also observed is an almost perfect re-projection of the 3D 

reconstruction of every snowflake and excellent coverage of the projections of the 3D 

reconstructed geometries as silhouettes onto the original snowflake images (the green areas 

practically perfectly cover the gray areas for all snowflakes and all five images for each 

snowflake).  
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Figure 20. VH 3D Reconstruction Results: 20 examples of 3D visual hull reconstructions of 
different snowflakes collected at the MASCRAD Field Site (Fig. 1) during a February 23rd, 
2015 snow event. For each snowflake, the five photographs from the modified MASC system 
(Fig. 2) are shown along with the 3D reconstructed shape triangular mesh and its back 
projections onto the original images. To the right of each 3D reconstruction, the calculated 
volume (V), surface area (SA), and aspect ratio (AR) of the mesh are given as well.  
 

Figure 21 shows illustrative results of the MASC/visual-hull/meshing/scattering 

observation/analysis methodology and codes for an individual snowflake captured during a snow 

storm on February 21st, 2015 at the MASCRAD Field Site. As can be seen, the computed LDR 

and Zdr single-particle values (given just for illustration) agree well with those measured 

simultaneously by the CSU-CHILL radar. These results illustrate one of the end goals of using 

the visual hull method for 3D shape reconstructions of snow and ice particles. 
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Figure 21. Scattering Results: Illustrative results of MoM-SIE scattering calculations based on 
the MASC (Figure 2) images of a snowflake captured at the MASCRAD Field Site (Figure 1) 
during a snow event on February 21st, 2015 and the resulting visual hull 3D shape reconstruction, 
in comparison with the corresponding CSU-CHILL radar range height indicator (RHI) plots of 
LDR and Zdr at the same time. The site is at the 12.92-km range from the radar (white “×” 
marker in the plots).  
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7. Conclusions 
 
 
 

This paper has proposed and presented a visual hull method and technique for 

reconstruction of realistic 3D shapes of snowflakes and other hydrometeors based on high-

resolution photographs of particles in freefall from multiple views captured by a multi-angle 

snowflake camera, or another similar instrument, and the corresponding 2D silhouettes of an 

object. The 3D reconstructed snowflakes, represented by fine surface meshes of flat triangular 

patches, enable realistic computation of “particle-by-particle” scattering matrices, and can as 

well be used for studies of snow habits, for advanced analyses of microphysical characteristics of 

particles, and for particle classifications. They capture a large amount of detail about the 

hydrometeor shape that simple approximations miss. Hydrometeor shapes vary greatly from 

snowflake to snowflake during a winter event as has been shown in the results section. The 

visual hull method captures all of these variations and gives a set of reconstructions that 

adequately represent the snowflakes present at any point during the storm.  

Preprocessing steps aimed to ensure quality 3D reconstructions such as the background 

removal and handling of multiple-snowflake images have been described. With the 

implementation of image processing techniques, lighting conditions that vary throughout the day 

and night have no effect on whether or not reconstructions of hydrometeors can be made. An 

improved mechanical calibration procedure of the MASC system has been created, using one 

calibration grid completely visible to all five cameras of the system simultaneously, instead of a 

standard procedure with a target grid being moved between the cameras separately. A technique 

for five-camera software self-calibration of the MASC system has been developed, to generate 

the projection matrices, internal and external parameter matrices, and a corrected position matrix, 
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which is input into the visual hull code in order to correct for the non-perfect mechanical 

calibration. The image processing techniques employed in conjunction with the software 

calibration also allow for images that contain multiple snowflakes to be used instead of being 

thrown out due to mismatch problems previously encountered. The resulting visual hull code 

works for all types of snowflakes that the MASC can adequately image. The process has been 

completely automatized and streamlined from the handling of the MASC images, to the visual 

hull method and the creation of meshes that adequately represent features of the geometry, to the 

estimation of the dielectric constant, and finally the scattering analysis.  

The results have shown an ability of the proposed and presented visual hull method to 

successfully and accurately perform 3D reconstruction for snowflakes of very realistic, 

complicated, and diverse shapes and compositions, and very different sizes and complexities – 

collected at the MASCRAD Field Site, near Greeley, Colorado. The experiments have included 

demonstrations and evaluations of the improvement achieved by adding the two upper “external” 

cameras to the three original, “internal”, MASC cameras. Tests have been carried out of the 

accuracy of visual hull 3D reconstructions based on simulated images of a sphere, of a known 

diameter, as well as on images of 3D printed fake snowflakes of complicated shapes created 

using 3D CAD modeling, dropped through the improved five-camera MASC, where it is 

possible to perform comparisons between the volume, surface area, and aspect ratio of the 

reconstructions and the respective values of the 3D CAD models of 3D printed snowflakes. Very 

good results of the visual hull shape reconstruction have been observed in all cases, including 

excellent coverage of the 2D back projections of the 3D reconstructed geometries as silhouettes 

onto the original snowflake images. All the results, in addition to demonstrating the power of the 

visual hull approach, have confirmed – in experiments involved in real snow storm observations 
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and those with simulated and fake 3D printed snowflakes – availability of sufficient silhouette 

information from the five cameras of the modified MASC system for 3D reconstruction and 

excellent mechanical and software self-calibration of the system.  

This is the first time accurate realistic reconstructions of 3D hydrometeor shapes of 

winter precipitation based on high-resolution photographs of real (measured) snowflakes are 

performed. When compared to other existing methods and techniques for generating geometrical 

and physical models of the winter precipitation particles based on observations by advanced 

optical imaging disdrometers, the results presented in this paper are clearly much better than any 

snowflake 3D realistic-shape reconstruction data in the literature. In particular, when compared 

to the work in Teschl et al., the horizontal resolution of the 2DVD for the current production 

model is 150µm, which is not sufficient to resolve details of the complexity of ice particles in 

winter precipitation, and there is, of course, a distinct advantage in obtaining photographs 

relative to the 2DVD contours [26]. The MASC camera resolution is three or more times higher 

than the 2DVD resolution and the MASC also has more angles of view, and both these facts 

allow for the visual hull method to provide more detailed reconstructions than the method used 

by Teschl et al. [26]. For the similar reasons, the MASC/visual hull approach is substantially 

advantageous over the ellipsoid models of snow particles obtained from 2DVD contour images 

in Huang et al. [27]. When compared to the work in Garret et al., by use of the visual hull 

method, all the images in a set together are related and a reconstruction that conforms to all the 

different angular views of the snowflake is created [25]. This provides a much more accurate 3D 

reconstruction of the snowflake than the model obtained by extruding the 2D silhouette of a 

single MASC image in Garret et al. [25].  
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Future work will include MASC/visual-hull/meshing/scattering analyses of data collected 

at multiple snow events observed at the MASCRAD Field Site, as well as the use of the 3D 

shape reconstructions of hydrometeors by the visual hull technique, in conjunction with the 

MASC instrument, for studies of snow habits, for advanced analyses of microphysical 

characteristics of particles, for hydrometeor classification, and for improvement of the radar-

based estimation of liquid equivalent snow rates. 
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