
DISSERTATION

A VECTOR MODEL OF TRUST TO REASON ABOUT TRUSTWORTHINESS OF

ENTITIES FOR DEVELOPING SECURE SYSTEMS

Submitted by

Sudip Chakraborty

Computer Science Department

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2008

UMI Number: 3332727

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3332727

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

July 3, 2008

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER

OUR SUPERVISION BY SUDIP CHAKRABORTY ENTITLED A VECTOR MODEL

OF TRUST TO REASON ABOUT TRUSTWORTHINESS OF ENTITIES FOR DEVEL

OPING SECURE SYSTEMS BE ACCEPTED AS FULFILLING IN PART REQUIRE

MENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Committee Member: Dr. Yashwant K. Malaiya

Co-Adviser: Dr. Indral Co-Adviser: Dr. Indrakjshi Ray

Adviser: Dr. Jhdrflsiit Ray

11

ABSTRACT OF DISSERTATION

A VECTOR MODEL OF TRUST TO REASON ABOUT TRUSTWORTHINESS OF

ENTITIES FOR DEVELOPING SECURE SYSTEMS

Security services rely to a great extent on some notion of trust. In all security mechanisms

there is an implicit notion of trustworthiness of the involved entities. Security technologies

like cryptographic algorithms, digital signature, access control mechanisms provide confi

dentiality, integrity, authentication, and authorization thereby allow some level of 'trust'

on other entities. However, these techniques provide only a restrictive (binary) notion of

trust and do not suffice to express more general concept of 'trustworthiness'. For example,

a digitally signed certificate does not tell whether there is any collusion between the issuer

and the bearer. In fact, without a proper model and mechanism to evaluate and manage

trust, it is hard to enforce trust-based security decisions. Therefore there is a need for more

generic model of trust. However, even today, there is no accepted formalism for specify

ing and reasoning with trust. Secure systems are built under the premise that concepts

like "trustworthiness" or "trusted" are well understood, without agreeing to what "trust"

means, what constitutes trust, how to measure it, how to compare or compose two trusts,

and how a computed trust can help to make a security decision.

To help answer such questions, this dissertation proposes a new vector model of trust.

The model has several powerful features such as the ability to numerically evaluate different

parameters influencing trust and to express different degrees of trust quantitatively, the

ability to model the dependence of trust on time and on trust itself, and the formalization

of trust comparison and trust composition operations. This work also formally defines trust

hi

context and relationships between different contexts and shows the importance of these in

trust evaluation.

The primary contributions of the dissertation are: (1) A flexible quantitative model of

trust based on different parameters and providing multilevel of trust. The model is exten

sible as the parameters are independent to each other. Addition of new parameters does

not affect the other features of the model. The model can evaluate trust even when all the

relevant information to do so is not available. (2) Formalism of trust context and relation

ship between different contexts. This formalism can help to make reasoned decisions about

trust in a context when no information is available for that context. These demonstrate

that the model is useful in making fine-grained security related decisions in different secu

rity contexts where other mechanisms or other trust models are not sufficient to make such

decisions.

The effectiveness of the model is validated by estimating the relative trustworthiness of

two security solutions (namely, cookie solution and filtering mechanism) to denial of service

attacks in an e-commerce platform and comparing the outcome with the result known from

practice. Trust-based decision making in different security scenarios are also discussed to

show potential application of the model.

Sudip Chakraborty
Computer Science Department
Colorado State University
Fort Collins, Colorado 80523
Summer 2008

IV

ACKNOWLEDGEMENTS

It is my privilege to convey my sincere thanks and gratitude to the people who have

helped me, directly or indirectly, to complete this dissertation. Their positive influence has

made this journey, for the past five years, much easier.

First, I would like to thank my advisor Dr. Indrajit Ray and co-advisor Dr. Indrakshi

Ray for being my advisors and my mentors. They have introduced me to the domain of

computer security, have helped me to develop my research and teaching skills, and moti

vated me to publish my work in the best places. Their valuable guidance and thoughtfulness

has helped me to overcome the difficulties in my academic as well as personal life. Without

their continuous support, encouragement and guidance, this dissertation would not have

been possible. Thank you Dr. Indrajit and Dr. Indrakshi for my professional grooming and

helping me achieving this degree. I would also like to thank my graduate committee mem

bers, Dr. Yashwant Malaiya from Computer Science Department and Dr. John Hoxmeier

from Computer Information Systems Department for their time and valuable input on the

directions of my research.

A special word of appreciation to staffs at Computer Science Department. Carol Calli-

ham and Sharon Van Gorder have helped me to deal with official aspects in timely manner

while Kim Judith helped me to resolve the financial issues. Thanks to Lisa Knebl for her

guidance and help to prepare job application package. I am indebted to Dr. James Peterson

and Dr. Willem Bohm for helping me to deal with last minute bureaucratic issues.

I am thankful to my friends and colleagues at Colorado State University and in Fort

Collins for their friendship and support. They have always encouraged me during hard

times and I have always found them when I wanted to share even a small achievement. I

v

want to extend my sincere thanks to Dr. Sudipto Ghosh of Computer Science Department

for always helping me in difficult situations in my professional life as my professor and in

my personal life as my friend.

I would like to thank my family for making me who I am today. I thank my dearest

wife, Poulomi Ghatak, for her love, patience, understanding and faith on me. Without her

continuous inspiration this journey would have been a difficult task. Thank you Mamon for

keeping my spirit high during hard times. My sincere respect and love go to my parents.

Thank you Baba and Ma for giving priority to my well-being over your own interests. A

special thanks to my father for being my idol, and for inculcating the significance of honesty

and hard work in life, which has been a foundation for my life.

Finally, I would like to thank the sponsors of my research. Funding from Federal Avia

tion Administration, Air Force Research Lab and Air Force Office of Scientific Research has

helped us to manage the research-related expenses as well as has helped me to get financial

support as a research assistant. I am also thankful to Department of Computer Science at

Colorado State University for providing me financial support as teaching assistant.

VI

To my loving wife Poulomi, for always being there for me.

vn

/

TABLE OF CONTENTS

1 Introduction 1

1.1 Notion of Trust 5

1.2 Overview of Problem Description and Motivation 6

1.3 Objective and Significance 8

1.4 Dissertation Organization 9

2 Related Work 11

2.1 Different Definitions of Trust 11

2.2 Different Models of Trust 14

2.2.1 Trust Models using Forms of Logic 14

2.2.2 Trust Models using 'Direct' and 'Indirect' Information to Evaluate

Trust 15

2.2.2.1 Yahalom et al.'s Work 16

2.2.2.2 Beth et. al.'s Work 17

2.2.3 Models Treating 'Trust' and 'Reputation' Synonymously 17

2.2.3.1 Abdul-Rahman and Hailes Model 18

2.2.3.2 Aberer and Despotovic Framework 18

2.2.3.3 PeerTrust Framework 20

2.2.3.4 Selcuk et. al.'s Work 22

2.2.3.5 Anomaly Detection Technique-based Model 23

2.2.4 Trust Models using Direct 'Experience' to Evaluate Trust 25

2.2.4.1 EigenTrust framework 26

2.2.5 Probability-based Models 28

2.2.6 Manchala's Work 28

viii

2.2.7 Belief-based Models 29

2.2.7.1 J0sang's Model 29

2.2.7.2 Bacharach and Gambetta's Work 29

2.2.7.3 Trust Model based on Dempster-Shafer Theory 30

2.2.8 Graphical Approach to Model Trust 31

2.2.9 Trust Model using Attributes to Evaluate Trust 32

2.2.10 Bayesian Network-based Model 32

2.3 Discussion 34

2.3.1 Scenario 1 35

2.3.2 Scenario 2 36

2.3.3 Limitations of Existing Models 36

3 The Vector Trust Model 39

3.1 Overview of The Model 39

3.1.1 Qualitative vs. Quantitative Approach 41

3.1.2 Trust Dynamics &; Propensity to Trust 42

3.2 Trust Parameters 43

3.2.1 Interactions 43

3.2.2 Properties 43

3.2.3 Reputation 44

3.2.4 Recommendation 45

3.3 Trust Evaluation 46

3.3.1 Evaluation of the Parameters 46

3.3.1.1 Evaluating Interactions 46

3.3.1.1.1 Comparison of Interaction with Bayesian Reputa

tion System 49

3.3.1.2 Evaluating Properties 51

3.3.1.3 Evaluating Reputation 52

3.3.1.4 Evaluating Recommendation 54

ix

3.3.2 Simple Trust Vector 56

3.3.3 Normalizing the Trust Vector 56

3.3.4 Value of the Normalized Trust Vector 57

3.3.5 Trust Dynamics 58

3.3.6 Trust Vector at Present Time 62

3.4 Comparison Operation on Trust Vectors 63

3.5 Combination Operation on Trust Vectors 65

3.5.1 Trust Relationship between a Truster and a Group of Trustees . . . 67

3.5.2 Trust Relationship between a Group of Trusters and a Single Trustee 70

3.5.3 Trust Relationship between a Group of Trusters and a Group of Trustees 73

3.5.4 Reconfiguration of a Group 74

3.5.4.1 Reconfiguration of a Trustee Group 74

3.5.4.2 Reconfiguration of a Truster Group 75

3.6 Summary 76

4 Reasoning about Trust Relationships in Different Contexts 78

4.1 Context Ontology 79

4.1.1 Relationships between Contexts 80

4.1.1.1 Specialization Relation 80

4.1.1.2 Composition Relation 81

4.1.1.3 Context Graphs 82

4.1.2 Computing the Degree of Specialization and Composition 84

4.1.2.1 Computing Degree of Specialization 84

4.1.2.2 Computing Degree of Composition 85

4.1.3 Closest Context 86

4.1.4 Relationships between Context Graphs 88

4.2 Evaluating Trust without Complete Information 94

4.2.1 Extrapolating Trust Values from Related Contexts 94

4.3 Summary 98

x

5 Validation 99

5.1 Evaluating Trust Level of a Security Solution 101

5.1.1 Evaluating Knowledge Score of an Information Source 102

5.1.1.1 Reference Knowledge Domain Model 102

5.1.1.2 Information Source Knowledge Domain Model 105

5.1.1.3 Calculating Knowledge Score 107

5.1.2 Evaluating Expertise Score of an Information Source 107

5.1.3 Computing Information Source Trustworthiness 108

5.1.4 Computing Trust Level of a Security Solution 109

5.2 Evaluation 109

5.2.1 Discussions on the Evaluation 117

6 Application Scenarios 120

6.1 Trust-based Access Control Mechanism 120

6.1.1 Motivation 121

6.1.1.1 Background 123

6.1.2 TrustBAC model 126

6.1.3 Access Control using TrustBAC 131

6.1.3.1 Computing Properties 132

6.1.3.2 Computing Interactions 133

6.1.3.3 Computing Recommendation 133

6.1.3.4 Regarding Reputation 133

6.1.4 Computing User's Trust 134

6.1.5 Architecture of Trust-based Access Control System 134

6.2 Trust-based Routing in Pervasive Computing 136

6.2.1 Motivation 137

6.2.1.1 Background 139

6.2.1.2 Our Proposition 140

6.2.2 Overview of Trust-based Routing Protocol 141

xi

6.2.2.1 Cost Function 143

6.2.3 Trust Metric 144

6.2.3.1 Computing Properties 144

6.2.3.1.1 Measuring Signal Strength 145

6.2.3.1.2 Measuring Stability Factor 145

6.2.3.1.3 Measuring Properties 146

6.2.3.2 Computing Recommendation 146

6.2.3.3 Computing Reputation 146

6.2.3.4 Computing Interactions 147

6.2.3.4.1 Evaluating Packet Forwarding Interaction 147

6.2.3.4.2 Evaluating Rating Interaction 148

6.2.3.4.3 Evaluating Interaction 148

6.2.3.5 Computation of Final Trust Value 149

6.2.4 Data Path Discovery 149

6.3 Allowing Finer Control over Privacy using Trust 152

6.3.1 Background and Motivation 153

6.3.2 Preserving Privacy Using The Trust Model 155

6.3.2.1 Computing Properties 157

6.3.2.2 Computing Interactions 159

6.3.2.3 Computing Recommendation 159

6.3.2.3.1 Trusted Neighbors 160

6.3.2.4 Computing Reputation 160

6.3.3 Privacy Context 161

6.3.3.1 Privacy Context Ontology 162

6.3.3.1.1 Relationship Between Privacy Contexts 163

6.3.3.2 Privacy Context Similarity Graph 163

6.3.4 Reasoning about Privacy Preferences and Trust in Different Privacy

Contexts 164

6.3.5 Extrapolating Privacy Preferences from Similar Privacy Contexts . . 167

xii

6.3.6 Extrapolating Trust from Similar Privacy Contexts 167

6.4 Summary 169

7 Conclusions 170

7.1 Contribution and Significance 170

7.2 Future Work 173

References 175

xm

LIST OF TABLES

3.1 Comparison of I and E(9) 51

3.2 Comparison of I and E(8) with 10 intervals 51

5.1 Example of calibration variables for determining the expertise level for an infor

mation source 109

5.2 The combined knowledge and expertise level questionnaire and the information

provided I l l

5.3 Recommendation about the security solutions by the experts 116

xiv

LIST OF FIGURES

1.1 Online travel reservation & purchase system 3

1.2 Collaborative network defense system 4

3.1 Trust relationship 40

3.2 Graph showing the nature of trust dynamics 60

3.3 Decay in trust (and distrust) for varying percentage threshold at constant time

instants 60

3.4 Decay in trust for varying time instants with fixed percentage thresholds 61

4.1 Context graph showing specialization &; composition relationships 83

4.2 Computing the degree of specialization 85

4.3 Computing the degree of composition 86

4.4 Unrelated context graphs 88

4.5 Context graphs having subsumes relation 91

4.6 Incomparable context graphs 92

5.1 Filtering mechanism 101

5.2 Reference knowledge domain model 103

5.3 The reference knowledge domain model 112

5.4 Information source knowledge domain model for expert 4, 6, 15, and 18 114

6.1 TrustBAC model 127

6.2 Architecture of trust-based access control system 135

6.3 Pervasive computing environment involving remote event detection and action

triggering 138

xv

6.4 Trust relation between nodes and the corresponding cost on the link 142

6.5 Example of a privacy context similarity graph 164

xvi

Chapter 1

Introduction

Information technology is increasingly driven by the requirements of confidentiality, in

tegrity, availability, and usability of systems and information resources. These are primary

requirements for securing systems and we have mechanisms like certificates, cryptographic

techniques, authentication and authorization mechanisms to achieve these requirements.

Rasmusson and Jansson [RJ96] have named these traditional information security mecha

nisms as "hard security". These "hard" mechanisms return binary result - either "good" or

"bad". For example, if a certificate is verified then the certificate-bearer is assumed to be

benign, otherwise malicious; if a program is digitally signed, it is assumed to be developed

properly. However, different factors (e.g., malicious intentions of entities, collusion among

entities, incompetence) make it difficult to guarantee the above assumptions. As pointed

out by Abdul-Rahman and Hailes in [ARH97], "Cryptographic algorithms, for instance,

cannot say if a piece of digitally signed code has been authored by competent programmers

and a signed public-key certificate does not tell you if the owner is an industrial spy." This

shows that the 'hard' security mechanisms are not adequate to reason about uncertainties

involved in different security scenarios. Therefore, we need an alternative "soft" approach

which can reason about certain level of uncertainty involved in different security contexts.

Rasmusson and Jansson [RJ96] have used the term "soft security" to denote the security

mechanisms using social control to reason about uncertainties. The notion of 'trust' pro

vides such reasoning, where certain level of 'trustworthiness' of an entity indicates the level

of assurance that the entity will behave according to one's expectations. This justifies the

1

need to incorporate trust in current security services such that the security decisions are

guided by reasoning about the trustworthiness of the entities. Many a times we use the term

"trusted" to mean secure, or dependable, or reliable. This concept of 'trusted system' can

arise in open environments like the Internet or in other types of regular networks connecting

several systems together. Let us first discuss one of the ways the notion of 'trust' arises in

the Internet.

The Internet is currently used as one of the primary means for exchanging information.

There is a significant growth in recent years in the use of Internet for requesting and offering

different services in several domains (e.g., business, education, health care etc.). This

growth, consequently, makes large-scale open systems like virtual organizations, peer-to-

peer networks, and other e-commerce applications more popular in these domains. However,

unlike conventional systems, which rely more on direct interactions, the Internet relies on

the virtual identity of entities involved in the interaction. Communication through the

Internet may involve heterogeneous entities that include actual human beings, machines,

applications, or processes running on a machine. That is, the communication may be

between humans, human and machine, or machine and machine. Nonetheless, we assume

that these passive entities like machines or applications involved in a communication, are

under control of active entities like humans. Since we have assumed involvement of humans

in these interactions, any entity, irrespective of its nature (i.e., active or passive), can be

benevolent as well as malevolent. Therefore, both end-parties involved in an interaction,

before releasing sensitive information (e.g., resources from service-provider side, credentials

from user side), want to have some guarantee that the interaction would be fair. This type

of guarantee would help the entities to view the system as 'trusted' according to their own

perspectives and consequently, would help them to take appropriate decisions regarding

dissemination of information. However, due to the anonymous nature of the Internet, it is

not easy to have such guarantee. The problem aggravates as number of service providers for

a specific service is large and there are potentially unbounded number of users to seek such

services. We illustrate this by considering a more specific example (online travel reservation

system, as shown in Figure 1.1). There are several sites (e.g., Travelocity.com, Orbitz.com,

2

http://Travelocity.com
http://Orbitz.com

Figure 1.1: Online travel reservation & purchase system

Priceline.com, Expedia.com etc.) which provide different travel related services like hotel

booking, air-ticket reservation and purchase, renting car, etc. to users. On the other

side, there are millions of users who use Internet to interact with these service providers.

The user's dilemma is: Which service provider is more likely to provide the best service?

The service provider, on the contrary, tries to find the answer to the questions like Is the

user benign? To what level the user can be relied to have access to the services? Making

appropriate decisions about the next actions by the user or making intelligent authorization

decisions by the service provider in this type of applications are not easy. Therefore, there

is a need for mechanisms that alleviate these problems (i.e., which can help the users and

the service providers to find the answers to their respective questions).

Let us consider a second example. We consider the example of a collaborative network

defense system deployed within a network. A schematic diagram of the system is shown in

Figure 1.2. A major component of the system is a distributed network intrusion detection

(NID) module that can gather information from other network intrusion detection systems

deployed elsewhere on the network that are under separate administrative controls. The

NID module monitors the local network for possible intrusion scenarios and also seeks

information about intrusion alerts from some of the other similar modules deployed in

other parts of the network. The module then analyzes the information and advises the local

administrator about the possibility of a network attack in the near future. The other NID

3

http://Expedia.com

Figure 1.2: Collaborative network defense system

modules behave in a similar manner. However, problem can arise as these NID modules

can be attacked and compromised. Therefore, the local administrator needs some assurance

that the NID module is providing correct intrusion alerts. Also, since the local NID's ability

to provide an accurate description of the activities is dependent on the behavior of the other

NIDs, the administrator needs to make appropriate decision about the dependability of the

composed information provided by the NID module. The local NID also needs to have

certain level of reliance on the other NIDs deployed elsewhere for the information that it

gathers from them. Because, it may be too naive for the local NID to have complete faith

on other NIDs. Here are several situations where this will be the case. Assume that one

of the remote NIDs bears a certificate from an independent testing agency that attests to

the fact that the NID application was submitted by its developer for testing and has been

found to be free of malicious code and other defects. However, the certification agency may

not have followed proper procedure in the certification process; the certification agency's

own credentials may have been revoked but the information may have not trickled down to

the end user, or the developer may have tweaked with the software after the certification.

Under such circumstances although the certificate attests to the competence of the system,

it does not mean much. This, again, shows that there is a need for mechanisms to assess

the level of assurance about the behavior of other entities.

The above two examples show that in current information technology, it is not always

sufficient to use traditional security mechanisms to make appropriate security related deci

sions. We need mechanisms which will allow us to reason about the uncertainties involved

4

in such decisions. Measuring 'trustworthiness' of entities involved in the system provides

a social control over the security decisions as the notion of trust can reason about certain

level of uncertainties.

1.1 Notion of Trust

'Trust' is a socio-psychological concept, which is used everyday in human society. According

to Merriam-Webster dictionary, trust is defined as

"An assumed reliance on some person or thing. A confident dependence on the character,

ability, strength or truth of someone or something."

That is, trust gives one entity to have some kind of confidence or assurance about

another entity to behave or act according to the expectation of the former entity. Thus,

in our previous example of interaction between a service-provider and a user, if the service

provider can establish a trust relationship with the user in the context of the interaction, then

it has some assurance that the user will be benevolent to a certain degree. This assurance

will also help the service provider to take appropriate access control decisions. Alternatively,

a similar trust relationship from user to service provider will give the user some confidence

about the service provider to provide him/her the service he/she is expecting. This trust

will also influence the user's decision to choose a specific service provider. Therefore, there is

a need for establishing such mutual trust relationships between a service-provider and a user

to mitigate the problem mentioned in the above discussion. However, establishing such trust

relationships are not easy, as we do not have any scope of traditional, face-to-face contact

to establish trust in electronic world. Similarly, in the example of collaborative network

defense system, if an administrator can impose a trust on the NID, it will help him/her to

measure his/her confidence on the NID and thereby will help him/her to take appropriate

decisions about the next actions. Mutual trust relationships between the cooperative NIDs

address the problem discussed in the example. Nonetheless, in this example, the problem is

how to establish trust between a human (administrator) and a machine (NID) or between

two machines (cooperative NIDs). In both the examples, traditional security mechanisms

like certificates can provide some notion of trust. However, this notion of trust is restrictive

5

(binary) and is not suitable to make more reasoned decisions about 'trustworthiness' of the

systems.

The above discussions show that we need a flexible mechanism to establish and evaluate

multilevel trust in electronic world. There is a plethora of work which explores estab

lishment and evaluation of trust in open systems like the Internet and systems involving

heterogeneous entities. Nonetheless, these works vary from each other in terms of semantics,

representation, evaluation, and management of trust and make it difficult to use the notion

of trust in designing trustworthy systems. The next section summarizes the problem and

presents an overview of our motivation in this research.

1.2 Overview of Problem Description and Motivation

It is clear from the above discussions that the notion of trust is cornerstone of information

security. Intuitively, trust allows one to qualify one's level of assurance on the perceived or

measured security of a system involving different entities. Secure systems are built under

the premise that concepts like "trustworthiness" or "trusted" are well understood, without

agreeing to what "trust" means, how to measure it, and how to compare or compose two

trust values. The problem arising from this lack of agreement is two fold. First, it is

difficult to make reasoned security related decisions using one's level of assurance about

trustworthiness of a system without having precise methods of measuring, comparing or

composing trust. Defining precise methods to evaluate trust is important for deployment

of trust in designing secure systems. Most of the existing research is not clear about these

methods. Second, it is difficult for systems using different semantics and representations

of trust to function in a cooperative manner. For example, a system may view entities'

past experience as trust and another may use entities' reputation to build trust. These two

systems work fine individually. Nevertheless, it is hard to make these two systems function

in a cooperative manner to measure trustworthiness of an entity in some application. Also

it is difficult to reason about the relative performance of the two systems in measuring

trustworthiness as the trust levels indicated by the two systems are based on two different

notions. Analyzing the existing research, we observe the following:

6

1. Most of the existing trust models use parameters, based on specific meaning, to eval

uate trust, thereby making them suitable for specific environment. Also, the models

are not extensible to accommodate other parameters. Hence, there is a need for a

flexible trust model which is generic enough to accommodate different parameters

and is applicable in different environments.

2. Many of the trust models view trust as a binary notion - 'complete trust' or 'no trust'.

Though this type of representation is intuitive and may be suitable for certain purpose,

it is definitely not suitable for making fine-grained decision about trustworthiness.

Therefore, we need to move ahead from this binary paradigm to a better and finer

representation of trust.

3. Most of the trust models do not clearly specify how a trust is measured. Specifying

precise methods and algorithms of measuring and updating trust is important to

implement trust in real systems.

4. Most of the proposed models ignore to specify the factors that influence trust. Identi

fying definite factors influencing trust is needed to define a good trust model. Other

wise, it would be difficult to judge what might affect the trustworthiness of a system

build around the trust model.

5. The existing trust models do not propose any precise method or algorithm to compare

two trust levels. Comparison is left on the intuition of the user that is, it is assumed

that 'very trustworthy' is better than 'trustworthy' or trust level 0.8 is better than

trust level 0.6. Composition of two trust is ignored. Therefore, precise methods of

comparison and composition of trust levels are need to be developed.

6. Most of the existing models do not discuss how the models can reason about trust

worthiness in different security contexts. There is no formalism of trust context.

7. Last but not the least, existing mechanisms are not suitable for reason about trust

worthiness when all relevant information are not available or when the available in

formation is ambiguous.

7

1.3 Objective and Significance

Motivated by the above issues, we propose a trust model that can be used to make more

reasoned decision regarding trustworthiness of systems. For this purpose, we believe, a

quantitative approach is more suitable. Quantifying trust through numeric values helps to

define fine-grained trust levels alleviating finer trust-based decisions. Also, mathematical

operations on levels of trust can be defined that allow proper comparison of levels from

different domains and combine them. Therefore, goals in this dissertation research can be

summarized as:

1. To propose a new model of trust that will reason about trustworthiness of an entity

in a more reasoned manner. In particular, the model should be capable of

(a) providing an answer to the problem arising from the semantic mismatch among

various trust models. That is, the model should be generic enough to incorporate

different interpretations of trust such that systems having different meanings of

trust can function in a cooperative manner. In particular, the model should

incorporate different parameters arising from different interpretations and should

be easily extensible to accommodate new parameters.

(b) evaluating different factors that influence trust as well as measuring the overall

trust using the evaluated factors. The evaluation mechanism should be flexible

enough to accommodate user's specific preferences regarding trust evaluation.

(c) comparing trust imposed on different entities. The model should have a method

to compare two trust relationship established in same context as well as in dif

ferent but similar contexts.

(d) defining mechanisms to compose two or more trust relationships. The mecha

nisms should consider different scenarios of compositions. For example, when a

particular truster wants to compose trust relationships with two or more differ

ent trustees. Another scenario is when a group of entities forms a coalition and

wants to combine their individual trust relationship with a particular trustee.

8

(e) capturing importance of the underlying context in trust evaluation. In partic

ular, the model should be able to reason about trustworthiness even when the

information is incomplete or ambiguous in a context.

2. Another goal is to check the validity of the aforementioned model by comparing the

result using it, in a security context, to the result known from practice.

3. Last but not the least, this dissertation investigates the applicability of the model as

a decision aid in different security scenarios. For example, how the model can be used

to make access control decisions in open systems or, how the model helps to find a

secure path for sending packets in an ad hoc network etc.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows:

• Chapter 2 presents the literature review. It includes, in Section 2.1, a list of definitions

of trust that have been proposed by researchers from several disciplines followed by

Section 2.2, presenting different models proposed by scholars. We focus on the models

proposed within information science domain and categorize the models according to

the interpretation of trust used in these models.

• Chapter 3 presents the details of the proposition. In this chapter we discuss the

definition of trust, representation of trust, formalism of trust parameters and the

methods to evaluate them, and dynamics of trust. In Sections 3.4 and 3.5, we present

the approach proposed for addressing trust comparison and trust composition.

• Chapter 4 discusses how we can reason about trust in different contexts. The chapter

includes formal definition of context and a context ontology describing relationships

between contexts, context graph, and 'closeness' (or, similarity) among different con

texts.

9

• Chapter 5 proofs the effectiveness of the model by evaluating relative trustworthiness

of two security solutions of denial of service attacks in an e-commerce system. Result

found corroborates the fact known from practice.

• Chapter 6 discusses application of the trust model as decision-aid in three different

security contexts. Section 6.1 shows applicability of the model to make access control

decisions in open systems. Section 6.2 presents a trust-based routing scheme in per

vasive computing environment. Section 6.3 discusses how the model can be used to

allow finer control over user privacy on the Internet.

• Finally, Chapter 7 concludes this dissertation. Sections 7.1 summarizes the contribu

tions and importance of this dissertation and Section 7.2 concludes the dissertation

with a pointer to the future directions.

10

Chapter 2

Related Work

Researchers from several disciplines have given significant attention to the notion of trust.

Sociologists (Luhmann [Luh79], Meeker [Mee84], Baier [Bai86], Shapiro [Sha87], Good

[GooOO]) and psychologists (Deutsch [Deu60], [Deu73], Swinth [Swi67], Rotter [Rot67],

Mathews et al.[MS79], Sato [Sat88]) have been doing research on trust for quite a long

time. Scholars from economics (Dasgupta [Das88], Humphrey and Schmitz [HS96]), man

agement (Zand [Zan72], Driscoll [Dri78], Zaheer et al.[ZMP98], Adler [Adl05], Lewicki et

al.[LTG06]), and marketing research (Andaleeb [And92], Brashear et al. [BBBB03]) also

have explored influence, interpretation, and use of trust in these areas. Prom mid to late

90's, theorists from computer and information science have been taking interest in trust

research. During recent years, this interest has grown several times and as a result we have

an abundant amount of works on trust in computer science. These works can be broadly

classified into three distinct areas (i) trust models, (ii) trust management and negotiation

and (iii) application of trust concepts. In this dissertation, we are primarily interested in

trust models. Consequently we focus our discussion on this aspect of the literature. But

before that, let us present the diversity in the definitions of trust.

2.1 Different Definitions of Trust

Following is a list of definitions among several that can be found in literature:

In [Zan72], Zand defines trust as

' ' t h e wi l l ingness to be vulnerable based on pos i t ive expectat ions about the

11

act ion of o t h e r . ' '

Mayer et al. [MDS95] defines trust in a similar fashion as

''the willingness of a party to be vulnerable to the actions of another party

based on the expectation that the other will perform a particular action

important to the trustor, irrespective of the ability to monitor or control

that other.''

According to Morton Deutsch [Deu73], trust is

' ' t h e confidence tha t one w i l l find what i s desi red from another, r a the r t ha t

what i s f e a r e d . ' '

In his book "Logic and Limits of Trust" [Bar83], Bernard Barber expresses trust as

' ' expec ta t ion of the pers i s tence and fulf i l lment of the na tu ra l and soc ia l

o r d e r s . ' '

Barber also emphasizes that there are two meanings of trust. First is "trust as the expec

tation of technically competent role performance" and the second is "trust as expectation of

fiduciary obligation and responsibility, that is, the expectation that some others in our social

relationships have moral obligations and responsibility to demonstrate a special concern for

other's interest above their own."

Lewis and Weigert [LW85] posit that trust can be represented as

' ' obse rva t ions tha t ind ica te t h a t members of a system act according to and

are secure in the expected futures cons t i tu ted by the presence of each other

for t h e i r symbolic r e p r e s e n t a t i o n s . ' '

Barney and Hansen [BH94] view trust as

' ' t h e mutual confidence t h a t no par ty to an exchange w i l l exploi t ano ther ' s

v u l n e r a b i l i t y . ' '

Curral and Judge [CJ95] affirm that trust is

12

''an individual's reliance on another party under conditions of dependence

and risk.''

In [KC98], Kini and Choobineh express trust, using concepts like belief and opinion, as

' ' a bel ief tha t i s influenced by the i nd iv idua l ' s opinion about ce r t a in

c r i t i c a l system f e a t u r e s . ' '

In a technical report of The European Commission Joint Research Center [JM99], Jones

and Morris defines trust as

' ' t h e property of a business r e l a t i o n s h i p , such t h a t re l i ance can be placed

on the business pa r tne rs and the business t r ansac t ions developed with t h e m . ' '

In their survey on trust [GSOO], Grandison and Sloman define trust as

' ' t h e firm bel ief in the competence of an e n t i t y to act dependably, r e l i a b l y

and securely within a spec i f ic c o n t e x t . ' '

Mui et al. propose a probabilistic view of trust in [MMH02]. They define trust as

' ' a subject ive expectat ion an agent has about ano the r ' s future behavior based

on the h i s to ry of t h e i r e n c o u n t e r s . ' '

We end this list with the definition given by Avizienis et al. [ALRL04]. They define trust

to be accepted dependence where

' ' . . . the dependence of system A on system B, [thus] represents the extent to

which system A's dependabil i ty i s (or would be) affected by tha t of system B . ' '

Prom the above list of definitions it is evident that view of trust is widely varying among

scholars from different fields. This type of varying semantics have been used in different

trust models also. We discuss some of the trust models proposed within computer and

information science domain.

13

2.2 Different Models of Trust

Researchers have proposed several models of trust. In these models they have used their

own interpretation and representation of trust. Methodologies to express and evaluate trust

also differ from model to model.

2.2.1 Trust Models using Forms of Logic

A number of logic-based formalisms of trust have been proposed by researchers. Almost all

of these view trust as a binary relation. Forms of first order logic [BAN90, JSS97, JFOO],

and modal logic or its modification [Ran88] have been variously used to model trust in these

cases. Simple relational formulas of the form Taf, (stating a trusts b) are used to model

trust between two entities. Each formalism extends this primitive construct to include

features such as temporal constraints and predicate arguments. Given these primitives and

the traditional conjunction, disjunction, negation and implication operators, these logical

frameworks express trust rules in their language and reason about these properties.

Rangan [Ran88] proposes a model using modal logic approach where the modal operator

used is 'belief of an agent. He views trust as "a proper axiom added to the logic of belief i.e.,

any WFF that is assumed to be valid in addition to the axioms in the logic." The simple

trust statement, in this model, is of the form Bif meaning agent i believes proposition

/ , where / is a well-formed formula. In his model a distributed system is a collection of

agents communicating with each other by message passing. The state of an agent is the

agent's message history. The state of the systems is the state of all agents. Rangan uses

modal logic to define a set of properties of the trust statements like transitivity etc. These

constructs are then used to specify system and analyze them with respect to the property of

interest. The general approach to obtain trust in a system is done by encoding the required

security properties of the system as well-formed formulas in the language of the belief logic.

He asserts that "the required trusts are such that in the theory obtained by adding the

trusts to the belief logic, the security properties are theorems." Though the formalism of

trust, in this model, is based on properties of mathematical logic, it also makes the model

14

very abstract. One of the difficulties with the model is it requires translation of security

properties of a system as well-formed formula in logic to obtain trust. The model also does

not provide method to measure trust levels, or methods to compare and/or compose trust.

Burrows et al. propose a logic-based formalism of trust (called BAN-logic) [BAN90] that

can be used for verification of correctness of security protocols, especially authentication

protocol. They follow similar approach as Rangan and translate steps of a security protocol

as logical formulas. These are then manipulated using first-order logical rules like "P believes

X", "P sees X", "P controls X" etc. where P is a principal and X is a statement. The model,

like Rangan's model, is very abstract and too complex to be used in reality. The logical

rules specified in the work are rather intuitive and there is no proof that they are true.

Another major problem of the model is that it can verify the trustworthiness of a security

protocol only when it is performed according to the specification. The BAN-logic fails to

verify the correctness of a security protocol if it is executed in an unconventional manner.

Jones and Firozabadi [JFOO] identify "that there are at least two different types of

trust: trust in an agent's ability, and trust in the reliability of the information transmitted

by an agent." In their work, they address the issue of reliability of an agent's transmission.

They use a variant of modal logic, which is termed as "deontic logic" to model various

trust scenarios like "b's belief that a sees to it that m". They also use their language to

model the concepts of deception, where an agent a tries to make another agent b believe

a proposition which a himself does not believe. They also use the same logical constructs

to model the concept of an entity's trust in another entity and correctly assert that this

trust is not always transitive. However, the model suffers from the same type of problems

as in Rangan's or Burrows et al.'s model. Use of variant of mathematical logic makes the

concept of trust very abstract, thereby making it difficult to reason about trustworthiness.

2.2.2 Trust Models using 'Direct' and 'Indirect' Information to Evaluate
Trust

Several existing trust models use direct as well as indirect information to derive trust. Direct

information is obtained from the experience or interactions between agents or entities.

15

Indirect information is typically collected from third parties, that is, these information

are some type of feedback provided by others. Though the underlying semantics of these

information are same ('experience' for direct information and 'recommendation' for indirect

information), the models vary in naming, collecting, and managing these information.

2.2.2.1 Yahalom et al.'s Work

Yahalom et al. [YKB93, YKB94] propose a formal model for deriving new trust relation

ships from existing ones. In [YKB93] the authors propose a formal model for expressing

trust relations in authentication protocols, together with an algorithm for deriving trust re

lations from recommendations. The authors propose seven different classes of trust, namely

identifying entities, quality random key generation, keeping secrets, not interfering, clock-

synchronization, performing correctly algorithmic steps and providing recommendations.

Being trusted for a particular class means that an entity can be trusted to perform a spe

cific task. Each of these classes of trust can have two types of trust: 'direct trust' and

'recommendation trust'. Direct trust is when an entity trusts the other entity without in

cluding an intermediary in the trust relationship. Recommendation trust involves trusting

an entity based on a recommendation of a third party. There can be multiple trust rela

tionships between the same pair of entities. Trust with respect to one of the seven classes is

independent of trust with respect to another class of trust. In [YKB94] rules and algorithms

for obtaining public keys based on trust relationships are developed.

These works correctly identify the importance of direct as well as indirect information

for evaluating trust. The classes of trust captures the notion of 'trust context' where trust

in one context may differ from trust in another context. Consequently, they allow multiple

trust relationships between same pair of entities. However, neither of these works defines

trust itself. They use constructs like "A trustsc B" to denote that entity A trusts entity

B in the specific trust class C. But they do not specify how the trust is computed.

16

2.2.2.2 Beth et. al.'s Work

Beth et al. [BBK94] extend the ideas presented by Yahalom et al. to include relative trust.

The work presents a method for extracting trust values based on experiences from the real

world and also a method for deriving new trust values from existing ones within a network

of trust relationships. Such trust values can be used in models such as the ones by Yahalom

et al. The method proposed is statistical in nature. It is based on the assumption that all

trusted entities have a consistent and predictable behavior. To model degrees of trust, the

notion of "numbers of positive or negative experiences" is used. The authors posit that for

calculation of direct trust no negative experiences are accepted if an entity is to be trusted

at all. For recommended trust, on the other hand, negative experiences are acceptable.

This model improves the model proposed by Yahalom et al. by providing methods

to evaluate trust using 'number of experiences'. Nonetheless, the model suffers from the

assumption that negative experiences are ignored in calculating direct trust. If that is the

case then according to the trust expression proposed by the authors a direct trust level

can only increase. A consequence of this is that a long history of experience implies either

almost absolute trust or none at all. On the other hand, negative experiences are considered

for recommendation trust. Thus it is possible to have a relatively low degree of trust after a

long history. However, as shown by J0sang [J0s97], the expression for deriving recommended

trust is unsuitable in environments where the trustworthiness of entities is likely to change.

Further, the expression for deriving new direct trust from direct and recommended trust

appears to be counter-intuitive and can lead to a case similar to the following - "If you tell

me that you trust NN by 100% and I only trust you by 1% to recommend me somebody,

then I also trust NN by 100%" [J0s97].

2.2.3 Models Treating 'Trust' and 'Reputation' Synonymously

There have been several works which treat 'trust' and 'reputation' synonymously. These

works posit that an entity's 'reputation' indicates its 'trustworthiness'. In most of these

models reputation is computed based on experience, or recommendation, or some combina-

17

tion of both. Many of these models are proposed in decentralized systems like peer-to-peer

(P2P) environment.

2.2.3.1 Abdul-Rahman and Hailes Model

In [ARH97], Abdul-Rahman and Hailes propose a trust model for decentralized system.

Their proposal generalized the notion of trust by using trust categories and trust values.

Trust category captures the aspect in which the trust is applicable and trust value expresses

the extent of trust. The model, like the previous models, defines two types of trust relation

ships between two entities. The direct trust relationship specified between A and B implies

A trusts B in some trust aspect. A recommendation trust implies A trusts B to provide

recommendation about other entities. For each of these two types of trust relationship,

the model defines a discrete set of values to represent degree of trustworthiness. A tuple

containing entity id, trust category, and trust value is defined as a reputation and com

municated trust information containing reputation is called recommendation. The model

defines a structured form of recommendation containing fields like requester id, request id,

recommender path, target id, trust category, trust value, and expiry. A protocol has been

designed to request and send such recommendations. The protocol also has provision of

refreshing or revoking previous recommendations. A recommender can provide recommen

dation about a recommender. If an entity requiring a service and does not know whom to

ask, it can send recommendation requests to all his trusted recommenders. The recommen

dation trust along a recommendation path is calculated using product of requester's trust

on recommenders and the recommendation value. The final recommendation value is the

average of trust values of all such recommendation paths.

2.2.3.2 Aberer and Despotovic Framework

Aberer et. al. [AD01] propose a decentralized reputation management framework for P2P

systems. The trust is assessed by computing a peer's reputation from its interactions with

other peers. They assert that the reputation is an assessment of the probability that the

peer will cheat. The global trust data consists of reports about transactions made between

18

peers. A particular peer p has a behavioral data B(p)(c B) which contains reports made

about p as well as reports made by p. In this scheme, A peer q evaluating trustworthiness

of p does not have access to these global data B and B(p). Consequently, q has to rely

on his own reports about p and reports of a set of 'witnesses' who have reports about p.

The scheme assumes that a peer is by default trustworthy, However, in case of a malicious

behavior of p, the peer q files a complaint c(q, p) and these complaints are the only behavioral

data. Reputation T(p) of a peer p is calculated as the product of all complaints lodged by

p and all complaints reported about p. The trust data that is, complaints is stored in a

decentralized manner where each peer is responsible for a part of the total global data. If a

peer does not have required data for a query it forwards it to another peer according to its

routing table. To answer the problem of false data provided by malicious peer, the scheme

assumes that a peer is malicious with a certain probability 7r which has a maximum value

Kmax and the number of replicas r satisfies ~p:r
max is less than an acceptable limit. So if same

data about a peer is received for a sufficient number of replicas then there is no further

check, otherwise the checking is continued.

The work has some advantages to manage trust in P2P systems. The distributed nature

of the data storage and sharing of that data among peers to compute trust make the

approach suitable for P2P systems. Use of a decentralized data storage method ensures

replication of data which in turn ensures availability of data. However, the model has few

limitations. The model assumes a binary notion of trust, thereby making it not suitable

for fine-granular decision about trustworthiness. It also works under the premise that a

peer is by default trustworthy which is not a reasonable assumption in many different

security scenarios where presence of malicious peers cannot be ignored. The trust metric

simply summarizes the complaints a peer receives and files. This is very limited way of

computing trust and sensitive to the skewed distribution of the community and misbehavior

of peers. If majority of peers are malicious then it is hard to decide about trust just by

the number of complaints. Importance of trust context in a trust evaluation has been

identified, but not discussed in details. The authors also point out two problems regarding

third party information: one is of misleading reports from malicious witnesses and the other

19

is unavailability of witnesses as and when required. The authors assert that in a transaction

between a good peer p and a malicious peer q both will file a complaint against each other.

To a third peer r both are same. Now if r finds that in a transaction between q and s both

have a complaint against each other, then r can be sure with a probability that q is a bad

peer though no probabilistic metric has been proposed. This way of inferring about q is not

a very reasonable to do. Because, it may be the case that actually q is a good peer and is a

victim of bad peers r and s. Prom all complaints against a peer, there is no way to measure

how many are actual complaint and how many are false.

2.2.3.3 PeerTrust Framework

Xiong and Liu [XL03, XL04] present a reputation-based trust supporting framework. It

includes an adaptive trust model which quantifies the trustworthiness of a peer based on

transaction-based feedback that the peer receives from other peers. The trust model has five

parameters: (1) Feedback in terms of amount of satisfaction - the feedbacks are quantitative

measure of amount of satisfaction that other peers in the community have on the given peer

based on their past experiences. (2) Number of transactions - it is a scope factor for

comparing the feedbacks. The related metric is the ratio of the total amount of satisfaction

a peer receives over the total number of transactions that peer has i.e., the average amount

of satisfaction the peer receives for each transaction. (3) Credibility of feedback - it is the

trustworthiness of the feedback provider. This metric scales the feedbacks according to the

trust level of the peers providing the feedbacks. The effect of malicious peers providing

false feedbacks get diminished by the metric. (4) Transaction context factor - this metric

weights feedbacks according to the importance of the transaction. (5) Community context

factor - this metric addresses some community-specific issues like adding a reward for peers

who submit feedback. The general trust metric is a weighted sum of two parts with weights

a and j3. One part is a weighted average of amount of satisfaction, weighted by credibility

factor and transaction context factor. The other part is the community-context factor.

However there is no guideline on how to choose the weights.

20

The scheme uses feedback for recent transactions to compute the trust value. The

scheme asserts that a peer's reputation is based on cumulative average of his lifetime rat

ings. Therefore, a peer has diminishing incentive for being benign after building a good

reputation, as incremental rating does not significantly change his 'good reputation'. This

gives rise to the problem of oscillating behavior of malicious peers. They can fool the system

by building a good reputation and behaving maliciously in such a way that their reputation

does not drop significantly. Discounting older feedbacks forces a peer to behave consistently

to maintain a good reputation. PeerTrust proposes a window-based algorithm to address

the above issue. Two trust values T and Ta are computed using feedbacks obtained within

two recent time-windows w and ws respectively, where ws is the recent subset of w. If

T — Ta is less than a threshold then Ta is accepted otherwise T is accepted. Ts implies that

the trustee peer is dropping his performance recently. This adaptive time-window based

algorithm ensures that reputation can not be quickly increased by a few good transactions,

but will be quickly lowered if the peer starts cheating.

PeerTrust addresses the issue of unauthorized manipulation of data in storage as well

as during transmission respectively with data replication and a PKI-based scheme. A peer

searching for a trust data sends request to more than one peer and combines the data

using a majority voting. Thus manipulation made by bad peers gets detected. To prevent

anomalies during transmission it uses a PKI-based scheme. It assumes each peer has a

public-private key pair and includes the public key in each request. The responder encrypts

response with this public key and digitally signs this encrypted message with his private key.

This ensures confidentiality and integrity of the data. No peer other than the requester can

get hold of the response as it is encrypted with his public key. Also no peer can selectively

discard or modify the response as it is digitally signed by the responder.

In PeerTrust, the underlying trust metric considers parameters that are relevant to

compute trust. However the trust metric ignores the peer attributes like quality of offered

resource, file size, uploading speed etc. to measure its reputation. These properties can be

important factors to decide about trustworthiness of a peer. One of the advantages of the

scheme is it uses a decentralized scheme to store trust data over the network. This reduces

21

storage requirement for each peer where each contains a portion of the global trust data.

However, in such data location scheme peers may misbehave by providing false data in his

response to a request. Though data replication is proposed to combat such situations, it

does not prevent a malicious peer to produce a false rating. This can be worst when a

majority voting gives a wrong information which can happen if the majority of the voters

are part of a collusion. Effect of false rating is reduced to some extent by the credibility

factor, but can not completely remove the problem. Another good point about PeerTrust

is it tries to address the dynamic or oscillating behaviors of entities. Nonetheless, the use of

two time windows for recent transactions is redundant. Because there is no end to narrowing

the window unless one wants to call the last transaction as 'recent'. Therefore, a peer can

start with a window suitably chosen according to his comfort level and policy. This can

reduce the overhead of computing trust twice and comparing them.

2.2.3.4 Selguk et. al. 's Work

A reputation-based distributed trust architecture to identify malicious peers and to prevent

the spreading of malicious contents has been proposed in [SUP04]. The proposed protocol

distinguishes a malicious response from a good one by using the reputation of the peer

providing the response. In the scheme each peer maintains a trust vector for every other

peer it has interacted with in the past. Each vector is a constant-length binary vector

in which each bit-position represents the outcome of a transaction; 1 for good and 0 for

malicious. New transaction is written in the most significant bit by shifting the vector to

right. A vector with m l's is read as an m-bit integer and divided by 2m to get a scalar value

corresponding to the vector. By this process each vector has a numeric value within [0,1].

Complement of the vector gives the distrust rating. If the query for a resource / receives

responses from G peers then a trust coefficient for / is calculated as the average of the trust

value of top 9 (pre-selected as threshold for /) most trusted peers among those G peers. If

9T peers are not available then a query is issued to choose remaining peers. The trust of

the responder is updated on the basis of the quality of the downloaded / from it. A trust

query is similar to a resource query; the difference is that the subject of the query in the

22

former is a peer about whom trust information is inquired. Responses include responders'

rating about the queried peer. Each response is weighted by the credibility factor of the

responder. The credibility factor is evaluated in the same way as the trust vector, only the

underlying context is 'outcome of a judgment'. A similar threshold 6c is considered and

the trust is computed as the average of the qualified responses weighted by the credibility

rating. Updating the credibility rating is done if its rating about the queried peer matches

with the result of the download from the queried peer.

The model identifies trust and distrust separately. However, distrust is calculated from

the same vector trust has been calculated. Hence, distrust does not really add any new

trust information thereby does not strengthen the protocol any further. The trust is based

on results of a fixed number of recent interactions. Though the outcome of an interaction is

considered to have only binary values, this way of calculating trust requires a peer to perform

consistently to maintain a good reputation. In the model, feedbacks about a queried peer is

weighted by the credibility rating of the feedback provider. The credibility rating is based

on the outcome of a judgment by the responder. This captures the concept of trust context

which shows that a peer trusted as a resource provider may not be trusted at the same level

as a recommender. This separation also reduces effect of collusion by preventing a malicious

peer to manage a good trust and then use that trust to recommend another malicious peer

who will do the harm. The basic protocol has some extensions to provide authenticity using

digital signature and hashing, protection to DoS attacks by a kind of challenge-response

scheme, and prevention of false file downloads using hashing during download.

2.2.3.5 Anomaly Detection Technique-based Model

In [SBWS05] Stakhanova et. al present a reputation-based trust framework for P2P net

works where trust is quantified using anomaly detection technique. The anomaly detection

technique identifies unusual behavior in the established normal behavior of a peer and

indicates instability of a peer. The anomaly detection is done at predefined checkpoints

during a session and at the end of each session. The trust is based on four actions: re

source search, resource upload, resource download, and traffic extensiveness, each having

23

binary outcome. The trust metric is the percentage of bad actions. The truster peer sets

two trust thresholds x\ and x^\ peer having trust below x\ are fully trusted, peers having

trust above X2 are totally distrusted and peers with trust between x\ and X2 are partially

trusted. A peer profile is the collection of information that expresses the usual behavior

of the peer. Six features to characterize a peers behavior have been identified. They are

(i) connection time, (ii) connection duration, (iii) number of search request, (iv) number of

file downloads, (v) number of file uploads, and (vi) number of bytes uploaded by a peer.

The above information, called session data, is collected for each peer throughout its online

session. The behavioral profile is built using a training session data set and then deviations

are detected in new data set. The anomaly detection algorithm detects an anomaly and

estimates amount of change in the trust score. The degree of anomaly is based on mean

and standard deviation of the session data. Two thresholds, similar to trust threshold, are

set and depending on the deviation and the thresholds, bad action value is incremented by

some predefined amount.

The anomaly detection technique is particularly helpful in identifying potential malicious

activity by a peer. However a deviation in normal behavior does not distinguish between

a malicious activity and a deviation due to failure of connection/hardware/software etc. It

is also very hard to measure deviation for a peer whose natural behavior is oscillating in

nature. This can be due to malicious nature or limited capability of the peer. There is an

assumption that peer profile are collected and available in a trustworthy manner. There is

no basis for such assumption. Another problem is for partially trusted peers, a part of traffic

is accepted from them. However, there is no mechanism to choose such part. Among the

behavioral features connection time has little significance as connection duration is more

important to characterize a behavioral pattern. The trust metric considers only bad actions

and does not allow any incentive for performing good actions. For newcomers in the network

or peers having small number of interactions the profile will contain no data or insufficient

data to measure the deviation and consequently the trust. Therefore, the approach is very

limited and not sufficient to reason about trustworthiness in a flexible manner.

24

2.2.4 Trust Models using Direct 'Experience' t o Evaluate Trust

In some trust models, an entity's direct experience (in terms of number of events or inter

actions) have been used to reason about trustworthiness of other entities.

Jonker & Treur [JT99] consider trust from a software agent's perspective, "that is, trust

within software agents regarding the reliability of objects and tools, their own work, the

behavior of others, and in the evolution of their environment (events and effects of actions

performed by the agent)." They use an agent's experiences (i.e., evaluated events) to for

malize trust evolution or trust updating. They start with an initial trust, which can have

four states like initial unconditional trust, initial conditional trust, initial unconditional

distrust, and initial conditional distrust. Then six different ways of trust dynamics (e.g.,

blindly positive, slow-positive-fast-negative, balanced slow etc.) have been defined. The

authors propose two ways to model these dynamics. One is by defining a "trust evolution

function" - a mathematical function that formalizes the dependency of trust on past se

quence of experience (events); the other is using the current trust and current experience in

a mathematical function, called "trust update function" to formalize the next trust. Each

of these experiences or events are categorized into two classes - positive and negative. The

model also has a property called "degree of memory based on window n back" which allows

to forget all past experiences except last n events.

This is a good model of trust where the authors propose multi-level of trust based on

truster's experience. The model correctly identifies the relative importance of past and

current experiences in trust evaluation. The model propose trust dynamics and different

ways to update trust. The formulas used are formalized using mathematical functions.

However, the model uses very restrictive notion of trust. It considers only the experience of a

truster to evaluate trust. This restricts the model to use 'blind trust' or 'initial unconditional

trust' for an agent in the absence of any event. This can create problem if the agent is

malicious. Also the model is not extensible and not applicable in scenarios where there is

no scope of obtaining direct experience initially to establish trust.

25

2.2.4.1 EigenTrust framework

The EigenTrust algorithm, proposed by Kamvar et. al in [KSGM03], proposes to decrease

the number of downloads of inauthentic files in a P2P file-sharing network. The algorithm

uses number of 'satisfactory' and 'unsatisfactory' interactions between two peers to com

pute "local trust" of a peer. The network assigns a unique global trust value, evaluated

using the local trust values, to each peer on the basis of their 'upload' history. Peers use

these global trust values to choose the peers from whom they download files. The authors

identify five issues that should be addressed while designing any P2P reputation system.

(1) Self-policing - the "shared ethics" of peers are defined and enforced by the peers them

selves. (2) Anonymity - a peer's reputation is associated with an indirect identifier of the

peer. (3) No profit to newcomers - there is no advantage being a newcomer in the peer

network. Reputation must be earned by constant good behavior. (4) Minimal overhead -

"The system should have minimal overhead in terms of computation, storage, and message

complexity". (5) Robust to collusion - the system should have mechanism to prevent a

group of malicious peers from subverting the system.

The authors develop the algorithm following these design criteria. However, there are

some advantages and disadvantages of these. For example, no profit to newcomers, enforcing

to earn reputation by constant good behavior, can prevent a malicious peer to get away

after any malicious act by changing his identification and posing as a newcomer. On the

other hand, in an hostile environment, all the peers may not follow the self-policing rule.

In fact, malicious peers may not follow the ethics that an inauthentic file should not be

injected into the network intentionally.

EigenTrust algorithm aggregates local trust values of peers to compute a peer's global

trust value. A peer i computes his local trust Sij about a peer j by summing up the ratings

of each transaction that peer i has with peer j . A transaction can have a positive rating

(value = +1) or a negative rating (value = -1). This local trust values are then normalized

to neutralize the effect of false rating given by malicious peers. The normalized trust of

i on j is given by Q?- — maa:^t;,) ^ rpQ agg r ega^e £n e normalized trust values of a peer

26

k, a peer i takes his friends' (js) opinions about k and weight the opinions by the trust i

places on js. Therefor, «'s trust on k is, t^ =]T). CijCjk which is written in matrix notation

as U = CT&i where U = vector of values i^s, C = [c^] and cj = normalized local trust

vector of i. i can ask all friends of j about k to get a wider opinion about k. In this way,

after n (large) iterations i will have a global view about k from the vector t = (CT)ncl.

For sufficiently large n, the vector t will be same for every peer. It will be the left eigen

vector of C. Therefore t will give the global trust of all peers in the system. The EigenTrust

algorithm assumes that there are some peers in the network that are pretrusted. It assigns

an a priori notion of trust p to all peers; pretrusted peers have the value p where P is the

number of pretrusted peers and all other peers will have an a priori trust 0. For an inactive

peer i (who does not interact with anyone) the algorithm assigns a priori trust of other

peers j to dj. The algorithm addresses the problem of collusion by having each peer to

place at least some trust in the pretrusted peers. The trust value of a peer i is computed

by scoremanagers of i. A peer is assigned to the role of a score managers using distributed

hash tables (DHT). The score manager also maintains the opinions of the peers covered by

it. This ensures anonymity as a requester does not know from which peer it actually getting

the opinion. Randomize nature of allocation of peers in DHT space ensures that a peer can

not choose its own location to get the advantage of manipulating its own trust. Also there

are several score managers to compute trust for a peer which provides greater availability

of the trust scores.

EigenTrust algorithm provides a distributed way of evaluating trust in a P2P framework.

It has a strong mathematical construct to measure trust - peers' global trust are obtained

from the left eigen vector of the matrix where all the local trusts are stored. However,

there are some problem with the scheme. The concept of pretrusted peers is essential to the

scheme, but it gives rise to number of problems. First, it is very hard to ensure existence of

a pretrusted peer in all the cases. At some instance, there may not be any pretrusted peer

available in the network. In that case the algorithm fails. Also the choice of the pretrusted

peer is important because no pretrusted peer should be a part of a collusion. There is no

way to ensure it. Even if pretrusted peers exist there is no guarantee that they will always

27

remain benign. A pretrusted peer may turn into a malicious peer. The other problem is

that the normalized local trust value does not consider negative experiences. The value

considers maximum of satisfaction score and 0. This makes no difference between a peer's

satisfaction score about a peer with whom it does not have any interaction and about a

peer with whom it has all bad experiences.

2.2.5 Probabil ity-based Models

Cohen et al. [CPF97] propose an alternative, more differentiated conception of trust. They

call it Argument-based Probabilistic Trust model (APT). It includes the more enduring

concept as a special case, but emphasizes instead the specific conditions under which an aid

will or will not perform well. According to their approach, the problem of decision aid ac

ceptance is neither under-trust nor over-trust, but inappropriate trust. The authors define

this notion as a failure to understand or properly evaluate the conditions affecting good and

bad aid performance. They propose a simple framework for deriving benchmark models of

verification performance, in situations where previously learned or explicitly identified pat

terns may be insufficient to guide decisions about user-aid interaction. The most important

use of APT is to chart how trust varies, from one user to another, from one decision aid to

another, from one situation to another, and across phases of decision aid use. The authors

presented a benchmark model for deciding when to accept, reject, or verify a decision aid's

conclusion. They also point out that trust evolves as the user moves through the various

phases of a particular mission or task. This is due to active decisions by the user; that trust

is considered as a product of the interaction between the decision aid and the user.

2.2.6 Manchala's Work

A business-oriented approach to trust has been taken by Daniel Manchala in [ManOO]. In

this work, he describes a model of trust for e-commerce and proposes metrics to evaluate

risk in a transaction using trust. The trust variables that he considers are transaction cost,

transaction history, indemnity, spending pattern and system usage. Manchala suggests

two parameters - time and location, to fines-tune these trust variables. The variables are

28

measured quantitatively and depending on the evaluated trust, different trust actions like

verification, assessing security level, authorization are taken for the transaction. However,

the model does not clearly specify how to evaluate the variables quantitatively or how to

compose these values to obtain a value for trust. Also the model is restricted to verify

transactions in e-commerce only.

2.2.7 Belief-based Models

2.2.7.1 J0sang's Model

In [J0s98, J0s99] and in several subsequent papers over the last 10 years, Audun J0sang

has developed a model for trust based on a general model for expressing beliefs about the

truth of statements. In this model, trust is an opinion and an opinion is a representation

of a belief. An opinion is modeled as a triplet < b,d,u >€ {b,d,u}, where b is a measure

of one's belief in a proposition, d is a measure of one's disbelief in the proposition and u

is a measure of the uncertainty. The tuple is represented as a point in unit triangle (called

"opinion space") and the three components are connected by the relation b + d + u = 1.

One of the main advantages of the model is it can assign certain degree of belief, disbelief,

and uncertainty about a proposition simultaneously. This also helps us to formalize the trust

levels like 'totally trust', 'total distrust' or 'totally uncertain'. However, for any other state

of trust, the model does not provide a single value of trust. Trust is always represented

as opinion tuple. Another contribution of the model is it provides mechanism to compare

and compose two opinions. These features were added in the later version of the model.

Nonetheless, the model has few restrictions. It does not identify the parameters to measure

the components b, d, u. Another limitation of this model is that it does not acknowledge

that trust changes over time and thus the model has no mechanism for monitoring trust

relationships to reevaluate their constraints.

2.2.7.2 Bacharach and Gambetta's Work

Bacharach and Gambetta [BG00] embark on a re-orientation of the theory of trust. They

define trust as a particular belief, which arises in games with a certain payoff structure. They

29

also identify the source of the primary trust problem in the uncertainty about the payoffs

of the trustee. The authors observe that in almost all games, the truster sees or observes

trustee before making any decision and, therefore, can use the observations as evidence for

the trustee's having, or lacking, trustworthy-making qualities. According to the authors, the

truster must judge whether apparent signs of trustworthiness are themselves to be trusted.

They also show how the secondary problem of trust can be treated as a particular class of

signaling games. They do not exclude the possibility that the act of trusting itself can act

as a signal of trustworthiness as trusting persons are believed to be more trustworthy than

untrusting ones.

2.2.7.3 Trust Model based on Dempster-Shafer Theory

Teng et al.[TPC00] applies the Dempster-Shafer theory to propose a quantifiable measure

of trust and develop a trust propagation model in the context of e-commerce environment.

They attempt to answer the question "if A trusts B and B trusts C, then with how much

certainty may A trust C?". The authors are primarily concerned about trust relationship

between a customer and a trust authority and between a vendor and the trust authority.

Several variables are used to define trust, some of which are borrowed from Manchala's work.

The variables considered in this work are transaction cost, transaction history, indemnity,

verification, authorization, transaction entity, trust authority, belief, and plausibility. At

least two of these variables are used to capture the level of trust. A trust matrix is then

formed with these trust variables. Each element of the matrix has two numbers, where

the upper number is belief and the lower number is disbelief. "For the value of belief, 0

indicates 100% trust, 1 indicates 100% distrust." The Dempster-Shafer formula is used to

merge two matrices and is applied to each element. Finally, the authors define a mechanism

to compute the overall trust value between the customer and the vendor following a trust-

chain relationship.

Although the model identifies different trust parameters, it does not provide any clue

about how these parameters contribute in trust evaluation. For a transaction, the state

of the transaction are expressed in terms of linguistic terms "Excellent, Good, Normal,

30

Bad, Worst" and each constitute a row in the matrix. The columns are identified by num

ber of micro-transactions and are denoted as "Small, Medium, Normal, High, Excessive".

However, there is no clue provided what number of micro-transaction represents a partic

ular level. Also the model is designed for e-commerce environment and cannot be used in

reasoning about trustworthiness in different security contexts.

2.2.8 Graphical Approach to Model Trust

Purser [PurOl] presents a simple, graphical approach to model trust. He points out the

relationship between trust and risk and argues that for every trust relationship, there exists a

risk associated with a breach of the trust extended. The author observes that in managing a

given risk, we extend trust to whatever mechanism we deploy to handle it. He then furnishes

the elements of his model. Trust relationships are modeled as directed graphs. An entity

can trust or be trusted by another entity; this is modeled by node in the graph that is

labeled by the entities' names. The author defines trust as unidirectional and connects two

entities; it is represented as a directed edge from the trusting entity to the trusted entity.

The author also includes context, associated confidence level, associated risk and transitivity

value. Context is anything that defines the scope of the trust; associated confidence level

is the degree of confidence an entity has that the trusted entity will not breach the trust;

associated risk is that materializes if the trust is breached and transitivity value indicates

whether this trust can be passed on to a third party or not. The author also notes four

rules that apply when using this model - (i) "A trust is considered to be fully defined

only if all the associated values have been denned, (ii) Mutual trust is not allowed. Such a

trust is modeled by two unidirectional trusts, (iii) A trust always has an associated context

(unconditional trust is disallowed), (iv) A trust is only transitive or intransitive within a

specific context." Finally the author demonstrates how to model a few IT related problems

like outsourcing, Unix trusted host mechanism, and PKI using this graphical approach of

modeling trust.

Though the approach is interesting and seems to be useful, it suffers from the limitation

that it does not identify parameters to evaluate trust. It never mentions what are the

31

"associated values" to "fully define" a trust. In fact, the model just provides a mechanism

to represent and manage trust relationships graphically without actually denning trust or

providing any meaning of trust. It does not provide any clue on how to establish a trust

relationship. Trust, in this work, is used in a very generic sense and the author associates a

"confidence level" to measure the degree of confidence that a trusted entity will not breach

trust, when the confidence level itself could be the measure of trust.

2.2.9 Trust Model using Attributes to Evaluate Trust

Shankar et al. [SA02] propose a unified trust modeling system for the world of ubiquitous

and pervasive computing. This is an "attribute vector model" which captures both the

identity-based and context-based trust relationships. For cyberspace, the attribute vector

is treated as a vector of credentials and for ubiquitous world, the vector is treated like

a context vector, representing the real world contextual parameters. In the model, each

entity S has an attribute vector A(S) = < Ai,A2,-..,Ak > and the trust relationship

between entities is expressed as D(Si,S2) = f(A(S2)) that is, the degree of trust or the

trust value of S2 is a function of attributes of 52. This trust model is totally decentralized

with the property that entities may or may not have any prior trust relationship. The trust

decision is made if the trust value is above a threshold. The induced trust value serves

as the "continuum of trust" upon which the participant can set any acceptable trust level.

However, there is no method proposed to formalize these attributes. Also the function to

evaluate trust is not specified to return a specific value of trust. The model is also not

extensible as there is no scope of incorporating other factors in trust evaluation.

2.2.10 Bayesian Network-based Model

A Bayesian network-based trust model has been proposed in [WV03]. The model calculates

peers' trust and reputation based on individual experience and recommendations from other

peers respectively. This trust and reputation are used to find suitable peers. The trust

is context-specific and dynamic; it can increase or decrease with further experiences and

decays with time. A peer evaluates another peer's trust in two contexts: capability as a

32

file provider and reliability as a recommendation provider. A peer considers 'truthfulness'

and 'similarity' of another peer to compute the trust. The 'similarity' factor is particularly

important for calculating trust in 'providing recommendation' context. The factor shows

the basis of the judgment of the recommender about the trustee peer. A peer requesting

for resource may consider different aspects of the provider namely, file type, file quality,

download speed, to compute the trust on the provider. Bayesian network helps to aggregate

trust on such different aspects to compute a single trust. A peer maintains a Bayesian

network for each provider. The root represents the peer's overall trust on the trustee peer

as a file provider. The node has two values 'satisfying' and 'unsatisfying'. The associated

probability is percentage of satisfying (unsatisfying) interactions. Leaf nodes under the root

represent the peer's trust on different aspects of the provider. A conditional probability

table (CPT) is associated with each leaf node representing the conditional probability of

the event corresponding to the node. These CPTs help a peer to compute probabilities

that the corresponding file provider is trustworthy in different aspects. A peer updates

its Bayesian network after each transaction. The degree of satisfaction is measured by

the weighted sum of degree of satisfaction in file quality and in download speed. If the

total satisfaction level is over a threshold, then the interaction is satisfactory, otherwise

unsatisfactory. When a peer does not have information to compute trust on a file provider,

it asks for recommendation from other peers. The peers answer that query consulting their

own Bayesian network about the file provider. The requester peer calculates the reputation

of the file provider as a weighted sum of averages of recommendations from trustworthy

peers and unknown peers. Recommendations from untrustworthy peers are discarded. If

the total recommendation is over a threshold, it is accepted. After each interaction the

peer also updates the trust on the recommenders. The scheme proposes another way to

measure the trustworthiness of a peer as recommender. Peers can exchange and compare

their Bayesian network for a common file provider to update their trust on each other as a

recommender. It is equivalent to compare all the past interactions of the two peers.

Bayesian network helps a peer to infer trust in different aspects of another peer using

the CPTs. Number of interactions is an easy way to build the table. This approach saves

33

time and effort to build trust in different aspects separately. Also change of conditions

are easy to incorporate. However, the scheme assumes that all peers are truthful in telling

their evaluation. This is not a reasonable assumption to make as malicious peer may give

false recommendations. Sharing of Bayesian networks may help to find peers with similar

preferences. But after few exchanges a malicious peer can tune its Bayesian network to

manipulate trust about other peers. That is, they may present a good peer as bad and

a bad as good. There is no mechanism to choose a reliable peer before exchanging the

Bayesian networks. Effect of collusion is reduced as after each interaction trust of file

provider as well as the reputation of the recommenders are updated. Finally, for a large

network managing a Bayesian network for each resource provider can be a problem. The

same problem will arise when there are many possible trust aspects. Therefore, though

the framework can work well for small networks, it is not suitable for large networks with

different aspects of trust.

2.3 Discussion

The notion of trust has definitely been enriched by the large volume of multidisciplinary

research. However, at the same time, it suffers from lack of an unanimous meaning. The

diversity in the research domains has given rise to this obfuscation and makes it difficult to

find a consensus on the definition of trust. The list of definitions of trust presented in Section

2.1 shows the diversity in the definition of trust among the scholars from different fields.

Their view of trust is different from each other. Also, as evident from the discussion in

Section 2.2, even within computer and information science domain, we have varying models

of trust. Each of these models has its own interpretation and representation of trust. Several

secure systems have been developed and different applications have been designed using

these concepts. Since, these models vary from each other in interpretation, representation,

method of evaluation and management of trust, it is difficult to make use of these systems

and applications in cooperative world. Today's business and market, especially like virtual

organizations and e-commerce, are geared toward cooperative functioning of each entity

involved in the business. The lack of agreement about the meaning and representation

34

of trust among these entities hinders the proper function and growth of the cooperative

business. These motivate us to define a single unified model for the specification and

reasoning about trust. Because, no single existing trust model is suitable to be chosen as

"standard" trust model. This is evident from the problem arising in the following scenarios.

2.3.1 Scenario 1

We take the example of CyberCraft Initiative 1 discussed by Michael Stevens in his thesis

[Ste07]. "A CyberCraft is a system to provide command control and communications for

packages that defend Air Force information systems." A CyberCraft is analogous to an

actual air craft and can load different softwares to automatically defend air force information

system. "The CyberCraft initiative is creating a set of standards that future cyberspace

weapon system are to be built to. Because of the speed of operations in cyberspace, both

offensive and defensive, the CyberCraft will operate mostly autonomously". One of the

major concern regarding the CyberCraft Initiative is "What is required for a commander to

trust a CyberCraft to autonomously defend military information systems?" A CyberCraft

has some hardware/software construct called agent that resides on a host computer. This

agent loads softwares, called payloads, which allow CyberCrafts to accomplish different tasks

like intrusion detection, network vulnerability scanning, host-based firewall management,

virus and worm detection and remediation, policy enforcement for unauthorized softwares,

report host computer's or overall network health etc. The payloads can be sensors, decision

engines, or effectors. Trust should be incorporated into all of these three type of payloads

to perform in a cooperative manner. The commander in charge of network administration

uses several such CyberCraft to protect the military information system. Different agents

residing on different CyberCrafts monitors and provide information regarding the network

and network administrator, depending on the information, take decision about appropriate

action. If an agent reports that a target machine is running Windows XP and another

1For the details of CyberCraft Initiative of U.S. Air Force, the readers are referred to Michael Stevens'
thesis [Ste07]

35

CyberCraft agent reports that the machine is running Linux, depending on the underlying

operating system of the target machine, the commander triggers some CyberCrafts agent

to load specific payloads (say, effectors).

2.3.2 Scenario 2

Consider the example of an e-commerce transaction where a customer Alice is interested

to buy an air-ticket as well as reserve a hotel from an online travel system. The air-ticket

reservation and purchase service and hotel reservation service are also available separately

from two different service providers Si and 52- Alice can avail both services from any one

provider or she can avail one service from one provider and the other service from the other

provider. During this transaction Alice is required to reveal some personal information like

physical address, billing address, credit card information, phone number(s) etc. to make a

successful purchase and reservation. Though she is willing to disclose the information to

complete the transaction, she is reluctant to release those sensitive personal information to

all and sundry. Therefore, before interacting with the service provider(s), Alice is willing to

know to what extent the service provider(s) are capable of maintaining her privacy. That

is, how much she can trust Si or £2 to keep her personal information private, though one

or both the providers may not be totally unknown to Alice. Let us assume that Alice read

the privacy preservation policy of Si and £2 a n (i get the feeling that the providers offer

different degrees of privacy preservation. Here we assume that Alice is aware of the recent

technologies and security issues involved in online transactions.

2.3.3 Limitations of Exist ing Models

Most of the existing trust models view trust as a binary notion. Confidence is measured

in terms of 'total trust' or 'no trust'. This binary model of trust differs considerably in

semantics from the social models of trust used by policy makers. In sociology, trust means

the assured reliance on the character, ability, strength or truth of someone or something.

This assurance level can be of different degrees, leading to entities being labeled trusted

to various levels. As we have seen, different interpretations and representations of trust

36

creates inferential ambiguities, for example in the comparison or composition of information

gathered from different sources or in the composition of systems that involve interaction

between human and computational devices. Consider the scenario of CyberCraft initiative.

The commander's decision to take appropriate action depends on the information gathered

from different agents. The agents are trusted to different levels. Suppose, the agent with

higher trust reports the OS in the target machine as Linux and the low trusted agent reports

it as Windows. However, both views may be correct if the target machine is running Linux

inside a virtual machine on top of Windows XP at the hardware level. Thus, using Avizienis

et al.'s definition of trust [ALRL04], it is evident that it will be naive for the commander to

completely trust the information he gathers from the agents. Intuitively, it seems, that the

composed information will be trusted to a certain degree but not necessarily wholly trusted.

A single trust model from the existing models of trust is not sufficient to answer all of the

following questions:

1. Which of the reports about the OS on the target machine is correct?

2. What expectations can the commander have about the usefulness of the composed

information?

3. How much assurance the commander can have to load certain payloads based on the

comparison or composition result?

4. What are the critical activities that the commander cannot fulfill using this informa

tion, with certain confidence?

In our e-commerce scenario, existing models of trust do not help Alice to answer questions

such as:

1. How Alice can compare the 'correctness' of the information from different privacy

preservation policies?

2. How Alice can combine the information if she decides to avail different services from

different service providers?

3. What sensitive information can Alice reveal with certain confidence?

Some models from the existing set of trust models discussed in Section 2.2 can answer some

of the above questions. However, to answer all these questions no single model is sufficient.

37

Also, some interpretation and representation of trust may be suitable to apply in scenario

1, but may not be suitable for scenario 2. Another problem with the existing models is

that they are not easily extensible. The models use specific parameters and constructs to

evaluate trust and it is difficult to incorporate new parameters without affecting the existing

constructs. These make it difficult to use the systems and applications, having different

meaning and mechanism to evaluate trust, in cooperative world. For example, a system

built around a model of trust based on 'experience' only cannot function in a cooperative

manner with a system built around a model of trust based on 'recommendation' (or any third

party information) only. Last but not the least, existing trust models do not address the

issue of evaluating trust when relevant information is partially or totally unavailable. These

problems motivate us to integrate different perspective of trust to define a unified, extensible

trust model that can answer the problems mentioned above. The following chapter presents

our model.

38

Chapter 3

The Vector Trust Model

3.1 Overview of The Model

Among all the definitions of trust, discussed in Section 2.1, we find the definition proposed

by Grandison and Sloman [GSOO] most suitable for our purpose. Hence, in our model we

adopt their definition of trust and define trust as

Definition 1 [Trust] Trust is defined to be the measure of level of assurance that an entity

is competent or benevolent within a specific context.

In the same work, Grandison and Sloman define distrust as the "lack of firm belief in the

competence of an entity to act dependably, securely and reliably". However, we believe dis

trust is somewhat stronger than just "lacking a belief". Grandison and Sloman's definition

suggests the possibility of ambivalence in making a decision regarding distrust. We choose

to be more precise and thus define distrust as follows

Definition 2 [Distrust] Distrust is defined to be the measure of level of assurance that an

entity is incompetent or malevolent within a specific context.

Although we define trust and distrust separately in our model, we allow the possibility of

a neutral position where there is neither trust nor distrust. As we elaborate on the model

this will become more clear.

Trust in our model is specified as a trust relationship between a truster - an entity that

trusts the target entity - and a trustee - the target entity that is trusted. The truster is

39

always an active entity (for example, a human being or a subject). The trustee can either be

an active entity or a passive entity (for example, a software). We use the following notation

to specify a trust relationship - (A —• B)^. It specifies J4'S normalized trust on B at a

given time t for a particular context c. This relationship is obtained from the simple trust

relationship - (A —>• B)t (which is shown in Figure 3.1) - by combining the latter with

a normalizing factor. This normalized trust relationship is expressed as a tuple of ordered

S MB Trust context c

5c^t At time t

Truster A Trustee B

Figure 3.1: Trust relationship

values, where each value corresponds to the measure of the parameter influencing trust

evaluation. We also introduce a concept called the value of a trust relationship. This is

denoted by the expression v(>l -̂ -> B)^ and is a number in [—1,1] U {J_} that is associated

with the normalized trust relationship. A trustee is completely trusted (or distrusted) if the

value of the trust relationship is 1 (-1). Values in the range (0,1) represent different levels

of trust and the values in the range (-1,0) represents different levels of distrust. The 0 value

represents trust neutrality that is, the trustee is neither trustworthy nor un-trustworthy.

The special symbol J_ is used to denote the value when there is not enough information to

decide about trust, distrust, or neutrality.

We want to make a note here that the term "vector" is not used in a strict sense. Like

the regular mathematical notion of a vector, we have a tuple (set of values) and a single

value (dependent on the set of values) to represent a trust relationship. This is why we

choose to name our trust model as 'vector trust model'. However, we do not assign the

mathematical properties of a regular vector to our trust vector nor we define the standard

vector operations like 'dot product', 'cross product' etc. of vectors on our trust vector.

Also, the numerical value associated with the vector is not calculated in the standard way

40

that is, taking square-root of sum of squares of the component values. Because that would

have removed the effect of negative values of a component on the overall value.

3.1.1 Qualitative vs. Quantitative Approach

Our trust model aims to provide the notion of a trust value to represent levels of trust.

We face two choices for trust values - qualitative or quantitative. If qualitative values are

used, then degree or level of trust can be expressed in terms of a set of discrete values such

as high, medium, low or very trustworthy, trustworthy, untrustworthy, very untrustworthy

etc. The advantage of such a scheme is tha,t it is quite intuitive. However, the challenges

are significant. First, it is rather difficult to define precisely the semantics of such levels;

semantics across different systems can vary. Second, determining the appropriate number of

such degrees for a particular system is not straightforward; in fact it can tend to be rather

ad hoc. Third, determining how the degrees from different domains can be compared and

combined is most difficult. For example, what is the resultant of the trust composition of

"high" of one domain and "medium" of another domain. Fourth, use of such qualitative

terms limits number of distinct trust levels to a small number of levels. This is, in particular,

not suitable for fine-granular trust comparison. As indicated by Stephen Marsh in his thesis

[Mar94], with this limited set of trust levels, ".. it is not possible to say 'I trust him more

than her, by a small amount,'..". Last but not the least, a problem with such discrete

degrees is that it is not easy to represent ignorance or neutrality with respect to trust or

distrust.

Quantifying trust through numeric values alleviate such problems. Moreover, mathe

matical operations on degrees of trust can be defined that allow proper comparison and

combination of degrees from different domains. Comparison using a continuous range of

quantitative values allows fine-granular comparison result, which may help significantly in

making appropriate security decisions. For example, a small difference in trust level may

make significant changes in organizational policies or actions (as observed by Marsh [Mar94],

"In a formalism using quantitative data, it is possible that small differences in individual

values produce relatively large differences in the overall result"). The above reasons lead us

41

to adopt numeric values with continuous range for trust levels. Instead of limiting ourselves

to a single value for trust (or distrust), we define a trust value in terms of a vector of nu

meric values. We use a vector so that we can specify the effects of the many different factors

that influence trust. However, we also believe that there are times when a single numeric

value is more intuitive than a vector of values - particularly when making comparisons in

an informal manner. This leads us to define the notion of a "value" for a trust vector. It is

a either single numeric value in the range [—1,1] or a special value JL.

3.1.2 Trust Dynamics & Propensity to Trust

At this stage we point to two characteristics of trust (or distrust) that shapes our model.

The first is the dynamic nature of trust. Trust changes over time. Even if there is no

change in the underlying factors that influence trust over a time period, the value of trust

at the end of the period is not the same as that at the beginning of the period. Irrespective

of our initial trust or distrust decision, over a period of time we gradually become non-

decisive or uncertain about the trust decision. This leads us to claim that trust (and

alternately distrust) decays over time - both tends towards a non-decisive value over time.

The second characteristic is, what is often called the propensity to trust [GSOO]. Given the

same set of values for the factors that influence trust, two trusters may come up with two

different trust values for the same trustee. We believe, that there are two main reasons

for this. First, the reason behind this is, during evaluation of a trust value, a truster may

assign different weights to different factors that influence trust. The weights will depend

on the truster's policy. If two different trusters assign two different sets of weights, then

the resulting trust value will be different. The second reason is applicable only when the

truster is a human being and is completely subjective in nature - one person may be more

trusting than another. We believe that this latter concept is extremely difficult to model

in an objective manner. We choose to disregard this feature in our model. We capture the

former factor using the concept of a trust-parameter weight policy vector, which is simply a

vector of weight values. Using this weight vector on the simple trust relationship provides

the normalized trust relationship.

42

3.2 Trust Parameters

We begin by identifying four different parameters that influence trust values - interactions,

properties, reputation, and recommendation.

3.2.1 Interactions

Definition 3 [Interactions] The interactions of a truster about a trustee is defined as the

measure of the cumulative effect of a number of events that were encountered by the truster

with respect to the trustee in a particular context and over a specified period of time.

The trust value of a truster on a trustee for some context can change because of the the

truster's interactions with the trustee in the particular context. Consider the following

scenario with our example scenario 2 from Section 2.3.2. From now onwards we will consider

this scenario as our running example.

Alice has been witnessing that the information she has provided to S\ has not been

disclosed for the past five months, that is her privacy has not been breached through in

formation disclosure by S\. Initially Alice was neutral towards S'i's capability; however

having benefited from it, she now trusts Si more to protect her privacy during an electronic

transaction.

A truster can categorize each interaction with a trustee as trust-positive, trust-negative

or trust-neutral interaction. A trust-positive interaction increases trust degree whereas a

trust-negative interaction increases distrust degree. A trust-neutral interaction contributes

neither way.

3.2.2 Propert ies

Definition 4 [Properties] The properties of a trustee for a particular context is defined

as a measure of the characteristic attributes or information of the trustee for which the

truster can have some assertion to be truly related to the trustee.

The trust value of a truster on a trustee can change because of some properties that the

trustee possesses. Information about these properties of trustee may be obtained by the

43

truster in some earlier time for some purpose or, it may be a piece of information about

the trustee for which the truster can have a proof to be true. As with interactions, we have

trust-positive, trust-negative, and trust-neutral property. In the context of our example,

Alice may come to possess a certificate from a well-known certifying authority that Si

uses a secure channel established through SSL3 to do all the transaction and the data is

encrypted with 512-bit RSA key. This information gives her more confidence on S\ that

her privacy will not be violated through a confidentiality and/or integrity breach during a

transaction with Si.

3.2.3 Reputation

The notion of reputation has been used for quite a long in discipline like Economics [SK03,

HW04] as well as in Computer Science, especially in trust related research. Some of the

recent works on reputation ([JI02, DVPS03, SUP04, XL04, SFWC04, BB04, KNS05]) in

Computer Science use it as a measure of trustworthiness of agents/peers/systems etc. For

example, in [DVPS03, SUP04, XL04, SFWC04] reputation has been used to find a reliable

peer in a Peer-to-Peer (P2P) system, [BB04] proposes a reputation system in mobile ad-hoc

networks, [KNS05] uses reputation system in history-based access control. In all the above

works reputation is measured in terms of either trustee's behavior or properties, or truster's

experience about the interactions with the trustee, or some information obtained from a

third party or, a combination of these. In our model we propose separate notions for truster's

actual experience about the interaction behavior of trustee by the component interactions,

about trustee's properties by the component properties, about third party information about

trustee by recommendation. So we propose a notion of 'reputation' different from the earlier

proposed notions and define it as follows:

Definition 5 [Reputation] A reputation of a trustee is defined as a measure of the non

attributable information (in terms of feedback or properties) about the trustee to the truster

in a particular context.

We posit that a trustee's reputation is totally non-attributable. The truster does not have

any guarantee for those to be true. The component reputation is difficult to compute objec-

44

tively. It is more subjective in nature and completely depends on the truster's discretion.

The truster may get the idea about the reputation of trustee from various sources like re

views, journals, news bulletin, people's opinion etc. However, with this reputation, without

having specific information about the trustee, the truster can build an opinion about the

trustee in the context. In the light of our example, the truster Alice will trust S\ more

if she reads some positive comments, made by other customers, about Si's capability to

protect personal information during an online transaction. Being unknown to her, Alice

considers all these customers as non-attributable and hence the information is considered

as 'reputation' rather than 'recommendation'.

3.2.4 Recommendation

Definition 6 [Recommendation] A recommendation about a trustee is defined as a mea

sure of the subjective or objective judgment of a recommender about the trustee to the truster.

The trust value of a truster on a trustee can change because of a recommendation for the

trustee. For example, a truster can ask someone close to him, who happens to know the

trustee, about the latter's credibility (within the scope of the trust context). If that third

person says "good words" about the trustee, the truster tends to have faith on the trustee.

It is important to note that the importance of the judgment of the third person to the

truster depends on how much the truster trusts the third person's ability to judge others.

In our model we use the degree of trust between a truster and a recommender to evaluate

the recommendation for the trustee. As before we can have a trust-positive, trust-negative,

and a trust-neutral recommendation. Recommendations can be obtained by the truster

from more than one source and these together will contribute to the final trust relationship.

In our running example, Alice may request her friend(s) or associate(s), whom she knows to

have similar online transactions with the service providers, to provide some feedback about

the providers' capability of protecting privacy during online transaction.

45

3.3 Trust Evaluation

3.3.1 Evaluation of the Parameters

To compute a trust relationship we assume that each of these four factors is expressed in

terms of a numeric value in the range [—1,1] and a special value _L A negative value for the

component is used to indicate the trust-negative type for the component, whereas a positive

value for the component is used to indicate the trust-positive type of the component. A

0 (zero) value for the component indicates trust neutral. To indicate a lack of value due

to insufficient information for any component we use the special symbol ±. There will be

some situation where a truster may need to compute a value involving a real number a and

the special value _L. For that we define the following properties of J_. If K is the set of real

numbers, then

1. a • _L=J_ • a=±, V a G i ,

2. a + _L=± + a = a, V a £ R,

3. _L + ±=± and ± • ±=_L

3.3.1.1 Evaluating Interactions

We model interactions in terms of the number of events encountered by a truster, A, regard

ing a trustee, B in the context c within a specified period of time [toj*n]- We assume that

A has a record of the events since time to. An event can be trust-positive, trust-negative

or, trust-neutral depending whether it contributes towards a trust-positive interaction, a

trust-negative interaction or, a trust-neutral interaction.

Let N denote the set of natural numbers. The set of time instances {to,t\,... ,tn} is a

totally ordered set, ordered by the temporal relation -<, called the precedes-in-time relation,

as follows: Vi,j £ N, U -< tj 44> i < j . We use the symbol i, •< tj to signify either £; -< tj

or ti = tj. Let efe denote the kth event and each event happens at a specific time instance.

We define the concept event-occurrence-time as follows:

46

Definition 7 [Event-occurrence-time] The event-occurrence-time, ET, is a function

that takes an event ek as input and returns the time instance, ti at which the event occurred.

Formally, ET(ek) — U.

We divide the time period [to,in] into a set T of n intervals, [*0)*i]> [*i>*2]> • • • > [*n-i>*T»] such

that for any interval [£j,ij],£j -< tj. A particular interval, [tfc_i,£fc], is referred to as the kth

interval. We extend the -< relation on T and the time intervals are also totally ordered by

the -< relation as follows: \/i,j,k,l 6 N, [U,tj] -< [tk,ti] •& tj -< tk- The intervals are non-

overlapping except at the boundary points, that is Vi, j , k, I € N, [U, tj] n [tk, U] = 0. Lastly,

for two consecutive intervals [U,tj] and [tj,tk] if ET(ek) — tj then we assume ej € [ti,tj\.

Let V denote the set of all trust-positive events, Q denote the set of all trust-negative

events, and J\f denotes all trust-neutral events (that is, £ = V U Q U JV). We assume

that all trust-positive events contribute equally to the formation of a trust value and all

trust-negative events also do the same. The trust-neutral events contribute nothing. We

assign equal numeric weights to all events, trust-positive or trust-negative, within the same

interval. Let v\. be the weight of the kth event in the ith interval. We assign a weight of

+1 if an event is in the set V, — 1 if the event is in the set Q, and 0 if the event is in M.

Formally, if ek denote the k event in the i interval, then

4 = <
+i
- l

.0

, i f e i € P
, i f 4 e Q
, if ek € Af

Definition 8 [Incidents] The incidents INj, corresponding to the j t h time interval is the

sum of the values of all the events, trust-positive, trust-negative, or neutral for the time

interval. If no event happened in j t h time interval, then INj =_L. If rij is the number of

events that occurred in the j t h time interval, then

(± ,iffae£ such that ET(e) e [tj-i,tj\
3 \Z)feii^i y otherwise

Events far back in time does not count as strongly as very recent events for computing

trust values. We give more weight to events in recent time intervals than those in distant

47

intervals. To accommodate this in our model, we assign a non-negative weight u>i to the ith

interval such that Wi > Wj whenever j < i, i,j 6 N.

Interactions has a value in the range [—1,1] U {±}. To ensure that the value is within

this range we restrict the weight Wi for the ith interval as Wi — j^, Vz = 1, 2 , . . . , n, where

S = n^n
2 '. Then the interactions of A with regards to B for a particular context c is given

by

,^2M (3,)
If A does not have any interaction with B in the j t h interval, then INj =JL. Thus,

n j—l n

^WilNi = ^2wiINi + WjINj+ J2 wiINi
i = l i = l i=j+l

j-1 n

= J2wiINi+ ±+ Y WiINi (^ Pr°Perty (!) of -1)

3-1 n

= J2wiINi + Y wiINi (by Property (2) of ±)

If there is a situation where nothing happened between the truster A and the trustee B

over the entire time period [*o>*n]> then INi = ± , V i — 1,2,... ,n. As a result, we have

WiINi =J_, V i = 1,2,... ,n which implies /J.CB =_L The above is different from the situation

when ALC
B = 0. If the number of positive events is equal to number of negative events in

each interval, then INi = 0, V « = 1,2,... ,n and as a result we get &!% = 0- But the

former case occurs only when there is no interaction between the truster and the trustee

over the entire time period.

To illustrate our concept of interactions we use the following example. We use the

symbol "+" to denote positive events and the symbol "-" to denote negative events.

Example 1 Let us assume that the customer Alice from our e-commerce example, encoun

ters the following events related to S\ over the time period to - £7

to h t% (3 (4 (5 t$ tj

-\ 1 1 1 1 1 1 1 *•

48

where typical trust-negative interaction is receiving an unsolicited e-mail/phone-call/letter

advertising different deals offered by Si showing that Si is breaching her privacy through

information exploitation.

To compute Alice's interactions for S\, we divide the time period into the intervals -

[to,ti],... ,[te,tf]. Applying our theory, we have the following incidents: 1$ for interval

[t0,ti] = +2, JJVi = 0,IN2 = 0,IN3 = -2,IN4 = +2,IN5 = - 2 and IN6 = +2. The

weights assigned to each time interval are as follows - WQ (for interval [to,ti]) — 0.04,

wi = 0.07,u>2 = 0.11,ii>3 = 0.14,u>4 = 0.18, W5 = 0.21 and we — 0.25 (for interval [tQ,tj\.

Thus the value for Alice's interactions regarding S\, over the period [to, £7] is 0.0086 « 0.009.

Example 2 Consider the second set of events that Alice encounters over the same time

period to - £7 for M2 •

to U t? £3 it (5 £e h

Time
- + - + — + + + + - + + + + + - +

The difference between this set of events and the one in example 1 is that we have more

negative events that have happened recently. The total number of trust-positive and trust-

negative events are the same in both. We get a value of 0.0029 & 0.003 for interactions with

this set of events.

3.3.1.1.1 Comparison of Interaction with Bayesian Reputation System Re

searcher [HW04, MMH02, JI02, WJI05] have previously used Bayesian systems to rate enti

ties based on results of positive and negative past events. In such works, the updated rating

or reputation score is calculated using previous score and new rating information. The repu

tation score is represented in the form of beta probability density function. The beta-family

of distribution (or the beta-function) involves two parameters a and /? representing amount

of positive and negative ratings respectively. These parameters are continuously updated

based on the occurrence of events. The beta distribution f(d\a,/3) can be expressed as

follows:

49

The function can also be expressed using gamma function, as

f(0\a,P) = 1 ^ + ^ ^ - 1 (1 _ < - i (3.3)
r(a)r(/3)

where, 0 < 6 < 1 and a, (5 > 0. The T function is defined using the recursive formula

r(x) = xF(x — 1), T(l) = 1. Alternatively, T(a;) = x\. In this equation, a = number of

positive events and /?= number of negative events.

Our formulation of interactions, using the above distribution, could be as follows: Let

p and q be number of trust-positive and number of trust-negative events within [£o>*n]

respectively (we can ignore the trust-neutral events, as they do not affect the parameter

interactions to a great extent). Then the probability distribution function of observing

trust-positive event in future can be expressed as a function of past events by setting

a = p + 1 and (3 = q + 1, where p, q > 0

and the previous equation (Equation 3.3) takes the form

f^=TBmrhe'{1-$)° (3-4)
However, we choose not to use beta-function to compute 'interactions'. This is because,

for fixed number of p and q, the expected value of f(0\p,q), given by E(6) = J+t+2> is a

probability value representing the average relative frequency of positive events in future.

Thus, it cannot capture the effect of recent events for computing interactions. On the

contrary, our equation to compute interaction is sensitive to the distribution of positive and

negative events over the time period [*0)*n]-

To show this, we execute a little experiment. We take 50 events with 25 positive events

(p = 25) and 25 negative events (q = 25). The following two cases are considered:

• Case 1: All 50 events distributed equally over 5 intervals, each interval having 10

events.

• Case 2: All 50 events distributed unevenly over 5 intervals.

For each of these cases, we consider three sub-cases.

50

1. Sub-case 1: Concentration of positive events are more toward the recent intervals.

2. Sub-case 2: Concentration of positive events are more toward the past intervals (we

just reverse the event-distribution in sub-case 1).

3. Sub-case 3: Positive and negative events are distributed in oscillating manner.

For each of these cases, we observe that the value of 'interactions' varies depending on the

distribution. Nonetheless, the E(9) value is same for each of the sub-cases. The following

Table 3.1 summarizes the results. If the number of intervals is changed then the 'interactions'

^Intervals

5
5
5
5
5
5

#+ve
events

25
25
25
25
25
25

#-ve
events

25
25
25
25
25
25

Distribution of
events

Sub-case 1 of case 1
Sub-case 2 of case 1
Sub-case 3 of case 1
Sub-case 1 of case 2
Sub-case 2 of case 2
Sub-case 3 of case 2

I

0.056000
-0.056000
0.000000
0.068000
-0.068000
-0.001333

E{9)

0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

Table 3.1: Comparison of I and E(6)

values also change. But the E(9) values still remain the same. Table 3.2 shows the results

of the experiment with all 50 events distributed equally over 10 intervals. The above results

^Intervals

10
10
10

#+ve
events

25
25
25

#-ve
events

25
25
25

Distribution of
events

Sub-case 1
Sub-case 2
Sub-case 3

I

0.038909
-0.038909
-0.001091

E(9)

0.500000
0.500000
0.500000

Table 3.2: Comparison of / and E(9) with 10 intervals

show that our way of evaluating 'Interactions' captures the relative importance of events

over time as well as the distribution of positive and negative events over the entire time

period.

3.3.1.2 Evaluating Properties

The parameter "properties" is more difficult to compute and is, to some extent, subjective.

To begin with, each truster must define its own criteria for gradation of properties regarding

51

a particular entity. To assign a value to the properties component, the truster must assign

a value between -1 and +1 for each attribute of the trustee. How the values are assigned,

depends on the scheme and policy (called, property evaluation policy) of the truster. Also

the truster solely is responsible for assigning the relative weights to different attributes or

information. Average of these values gives the value for the component properties. It is

possible that the truster has insufficient information to assign a value to properties. For

these types of cases, we assign _L to the component. Thus, if the truster is aware of k

attributes of the trustee, then properties of trustee B according to truster A in context c is

evaluated as

APC
B = ^f^ (3-5)

where Vi G [—1,1], \fi = 1,2,... ,k. Vi is the value assigned to ith attribute of B and

is determined by the underlying policy of the truster. Note, APB =-L is different from

AP% = 0. Value 0 implies that after evaluating the information according to trust policy, the

truster's decision is neutral, whereas the value '_L' implies "lack of information" regarding

the attributes of the trustee, that is that there is not enough data to determine 'properties'

of the trustee.

Example 3 Let Alice determine that Si uses SSL3 as the secure communication method

and assigns a value of 0.65 for this attribute. She then receives a digital credential from Si

issued by, say Better Business Bureau which proves latter's authority to work as a Web ser

vice provider related to travel. By evaluating this certificate about S± as a service provider,

Alice assigns a value, say 0.8 to this piece of information. Then she calculates the 'prop

erties' component of {Alice —> S\)t as, Alice?™ = °-65^~0,8 = 0.725. By pp we denote the

context of "reliability to access data and provide a privacy protection service".

3.3.1.3 Evaluating Reputation

The component reputation is the most difficult one to compute. We believe, it is more

difficult to assign values to reputation information than to a property information. Conse

quently this assignment is more subjective in nature and completely depends on the truster's

52

discretion. We evaluate 'reputation' in the following way: The truster A gathers different

reputation values about the trustee B from different sources and scales them within the

range [—1,1]. Note, the values may have been represented in different scales. Hence, A uses

the simple translation formula ^Z/Zil — -ll^~a, where x is the transformed reputation

value within [—1,1], and value is the collected reputation value, represented within a range

[a, b\. The truster may also translate qualitative values like low, medium, high to a numeric

value within [—1,1] with the translation low = -1, medium — 0, high = 1. Here we assume

that all these collected values (qualitative and quantitative) are in the same reputation

context. This type of translations helps the truster to aggregate different representation of

reputation information by bringing them to a uniform platform. Finally, A computes aver

age of all these translated values as the value of reputation component AREPC
B. Formally,

if A has k such (translated) values rv\,..., rv^, then

k

AREP% = Yjrvi/k (3.6)
i=l

Note, AREPC
B =JL is different from AREPC

B = 0. Value 0 implies that the sum of the

translated reputation values is zero, whereas the value '_!_' implies there is not enough data

to determine 'reputation' of the trustee.

Example 4 Let Alice come across a website where online customers have put some rating

regarding service provider S\ 's ability to preserve customers' privacy. Suppose the average

rating is 3.5 in a scale of 5. Let Alice read another report which rates Si as 8 out of

10 for its use of secure method of communication to preserve customer's privacy during

communication. A popular travel related magazine says S\ is at 'medium' level regarding

customers' privacy protection. Alice translates the above values as: m
2

+ = ^ => rv\ =

0.4, r " | + 1 = ^ =>• rv2 = 0.6 and the rating 'medium' is translated to rv-$ — 0. Therefore,

the value of the reputation component is calculated as, AREP^ = {rv\ + rv^ + rvz)/3 =

(0.4 + 0.6 + 0)/3 = 0.333.

53

3.3.1.4 Evaluating Recommendation

An initial recommendation score, V^, is a value in the range [—1,1] that is provided to the

truster by the recommender tp. To assist the recommender in generating this score for his

feedback, the truster may provide a questionnaire to the recommender. The recommender

uses the positive values to express his faith in the trustee while uses negative values to

express his discontent. If the recommender has no conclusive decision, he uses zero as rec

ommendation. It is quite possible that the recommender does not return a recommendation

sore. In such a case A assigns the value ± to V^.

A truster A, has a trust relationship with the recommender tp. The context of this

trust relationship will be to act "reliably to provide a service (recommendation, in this

case)". This trust relationship will affect the score of the recommendation provided by

the recommender. For example, let us say that A trusts ip to a great extent to provide

an appropriate recommendation for B but does not trust i/>' as much as ip. ifr provides a

recommendation score of -0.5 to A and ip' also provides the same recommendation score.

To A, ip's -0.5 score will have more weight for computing the trust value on B than if/s,

although A will consider both the scores. Scaling the recommendation score based on the

trust relationship between the truster and the recommender has one important benefit.

Suppose that the recommender tells a lie about the trustee in the recommendation in order

to gain an advantage with the truster. If the truster does not trust the recommender to

a great degree then the score of this recommendation will be low with the truster. Note

that the feedback from an unknown recommender or from a recommender with whom the

truster does not have any prior trust relationship is scaled with the trust value _L. Note

also that if the truster distrusts a recommender to properly provide a recommendation, it

will not ask for the recommendation to begin with or it can discard their recommendations

immediately.

We use the trust of the truster on the recommender as a weight to the initial rec

ommendation score returned by the recommender. We had introduced the expression

v(A -̂ -> B)^ earlier to denote the value of a normalized trust relationship. We use this

54

value as the weight. At this stage we do not specify how we generate this value. We leave

that to a later section (Section 3.3.4). Following the above discussion, the recommendation

fREC% of a recommender ip for an entity B to the truster A in a context c is given by

TJ,REC% — (v(A - ^ ip)^) • V$. In addition, the truster A may get recommendations about

the trustee B from many different recommenders. Thus the recommendation value that the

truster uses to compute the trust in the trustee is specified as the sum of all recommendation

scores scaled to the range [—1,1] U {J.}. If ^ is a group of n recommenders then,

RECB - T5.M :**,)?) (n

where * = {tpi,... ,tpn}. yREC% =JL is different from qRECc
B = 0. In the former

case, either nobody responded or Vj, v(^4 -̂ -> ipj)f =X. In the latter case either all

recommenders returned a score '0', that is all of them are neutral about the trustee in

the trust context or Vj, v(A - ^ ipj)^ = 0 that is, the truster is neutral about all the

recommenders.

Example 5 We continue with our example of Alice trying to establish a trust relationship

with the web service provider(s). Let Alice now ask her friend Charlie, with whom she

already has an established trust relationship, to recommend Si in the context of pp. Let she

trust Charlie (denoted by F\) in the context of "providing recommendation" with 0.8. The

recommender F\ returns a value (recommendation score) 0.55 for S\. Then Alice evaluates

the recommendation component of {Alice —̂> Si)t as F1REC^' = 0.8 x 0.55 = 0.44.

Next, we consider the case where 4 other friends of Alice, namely F2, F3, F4, and F5

give recommendation about Si in the context pp and their recommendation scores are -0.7,

0.3, 0.8, 0.6 respectively (Let F<i do not like the service provider Si for some reason and

hence give a negative recommendation for that). Let Alice trust F2, -£3,^4 and F5 with a

degrees 0.4, 0.2, 0.75 and 0.5 respectively, in the context of "providing recommendation"

(we assume, for the time being, that these values have been derived somehow from the

corresponding trust relationships). Let \P = {1*1,^2,^3,^4,^5}. Then the recommendation

is calculated as *RECfx = o.8xo.55+o.4x(-^+o.2xo.3+Oo75x0.8+o.5xo.6 = 0 4 2 3 Note that

F2 's bias has been offset to a great extent.

55

3.3.2 Simple Trust Vector

After evaluating the parameters within the range [—1,1] U {J.}, we are in a position to

specify the "simple" trust relationship between the truster A and the trustee B in a context

c at time t. We denote it as (̂ 4 -̂ -> B)t and is specified as

(A -^ B)t = \AI%, AP£, AREPC
B, *REC%\

Therefore, simple trust vector between a truster and a trustee represents the vector of

parameter values as computed at time t.

Example 6 After computing the parameters, Alice's simple trust relationship with the ser

vice provider Si is {Alice - ^ Si)t = [0.009,0.725,0.333,0.423].

3.3.3 Normalizing the Trust Vector

We mentioned earlier in Section 3.1.2 that a truster may give more weight to one of the

parameters than others in computing a trust relationship. For example, a truster A may

choose to emphasize interactions and properties more than reputation and recommendation.

In such case the truster will want to consider the reputation as well as recommendation

factor to a lesser extent than interactions and properties about the trustee. Which particular

component needs to be emphasized more than the others, is a matter of trust evaluation

policy of the truster. The truster's policy can be trustee specific or can be the same for

all trustees. Similarly it can be context specific or context independent. This policy is

represented by the truster as a trust-parameter weight policy vector.

Definition 9 [Trust-Parameter Weight Policy Vector] The trust-parameter weight

policy vector AWQ of a truster A with regards to trustee B in context c is a vector that has

the same dimension as the simple-trust vector. The elements are real numbers in the range

[0,1] and the sum of all elements is equal to 1.

If the truster has the same trust-parameter weight policy for all trustees but different for

different contexts then we will use the symbol AWC; for same trust-parameter weight policy

56

for all context but different trustees we will use the symbol AWB; finally for same trust-

parameter weight policy for all trustees and for all contexts we will use the symbol AW.

Using this trust-parameter weight policy vector the normalized trust relationship between

a truster A and a trustee B a t a time t and for a particular context c is given by

(A -±> B)f = AWC
B Q(A^ B)t (3.8)

The 0 operator represents the normalization operator. Let (A —>• B)t =

[AIC
B, APB, AREPC

B, yRECc
B] be a trust vector such that AIB, APB, AREPC

B, yRECc
B G

[—1,1] U {J-}. Let also AW%
 =

 \WIIWP,WREP,WREC] be the corresponding trust-

parameter weight policy vector such that Wj + Wp + WREP + WREC
 = 1 a n d

Wi, Wp, WREP, WREC € [0,1]. The © operator generates the normalized trust rela

tionship as

(A-UB)? = AWBQ(A-^B)t

= [Wj • AIC
B, WP • APB, WREP • AREPC

B, WREC • yRECc
B]

= [JB, APB, AREP%, *REC%)

Each element AIB, APBI AREPB, yRECB of the normalized trust vector also lies within

[-1,1] U{±}.

Example 7 Continuing with the example, the simple trust relationship between Alice and

Si at time t is specified as, (Alice -^> Si)t - [0.009,0.725,0.333,0.423]. She decides to

put 40% weight on interactions, 30% on properties, 10% weight on reputation and rest

20% on recommendation for all trust relationships. Then her trust-parameter weight policy

vector is, AuceW = [0.4,0.3,0.1,0.2]. Hence the normalized trust vector (Alice —> S{)^ is

[0.4,0.3,0.1,0.2] ©[0.009,0.725,0.333,0.423] = [0.004,0.217,0.033,0.085].

3.3.4 Value of the Normalized Trust Vector

So far we have defined a trust relationship in terms of a vector which is normalized by a

trust policy. Recall from section 3.3.1.4 that there is at least one scenario in which we need

to use a trust value as a weight for a real number, namely for computing recommendations.

57

Thus it seems appropriate to define the concept of a value corresponding to the normalized

trust vector. This value indicates the truster's level of positive (or, negative) assurance

about the trustee in the specified context in terms of distance from the neutral level i.e.,

how far the truster is from the neutral level in the positive (negative) side.

Definition 10 [Value of Normalized Trust Vector] The value of a normalized trust

relationship (A -U B)f = [AIB, APB, AREP%, ^RECC
B] is a number in the range

[—1,1] U {-L} and is defined as

v(A - ^ B)f = AI% + APB + AREP% + yRECc
B (3.9)

The value for a trust relationship allows us to revise the terms "trust" and "distrust" as

follows:

v(A - ^ 5)f =

[-1,0) =>• it is distrust

0 =S> it is neutral

(0,1] =* it is trust

J. => it is undefined

Example 8 With our running example, the value of the normalized trust between Alice and

Si in the context pp at time t is given as, v(Alice - ^ Si) f = 0.004+0.217+0.033+0.085 =

0.339. Since the value lies within the range (0,1], the "level of trust" of Alice with Si in

the context pp at time t is 0.339. The value implies that, Alice's level of assurance with Si

to protect her privacy during online service is 0.339 that is, with the given information the

truster Alice could reduce her 'neutrality' about Si by 0.339 in the positive side. Alterna

tively, Alice is only 33.9% 'positive' about Si in context pp and 66.1% 'neutral' about Si in

pp.

3.3.5 Trust Dynamics

Trust (and distrust) changes over time. Let us assume that we have initially computed a

trust relationship Ttt at time ti, based on the values of the underlying parameters at that

time. Suppose now that we try to recompute the trust relationship Ttn at time tn. We

claim that even if the underlying parameters do not change between times ti and tn, the

trust relationship will change. To model trust dynamics (the change of trust over time)

58

we borrow from observations in the social sciences that indicate that human abilities and

skills respond positively to practice, in a learning-by-doing manner, and negatively to non-

practice [Hir84]. We observe that the general tendency is to forget about past happenings.

This leads us to argue that trust (and distrust) tends towards neutrality as time increases.

Initially, the value does not change much; after a certain period the change is more rapid;

finally the change becomes more stable as the value approaches the neutral (value = 0)

level. How fast trust (or distrust) will decay over time, is, we propose, dependent on the

truster's policy. The truster may choose to forget about trust relationships which are 3

weeks old or 5 years old. The model cannot dictate this. Our goal is to provide a basis by

which the truster can at least estimate, based on the truster's individual perception about

this, the trust at time tn. We call this trust dynamics policy, in which the truster specify

two time instants T\ and T2 along with two percentage thresholds, say p\ and p2 for the

respective time instants. Rationale is, during the period [0, T\] the initial trust will decay

at most to pi% of the initial value. During [TI, T2] the trust value will decay to at most

P2% of the initial value and after that the trust value tends toward neutral level (0 value).

We assert that the trust decay follows an exponential decay and lim v(Tj) — 0.
t—>oo

Let v(T(i), be the value of a trust relationship, Ttt, at time U and v(Ttn) be the decayed

value of the same at time tn. Then the time-dependent value of T^ is defined as follows:

Definition 11 [Time-dependent Value of Trust Relationship] The time-dependent

value of a trust relationship Ttt from time ti, computed at present time tn, is given by

{
,ln(Pl/100K

v{Tu).e
{ n }t , 0 < t < TI

{^),{Tti)/^^ ,n<t<r2

(^).»(T;).c-(^) ,t>r2

where T\ < T2 and p\ > p2 •

Thus trust dynamics can be represented by the graph shown in Figure 3.2. The values

Ti,T2,pi,p2 determine the rate of change of trust with time and is assigned by the truster

based on its perception about the change. The truster can control the decay by suitable

choosing the values of these four parameters. Figure 3.3(a) shows the decay of trust when
59

Figure 3.2: Graph showing the nature of trust dynamics

T\ = 15 and T% = 40 are kept constant but the percentage thresholds p\ and p2 are varied.

The initial trust is 0.7 i.e., v(Tto) = 0.7. Similar decay in distrust is shown in the Figure

3.3(b) where v(fto) = -0.7.

Variation in trust decay when thresholds are varying with constant 11=15. t2=40 (initial trust =. 0.7) Variation In distrust decay whan thresholds are varying with constant t1=15, t2=40 (initial distrust» -0.7)

O.S

T
ru

st
 v

a
lu

e

O.Z

0.1

• * " . . ~ . . ~ *

\^^ ^
V

\

Th1=9B%,Th2=6%
Th1»95%,Th2=10°,i
Th1=85%,Th2=20%,

\ ^\. \ \ N.

V\ \ \
"̂ "̂ - A

-0.1

-0.2

| -°3

| - 0 . 4

-0.5

-0.6
//

^>^ ... - J
^f7---i~ - - i- — i

/ • * jS^

;//

'/

.

Th1«9B%,Tr>2«5%

Th1>.95%,Th2-10,K

Th1o85%,Th2=20'?(

. O 5 10 15

(a) Decay in trust

0 5 10 15 20 25 30 35 40 45 50

(b) Decay in distrust

Figure 3.3: Decay in trust (and distrust) for varying percentage threshold at constant time
instants

We show the variation in trust decay with fixed percentage thresholds but varying T\ only,

T2 only, and both 7*1, r<i in Figure 3.4(a), 3.4(b), and 3.4(c) respectively.

60

(a) For varying n (b) For varying T2 (C) For varying n and ri

Figure 3.4: Decay in trust for varying time instants with fixed percentage thresholds

Note, number of such time instants and corresponding percentage thresholds need not be

restricted to two. The truster, according to his/her policy, can define as many levels as

he/she wants. The equation computing the time-dependent value needs to be extended

accordingly.

To obtain the trust vector Ttn at time tn, we distribute the value v(Ttn) evenly over the

components. The rational behind this is that between U and tn we do not have sufficient

information to assign different weights to the different components. Thus we have the

time-dependent vector as ftn = [^nl, ^f^, ^ k l , *&!].

Example 9 In our example, we assume that the customer Alice has set the dynamics policy

as follows: For first 3 months she keeps at least 95% of the old trust value; for next 9 months

i.e., till 1 year of the previous calculation she keeps 10% of the original value, and after

12 months the value gradually approaches zero. Therefore, T\ = 3, T2 — 12, p\ — 95, and

P2 = 10. Let us also assume that the last time Alice has evaluated Si is 5 months back

and the trust value was 0.9. The decayed value of that trust at present time is calculated

as: v = 0.95 x 0.9 x e(kL5rf¥ l 25)(5-3) = 0.855 x (2.7183)-05 = 0.855 x 0.6065 = 0.518,

where we take e « 2.7183. The time-dependent trust vector at current time is obtained as

[0518, 0518 j 0^8) 0|18] = [Q 1 2 9 J Q U ^ Q12QJ Q 1 2 g]

We further believe that trust relationship at present time is not only dependent on the

values of the underlying parameters, but also on the "decayed" value of the previous trust.

We discuss this in more details in the next section.

61

3.3.6 Trust Vector at Present Time

The trust of a truster A on a trustee B in a context c at time tn depends not only on

the underlying components of the trust vector but also on the trust established earlier at

time ij. Consider for example that at time ti, Alice trusts Si to the fullest extent (value

= 1). At time tn, Alice re-evaluates the trust relationship and determines the value to be

-0.5 (distrust). However, we believe that Alice will lay some importance to the previous

trust value and will not distrust S\ as much as a -0.5 value. So, the normalized trust

vector at tn is a linear combination of time-dependent trust vector and the normalized trust

vector calculated at present time. The weight Alice will give to old trust vector and present

normalized trust vector is, again, a matter of policy. However, this leads us to refine the

expression for normalized trust vector at time tn as follows. Let T be the time-dependent

trust vector derived from v(T^) at time tn. Also, let a and 0 be the weights corresponding

to present normalized vector and time-dependent vector, respectively.

Definition 12 [Normalized Trust Relationship] The normalized trust relationship be

tween a truster A and a trustee B at time tn in a particular context c is given by

[APB,APB,AREPB,*RECC
B], iftn = 0

[% 4 1 . ^ %> iftn^O and AIB = AP% = AREP% = *i% =±
a • [AI%, APB, AREP%, *RECC

B) + / ? . [» & , 4*1, ^,^p], iftn^O

and at least one of AIB, APB, AREPB, qtRECB ^J_

{A - ^ B)Z =

where a-[AiB,APB,AREP%^REC%}+0.[^,^/^,^} = [a.AiB+0.^, a-

APB + /3.<n, a.AREPB + p.«p, a.yREC'B + P-^p-], a , /3e[0 , l] and a + 0 = 1.

Example 10 In our running example, let Alice put 70% weight on the current vector and

30% on the time-decayed vector. Then her final trust vector for the service provider Si is

evaluated as:

(Alice - ^ Si)% = 0.7 x [0.004,0.217,0.033,0.085] + 0.3 x [0.129,0.129,0.129,0.129]

= [0.042,0.191,0.062,0.098]

and the final trust value is obtained as v(Alice —> Si)^ = 0.393.

62

3.4 Comparison Operation on Trust Vectors

We are now in a position to determine the relative trustworthiness of two trustees. The

need for such comparison occurs in many real life scenarios. Consider the following example.

Suppose entity A gets two conflicting pieces of information from two different sources B

and C. In this case A will probably want to compare its trust relationships with entities

B and C and accept the information that originated from the "more" trustworthy entity.

This motivates us to define a comparison operator on trust relationships.

Let T and T" be two normalized trust relationships at time t. We introduce the following

notion of compatibility between two trust relationships.

Definition 13 [Compatibility of Trust Relationships] Two trust relationships, T and

T' are said to be compatible if the trust relationships have been defined under the same

trust-parameter weight policy vector, the trust relationships are at the same time instances,

and the context c for the trust relationship T is the same as the context d for T', that is

c = d'. Otherwise the two trust relationships are said to be incompatible.

Note that the definition of compatibility between two trust relationships does not explicitly

involve information about the trusters or trustees. The most intuitive way to compare two

trust relationships T and T" is to compare the values of the trust relationships in a numerical

manner. Thus for A to determine the relative levels of trustworthiness of B and C, A

evaluates v(A -£-> B)? and v(A -U C)f. If \{A -U B)? > v(A ^-+ C)f, then A trusts

B more than C in the context c. We say that T dominates T", given by T >- T". However,

if v(A -̂ -> B)^ = V(J4 —> C)^, A cannot judge the relative trustworthiness of B and C.

This is because there can be two vectors whose individual component values are different

but their scalar values are the same. For such cases we need to compare the individual

elements of the two trust relationships to determine the relative degree of trustworthiness.

In addition, for the same reasons, it is better to determine relative trustworthiness of B and

C on the basis of component values rather than breaking the tie arbitrarily.

Let (A -U B) f = [AIC
B, APC

B, AREPC
B, *RECC

B} and (A -U C)? =

[Aic
c, APC> AREPC

C, yRECc
c] such that v(A -U B)? = v(A - ^ C)f. Let also the

63

underlying trust-parameter weight policy vector be given by &W = (^1,^2,^3,^4) where

12i=i wi = 1 a n d Wi E [0,1], \fi = 1 , . . . , 4. To determine the dominance relation between T

and V we first determine the ordered trust relationships T and T' corresponding to T and

T'.

Definition 14 [Ordered Trust Relationship] The ordered trust relationship T is gen

erated from a normalized trust relationship T as follows:

1. Order the w^ 's in the trust-parameter weight policy vector corresponding to T in de

scending order of magnitude.

2. Sort the components of the trust vector T according to the corresponding weight com

ponents.

We compare the two ordered trust relationships T and f', corresponding to T and T",

component-wise to determine the dominance relation between the two. Note that we assume

that the same underlying trust-parameter weight policy vector has been used to determine

the trust relationships. If the first component of T is numerically greater than the first

component of T' then T >- T'. Else if the first components are equal then compare the

second components. If the second component of T is greater than the second component

of T' then T >- T', and so on. If weights are equal for first three (or, all four) components

in the ordered trust relationships, then T >- T' only when the three components (or, all

four components) of T are numerically greater than those of T". In the comparison process

we assume that the value J. is dominated by all real numbers. If we cannot conclude

a dominance relation between the two trust relationship, then we say that the two trust

relationships are incomparable. This is formalized by the following definition.

Definition 15 [Dominance between Trust Relationships] Let T and T" be two trust

relationships and T and T' be the corresponding ordered trust relationships. Let also % and

T[represent the ih component of each ordered trust relationships and w^ represent the ith

weight component in the corresponding trust-parameter weight policy vector. T is said to

dominate T' if any one of the following holds:

1. v(T) > v(T'); or

64

2. i/V i,j, i ^ j , (Wi = Wj) then V i, %> f[; or

3. if3i,fi>f! andfork = 0...(i-l), fi_k^T[_k

Otherwise T is said to be incomparable with T'.

Algorithm 1 describes the comparison of the trust relationships T and T".

Example 11 Continuing with our e-commerce example, let the customer Alice evaluate

the normalized final trust vector with the other service provider S2 at the same time

as, (Alice -^» S2)f = [0.042, 0.191, 0.078, 0.083]. Now she wants to decide which

service provider is more trustworthy in the context of protecting her privacy. Here she

can not decide simply from the final trust values as, we can see from the above vector,

v(Alice —> S^i = 0.393 = (Alice —> 5i)t • However Si has high recommendation than

S2 though S2 's reputation is higher than that of S\. Therefore Alice applies the method de

scribed above to compare the trustworthiness of the service providers. Her trust-parameter

weight policy vector was [0.4,0.3,0.1,0.2] which, in descending order of magnitude, results

in [0.4,0.3,0.2,0.1]. Consequently, the two ordered trust vectors are

ordered (Alice - ^ 5 i) f = [0.042,0.191,0.098,0.062]

ordered (Alice - ^ 5 2) f = [0.042,0.191,0.082,0.078]

This shows that the service providers have equal values for w~i and 1B2 where &W = [w~i].

So Alice cannot make any decision based on ul\ and w<2 i.e., interaction or properties.

However S\ > S2 with respect to W3 which is 'recommendation'. Hence she concludes that

the service provider S\ is more trustworthy than S2 in the context ofpp i.e., "reliability to

access data and provide a privacy protection service".

3.5 Combination Operation on Trust Vectors

We have defined a basic trust relationship as a binary relation between two different entities

- a truster and a trustee. However, today's world of information exchange involves many

cooperative entities in a relationship within a specified context. Combination of trust is

65

Algorithm 1 Trust comparison algorithm
Input: Two trust vectors T = (ij) and T' = (£/), and the trust-parameter weight policy-
vector W = (wi). /* W is same for T and V */
Output: Comparison result for T and T"

Procedure CompareTrust(T, T", W)
if v(T) > v{T') then

return T y T'
else if a(T) < v(T') then

return T V T
else

/* when v(t) = v(T') */
if for all i, ij = £/ then

return T = 7*
else

Order the IOJ s in the descending order of magnitude. The new vector is W — (wi).
Sort the components of ijS of T according to «;$. The new vector is T = (fj).
Sort the components of £/s of T" according to u>i. The new vector is T' — (t/).
for all i,j,i ^ j and iDj = tDj do

if for all such i, ti > W then
return T y T

else if for all such i, U < ti' then
return T' y T

else if for all such i, U = i / then
if 3 i, such that ti > W and V k — 0 . . . (i — 1), £;_& = ti_fe' then

return T y T'
else if 3 i, such that fj < £/ and V A; = 0 . . . (i — 1), tj_fc = £J_A/ then

return V y T
else

return "T and T' are incomparable"
end if

else
return "T and T" are incomparable"

end if
end for

end if
end if

66

needed for the interoperability of these cooperating agents. Whenever a group of agents

are working together, combination of their individual trust relationship is necessary to

have an idea about the expected behavior of the group. Keeping this in mind we now

formalize combination operators for trust relationships. Different possibilities like one-to-

many, many-to-one, and many-to-many relationships are addressed. We also formalize the

effect of reconfiguration of these groups on the corresponding trust relationships.

3.5.1 Trust Relationship between a Truster and a Group of Trustees

In real life, we often encounter situations where we have to take decisions based on informa

tion coming from different sources. Consider the scenario where an entity has existing trust

relationships with different service providers for a particular service. The truster expects

some service which is provided collectively by the service providers. The truster has some

expectation from each individual provider. To have an idea about the service provided by

the group, the combined trust of the service providers needs to be estimated. Therefore,

the receiver needs a mechanism to combine the existing trust relationships to estimate an

initial composite trust relationship. The group of service providers is considered as a single

entity (trustee). Once the combination is done, the truster no longer considers the trust

relationships with individual trustee. The truster begins with the combined group as a

single entity and subsequently a trust relationship with the group evolves.

Let an entity A have trust relationships with two different entities B and C in the same

context c at time t. A decides to have a trust relationship with the combined group BC in

the same context. It is clear that individual trust relationships of both B and C will have

effect on the resulting trust vector. However, the individual trust relationships will have

different degrees of effect. This is represented by A putting different weights on the trustees

to evaluate their relative importance in the trustee group. Once the group is formed the

trust (A —> BC)f evolves as a new trust relationship. Thus we define the initial trust

relationship between A and BC in context c as follows.

Definition 16 [Trust Combination] Let at time t a truster A have two trust relation

ships, {A —• B)^ and {A —• C)^ with trustees B and C respectively. If ® is the trust

67

combination operator then the trust relationship between A and the group BC is defined as

(A JL> BC)? = {A^ B)? ®{A-^ C)f .

The trust combination operator © depends on the semantics of trust combination in a

specific application. It can be specified as, but not limited to, max, min, multiplication of

two trust relationships. That is, we can have

(A^B)?@(A-^Q? = max((A^B)?,(A-^C)?)

(A -!U B)» © (A -*U C)f = min((A^B)?,(A^C)?)

{A^B)Ne{A^c)N = {A _U B)N x {A ^ C)N

where the ' x ' is defined as component-wise multiplication of two vectors or some variation

of that. However, we prefer to specify the © operator as the 'weighted sum of corresponding

components' where for each component, the corresponding weights add up to 1. That is,

for each component of the combined trust vector (A —* BC)?, the operator ffi takes a

weighted sum of respective components of (A —c-^> B)? and (A -^-> C)?. Thus, if (A -̂ ->

B)? = (JB, APB, AREP%, *BRECC
B), (A -U C)? = (AIC

C, AP£,AREPC
C, *CRECC

C)

be the trust vectors, then the combined vector is given by (̂ 4 —̂-> BC)? = (AIBC, APBC>

AREPC
BC, <j,BCRECBc) where,

AIBC = wB - JB + wT
c • AIC

C, AREPC
BC = w*EP • AREP% + wPEP • AREPC

C,

APBC = wp
B • APB + wp

c • AP£, *BCRECBC = w§EC • yBRECc
B + w*EC • *CRECC

C

Here, wc
B

mp+wc^mip = 1,\lcomp e {I, P, REP, REC}. The weights wfmp is weight assigned

to ith trustee for the component comp and w°°mp € [0,1], Vi, Vcomp. The above way of

combining two trust relationships is generic. Because the other possible ways of combining

trust relationships can be expressed as some variations of this method by suitably adjusting

the weights. Consequently this way of combining trust is semantic-independent.

Note that, A has two groups of recommenders Vl/jg and ^c f° r B and C respectively.

There are five relations possible for these two groups, namely

1. * B = # c ,

68

file:///lcomp

2. * B n * c = 0,

3. * B C 9C,

4. * B D ^ c , and

5. $ B n * c ^ and none of 1, 3, 4 hold.

The truster A forms a new list of recommender ^BC for the combined group BC where,

^BC — ^B U \&c irrespective of the above five relations between ^>B and \I>c- If the

truster has m trust relationships with trustees B\, B^,..., Bm, we can easily generalize the

above concept for the group of trustees Q = {B\,B2, • • • ,Bm} as (A —• Q)^ = (A -?-*

Bi)f © (A - ^ B 2) f . . . © (A - ^ 5 m) f . The operator © takes the weighted sum of the

corresponding components of the vectors.

Example 12 Consider in the example that both the service provider declare a collaboration

between them. That is, they together might process some order from the customers. In this

scenario, Alice wants to check how much she can trust this combined provider to protect her

personal privacy during online transactions. Let she assign 50% weight to both interactions

and properties of both providers. That is, wSl — wSi — 0.5 and Wg = Wg2 = 0.5. She

also assigns 40% and 60% respectively to Si and S2 's reputation and 60% and 40% to the

service providers recommendations respectively. We also assume that Alice use the same set

of recommender for both the providers i.e., ^Si = ^s2- Therefore Alice's trust components

on the combined trustee service provider, say S, have following values,

Alicelf = 0.5 x 0.042 + 0.5 x 0.042 = 0.042

AUczPf = 0-5 x 0.191 4- 0.5 x 0.191 = 0.191

AiiceREPf = 0.4 x 0.062 + 0.6 x 0.078 = 0.072

VgRECg = 0.6 x 0.098 + 0.4 x 0.082 = 0.092

where VPs = *&Si- Consequently, Alice's trust on the combined Web service provider S is

represented as [0.042,0.191,0.072,0.092] which has the value v{Alice - ^ 5) f = 0.397.

69

3.5.2 Trust Relationship between a Group of Trusters and a Single
Trustee

Next, we address the situation where different trusters having different trust relationships

with a particular entity in a context, form a group. After forming a group the trusters

work as a single truster entity. We need to define a way to combine these different trust

relationships to get the initial trust for the group. This initial trust gives the starting point

of a trust relationship between two entities (a group and a single trustee). Thereafter, this

trust evolves as before. But before grouping, different trusters have their own policy to

evaluate the trustee for the same context. In other words, though trust context is same,

there are different trust policies. Unless all the trusters agree to a common policy, as well

as a common criteria for evaluation, there cannot be a single trust relationship. To achieve

this, there should be a consensus among the members.

At this stage we need to discuss some issues. Let an entity A and B have trust vectors

about an entity C in some context c at time t. Now A and B want to collaborate and

work as a single truster. The initial trust for the group in the context c is derived from

their individual relationship with C. Let A have higher interactions and properties values

than B in terms of trust relationship with C. But B has stronger recommendations about

C. Therefore, for initial group trust, for interactions and properties, A will play the major

role determining those. The recommendation component of the initial trust of the group

will have more influence of recommendation value of J3's trust relationship with C. We

assume that both the trusters have same value for reputation of C. So, for each component

of the trust vector, the group of trusters has an ordering according to their individual

contribution for the component. For each component, they have to assign weights to each

individual truster in the group according to their relative ordering. How the weights would

be assigned is determined by the consensus the group arrives at during the time of group

formation. After that, the parameters are evaluated for the whole group as a single entity.

70

Definition 17 [Trust Consensus] The trust-consensus of a group of trusters is defined

as the agreement among all members to build a common basis for evaluating a combined

trust relationship.

Let Ai,A2,...,Am be m trusters trying to form a group say G, to build a single trust

relationship with a trustee B in some common context c. All these trusters have different

trust relationships with B in context c at the present time t. So there are m existing trust

relationships (A\ - ^ B)^, (A2 -^ B)^,..., (Am -̂ -> B)^ at t. The objective is to get a

trust relationship (Q —̂-> B)f where Q = {Ai, A%, • • •, An}-

The members need to agree to the following things before formation of the group:

1. For each component, a set of weights to assign relative importance of the members.

2. A common trust-parameter weight policy vector to assign weights to each parameter

of combined trust relationship.

3. A common interval length to determine interactions, as well as trust.

4. A common policy to assign weights to trustee properties.

5. A common policy to evaluate reputation parameter.

6. A common set of recommenders whom the group consider for providing recommen

dation about the trustee, and

7. A common policy to evaluate trust relationship with a recommender.

For the 6 point above, let \&i,... , V&TO be m group of recommenders who have provided

recommendation for B in context c to the truster A\,... , Am respectively. Now the group

Q of trusters forms a new group ^ ' of recommenders, where \I/' = U£Li ^*- Let |vl/'| = k

(i.e., there are k distinct recommenders in the group ^) . Each of the A^s may not have a

trust relationship with all of these k recommenders (when \PP n ^q — 0, p ^ q i.e., the two

groups of recommenders are disjoint). In such cases the group Q evaluates trust relationship

according to their newly formed policy for establishing trust with a recommender.

71

Therefore, for the group's trust relationship with trustee B, we have (G -̂ -> B)[

\gl%, gPB, gREP%, vRECc
B\ where,

m m

gl% = J2 wl-AJh QREP% = J2 ^fEP-AiREPc
B,

i=l i=l
m m

gPB = £ wf-AiH, 9>REC% = Y, ™?EC-ARECB

i=l i=l

Here, w™mp G [0,1] and YT=iwi°mP = h^comp € {I,P,REP,REC}. After arriving at

a trust-consensus, group Q works as a single entity to work further with the trustee B

according to their trust-consensus.

Example 13 In the example, let us assume that Alice consult her friend Bob before making

any further interactions with a service provider, say S\. That is, she wants herself and Bob

to act as a single entity and wants to take decisions together. Here we assume that Bob

has an existing trust relationship with Si in the context pp. This trust relationship was

established during some previous online interactions made by Bob alone. Also Alice wants

the cost of the air-ticket to be paid by Bob whereas she would pay for the hotel. In this

scenario both of them need to disclose their personal sensitive information (e.g., credit card

details). To achieve this they form a new customer identity where they together act as a

single customer. Note, Alice and Bob could have availed the different services separately

without establishing a combined truster entity. However, in that case they might end up

with two conflicting decisions like Alice deciding to avail the hotel reservation service from

S\ and Bob, unaware of S2, deciding not to make any purchase from S\ considering S\ not

enough trustworthy in the context pp. To avoid this conflict they form a truster group where

every decision has same effect on each of them. Let they form the entity AliceBob and

make the consensus as follows: wAlice = 0.7, wBob = 0.3; w%lice = 0.5 = w^ob; w*ffi£ =

0.45, w™h
p = 0.55, and w™g = 0.4, w^f = 0.6. Also ^AuceBob = *Alice U VBob

where \&Alice (""• ^Bob = 0- Alice and Bob agree to use Alice's policy to assign weights to

attributes of S\. They adapt Bob's trust policy to evaluate trustworthiness of a recommender

in the context 'providing recommendation'. We also assume that they used same interval

length, which is 1 month, to evaluating interactions and trust. Finally their combined trust-

72

parameter weight policy vector is [0.4,0.4,0.1,0.1]. Now, let Bob's trust vector at that time

with Si in pp was [0.021,0.184,0.073,0.121]. The initial values of the components are,

AliceBob^ = °'7 x ° '0 4 2 + °'3 x °-021 = °-036

AUceBobP™ = 0.5 x 0.191 + 0.5 x 0.184 = 0.187

AUceBobREP^ = 0.45 x 0.062 + 0.55 x 0.073 = 0.068

*MiCeBobRECPl = 0.4 x 0.098 + 0.6 x 0.121 = 0.112

and the initial normalized trust vector is given by (AliceBob -&+ Sx)^ = [0.014,0.075,0.007,

0.011]. Consequently, Alice and Bob together trust the web service provider Si to the degree

of 0.107. Alice and Bob, as a single entity, starts interacting with Si with this initial trust

value and updates this trust relationship in future according to their agreed upon common

policy.

3.5.3 Trust Relationship between a Group of Trusters and a Group of
Trustees

We now explore the situation when a group of trusters Qr forms a trust relationship with

a group of trustees Qe in some common context c. Though this is a complicated concept,

we can formalize this by combining the above two cases. Combination can take place in

different ways.

1. If the group of trustees Qe already exists, then each truster Ai must already have, or

must build a trust relationship (Ai —-> Qe)^ as described in Section 3.5.1. Then Ai's

form the truster group Qr with Qe, considering Qe as a. single trustee, as described in

Section 3.5.2.

2. If the truster group Qr already exists with m different trust relationships like (Qr -^-»

Bi)i for i = 1, 2 , . . . , m, then (Qr • Qe)t c a n >̂e formed as in section 3.5.1.

3. If neither group of trusters or trustees exist, either of the group has to be formed first

and then the other group is formed as explained above.

73

We have defined combination operations for one truster-many trustees, many trusters-

one trustee and many trusters-many trustees. The group is formed under a common trust

policy. Next we examine the effect of reconfiguration of a group on the trust relationship.

3.5.4 Reconfiguration of a Group

After the group is formed, some member may leave, or some new member may join the

group. This contraction (or, expansion) of the group can happen in steps or, in one instance.

That is, old members can leave one by one or, together. Similarly, new members can join in

subsequent time instances, or as a whole group. We now address the issue of reconfiguration

of group of trusters (or, trustees) over time, and examine its effect on the existing trust

relationship.

3.5.4.1 Reconfiguration of a Trustee Group

Let at time tn, there be a trust relationship (A ——> Q)^ between a truster A and a group

of trustees Q, where Q — {B\,B%, • • • ,Bm}. Now, let at tn+i, a new trustee Bm+\ join

the group Q. Then to build the new trust relationship (rather, we say to "reconfigure" the

existing trust relationship) (A -^-> G')fn+1 where Q' = QU {Bm+x}, A reassigns the weights

for each component for Q and Bm+i, according to his trust policy without violating the

existing conditions. A does not combine J5m+i with existing m trustees, rather he combines

two entities Q and Bm+i, treating Q as a single entity. That is, in case of (A -^-* Q')tl+1, the

weights ^ ° m ^ i w i e l0 '1! a n d wg°mP + wB™+i = 1 w h e r e > c o m P e {I,P,REP,REC}.

The truster A also needs to update the recommender list by adding the recommenders

involved in the trust relationship (̂ 4 -̂ -> Bm+\)^n+1.

We now consider the situation where at tn+i a trustee Bi leaves the group. That is,

Q' = Q\{Bi} for some i € {1 ,2 , . . . ,m}. Then the truster needs not to change the policy to

evaluate the trust relationship. Because, after the trustee group is formed, truster considers

the trustee group as a single entity. This trust relationship has evolved over time and

removal of a trustee does not change the truster's policy of trust evaluation. The trust

74

relationship will evolve further with the reduced trustee group. Impact of absence of a

trustee on the trust relationship is noticed accordingly.

The above ideas can easily be extended if a group of new trustees (i.e., more than one new

trustee) join (or, leave) the existing group of trustees at a time. If a new group of trusters

Q" joins, then Q' = Q U Q" where Q" = {Bm+i,..., Bn} and n > m. The recommender's

list is also updated accordingly. If a subgroup Q" of trustees leaves the group Q {Q" C Q),

then g' = g\ g".

3.5.4.2 Reconfiguration of a Truster Group

Let at time tn, there be a trust relationship (Q —> B)tn between a group of trusters Q and

a trustee J3, where Q — {^4i, A2, • •., -Am}. Now, let at in+i> a new truster Am+i joins the

group Q. The new group Q' — Q U {j4m+i} builds a new trust relationship (Q' -̂ -> B)^

with B. Since Q is a group that has been formed earlier, at tn+i we no longer consider

individual component values for all truster. The reason is, whenever a group is formed, at

the time of formation, the members are ranked according to their relative importance for

each component. After formation each member works in the same way as other with the

trustee. So, after formation there is no discrimination among the existing group members.

A trust-consensus is made between the two truster entities, Q and Am+i. The component

values of the new truster Am+\ is, therefore, compared to the corresponding component

values of the group Q. Am+i may be a newcomer in the field (with less experience and

knowledge) or may be senior enough to get more importance than the formed group Q,

when he is about to join Q. In the latter case, in {Q' —• B)^n+X,Am+\ will have higher

weights for the components in which he dominates. The agreement between the joining

member and the group determines the relative importance of the two entities in that trust

relationship.

This idea is easily extended to the situation where at tn+\ more than one new truster join

Q. In that case, Q' = Q U Q" where Q" = {Am+i,..., An} and n> m. In this case ordering

is done for each of the component values of Q, and Am+\,... ,An. The trust-consensus is

made accordingly.

75

Removal of a truster from the group does not affect the group trust-consensus. The

group continues its trust relationship with the trustee as earlier. The trust evolves over

time as before. Absence of a member does not affect the trust relationship as long as

the trustee group remains unaltered. It is also true if more than one member leave the

group at a time. Changing of group policy, or arriving at a new trust-consensus depends

totally on the group. If a significant number of members have left the consortium, the

existing members may go for a revised agreement on how to evaluate the trust relationship

thereafter. Suppose at time tn we have a trust relationship (Q —> B)tl- Let us assume

that at each subsequent time intervals one or more members leave the group. Then there is

a sequence of time {t^} after the time tn such that at tn+k only one member from the group

remains in Q. Then at in+fc> the solitary member can go with the existing trust policy and

scheme to evaluate trust, or he can establish a new one-to-one trust relationship with the

trustee.

3.6 Summary

This chapter presents one of the major contributions of this work - the vector trust model.

The model helps to express different states (trust, distrust, neutral, and unknown) of a

trust relationship as quantitatively measurable objects. This also allows us to have mul

tiple degrees (potentially infinite) of trust and distrust. One of the key advantages of the

model, unlike existing trust models, is its extensibility. Trust is evaluated by numerically

evaluating four independent parameters - interaction, properties, reputation, and recom

mendation. Independence of the parameters provides the option to extend the model in

future. For example, if a fifth parameter is needed to be incorporated into the trust model,

it can be done easily without changing any of the constructs and methods to evaluate the

existing parameters, provided the fifth parameter is independent to the existing four param

eters. This independence of parameters also helps to evaluate trust even when information

regarding all the parameters are not available. None of the existing trust models allow

these flexibilities. Another key feature of the model is the relative importance of the trust

parameters. It helps to use the model in a security context where one (or more than one) of

76

the parameters is (are) not applicable. In such scenarios the effect of the parameter(s) on

the final trust value can be eliminated by assigning a 0 importance (weight) to the param

eter (s). The other key features of the model are capturing dependence of trust on time as

well as old trust, method of comparison and method of combination of trust relationships.

No existing model has formalized dependence of trust on time as it is done here. Also the

existing models do not explicitly formalized flexible methods of comparison and combina

tion of trust. Therefore, this vector trust model provides features that are not available

from any single trust model in literature.

77

Chapter 4

Reasoning about Trust
Relationships in Different Contexts

The vector trust model developed so far can reason about trust relationships only with

respect to a given context. In other words, it allows trust vectors to be compared only

when there is an exact match on the context. For this to happen the contexts needs to be

specified using exactly the same terms. This assumption is not realistic in most situations.

It is extremely unlikely that different trusters will specify a given context in exactly the

same manner. This prevents our model from being interoperable. However, it appears that

a model providing such features will be useful. For example, let a user A (the truster) trust

a software developer B (the trustee) to a degree T to produce excellent quality anti-virus

software (the context). Assuming that expertise to develop an anti-virus software (a related

context) is similar to the expertise needed to develop anti-spam software, it seems natural

that the truster A will be able to determine how much to trust B for the different (but

related) context. We introduce this feature in the model by formalizing a notion of context

and the relationships that exist between different contexts.

We observe that we must define contexts in such a manner that makes our model interop

erable. Different entities often use different words to describe the same context. Alternately,

the same word can be used for describing different contexts. These are example of semantic

conflicts in the use of terminology. To solve these problems we borrow some ideas from the

work on ontologies [Gru93, UG96]. Our ontology consists of a set of contexts together with

relationships defined among them. We have presented this context ontology in [RRC08]. We

78

begin by giving a formal definition of context and later describe the relationships between

contexts.

4.1 Context Ontology

Definition 18 [Context] A context C is represented by a set of keywords that is denoted

by KeywordSetc •

Each keyword in KeywordSetc is used to describe the context C. The keywords in

KeywordSetc are semantically equivalent because they express the same context. For each

context C, we require that the KeywordSetc should be non-empty and finite. For any two

distinct contexts C and C, KeywordSetc^KeywordSetc = 0. In other words, any keyword

belongs to exactly one context. An example will help illustrate the notion of contexts. The

context age can be expressed by the keywords {age, yearOf Birth}.

Consider the two contexts doing a job and doing a job well. Modeling them as distinct

concepts increases the total number of contexts that must be managed. To solve this

problem, we specify doing a job as a context and associate a set of values with it. The

values in this case will be {badly, neutral, well}. Using these values, we can specify different

conditions on the context. Each of these conditions represent a derived context.

To obtain a derived context from the context C, each keyword k, where k £

KeywordSetc, must be associated with a domain D^ that defines the set of values as

sociated with the keyword. The formal definition of derived context appears below.

Definition 19 [Derived Context] A derived context T>C is one that is specified by a

condition k op v defined over a context C where k G KeywordSetc and v € Dk and op is a

logical operator compatible with the domain of Dj..

To check whether two derived contexts specified using conditions on different keywords

are equivalent, we need the notion of translation functions.

Definition 20 [Translation Function] The translation function associated with a con

text C, denoted as TFc, is a total function that takes as input a condition k op v

79

(k E Keywords etc) and a keyword k' (k' e KeywordSetc) and produces an equiva

lent condition defined over keyword k'. This is formally expressed as follows. TFc :

Condc x KeywordSetc —»• Condc where Condc is the set of all valid conditions specified

over the keywords in KeywordSetc-

Since the translation function is total, for every given valid condition and keyword there

exists an equivalent condition defined on the given keyword. Several steps are involved

in developing the translation function. To express k op v in terms of k', we need to first

convert the value k to an equivalent value that is in the domain of k'. This step is performed

by conversion functions which convert the value of one keyword to an equivalent value

of another keyword. The second step is to convert the operator op into an equivalent

operator op' that is suitable for the domain of k'. The definition of the conversion function

together with the domain of the keyword can determine how the operator must be changed.

Consider the two keywords age and yearOfBirth. Suppose we want to translate age > 18

to an equivalent condition defined over yearOfBirth. The first step is to convert age =

18 to an equivalent value defined over yearOfBirth. The function that converts age to

yearOfBirth will be specified as: yearOfBirth = currentYear - age. For age = 18, this

function returns yearOfBirth = 1987. Since yearOfBirth and age are inversely related,

(that is, age increases as yearOfBirth decreases) the operator > is inverted to obtain <.

The results obtained by the TFc function in this case will be yearOfBirth < 1987.

4.1.1 Re l a t i onsh ips be tween C o n t e x t s

We now describe two kinds of relations that may exist between distinct contexts. One is

the generalization/specialization relationship existing between related contexts. The other

is the composition relationship between possibly unrelated contexts.

4.1.1.1 Specialization Relation

Distinct contexts may be related by the specialization relationship. The specialization

relation is anti-symmetric and transitive. We use the notation C$ C Cj to indicate that

the context Cj is a generalization of context Cj. Alternately, context Cj is referred to

80

as the specialization of context Cj. For instance, the contexts makes decision and makes

financial decisions are related by the specialization relationship, that is, makes decisions C

makes financial decisions. Also, makes financial decisions C makes payment decisions. By

transitivity, makes decisions c makes payment decisions.

Each specialization relationship is associated with a degree of specialization. This in

dicates the closeness of the two concepts. F'or instance, makes payment decisions is a spe

cialization of makes decision, and makes payment decisions is also a specialization of makes

financial decisions. However, the degree of specialization is different in the two cases, makes

payment decision is closer to makes financial decision than makes decision. The degree of

specialization captures this difference. Since two contexts related by specialization will not

be exactly identical, the degree of specialization will be denoted as a fraction. The exact

value of the fraction will be determined using domain knowledge.

The specialization relationship will be used in trust evaluation when information can

not be obtained for a particular context, and the values obtained from the generalized or

specialized context will need to be extrapolated.

4.1.1.2 Composition Relation

Specialization captures the relationship between contexts that are related. Sometimes un

related contexts can be linked together using the composition relation. We now describe

this composition relation. A context in our model can either be an elementary context or

a composite context. An elementary context is one which cannot be subdivided into other

contexts. A composite context is one that is composed from other contexts using the logical

'and' operation. The individual contexts that form a composite context are referred to as

the component contexts. A component context can either be composite or elementary.

We use the notation Cj -C Cj to indicate that the context C; is a component of context

Cj. In such cases, Cj is referred to as the component context and Cj is the composite context.

For instance, we may have the component contexts secure key generation and secure key

distribution that can be combined to form the composite context secure key generation

81

and distribution. This is denoted as secure key generation <C secure key generation and

distribution.

Sometimes a composite context Cj may be composed from the individual contexts Cj,

Cfc and Cm. All these contexts may not contribute equally to form Cj. The degree of

composition captures this idea. A degree of composition is associated with each composition

relation. Since two contexts related by composition will not be exactly identical, the degree

of composition is denoted as a fraction. The sum of all these fractions equals one if Cj is

composed of Cj, C^, and Cm only. If Cj is composed of Cj, C^, Cm and also other component

contexts, then the sum of fractions associated with Cj, C&, and Cm must be equal to or less

than one. The exact value of the fraction representing the degree of composition will be

determined by domain knowledge.

The composition relationship is important. When trust information cannot be computed

for the composite context because of missing parameter values, the related information

obtained from the components can be used to compute the trust vector. Alternately, if we

cannot calculate the trust vector for a component context, we can use the trust vector for

the composite context and extrapolate it. Later, we show how we do this.

4.1.1.3 Context Graphs

The specialization and the composition relations can be described using one single graph

which we refer to as the context graph. Each node n^ in this graph corresponds to a context.

There are two kinds of weighted edges in this graph: composition edges and specialization

edges. A composition edge (rii,nj), denoted by a solid arrow from node n\ to node rij,

indicates that the context represented by node rij is a component of the context represented

by node rij. The weight on this edge indicates the degree of composition of the component

context. A specialization edge (np,nq), shown by a dashed arrow from node np to node

nq, indicates that the context represented by node np is a specialization of the context

represented by node nq. The weight on the edge indicates the degree of specialization of a

context.

82

Unrelated contexts correspond to nodes in different context graphs. Each context cor

responds to only one node in the set of context graphs. We denote the context graph

associated with context C as CQc- The formal definition of a context graph is as follows.

Definition 21 [Context Graph]

A context graph CQ = (A/-, £CU£S) is a weighted directed acyclic graph satisfying the following

conditions.

• M is a set of nodes where each node n» is associated with a context Ci and is labeled

with KeywordSetd • KeywordSet^ is the set of keywords associated with the context

• The set of edges in the graph can be partitioned into two sets Sc and Ss. For each edge

(ni,nj) € £c, the context Ci corresponding to node ni is a component of the concept

Cj corresponding to node nj. The weight of the edge (ni,nj), denoted by w(ni,nj),

indicates the degree of composition of component context that makes up the composite

context. For each edge (ni,nj) € Ss, the context Ci corresponding to node rii is a

specialization of context Cj corresponding to node rij. Here again the weight of the

edge (ni,rij), denoted by w(ni,nj), indicates the degree of specialization.

1/3

Key
generation

1/4,

4/5 _

Symmetric key
establishment

1/3

Key
distribution

y "*,
Manual key
distribution

Cryptographic

_ _ - 5 ^

>»

^1/3

Key
agreement

4/5

Electronic key
distribution

key establishment

"*«-•-... 4/5

Asymmetric key
establishment

1/2/

Key
generation

1/

>

3 /
•

^ S
1/2

Key
distribution

*

Static public
key distribution

^ ,. 2/3

Ephemeral public
key distribution

" Dotted lines represent 'generalization-specialization' relationship

* Solid lines represet 'composition-component' relationship

Figure 4.1: Context graph showing specialization & composition relationships

83

Figure 4.1 gives an example of a context graph that is associated with the context cryp

tographic key establishment. Here, for simplicity of representation, we use simple phrases

to label the nodes instead of keywordset. The solid arrows in this graph indicate composi

tion relationships and the dashed arrows indicate generalization/specialization relationships.

The context cryptographic key establishment can have two specializations, namely, symmet

ric key establishment and asymmetric key establishment. The weight on the edge connecting

this symmetric key establishment with cryptographic key establishment indicates the degree

of specialization. For instance, if symmetric key establishment is very closely related to

key establishment, the degree of specialization may be labeled as | . Similarly, the edge

connecting asymmetric key establishment to key establishment may be labeled as | . Each

of these specific contexts is a composition of some component contexts. Symmetric key

establishment has three components - key generation, key distribution, and key agreement.

A weight of | can be assigned to each of these components contexts. Similarly, asymmetric

key establishment have components key generation and key distribution with weights ^ each.

A component context can also be a generalization of some specialized contexts. In the

above example the context key distribution has two categories - manual key distribution and

electronic key distribution. Similarly key distribution in asymmetric keys can be thought of

as generalization of static public key distribution and ephemeral public key distribution.

4.1.2 Comput ing the Degree of Specialization and Composi t ion

4.1.2.1 Computing Degree of Specialization

Consider two contexts Ci and Cj where Ci c Cj, that is, Cj is a specialization of d. The degree

of specialization is computed as follows. Let rii, rij be the nodes corresponding to contexts

Ci and Cj in the weighted graph. Let the path from n* to nj consisting of specialization edges

be denoted as (rii, n;+ i , n;+2, • • •, nj-i,rij). The degree of specialization = iHl^ w(np, np+\).

This corresponds to our notion that the similarity decreases as the length of the path from

the generalized node to the specialized node increases. Note that, in real world there may be

multiple paths from Ci to Cj. In such cases, it is important that the degree of specialization

yield the same values when any of these paths are used for computation. An example will

84

1/4 _ - - -

Chitdrens'
Movies

Movies

- =^ V : ^ - - - _

^ - _ ^

Japanese
Children's Movies

1/10

Japanese
Movies

_ - - ~ * ^

Figure 4.2: Computing the degree of specialization

help illustrate this point. Consider the following specialization relationships: (a) Movies

C Japanese Movies C Japanese Children's Movies and (b) Movies C Children's Movies C

Japanese Children's Movies. Suppose one is computing the degree of specialization that

exists between Movies and Japanese Children's Movies. In this case, there are two paths

consisting of specialization edges between the concepts Movies and Japanese Children's

Movies. Computing the degree of specialization using any of these two paths should yield

the same value. Calculating the degree of specialization that exists between Movies and

Japanese Children's Movies using the values given in Figure 4.2 yields ^ .

4.1.2.2 Computing Degree of Composition

Consider two contexts Cj and Cj such that Cj is a component of Cj. Degree of composition

captures what portion of Cj is made up of Cj. The degree of composition is computed as

follows. Let ni, nj be the nodes corresponding to contexts Cj and Cj in the context graph.

Let there be m paths consisting of composition edges from n* to nj. Let the qth. path

(1 < q < m) from n; to rij be denoted as (m,niq+i,niq+2,..., njq-\,nj). The degree of

composition = Tt^=1(w(ni,niq^i)xw(njq-i,nj)xTLJJCi +1w{nv,npj,.\)). A House is composed

of Doors, Windows, and Walls. A Door is composed of Wood. A Window is composed of

Wood and Glass. Therefore, we have the following composition relationships: Windows

<C House, Doors <g House, Wood <C Windows, and Wood <S Doors. The composition

relationships are shown in Figure 4.3. Thus, to evaluate what part of house is made of

wood, we have to consider all the paths. The degree of composition of Wood and House is

5
24"

85

Figure 4.3: Computing the degree of composition

4.1.3 Closest Context

A context may be related to several other contexts through specialization and composition

relationships. However, we need to find out which context or set of contexts is conceptually

closest to the given context. The closest context is a singleton set if the context is a

generalization or specialization of context C. It is also a singleton set if it is a composite

context in which C is a component. However, if C is a composite context, then the closest

context can also be a set that contains the components of C. The formal definition of closest

context appears below.

Definition 22 [Closest Context] Let C be a context. The set of contexts S =

{Ci,C2, • • • ,Cn} is defined to be closest to C if the following relation holds:

Case 1 - The elements in S are the components of C:

for all contexts rii that are specializations of C

degree of specialization^, C) < E?_i degree of composition(Cj, C)

for all contexts n; that are generalizations of C

degree of specialization^, rii) < 2? = 1 degree of composition(Cj,C)

for all composite contexts rii in which c is a component

degree of composition(C, rii) < ^?=i degree of composition(Cj,C)

Case 2 - S is a singleton set containing C\ and C is a component of C\:

for all contexts rii that are specializations of C

86

degree of specialization^, C) < degree of composition(C,Ci)

for all contexts rii that are generalizations of C

degree of specialization^, rij) < degree of composition{C,Ci)

for all contexts n\, 712, • •., nm that are components of C

E^ : 1 degree of composition^,C) < degree of composition{C,C\)

for all composite contexts n, in which C is a component

degree of composition(C,ni) < degree of composition{C,C\)

Case 3 - S is a singleton set containing C\ and C is a specialization of C\:

for all component contexts n±, n<i- • • •, nm of C

^iLi degree of composition^, C) < degree of specialization^, C\)

for all contexts n,i that are specializations of C

degree of specialization^,C) < degree of specialization^,C\)

for all contexts Ui that are generalizations of C

degree of specialization^, n^) < degree of specialization^,C\)

for all composite contexts n{ in which C is a component

degree of composition(C,ni) < degree of specialization^, C\)

Case 4 - S is a singleton set containing C\ and C is a generalization of C\:

for all component contexts n\, n^ , nm of C

E ^ degree of composition^,C) < degree of specialization(C\,C)

for all composite contexts ni in which C is a component

degree of composition(C, n^ < degree of specialization(C\,C)

for all contexts rii that are specializations of C

degree of specialization^,C) < degree of specialization^,C)

for all contexts rii that are generalizations of C

degree of specialization^, ni) < degree of specialization(C\,C)

87

4.1.4 Relat ionships between Context Graphs

Different information sources may use different context graphs. Comparing information

or combining information that uses different context graphs may not give correct results.

Before proceeding with the comparison of information obtained from different sources, the

context graphs of these sources must be merged. Note that, sometimes context graphs

cannot be merged because they contain conflicting information. To understand why this

happens, we first need to elaborate on the relationships that can exist between a pair of

context graphs. Two context graphs can be related by any of the following relationships:

(i) equality, (ii) unrelated, (iii) subsumes, and (iv) incomparable.

Definition 23 [Equality of Context Graphs] Two context graphs CQ\ = < A/i,£icU

Sis > and CQ2 —< A/2,62c U 62s > are said to be equal if

1. A/i = A/2, £u — £20 and £\s = 62s

2. for each (ni,rij) € (Slc U £u) n (£2c U £"2s), u>i{ni,nj) = w2(ni, rij) where wi(rii,nj),

W2(rii,nj) denote the weight of the edge (rii,nj) in graph CQ\, CQ2 respectively.

Intuitively, two context graphs are equal if they have the same set of nodes, composition

edges, and specialization edges. Moreover, each of these edges must have identical weights in

the two graphs. The information obtained from identical context graphs can be compared.

Sometimes two context graphs are unrelated. They do not have any common context.

It is conceivable that these graphs will be used for different situations.

1/2

Secure
communication

s
Message
encryption

V 1/2

Cha
establ

nnel
shment

CG CG-

Figure 4.4: Unrelated context graphs

Definition 24 [Unrelated Context Graphs] Two context graphs CQ\ and CQ2 are

said to be unrelated if KeywordSet^ fl KeywordSetc2 — 0 where KeywordSetd and

KeywordSetc2
 are ^e se^ °f keywords associated with all the contexts in the context graphs

CQ\ and CQ2 respectively.

Often times two context graphs are comparable but one has more information than the

other. In such cases, the context graphs are related by the subsumes relation. The intuition

is that the context graph CQ has more information than the one it subsumes. The formal

definition is given below. If CQ\ subsumes CQ2, the first condition requires that the set of

nodes in CQ\ is greater than or equal to the set of nodes in CQi- The second condition

requires that for every specialization edge (ni,rij) present in 62s, there exists a path from

Hi to rij in CQ\ consisting of specialization edges such that the product of the weight of

these edges equals the weight of (ni,rij) in CC/2- The third condition imposes a similar

requirement for the composition edges.

Definition 25 [Context Graphs related by the Subsumes Relation] Consider two

context graphs CQ\ =< A/i,£ic U £\s > and CQ2 =< A/2,£20 U £2$ >• Let wi(ni,nj),

W2(rii,nj) represent the weight of edge (ni,rij) in graph CQ\ and CQ2 respectively. CQ\ is

said to subsume CQ2 if it satisfies all the following conditions:

1. N2 C Mi

2. for each specialization edge (n^rij) £ £23 there exists a path

{rii,ni+i,ni+2, • • • ,nj-i>nj} in CGi whose length > 1 such that

{(nj ,n i + i) , (n i + i ,n i + 2) , (n i + 2,« j+3) , - - - , (^ - i ,^)} <= £\s and Upl] wi(np,np+x) =

W2{nunj)

3. for each composition edge (ni,n,j) € 52c there exists m paths consisting only

of composition edges where m > 1 in CQ\. Let the qth path (1 < q <

m) in CQ\ from n; to nj be denoted as (ni,niq+i,niq+27 • • • ,rijq^i,nj) where

{(ni,niq+i),(niq+i,niq+2),... ,(njq^i,nj)} C £ l c . w2(ni,nj) = Y,™=1{wi{ni,niq+i) x

u>i(nj9-i,nj) x n ^ J + i ^ i K ^ p + i))

89

Often times two context graphs, neither of which subsumes the other, may be compara

ble. Such graphs contain different but related information. Moreover, they never have any

conflicting information. Such graphs can be merged without human intervention. Two con

text graphs are comparable if they satisfy a set of conditions. The first condition requires

that the two graphs have one or more common nodes. The second condition requires that

for any specialization edge (nj, rij) present in £\B, either there must be a path from rii to nj

in &2s consisting of specialization edges in £\s and whose product equals wi(rii,rij) or no

path exists between n^ and rij in &is- The third condition imposes a similar requirement

for composition edges in £\c. This condition requires that either there are m paths (m > 1)

consisting of composition edges from rn to rij in CQ2 or there are no paths. Computing the

degree of composition along these paths gives the same result as w\(rii, rij). The fourth and

the fifth requirements imposes similar requirements for edges in S^c- The formal definition

appears below.

Definition 26 [Comparable Context Graphs] Two context graphs CQ\ = < A/i,£icU

£\s > andCC/2 —< A/2, ^cU52s > are said to be comparable if the following conditions hold.

1. AfinA/2^0

2. for each {rii, rij) 6 £\s either of the following conditions hold:

(a) 3 ni+1,ni+2, • • •, n^-i € Af2 - M • {({(rii, ni+1), (n i+1 , ni+2),..., (n,_i, rij)} C

£2s) ^Ylt=i W2(nt,nt+i) = wi(ni,nj))

(b) there does not exist any path from ni to rij in CQ2

3. for each (ni,rij) € £ic either of the following conditions hold:

(a) there exists m paths (m > 1) from ni to nj in CQ2- Let the qth path (1 < q < m)

from ni to nj be denoted as (nj,nig+i,nj9_)_2, -.. ,njq-\,rij) where {(nj,rejg+i),

{niq+\,niq+2), • •., (n j q_2 ,%g_i) ; (njq-i,nj)} C £2c. In such a case, wi(nunj) =

T^1{w2{ni,niq+1) x w2(njq-i,n7) x Tl3«~*+lW2(np,np+i))

(b) there does not exist any path from rii to rij in CQ2

90

4- for each (nj,nj) € £2s either of the following conditions hold:

(a) 3 n i + i , n i + 2 , . . . , n j _ 1 e J\fi-J\f2»({{(ni,ni+i), (ni+i,ni+2), (ni+2,ni+3),... , (nj_i ,n,)} C

£u) /\\%Z]wi{nt,nt+i) = W2(rii,nj))

(b) there does not exist any path from n\ to nj in £\s

5. for each (m,nj) 6 62c either of the following conditions hold:

(a) there exists m paths (m > 1) from rii to rij in CQ\. Let the qth path (1 <

<1 < m) from ni to rij be denoted as (ni,niq+i,niq+2,. -. ,rij -2,rij -i,n.j) where

{(nuiHg+i), (mq+i,niq+2), • • •, (njq-.2,njq-i), (njq-i,nj)} C £lc. In such a case,

w2{nunj) = EJl^wiCni.n^+i) x w^n^-^rij) x n ^ + 1 w i (n p , n p + 1))

(b) there does not exist any path from n, to nj in CQ\

Manage
business

Manage
investments

3/4

Manage real-estate
related investments

Manage
stock-related
investements

1/

Manage
bank accounts

4 V
2 ' >•

Manage
loan

accounts

1/2

Manage
savings
accounts

1/4,

Manage
business

Manage
buying/selling

stocks

>s v 1/3

Manage
savings
accounts

CG'

Manage
buying/selling

stocks

CGj

Figure 4.5: Context graphs having subsumes relation

Definition 27 [Incomparable Context Graphs] Two context graphs that are not unre

lated are incomparable if they are not comparable.

Incomparable graphs occur when the underlying assumptions are different. For exam

ple, one system may think that the degree of specialization of the contexts makes financial

decisions and makes payment decision is 0.5, another might think this degree is 0.3. In

91

If Ĉ

Manage real-estate
related investments

CGj C G2

Figure 4.6: Incomparable context graphs

1/2

Manage
stock-related
investments

this case, the two systems will generate context graphs in which some edge present in both

the graphs will have different weights. Alternately, one system may consider that makes

financial decisions and makes payment decisions are related by generalization/specialization

relationships whereas another system may consider them linked by a composition relation

ship. The systems will generate context graphs in which some pair of nodes present in both

the graphs will be related by different types of edges. Since the conflicts are generated

because of the differences in the underlying assumptions, they cannot be resolved without

human intervention.

Next we give an algorithm for combining comparable graphs. The inputs to this algo

rithm are CQ\ —< N\,£\ > and CG2 = < A/2,£2 > - the two context graphs that must be

merged. The output is CQ = < J\f,£> which is the combined context graph. N is computed

by performing a union of the nodes in N\ and A/2- The edges common to £\ and £2 are

inserted in £. For each edge (ni,rij) that is present in £\ but not in £2, we check if there

is a path from n; to nj in £2. If so, then these edges of £2 are added to £. Otherwise, the

edge (ni,rij) is added. The same process is followed for edges present in £2 but not in £\.

The resulting graph so obtained subsumes the graphs CQ\ and CQ?-

92

Algorithm 2 Combining Comparable Graphs
Input: CQi =< A/i, £1 > and CQ2 = < A/2, £2 > — comparable context graphs.
Output: CQ =< A/", £ > - the combined context graph.

Procedure CombineContextGraphs(CGi, CQ2)

for all i, j such that edge (rii, rij) G £\ ("1 £2 do
£ = £U{(ni,nj)};
w(ni,n,j) = wi{rii,nj);

end for
for all i,j such that edge (ni,rij) € £\ — £2 do

for all i, j such that path (nj, n^+i,nj+2, • • • > %) between ra; and n^ in CG2 do
for all i, j such that (nj,nj+i) in the path do

£ = £ll{(ni,ni+i)};
w(ni,ni+i) = tf2(«i,«i+i);

end for
end for

end for
if there is no path between n; and rij in CG2 then

£ = £u{(ni,nj)};
w(ni,rij) = wi{rii,nj);

end if
for all i, j such that edge (ni,rij) € £2 — £\ do

for all i, j such that path (nj,nj+i,nj+2,... ,nj) from n* to n̂ - in CQ\ do
for all i, j such that (nj,nj+i) in the path do

£ = £{j{{ni,ni+i)};
w(ni,ni+i) = wi(rii,ni+i);

end for
end for

end for
if there is no path from nj to rij in CQ\ then

£ = £U{(nj,raj)};
w(ni,n,j) = W2{ni,rij);

end if

93

4.2 Evaluating Trust without Complete Information

The vector trust model presented so far describes how trust pertaining to some context is

evaluated, how trust changes with time, and how different trust vectors can be compared.

All this relies on the assumption that the trust vector can be determined in a given context.

This may not be possible when complete information is not available. For instance, the trust

evaluation policy vector may assign a weight of 0.5 to the recommendation component

and it may not be possible to obtain any recommendation about the trustee under the

given context. In that case the truster is totally uncertain about the recommendation

(recommendation value is _L in this case). In the worst case, it may not be possible to

obtain information about any of the components for a given context. That is, the values

of the parameters are unknown (X) to the truster. This situation is not very uncommon -

suppose a truster is trying to determine the trustworthiness of a new software product. In

such a case, the truster may not have any interaction or knowledge about the properties

pertaining to this product. Obtaining a reputation or a recommendation is also not possible.

In such a case, the model that we have presented so far, cannot determine the trust vector

of the software product. In this section, we present an approach using which a truster can

obtain an approximate trust value of the given software product. Our approach exploits

the relationships between contexts in order to extrapolate the values related to trust.

4.2.1 Extrapolating Trust Values from Related Contexts

When a truster A cannot determine the values related to his trust relationship with trustee

B for a context C, we show how the values can be obtained from one or more related

contexts, say, C;. The first issue that we must resolve is what values should we use from

the related context Cj. There are two possibilities. We can use the trust value from d

to extrapolate the trust value for C. Alternately, we can use the values of the individual

parameters interactions, properties, reputation, and recommendation from d and use these

to compute the trust vector for C. We adopt the second approach for two reasons. First, the

trust-parameter weight vector can be different for contexts C and Cj. Using the parameter

94

values of Cj to extrapolate the parameter values for C will not be very meaningful. Second,

we may not be missing all the parameters of C. For instance, we may have values for

recommendation and properties for context C but no value for interactions and reputation.

In such a case, we would want to extrapolate only the interactions and reputation parameter

from the context C\.

The second issue is that a context C may be related to many other contexts, say, Ci, Cj,

and Cfc. Which contexts do we refer to in order to evaluate the trust vector for context C?

Many strategies are possible and different strategies may be needed in different real-world

situations. In this dissertation, we propose a very simple strategy for choosing related

contexts. The algorithm given below describes this strategy. This algorithm has three

inputs. One is the context C whose closest context we are trying to determine. The other

is the context graph CQ in which C is a context. The third input is the set of contexts that

we should not consider. We term this as the prohibited set of contexts. The algorithm

uses a variable total-weight that is used for evaluating the closest context. The algorithm

proceeds by checking the component contexts of C. If these are not prohibited, then the

total weight of all these component contexts makes up the variable totaLweight. These

component contexts are inserted into the set closest which contains the closest context.

We then check each generalized parent and each specialized children whether the weight

on the edge is greater than the totaLweight. If so, totaLweight is assigned this new weight

and closest is initialized with this parent or children. The algorithm returns the set closest

which gives the set of contexts closest to C. Finally, we give an example that shows how

the value of a parameter, say recommendation, about a trustee B can be obtained from the

closest context. We describe the steps to be performed in the form of an algorithm. The

steps show how to extrapolate the values of the parameter recommendation when it is _L It

does this by getting the recommendation from its closest relation and multiplying it by the

weight of the edge. Similar algorithms can be developed for extrapolating the value related

to the other parameters.

95

Algorithm 3 Get the closest context
Input: (i) C - the context whose closest one needs to be determined, (ii) CQ - the context
graph in which C is a context, (iii) S - set of contexts that should not be considered.
Output: closest - set of contexts closest to c.

Procedure ChooseClosestContext(C, CQ, S)
closest = 0; total-weight = 0;
Let CC be the set of component contexts of C;
for all i such that c$ € CC{C) do

if at £ S then
total-weight = total-weight + w(ci,C);
closest = closest U {CJ};

end if
end for
for all i such that pi is a generalization or composite context of C do

if pi £ S and totaLweight < w(C,Pi) then
total-weight = w(C,Pi);
closest — {pi};

end if
end for
for all i such that r^ is a specialization of C do

if rj ^ 5 and total-weight < w(ri,C) then
total-weight — w(ri,C);
closest = {/-j};

end if
end for
return closest;

96

Algorithm 4 Get Recommendation about Trustee B from the Closest Context
Input: (i) C - the context whose recommendation value needs to be determined, (ii) CQ
- the context graph in which C is a context.
Output: yRECB - recommendation in context C.

Procedure GetRecommendation(C,CQ>S)
if yRECc

B 7̂ -L then
return qRECB\

else
5 = 0; closest = {C};
while yRECB =J_ and closest ^ 0 do

closest = ChooseClosestContext(C,CG, S);
Case 1: closest — {Cj} and C is a component or specialization of C;.
if yRECg* j£± then

<s,RECc
B = «;(<?,£) x* JJECg;

return ^RECB\
else

S = SU{Ci};
end if
Case 2: closest = {C,} and C is a generalization of C;;
if *REC% ?± then

*RECC
B = tu(Ci,C) x * fl£C"g;

return ^RECfB\
else

S = 5U{Ci};
end if
Case 3: closest — {Ci, C2, • • •,Cn} and C is composed of Cj (i = 1,2,..., n);
Set j = 0 and yRECB =_L;
for all i such that Cj € closest do

if yREC^ ±L then
yRECc

B = yREC% + w(Ci,C) x yREC^;

j = j + 1;
else

5 = 5U{C0;
end if
*t,.R.EC£ = i x *RECC

B;
end for
return ^RECC

B;
end while

end if

97

4.3 Summary

This chapter presents another major contribution of this dissertation - formalism of trust

context and relationship between different contexts. The context ontology includes defini

tion of a context using set of similar meaning keywords. This helps us to use the model in

an interoperable manner, where different entities may use different keywords from the set

to specify the same context. Different contexts are related to each other with specializa

tion/generalization and component/composite relations. These relationships, together with

their corresponding degrees, are graphically represented using context graph. A context

graph is used to find the set of closest context for given context. In particular, the con

cept of closest contexts and the algorithm to find it, are significant contributions as these

help to estimate the trust value in a context when no information is available to evaluate

trust in that context. The trust, in such scenarios, is extrapolated from the available trust

values in the closest contexts. All the above features help to use the vector trust model in

more interoperable and flexible manner and are otherwise unavailable in the existing trust

literature.

98

Chapter 5

Validation

One of the ways to validate the trust model is to measure the relative trustworthiness

of different entities in a security context, where a result is known from practice or other

evaluation methods, and check how close the result obtained using the trust model can

match the known result. For this purpose, we consider evaluating trust, using the vector

trust model, about the security level of two mechanisms for protecting against Denial of

Service (DoS) attacks. A particular type of DoS attacks (TCP SYN flooding), for a .NET

e-commerce system is considered. The two security solutions that are considered for the

validation purpose are cookie solution and filtering mechanism. Existing security evaluation

methods indicate that cookie solution is relatively better than filtering mechanism to protect

against DoS attacks. For the validation purpose, we adapt the vector trust model to evaluate

the relative trustworthiness of these two security solutions and compare the result with the

known result. Next we describe how to use the vector trust model to evaluate the trust

about the security level of two mechanisms for protecting against Denial of Service (DoS)

attacks1.

We illustrate our approach using the user authentication mechanism of an e-commerce

platform, named ACTIVE. This was developed by the EU EP-27046-ACTIVE project

[EU 01]. It is a standard .NET e-commerce system offering a set of services that end-

'This validation work is a part of the work presented in [HCRR08].

99

users can purchase online. To access any of the services in ACTIVE, users must either

login as a registered user or as a visitor. The risk analysis of this login mechanism

showed that it represents a security problem if the login actions are not properly pro

tected [HGF+05b, HGF+05a]. The potential security problems are the different types of

denial of service (DoS) attacks, such as TCP SYN flooding [CenOO] and IP spoofing [Cen97].

During such attacks, user names and passwords can be intercepted by an attacker and used

later to impersonate as a valid user. These attacks have also been identified by the 1ST

EU-project CORAS [CORa] when they performed assessments of the login mechanism of

ACTIVE during the period 2000-2003.

The security attributes integrity and confidentiality are both compromised in these

types of attacks. The solution to this problem are mechanisms that address integrity and

confidentiality. Here we evaluate two such mechanisms - a cookie solution and a filtering

mechanism. The cookie solution adds a patch to the network stack software that keeps track

of sessions and their states. At first, a cookie is sent to the client and the pending connection

is removed. If the client does not respond within a short period of time, the cookie expires

and the client must re-start the request for a connection. If the client responds in time, the

SYN-ACK message is sent and the connection is set up. Adding the cookie message makes

it unlikely that an attacker can respond in time to continue setting up the connection. The

cookie will expire on the server and the connection attempt will be closed. If the client

address has been spoofed, the client will not respond in any event. The filtering mechanism

works in a different way. The filtering mechanism has an outbound and an inbound part,

shown in Figure 5.1(a) and 5.1(b) respectively, that checks the source address (srcAddr)

against a set of accepted source IP addresses stored in internalNetAddr. Rather than adding

control through the additional cookie, the filtering mechanism is implemented on the server

side (usually on a firewall or an Internet router) and configured to block unauthorized

connection attempts.

In our approach a truster A needs help to choose between the two security solutions. The

truster maker uses the vector trust model to estimate the trust level of the security solutions.

100

Outbound S

1 1 1
ElB

\. — "-"*•<> i

| {lnt*malNe1Addr.>excludu

! 1
• 1 !••»
* oulboundMtssagtf...) |

1/ !

k

^ > - ~
(srcAd*})

-.

[

tJsmaaaM-oiafi,. I ttt&Mtaiidi-aarYar ,

| InBoundMuugs (...) |

[int«malNMAtJtf->lndiK

1 • "

1 [a

i

irtAltt)] j
1
I
i

InBoundMuug* (...) |

! 'V

(a) Outbound (b) Inbound

Figure 5.1: Filtering mechanism

For this purpose A seeks help of information sources regarding anticipated number of DoS

attacks for the two solutions. That is, A uses the recommendation about the security

solutions from the information sources. A also adapts the vector trust model to evaluate

the trust level of the information sources to scale their respective recommendation about

the security solution. The next section presents the adapted model to evaluate information

source trustworthiness and shows how this helps to estimate the trust level of security

solutions.

5.1 Evaluating Trust Level of a Security Solution

We evaluate the trust level of a security solution by aggregating information from different

information sources. Since many different types of sources with varying degrees of trust

worthiness are used, the trustworthiness of a source must be factored in when using the

information it provides. We adopt the vector trust model to evaluate the trustworthiness

of information sources. In our approach, we assume that the trustworthiness of an informa

tion source depends on two parameters - knowledge level and expertise level. The knowledge

level, which is assessed by a third party expert, is considered as a recommendation about

the information source where the third party expert is the recommender. The expertise

score can be considered as properties of the information source, where the information to

evaluate this parameter is provided by the information source itself using a questionnaire.

These are formally defined below.

101

Definition 28 [Knowledge Level] Knowledge level of an information source is defined

as a measure of awareness of the information source about the knowledge domains related

to the security level of the security solutions. It is represented in terms of a number called

knowledge score.

Definition 29 [Expertise Level] Expertise level of an information source is defined as

a measure of degree of ability of the information source to assess the security level of a

security solution. It is represented in terms of a number called expertise score.

Level of trustworthiness is derived from knowledge score and expertise score. The fol

lowing subsections describe in details how to evaluate these scores to determine the trust

worthiness of the sources and how this, together with information provided by them, is used

in estimation of trust levels of the security solutions.

5.1.1 Evaluating Knowledge Score of an Information Source

The knowledge score of an information source gives a measure of how closely the knowledge

of that information source is related to the desired knowledge in the problem context. The

knowledge score is calculated from two scores - reference knowledge domain score and in

formation source knowledge domain score. These two scores are derived using two models

- reference knowledge domain model and information source knowledge domain model. The

reference knowledge domain model provides the relative importance of different knowledge

domain regarding the problem context. The information source knowledge domain model

gives an assessment, by a third party, of the relative importance of knowledge level of an

information source corresponding to the knowledge domains identified in reference knowl

edge domain model. The following sections present the details of these models and show

how the corresponding two scores are calculated.

5.1.1.1 Reference Knowledge Domain Model

Estimating security level of a security solution may involve several domains where not all

domains are of interest for the estimation. We develop a reference knowledge domain model

102

that captures the domains that are of interest and their relative importance with respect

to the problem context. The relative importance of a domain is measured in terms of

importance weight which is defined as

Definition 30 [Importance Weight] Importance weight of a knowledge domain is defined

to be the percentage of the whole reference knowledge domain covered by that particular

knowledge domain.

For example, suppose the context is assessing the security level of a new encryption algo

rithm over Internet Protocol (IP). In such a case, the knowledge domains network security

and IP covers the context greater than the knowledge domain authentication mechanism.

The percentage value of the above problem context covered by each of the knowledge domain

network security, IP, and authentication mechanism indicates their respective importance

weight with respect to the problem context. Figure 5.2 shows a reference knowledge do

main model consisting of four domains - domain A, domain B, domain C and domain D.

All these domains cover the whole knowledge domain equally (25%), and hence have equal

importance. Thus the importance weight of each domain is 0.25.

Figure 5.2: Reference knowledge domain model

Reference Knowledge domain score derives the relative importance for each knowl

edge domain in the reference knowledge domain model according to the problem

context.

In the computation of reference knowledge domain score, we first find out the knowledge

domains that are of interest for security level estimation. This can be done using various

103

• Domain A
• Domain B
B Domain C
B Domain D

techniques. In Common Criteria evaluation, the evaluator may provide the set of knowledge

domains based on his/her experience. Once we find out the knowledge domains that are

of interest to the problem context, we need to find out the importance weight for each

domain. Using these we calculate the reference knowledge domain score. Equations 5.1-

5.5 constitute the reference knowledge domain model for evaluating reference knowledge

domain score.

WKimp{x)

WaiiKimp{X)

" aggregatedKimp\-^)

JrefKnorm

**refKnowledgeDomainScore\-X-)

= [WKimp{x{j))}f=1

= [WKimp(x)]q
x=1

— J aggregation! \ " allKimp {.-&))

== [waggregatedKimp\-X- \J))\j=l

1
/ *j—\ ̂ aggregatedKimpK-^- \J))

= JrefKnorm * "aggregatedKimp\-^-)

— v^rejKnowledgedomainScore

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

As already mentioned, each knowledge domain in the reference model has a particular

importance weight associated to it. Note that multiple stakeholders are often involved in

formalizing the context. Consequently, different stakeholders can assign different weights

for importance. Suppose the stakeholders are denoted by the set X and the cardinality of

the set is q. We use x to denote an individual stakeholder. Suppose m is the number of

knowledge domains in the problem context. The importance of knowledge domains, from

the point of view of a stakeholder x, are represented as an m-element vector. This vector

is denoted by WKimp{x) where WKimp{x) = [wKimp{x(j))\™=l. For each j , wKimP(x(j))

denotes the importance weight of the j t h knowledge domain assigned by stakeholder x.

This is shown by Equation 5.1 in the reference knowledge domain model. We obtain such

vector for each of the stakeholders in the set X. The importance of the m different domains

given by q stakeholders is presented in a q x m matrix denoted by WauKimp(X). Equation

5.2 gives the formula for WaiiKimp{X).

104

The next step is to aggregate the information obtained from q stakeholders. The ag

gregation can be done using different aggregation techniques. The idea is to apply an

aggregation function, denoted by faggregationi, o n the g x m matrix WauKimp(X) to merge

the rows, resulting in a vector of size m. Equation 5.3 indicates the result of this aggre

gation. In Section 5.2 we aggregate them, by taking the arithmetic average for each m

elements from all q vectors, into a single vector (for X) WaggregatedKimp(X) which is given

by [waggregatedKimp(^(j))}]Li- The arithmetic average is the simplest type of expert opinion

aggregation, and thus does not capture the differences in the ability of each x to evaluate

the relations between knowledge domains in a security level estimation. The reader is re

ferred to Cooke [Coo91] and similar sources for examples of other aggregation techniques.

To normalize this vector, the normalization factor is obtained using Equation 5.4. Finally,

the weight of each domain in the problem context is obtained by normalizing each ele

ment in the vector WaggregatedKimp by the above normalization factor to obtain the vector

WrefKnowledgeDomainScore- This is shown in Equation 5.5.

5.1.1.2 Information Source Knowledge Domain Model

An information source may not have knowledge in all the desired knowledge domain re

garding the problem context. The information source knowledge domain model provides

the relative importance of knowledge level of the information source corresponding to the

knowledge domains in reference knowledge domain model. This relative importance is as

sessed by a third party or an expert.

Consider the reference knowledge domain example from Section 5.1.1.1. Now, for an in

formation source, say / , a third party assessor assesses the relative importance of knowledge

level of / on the identified knowledge domains as 30% on domain A, 30% on domain B, and

40% on domain D. Thus, the relative importance of Fs knowledge level on the domains, as

assessed by a third party, is [0.3,0.3,0.0,0.4].

Information source knowledge domain score derives the relative importance of

knowledge level of an information source for each knowledge domain, in the refer

ence knowledge domain. This relative importance is assessed by a third party.

105

Suppose we have n information sources, denoted by 61,62,..., bn, in a security level estima

tion. Suppose Y is the set of third parties assessing the relative importance of knowledge

domains for these n information sources. Suppose an individual third party in the set Y is

denoted by y and the cardinality of Y is z. The following Equations 5.6-5.11 constitute the

information source knowledge domain model for evaluating information source knowledge

domain score for an information source 6j.

wKiS{y{bi)) = [wKis(y(bi(j)))]]Li (5-6)

WaUKisiYibi)) = [WKis(y(biWy=1 (5.7)

WaggregatedKis(Y(bi)) — faggregation2(WaUKis(Y(bi)))

= [WaggregatedKis(Y(bi(j)))]™=1 (5.8)

(5.9)

JisKnorm — ^=Zm "~ 7v7k~77\Y\ (5.10)
2^ j= l waggregatedKis\X \Pi\J))j

''isKnowledgeDomainScore\^{"i)) ~ JisKnorm ^ *'aggregatedKis\X\Pi))

— [wisKnowledgeDomainScore\^\"i\3)))\j=l (5 - H)

Each third party y provides a vector, denoted by W^jS(y(6j)), of m-elements. Each

element represents the assessed importance of knowledge level of the information source bi

corresponding to the domain represented by that element. Equation 5.6 describes this. This

step is then repeated for each y in the set Y and results in z such vectors. To aggregate

information from all y for the information source bi, these z vectors are first combined in a

z x m matrix in Equation 5.7 and then aggregated using an aggregation function in Equation

5.9. The aggregation function is denoted as faggregations in the equation. As for the reference

knowledge domain score model, the aggregation technique used is arithmetic average. We

normalize this vector using the normalization factor obtained in Equation 5.10. Finally,

the importance of knowledge level of each domain in the problem context is obtained by

normalizing each element in the vector WaggTegatedKis by the above normalization factor to

obtain the vector WiSKnowiedgeDomainScore- This is shown in Equation 5.11.

106

The result gives one vector for the set Y holding the information source knowledge

domain scores for the information source &,. All these steps are then repeated n times (as

we have n number of information sources in the security level estimation).

5.1.1.3 Calculating Knowledge Score

The 'knowledge score' gives a measure of the knowledge level of an information source in

the problem context. The reference knowledge domain score and the information source

knowledge domain score are used to derive the knowledge score for each information source

bi. This is done using Equation 5.12 in the knowledge score evaluation.

Knowledge score combines the scores from the reference knowledge domain model with

the scores obtained in the information source knowledge domain model to compute

the measure of knowledge level of an information source in the problem context. For

an information source bi, this score is denoted by Kscore(bi).

m

l>-score\9i) = / J\WrefKnowledgedomainSc0re\-'*- \J)j X wisKnowledgeDomainScore* \"i{3)))]

3=1
(5.12)

The result from the knowledge score is a real number derived by component-wise multipli

cation Of the tWO Vectors WrefKnowledgeDomainScore(X) and WisKnowledgeDomainScore(¥{h))

and then adding all the product values. Here we assume that the external sources in X and

Y are completely trustworthy.

5.1.2 Evaluating Expertise Score of an Information Source

The expertise level, captures the level of expertise of an information source. The level of

expertise is represented by a score, known as the expertise score and is evaluated using

questionnaires.

Each questionnaire consists of a set of calibration variables which are further divided into

categories. Table 5.1 provides an example questionnaire with an example set of calibration

variables. Each calibration variable that is pertinent to the problem context is associated

with an importance value. The sum of importance values is in the range (0,1]. The

107

importance value of all the calibration variables used in a problem context equals 1. Each

category in a calibration variable is also associated with a value. The importance value for

each calibration variable and the value associated with each category is determined by a

third party, such as an expert. There are also other ways of obtaining this information,

such as experience repositories. We do not provide any further details about this. Interested

readers are referred to Cooke [Coo91] and Goossens et al. [GHKMOO] for an overview of the

general challenges and benefits related to expert judgments.

Let Escore(bi) represent the expertise score of information source b{. This score is com

puted as follows. Each information source is required to fill the questionnaire. Let there

be p calibration variables denoted by l\, I2, • • •, lv and Wjj, Wj 2 , . . . , Wip be their relative

importance value. Therefore, Ylt=i WJt = 1- Let the calibration variable lj have q cate

gories denoted by lj1,lj2, • • •, ljq- Let wcat(ljm) £ [0,1] represent the weight acquired by bi

in the category m of calibration variable lj. Equation 5.13 gives the value obtained by bi

for calibration variable lj. The sum of the values of all these calibration variables gives the

expertise score of b as demonstrated by Equation 5.14.

W«. x J2 VcatihJ (5-13)
ra=l

V

^2wcalib(lt) (5.14)
4 = 1

5.1.3 Comput ing Information Source Trustworthiness

For an information source bi, the knowledge score and the expertise score basically pro

vide measures for recommendation and properties. In our approach we have not used the

parameters interactions and reputation, though use of interaction in evaluation of trust on

information source is not ruled out. Therefore, in trust-parameter weight policy vector we

include only two weight values corresponding to the above parameters. Suppose we denote

these two by k and e respectively, where 0 < k, e < 1 and k + e = 1. Hence, trustworthiness

Wcalib(lj) =

&score \yi) ~

108

Variables
level of expertise
age
years of relevant education
years of education others
years of experience from industry

years of experience from academia

role experience

Categories
low, medium and high
under 20, [20-25), [25-30), [30-40), [40-50), over 50
1 year, 2 years, Bsc, Msc, PhD, other
1 year, 2 years, Bsc, Msc, PhD, other
[1-3) years, [3-5) years, [5-10) years, [10-15) years,
over 15 years
[1-3) years, [3-5) years, [5-10) years, [10-15) years,
over 15 years
database, network management, developer, de
signer, security management and decision maker

Table 5.1: Example of calibration variables for determining the expertise level for an infor
mation source

(5.15)

of an information source 6j is computed as

w(A - ^ h)f = kx Kscore(bi) + e x Escore(bi)

For simplicity reason, we do not involve trust dynamics in our evaluation.

5.1.4 Computing Trust Level of a Security Solution

The trust level of an information source is used to compute the trust level of the security

solutions. The information obtained from each source bi, denoted by bi(I) is considered to

be a recommendation about the security solution and is scaled with the trust value of the

recommender (information source). This gives the trust level for the security solution, say sc.

That is, we use only recommendation (from information source) to evaluate trust level of the

security solutions. However, interactions and properties can also be used. The characteristic

attributes of the security solutions (e.g., cookie solution is an OS level solution) can be

considered as properties whereas their performance as a security solution can be used to

measure interactions. However, for our case the trust level is computed as

v(A
ELiMA-JUfc)*")

(5.16)

5.2 Evaluation

In our evaluation, we have five information sources; one honeypot [0stO3] and four domain

experts from a pool of 18 domain experts (undergraduate students at Norwegian University

109

of Science and Technology). The four chosen domain experts are denoted as b^,bQ,bi5, bis

and the honeypot is denoted by bhoneypot. These five information sources provide information

on the anticipated number of DoS attacks for the two involved solutions to A2.

The information source honeypot was set and logging is done for three different configu

rations: (1) system without any security solutions, (2) system with the patch to the network

stack software (the cookie solution), and (3) system with the filtering mechanism. For each

configuration logging is done for 24 hours and only the connection attempts to TCP port

80 (intended for the web server (IIS 4.0)) is considered. For configuration where the system

does not have any security solution, Snort detected 470 different IP-addresses trying to

make a connections to port 80. This gives 470/24 = 19.8 attack tries per hour (This was

done by penetrating the network sending SYN requests to ranges of IP-addresses. In this

case we are interested in the attack attempts where outsiders sent several SYN requests to

the same source.). 140 out of 470 IP-addresses have sent series of SYN requests to the same

source within 24 hours. This shows that there are 140/24 = 5.8 SYN flooding attack tries

per hour. It is found that two of the attack tries were successful. Consequently, the mean

time to misuse, MTTM (a measure for how long in clock time, on average, takes between

attacks), is 12 hours. The mean attack time (effort) for the successful attacks, denoted by

mean effort to misuse (METM, a measure of how much time, on average, it takes an attacker

to perform the attack), was found to be 0.2 hours. In this case we are consider successful

attacks and not attack tries3. Average monthly (assuming a 30 day month) successful at

tacks is computed as 60. For the cookie solution, the average monthly successful attacks

observed was 1.5 and For the filtering mechanism, the average monthly successful attacks

observed was 4.0. Since the honeypot simulates these three configurations, no update was

done between the attack tries and successful attacks. However, this is usually done in a real

2For our evaluation, the truster A is one of the authors of the work [HCRR08].

3More information on MTTM and METM is given in Houmb et al. [HGF+05b].

110

systems, otherwise the system would just keep on being attacked until it stops functioning

properly.

The result of the logging are then used as the information provided by the information

source honeypot (bhoneypat) when evaluating the two DoS security solutions. Honeypot

observes actual events and in our case, it is under direct control of the truster A. Therefore,

A has complete trust in the abilities of honeypot to provide accurate and correct information

on the potential number of successful DoS attacks. In other words, \(A —> frfconej/pot) = 1-

This means that we do not need to calculate the knowledge and expertise score for honeypot

and that we assign the trust value directly.

Elicitation of expert judgments are done using a combined knowledge level and exper

tise level questionnaire. The information provided on each expert for all variables in the

questionnaire is then used to derive the knowledge score and expertise score, as described

in Section 5.1.1 and Section 5.1.2 respectively. Table 5.2 shows the variables and the val

ues provided for the combined questionnaire. As described in section 5.1.1, the knowledge

Expert
number
4

6

15

18

Calibration variable

level of expertise
years of relevant of education
years of experience from industry
role experience

level of expertise
years of relevant of education
years of experience from industry
role experience
level of expertise
years of relevant of education
years of experience from industry
role experience

level of expertise
years of relevant of education
years of experience from industry
role experience

Information provided

medium
Bsc
0
database and security man
agement
low
Bsc
0
database
high
Bsc
0
designer, developer and secu
rity management
low
Bsc
0.5
developer

Table 5.2: The combined knowledge and expertise level questionnaire and the information
provided

111

score of an information source is determined by comparing the information source knowl

edge domain model with the reference knowledge domain model. The reference knowledge

domain model is created with the importance weights for the aggregated set of knowledge

domains provided by the set of external sources X (using the reference knowledge domain

score model). Here the relevant knowledge domains are security management, design, net

work manager, database, and developer. These domain are identified by a domain expert,

in our case the truster A, based on her prior experience and knowledge in secure system

development. A also works as an x in X and a y in Y as mentioned in Section 5.1.1.

Figure 5.3 shows the five knowledge domains and their corresponding importance weights.

For demonstration purpose the focus is put on the result of the identification, rather than

discussing techniques that can be used to identify these knowledge domains. However, as

described earlier the knowledge domains are derived from the problem definition, the system

configuration, and the system environment.

5%

• Domain A: security
management

• Domain B: network
management

D Domain C: database

13 Domain D: design

• Domain E: developer

20% ""^^HHH*1*""

Figure 5.3: The reference knowledge domain model

As can be seen in the figure, the importance weights for different knowledge domains

in the reference knowledge domain model are, 50% for security management, 20% for net

work management, 15% for database, 10% for design and 5% for developer. Thus, the

importance vector is modeled using Equation 5.1 in the knowledge domain score model as

WKimp(x) = [0.5,0.2,0.15,0.1,0.05]. Since we have only one external source x, we obtain,

WaggrgatedKimp(X) = WauKirnp{X) = WKimP(x). As can be seen in the figure, the knowl-

112

15%

edge domains are already normalized with each other and hence we do not need to normal

ize the elements in the vector WaggrgatedKimP(X). Hence, WrejKnowledgeDomainScore(X) =

WaggrgatedKimp(X) = [0.5,0.2,0.15,0.1,0.05].

Figure 5.4 shows the information source knowledge domain models for the four experts

(information sources). The importance weight that each of the experts has for the knowledge

domains are: for expert 4, 85% on security management and 15% on database; for expert

6, 100% on database; for expert 15, 60% on design, 30% on developer, and 10% on security

management; for expert 18, 100% on developer. Equation 5.6 in the the information source

knowledge domain score model gives these information source knowledge domain vectors

as,

• Expert-4 (64): WKu(y(h)) = [0.85,0.0,0.15,0.0,0.0]

• Expert-6 (be): WKis(y(b6)) = [0.0,0.0,1.0,0.0,0.0]

• Expert-15 (616): WKis{y(b15)) = [0.1,0.0,0.0,0.6,0.3]

• Expert-18 (618): WKUV&IS)) = [0.0,0.0,0.0,0.0,1.0]

Since there is only one external source y in the set Y of external sources provid

ing information on the information sources, we have WisKnowiedgeDomainscore{y{h)) =

WaggregatedKis(y(bi)) = WKis(y{bi)), Vi = 4,6,15,18.

The knowledge score for each of the information source are then derived using equation

5.12 in the knowledge score model as follows:

• Expert-4 (64): KSCffre(y(b4)) = 0.85 * 0.5 + 0 * 0.2 + 0.15 * 0.15 + 0 * 0.1 + 0 * 0.05 « 0.45

• Expert-6 (be): Kscore(y(b6)) = 0 * 0.5 + 0 * 0.2 + 1 * 0.15 + 0 * 0.1 + 0 * 0.05 = 0.15

• Expert-15 (615): Kscore(y(bi5)) = 0.1*0.5+0*0.2+0*0.15+0.6*0.1+0.3*0.05 « 0.13

• Expert-18 (&i8): Kscore(y(b18)) = 0 *0.5 + 0*0.2 + 0*0.15 + 0*0.1 +1 .0* 0.05 = 0.05

The level of expertise of an information source is derived using the calibration variables

described in Table 5.2. First, we obtain the importance values for all calibration variables

and the weights of categories for each calibration variable from the external expert A. We

assume that a set of aggregated values is obtained for category weights as well as calibration

113

Knowledge domain model for expert 4

y

/ N D ° , n " " :

1. • • - • . - ^ J

• - v .

\
\
\

-
\ . Gamin A /

\ - • « % - /

D Domain A: security
management

D Domain B: network
management

a Domain C: database

• Domain D: design

• Domain E: developer

Knowledge domain model for expert 6

j 100%

\ Domain C /

B Domain A: security
management

B Domain B: network
management

n Domain C: database

0 Domain D: design

• Domain E: developer

Knowledge domain model for expert 15

^•^ •^ •^H

^^^M I U V '.
.•fllr^H* aK^^IH /
^^^^0/
^" bO-S:

\ .. 3maip -

W Domain A: security
management

• Domain B: network
management

D Domain C: database

• Domain D: design

• Domain E: developer

Knowledge domain model for expert 18

^^^^^^^
^^^^^^^^^^.

^^^^^^^^^^^^L.
a^^^^^^^^^^^L
^^H^H^^H
^ K H H ^ 1 » m̂̂ -̂

® Domain A: security
management

• Domain B: network
management

• Domain C: database

• Domain D: design

• Domain E: developer

Figure 5.4: Information source knowledge domain model for expert 4, 6, 15, and 18

variable importance values from the external expert. Here we use three calibration variables

to determine level of expertise - level of experience denoted by h, years of relevant education

denoted by 1%, and years of experience from industry denoted by fo. Since we use subset

of the variables, we only include the categories that are actually used in the experiment

(not all categories and calibration variables from Table 5.1 are relevant because the experts

are undergraduate students). This gives the following vectors of categories for the three

calibration variables: (i) l\ = [low,medium,high], (ii) l^ = [Bsc], (hi) I3 = [no-ofjyear]

The next thing to look into is the importance weight for each of the categories

for all calibration variables. The expert assigns the following values: wcat(h(low)) =

0.2, wcat(li(medium)) = 0.5, wcat{h(high)) = 1.0, wcat(l2(Bsc)) = 0.2 and

Wcat(h{no-of-year)) — 0.2 for each year of industrial experience. Therefore, wcat{l\) =

[0.2,0.5,1.0], wcat(l2) = [0.2], and ivcat{l3) = [0.2].

114

Suppose the importance value given to the calibration variables by the external expert

A are 0.3 for level of experience, 0.2 for years of relevant education, and 0.5 for years of

experience from industry. Therefore, Wir = 0.3, W/2 = 0.2 and Wi3 = 0.5.

We then look at the information about categories of calibration variables provided by

the information sources 64, be, &15, &18 in the questionnaire. Suppose the information is as

follows:

• Expert-4 (64): wcat{h) - [medium], Waafo) = [Bsc], Wcat{k) = [0].

• Expert-6 (be): wcat(h) = [low], wcat(l2) = [Bsc], wcat(l3) = [0].

• Expert-15 (615): wcot(Zi) = [high], wcat(l2) = [Bsc], wcat{h) = [0].

• Expert-18 (&i8): wCat(Ji) = [high], Wcatih) = [Bsc], Waaik) = [0.5].

Using the above information and the weights for categories and calibration variables, the

truster calculates the expertise score of the information sources as (using Equations 5.13

and 5.14),

• Escore{bA) = 0.3 * 0.5 + 0.2 * 0.2 + 0.5 * 0 = 0.15 + 0.04 + 0 = 0.19

• Escore(be) = 0.3 * 0.2 + 0.2 * 0.2 + 0.5 * 0 = 0.06 + 0.04 + 0 = 0.10

• Escoreihb) = 0.3 * 1.0 + 0.2 * 0.2 + 0.5 * 0 = 0.3 + 0.04 + 0 = 0.34

• Escore(bls) = 0.3 * 1.0 + 0.2 * 0.2 + 0.5 * (0.5 * 0.2) = 0.3 + 0.04 + 0.5 = 0.84

We have now derived the knowledge and expertise score for all five information sources.

These two scores are then used to evaluate trust of the information sources using Equation

5.15, described in Section 5.1.3. For this purpose, suppose the truster A has the trust-

parameter weight policy vector as (0.6, 0.4) that is, k = 0.6 and e = 0.4. Recall that the

trust value for the information source honeypot was set to 1. Thus, the trustworthiness

score for the experts &honej/pot) &4» be, 615, &is are computed as,

• V(A - ^ bhoneypot)? = 1-0.

• v(A - ^ 64)f = 0.6 * 0.45 + 0.4 * 0.19 = 0.27 + 0.076 = 0.346.

• v(A - ^ h)? = 0.6 * 0.15 + 0.4 * 0.1 = 0.09 + 0.04 = 0.130.

115

• v(A - ^ 6i5)f = 0.6 * 0.13 + 0.4 * 0.34 = 0.078 + 0.136 = 0.214.

• v(A - ^ ftia)^ = 0.6 * 0.05 + 0.4 * 0.84 = 0.03 + 0.336 = 0.366.

The above values show the trust level the truster A has on the information sources (rec-

ommenders). These sources provide information (recommendation) about the security so

lutions. The honeypot provides number of average monthly successful attacks for two

solutions. The experts (information sources) provide their judgment about the security

solutions using terms low, medium, or high. In order to calculate the trust level of the se

curity solutions from these pieces of information, the information must be at the same level

of abstraction and comparable. The truster interprets and transforms the information from

the honeypot as well as from the experts according to her policies. The honeypot reports

less number of average monthly successful attack for cookie solution than filter mechanism.

This shows that according to the information source fe/tonej/pot! the cookie solution sc has

higher security level. She transforms the average monthly successful attack inversely and

the reciprocal of this average value is used as recommendation value from b\wneyvot. This

gives: bhcmeypot{sc) = 1/1.5 = 0.667 and bhme,ypat{sf) = 1/4.0 = 0.25. Recommendation

from the other information sources (experts) are summarized in the following table: The

Expert

h
h
&15

&18

Reco. about sc

medium
medium
medium

high

Reco. about sf

low
medium

low
low

Table 5.3: Recommendation about the security solutions by the experts

decision maker translates the judgment according to her policies as follows: low = 0.2,

medium = 0.5, and high — 1.0. Hence the trust level of the security solutions sc and Sf

are computed using Equation 5.16 as

0.667 * 1.0 + 0.5 * 0.346 + 0-5 * 0.130 + 0.5 * 0.214 + 1.0 * 0.366 ^
1.0 + 0.346 + 0.130 + 0.214 + 0.366 ~

0.25 * 1.0 + 0.2 * 0.346 + 0.5 * 0.130 + 0.2 * 0.214 + 0.2 * 0.366
1.0 + 0.346 + 0.130 + 0.214 + 0.366 ^ '

v(^XS /) f =

116

This trust level indicates the truster's level of assurance on the security level of a security

solution. This is just a measure of assurance that the decision maker has on the security

solution and should not be considered as the actual security level of a security solution.

There are several reason for this, one being the interpretation and transformation that is

done. Furthermore, the actual security level is a future event that depends on many factors,

such as the security environment, relevant operational procedures, maintenance strategy,

the resources available etc. What we can infer from our trust-based evaluation of the two

security solutions is that the cookie solution is a more trusted choice than the filtering

mechanism when it comes to preventing denial of service attacks in our testbed ACTIVE

(the .NET e-commerce system).

5.2.1 Discussions on the Evaluation

DoS attacks are becoming more sophisticated and hence increasingly difficult to detect and

protect against. Such attacks are often performed using legitimate or expected protocols

and services as the main attack vehicle. Hence the malicious requests differ from legitimate

requests only by intent and not by content. Because it is intriguingly hard to measure

intent, many of the existing DoS solutions do not offer a proper defense. Many solutions are

deployed on the network device level, such as the filtering mechanism. However, filtering on

the network device level has been demonstrated as being infeasible to deploy in an effective

manner [LcC06]. In fact, filtering against a defined legitimate or expect type of traffic may

even contribute in completing the attacker's task by causing legitimate services to be denied

[LcC06].

In [KL01] Karig and Lee gives an overview of common DoS attacks and potential coun-

termeasures for DoS attacks. In this context, the filtering mechanism is categorized as a

network device level countermeasure while the cookie solution is categorized as an OS level

countermeasure. A network device level DoS solution provides measures to protect against

potential misuse of a communication protocol. Thus, the protection is often on the IP or

transport layer and hence there are possible ways around the mechanism, such as those dis

cussed in [KL01]. The main shortage of filtering mechanisms are their inability to filter out

117

spoofed packets [KL01]. There are, however, more efficient filtering mechanisms available,

such as the one discussed in [BLG+00].

The other DoS solution considered here, the cookie solution, operates on the OS level.

An OS level DoS solution integrates protection into the way a protocol is implemented

in a particular operating system. Thus, the measure is deployed on the source (target)

and refers to a host-based protection solution. Hence, the cookie solution represent a

more defense-in-depth DoS solution than the filtering mechanism. Furthermore, the cookie

solution discussed here is a SYN cookie, which has been well tested and is well understood.

SYN cookies have also been incorporated as a standard part of Linux and Free BSD and

are recognized as one of the most effective DoS mechanisms [Ber06].

The above discussion implies that cookie solution is a better security solution than

filtering mechanism to protect against denial of service attacks. This fact is corroborated

by the findings in our trust-based evaluation of the security solutions.

We also compare the results obtained by considering the information obtained from the

experts only and the result obtained by the honeypot. Rationale is, the honeypot observes

actual events and evaluates the trustworthiness of the security solutions based on these

events. In our evaluation, we really do not use the trust-based scheme to scale the informa

tion from the honeypot as we have assigned absolute trust on the honeypot. Alternately,

the information obtained from the other information sources (experts) are scaled with their

respective trustworthiness measured using their properties and recommendations. Hence,

it will be interesting to see whether a trust-based evaluation of the security solutions based

on the information obtained from domain experts can match the actual finding of the hon

eypot. Using the honeypot information we have a value 0.667 for the security solution sc

and a value 0.25 for the security solution Sf. In relative terms sc IS « r\c' ~ 2.67 times better

than Sf. Considering only the domain experts in trust-based evaluation, we have

, , c' Njv 0.5*0.346 + 0.5*0.130 + 0.5*0.214 + 1.0*0.366
v(A —• sr)i = ~ 0.673 v n 0.346 + 0.130 + 0.214 + 0.366

, . c' , N 0.2 * 0.346 + 0.5 * 0.130 + 0.2 * 0.214 + 0.2 * 0.366 „ „„„
v(A —• Sf)i = « 0.237 v }H 0.346 + 0.130 + 0.214 + 0.366

118

According to the above results, in relative measure, sc is j ^ | « 2.84 times better than

Sf. This again shows that trustworthiness evaluation using the vector trust model matches

with that of based on actual findings.

119

Chapter 6

Application Scenarios

The primary objective of developing the vector trust model is to use it for making rea

soned trust-based decisions in different security contexts. Next we discuss three application

scenarios where the proposed trust model is used as a decision-aid in the corresponding

security contexts.

6.1 Trust-based Access Control Mechanism

Conventional access control models like role based access control are suitable for regulat

ing access to resources by known users. However, these models have often found to be

inadequate for open and decentralized multi-centric systems where the user population is

dynamic and the identity of all users are not known in advance. For such systems, credential

based access control has been proposed. Credential based systems achieve access control by

implementing a binary notion of trust. If a user is trusted by virtue of successful evaluation

of its credentials it is allowed access, otherwise not. However, such credential based models

have also been found to be lacking because of certain inherent drawbacks with the notion

of credentials. In [CR06], we propose a trust based access control model called TrustBAC.

It extends the conventional role based access control model with the notion of trust levels.

Users are assigned to trust levels instead of roles based on a number of factors like user

credentials, user behavior history, user recommendation etc. using the vector trust model.

Trust levels are assigned to roles which are assigned to permissions as in role based access

120

control. The TrustBAC model thus incorporates the advantages of both the role based

access control model and credential based access control models.

6.1.1 M o t i v a t i o n

Proper access control to resources is one of the major concerns for any organization. Differ

ent models of access control have been proposed over the years, for example, discretionary

and mandatory access control models, Clark-Wilson model, Task based models and Role

Based Access Control model. Among these, role based access control (RBAC) [FSG+01] is

gradually emerging as the standard for access control. The main advantage of RBAC over

other access control models is the ease of security administration. In the RBAC model ac

cess permissions are not assigned directly to the users but to abstractions known as "roles".

Roles correspond to different job descriptions within an organization. Users are assigned

to different roles and, thus, indirectly receive the relevant permissions. Thus, with RBAC,

security is managed at a level corresponding to an organization's human resource structure.

Notwithstanding the success of the RBAC model, researchers have often found the

model to be inadequate for open and decentralized multi-centric systems where the user

population is dynamic and the identity of all users are not known in advance. Examples

of such systems are service providers operating over open systems like the Internet. It

is almost impossible to know beforehand all the users that will request services in these

systems. Assigning appropriate roles to these users thus becomes an irrational and ad-

hoc exercise. To overcome the shortcomings of RBAC for such systems, researchers have

proposed credential-based access control models [BFL96, BFIK99, LM03a]. Credentials

implement a notion of binary trust. Here the user has to produce a predetermined set

of credentials (for example, credit card numbers or proof of membership to certain groups

etc.) to gain specific access privileges. The credential provides information about the rights,

qualifications, responsibilities and other characteristics attributable to its bearer by one or

more trusted authorities. In addition, it provides trust information about the authorities

themselves. Researchers have also integrated credential based access control with role-based

access control to facilitate security administration [LMW02, COB03, LM03b, LWM03].

121

Although credential based models solve the problem of access control in open systems

to a great extent, it still has a number of shortcomings. A credential, strictly speaking,

does not bind a user to its purported behavior or actions. It does not guarantee that its

bearer really satisfies the claims in the credential. It does not convey any information

about the behavior of the bearer between the time the credential was issued and its use. A

credential does not reveal whether it was obtained via devious means. In real life some or all

such information may play crucial parts in access control decisions. Additionally, credential

based access control does not keep track of the user's behavior history. Access permission

is given on the basis of the credential presented for a particular session. Either the user's

credentials are accepted and required privileges are allowed, or the credentials are rejected

and the user does not get the access rights. Thus, good behavior by the user cannot be

rewarded with enhanced privileges nor bad behavior be punished.

The above observations motivate us to revisit the problem of access control in decentral

ized and multi-centric open systems. We believe credential based access control is a step in

the right direction. However, we would like to enhance the binary trust paradigm in these

models with our much richer multi-level trust model. In this new trust-based access control

model, trust levels of the users can be determined not only by using the credentials (prop

erties) presented by the user but also from the results of past interactions (interactions)

with the user, from recommendations about the user and/or knowledge about other char

acteristics of the user (properties). A user is mapped to different trust levels based on these

information. Trust levels (and not users, unlike in conventional RBAC) are then mapped to

roles of RBAC. Thus our access control model is an enhanced RBAC (TrustBAC). Changes

in the trust level of user changes the roles that the user has in the system and thus the

user's privileges. Since our vector trust model provides multiple levels of trust, the system

can define as many trust levels as it wants and can assign each level to a specific set of

resources tied with a specific set of access privileges. The system just needs to monitor the

trust level of the user and the regulation of access is automatically achieved.

122

6.1.1.1 Background

Role-based Access Control (RBAC) was first introduced by Ferraiolo and Kuhn in [FK92] to

address the limitations of discretionary access control model (DAC). Sandhu et al. [SCFY96]

introduce four reference models to provide systematic approach to understand RBAC model.

Their framework separates administration of RBAC from its use for controlling access. They

also categorize the implementation of RBAC in different systems. Finally, after a series of

modifications, the NIST standard for RBAC is proposed in [FSG+01]. The standard spec

ifies RBAC reference model which defines the scope of features that comprise the standard

and provides terminologies to support specification. The standard also specifies system and

administrative functional specification which defines functional requirements for adminis

trative operations and system level functionalities. We have followed the approach of the

standard to formalize our TrustBAC model.

A main feature of the TrustBAC model is the use of user behavior history in determining

access privileges. Similar concept of using execution history in access control can be found in

literature. In [EAC98] the authors present a history-based access control mechanism which

is suitable for controlling access from mobile code. The scheme maintains a selective history

of access requests made by individual program and use this history to measure the degree of

safeness of a request. Another history based access control for codes is presented in [AF03].

In this scheme the access privileges of a code is determined in runtime by examining the

attributes of the pieces of code that have run before. The pieces of code that have run

includes the codes on stack as well as the codes that have been called and returned. Also,

ours is not the only work which uses the concept of trust in access control. Sandhu et. al

in a recent paper [SZ05] present a trusted computing architecture to enforce access control

policies in peer-to-peer environment.

In [Tho97], Thomas introduces the notion of TeaM-based Access Control (TMAC) as an

approach to applying role-based access control in collaborative environments. The "team"

is an abstract container that encapsulates a set of users with specific roles. A team is

formed with the objective of accomplishing a specific task. One advantage of TMAC model

123

is it allows role-based permissions across object types as well as fine-grained, identity-based

control on individual users in certain roles and to individual object instances. Georgiadis et

al. [GMPT01] extend TMAC model by integrating it with RBAC and using it for general

contextual information like time of access, location from which access is requested, location

of the object for which access is requested etc. Somewhat similar idea is presented in

the YGuard access control model [vdASCOl]. YGuard employs a set-based access control

list where a group of subjects is authorized to access sets of objects. That is, for those

objects, every member of the group has same access privileges. Another similar approach

is coalition-based access control (CBAC) model [CTWS02] where a coalition (group of

members) shares data with their partners while ensuring that their resources are safe from

inappropriate access. They define the protection state of a system, which provides the

semantics of CBAC-based access policies. Researches are still continuing on issues and

applications of RBAC model. Some recent works includes [WL04] which presents a multi-

layered, distributed and location-dependent approach to RBAC; Park and Hwang [PH03b]

present a scheme in P2P environment where RBAC mechanisms are dynamically supported

based on each peer's current context; in GEO-RBAC [BCD05], Bertino et al. extend the

RBAC model to deal with spatial and location-based information.

Digital library is one of the major application areas of access control in open environ

ments. There are quite a few work on authorization issues in digital library domain. In one

of the early work on access control in digital libraries, H.M. Gladney proposes a scheme

called DACM (Document Access Control Methods) in [Gla97]. The basic idea is biased

towards discretionary access control with some extensions to handle mandatory access con

trol. Winslett et al. [WCJS97] propose a mechanism to assure security and privacy for

digital library transactions. This is basically a credential-based system where both client

and server can specify their own policies regarding credential disclosure and security. Client

uses a personal security assistant (PSA) module and the server uses server security assistant

(SSA) to manage credentials and credential acceptance policies. In [AABF02], Adam et al.

propose a content-based authorization model for digital library environments. Authoriza

tion is specified based on positive and negative qualifications and characteristics of the user.

124

Credentials are associated with each user and represent qualifications and characteristics of

the user.

There are a number of works that specifically address access control on the Internet.

Bonatti and Samarati [BSOO] propose a uniform formal framework to regulate service access

and information disclosure on the Internet. The regulation is based on credentials. The

framework includes mechanism to treat information which are not in the form of a certificate

and is needed for required access. It has comprises a language for expressing access and

release policies. The framework also has a policy filtering mechanism which helps the

entities involved in the communication to exchange their requirements in a concise and

privacy preserving way. In [BSF02] Bauer et al. describe the design, implementation, and

performance of a system to control access on web. The system is based on proof-carrying

authorization (PCA). The access control model provides locating and using pieces of the

security policy that have been distributed across hosts and keeping the policies hidden from

unauthorized clients. It also provides iterative authorization by which a server can require

a browser to prove a series of challenges. In [HJ03] the authors address the problems of

access control in large open systems where the authenticated identity of an entity does not

provide any information regarding the likely behavior of that entity. Their scheme, called

cryptographic access control, is based on cryptography to guarantee confidentiality and

integrity of objects stored in potentially untrusted servers in the system.

In [BJBG03], the authors present X-RBAC, an XML-based RBAC policy specification

framework to deal with access control issues in dynamic XML-based web services. It is

based on a policy specification language which addresses security issues, specifically in web

services. They extend X-RBAC to a trust-enhanced version in [BBG04] where the role

assignment is based on trust. They define 'trust' as "the level of confidence associated with

a user based on certain certified attributes". Unlike our model, this trust level is not quan

titatively measured. Instead, the authors use the trust management approach of trusted

third parties (e.g., public key encryption certification authority) and use the certificate

provided by the third party to assign roles to the users. They also argue that traditional

access control schemes following identity or capability-based approach for authorization do

125

not scale well to the distributed web services architecture. To overcome this limitation

they describe a mechanism to configure X-GTRBAC to provide context-aware trust-based

access control in Web services. X-GTRBAC is a framework based on Generalized Temporal

Role Based Access Control - GTRBAC [JBLG05] It provides a generalized mechanism to

express a wider range of temporal constraints including periodic as well as duration con

straints on roles, user-role assignments, and role-permission assignments. The X-GTRBAC

extends GTRBAC with XML to allow policy enforcement in heterogeneous and distributed

environment.

In a current survey [DVS05], the present state and future trends in the access control

are discussed. The survey shows that the new trend in access control are part of future

communication infrastructure supporting mobile computing.

6.1.2 TrustBAC model

The TrustBAC model is defined in terms of a set of elements and rela

tions among those elements. The elements are of the following types: user,

user-properties, session-instance, session-type, session, session-history, trust-level, role,

object, action, permissions and constraint. The corresponding sets are USERS,

USER_PROPERTIES, SESSION JNSTANCES, SESSION_TYPES, SESSIONS, SES-

SION_HISTORY, TRUSTXEVELS, ROLES, OBJECTS, ACTIONS, PERMISSIONS and

CONSTRAINTS. The TrustBAC model is illustrated in Figure 6.1 (we use one-directional

arrows to represent one-to-many relationships, two directional arrows to denote many-to-

many relationships and plain lines to denote one-to-one relationships). We define the dif

ferent elements as follows.

user A user € USERS is defined as a human being. The notion of user can be extended to

include systems, or intelligent agents, but for simplicity we choose to limit a user to

a human entity.

126

SESSIONS

Figure 6.1: TrustBAC model

user_properties Each user u has certain set of properties &u, called user^properties. The

set USER_PROPERTIES = \JueUSERS &u- A user can manifest any subset P of @>u

(i.e., P € 2^u) at a particular session.

session-instance A session-instance € SESSIONJNSTANCES is a 'login' instance of an

user. A user can instantiate multiple login thereby initiating multiple session -instances

at the same time. A session-instance is uniquely identified by a system generated id.

session-type A session-instance is identified with a type which is determined by the

set of properties manifested in that session-instance by the user invoking that

session-instance. For a sessionJnstance s invoked by a user u with P (P C

&u) properties, has the session-type P. Formally, the set SESSION-TYPES =

2USER.PROPERTIES

session A session € SESSIONS is identified by a session-instance with a session_type. A

session with session-instance s of type P is denoted by the symbol sp. Formally,

SESSIONS = SESSIONJNSTANCES x SESSION-TYPES.

session-history A session-history G SESSION-HISTORY is a set of information regarding

the user's behavior and trust level in a previous use of a session of that type.

127

trust-level A trust Jevel is a set of real number between -1 and +1 . A user, at some instant

of time with a particular session has a trust-level. The set TRUST-LEVELS is the

set of possible subsets of [-1, 1]. That is, TRUST-LEVELS = {S \ S C [-1,1]. Thus

TRUST-LEVELS becomes an infinite set where each member S can be either discrete

or continuous.

role The concept of role is same as in the RBAC model. A role G ROLES is a job func

tion with some associated semantics regarding the responsibilities conferred to a user

assigned to the role.

object An object € OBJECTS is a data resource as well as a system resource. It can be

thought of as a container that contains information.

action An action G ACTIONS is an executable image of a program, 'read', 'write', 'exe

cute' are examples of a typical action.

permission A permission G PERMISSIONS is an authorization to perform certain task

within the system. It is defined as a subset of OBJECTS x ACTIONS that is,

PERMISSIONS = 2(°BJECTSxACTIONS). Therefore, a permission = {(o,a) | o G

OBJECTS,a G ACTIONS}. Permissions are assigned to a role. The type of a

permission depends on the nature of the system. The model does not dictate anything

about the type.

constraint We borrow the concept of constraint from RBAC model. Therefore, a con

straint G CONSTRAINTS is defined as a predicate which applied to a relation be

tween two TrustBAC elements returns a value of "acceptable" or "not-acceptable".

Constraints can be viewed as conditions imposed on the relationships and assignments.

Association between any two of the above elements are specified by mathematical rela

tions. TrustBAC has the following relations.

1. sua: USERS x SESSION JNSTANCES x SESSION-TYPES -> SESSIONS defines

the user-session assignment relation. sua(u,s,P) — sp for u G USERS, s G SES-

128

SIONJNSTANCES, P € SESSION-TYPES, and sp € SESSIONS shows that a single

session sp of type P is associated with a single user u with certain properties P. A

user can invoke multiple sessions of different types simultaneously.

2. UTA C USERS x TRUSTJLEVELS defines the user-trusUevel assignment relation.

It is a many-to-many relation where a user can have multiple trust levels. Since a user

can invoke many sessions at a time, she can have different trust levels, one for each

invoked session. A single trustJevel can be assigned to many users. The restriction

on a member (u, L) € UTA is L must be a singleton member of TRUSTJLEVELS i.e.,

L = {/}, ie[-i,i\.

3. STA C SESSIONS x TRUSTJLEVELS defines the session-trusUevel assignment. It

is a one-to-many relation where a session can have only one trust value. That is, the

trustJevel L corresponding to that session is a singleton member of TRUSTJLEVELS.

But many sessions can have the same trustJevel.

4. RTA C ROLES x TRUSTJJEVELS defines the role-trustJevel assignment relation.

It is also a many-to-many relationship where a trustJevel can be associated with many

roles and same role can be performed with different trustJevels.

5. The function ush: USERS x SESSIONS-TYPES -+ SESSIONJIISTORY defines a

three-way relation between a user, a session-type and the trust history of the user in

an earlier use of a session of that type. ush(u, P) = uh
p, where u £ USERS and P £

SESSION-TYPES. A session-history uh
p is associated with a single user u and any

session sp of type P. A user can have many session-histories as a user can invoke

many sessions of different types.

6. PA C PERMISSIONS x ROLES is a many-to-many permission to role assignment

relation. An element in PA is of type (p, r) where p G PERMISSIONS and r G

ROLES.

7. The function As signedMoles : TRUST .LEV ELS -»• 2ROLES specifies the mapping

of a trustJevel L(C [—1,1]) onto a set of roles. Formally, Assigned-Roles(L) =

129

{r e ROLES | (r,L) e RTA}. It implies, for any I € L,AssignedMoles({l}) =

Assigned-Roles (L).

8. The function As signed-Per mission : ROLES —>• 2PERMISSIONS specifies the map

ping of a role r onto a set of permissions. Formally, Assigned-Permission(r) = {pG

PERMISSIONS | (p,r) € PA}. This function is same as assigned-permissions

function of RBAC model.

The constraints are applied on the above assignment functions depending on the access

control policies of the system. Constraints on Assigned-Roles are similar to the constraints

on user-role assignment in RBAC model. It specifies which roles are 'permitted' to be

assigned to a certain trustJevel. Constraints on Assigned-Permissions determines the

assignment of permissions to a specific role. RBAC model suggests different constraints like

mutually exclusive role, prerequisite roles, cardinality constraints, static separation of duty,

dynamic separation of duty etc. But we prefer not to specify any particular constraint on

these functions. Rather we leave it as general to give finer control in defining access control

policies depending on the requirements of a system.

We also introduce a concept of role dominance among roles in our model. Role

dominance is similar to the concept of role hierarchies in RBAC model. A role dominance

relation, denoted by RD, defines a dominance relation between two roles. The dominance

is described in terms of permissions. We define role dominance as,

Definition 31 [Role Dominance] Role dominance RD C ROLES x ROLES is a par

tial order on ROLES where the partial order is called a Dominance relation, denoted

by <. For any (ri,r2) £ RD, we say r-i 'dominates' r\ only if all permissions as

signed to r\ are also permissions of r%. Formally, (r\,r2) € RD =>• r\ •< r^ and

f\ d r2 =*• Assigned-Permissions(r\) C AssignedJPermission{r2).

The above definition implies that any user u having a role r2 can have all the privileges of

a user with role r\.

The relation RD induces a similar relation called trustJevel dominance among

trustJevels in our model. Whenever there is a role dominance between two roles, there

130

is a trustJevel dominance between the corresponding trustJevels. Trust Jevel dominance,

denoted by TLD is defined as follows:

Definition 32 [TrustJevel Dominance] Trust-level dominance, TLD C

TRUST.LEV ELS x TRUST-LEVELS is a partial order relation on TRUST-LEVELS

and is denoted by <'. For any (Li,!^) £ TLD, we say Z-2 'dominates' L\ only if L\ C L2-

/ / L2 is a singleton set {h}, then dominance is defined as, sup{L\\ < I2 that is, I2 is

greater than or equal to the maximum elem,ent of L\. If both L\ — {li} and Li = {h} ore

singletons then L\ <' L2 =>• l\ < h (the < is the usual 'less equal to' relation of number

theory).

The relation TLD is induced by RD. That is, for any (r1}r2) € RD,3(L1,L2) € TLD such

that r\ € AssignedJRoles{L\) and r2 € Assigned-Roles{Li2). That is, the trust degree of

a user with role r2 is greater than that of a user with role r\.

6.1.3 Access Control using TrustBAC

Basic purpose of an access control mechanism is to protect system resources by restricting

the user's activities on them. A user's authorization to perform certain tasks on specific

resources is specified by the access control policy of the system. When using TrustBAC for

access control, a user invokes a session-instance of a particular type at an instant of time.

During this session the user has a trust-level which allows her to use the roles associated

with that trust Jevel. That is, a user can be a member of a role. Also a single role can

be exercised by many users. For each of these roles, the user has a set of permissions.

Therefore, the user is restricted to perform a set operations on a particular set of resources

as specified by the set of permissions obtained as a member of those roles.

A first time user u registers with the system and logs in which instantiates a ses

sion Jnstance s of the user. Depending on the set of disclosed properties P, the system

invokes the function sua with arguments u, s, and P to start a session sp. The system
P AT

initiates a trust relationship (SYS —> u)t with the user in that session. The underly

ing context of this trust relationship is identified by the session_type P. This relation

ship does not change, but gets updated for any other session of same type P invoked

131

by the same user u. If the user invokes another sessionJnstance of type P' at time

t (where P ^ P'), then the system creates another trust relationship (SYS —> u)j .

The value of the trust relationship (SYS —> u)^ is evaluated for the session sp. Let

v(SYS —> u)P — I, I 6 [—1,1]. The system invokes the function Assigned-Roles to de

termine the roles that the user u can execute. Let Assigned-Roles({l}) = {ri, f2, • • •, rn}. u

can choose to execute more than one of these n roles. With each n, u has a set of pjS where

Vj, (pj,Ti) € PA. Therefore, in a session sp, the user u has the set of permissions given by,

[Ji Assigned-Permissions(ri) = \Jx<i<n{Pji \ (j>j,ri) € PA}. Hence, the user u is restricted

to perform actions A on a set of objects O where 3 a pji € \Ji<i<n{Pji \ (Pj^i) € PA}, such

that, for any (o,a) £ O x A, (o,a) 6 pj%. The user executes these actions on the allowed

objects and each activity during that session s is stored as the session_history uh
p for that

session. Whenever the trust-level is re-evaluated (within sp or, at the start of next instance

s' of a session of type P), the events in uh
p are evaluated. The evaluated trust Jevel, say /'

overwrites I in uh
p. The subsequent events also overwrite the previous event log.

We assume that for a registered user u in a session sp, the trust relationship (SYS —• u)

is managed by a diligent system-administrator who is outside the scope of this access control

framework. We denote this system-admin by the symbol SYS. We also assume that the

system has two predefined policies - an access control policy ASYS and a trust evaluation

policy TSYS which are not independent. ASYS defines the functions Assigned-Roles and

Assigned-Permissions together with the 'constraints' on them.

In TrustBAC we use our vector trust model to evaluate trust levels of a user in a session.

The parameters, for this purpose, are evaluated as

6.1.3.1 Computing Properties

The user u initiates the session sp by disclosing a set of properties P, which includes

information (e.g., name, address, affiliation, etc.) as well as some credentials. Credentials

are in the form of typical digital certificates. The system assign a value within [—1,1]

as weights to the information and the credentials. The assignment is done as specified by

TSYS and SYSPU
 ls computed according to the Equation 3.5. The next instance of a session

132

of type P, the values assign to members of P may change due to change in values in P.

For example, the user disclose the same type of certificate, but with a different certifying

authority.

6.1.3.2 Computing Interactions

Interactions is computed from the events occurred during some intervals. In TrustBAC,

we do not dictate about the length of an interval. It depends on implementation - the

system may choose to identify a whole session as an interval. Independent of the length

of an interval, any action performed by the user is identified as an 'event'. This record is

kept in session-history uh
p till the next instant of trust evaluation. Formally, let I be the

trust-level of u in a session sp. Let Assigned-.Roles{l) = {r\, r2,.. •, rn} of which u activate

r i) r2-, »*3- These are the active roles of u in session sp. The events are the set of actions A

where for any a € A, 3 p € Ui<j<3 Assigned-Permission$(ri). The weight to the result of

a particular action is assigned according to TSYS
 a n (i the 'interactions' SYS^U *s computed

as specified in Section 3.3.1.1.

6.1.3.3 Computing Recommendation

The system may take role-specific and role-independent input from other users about u in a

session. These information constitute u's recommendation and the component yRECp is

calculated using the Equation 3.7. ^ is the set of other users who provide recommendation

for u to SYS. However, we choose not to specify how these information are collected.

6.1.3.4 Regarding Reputation

For this application we choose to disregard the parameter reputation. Rationale is, all the

third party sources providing information about the user u are users of the system SYS,

that is they are attributable sources. Hence the information obtained from these sources

are considered to be recommendation rather than reputation. We assign a value _L to the

reputation component in this application.

133

6.1.4 Computing User's Trust

After computing the components, the system calculates the normalized trust by combining

(SYS —> u)t and the normalization policy of TSYS- Then the previous trust Jevel is fetched

from uh
p and final (SYS —> u)^ is calculated. The corresponding value v(SYS —• u)^

is calculated as specified in the Section 3.3.4. This value denotes the current trustJevel of

u in a session of type P and gets stored in corresponding sessionJiistory uh
p.

Note, TrustBAC does not verify the credentials disclosed by the user. The TrustBAC

module includes a trust evaluation module which computes and stores all relevant trust

information including session-history. It interacts with two policy specifier modules which

stores ASYS
 a n d TSYS- Authenticity and veracity of credentials are checked by a suitable

module outside the framework. It passes the necessary information to trust evaluation

module. A compliance checker and access controller module can be implemented to enforce

the access privileges according to the trust decisions. It interacts with the access specifier

and the trust evaluation module to enforce the proper access privileges. These modules are

outside TrustBAC framework and a part of the application which work in conjunction with

TrustBAC.

6.1.5 Architecture of Trust-based Access Control System

A high level system architecture of the trust-based access control system consists of the

components as shown in Figure 6.2. The two main components are authorization controller

and trust engine. The authorization controller interacts with the content-server and the

trust engine.

Access specification module This module defines the roles, groups and classes of re

source objects, and the permissions, that is types access privileges that are to be tied

to each resource object or resource class. It also defines role dominance and class

hierarchy, if any, of classes of resources. This module is also responsible for specifying

any special constraint (other than trust level) or an exception that has to be satisfied

to allow access to a resource object or resource class.

134

Authorization Controller

Access control
module

Access
specification

module

Y^J
Access
analysis
module 1 a

Service Module

! / Trust \ / Trust \
! I specification H H analysis J
I V module J V module J

f Trust \
(evaluation J
V module /

Trust Engine

Content
Server

Figure 6.2: Architecture of trust-based access control system

Access control module This module is responsible to define trust-levels. It also defines

the function Assigned-Roles that is, what trustJevels are associated to which roles.

Access analysis module This module has a user database. It receives the user's informa

tion and user's request through a Service module. It passes user information to trust

engine and receives trust related result from it. Consulting with the access specifica

tion module and access policy module, it takes the decision about the specific request

of the user and pass it to the service module. It also verifies user information and

checks for special constraints and exceptions.

Service module The service module is an independent module outside the authorization

controller as well as trust engine. Its job is to interact with the user through an

interface. It collects user input and sends it to access analysis module of authorization

controller. According to the decision it receives from access analysis module about

the request it interacts with the content-server and provides the requested service to

the user.

135

Trust specification module It is responsible for defining and managing trust relation

ships. It creates database entries corresponding to a specific user when a new trust

relationship is established. It codifies general trust evaluation policies (for example

policy for trust dynamics). The specification module conveys this information to the

analysis module and the evaluation module as and when needed.

Trust analysis module The analysis module processes trust queries from access analy

sis module of authorization controller. It obtains trust vectors from the evaluation

module.

Trust Evaluation module This module retrieves information about interactions, prop

erties, and recommendation from the database and also other pertinent information

from the trust specification module to compute the trust vector. It also stores back

resulting values in the database kept in trust specification module.

We have proposed a trust-based access control scheme (TrustBAC) by extending the

role-based access control mechanism (RBAC) using the vector trust model. Instead of users

being assigned to roles as in traditional RBAC, users are assigned to trust levels. Trust levels

are assigned to roles according to organizational policies. Roles are assigned to permissions

as in the traditional RBAC model. The TrustBAC model being an extension of the RBAC

model has all the latter's advantages. In addition, it borrows from credential based access

control models in the sense that TrustBAC relies on evaluation of user's trustworthiness

for access control. The model does not preclude use of credentials for such evaluation of

trustworthiness. Thus the model is well suited for open systems like the Internet.

6.2 Trust-based Routing in Pervasive Computing

This section presents another application of vector trust model in finding the most 'reliable'

path to send data from a source to a destination in pervasive computing environment.

The event-condition-action (ECA) paradigm holds enormous potential in pervasive com

puting environments. However, the problem of reliable delivery of event data, generated

by low capability sensor devices, to more capable processing points and vice versa, needs

136

to be addressed for the success of the EC A paradigm in this environment. The problem

becomes interesting because strong cryptographic techniques for achieving integrity impose

unacceptable overhead in many pervasive computing environments. We address this prob

lem by sending the data over the path from the sensor node to the processing point that

provides the best opportunity of reliable delivery among competing paths. This allows using

much weaker cryptographic techniques for achieving security. The problem is modeled as a

problem of determining the most reliable pa,th - similar to routing problems in networks. In

[CPR07], we propose a trust-based metric for measuring reliability of paths. The higher the

trust value of a path the more reliable it is considered. We adopt the vector trust model for

estimating the trust levels of paths and propose a new algorithm for identifying the desired

path.

6.2.1 Motivation

Pervasive computing technology has the potential to impact numerous applications that

benefit society. Examples of such applications are emergency response, automated moni

toring of health data for assisted living, environmental disaster mitigation and supply chain

management. Pervasive computing uses numerous, casually accessible, often invisible, com

puting and sensor devices. These devices are frequently mobile and/or embedded in an

environment that is mobile. Most of the time they are inter-connected with each other,

with wireless or wired technology. Being embedded in the environment and interconnected

allow pervasive computing devices to exploit knowledge about the operating environment

in a net-centric manner. This enables pervasive computing applications to provide a rich

new set of services and functionalities that are not otherwise possible through conventional

means. Pervasive computing applications frequently rely on event-triggered obligation poli

cies to operate in a dynamic environment. An obligation policy is associated with events,

conditions, subjects, objects and actions. When the event of interest occurs and the associ

ated conditions evaluate to true, the subjects perform the specified actions on the objects.

Events are typically identified and captured by embedded sensing devices and actions are

actuated by similar embedded devices. Processing of captured event data for evaluation of

137

Sensors / Actuators Mobile

Network Sensors/Actuators be triggered here

Figure 6.3: Pervasive computing environment involving remote event detection and action
triggering

conditions are, on the other hand, mostly performed at remote processing nodes or base

stations. This is because the sensing and actuating devices embedded in the environment

are frequently of very low performance capabilities including low computing, low storage

and low power. Thus a major challenge in a pervasive computing environment is to provide

a path for propagating sensor data to processing nodes and action data to actuating nodes.

Reliability of the paths is important. The data should be delivered with the minimum

possible error and in as timely a manner as possible.

The reliable transmission path requirement imposes significant challenges in pervasive

computing environments. A pervasive computing application can seldom assume a reliable

network infrastructure for communication. In a conventional setting, a node that generates

a message forwards it to a neighboring reliable node. The receiving node in turn forwards

the message to another fixed node that is known a priori. This procedure is followed till

the message reaches the destination. Every node in this process knows at least one other

reliable node in the path towards the destination to which the message can be handed over.

Frequently a node will know about more than one other node and thus have a choice of a

138

better node. The nodes are static, that is they do not change their location and consequently

the links between the nodes are stable. This and the proper use of strong cryptographic

techniques, easily facilitate reliable delivery of messages in conventional settings. In a

pervasive computing environments, on the other hand, mobility of nodes (sensing, processing

or actuating) is frequently considered an asset. Figure 6.3 depicts the scope of the problem.

Nodes are not locationally stable; instead they continuously change their coordinates. Thus,

a node that needs a message delivered cannot rely on another fixed node to forward the

message but has to make use of one or more nodes that happen to be within reachable

distance at that particular moment. In addition, since a majority of these nodes are low

capability devices (in the sense of low computational capabilities, low storage and low

power provisions), use of strong cryptographic techniques needs to be ruled out. Moreover,

in hostile environments these nodes get easily compromised. Under such circumstances it

will enormously benefit a pervasive computing application if the path that provides most

opportunity of reliable delivery of messages is presented to it. Determining an appropriate

path within a network is the problem of routing and we revisit this problem in the context

of pervasive computing environments.

6.2.1.1 Background

The problem of routing in mobile ad hoc networks have been addressed before [BSSW02,

CWLG97, CE95, GB81, GT95, HPJ02, PH03a, PB94, Toh96, ZH99, ZMHT05]. Among

these [BSSW02, HPJ02, PH03a, ZH99] study cryptographic techniques for securing the

routing protocol. Some use public key cryptography to encrypt the end-to-end transmis

sion of routing messages. Others use digital signature techniques to authenticate routing

messages at the peer-to-peer level connection. However, these cryptographic techniques

incur high computation and storage overhead which limit their use in sensor devices. Use

of secret key techniques instead of public keys alleviate this problem to some extent al

though at the expense of added complexity. Moreover, key distribution and management

is a big problem in secret key based systems. It is difficult to establish a key distribution

or certification authority in mobile ad hoc environments. Ensuring the availability of a key

139

distribution center or a certifying authority is almost impossible given the unstable nature

of the network.

The Hermes protocol developed by Zouridaki et al. [ZMHT05] proposes using trustwor

thiness of its neighbors for routing. The trust values are computed under the assumption

that they follow the beta probability distribution. The parameters of the beta distribution

come from the empirical observation of the forwarding behavior. Thus, nodes that main

tain a good and steady forwarding history have more trust and confidence on them. The

route is established for the most trusted path. However, the major problem of this work

is its complete reliance on forwarding history for measuring trust. A malicious node can

easily fake this history thus presenting itself as a trusted node. Other similar works include

[AHNRR02, DRWT97, YNK01]. Among these [DRWT97] proposes a signal stability-based

adaptive routing (SSR) where the routes are selected based on signal strength. This work

looks promising; however it does not discuss how to measure this signal strength quantita

tively. In [AHNRR02] the authors propose an on demand secure routing protocol where the

metric is based on past history. Yi et al. [YNK01] present a security-aware ad hoc routing

protocol (SAR) in which a route is selected on the basis of degree of 'security guarantee'

that the route provides. If two routes have same guarantee then the shorter path is cho

sen. The security metric can be specified by standard security properties like timeliness,

ordering, authenticity etc. However, the work does not discuss how we can measure these

properties quantitatively.

6.2.1.2 Our Proposition

We propose a trust-based routing protocol for pervasive computing environments. Our

protocol determines the most reliable path under currently determinable properties of the

system to forward a packet from source to destination. A node in the pervasive computing

environment is any entity that is able to forward a packet. It can be a sensor node, a mobile

device like a PDA or a cellular phone, a powerful computing device or even an actuator

like a switch. Reliability of a node is measured in terms of a trust value for the node. Each

node determines its neighbor's trust based on physical properties of the neighbor that can

140

be directly observed properties, the neighboring node's behavior history (i.e., results of past

interactions), recommendation and reputation about the neighbor from other neighbors.

The resulting trust value is used to generate the 'cost of forwarding', or simply cost. The

cost metric is inversely related to the trust metric, that is, higher the trust on the node,

lower is the cost. This cost is associated with links in the network. We modify the widely

used distance vector routing protocol using these costs between the links to find the path

with minimum average cost. The chosen path then becomes the most 'reliable' path.

6.2.2 Overview of Trust-based Routing Protocol

We assume that the pervasive computing environment supporting the application has a

very dynamic topology. Nodes join or depart the environment at random. Each node

in the network maintains a table RT consisting of tuples of the form (Dest, Win#, NH,

Costavg,]T) Cost2, #Hops). In this table the node stores on a per-destination (Dest) basis,

the identity of the next neighbor (NH), to which the message needs to be forwarded.

Together with the next neighbor information, the node also stores the minimum average

cost (Costavg) and the number of hops (#Hops) to reach the particular destination. This

information is generated periodically. Thus each tuple bears a time stamp in the form of

a current time window (Win#). The routing algorithm that we propose is used to update

the next neighbor entry in the RT table for a particular destination.

A source node initiates the routing protocol if it has a packet to be sent to a destination

for which it does not have any next hop (NH) entry. The source node can also execute the

routing protocol when the path to the destination has expired (when the value under Win#

is less than the current window number). The source sends out a route discovery request.

We assume that each node that participates in the pervasive computing environment has a

trust relationship with its neighbor (that is a node at 1 hop distance). A trust-aware node

periodically sends a beacon message to its neighbors. The beacon message is something like

an "I am alive" message and carries information necessary to prove the node's existence.

Beacon messages are broadcast in nature. They carry rudimentary checksums to provide

weak protection against integrity violations. Once in a while a node can also send out a

141

beacon message on demand. In our protocol, a node may request a recommendation from

a second node about the target node. In such cases the feedback is carried on a beacon

message. Trust relationships are periodically refreshed locally. At some point after system

initiation we assume that every node in the system will have a trust relationship with

each of its neighboring nodes. We do not assume that trust relationships are symmetric or

transitive.

We adapt our vector trust model for this purpose. We express the trust relationships

between nodes as Nr —• Ne where Nr is the truster node and Ne is the trustee node. The

underlying context is 'reliability in delivering a data towards destination' and is same for all

node in the network. Therefore, we do not use the context any further for this application.

We also choose to disregard the dependence of trust on time in this application., as a trust

relation can be short-lived in pervasive computing environment. Consequently, it will not be

much meaningful to capture the dynamics of trust over time. The trust value v(JVr —> Ne),

corresponding to iVr —> Ne, is referred to as the trust value for node Nr on node Ne along

the edge (Nr, Ne). We convert this trust value to a cost on the link (Nr, Ne). The higher

the trust value the lesser is the cost to transfer messages on the link. The path having

the least average cost from the source node to the destination node is considered the most

reliable among the available paths and is chosen by the source node to forward the data.

Figure 6.4(a) describes pictorially the main idea of our protocol. We assume that if a

node Nr has a distrust value (that is value less than 0) on another node Ne the cost on

that link is infinite and that next hop is discarded. When a node receives a route discovery

(a) Trust relations in trust- (b) Forwarding cost in trust- (c) Path having least average
aware pervasive computing aware pervasive computing cost is most reliable
environment environment

Figure 6.4: Trust relation between nodes and the corresponding cost on the link

142

request from a source, it checks its routing table RT. If a route to the destination is present

in RT which has not expired, it sends the CHOPS'1 and cost related information to the

source. The source then evaluates the cost of the link between the neighbor and itself and

using the #Hops it computes the average cost of forwarding the packet to the destination.

The source may get multiple such responses. It then chooses the next hop for which the

average cost over the path is minimum. If the node that receives a route discovery request

from the source, does not itself have the next hop information in its RT for that destination,

it initiates a route discovery process as a source. This process can go on till the node which

is 1 hop behind the destination initiates a route discovery request.

6.2.2.1 Cost Function

Each node tries to find the path to a given destination which has the minimum average

forwarding cost. The cost of forwarding a packet from the node Nr to Ne is a function of

the trust value v(iVr —• Ne). These two are related as follows: higher the trust, lesser is the

cost and the cost increases as the distrust increases (i.e., the trust decreases). Rationale is,

the cost (in terms of integrity violation and other malicious activities) of forwarding a packet

through a more trustworthy node is less than that through a less trustworthy node. The cost

is minimum (not zero though) when Nr has absolute trust (v(iVr —> JVe) = 1) on Ne. This

minimum cost (Mincost) is a small positive cost incurred due to forwarding overhead. It is

uniform over the whole pervasive computing environment and set at the bootstrapping of the

system. We assume that the decay in cost with increased trustworthiness is logarithmic with

the following conditions: at v(JVr —> Ne) = 1, cost = Mincost and at v(iVr —> Ne) — —1,

cost = oo. The function is defined as,

cost(Nr, Ne) = Mincost - ln(* + ^Nr ~^ Ne)) (6.1)

The maximum allowable cost for Nr is incurred when v(Nr —• Ne) = 0. This cor

responds to the situation when Nr is neutral about trustworthiness of Ne. This cost, de

noted by MaxAllowedcost(Nr> jve), is Mincost — l n ^) , that is, MaxAllowedcost^ry ;ve) =

Mincost + 0.69.

143

Computing this cost value has some overhead but is only linear in the number of nodes

in the pervasive computing environment. The cost value is stored in the device for a

predetermined time or until a new beacon message has arrived. The absence of a beacon

message from a particular node in a particular window of time represents a broken link

during that time period. It can happen for various reasons including that the node is

compromised. The node in such a case may either discard the broken link from the list of

current neighbors or mark it as unused. Routing information is advertised by broadcasting

the route setup packets periodically or on demand depending on the protocol used. These

packets indicate which mobile nodes are accessible from which others and the average cost

associated with the path towards a destination. When a node receives a data packet, it

chooses the path which has the lowest average forwarding cost and forwards the packet to

the neighbor on this path to be further forwarded towards the destination. During this

process, a node also evaluates the packet forwarding performance of the neighbor node. By

measuring this the node essentially evaluates an interaction score for the neighbor. The

details of this process and other routing processes is explained in Section 6.2.4.

6.2.3 Trust Metric

As mentioned earlier, we adapt our vector trust model to evaluate trustworthiness of nodes.

For this application, we evaluate the parameters as follows:

6.2.3.1 Computing Properties

In our approach trust is used as a reliability metric of a neighbor node for proper handling

and forwarding the packet to the destination. A node Ni is a neighbor of node Nj if Ni

is within the range of a beacon message from Nj. A node becomes more reliable when it

has relatively more resources (in terms of signal strength, signal stability, less propensity to

corrupt data etc.). Higher values of these attributes show that it is more capable of handling

and forwarding a packet in a reliable manner. This motivates us to measure the node

properties quantitatively and include that measure as a factor to evaluate trustworthiness

of a node. We focus on two properties of a node - signal strength, and stability factor. A

144

node maintains a property table, PT = (NodeJd, SSaVg, SF) for each neighbor node where

the properties of the neighbor is kept along with the corresponding id. The table is updated

after each time-window win.

6.2.3.1.1 Measuring Signal Strength In each time-window win, a node periodically

sends a link layer beacon message to its neighbors. When the neighbor node receives such

a beacon message, the extended device driver interface of the receiving node measures the

signal strength at which the beacon was received. In our approach we use the receive signal

strength indicator (RSSI) unit to measure the signal strength. RSSI is the IEEE 802.11

standard for measuring radio frequency (RF) energy sent by the circuitry on a wireless

network interface card (W-NIC). It is a numeric integer value with an allowable range of 0

to 255. However, for the sake of our model we give a transformation to this recorded signal

strength value by dividing it by 255. This scales the received signal strength value within the

range [0,1]. We require this transformation as the final value of the component 'properties'

lies within [—1,1]- At the end of each time-window, we take the average of these values.

This transformed average signal strength value is then stored under the column SSavg in

the table PT corresponding to the neighbor. All these signal strength values within the

time-window win is kept in a separate temporary property table, PT^^ = (SS, SB)

where SB is the stability bit explained next.

6.2.3.1.2 Measuring Stability Factor The stability factor indicates the stability of

a node. Higher the stability more reliable is the node to forward a packet. We derive the

stability factor using signal strength. The reason is as follows: if a node is locationally

unstable, it will have a varying signal strength. Alternatively, if the average signal strength

of a node is fairly constant over few time-windows, the link with the node can be considered

as stable. Therefore, after storing the strength of received signal, say SScurrenu i n PT^^e-ld,

it is compared with the value present in SSavg of PT. If SScurrent < SSavg then the SB

is set to 0, otherwise the default value 1 is kept. At the end of time-window, the stability

145

factor SF is calculated as,

number of bits set to 1 under SB
Total number of bits under SB

At the beginning of each time window the temporary property table P r t ^ e - " i is set to its

default values. The default value for SS is 0 and for SB is 1.

6.2.3.1.3 Measuring Properties The properties component of the node Ne is then

computed as

NrPNe = a * SSavg + (l~a)*SF (6.2)

where a € (0,1) is a fraction used as the relative importance weight to the signal strength

property.

6.2.3.2 Computing Recommendation

Each trust-aware node agrees to provide a 'recommendation' about its neighbors upon

receiving a recommendation request from a source node. Let Nr request Nf- for a recom

mendation about a node Ne. The source node Nr sends this recommendation request by

sending a special message REC-REQ containing the nodeJd of the target node (in this

case Ne). If Nk has a trust relationship with Ne, then Nk replies by sending a message

REC-RESPONSE containing the pair (nodeJd,V) where V = v(Nk —• Ne). The node

Nr then evaluates the recommendation parameter using the Equation 3.7.

The truster Nr maintains a list, called recommendation list, RL = (nodeAd, list) for

each trustee where structure of each item in the list is (node_id, recommendation.value).

6.2.3.3 Computing Reputation

In our approach, we assume that each node also agrees to forward, to the source node

(truster), the rating of the target node by a third node. For example, a node Nj may

have obtained a recommendation about JVe by N/~. Nj agrees to pass this information to

the source Nr together with its own recommendation about Ne. All such ratings can be

bundled together and piggybacked with the message REC-REQ. Nr considers this rating of

Ne by Nk, received from Nj, as & reputation information about Ne, if iV*. is not a neighbor

146

of Nr. This information is considered to be a reputation rather than recommendation as

Nr does not have any trust relationship with Nk (since, Nk is not a neighbor of Nr). Nr

then uses the Equation 3.6 to evaluate the the reputation parameter.

6.2.3.4 Computing Interactions

Interaction is modeled as cumulative effect of events encountered by a truster node Nr

regarding Ne. We classify interaction in two categories - packet forwarding interaction -

when the truster considers the behavior of the trustee as a packet forwarder, and rating

interaction - when the truster considers the behavior of the trustee as a recommender.

Every event in each of these categories has binary outcome; either the truster Nr has trust-

positive event or a trust-negative event depending whether the event contributes toward a

trust-positive interaction or a trust-negative interaction.

6.2.3.4.1 Evaluating Packet Forwarding Interaction To evaluate packet forward

ing interaction, the truster Nr checks the outcome of each packet forwarded to JVe within

the specific time window win. Each packet forwarded correctly towards the destination is

considered as a trust-positive event. Each dropped packet gives rise to a trust-negative

event. The node Nr measures the number of forwarded packet by Ne as follows: Nr

forwards packets to Ne and with every such packet Nr sends an ECHO message with a

time-to-live (TTL) = 2. Each reply received by Nr denotes correct forwarding of the

packet by Ne to the next member Nk in the path. Nr keeps this information in a ta

ble IT = (NodeJd,PFCp,PFCn,RCp,RCn) where PFCP denotes the counter for trust-

positive packet forwarding interaction within the window and PFCn counts the trust-

negative packet forwarding interactions. RCP and RCn are rating counters used for counting

the results of rating interactions. All these fields has default value 0. Whenever a packet

is dropped the counter PFCn is increased by 1 and for each received reply the counter

PFCp is increased. Formally, packet forwarding interaction, denoted by Ipf of Nr about Ne

pj?C — pj?c

within the window win is defined as the ratio PFC
?

+ PFC
n • This is a simplified form of the

147

Equation 3.1 as we choose to disregard the time factor. Consequently, we ignore relative

importance of past events and current events.

6.2.3.4.2 Evaluating Rating Interaction The rating interaction is evaluated in a

similar manner. We assume that each node agrees to provide a 'trust recommendation'

about its neighbors upon receiving a recommendation request from a source node. We also

assume that for each neighbor, the truster keeps a list of nodeJds of the nodes who have

provided recommendation for that neighbor. Whenever the truster has a 'packet forward

ing interaction' with the neighbor node and. the result of that interaction matches with the

recommendation, that is the truster has positive (negative) experience and the recommen

dation is also positive (negative), it increases the RCP in IT of all such recommenders by 1.

If there is a mismatch between the outcome and the recommendation, the truster increases

the RCn counter by 1 for those recommenders. For example, let the trustee Ne has pro

vided "positive" recommendations for the nodes N, Nj, Nk to the truster Nr. Therefore, in

the recommender list RL, Ne appears in the list against each of these nodes. Let Nr have

trust-positive packet forwarding interaction with Ni, Nj and trust-negative packet forward

ing interaction Nk- Then in the interaction table IT, for the node Ne, the counter RCP

is increased twice and RCn once. At the end of time window win the rating interaction,

denoted by Ir of Nr about Ne is defined as the ratio fig
p

+fiC".

6.2.3.4.3 Evaluating Interaction The interaction component of the node Ne is eval

uated as

NrlNe=P*Ipf + (l-0)*Ir (6-3)

where /? 6 (0,1) is a fraction used as the relative importance weight to the packet forwarding

interaction. While evaluating rating interactions, Nr penalizes Ne whenever there is a

mismatch between iVe's rating and iVr's experience about a third node Nk- This is done

to reduce the effect of 'badmouthing' or 'false campaigning' of N^ by Ne. However, there

is a chance of wrongly penalizing Ne when the mismatch occurs due to no fault of Ne. To

148

reduce the effect of this /? should be chosen high so that the weight of Ir that is, 1 — /? is

low.

6.2.3.5 Computation of Final Trust Value

After computing values of the parameters, we evaluate v(JVr —> Ne), that is the trust value

for the trustee Ne by the truster Nr. For normalization, we choose to keep the component-

weight vector uniform over the whole environment that is, the vector is same for all nodes.

Therefore, W is chosen as (1/4, 1/4, 1/4, 1/4). Formally, the trust value is computed as

V,N > N N = NjNe +Nr PNe +Nr REPNe +Nr RECNe -g ^

These information are kept in a trust table, TT = (nodeJd, properties, recommendation,

interaction, trust_value, cost). After each window win this table is updated with new

values which are kept and used in the next time window. All other tables are set to their

corresponding default values. Next section describes the modified distance vector routing

algorithm which finds the path with minimum average cost for forwarding a packet to the

destination.

6.2.4 Data P a t h Discovery

To select the most trustworthy path, each node evaluates and dynamically updates the

trust components between itself and current neighbors. It then calculates the trust value of

the neighbors by the process described in Section 6.2.3. These values are used to calculate

the forwarding cost between two neighbors, using the Equation 6.1. The path with the

minimum average forwarding cost is preferred and the adjacent node on this path is trusted

to forward the packets toward the destination.

Our algorithm is based on a "rumor" about paths from neighbors. This is incomplete

information. We thus choose to use the average and standard deviation of the running sum

of cost in our route discovery protocol. This formula does not require the complete path

information yet can correctly evaluate the path's reliability like the one with the complete

path information. The average and standard deviation of running sum are computed using

149

the following equations:
n

AVG =(x + J2 Xi)/{n + 1) (6.5)
t = i

SD = * ..£^-(X>)2/«(«-l) (6.6)
\ i = i j = i

where Xi S 2tT6 values taken by a random variable X.

When a node receives a route information message from a neighbor node Nk, it updates

the forwarding cost on the path towards node Nj (where node Nk is chosen as the next

hop) by adding the current cost between itself and Nk and calculate the updated average

cost using Equation 6.5. It then re-evaluates the path to choose the optimal route to the

destination. This process compares among all possible candidate routes and chooses the

path that has the minimal average cost. If more than one candidate paths have same

minimum average cost, the routing algorithm selects the path that has the least standard

deviation as an optimal path. The standard deviation is calculated using the Equation

6.6. Algorithm 5 gives the protocol used in generating the routing table. It consists of

two phases: table initialization and iteration. The table initialization phase establishes

paths to all immediate neighbors known to the source S. For each neighbor Nk, node S

keeps track of hop count, average cost (calculated from Equation 6.4), running sum of cost

{DT(S, Nk)), and running sum of square of cost (DT2(S, Nk)). These cost parameters are

used for calculating the average cost and standard deviation according to the Equation 6.5

and Equation 6.6. The iteration phase is only triggered upon receiving the routing packets

or upon changing of an immediate link with its neighbor.

In the first case, if the destination node Nj in the received packet is not known by node

S, it will add Nj to the routing table and compute the routing cost to Nj by adding its

trust between itself and its neighbor node who has sent the routing information of Nj to S.

The routing cost to the destination Nj is computed as:

DS(N- Nk) = -(S^Nk)+DT(Nk,Nj)
[J ' k) hop.cnt(Nk, Nj) + 1 [bJ)

where Node Nk is the sender of the routing information and DT(Nk, Nj) is the forwarding

cost from Nk to Nj. If S already knows the destination node Nj, it recomputes the routing

150

Algorithm 5 Route Discovery in Pervasive Computing
Description: Route Discovery procedure simplifies the modified Distance Vec
tor algorithm.
Input: destination Nj, reachable from node Nk
Output: : The routing table of a given source node S

Initialization:
Initialize cost to all nodes Nj known to S to oo
Calculate the trust between S and its immediate adjacent node Nk in S's neighbor list
Add all immediate adjacent nodes to the routing table
for all node Nk in the neighbor list do

compute trust between S and Nk (Equation 6.4)
compute average cost Ds(Nk, Nk) (Equation 6.5)
compute running sum DT(S, Nk)
compute running sum of squares DT2(S, Nk)

end for
Iteration:
Wait until S detects change from its immediate link Nk or receives a routing packet from
its neighbor /* This packet contains the information about the destination node Nj */
if S detects change in its immediate link then

Update the cost and propagate the change to all neighbors
else

if Nj is a destination that S has never seen before then
Compute routing cost to Nj
Compute running sum, running sum of squares, and hop count to Nj
Add Nj and its routing parameters into the routing table

end if
if Nj is already in the routing table then

Compute the routing cost to Nj
Update the routing table if new cost is better than the current cost in the routing
table
Announce the new routing table to neighbors

end if
end if

151

cost to Nj and compares this value with the existing value. If the new cost is less or more

stable1 than the current cost, the cost to the destination Nj is updated. If the trust value

between node S and its immediate neighbor N^ has changed, S has to recompute the routing

cost to all destinations Nj where N^ is the next hop. The above Equation 6.7 is used to

recomputing the new routing cost. Then S compares the new cost to the current cost that

S has in its routing table. If the new cost is less or more stable than the current cost, the

cost to the destination Nj is updated.

We use the vector trust model to address the problem of reliable delivery of event

data in pervasive computing environments to appropriate action points in order to support

obligation policies. The problem is modeled as a routing problem. We present a trust-based

approach to routing and used vector trust model to evaluate trustworthiness of nodes to

proper handling and forwarding data towards the destination.

6.3 Allowing Finer Control over Privacy using Trust

This section presents the third example of application of vector trust model. Here the trust

model is used to facilitate privacy related decisions in different privacy contexts on the

Internet by evaluating trust in recipients of private data. Reasoning about trustworthiness

of recipients of private data is essential as every time a user uses the Internet, a wealth

of personal information is revealed, either voluntarily or involuntarily to some recipients.

This often causes privacy breaches, specially if the information is misused. Ideally, a user

would like to make a reasoned decision about who to release her information to and what

to release. For this purpose, in [RC08], we propose using the level of trust that a user has

on the recipient regarding not to misuse her private data. To measure this trust level, we

adapt the vector trust model. We formalize a notion of privacy context and show how a

JThis is used in the case when the new cost is equal to the the current cost or has a slight difference.
The path that has less standard deviation is said to be more stable path.

152

privacy context ontology can be used to determine trust values for previously unencountered

situations. For this purpose we adapt our context ontology presented in Chapter 4.

6.3.1 Background and Motivation

Researchers are getting increasingly concerned about protecting the user's privacy in an

electronic world. Unfortunately, most of us would find it difficult to provide a concrete

definition of privacy with enough information to be able to apply it to our real lives. As

individuals, each of us have unique needs and views of what constitute personal and private

data [ACR99]. The task is considerably more difficult when we have to define what privacy

means to us as we use the Internet. Efforts to define and develop technologies that support

the specification of consumer privacy requirements as well as help protect them, are evolving

at a considerably slower pace. Efforts like the Platform for Privacy Preferences (P3P)

Project of the World Wide Web consortium [C+04] and the related Privacy Bird project

[Corb], and works based on the k-anonymity and l-diversity models, provide solutions to

some facets of electronic consumer privacy. For example, the P3P project attempts to

provide a framework for service providers to express their privacy policies to the user with

the goal that a user can form a reasoned opinion about the state of her privacy at the service

provider. The related work on Privacy Bird [Corb] provides a user-friendly mechanism by

which a user can determine if a service provider's P3P policies match the user's privacy

preferences. The understanding is that such compliance will enhance the user's trust in the

service provider. However, P3P is only able to provide a technical mechanism by which

service providers can describe their use of personal information. P3P does not provide

mechanisms by which policies are enforced. Nor can policies be used to verify or prove that

the services accurately reflect the original policies. The k-anonymity model [SS98, Swe02],

(.-diversity model [MKGV07] and similar works like [SamOl], on statistical databases [DF02],

and deductive databases [BKS95] address the problem of releasing personal information so

that the subjects of the data cannot be identified uniquely. Proponents argue that these

efforts enable the users to act on what they see and thereby help protect their private

information. However, often privacy is breached by factors that the users cannot see or

153

control - for example, misjudged trust and misuse of information. Thus, these models and

technologies solve only parts of the problem of protecting user privacy.

The last observation indicates that trust plays an important role in the problem of

preserving privacy. Ultimately, the user needs to trust the recipient with her private in

formation. A number of researchers have previously explored the idea of modeling privacy

using a trust centric approach [GM02, SDB03, NM02]. Goecks and Mynatt treat reputa

tion and trust as separate independent entities and propose an approach to combine trust

networks with reputation to provide privacy [GM02]. Shand et al. [SDB03] rely on rec

ommendation to direct the sharing of private information. Nguyen and Mynatt [NM02]

address the problem of trust in pervasive computing environment. Their goal is to make

the user more aware of privacy issues. The goal of enhancing consumer confidence in privacy

practices of service providers has been explored by privacy seal programs such as TrustE

(http://www.truste.org). However, it relies heavily on policy statements similar to P3P

statement.

We believe that trust based approach to preserving privacy is promising. The problem

with this group of work is that the trust models used are not very expressive. Moreover,

none of these works discuss how to evaluate trust for the purpose of privacy preservation.

Therefore, for this application, we adapt and extend the vector trust model to help the user

decide how much to trust the recipient of private data to preserve her privacy. We specify the

user's different Internet activities like browsing a website, downloading content, purchasing,

etc., as privacy contexts. The user is likely to have different privacy preferences for different

contexts and may switch context anytime during an online session. Sometimes the user may

not have enough information to calculate trust about a trustee in a new context. Or, the

user may have no predefined preference rules in that context. We show how, in the above

scenarios, the user can extrapolate a trust or a privacy preference rule-set using trust and

preference rules for existing contexts. For this purpose, we adapt our context ontology to

define an ontology of privacy contexts containing a similarity relationship between different

contexts. This similarity relationship is represented by a context similarity graph. Using the

154

http://www.truste.org

degree of similarity between contexts, the user can extrapolate trust or can set up privacy

preferences in the context for which she does not have any a priori information.

6.3.2 Preserving Privacy Using The Trust Model

We look into the privacy preservation scheme from a user's perspective. That is, we inves

tigate how a user can have a reasonable control over her privacy while interacting with a

server. We first identify following activities that a user can perform:

1. Downloading - The user downloads some resources from the server. This requires the

user to specify (in active or passive manner) the download destination.

2. Purchasing - The user acquires some product, service, or access to a resource via

a purchase. This requires the user to exchange funds and reveal a destination for

whatever she is purchasing. In the case of acquiring access to some resource, that

'destination' is an identity to which that access is related.

3. Sending/Receiving email - The user exchanges electronic messages with other indi

viduals to pass along digital information.

4. Negotiating - A series of proposal-response messages are passed between the user and

the server, until either both parties reach an agreement with each others proposals,

or one or both parties terminate the activity without an agreement. A certain level

of trust is typically assumed in negotiation, and the user may have to reveal various

characteristics about her to engender that trust and complete the negotiation.

5. Filling out web forms - A user fills out a form presented by a website to willingly

share information.

During any of these activities there are many different ways that the user's privacy can

be violated. We categorize the violations as follows

1. Confidentiality breach - when private and personal information of the user is inter

cepted and collected by an entity to whom the user is not intended to disclose that

piece of information.

155

2. Integrity breach - when private and personal information of a user is modified without

the knowledge or consent of that user. This can occur even if the modification is done

by a legitimate receiver, but who is not authorized to do so.

3. Information exploitation - when private and personal information about the user,

collected with her consent, is misused or allowed to be exploited. This would include,

personal data of the user is made available for sale, use of the data by the receiver for

profiling when the user has not so consented, use of the data that was not agreed to

by the user prior its collection, and allowing unauthorized access to the data by other

entities.

4. Personal space violation - when an entity other than the user places data of any kind

on the computing system of that user without the knowledge or expressed consent of

the user.

5. Pretexting/Identity theft - when private or personal data of the user is used by someone

other than the user without her consent to do so to gain access to resources, products,

or services intended for the user only.

6. Anonymity violation - when the identity of the user is disclosed despite the user's

effort to remain anonymous.

7. Linkability - when personal or private data about the user, collected under the condi

tion of anonymity of that user, is maintained/used/distributed in such a manner as to

link that data to the identity of that user, or contribute to the linking of the identity

of that user to that data.

Some of the above listed violations can lead to other violations. For example, a breach in

confidentiality can lead to integrity violation, information exploitation, or identity theft.

Before each transaction, a user evaluates the trustworthiness of the server using the vec

tor trust model. To evaluate this trust the user uses information about characteristics of the

server (properties), her personal experience with the server (interactions), and information

that she gathers from other members in the community (reputation and recommendation).

In the following sections, we describe how these parameters are evaluated.

156

6.3.2.1 Computing Properties

To quantify the 'properties' component of the trust relationship, the user A (truster) needs

to gather information about the attributes of the server B (trustee) and classify them. We

give some examples of classes and subclasses of attributes of a trustee that a truster may

define to evaluate properties component.

1. Communication protocol - Presence of a secure communication protocol like SSL helps

preventing confidentiality breach, integrity breach, identity theft and thereby can

prevent other indirect violations of privacy. In this class the truster may have the

following subclasses:

(a) Encryption algorithm - which encryption algorithm (e.g., AES or DES or RSA)

is being used,

(b) Key-type - what type of key (e.g., symmetric key or asymmetric key) is used,

(c) key-size - what is the key size (e.g., 56-bit or 128-bit or 512-bit),

(d) Message digest algorithm - what type of message digest algorithm is used (e.g.,

MD5 or SHA),

(e) Authentication - what authentication mode is used (e.g., authentication of both

ends, or only 5's authentication or, it is totally anonymous),

(f) Key exchange - which key exchange algorithm is used (e.g., RSA or Diffie-

Hellman).

2. Credential - Presence of a certificate from a well-known certifying authority (e.g.,

Verisign) about policies, methods and tools applied and used by B in a particular

transaction. The truster A can have following subclasses:

(a) Certifying authority - who the certifying authority is (i.e., how well-known the

certifying authority is),

(b) Validation period - how long the certificate is valid. For example if it is an old

certificate and is still valid for sufficiently long, then that would create a positive

impression about B.

157

3. Policy - Presence of an explanation of policies adopted by the server for a transaction.

In particular, the user looks for the following policies in the 'policy document'

(a) Data collection policy - explaining how the server is going to collect private and

personal data from the user,

(b) Data storage policy - explaining how the server is going to store the private data

of the user so that it remains secure from the privacy violating threats,

(c) Data handling policy - explaining how the server is going to use the data,

(d) Data disclosure policy - discussing whether the server is going to disclose the

data to third parties. If so, to whom it will be disclosed.

(e) Data retention policy - explaining how long the server is going to keep the private

information about the user in the storage,

(f) Applicability & Validity - applicability shows which entities are going to follow

this policies (or, a part of the policies). Validity explains for how long the server

(or other entities) is going to stick to this policy. The lifetime of a policy tells

the user how long she can rely on the claims made in the policy, or whether there

is any exception in these policies,

(g) Cookie policy - a cookie policy must cover any data that is stored in that cookie

or linked via that cookie. It must also reference all purposes associated with data

stored in that cookie or enabled by that cookie. In addition, any data/purpose

stored or linked via a cookie must also be put in the cookie policy. It must clearly

specify the path of the cookie (this would give the idea about the parties that

are going to get the data),

(h) Dispute handling policy - explaining how the server is going to resolve dispute

issues, or if the user lodges a complain about her privacy being violated, what

compensation the server is offering.

Once some or all of these information are available, A evaluates 'properties', according to

her own policies, as described in Chapter 3.

158

6.3.2.2 Computing Interactions

Most of the information that goes toward forming the properties of the trustee B in a

particular privacy context by itself does not necessarily enhance/diminish the truster's trust

on B. This is because majority of the above criteria are examples of self-assertions. There

is no guarantee that B conforms to these self-assertions. JB'S behavior as an entity (it

includes behavior as a service provider, recommender or just as a community member)

in a transaction manifests in the form of events. If there are events that conform to the

properties that A has gathered then these events will be termed positive. If the events are

contrary to the properties then they are negative. A false or misleading recommendation is

also a negative event. Otherwise the events are neutral.

Categorizing an event to positive or negative depends on the truster A's policy, specific

activities and violations. Interactions is computed by counting how many times (i.e., in

how many events) B has deviated from or conformed to self-assertions or provided wrong

information. During a specific period of time, number of deviations from the stated self-

assertions give number of negative events in that period. The events where B adhered to

the self-assertions or provided correct feedback generate positive events.

6.3.2.3 Computing Recommendation

Evaluation of recommendation involves measuring the feedback provided by other members

in the community. Note, however, a group of malicious members can send false good/bad

reviews about the server (trustee) to influence the trust decision of the user (truster). The

server may or may not be a member of that malicious group. To diminish the effect of such

collusion while computing the recommendation, that is, to select 'attributable sources' from

the whole community, we propose the concept of 'trusted neighbors'. Note, we do not use

the term 'neighbor' to mean the physical distance (in terms of length or hop) of a member

from the user. We intend to measure how 'close' the member is with the user in terms of

trust relationship. We now discuss how a truster builds this set.

159

6.3.2.3.1 Trusted Neighbors Let there be m members in the community M. To

choose the trusted neighbor set, a truster A sets up a neighbor .trust threshold r^'. Then

A broadcasts a ('neighbor_invitation') message to each of the members with whom A has a

trust relationship and the value of the trust relationship is > r7^". A considers all members

as her trusted neighbor from whom she gets back acceptance message. Therefore 'trusted

neighbors' can be defined as

Definition 33 [Trusted Neighbors] The trusted neighbors of a truster A is the set

TNBRA of all members j where the trust value of j as evaluated by A is greater than

or equal to the neighbor•-trust threshold set by A and A receives an acceptance of neigh

bor-invitation from j . Formally, we can write, TNBRA = {j G M\ v(A —• j)N >

r^br A A receives acceptance of neighbor-invitation}.

The next algorithm formally describes the process of creating trusted neighbor set.

Algorithm 6 Get the trusted neighbors
Input: (i) M - the community of members, (ii) A - the truster whose neighbor set is to
be determined, (iii) rj|br(> 0) - neighbor_trust threshold set by A;
Output: TNBRA ~ set of trusted neighbors of A;

Procedure FindTrustedNeighbors(M, A, r^6r)
TNBRA = 0;
for all j G M do

if v(A -£-» j)N > r f r then
Send 'neighbor-invitation' message to j ;
if A receives an acceptance of neighbor Jnvitation from j then

TNBRA = TNBRA U {j};

end if
end if

end for
return TNBRA;

6.3.2.4 Computing Reputation

We assume that the user requests only the trusted neighbors for recommendation or con

siders their feedback as recommendation. Information obtained from other members are

used to compute reputation. The reason is as follows: the user will have a low trust or no

160

trust for the members other than trusted neighbors. Therefore, these sources are almost

non-attributable to the user. The user can gather information about the server's reputation

from the following:

1. general description of the server's activities and performance - this can be available

from the other members in the community,

2. report of other members about the server - this report can contain evaluation of

the server and comments by those members. The report can have two categories:

(a) general - general remark about the server by the other member, (b) specific -

action specific remark about the server. For example, how the server has performed

to handle private data, how it has collected and stored sensitive data etc.

After collecting these data, the user computes the reputation parameter as discussed in

Section 3.3.1.3.

After computing the trust, the truster checks the privacy policy of the trustee. If it

conforms with her privacy preferences in that context, then she controls the disclosure of

her information based on the evaluated level of trust.

6.3.3 Privacy Context

As mentioned earlier, a trust relationship between A and B is never absolute. In privacy

platform, a user's trust on another user (service provider or recommender) will depend

how the other user is capable of keeping .A's privacy in a specific context. For example, A

(truster) can trust the entity B (trustee) to protect her private information collected during

a registration procedure. However, that does not necessarily mean that A also trusts B to

protect the private information collected while A is making a purchase from B. This leads

us to associate a notion of privacy context with a trust relationship.

A user typically performs different activities during an online session. These activities

can be categorized by their type. We denote each type as a 'context' of user activity. For

example, a user may 'search' for some document, and when found, she may 'download' the

corresponding file. The above involves two different contexts of activities, 'searching' and

'downloading'. Some examples of context are Browse, Download, Purchase, Register, Login

161

etc. We assume the universe of contexts is finite. We observe that context should be denned

such that the model is interoperable. Different entities often use different words to describe

the same context. Alternately, the same word can be used for describing different contexts.

These are example of semantic conflicts in the use of terminology. To solve these problems

we adapt some ideas from our context ontology presented in Chapter 4. The next section

presents our privacy context ontology.

6.3.3.1 Privacy Context Ontology

Our ontology consists of a set of contexts together with relationships defined among them.

First, we formally define the privacy context and later define the relationships between

them.

Definition 34 [Privacy Context] A privacy context C is represented by a set of seman-

tically equivalent keywords, denoted by keywords(C).

Each keyword in keywords(C) is used to describe the privacy context C. The keywords in

keywords(C) are semantically equivalent because they express the same context. For each

context C we assume that the set keywords(C) is non-empty and finite. Also, for any two

semantically distinct privacy contexts C\ and C2, we require keywords{C\)P\keywords(C2) =

0. That is, any keyword belongs to exactly one context. We give an example to illustrate

the notion of privacy context. Consider the usual registration process in an Web-service.

Some sites call it 'registration', some call it 'register', and some sites specify it as 'sign-up'.

All these different terminologies describe the same process. Therefore we specify any of

these the privacy contexts by the keyword set {register, registration, sign-up}. Using this

notion, we define equality of two contexts as

Definition 35 [Equality of Privacy Contexts] Two privacy contexts C and C are said

to be equal, denoted by C ~ C', if and only if keywords(C) = keywordsiC').

In the above example, the privacy contexts register and sign-up are equal.

162

6.3.3.1.1 Relationship Between Privacy Contexts We define a relation called 'sim

ilarity' between distinct privacy contexts. This relation is denned for every pair of contexts

in the privacy context set. The similarity relation is reflexive, symmetric, but not transitive.

Each similarity relationship is associated with a degree of similarity. For two contexts C and

C, we denote the degree of similarity by the symbol sim(C, C). This indicates the closeness

of the two contexts. Since two distinct privacy contexts related by similarity will not be

exactly identical, the degree of similarity will be denoted as a fraction. The exact value of

the fraction will be determined by the truster using her domain knowledge. Therefore, for

two privacy contexts C and C we have,

sim(C, C) = {
1, if C = C

0, if C and C are unrelated

[d € (0 , 1) , otherwise

The similarity relationship will be used in setting up privacy preference rule-set when there

is no such preference is available in the privacy preference repository for a new context. It

will also be used to calculate the initial trust about the trustee on that new context. The

degree of similarity together with the trust on the entity in known privacy context will be

used to extrapolate the trust on the new privacy context.

6.3.3.2 Privacy Context Similarity Graph

The privacy contexts and the similarity relationships between them is represented using a

single graph which we refer to as the privacy context similarity graph. Each node ni in

the graph corresponds to a context C and is labeled by the set keywords(C). We draw a

weighted, undirected edge between two nodes n, and rij if degree of similarity between the

corresponding contexts is between (0,1). The weight on the edge indicates the degree of

similarity between the nodes n; and rij. We formally define privacy context similarity graph

as

Definition 36 [Privacy Context Similarity Graph] A privacy context similarity graph

PCSG — (TV, 5) is a weighted undirected graph satisfying the following conditions

163

1. N is a set of nodes where each node n^ is associated with a privacy context Ci and

is labeled with keywords(Ci), which is the set of keywords associated with the privacy

context Ci.

2. For each edge (ni,rij) 6 £, the weight on the edge (rii,nj), denoted by w(ni,nj) is

in (0,1) and equals to sim(Ci, Cj), where Ci and Cj are represented by rii and nj

respectively.

Figure 6.5 illustrates an example of privacy context similarity graph. The four privacy

contexts browse, search, register, login and the similarity degree between them are shown in

the example. The weights are assigned by the truster according to her domain knowledge

about these four contexts. We do not discuss further the actual method of assigning the

weights.

Figure 6.5: Example of a privacy context similarity graph

6.3.4 Reasoning about Privacy Preferences and Trust in Different Privacy
Contexts

A user (truster) is likely to have different privacy preferences for different privacy contexts,

that is user's privacy preferences depend on underlying contexts. In other words, the user

(truster) will perform certain actions, during a communication with a trustee, in one context

and other actions in a different privacy context. For example, a user may disclose her address

information while making a 'purchase', but not when she is just 'searching' or 'downloading'

something on the Web. Such actions, that are to be performed during a communication in

a particular privacy context, are specified by the user, according to her own policies, as a

set of rules. We call this rule-set for a particular context as privacy preference rule-set and

formally define it as

164

Definition 37 [Privacy Preference Rule-set] A user's privacy preference rule-set for

a privacy context C, denoted by "RQ is a set of rules or guidelines regarding the actions or

steps to be performed by the user (truster) when interacting with another entity (trustee) in

the privacy context C.

A user (truster) can add/delete/modify these rule-sets according to her own policies. The

privacy context keeps switching as a user continues her online activities, thereby contin

uously changing the user's privacy preferences. A user maintains a privacy preference

repository where she keeps her privacy preference rule-sets for entities (trustees) in spe

cific privacy contexts. However, a user may have a privacy preference rule-set for an entity

in some context C, but may not have any preference rule-set in context C in the repository.

In this scenario the user, while interacting with that entity, needs to make decision about

using some existing privacy preference rule-set.

A user also maintains a trust repository where she keeps the trust about entities in

particular privacy contexts. For a particular trustee, the user will not have a trust in a new

privacy context, irrespective of whether she has or does not have a privacy preference rule-

set for that context. After setting up a rule-set the user needs to initiate a trust relationship

with the trustee in the new privacy context. This initial trust is calculated using the trust

on the trustee in some existing privacy context.

Using an existing privacy preference rule-set from the repository when encountering

a new privacy context or an existing privacy context, for which no rule-set is available,

is reasonable only when the new context is 'similar' to the context for which a privacy

preference rule-set is available in the repository. This is also true when extrapolating the

initial trust in the new privacy context. The initial trust should be calculated from the

trust on the trustee in some 'similar' privacy context available in trust repository. A privacy

context may be related to several other privacy contexts through 'similarity' relationship.

Nonetheless, we need to find out which context or set of contexts is conceptually closest

to the given context. In other words, we need to find the privacy context or set of privacy

165

contexts that has the highest similarity degree with the given privacy context. For this, we

first define the concept of closest privacy context.

Definition 38 [Closest Privacy Contexts] Let C be a privacy context. The set of privacy

contexts ^(C) = {C\,... ,Cm} is defined to be closest to C if the following conditions hold:

1. for all i 7̂ j,l < i,j < m, sim(C,Ci) = sim(C,Cj).

2. for alii = l , . . . , m , sim(C,Ci) — max(sim{C,C')), where C is any privacy context

that is related to the privacy context C.

Note, the set ^(C) can be a singleton set. The following Algorithm 7 describes the method

for finding out the closest privacy context(s) of a given privacy context. We illustrates the

Algorithm 7 Get the closest privacy context
Input: (i) C - the privacy context whose closest one needs to be determined, (ii) PCSG
- the privacy context similarity graph in which C is a privacy context.
Output: 'if (C) - set of privacy contexts closest to C

Procedure FindClosestContext(C, PCSG)
tf(C) - 0; relatedContext{C) = 0;
for all i such that d e PCSG do

if there is an edge between nodes corresponding to C and C\ in PCSG then
relatedContext(C) = relatedContextifi) U {Cj};

end if
end for
for all i such that Cj £ relatedContext(C) do

if sim(C,Cj) = max(sim(C,Ck)) where Ck € relatedContext(C) then
<T(C) = %?(C) U {Cj};

end if
end for
return ^(C);

above algorithm with an example.

Example 14 Consider the privacy context similarity graph shown in Figure 6.5. Suppose

a user Alice wants to find the closest contexts of the privacy context {Login, Sign-in}.

The relatedContext set for this privacy context is {{Browse, Surf}, {Register, Registra

tion, Sign-up}}. The graph shows that sim({Login, Sign-in}, {Browse, Surf}) = 0.2 and

166

sim({Login, Sign-in}, {Register, Registration, Sign-up}) — 0.6. Therefore, ft({Login, Sign-

in}) is found to be the context {Register, Registration, Sign-up} as it has highest similarity

degree with the privacy context {Login, Sign-in}.

If the privacy context similarity graph PCSG has n nodes, then the node corresponding

to the privacy context C can be related to at most n — 1 nodes in the graph. Therefore,

at most ra — 1 edges can be in the set relatedContext(C), from which the closest privacy

contexts are determined. Thus, the algorithm has complexity 0(n), where n is the number

of nodes in the privacy context similarity graph PCSG. However, note, if C was not

present in PCSG, then the truster needs to update the existing PCSG by including a

node corresponding to C and determining the weighted edges between the new node and

the existing nodes. This updated PCSG is then used to find ^(C).

6.3.5 Extrapolating Privacy Preferences from Similar Privacy Contexts

When a user A does not have privacy preferences in a particular privacy context C, we show

how she can select one such preference rule-set using one or more similar privacy contexts.

Suppose the user A encounters a privacy context C with an entity B and A does not have a

privacy preference rule-set in the repository for C. A finds the set of closest privacy context

•^(C) using the Algorithm 7. Ifif(C) is a singleton set, say {C}, then the preference rule-set

corresponding to C is retrieved from the repository and set for context C. Now, suppose

^(C) = {Ci,C2,... ,Cfc} that is, ^(C) is not a singleton set. Suppose for all i = 1 , . . . , k,

IZd is the privacy preference rule-set corresponding to privacy context Q. The user A has

two choices in this case to set the rule-set for C. She can choose an TZd arbitrarily from

the available IZQ S. Alternately, she constructs the rule-set by taking union of all available

1Zcts. Algorithm 8 describes the method.

6.3.6 Extrapolating Trust from Similar Privacy Contexts

As mentioned earlier, if a truster A does not have a trust about a trustee B in a privacy

context C in her trust repository, then she calculates the initial trust about B in C using

the similar privacy contexts of C. For this evaluation, we discuss two scenarios:

167

Algorithm 8 Extrapolate privacy preference rule-set for a new privacy context
Input: (i) C - the privacy context for which preference rule-set needs to be set, (ii)
PCSG - the privacy context similarity graph in which C is a context, (iii) The privacy
preference rule set repository Si.
Output: TZe - privacy preference rule-set for privacy context C.

Procedure ConstructPreferenceRules(C, PCSG,&)
Kc = ®;
<tf(C) = FindClosestContext(C,PCSG);
if V(C) = {?} then

if Uc E & then

nc = nc>;
else

exit;
end if

end if
if <#(C) = {Ci,C2, ...,Ck} then

Case 1: IZc = IZCJ for an arbitrary j such that 1 < j < k and He, € S%\
Case 2: Tlc = {jnCj for all 1 < j < k such that He, € &\
return He;

end if

Scenario 1: ^(C) = C i.e., the closest privacy context set is a singleton set.

In this case A retrieves the normalized trust vector (A —> B)^ of B in privacy context C

C AT

and assigns the value sim(C, C) x v(A —> B)™ as the initial value for the trust relationship

(A —• B)N. Ifv(A —> B)^ =J_ that is, A has no information about trust on B in privacy

context C, then she needs to extrapolate (A —• B)™. Therefore, this extrapolation can be

a recursive process.

Scenario 2: tf (C) = {Ci,C2, • • • A }

A retrieves all the normalized trust vectors (A —^ B)^, i = 1,2,... ,k. The initial

value for the trust relationship (A —> B)^ will be calculated as
k

v(A -£+ B)» = 1 5 " > m (C , G) x v(A - ^ B)f]
i= l

To illustrate the above, we continue with our earlier example.

Example 15 Let Alice now want to extrapolate her trust on www.Books.com in the pri

vacy context {Login, Sign-in}. In our earlier example, Alice finds the closest privacy context

168

http://www.Books.com

of the privacy context {Login, Sign-in} as {Register, Registration, Sign-up}. For the sake

of brevity, let us denote the privacy context {Login, Sign-in} by Login and the privacy con

text {Register, Registration, Sign-up} by Register. Suppose Alice has a trust relationship
tfP fit OtPV I T

{Alice —> www.Books.com)t with the server www.Books.com (trustee) in her trust

repository. Suppose v(Alice —> www.Books.com)^ = 0.8. Then the initial value of the

trust relationship [Alice —• www.Books.com)^ is evaluated as 0.6 x 0.8 = 0.48.

We have presented a trust-based approach to allow personal control over privacy of a

user while she is interacting with other entities on the Internet. We have used the vector

trust model to evaluate the trust on the recipients of the private data. This trust value

allows a user to measure the degree of assurance she can have on the recipient to protect

her privacy during a transaction.

6.4 Summary

This chapter demonstrates the use of the vector trust model in different security scenarios.

We have considered three different security contexts - access control in open systems, secure

routing in ad hoc networks, and preserving privacy while interacting on the Internet. In

each of these security contexts, we have discussed how measuring trustworthiness of entities

can help to make more reasoned decisions about the security of the systems. In particular,

we have shown how vector trust model could be used to evaluate the trustworthiness of

entities, involved in these scenarios, to develop more secure systems.

169

http://www.Books.com)t
http://www.Books.com
http://www.Books.com)%5e
http://www.Books.com)%5e

Chapter 7

Conclusions

7.1 Contribution and Significance

The research conducted in this dissertation has significance in security research. The main

objective of this dissertation work is to propose a flexible trust model which would help

us to take more reasoned decision about trustworthiness of an entity in the face of incom

plete, ambiguous, or unknown information. Reasoned decision regarding trustworthiness of

entities is important for designing secure system for different environments including the

Internet. Internet and other open systems like virtual organizations, peer-to-peer networks,

e-commerce applications involve entities whose identity is not known in advance. These

applications use different information from several entities and work under the premise of

trust. However, all these entities are not "trusted" at the same level. Also, the semantic

and representation of trust vary over systems and applications. The proposed model helps

a user to evaluate the amount of confidence he/she has in his/her decision to accept the

assumed or measured amount of competency of a particular system when the system's be

havior is influenced by other entities (including human beings). This is illustrated in the

following discussion.

Consider the questions posed earlier in the context of the e-commerce example (scenario

2) presented in Section 2.3.2. We need to determine how much trust the customer Alice

can have on the Web service providers regarding her privacy protection. One possible way

of doing this with this model is as follows. At the beginning Alice starts with a neutral

position about the trustworthiness of Si and S -̂ As time progress, Alice will gradually

170

begin to establish trust relationships with the two. The degree of trust that she establishes

with a service provider will depend on different factors. For example, she may become aware

that a provider does not store a customer's credit card information after the transaction is

over. Alice may begin to have positive interactions with Si and some positive and some

negative interactions with S2. At some point then Alice (perhaps) evaluates that Si is

trusted to a degree of 0.75 and S2 to degree of 0.25. These trust scores provide a relative

trustworthiness of the two entities to Alice. How she uses this information is her choice.

Nonetheless, the model helps her to take a more effective decision (e.g., buy the air-ticket

from Si or restrict the disclosure of personal information to S2).

The outcome of this research is a trust model that helps to define, represent, evaluate,

and manage 'trust' (and 'distrust'), even when all of the relevant information is not available.

The systems build around the proposed formalism of trust will be able to assign a fine

grained assurance level, about other involved entities, to the user for making a reasoned

decision regarding trustworthiness of those entities. That is, the model will allow the user

to evaluate the risks involved in using a system in a better manner and thus to design more

secure systems.

The primary contributions of this dissertation are:

1. A flexible quantitative model of trust based on different parameters and providing

multilevel of trust. The model is extensible as the parameters are independent to

each other. Addition of new parameters does not affect the other features of the

model. The model can evaluate trust even when all the relevant information to do so

is not available.

2. Formalism of trust context and relationship between different contexts. This formal

ism can help to make reasoned decisions about trust in a context when no information

is available for that context.

In particular, the model contributes the following:

1. Formally differentiate between trust, distrust, neutrality. Representation of trust,

distrust, and neutrality as numerically measurable objects using a single continuous

171

scale [—1,1] to represent trust, distrust, and neutrality. 'Unknown' state is also cap

tured and represented using the symbol _L Continuous numeric scale helps to define

fine-granular levels of trust and distrust.

2. Formal definition of trust context and relationships between different contexts. For

malization of context helps to use the model in different security scenarios. It also

enhances the interoperability of the model. Relationship between contexts is useful

to reason about trustworthiness in a context when no information is available in that

context.

3. Proposition of different independent parameters that influence evaluation of trust and

distrust, together with mechanisms to numerically measure these parameters. Param

eters are independent - adding a new parameter or dropping an existing parameter

will not result in changing other constructs or methods to a great extent. Also, it

helps in evaluation of trust based on different information. This makes the model,

unlike the existing trust models, easily extensible.

4. Propensity to trust that defines relative importance of different parameters. This

helps in wide applicability of the model. If an application does not have a scope to

use a parameter, the corresponding weight in trust-parameter weight vector just needs

to be set to 0. Therefore, it is not needed to search for a suitable model that fits the

application. A single model (vector trust model) is sufficient in different applications.

5. Dependence of trust on time as well as previous trust. Dependence on time captures

more "human way" of evaluating trust to corroborate the observation from social

science [Hir84] - "time the great leveler". Dependence on previous trust helps to

reason about trust if current information is not available, but some old information

is in store. Methods are so formed that the user has more control on how much effect

of old trust he/she wants to have in current evaluation.

172

6. Formal method to compare two different trust relationships. The method can differ

entiate two trust relationships even when their corresponding trust values are same.

It helps a user to make more fine-granular comparison decisions.

7. Mechanisms to combine different trust relationships. The method is flexible to assign

relative importance to different trust relationships involved in the combination. The

combination operator can also be chosen suitably according to the application need

or organizational policy. Method has the scope of considering different cases (one-

to-many, may-to-one, many-to-many). It also guides how to consider the effect of

reconfiguration of a group of truster or trustee. The last two points, especially, are

useful in application of the model in co-operative domain.

The above contributions demonstrate that the model is useful in making fine-grained secu

rity related decisions in different security contexts where other mechanisms or other trust

models are not sufficient to make such decisions.

7.2 Future Work

An initial version of the vector trust model was proposed in [RC04]. This dissertation

presents the current extended version of the model, its validation and some potential appli

cations. However, still there are some possible extensions of the current work in future. At

present we have not addressed the 'trust chain' or 'trust transitivity' concept. A restricted

form of trust transitivity is used in the evaluation of recommendations where positive, neg

ative or neutral judgments are scaled with positive trust only. The trust model can be

extended to answer the questions like "If A distrusts B and B distrusts C, then what is the

result of trust relationship between A and C?", "If A is neutral about B and B trusts C,

then what is the result of trust relationship between A and C?" etc.

The current work have not addressed the issue of determining different policies involved

in trust evaluation. At present we have assumed that the truster has existing policies, but

how to design these policies in the first hand? How to categorize the different underlying

parameters as trust-positive, trust-negative or trust-neutral? What will be an appropriate

173

guideline for that? These are some of the questions that can be considered to be addressed in

future. Work on the decision theory may be useful in this regard. However, we believe, these

policies will depend on a user's or organization's other policies (e.g., personal preferences

or business policies) as well as on the target applications.

Last but not the least, at present there is no tool support for this model. A tool developed

to handle the trust management system would be useful. Future work in developing such

a tool involves modules to gather, manage, and store trust related information. The tool

may work as an independent entity or can be embedded into an existing system (e.g., as a

plug-in for a browser). A query language can be developed or an existing query language

can be used to interact with the trust management system supported by the tool.

174

REFERENCES

[AABF02] Nabil. R. Adam, Vijayalakshmi Atluri, Elisa Bertino, and Elena Ferrari. A
Content-Based Authorization Model for Digital Libraries. IEEE Transactions
on Knowledge and Data Engineering, 14(2):296-315, March 2002.

[ACR99] Mark S. Ackerman, Lorrie F. Cranor, and Joseph Reagle. Privacy in E-
Commerce: Examining User Scenarios and Privacy Preferences. In Proceed
ings of the 1st ACM Conference on Electronic Commerce, pages 1-8, Denver,
Colorado, USA, 1999. ACM Press.

[AD01] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-Peer Infor
mation System. In Henrique Paques, Ling Liu, and David Grossman, editors,
Proceedings of the 10th International Conference on Information and Knowl
edge Management (CIKM 2001), pages 310-317, Atlanta, Georgia, USA, Oc
tober 2001. ACM Press.

[Adl05] Terry. R. Adler. The Swift Trust Partnership: A Project Management Exercise
Investigating the Effects of Trust and Distrust in Outsourcing Relationships.
Journal of Management Education, 29(5):714-737, October 2005.

[AF03] Martin Abadi and Cedric Fournet. Access Control Based on Execution His
tory. In Proceedings of the 10th Annual Network and Distributed System Se
curity Symposium (NDSS 2003), pages 107-121, San Diego, California, USA,
February 2003. The Internet Society.

[AHNRR02] Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru, and Herbert Rubens.
An On-Demand Secure Routing Protocol Resilient to Byzantine Failures. In
W. Douglas Maughan and Nitin H. Vaidya, editors, Proceedings of ACM Work
shop on Wireless Security (WiSe'02), pages 21-30, Atlanta, Georgia, USA,
September 2002. ACM Press.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing, 1(1):11—33, January 2004.

[And92] Syed S. Andaleeb. The Trust Concept: Research Issues for Channels of Dis
tribution. Research in Marketing, 11:1-34, 1992.

175

[ARH97] Alfarez Abdul-Rahman and Stephen Hailes. A Distributed Trust Model. In
Proceedings of the 1997 New Security Paradigms Workshop (NSPW'97), pages
48-60, Langdale, Cumbria, United Kingdom, September 1997. ACM Press.

[Bai86] Annette Baier. Trust and Antitrust. Ethics, 96(2):231-260, 1986.

[BAN90] Michael Burrows, Martin Abadi, and Roger M. Needham. A Logic of Au
thentication. ACM Transactions on Computer Systems, 8(l):18-36, February
1990.

[Bar83] Bernard Barber. The Logic and Limits of Trust. Rutgers University Press,
New Brunswick, New Jersey, USA, March 1983.

[BB04] Sonja Buchegger and Jean-Yves Le Boudec. A Robust Reputation System for
P2P and Mobile Ad-hoc Networks. In Proceedings of the Second Workshop
on the Economics of Peer-to-Peer Systems, Cambridge, Massachusetts, USA,
June 2004.

[BBBB03] Thomas G. Brashear, James S. Boles, Danny N. Bellenger, and Charles M.
Brooks. An Empirical Test of Trust-Building Processes and Outcomes in Sales
Manager-Salesperson Relationships. Journal of the Academy of Marketing
Science, 31(2):189-200, April 2003.

[BBG04] Rafae Bhatti, Elisa Bertino, and Arif Ghafoor. A Trust-based Context-Aware
Access Control Model for Web-Services. In Proceedings of the IEEE Inter
national Conference on Web Services (ICWS'04), pages 184-191, San Diego,
California, USA, June 2004. IEEE Computer Society.

[BBK94] Thomas Beth, Malte Borcherding, and Birgit Klein. Valuation of Trust in
Open Networks. In Dieter Gollmann, editor, Proceedings of the 3rd European
Symposium on Research in Computer Security (ESORICS '94), volume 875
of Lecture Notes in Computer Science, pages 3-18, Brighton, UK, November
1994. Springer-Verlag.

[BCD05] Elisa Bertino, Barbara Catania, and Maria Luisa Damiani. GEO-RBAC: A
Spatially Aware RBAC. In Proceedings of the 10th ACM Symposium on Ac
cess Control Models and Technologies (SACMAT'05), pages 29-37, Stockholm,
Sweeden, June 2005. ACM Press.

[Ber06] Daniel J. Bernstein. SYN Cookies, Accessed November 20 2006.
http://cr.yp.to/syncookies.html.

[BFIK99] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis.
The KeyNote Trust Management System Version 2. Internet Society, Network
Working Group. RFC 2704, 1999.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust Manage
ment. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pages 164-173, Oakland, California, USA, May 1996. IEEE Computer Society.

176

http://cr.yp.to/syncookies.html

[BGOO] Michael Bacharach and Diego Gambetta. Trust as Type Identification. In
Cristiano Castelfranchi and Yao-Hua Tan, editors, Trust and Deception in
Virtual Societies, chapter 1, pages 1-26. Kluwer Academic Publishers, Norwell,
Massachusetts, USA, 2000.

[BH94] Jay B. Barney and Mark H. Hansen. Trustworthiness as a Source of Compet
itive Advantage. Strategic Management Journal, 15:175-190, 1994.

[BJBG03] Rafae Bhatti, James B.D. Joshi, Elisa Bertino, and Arif Ghafoor. Access
Control in Dynamic XML-based Web-Services with X-RBAC. In Liang-Jie
Zhang, editor, Proceedings of the 1st International Conference on Web Services
(ICWS'03), pages 243-249, Las Vegas, Nevada, USA, June 2003. CSREA
Press.

[BKS95] Piero Bonatti, Sarit Kraus, and V.S. Subrahmanian. Foundations on Secure
Deductive Databases. IEEE Transactions on Knowledge and Data Engineer
ing, 7(3):406-422, June 1995.

[BLG+00] Andrew Barkley, Steve Liu, Quoc Thong Le Gia, Matt Dingfield, and Yashod-
han Gokhale. A Testbed for Study of Distributed Denial of Service Attacks
(WA 2.4). In Proceedings of the 2000 IEEE Workshop on Information Assur
ance and Security (IAW'00), pages 218-223, United States Military Academy,
West Point, New York, USA, June 2000. IEEE Computer Society.

[BS00] Piero Bonatti and Pierangela Samarati. Regulating Service Access and In
formation Release on the Web. In Proceedings of the 7th ACM Conference
on Computer and Communication Security (CCS'00), pages 134-143, Athens,
Greece, November 2000. ACM Press.

[BSF02] Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A General and
Flexible Access-Control System for the Web. In Proceedings of the 11th
USENIX Security Symposium, pages 93-108, San Francisco, California, USA,
August 2002.

[BSSW02] Dirk Balfanz, Diana K. Smetters, Paul Stewart, and H. Chi Wong. Talking
to Strangers: Authentication in Adhoc Wireless Networks. In Symposium on
Network and Distributed Systems Security (NDSS '02), San Diego, California,
USA, February 2002.

[C+04] Lorrie.F. Cranor et al. The Platform for Privacy Preferences 1.1 (P3P 1.1)
Specification, http://www.w3.org/tr/2004/wd-p3pll-20040720, World Wide
Web Consortium, July 2004.

[CE95] Mathew S. Corson and Anthony Ephremides. A Distributed Routing Algo
rithm for Mobile Wireless Networks. Wireless Networks, l(l):61-82, February
1995.

[Cen97] CERT Coordination Centre. IP Spoofing Attacks and Hijacked Terminal Con
nections. http://www.cert.org/advisories/CA-1995-01.html, 1997.

177

http://www.w3.org/tr/2004/wd-p3pll-20040720
http://www.cert.org/advisories/CA-1995-01.html

[CenOO] CERT Coordination Centre. TCP SYN Flooding and IP Spoofing Attacks.
http://www.cert.org/advisories/CA-1996-21.html, November 2000.

[CJ95] Steven Curral and Timothy Judge. Measuring Trust Between Organizational
Boundary Role Persons. Organizational Behaviour and Human Decision Pro
cesses, 64(2):151-170, November 1995.

[COB03] David W. Chadwick, Alexander Otenko, and Edward Ball. Role-Based Access
Control with X.509 Attribute Certificates. IEEE Internet Computing, 7(2) :62-
69, March/April 2003.

[Coo91] Roger M. Cooke. Experts in Uncertainty: Opinion and Subjective Probability
in Science. Oxford University Press, New York, USA, 1991.

[CORa] CORAS (2000-2003). IST-2000-25031 CORAS: A Platform for Risk Analysis
of Security Critical Systems.

[Corb] AT&T Corp. Privacy Bird Project, http://www.privacybird.org.

[CPF97] Marvin S. Cohen, Raja Parasuraman, and Jared T. Freeman. Trust in Decision
Aids: A Model and a Training Strategy. Technical Report USAATCOM TR
97-D-4, Cognitive Technologies Inc., Fort Eustis, Virginia, USA, 1997.

[CPR07] Sudip Chakraborty, Nayot Poolsappasit, and Indrajit Ray. Reliable Delivery of
Event Data from Sensors to Actuators in Pervasive Computing Environments.
In Steve Barker and Gail-Joon Ahn, editors, Proceedings of 21st Annual IFIP
WG 11.3 Working Conference on Data and Applications Security (DBSec'07),
volume 4602 of Lecture Notes in Computer Science, pages 77-92, Redondo
Beach, California, USA, July 2007. Springer.

[CR06] Sudip Chakraborty and Indrajit Ray. TrustBAC - Integrating Trust Relation
ships into the RBAC Model for Access Control in Open Systems. In Pro
ceedings of 11th ACM Symposium on Access Control Models and Technologies
(SACMAT'06), pages 49-58, Lake Tahoe, California, USA, June 2006. ACM
Press.

[CTWS02] Eve Cohen, Roshan K. Thomas, William Winsborough, and Deborah Shands.
Models for Coalition-based Access Control (CBAC). In Proceedings of the 7th
ACM Symposium on Access Control Models and Technologies (SACMAT'02),
pages 97-106, Monterey, California, USA, June 2002. ACM Press.

[CWLG97] Ching-Chuan Chiang, Hsiao-Kuang Wu, Winston Liu, and Mario Gerla. Rout
ing in Clustered Multihop, Mobile Wireless Networks with Fading Channel.
In 5th IEEE Singapore International Conference on Networks (SICON'97),
pages 197-211, Kent Ridge, Singapore, April 1997. IEEE Computer Society.

[Das88] Partha Dasgupta. Trust as a Commodity. In Diego Gambetta, editor, Trust-
Making and Breaking Cooperative Relations, chapter 4, pages 49-72. Basil
Blackwell, New York, USA, 1988.

178

http://www.cert.org/advisories/CA-1996-21.html
http://www.privacybird.org

[Deu60] Morton Deutsch. The Effect of Motivational Orientation upon Trust and
Suspicion. Human Relations, 13:123-139, 1960.

[Deu73] Morton Deutsch. The Resolution of Conflict: Constructive and Destructive
Processes. Yale University Press, New Haven, Connecticut, USA, 1973.

[DF02] Josep Domingo-Ferrer, editor. Inference Control in Statistical Databases:
From Theory to Practice, volume 2316 of Lecture Notes in Computer Science.
Springer-Verlag, London, UK, 1 edition, May 2002.

[Dri78] James W. Driscoll. Trust and Participation in Organizational Decision Making
as Predictors of Satisfaction. Academy of Management Journal, 21(l):44-56,
March 1978.

[DRWT97] Rohit Dube, Cynthia D. Rais, Kuang-Yeh Wang, and Satish K. Tripathi. Sig
nal Stability-Based Adaptive Routing (SSA) for Ad Hoc Mobile Networks.
IEEE Personal Communications Magazine, 4(l):36-45, February 1997.

[DVPS03] Ernesto Damiani, Sabrina De Capitani Di Vimercati, Stefano Paraboschi, and
Pierangela Samarati. Managing and Sharing Servants' Reputations in P2P
Systems. IEEE Transactions on Knowledge and Data Engineering, 15(4) :840-
854, July-August 2003.

[DVS05] Ernesto Damiani, Sabrina De Capitani Di Vimercati, and Pierangela Samarati.
New Paradigm for Access Control in Open Environments. In Proceedings of
the 5th IEEE Symposium on Signal Processing and Information Technology
(ISSPIT05), pages 540-545, Athens, Greece, December 2005.

[EAC98] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based Access
Control for Mobile Code. In Proceedings of the 5th A CM Conference on Com
puter and Communication Security (CCS'98), pages 38-48, San Francisco,
California, USA, November 1998. ACM Press.

[EU 01] EU Project EP-27046-ACTIVE. EP-27046-ACTIVE, Final Prototype and
User Manual, D4.2.2, Ver. 2.0, 2001-02-22., 2001.

[FK92] David F. Ferraiolo and D.Richard Kuhn. Role-Based Access Controls. In
Proceedings of the 15th NIST-NCSC National Computer Security Conference,
pages 554-563, Bultimore, Maryland, USA, October 1992.

[FSG+01] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D.Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST Standard for Role-Based Access
Control. ACM Transactions on Information and Systems Security, 4(3):224-
274, August 2001.

[GB81] Eli M. Gafni and Dimitri P. Bertsekas. Distributed Algorithms for Generat
ing Loop-free Routes in Network with Frequently Changing Topology. IEEE
Transactions on Communications, 29(1):11-18, January 1981.

179

[GHKMOO] L.H.J. Goossens, Frederick T. Harper, Bernard C.P. Kraan, and Henri
Metivier. Expert Judgement for a Probabilistic Accident Consequence Un
certainty Analysis. Radiation Protection and Dosimetry, 90(3):295-301, 2000.

[Gla97] Henry M. Gladney. Access Control for Large Collections. ACM Transactions
on Information Systems, 15(2): 154-194, April 1997.

[GM02] Jeremy Goecks and Elizabeth Mynatt. Enabling Privacy Management in Ubiq
uitous Computing Environments Through Trust and Reputation. In Proceed
ings of CSCW 2002 Workshop on Privacy in Digital Environments, New Or
leans, Louisiana, November 2002.

[GMPT01] Christos K. Georgiadis, Ioannis Mavridis, George Pangalos, and Roshan K.
Thomas. Flexible Team-based Access Control Using Contexts. In Proceed
ings of the Sixth ACM Symposium on Access Control Models and Technologies
(SACMAT'01), pages 21-27, Chantily, Virginia, USA, May 2001. ACM Press.

[GooOO] David Good. Individuals, Interpersonal Relations, and Trust, chapter 3 of
Trust: Making and Breaking Cooperative Relations, pages 31-48. Electronic
edition, 2000.

[Gru93] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifica
tions. Knowledge Acquisition, 5(2):199-220, 1993.

[GS00] Tyrone Grandison and Morris Sloman. A Survey of Trust in Internet Appli
cations. IEEE Communications Surveys and Tutorials, 3(4), Fourth Quarter,
2000.

[GT95] Mario Gerla and Jack Tzu-Chieh Tsai. Multicluster, Mobile, Multimedia Ra
dio Network. Wireless Networks, l(3):255-265, 1995.

[HCRR08] Siv H. Houmb, Sudip Chakraborty, Indrakshi Ray, and Indrajit Ray. Esti
mating Security Level of a Security Solution using Trust-based Information
Aggregation. Submitted and under review, 2008.

[HGF+05a] Siv H. Houmb, Geri Georg, Robert B. France, James M. Bieman, and Jan
Jiirjens. Cost-Benefit Trade-Off Analysis using BBN for Aspect-Oriented Risk-
Driven Development. In Proceedings of 10th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS 2005), pages 195-
204, Shanghai, China, June 2005. IEEE Computer Society.

[HGF+05b] Siv H. Houmb, Geri Georg, Robert B. France, Raghu Reddy, and James M.
Bieman. Predicting Availability of Systems using BBN in Aspect-Oriented
Risk-Driven Development (AORDD). In 2nd Symposium on Risk Management
and Cyber-Informatics (RMCI '05), pages 396-403, Orlando, Florida, USA,
July 2005.

[Hir84] Albert O. Hirschman. Three Ways of Complicating Some Categories of Eco
nomic Discourse. American Economic Review, 74(2):89-96, 1984.

180

[HJ03] Anthony Harrington and Christian Jensen. Cryptographic Access Control in a
Distributed File System. In Proceedings of the 8th ACM Symposium on Access
Control Models and Technologies (SACMAT'03), pages 158-165, Como, Italy,
June 2003. ACM Press.

[HPJ02] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A Secure On-
Demand Routing Protocol for Ad Hoc Networks. In Ian F. Akyildiz, Jason
Yi-Bing Lin, Ravi Jain, Vaduvur Bharghavan, and Andrew T. Campbell, edi
tors, Proceedings of the 8th Annual International Conference on Mobile Com
puting and Networking (MobiCom'02), pages 12-23, Atlanta, Georgia, USA,
September 2002. ACM Press.

[HS96] John Humphrey and Hubert Schmitz. Trust and Economic Development.
Discussion Paper 355, 1996. Institute of Development Studies, Brighton, UK.

[HW04] Bernardo A. Huberman and Fang Wu. The Dynamics of Reputations. Journal
of Statistical Mechanics: Theory and Experiment, page P04006, April 2004.

[JBLG05] James B.D. Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A Gener
alized Temporal Role-Based Access Control Model. IEEE Transactions on
Knowledge and Data Engineering, 17(l):4-23, January 2005.

[JF00] Andrew J.I. Jones and Babak S. Firozabadi. On the Characterization of a
Trusting Agent - Aspects of a Formal Approach. In Cristiano Castelfranchi
and Yao-Hua Tan, editors, Trust and Deception in Virtual Societies, chapter 8,
pages 157-168. Kluwer Academic Publishers, Norwell, Massachusetts, USA,
2000.

[JI02] Audun J0sang and Roslan Ismail. The Beta Reputation System. In Proceed
ings of 15th Bled Electronic Commerce Conference: e-Reality: Constructing
the e-Economy, Bled, Slovenia, June 2002.

[JM99] Sara Jones and Philip Morris. TRUST-EC: Requirements for Trust and Con
fidence in E-Commerce. European Communities EUR Report 2, European
Comission, Joint Research Centre, Report of the Workshop held in Luxem
bourg, April 1999.

[J0s97] Audun J0sang. Artificial Reasoning with Subjective Logic. In Abhaya C.
Nayak and Maurice Pagnucco, editors, Proceedings of the 2nd Australian
Workshop on Commonsense Reasoning, Perth, Australia, December 1997.

[J0s98] Audun J0sang. A Subjective Metric of Authentication. In Jean-Jacques
Quisquater, Yves Deswarte, Catherine Meadows, and Dieter Gollmann, ed
itors, Proceedings of the 5th European Symposium on Research in Computer
Security (ESORICS'98), volume 1485 of Lecture Notes in Computer Science,
pages 329-344, Louvain-la-Neuve, Belgium, September 1998. Springer-Verlag.

[J0s99] Audun J0sang. An Algebra for Assessing Trust in Certification Chains. In
Proceedings of the 1999 Network and Distributed Systems Security Symposium
(NDSS'99), San Diego, California, USA, February 1999. Internet Society.

181

[JSS97] Sushil Jajodia, Pierangela Samarati, and V.S. Subrahmanian. A Logical Lan
guage for Expressing Authorizations. In Proceedings of the 1997 IEEE Sym
posium on Security and Privacy, pages 31-42, Oakland, California, USA, May
1997. IEEE Computer Society.

[JT99] Catholijn M. Jonker and Jan Treur. Formal Analysis of Models for the Dy
namics of Trust Based on Experience. In Francisco J. Garijo and Magnus
Boman, editors, Proceedings of the 9th European Workshop on Modelling Au
tonomous Agents in a Multi-Agent System Engineering (MAAMAW 1999),
volume 1647 of Lecture Notes in Computer Science, pages 221-231, Valencia,
Spain, June-July 1999. Springer-Verlag.

[KC98] Anil Kini and Joobin Choobineh. Trust in Electronic Commerce: Definition
and Theoritical Considerations. In Proceedings of the 31st Annual Hawaii
International Conference on System Sciences (HICSS-31), volume 4, pages
51-61, Big Island, Hawaii, USA, January 1998. IEEE Computer Society.

[KL01] David Karig and Ruby Lee. Remote Denial of Service Attacks and Counter-
measures. Technical Report CE-L2001-002, Department of Electrical Engi
neering, Princeton University, Princeton, New Jersey, USA, October 2001.

[KNS05] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A Framework for Con
crete Reputation-Systems with Applications to History-Based Access Control.
In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, Proceedings of
12th ACM Conference on Computer and Communications Security (CCS'05),
pages 260-269, Alexandria, Virginia, USA, November 2005. ACM Press.

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
EigenTrust Algorithm for Reputation Management in P2P Networks. In Pro
ceedings of the 12th Internatioal Conference on World Wide Web, pages 640-
651, Budapest, Hungary, May 2003.

[LcC06] Shibiao Lin and Tzi cker Chiueh. A Survey on Solutions to Distributed Denial
of Service Attacks. Technical report RPE TR-201, Department of Computer
Science, Stony Brook University, Stony Brook, New York, USA, September
2006.

[LM03a] Ninghui Li and John C. Mitchell. Datalog with Constraints: A Foundation
for Trust-management Languages. In Proceedings of the 5th International
Symposium on Practical Aspects of Declarative Languages (PADL'03), pages
58-73, New Orleans, Louisiana, USA, January 2003.

[LM03b] Ninghui Li and John C. Mitchell. RT: A Role-based Trust Management Frame
work. In Proceedings of the 3rd DARPA Information Survivability Conference
and Exposition (DISCEX-III), pages 201-212, Washington D.C., USA, April
2003. IEEE Computer Society.

182

[LMW02] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a Role-
Based Trust-Management Framework. In Proceedings of the 2002 IEEE Sym
posium on Security and Privacy, pages 114-130, Oakland, California, USA,
May 2002. IEEE Computer Society.

[LTG06] Roy J. Lewicki, Edward C. Tomlinson, and Nicole Gillespie. Models of In
terpersonal Trust Development: Theoretical Approaches, Empirical Evidence,
and Future Directions. Journal of Management, 32(6):991-1022, December
2006.

[Luh79] Niklas Luhmann. Trust and Power. Wiley, Chichester, 1979.

[LW85] David Lewis and Andrew J. Weigert. Social Atomism, Holism and Trust.
Sociological Quarterly, 26(4):455-471, 1985.

[LWM03] Ninghui Li, William H. Winsborough, and John C. Mitchell. Beyond Proof-
of-Compliance: Safety and Availability Analysis in Trust Management. In
Proceedings of the 2003 IEEE Symposium on Security and Privacy, pages 123-
139, Oakland, California, USA, May 2003. IEEE Computer Society.

[ManOO] Daniel W. Manchala. E-Commerce Trust Metrics and Models. IEEE Internet
Computing, 4(2):36-44, March 2000.

[Mar94] Stephen P. Marsh. Formalising Trust as a Computational Concept. PhD the
sis, Department of Computing Science and Mathematics, University of Stirling,
Stirling, Scotland, UK, April 1994.

[MDS95] Roger C. Mayer, James H. Davis, and F. David Schoorman. An Integrative
Model of Organizational Trust. Academy of Management Review, 20(3):709-
734, 1995.

[Mee84] Barbara F. Meeker. Cooperative Orientation, Trust, and Reciprocity. Human
Relations, 37(3):225-243, March 1984.

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakr-
ishnan Venkitasubramaniam. ^-diversity: Privacy beyond fc-anonymity. A CM
Transactions on Knowledge Discovery from Data, l(l):Article 3, March 2007.

[MMH02] Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. A Computational Model
of Trust and Reputation for E-Businesses. In 35th Annual Hawaii Inter
national Conference on System Sciences (HICSS-35), volume 7, Big Island,
Hawaii, USA, 2002. IEEE Computer Society.

[MS79] Byron A. Matthews and Eliot Shimoff. Expansion of Exchange: Monitoring
Trust Levels in Ongoing Exchange Relations. Journal of Conflict Resolution,
23(3):538-560, September 1979.

[NM02] David H. Nguyen and Elizabeth D. Mynatt. Privacy Mirrors: Understand
ing and Shaping Socio-technical Ubiquitous Computing Systems. Technical
Report GIT-GVU-02-16, Georgia Institute of Technology, 2002.

183

[0stO3] Mona E. 0stvang. The Honeynet Project, Phase 1: Installing and Tuning
Honeyd using LIDS, 2003. Project assignment, Norwegian University of Sci
ence and Technology.

[PB94] Charles E. Perkins and Pravin Bhagwat. Highly Dynamic Destination-
Sequenced Distance Vector (DSDV) for Mobile Computers. In Proceedings
of A CM Conference on Communication Architectures, Protocols and Applica
tions (SIGCOMM'94), pages 234-244, London, UK, August-September 1994.
ACM Press.

[PH03a] Panagiotis. Papadimitratos and Zygmunt Haas. Secure Data Transmission in
Mobile Ad Hoc Networks. In Proceedings of 2nd ACM Workshop on Wireless
Security (WiSe'03), pages 41-50, San Diego, California, USA, September 2003.
ACM Press.

[PH03b] Joon S. Park and Junseok Hwang. Role-based Access Control for Collaborative
Enterprise in Peer-to-Peer Computing Environments. In Proceedings of the 8th
ACM Symposium on Access Control Models and Technologies (SACMAT'03),
pages 93-99, Como, Italy, June 2003. ACM Press.

[PurOl] Steve Purser. A Simple Graphical Tool For Modelling Trust. Computers &
Security, 20(6):479-484, September 2001.

[Ran88] P. Venkat Rangan. An Axiomatic Basis of Trust in Distributed Systems.
In Proceedings of the 1988 IEEE Computer Society Symposium on Security
and Privacy, pages 204-211, Oakland, California, USA, April 1988. IEEE
Computer Society.

[RC04] Indrajit Ray and Sudip Chakraborty. A Vector Model of Trust for Develop
ing Trustworthy Systems. In Pierangela Samarati, Peter Y. A. Ryan, Dieter
Gollmann, and Refik Molva, editors, Proceedings of the 9th European Sym
posium on Research in Computer Security (ESORICS'04), volume 3193 of
Lecture Notes in Computer Science, pages 260-275, Sophia Antipolis, France,
September 2004.

[RC08] Indrajit Ray and Sudip Chakraborty. Facilitating Privacy Related Decisions
in Different Privacy Contexts on the Internet By Evaluating Trust in Recipi
ents of Private Data. In Proceedings of 23rd IFIP International Information
Security Conference (SEC 2008), Milan, Italy, September 2008.

[RJ96] Lars Rasmusson and Sverker Jansson. Simulated Social Control for Secure
Internet Commerce. In C. Meadows, editor, Proceedings of the 1996 New Se
curity Paradigms Workshop, pages 18-25, Lake Arrowhead, California, USA,
September 1996. ACM Press.

[Rot67] Julian B. Rotter. A New Scale for the Measurement of Interpersonal Trust.
Journal of Personality, 35:651-665, 1967.

184

[RRC08] Indrakshi Ray, Indrajit Ray, and Sudip Chakraborty. An Interoperable Con
text Sensitive Model of Trust. Journal of Intelligent Information Systems,
2008. In Press.

[SA02] Narendar Shankar and William A. Arbaugh. On Trust for Ubiquitous Com
puting. In Workshop on Security for Ubiquitous Computing (UBICOMP'02),
October 2002. Invited paper.

[SamOl] Pierangela Samarati. Protecting Respondents' Identities in Microdata Re
lease. IEEE Transactions on Knowledge and Data Engineering, 13(6): 1010-
1027, November/December 2001.

[Sat88] Kaori Sato. Trust and Group Size in a Social Dilemma. Japanese Psychological
Review, 30(2):88-93, 1988.

[SBWS05] Natalia Stakhanova, Samik Basu, Johnny Wong, and Oleg Stakhanov. Trust
Framework for P2P Networks Using Peer-profile Based Anomaly Technique. In
Proceedings of the Second International Workshop on Security in Distributed
Computing Systems (SDCS) (25th IEEE International Conference on Dis
tributed Computing Systems Workshops (ICDCSW'05)), volume 2, pages 203-
209, Columbus, Ohio, USA, June 2005. IEEE Computer Society.

[SCFY96] Ravi Sandlm, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-Based Access Control Models. IEEE Computer, 29(2):38-47, February
1996.

[SDB03] Brian Shand, Nathan Dimmock, and Jean Bacon. Trust for Ubiquitous, Trans
parent Collaboration. In Proceedings of the 1st IEEE International Conference
on Pervasive Computing and Communications (PerCom'03), pages 153-160,
Dallas, Ft. Worth, Texas, USA, March 2003.

[SFWC04] Natalia Stakhanova, Sergio Ferrero, Johnny Wong, and Ying Cai. A
Reputation-based Trust Management in Peer-to-Peer Network Systems. In
David A. Bader and Ashfaq A. Khokhar, editors, Proceedings of the ISCA
17th International Conference on Parallel and Distributed Computing Systems
(ISCA PDCS'04), Pages 510-515, San Francisco, California, USA, September
2004.

[Sha87] Susan P. Shapiro. The Social Control of Impersonal Trust. The American
Journal of Sociology, 93(3):623-658, 1987.

[SK03] Aaron Schiff and John Kennes. The Value of Reputations Systems. In Pro
ceedings of the 1st Summer Workshop in Industrial Organization (SWIO),
Auckland, New Zealand, March 2003.

[SS98] Pierangela Samarati and Latanya Sweeney. Generalizing Data to Provide
Anonymity When Disclosing Information (abstract). In Proceedings of the
17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Seattle, Washington, USA, June 1998. ACM Press.

185

[Ste07]

[SUP04]

[Swe02]

[Swi67]

[SZ05]

[Tho97]

[Toh96]

[TPCOO]

[UG96]

[vdASCOl]

[WCJS97]

Michael Stevens. Use of Trust Vectors in Support of the Cyber Craft Initia
tive. Master's thesis, Department of Electrical and Computer Engineering, Air
Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA,
March 2007.

Ali A. Selguk, Ersin Uzun, and Mark R. Pariente. A Reputation-Based Trust
Management System for P2P Networks. In Jfth IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2004), pages 251-
258, Chicago, Illinois, USA, April 2004. IEEE Computer Society.

Latanya Sweeney. .K"-Anonymity:
ternational Journal on Uncertainty,
10(5):557-570, 2002.

A Model for Protecting Privacy. In-
Fuziness and Knowledge-based Systems,

Robert L. Swinth. The Establishment of the Trust Relationship. Journal of
Conflict Resolution, 11 (3): 335-344, 1967.

Ravi Sandhu and Xinwen Zhang. Peer-to-Peer Access Control Architecture
Using Trusted Computing Technology. In Proceedings of the 10th ACM Sym
posium on Access Control Models and Technologies (SACMAT'05), pages 147-
158, Stockholm, Sweeden, June 2005. ACM Press.

Roshan K. Thomas. Team-based Access Control (TMAC): A Primitive for Ap
plying Role-based Access Controls in Collaborative Environments. In Proceed
ings of the Second ACM Workshop on Role-based Access Control (RBAC'97),
pages 13-19, Fairfax, Virginia, USA, November 1997. ACM Press.

Chai-Keong Toh. A Novel Distributed Routing Protocol To Support Ad hoc
Mobile Computing. In Proceedings of 1996 IEEE 15th Annual International
Phoenix Conference on Computers and Communication (IPCCC'96), pages
480-486, Scottsdale, Arizona, USA, March 1996. IEEE Computer Society.

Yun Teng, Vir V. Phoha, and Ben Choi. Design of Trust Metrics Based on
Dempster-Shafer Theory, citeseer.ist.psu.edu/461538.html, 2000.

Mike Uschold and Michael Gruninger. Ontologies: Principles, Methods, and
Applications. Knowledge Engineering Review, 11(2):93-155, March 1996.

Ty van den Akker, Quinn O. Snell, and Mark J. Clement. The YGuard Access
Control Model: Set-based Access Control. In Proceedings of the 6th ACM
Symposium on Access Control Models and Technologies (SACMAT'01), pages
75-84, Chantily, Virginia, USA, May 2001. ACM Press.

Marianne Winslett, Neil Ching, Vicki Jones, and Igor Slepchin. Assuring
Security and Privacy for Digital Library Transactions on the Web: Client
and Server Security Policies. In Proceedings of the IEEE International Forum
on Research and Technology Advances in Digital Libraries (ADL'97), pages
140-151, Washington D.C., USA, May 1997. IEEE Computer Society.

186

http://citeseer.ist.psu.edu/461538.html

[WJI05] Andrew Whitby, Audun J0sang, and Jadwiga Indulska. Filtering Out Un
fair Ratings in Bayesian Reputation Systems. Icfain Journal of Management
Research, 4(2):48-64, February 2005.

[WL04] Horst F. Wedde and Mario Lischka. Role-Based Access Control in Ambient
and Remote Space. In Proceedings of the 9th ACM Symposium on Access Con
trol Models and Technologies (SACMAT'04), pages 21-30, Yorktown Heights,
New York, USA, June 2004. ACM Press.

[WV03] Yao Wang and Julita Vassileva. Bayesian Network-Based Trust Model. In
2003 IEEE/WIC International Conference on Web Intelligence (WI 2003),
pages 372-378, Halifax, Canada, October 2003. IEEE Computer Society.

[XL03] Li Xiong and Ling Liu. A Reputation-Based Trust Model For Peer-To-Peer
Ecommerce Communities. In Proceedings of IEEE Conference on E-Commerce
(CEC'03), pages 275-284, Newport Beach, California, USA, June 2003. IEEE
Computer Society.

[XL04] Li Xiong and Ling Liu. PeerTrust: Supporting Reptation-Based Trust for
Peer-to-Peer Electronic Communities. IEEE Transactions on Knowledge and
Data Engineering, 16(7):843-857, July 2004.

[YKB93] Raphael Yahalom, Birgit Klein, and Thomas Beth. Trust Relationship in
Secure Systems: A Distributed Authentication Perspective. In Proceedings of
the 1993 IEEE Computer Society Symposium on Security and Privacy, pages
150-164, Oakland, California, USA, May 1993. IEEE Computer Society.

[YKB94] Raphael Yahalom, Birgit Klein, and Thomas Beth. Trust-based Navigation in
Distributed Systems. Computing Systems, 7(l):45-73, Winter 1994.

[YNK01] Seung Yi, Prasad Naldurg, and Robin Kravets. Security-Aware Ad Hoc Rout
ing for Wireless Networks. In Proceedings of the 2nd ACM Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc 2001), pages 299-302,
Long Beach, California, USA, October 2001. ACM Press.

[Zan72] Dale E. Zand. Trust and Management Problem Solving. Administrative Sci
ence Quarterly, 17(2):229-239, June 1972.

[ZH99] Lidong Zhou and Zygmunt J. Haas. Securing Ad Hoc Networks. IEEE Net
work, 13(6):24-30, 1999.

[ZMHT05] Charikleia Zouridaki, Brian L. Mark, Marek Hejmo, and Roshan K. Thomas.
A Quantitative Trust Establishment Framework for Reliable Data Packet De
livery in MANETs. In Vijay Atluri, Peng Ning, and Wenliang Du, editors,
Proceedings of the 3rd ACM Workshop on Security of Ad Hoc and Sensor Net
works (SASN'05), pages 1-10, Alexandria, Virginia, USA, November 2005.
ACM Press.

187

[ZMP98] Akbar Zaheer, Bill McEvily, and Vincenzo Perrone. Does Trust Matter? Ex
ploring the Effects of Interorganizational and Interpersonal Trust on Perfor
mance. Organization Science, 9(2):141-159, March-April 1998.

188

