
DISSERTATION

PERFECT TRACKING FOR NON-MINIMUM PHASE SYSTEMS WITH

APPLICATIONS TO BIOFUELS FROM MICROALGAE

Submitted by

Michael R. Buehner

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2010

COLORADO STATE UNIVERSITY

July 12, 2010

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UN-

DER OUR SUPERVISION BY MICHAEL R. BUEHNER ENTITLED PERFECT

TRACKING FOR NON-MINIMUM PHASE SYSTEMS WITH APPLICATIONS

TO BIOFUELS FROM MICROALGAE BE ACCEPTED AS FULFILLING IN

PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Edwin K.P. Chong

Louis L. Scharf

Charles W. Anderson

Adviser: Peter M. Young

Department Head: Anthony A. Maciejewski

ii

ABSTRACT OF DISSERTATION

PERFECT TRACKING FOR NON-MINIMUM PHASE SYSTEMS WITH

APPLICATIONS TO BIOFUELS FROM MICROALGAE

In a causal setting, a closed-loop control system receives reference inputs (with

no a priori knowledge) that it must track. For this setting, controllers are designed

that provide both stability and performance (e.g., to meet tracking and disturbance

rejection requirements). Often, feedback controllers are designed to satisfy weighted

optimization criteria (e.g., weighted tracking error) that are later validated using test

signals such as step responses and frequency sweeps. Feedforward controllers may

be used to improve the response to measurable external disturbances (e.g., reference

inputs). In this way, they can improve the closed-loop response; however, these

approaches do not directly specify the closed-loop response.

Two controller architectures are developed that allow for directly designing the

nominal closed-loop response of non-minimum phase systems. These architectures

classify both the signals that may be perfectly tracked by a non-minimum phase

plant and the control signals that provide this perfect tracking. For these architec-

tures, perfect tracking means that the feedback error is zero (for all time) in the

nominal case (i.e., the plant model is exact) when there are no external disturbances.

For the controllers presented here, parts of the feedforward controllers are based on

the plant model, while a separate piece is designed to provide the desired level of

performance. One of the potential limitations to these designs is that the actual

performance will depend upon the quality of the model used. Robustness tools are

developed that may be used to determine the expected performance for a given level

iii

of model uncertainty. These robustness tools may also be used to design the piece

of the feedforward controller that provides performance. There is a tradeoff between

model uncertainty and achievable performance. In general, more model uncertainty

will result in less achievable performance.

Another way to approach the issue of performance is to consider that a good

model must either be known a priori or learned via adaptation. In the cases where a

good model is difficult to determine a priori, adaptation may be used to improve the

models in the feedforward controllers, which will, in turn, improve the performance

of the overall control system. We show how adaptive feedforward architectures can

improve performance for systems where the model is of limited accuracy.

An example application of growing microalgae for biofuel production is presented.

Microalgae have the potential to produce enough biofuels to meet the current US fuel

demands; however, progress has been limited (in some part) due to a lack of appro-

priate models and controllers. In the work presented here, models are developed that

may be used to monitor the productivity of microalgae inside a photobioreactor and

to develop control algorithms. We use experimental data from a functional prototype

photobioreactor to validate these models and to demonstrate the advantages of the

advanced controller architectures developed here.

Michael R. Buehner
Department of Electrical and Computer Engineering

Colorado State University
Fort Collins, Colorado 80523

Summer 2010

iv

ACKNOWLEDGMENTS

This has been an interesting and challenging journey over the past six years, and

I have many people to thank. First of all, I would like to thank my adviser Peter

Young for sharing his brilliance with me and for his patience and guidance over the

years. This would not have been possible without him.

I would like to thank my masters adviser Louis Scharf for providing me with a

solid understanding of signals and systems, guidance as an instructor, and for opening

up my mind to the world of research. He has also always helped me out when I needed

it (including serving on my committee at the last second).

I would like to thank my other committee members Chuck Anderson and Edwin

Chong for all that they have taught me and for their input into my research. Also, I

would like to thank Doug Hittle for being a committee member and collaborator for

the first part of this project.

I have had the chance to work some amazing graduate students throughout the

years. The list would be too long to include everyone, but I would particularly like

to thank Keith and Dave for their interesting and stimulating conversions.

I spent about two years working at industry jobs, which I greatly enjoyed. I

would like to thank Dave Noeldner, Brian Gutcher, Kevin Campbell, Kurt Kastein,

v

Al Poppelmann, Li Du, Jongseung Park, and Andrei Vityaev from my time at LSI

Corp. Also, I would like to thank Kamran Shahroudi, Jack Schade, and the rest of

my coworkers at Woodward Governor.

A part of the research was funded by the NSF under grant ECS-0245291. Funding

was also provided by the Department of Electrical and Computer Engineering at CSU.

I would like to thank the ECE Department chair Tony Maciejewski for allowing me to

teach classes and for providing me with teaching assistantships. Part of this research

was performed in conjunction with Solix Biofuels, who also funded a piece of the

project. I would like to thank Bryan Willson, Mark Machacek, Steve Bunch, and

Guy Babbitt for their collaboration during my time at Solix.

I would like to thank my mom, Mary Ann, and Mike for their support.

Last, but most certainly not least, I would like to thank all of my friends who

have become my surrogate family over the years. The list has gotten to be too long

to list everyone, but I would particularly like to thank Nate and Patti; Truby and

Becky; Trav, Jami, and Gitana; Moergen; Funk and Donna; Ehren; Andrea; Jared

and Jen; Jimbo; Jeremy and Sheri; Jeff and Kim; Neil and Jaime; Ken and Gina; Das

and Spirit; Ani and Kirsten, and all of their families for being there all of these years.

I would also like to thank my long distance friends that I meet up with whenever

life allows. This list is also too long to list everyone, but I would particularly like to

thank Thompson, Johnny, Tommy, Rich, Tammy, Jay, Christine, Matt, Katie, Brian,

Tiffany, Harrison, Dave, and Kari.

vi

DEDICATION

In loving memory of my father, Pat Buehner.

vii

TABLE OF CONTENTS

Notation and Symbols xx

List of Abbreviations xxii

1 Introduction 1

1.1 Primary motivation: Biofuels from Microalgae 4

1.1.1 Microalgae Contributions . 9

1.2 Deeper Motivation: Improving Tracking Performance 10

1.2.1 Control Theory Contributions 13

1.3 Relation to Existing Approaches . 13

1.4 Objectives . 16

1.5 Overview of Dissertation . 18

2 Background 20

2.1 Polynomials and Transfer Functions 20

2.1.1 Relative Degree of a Transfer Function 21

2.1.2 Pole and Zero Locations . 21

2.1.3 Discrete Time Systems . 22

2.2 Zero-Order Hold Equivalent Systems 22

viii

2.3 All-Pass Filters . 23

2.3.1 Phase Interpolation . 23

2.4 Norms for Signals and Systems . 25

2.5 Nominal Feedback Control . 26

2.6 SISO Robust Analysis . 27

2.6.1 Additive Uncertainty . 28

2.6.2 Multiplicative Uncertainty . 34

2.6.3 Delay Uncertainty . 35

2.7 Complex µ Analysis and Synthesis 38

2.7.1 Optimal Control . 42

2.8 Limitations on Performance . 43

2.8.1 Right-Half Plane Zero Step Response 44

2.9 Smith Predictors . 45

2.9.1 Original Smith Predictor for Time Delays 46

2.9.2 The Modified Smith Predictor 47

2.9.3 The Unified Smith Predictor 49

2.9.4 Internal Stability . 50

2.10 Observers . 55

3 Problem Formulation 59

3.1 Nomenclature . 61

3.1.1 Non-invertible/Invertible Decomposition (NID) 62

3.1.2 Discrete-Time Representations 63

3.1.3 Perfect Tracking . 65

3.2 A Known Two-Stage Feedforward Controller Architecture 65

3.2.1 Minimum-phase Biproper Plants 66

3.2.2 Minimum-phase Strictly Proper Plants 71

3.3 Limitations with Current Methods 73

ix

4 Dual Feedforward Predictive Control 75

4.1 Dual Feedforward Predictive Control 76

4.2 Controller Design . 80

4.2.1 Feedback Controller Design 81

4.3 Robustness Analysis . 83

4.3.1 Additive Uncertainty . 83

4.3.2 Multiplicative Uncertainty . 87

4.4 Discrete-Time Implementations . 88

4.5 Conclusions . 90

5 Dual Feedforward Smith Predictor 92

5.1 The Smith Predictor as a Feedback Controller 93

5.2 SISO Robustness Analysis of the Smith Predictor 95

5.2.1 Additive Uncertainty . 96

5.2.2 Multiplicative Uncertainty . 98

5.3 Dual Feedforward Smith Predictor 100

5.4 Controller Design . 103

5.4.1 Feedback Controller Design 104

5.5 Robustness Analysis . 105

5.5.1 Additive Uncertainty . 105

5.5.2 Multiplicative Uncertainty . 109

5.6 Discrete-Time Implementations . 111

5.7 Conclusions . 113

6 Robust and Optimal Feedforward Design 114

6.1 Direct Model-Based Feedforward Design 115

6.1.1 Numerical Example . 116

6.2 Robust and Optimal Feedforward Controller Design 119

x

6.2.1 Feedforward 2 Designed on the Full Plant G(s) 122

6.2.2 Feedforward 2 Designed on Invertible part of the plant Gi(s) . 127

6.2.3 Feedforward 2 Designed on Plants with Time Delays 129

6.2.4 H2 and H∞ Optimal Feedforward Design 129

6.2.5 Unstable Plants . 130

6.3 Conclusions . 132

7 Adaptation Techniques 133

7.1 Model Identification Adaptive Control 135

7.1.1 Model Identification Adaptive Dual Feedforward Predictive

Control . 137

7.1.2 Model Identification Adaptive Dual Feedforward Smith Predictor138

7.2 Reinforcement Learning Control . 142

7.2.1 Actor-Critic Reinforcement Learning Algorithm 143

7.2.2 Reinforcement Learning Dual Feedforward Predictive Control 145

7.2.3 Reinforcement Learning Dual Feedforward Smith Predictor . . 146

7.2.4 Actor Selection . 147

8 Echo State Networks 149

8.1 ESN Overview . 150

8.2 The Weighted Operator Norm . 154

8.2.1 The Vector D-Norm . 154

8.2.2 The Matrix Operator D-Norm 155

8.2.3 Minimizing the Matrix Operator D-Norm 155

8.3 A New Sufficient Condition for the Echo State Property 157

9 Illustrative Examples 160

9.1 Strictly Proper Minimum-Phase Plant 161

9.1.1 Feedback Designs . 163

xi

9.1.1.1 PID Design . 163

9.1.1.2 Robust Controller Design 164

9.1.2 Arbitrarily Shaped Nominal Closed-Loop Design 168

9.1.3 Design for Robustness . 171

9.2 Stable Non-minimum Phase Plant with a RHP Zero and Time Delay 175

9.2.1 Plant Definition . 176

9.2.2 Design #1 . 177

9.2.3 Design #2 . 182

9.2.4 Discrete-Time Implementation with Adaptation 187

9.2.4.1 Adaptation . 190

9.3 Unstable Non-minimum Phase Plant with a RHP Zero and Time Delay 191

9.4 Summary . 193

10 Microalgae Modeling 195

10.1 Dynamic PBR Model . 196

10.1.1 Incident Light Subsystem . 200

10.1.2 Growth Subsystem . 204

10.1.3 Water Chemistry Subsystem 208

10.2 Photosynthetic Efficiency . 211

10.2.1 Theoretical Yields . 212

10.2.2 Modeled Photosynthetic Efficiency 215

10.2.3 Summary . 217

10.3 Model Validation and Verification . 218

10.3.1 Reduced Order Model . 219

10.3.2 Fitting Model Parameters . 221

10.3.2.1 Growth Model . 221

10.3.2.2 Water Chemistry Subsystem 223

xii

11 Advanced Microalgae Control 227

11.1 Observer Based Growth Model . 228

11.2 pH Model . 231

11.2.1 Water Chemistry pH Model 232

11.2.2 PBR pH Model . 233

11.3 pH Regulation using Feedback Controllers 235

11.4 pH Regulation using a DFFPC Architecture with Growth Compensation238

11.5 Summary . 242

12 Conclusions and Future Directions 244

12.1 Feedforward Design . 246

12.2 Adaptation . 246

12.3 Extensions to MIMO . 247

12.4 Microalgae Modeling and Control . 249

12.5 Control-Structure Interaction . 250

REFERENCES 252

xiii

LIST OF FIGURES

1.1 Photobioreactor Test Bed. 9

2.1 Zero-Order Hold Equivalent Block Diagrams 22

2.2 Nominal Feedback Controller Architecture 26

2.3 Traditional LTI Feedback Architecture with Additive Uncertainty . . 29

2.4 Traditional LTI Feedback Architecture with Multiplicative Uncertainty 34

2.5 Traditional LTI Feedback Architecture with Time Delay Uncertainty 36

2.6 Original Guess for a W2(s) . 37

2.7 Example W2(s) that will Cover an Uncertain Delay 37

2.8 Standard Robust Controller Canonical System Interconnection 38

2.9 Standard Optimal Controller Canonical System Interconnection . . . 42

2.10 Step Response of a Stable System with One RHP Zero. The Red X

Marks the Second Zero Crossing that Results from the Initial Undershoot. 44

2.11 A Smith Predictor for a Stable Plant with Time-Delay 46

2.12 A Modified Smith Predictor for a Stable Plant 47

2.13 An Unified Smith Predictor . 49

2.14 Equivalent Smith Predictor Implementations 51

2.15 Interconnect for the Unstable IMC Example with C(s) = Kp = 7 . . . 53

2.16 Example Simulation for the Unstable IMC Example with C(s) = Kp = 7 53

xiv

2.17 Example Simulation for the Unstable IMC Example with C(s) = Kp = 7 54

2.18 Basic Observer for an LTI System. 57

3.1 Two-stage Feedforward Control for a Minimum-phase Biproper Plant 66

3.2 Nominal and Perturbed Step Responses with a Feedback Controller . 68

3.3 Perfect Tracking of a Biproper System using TSFFC 69

3.4 TSFFC Perturbed Unstable Pole Step Response 69

3.5 TSFFC Perturbed Additively Perturbed Step Responses 70

3.6 TSFFC for a Stable Minimum-phase Plant 71

3.7 Nominal Step Responses for a Strictly Proper Minimum-phase Plant . 73

4.1 Nominal LTI DFFPC Architecture 76

4.2 Disturbance Rejection Robust Controller Synthesis Interconnect . . . 81

4.3 Example Robust Controller Synthesis Weights 82

4.4 Uncertain LTI DFFPC Architecture with Additive Uncertainty 83

4.5 Uncertain LTI DFFPC Architecture with Multiplicative Uncertainty . 87

4.6 Discrete-time Implementation of the DFFPC Architecture. 89

5.1 A Smith Predictor for a Non-minimum Phase Plant 93

5.2 A Smith Predictor Drawn as a Single Feedback Controller 95

5.3 Smith Predictor with Additive Uncertainty 97

5.4 Smith Predictor with Additive Uncertainty 98

5.5 Smith Predictor with Multiplicative Uncertainty 99

5.6 Nominal LTI DFFSP Architecture . 101

5.7 Robust Controller Synthesis Interconnect for Disturbance Rejection

with Additive Uncertainty . 104

5.8 Reduced Robust Controller Synthesis Interconnect for Disturbance Re-

jection with Additive Uncertainty . 105

5.9 Uncertain LTI DFFSP Architecture with Additive Uncertainty 106

xv

5.10 Uncertain LTI DFFSP Architecture with Multiplicative Uncertainty . 109

5.11 Discrete-time Implementation of the DFFSP Architecture. 112

6.1 Continuous-time LTI DFFPC Simulink Diagram 117

6.2 Perfect Tracking Control using DFFPC 117

6.3 Perfect Tracking Control Bandwidth Effects 119

6.4 FF2(s) Design Interconnect with the Full Plant Model 122

6.5 Bode Plots of Z(jω) from Table 6.2.1. 126

6.6 FF2(s) Design Interconnect with the Invertible Piece of the Plant Model127

6.7 Bode Plots of Z(jω) From Table 6.2.2. 129

6.8 Robust FF2(s) Design Interconnect with the Invertible Part of the Plant130

7.1 General MIAC Setup . 135

7.2 Model Identification Adaptive DFFPC 137

7.3 Model Identification Adaptive DFFSP 139

7.4 Reinforcement Learning DFFPC . 146

7.5 Reinforcement Learning DFFSP . 147

8.1 Echo State Network Architecture. 150

9.1 Open-loop Step Response . 163

9.2 PID Compensated Step Response . 164

9.3 µ Plot Comparison . 166

9.4 Step Response Comparison . 167

9.5 Two-stage Feedforward Control for a Stable Minimum-Phase Plant . 168

9.6 Nominal Closed-Loop Step Responses for Specified Rise Times 170

9.7 Nominal Closed-Loop Step Responses for a Fast Rise Time 170

9.8 DFFPC Robust Performance Check with αdes = 5 172

9.9 DFFPC Robust Performance Check with αdes = 10 173

9.10 DFFPC Perturbed Step Response with αdes = 5 rad/sec 173

xvi

9.11 DFFPC Perturbed Step Response with αdes = 10 rad/sec 174

9.12 Design #1 Robust Feedback Controller Step Response 178

9.13 Nominal Plant Simulations with Various Choices of αdes 180

9.14 Multiplicative Uncertainty Robust Performance Criteria vs. Frequency 181

9.15 Design #1 Perturbed Step with an Actual Process Delay of 0.8 Seconds182

9.16 Design #2 Step Robust Feedback Controller Response 184

9.17 Design #2 FF2(s) Designs . 186

9.18 Design #2 Perturbed Step with an Actual Process Delay of 0.8 Seconds187

9.19 Perfect Tracking with a Discrete-time DFFPC Controller 189

9.20 Perturbed Step Response using a Discrete-time DFFPC Controller . . 190

9.21 Perfect Tracking Restored after Plant Identification 191

9.22 Perfect Tracking with Various αdes Bandwidths 193

9.23 Plant Implications . 194

10.1 Early Photobioreactor used for Modeling and Controller Development 197

10.2 PBR Modeling Techniques . 197

10.3 Individual Flat Panel . 199

10.4 Simulink Model of a PBR. 200

10.5 Light Limited Growth Inside a Closed PBR 205

10.6 Model Validation and Verification Setup 220

10.7 Growth Model Verification . 223

10.8 DO Model Verification . 224

10.9 DO Model Verification (Zoomed In) 225

11.1 Continuous-time Nonlinear Observer Growth Model in Simulink. . . . 230

11.2 Discrete-time Numerical Integration of the Nonlinear Observer Growth

Model in Simulink. 231

11.3 Water Chemistry pH Model. 233

xvii

11.4 PBR pH Model with Growth and Water Chemistry Dynamics. 234

11.5 Feedback Only Microalgae pH Regulation Simulink Diagram 236

11.6 Simulated Feedback Only Microalgae pH Regulation 237

11.7 Microalgae pH Regulation using a Modified DFFPC Architecture

Simulink Diagram . 239

11.8 Simulated Microalgae pH Regulation using a Modified DFFPC Archi-

tecture . 241

11.9 Simulated Microalgae pH Regulation using a Modified DFFPC Archi-

tecture with Smaller Transport Delay 242

xviii

LIST OF TABLES

6.1 Perfect Tracking Control Trade-offs for a Non-minimum Phase Plant 119

6.2 Resulting Z(s) Transfer Functions for Various FF2(s) µ-synthesis De-

signs . 124

6.3 Resulting Z(s) Transfer Functions for Various FF2(s) µ-synthesis De-

signs on Gi(s) . 128

xix

NOTATION AND SYMBOLS

R and C fields of real and complex numbers

∈ belongs to

⊂ subset

∪ union

∩ intersection

2 end of proof

3 end of remark

α complex conjugate of α ∈ C

|α| absolute value of α ∈ C

Re(α) real part of α ∈ C

Rn×m real matrix with n rows and m columns

Rn real column vector with n elements

In n x n identity matrix

Cn×m complex matrix with n rows and m columns

Cn complex column vector with n elements

aij an element in the ith row and jth column in the matrix A

diag(a1, . . . , an) an n x n diagonal matrix with ai as its ith diagonal element

AT and A∗ transpose and complex conjugate transpose of A

A−1 inverse of A such that AA−1 = A−1A = I

A† Moore-Penrose pseudoinverse of A (non-square or singular)

xx

λ(A) eigenvalue of A

λi(A) an eigenvalue value of A

ρ(A) spectral radius of A (= max
i

|λi(A)|)

σ(A) singular value of A

σi(A) ith singular value of A

σ(A) and σ(A) the largest and smallest singular values of A

det(A) determinant of A (=
∏

i

λi(A))

tr(A) trace of A (=
∑

i

λi(A))

∀ x for all values of x

sup supremum, the least upper bound

inf infimum, the greatest lower bound

L∞(jR) space of functions bounded on Re(s) = 0 including at ∞

L2(jR) space of square integrable functions on Re(s) = 0

H∞ subset of L∞(jR) with functions analytic in Re(s) ≥ 0

H2 subset of L2(jR) with functions analytic in Re(s) ≥ 0

RM space of real-rational proper transfer matrices

RH∞ subset of RM with no poles in Re(s) ≥ 0

G plant model

K feedback controller, in whatever configuration

L loop transfer function L = GK

S sensitivity function, S = (I + L)−1

T complementary sensitivity function T = I − S = L(I + L)−1

∆ uncertainty

‖∆‖∞ H∞ norm of a system: ‖∆‖∞ = sup
ω

σ(∆(jω))

xxi

LIST OF ABBREVIATIONS

FF Feedforward

DTC Dead-Time Compensator

SP Smith Predictor

BIBO Bounded-Input Bounded-Output (stability for linear systems)

LTI Linear Time-Invariant

NLTV Non-Linear Time-Varying

RHP Right Half Plane

LHP Left Half Plane

NID Non-invertible / Invertible Decomposition

AMD All-Pass / Minimum-Phase Decomposition

MPC Model Predictive Control

τ Time Constant (seconds)

TSFFC Two Stage Feedforward Control

DFFPC Dual Feedforward Predictive Control

DFFSP Dual Feedforward Smith Predictor

NS Nominal Stability

NP Nominal Performance

RS Robust Stability

RP Robust Performance

xxii

MIAC Model Identification Adaptive Control

RL Reinforcement Learning

SARSA State Action Reward State Action

NREL National Renewable Energy Lab (in Golden, Colorado)

PBR Photobioreactor

CSI Control-Structure Interaction

xxiii

Chapter 1

Introduction

In many control applications, feedback controllers are designed to give both good

reference tracking and good disturbance rejection. In general, reference tracking leads

to large initial error signals, whereas disturbances generally produce smaller error

signals. Since linear feedback controllers perform better on smaller error signals, it is

desirable to eliminate the large tracking errors seen in reference tracking. In the work

presented here, a two-stage feedforward (FF) plus feedback architecture is developed

that addresses the large error signal seen during reference tracking for non-minimum

phase systems. In the work presented here, a controller architecture is given that has

the following perfect tracking control property:

Perfect Tracking Control: When the model of the plant is perfect and there are

no external disturbances, signals generated by a pair of feedforward controllers will

be tracked with zero feedback error for all time.

The idea of perfect tracking control is an interesting and important topic in control,

since it addresses the questions of:

• What trajectory can the plant actually follow?

• What control signal will drive the plant along this trajectory?

Essentially, this characterizes the class of signals that the closed-loop system can

1

attain. The same conditions for perfect tracking hold for both stable and unstable

systems; however, it is the non-minimum phase components that create additional

constraints on what may be perfectly tracked. This idea has been primarily investi-

gated for minimum-phase applications.

In the work presented here, the characterization is extended to all linear time-

invariant (LTI) systems (of a specific form that is defined in Chapter 3) through the

use of a specific controller architecture. In some of the published work, multi-rate

digital techniques are used that guarantee zero tracking error at the sample points

for a specific class of signals. In the work presented here, an architecture is devel-

oped that can guarantee perfect tracking using either continuous-time or discrete-

time controllers. In the discrete-time case, multi-rate techniques are not required

to maintain the perfect tracking property. For the controller architecture developed

here, the perfect tracking property holds for both minimum-phase and non-minimum

phase systems (i.e., systems with time delays and right half plane zeros) that are not

causally invertible. This is a feature not present in current feedforward plus feedback

controllers.

Many process control applications have non-minimum phase components that are

difficult to control using traditional feedback techniques [1]. Specifically, they tend

to have very long time delays that result from transporting gases and fluids over

long distances. These types of delays result in feedback controllers that are very

sluggish, which is required to maintain closed-loop stability. A specific example of

this is growing microalgae for biofuels in a large flat panel photobioreactor (PBR).

In order to get an increase in biomass production, a CO2 rich input gas stream is

delivered from a central source. In practice, there can be a long delay between the

CO2 source (e.g., a power plant) and the individual flat panels (e.g., the PBR may

be located on property adjacent to the power plant). This may result in significant

gas transport delay (e.g., on the order of minutes).

2

The methodologies that are specific to controlling systems with dead times are

known as dead-time compensators (DTCs) [1]. Smith predictors (SP) and model

predictive control (MPC) are two common methods that may be used as DTCs [1].

Both of these methods use a prediction of the dead time inside the feedback loop

to predict what the future output of the plant will be. Then, a feedback controller

corrects the control signal based on the difference between the predicted and actual

outputs. Feedforward enhancements have been added to each of these methods for

disturbance rejection, but these feedforward enhancements are not used to improve

reference tracking. Instead, improved reference tracking has been primarily focused

on filtering the reference signal so that the feedback controller can track the filtered

reference with a smaller tracking error. In this case, the reference filter determines

the class of signals that the feedback controller will attempt to track. In the work

presented here, two new methods are presented that can provide perfect tracking for a

certain class of signals that are dependent upon the non-minimum phase components

of the plant. In the first method, a prediction of the path that the closed-loop system

will follow is given in one of the feedforward paths, and a second feedforward controller

provides the control signal that will drive the system along the predicted closed-loop

path. In this case, the path that the closed-loop system will follow is determined

by both a design parameter and the non-minimum phase components of the plant,

which specifies the class of signals that the feedforward controller can perfectly track

when there are no modeling errors or external disturbances. In the second method,

an augmentation is made to a standard Smith predictor to provide perfect tracking.

In this case, the prediction of the non-minimum phase components appears in the

feedback loop, but the design parameter remains in the first feedforward path. This

method provides an analogous result to the other architecture for stable systems;

however, this method is unsuitable for unstable systems, which makes it less general

than the first method. For both of these methods, the perfect tracking is obtained by

3

sharing signals between the two feedforward controllers. While components of both

of these methods appear in the literature, there is no general theory that presents

them as a whole.

Adaption may be used to cope with manufacturing variations in parts, change in

performance due to wear-and-tear over time, and biological changes in living organ-

isms. The last case is specifically true for the microalgae production example given

earlier. One of the big advantages to the proposed structure is that it is easier to

stably adapt feedforward components than it is components inside the feedback loop.

This is due to the fact that closed-loop stability is not affected by adapting the feed-

forward components, since they are outside of the feedback loop. Instead, the only

requirement is that the feedforward components themselves be bounded to preserve

bounded-input bounded-output (BIBO) stability for the overall system. For certain

adaptation schemes, this structure will allow for a larger stable adaptation range due

to the reduced stability requirements. This type of adaptation is particularly useful

for applications that need to adapt to changing plant conditions.

1.1 Primary motivation: Biofuels from Microalgae

Microalgae can convert carbon dioxide (CO2) into storage lipids that can be refined

into biofuels. More CO2 is being produced now than in previous years, and there is

limited supply of fossil fuels in the world. Under the right conditions, microalgae will

utilize the excess CO2 being produced by human activity to produce lipids that may

help supplement the limited fuel supply. Some of the control objectives are to:

• Maximize biomass production.

• Maximize CO2 uptake efficiency.

• Maximize storage lipid production (i.e., the lipids that are favorable for biofuel

production).

4

The focus of the work presented here is on improving biomass production and

CO2 uptake efficiency by regulating key variables (e.g., pH, dissolved CO2, dissolved

O2, and temperature). While the use of models and controllers to improve lipid

production are not addressed in this work, increased lipid production was achieved

through the use of an appropriate microalgae strain [2].

Biofuels have gone through two generations to get to the so called “Third Gener-

ation” of biofuels that currently exist, namely biofuels from microalgae. In the first

generation, ethanol from food crops (such as corn) was used as a fuel supplement.

While these are able to produce fuel, they deplete the land of vital nutrients, cut into

the food supply, and do not have the potential to replace U.S. fossil fuel demand.

In fact, it would take roughly 1.54 billion hectares, which is roughly 846% of the

existing cropping land in the U.S., to meet 50% of the U.S. oil demand [2]. In the

second generation of biofuels, non-food plants such as Jatropha were used to produce

biofuels. The advantages to plants such as Jatropha are that they do not interfere

with the food supply and they have a higher oil yield per acre. For Jatropha, it would

take 140 million hectares, which is about 77% of the existing U.S. cropping land, to

meet 50% of the U.S. fuel demands [2]. While this is a significant improvement over

corn, it still requires a large portion of the existing U.S. cropping land.

A program of research sponsored by the National Renewable Energy Laboratory

(NREL) from 1978-1996 estimated that microalgae could produce lipids at the rate

of 7,000 - 15,000 gallons/acre/year [3]. This is almost 35X the current productivity

of lipids from Jatropha, at roughly 200-250 gallons/acre/year [2], and almost 350X

the current productivity of lipids from corn, at roughly 20-25 gallons/acre/year [2].

This means that microalgae could meet 50% of all transport fuel needs of the United

States while using only 2 to 4.5 million hectares, which translates to about 1.1% to

2.5% of the existing US cropping area [2]. While this is encouraging, there have been

numerous problems with scaling up to a large production facility [4]. The primary

5

challenge has been to design economical photobioreactors (PBRs) that are able to

utilize intense light and maintain appropriate gas concentrations at a commercial

scale (c.f., [2; 4; 5; 6; 7; 8; 9; 10]).

Various PBR configurations (e.g., bubble columns, raceway ponds, and flat panel

reactors) have been studied in [9]. Each configuration has its advantages and disad-

vantages. The trade-offs are designing reactors that are affordable to purchase and

operate at a commercial scale, while efficiently utilizing high intensity light, and ef-

ficiently removing dissolved oxygen produced during photosynthesis. For example,

bubbling a gas stream through the media containing the microalgae is very efficient

at removing dissolved oxygen, which is required for sustained growth, but is costly

to operate on a continuous basis. Therefore, the gas stream may be bubbled through

the media intermittently to get a good balance between reduced operating costs and

adequate dissolved oxygen removal.

System models provide a valuable tool for evaluating the different reactors. In

particular, it is important to develop models that are valid for both small scale reactors

and larger scale production reactors. In the work presented here, this is achieved by

defining quantities in terms of densities and efficiencies as opposed to overall yields.

By doing this, the comparisons of performance at various scales can be a one-to-

one comparison (e.g., the performance of a 300L reactor is considered to be the

same performance of a 6000L reactor if they both yield the same biomass density in

g/L. However, the overall yield will be the biomass density scaled by the size of the

reactor.). The majority of the existing models are for tubular reactors. A variety of

linear and nonlinear models have been developed to address this for tubular reactors

(c.f., [5; 6; 7; 8; 10; 11; 12; 13; 14; 15; 16]). However, there have been significantly

less publications on flat panel reactors, which is the style of reactor addressed in the

work presented here (see later for reasons).

6

Model based controls have been developed in [10; 17; 18; 19; 20; 21]. Most of these

papers model growth as a function of light using a Monod kinetics model. The Monod

model describes how bacteria go through exponential, linear, and decaying growth

phases as they consume their nutrients. This idea is extended to how microalgae grow

in a light limited closed PBR. This is an entirely empirical model that works well for

some situations, but lacks physical intuition of growth in a light limited environment.

In the work presented here, a scalable model is developed that addresses these phases

by considering the physics of resource limited microalgae growth inside a vertical flat

panel PBR. The microalgae growth rate is modeled as a function of incident light.

When the culture goes above a critical density, the growth changes from exponential

to linear, because the microalgae become light limited (i.e., only a fraction of the

microalgae in the reactor receive light and grow, while the remaining microalgae stay

in the dark and respirate, which results in a loss of biomass). As biomass continues

to increase, a larger amount of microalgae do not receive light and respirations losses

will become greater. Our results regarding this were published in [22] and will be

revisited in Chapter 10.

According to the Center for the Study of Carbon Dioxide and Global Change [23],

aquatic plants, such as microalgae, are very sensitive to the amount of dissolved CO2

available for photosynthesis. In particular, an elevated CO2 concentration can lead to

a dramatic increase in biomass. For most experiments and PBR setups, the amount

of dissolved CO2 available for photosynthesis is regulated by bubbling through a

CO2 enriched gas stream (e.g., air mixed with pure CO2 to achieve a desired ppm

CO2). In [24], the green microalgae Scenedesmus obliquus was grown at the CO2

concentration of ambient air (about 387 ppm CO2) and elevated CO2 (about 100,000

ppm CO2). After growing for five days, the microalgae exposed to the elevated

CO2 concentration accumulated about 300% more biomass at a low light intensity

and 600% more biomass at a higher light intensity than the microalgae exposed to

7

ambient air levels of CO2. In a similar study in [25], a freshwater microalgae from the

genus Chlorella was grown at elevated CO2 concentrations. Relative to ambient air

concentrations, the microalgae growth rates were 200% more at 100,000 ppm CO2,

170% more at 200,000 ppm CO2, 125% more at 300,000 ppm CO2, and 40% more

at 500,000 ppm CO2. These results show that both a significant increase in biomass

accumulation may be achieved by proper CO2 regulation, and there is a desired CO2

concentration for maximal biomass production. For verification of the model in the

work presented here, the microalgae Nannochloropsis oculata is used.

In order to improve biomass production, an overall model is developed that relates

the interactions between the three subsystems, namely the incident light subsystem,

the microalgae subsystem, and the media subsystem that consists of the surrounding

media that provides CO2 and nutrients for growth and receives dissolved O2 from pho-

tosynthesis. Developing these subsystems is required to understand the interactions

between:

• A CO2 enriched gas stream and the microalgae media.

• Dissolved gases (i.e., CO2 and O2) in the media and the microalgae.

• Incident light intensity and microalgae photosynthesis.

Control Objective: The primary control objective is:

• To supply CO2 to the microalgae as it is being consumed by photosynthesis to

maintain a desired pH in the media.

One of the biggest difficulties in maintaining the proper CO2 concentration at

a large scale is dealing with the long transportation delay between when the CO2

concentration in the input gas stream is changed and when the CO2 reaches the

media. To further complicate this, dissolved CO2 is not measured directly due to the

high cost of an online dissolved CO2 sensor. Instead, dissolved CO2 is inferred from a

8

less expensive pH sensor. Under a relatively constant pressure and temperature, pH

will correlate well with dissolved CO2. As CO2 dissolves into the water, it combines

with water molecules to form negatively charged hydroxide ions (OH−) and positively

charged hydrogen ions (H+) that determine the pH. This reaction may take a few

seconds, which adds another delay from when a CO2 concentration is commanded

and when it is finally sensed as a change in pH. A photo of the actual PBR used for

these experiments is shown in Figure 1.1.

Figure 1.1: Photobioreactor Test Bed.

1.1.1 Microalgae Contributions

The main contributions to the area of biofuels from microalgae are:

• Develop physically based models that are independent of scale that may be used

to measure reactor performance.

9

• Utilize the developed models for feedforward CO2 delivery to maintain a desired

dissolved CO2 concentration in the media.

1.2 Deeper Motivation: Improving Tracking Per-

formance

Feedforward control may be used to either improve the tracking performance or dis-

turbance rejection of traditional closed-loop feedback control systems. For improved

tracking of reference changes (e.g., a step input), a two degree-of-freedom (2-DOF)

controller is used where the feedforward controller filters the reference input to provide

a reference trajectory that the feedback controller can track [26; 1]. The motivation

is that the filtered reference signal will produce smaller error signals, which are more

appropriate for the feedback controller. For improved disturbance rejection, a feed-

forward controller uses measurable and predictable disturbances to counteract the

effect that these disturbances will have on the closed-loop system. In these cases, the

output of the feedforward controller is added to the feedback control signal to provide

an overall control effort. In the work presented here, these two ideas are combined to

improve the tracking performance of the overall control system. This idea parallels

some of the concepts from neuromuscular actuation systems.

In humans, the neuromuscular system is the servomechanism portion that includes

sensory and motor neurons at the spinal cord level and their associated muscles, joints,

and receptors in the periphery [27]. When this system is used to command muscles

(e.g., to command motion of a limb), it is referred to as the neuromuscular actuation

system. This system naturally describes a combination of the two feedforward control

methodologies described above, since it describes how the brain decides upon an

action, takes the action, and then corrects for errors along the way. As an example,

consider the neuromuscular actuation system (NMAS) used to reach for a cup. In

this case, the following happens:

10

1. The human brain calculates the desired path (feedforward prediction).

2. A ballistic response is implemented where the hand extends towards the cup

(feedforward control signal).

3. Small corrections to the desired path are made based on the “observed” position

of the hand (feedback control on small error signals).

This type of phenomena is well documented in the literature (e.g., [27; 28; 29;

30; 31; 32; 33]). Each step of the NMAS aligns well with the previously discussed

controllers. For example, the filtered reference output of a 2-DOF feedforward con-

troller is a prediction of a path that the closed-loop can track with no error, which is

similar to the feedforward prediction in a NMAS. A feedforward controller provides

a large control signal, which is similar to the ballistic response in a NMAS. When

a system being controlled is stable minimum-phase, these techniques work well by

themselves to improve tracking since they can essentially invert the plant dynamics.

In both cases, the feedback controller is used to correct the control output based on

the “observed” and “desired” outputs, which is one of the main arguments for using

feedback control. When the system is non-minimum phase, both of the feedforward

methods break down. This is due to the fact that non-minimum phase systems do not

have stable causal inverses. However, the benefits from each of the two feedforward

controllers may be combined to provide perfect tracking on non-minimum phase sys-

tems, which is the focus of the work presented here. In particular, a non-minimum

phase plant may be factored into a minimum-phase piece that does have a stable

causal inverse and a non-minimum phase piece that does not have a stable causal

inverse. The feedforward prediction addresses the non-minimum phase part of the

plant and the second feedforward controller provides a large control signal, which is

the ballistic response that addresses the stable causal invertible piece of the plant. In

the nominal case with no external disturbances, the plant output will perfectly track

11

the feedforward prediction. In order to achieve this, the feedforward prediction and

feedforward ballistic response systems must share information between them, which

means that neither method by itself may achieve the perfect tracking property.

To continue with the previous cup example, assume that the person repeatedly

reaches for the same cup. As this happens, the brain gets better at both calculating

the fastest path to the cup (i.e., the first feedforward controller) and implement-

ing that path (i.e., the second feedforward controller), which reduces the need for

corrective actions (i.e., the feedback controller). This idea is extended to adaptive

learning where the two feedforward controllers are adapted to improve the overall

performance of the closed-loop system, while a fixed feedback controller is used to

correct for differences.

As an extension to the previous example, consider what happens when the cup

is placed on a table that is tilted at a 45o angle so that the cup is sliding in the

direction of gravity. Now when the person tries to grab the cup, the first feedforward

control response needs to predict where the cup will be by the time the hand arrives

at the cup location and the second feedforward controller implements the appropriate

action. Now, the feedback controller is correcting for errors along the predicted path

and not the current error between the cup’s position (reference position) and the hands

position (measured position). In this case, the feedforward controllers are working

together to pick the best path, and the feedback controller is only used to correct

for small differences between the planned path and actual path, which motivates the

need for communication between the two controllers.

The presented controller architecture greatly simplifies closed-loop stability anal-

ysis by moving the adaptive and nonlinear parts of the control system out of the

feedback loop while still utilizing both the strength of the feedback controller (i.e.,

correcting on small error signals), and the power of nonlinear adaptation for large

variations.

12

1.2.1 Control Theory Contributions

The contributions to control theory involve providing a new general architecture that

is applicable to non-minimum phase systems. These contributions include:

• Predictive feedforward structure that uses two feedforward controllers to get

perfect tracking on a certain class of signals for LTI systems (of a specific form).

• Addition of a feedforward component to a 2-DOF plus Smith predictor structure

to get perfect tracking on a certain class of signals for stable LTI systems (of a

specific form).

• Robustness analysis and design tools for the presented structures.

• Stable adaptation methods for the proposed structure that will improve perfor-

mance.

• An improved stability bound for adaptation via echo state networks based on

robust control theory.

1.3 Relation to Existing Approaches

The idea of modeling a neuromuscular actuation system has its roots in [27]. Since

that time, the idea has been extended to feedback control systems in various forms [28;

29; 31; 32; 33]. In each of these methods, the feedforward controller is used to provide

either the ballistic response or the feedforward prediction and the feedback controller

provides the other. In these cases, the feedback controller is active during refer-

ence tracking, which means that the perfect tracking property (i.e., zero error during

reference tracking when there are no modeling errors or external disturbances) de-

scribed previously does not hold. In the work presented here, a 2-DOF architecture

is developed that is able to provide both the feedforward prediction and the ballis-

tic responses. This results in a controller architecture that is able to perfectly track

13

reference inputs for LTI systems (of a specific form). In [28], the ideas of using a feed-

forward ballistic controller and the use of Smith predictors are discussed separately;

however, the combination of the two is never discussed, and the idea of perfect track-

ing is never explored. In the controller architectures presented here, the ideas of [27]

are interpreted differently from the current approaches. Specifically, the nominal ref-

erence tracking requirements are eliminated from the feedback controller design, since

reference tracking is done completely by the feedforward controller (when there are

no modeling errors or external disturbances). In optimal control, the goal of the feed-

back controller design is to minimize the effects of disturbance inputs on controlled

outputs. In robust control, the feedback controller is designed to provide optimal

control in the presence of model uncertainty. In a traditional optimal control design,

the reference tracking problem is posed as a disturbance on the feedback error, and

the disturbance rejection problem is posed as a disturbance on the output. This means

that the feedback controller is designed to minimize the effects of both reference in-

puts and disturbance inputs. By pulling the reference tracking requirements out of

the feedback design and putting them into the feedforward design, the feedback con-

troller may be designed solely as a disturbance rejection problem, which utilizes the

strength of the current robust and optimal feedback controller design methodologies.

The idea of perfect tracking has been explored in the applications of seeking con-

trol in a hard disk drive [34; 35], voltage control of an inverter [35], and a magnetic

levitation system [36]. In these applications, multi-rate digital controllers are used

to guarantee that the plant output matches a predicted output at the sample times

of the slowest sampling rate in the system. These methods use a controller in the

feedback loop to provide the ballistic response, which is a different approach than the

one considered here. Also, these methods restrict the perfect tracking property to

discrete-time systems, whereas the architecture presented here may be implemented

using either continuous-time or discrete-time systems. This generalization to both

14

continuous-time and discrete-time systems results from the unique controller archi-

tecture that is used here.

The use of multiple feedforward controllers was explored in [37], where a data

preprocessor was used to feed both a pre-filter and a feedforward controller on a

selective catalytic reduction (SCR) catalytic converter. In this application, the feed-

forward controller was designed based on the known dynamics of the system, and the

pre-filter provided a prediction of the expected trajectory. The difference between the

work presented here, and this method, is that the data preprocessor in this method

used the measured output as an input, which created a feedback loop. Also, the

controller for this application did not have the perfect tracking property that we are

able to achieve with the controller architecture presented here.

The use of adaptive feedforward control to improve reference tracking in a robot

motion planning application was explored in [38]. In this method, the controller

was decomposed into a path planning stage that determine the speed and shape of

the path, a feedforward controller that provided the reference path, and a cascaded

feedback controller that provided the ballistic response and was used for position,

speed, and current control based on the reference path. In order to improve the

tracking performance of the overall system, the feedforward controller was adapted

to adjust the reference path to the path that the robot was actually taking. By

adapting this piece, it allowed the feedback controller to provide control signals that

the plant was actually responding to, but it did not adapt the ballistic response,

since this piece was in the feedback loop. In the work presented here, we also adapt

the feedforward controllers to calculate a reference signal that the plant will actually

follow; however, we are also able to adapt the ballistic response without affecting

closed-loop stability, since the ballistic response is not in the feedback loop.

A similar controller architecture was developed (in parallel to the work presented

here) that appeared in [39]. This method characterizes the signals that may be

15

perfectly tracked for minimum-phase systems. Through an example, they showed

how their architecture could characterize the signals that may be perfectly tracked

for a system with a right-half plane zero (i.e., a system with a specific non-minimum

phase component). However, due to restrictions in their problem formulation, perfect

tracking of the class of LTI systems considered here is not possible. In the work

presented here, this limitation is overcome by specifying a new control architecture

that explicitly addresses the non-minimum phase components of a system. Also,

adaptation was never discussed in [39], which is addressed in the work presented

here.

1.4 Objectives

Perfect tracking control has been considered by various researchers. Most of this work

has been focused on essentially inverting minimum-phase plants and on using multi-

rate digital controllers. For the multi-rate digital controllers, the methods are focused

on modifications made to an architecture that first appeared in [34], which has the

limitations that parts of the structure (i.e., the part of the controller that provides the

ballistic response) cannot be adapted without taking extra steps to ensure closed-loop

stability, a fast-rate digital controller is required, and the robust analysis and design

tools have not been fully developed for this method. These issues are addressed in

the presented work by:

• Developing a two-stage feedforward plus feedback controller architecture that

improves closed-loop tracking performance (in particular for non-minimum

phase systems).

• Developing robustness analysis tools for quantifying the performance gain.

• Developing robust design methodologies for synthesizing the feedforward and

feedback controllers.

16

An issue with model based controllers, such as the one presented here, is that they

require an accurate plant model. This model can either be known a priori or learned

as the system runs. In the latter case, adaptation schemes are used to improve the

plant models. The current use of adaptive control can improve reference tracking

and disturbance rejection performance of closed-loop systems, but these methods

either require a large amount of computational overhead for stability analysis, or

are restricted to a class of plants and specific control law. These issues result from

the adaptive and predictive parts of the controller being inside the feedback loop.

Since most available optimization routines have at least polynomial complexity (e.g.,

O(n4)), scaling a plant up by a factor of 10 can cause the numerical complexity of the

optimization routine to increase by a factor of 10000 or more, which makes solving

the optimization problem unrealistic. These issues are addressed in the presented

work by:.

• Only adapting the feedforward part of the new controller architecture.

• Developing an improved stability bound for echo state networks that will be

used for adaptive control.

• Demonstrating the control algorithms on set of illustrative examples.

By restricting the adaptation to the feedforward components of the controller

architecture, we only need to perform a one-time stability check a priori, because

we are not adapting elements inside the feedback loop. The effectiveness of the

proposed method will be verified on illustrative examples in Chapter 9, where the

current architecture will be compared against some traditional feedback methods to

demonstrate improvements in performance, robustness, and ease of design.

In the final part of the presented work, modeling and control of a PBR growing

microalgae for biofuels is developed. Here, models are used to study the photosyn-

thetic efficiency of microalgae inside a flat panel PBR. These models, along with the

17

controller architecture developed earlier, are used to characterize the attainable pH

regulation, which promotes enhanced microalgae growth. This will be done by us-

ing a combination of experimental verification on a physical PBR and simulation on

verified models. For this part of the dissertation, the objectives are to:

• Develop and validate a model for growing microalgae in a flat panel PBR using

experimental data.

• Use the model to determine the photosynthetic efficiency of microalgae.

• Demonstrate the achievable pH regulation.

1.5 Overview of Dissertation

The remainder of this dissertation provides the mathematical framework for achiev-

ing perfect tracking that encapsulates the limitations of non-minimum phase systems.

Chapter 2 provides an overview of known results in the controls community. Chap-

ter 3 frames the limitations imposed by the non-minimum phase components of a

physical plant and provides an overview of two new controller architectures that may

achieve perfect tracking for both minimum-phase and non-minimum phase systems.

Chapters 4 and 5 develop the two controller architectures in detail and provide ro-

bustness tools for controller analysis and synthesis. For both of these architectures,

there is a common piece to the controller design. Chapter 6 provides methodologies

for designing this common piece of the controller.

The two developed architectures contain feedforward controllers that are based

on plant models. Since these controllers are not in the feedback loop, they may be

easily adapted without affecting closed-loop stability. Chapter 7 provides methods for

adapting and augmenting these controllers based on system identification and rein-

forcement learning, respectively. In the work presented here, reinforcement learning

via echo state networks is considered. Echo state networks were originally defined

18

in terms of two necessary conditions on a recurrently connected layer in the ESN.

In [40], we both redefined these conditions into necessary and sufficient conditions

and provided a less restrictive sufficient condition. This material is presented in

Chapter 8.

Chapter 9 provides illustrative examples that demonstrate the two architectures

and the various adaptation schemes. The purpose of this chapter is to provide insight

on how to use the methods developed.

Chapters 10 and 11 are focused on a specific application of growing microalgae for

biofuel production. Chapter 10 develops a scalable model of a PBR. This model is a

physically-based model that is validated on using experimental data from an actual

PBR. Chapter 11 uses this model to develop controllers that regulate pH, which will

promote increases biomass production.

Chapter 12 concludes the presented work and provides future directions.

19

Chapter 2

Background

This chapter contains the preliminary material required for the controller development

in later chapters.

2.1 Polynomials and Transfer Functions

Most of the controller development will be focused on controlling continuous-time

plants that are modeled as linear time-invariant (LTI) real rational transfer functions.

A continuous-time transfer function may be expressed as a ratio of polynomials such

as

G(s) =
B(s)

A(s)
=

bmsm + bm−1s
m−1 + . . . b1s + b0

sn + an−1sn−1 + . . . a1s + a0

, (2.1)

where roots of the polynomial B(s) are the zeros of the transfer function G(s), and

the roots of the polynomial A(s) are the poles of the transfer function G(s). Here,

s ∈ C; however the coefficients of the B(s) and A(s) are real valued (i.e., bi ∈ R for

i = 1 . . .m and aj ∈ R for j = 1 . . . n). When s is evaluated at s = jω, the result,

namely G(jω), is referred to as the complex frequency response of the system. Systems

defined this way are known to have Hermitian symmetry (i.e., G(jω) = G(−jω)) and

their poles and zeros will appear as complex conjugate pairs (e.g., if s1 = −3 + j5 is

pole (or zero) of G(s), then s̄1 = −3 − j5 will also be a pole (or zero) of G(s)).

20

2.1.1 Relative Degree of a Transfer Function

The relative degree of a transfer function is given by “number of poles” minus the

“number of zeros”, or n−m from eqn (2.1). For a system to be realized in hardware,

it must have a non-negative relative degree (i.e., n ≥ m in eqn (2.1)), which is referred

to as a proper system. If n > m (i.e., a positive relative degree), this is referred to as

a strictly proper system, and if n = m, this is referred to as a biproper system.

The set of all real-rational proper transfer matrices is denoted RM. This is the

set of matrices whose entries are transfer functions of the form in eqn 2.1 with a

finite number of real coefficients (i.e., every matrix entry is a transfer function with

m ≤ n < ∞ and bk and ai are real for k = 1, . . . , m and i = 1, . . . , n, respectively).

2.1.2 Pole and Zero Locations

In the work presented here, causal continuous-time LTI systems will be classified as

stable, unstable, minimum-phase, and non-minimum-phase based on the location of

their poles and zeros. A general system may be decomposed into its stable, unstable,

minimum-phase, and non-minimum-phase components as

G(s) =
N(s)

D(s)
=

Nnmp(s)Nmp(s)

Du(s)Ds(s)
. (2.2)

Here, the roots of the numerator polynomial Nmp(s) are the minimum phase zeros of

G(s) with Re(s) < 0 and the roots of the numerator polynomial Nnmp(s) are the non-

minimum phase zeros of G(s) with Re(s) ≥ 0. Similarly, the roots of the denominator

polynomial Ds(s) are the stable poles of G(s) with Re(s) < 0 and the roots of the

denominator polynomial Du(s) are the unstable poles of G(s) with Re(s) ≥ 0. If there

are no poles or zeros in the half plane, then the polynomial is equal to one (e.g., if there

are no unstable poles in G(s), then Du(s) = 1). For the scenarios considered here,

stable means that the system is bounded input-bounded output (BIBO) stable, which

results from all of the poles being in the open left-half plane (LHP). In some contexts,

21

the term marginal is used to describe poles and zeros on the jω-axis (i.e., Re(s) = 0);

however, in this context, poles and zeros on the jω-axis will be considered unstable

and non-minimum phase, respectively. It should be noted that these definitions hold

for causal systems only.

2.1.3 Discrete Time Systems

Discrete-time transfer functions, such as G(z), are described by a ratio of polynomials

in z ∈ C. For causal discrete-time systems, minimum-phase zeros and stable poles lie

within the open unit circle (i.e., |z| < 1) and non-minimum phase zeros and unstable

poles lie on or outside the closed unit circle in the complex plane (i.e., |z| ≥ 1). The

discrete-time frequency response is the discrete-time transfer function, namely G(z)

evaluated on the unit circle (i.e., z = ejωTs), where Ts is the sample period of the

discrete-time system. This discrete-time complex frequency response is written as

G(ejωTs).

2.2 Zero-Order Hold Equivalent Systems

In practice, the final controller will be implemented in discrete-time. For the model-

based designs in the work presented here, a zero-order hold (ZOH) equivalent discrete-

time representation of the plant is used. Figure 2.1 illustrates the equivalence between

the continuous-time and discrete-time systems.

ZOH G(s)u[k]

u(t) y(t)

y[k] GZOH(z)u[k] y[k]

GZOH(z)

Figure 2.1: Zero-Order Hold Equivalent Block Diagrams

22

In this setting, a discrete-time control input u[k] is passed through a zero-order

hold digital-to-analog converter at rate Fs = 1/Ts to produce the continuous-time

control input u(t). This continuous-time control input is applied to the analog plant

G(s) to produce the continuous-time output y(t). If this output is sampled in phase

at the same rate of the digital system (i.e., sampled at rate Fs), then the outputs

from the two block diagrams in Figure 2.1 are equal. For more information, see [41].

2.3 All-Pass Filters

An all-pass filter is a filter that has a unity magnitude for all frequencies, but may

change the phase relationship between frequencies. An all-pass filter is created by

placing the poles and zeros in the transfer function such that for every stable pole in

the left half plane, there is a mirror image non-minimum phase zero in the right half

plane (i.e., the position of the zero is the pole location reflected across the jω axis).

A first order all-pass filter is give by

Hap(s) =
s − ᾱ

s + α
, (2.3)

where α ∈ C. In order to guarantee that the transfer function is causal and stable,

the restriction Re{α} > 0 is imposed.

2.3.1 Phase Interpolation

For the discussion here, we assume that α ∈ R. Now, the magnitude is given by

|Hap(jω)| =

∣∣∣∣
jω − α

jω + α

∣∣∣∣ =

√
ω2 + α2

ω2 + α2
= 1, (2.4)

which motivates the name all-pass. The phase response (in radians) is given by

θap = ∠Hap(jω) = π + tan−1

(
ω

−α

)
− tan−1

(ω

α

)

= π − 2 tan−1
(ω

α

)
, (2.5)

23

which can take on frequencies 0 < θap < π. For phase interpolation, we need to be able

to interpolate −π < θap ≤ π. For phases −π < θap < 0, the all-pass filter Hap(jω) =

−(jω−α)
jω+α

may be used, which has phase response θap = ∠Hap(jω) = −2 tan−1
(

ω
α

)
.

This leaves two special cases, namely θap = 0 and θap = π, which may be obtained by

setting Hap(jω) = 1 and Hap(jω) = −1, respectively.

Let G(jω) be a transfer function and let |G(jω0)| be the magnitude of G(jω)

evaluated at ω = ω0. We say that an all-pass filter interpolates the frequency ω0 of

G(jω) if there exists a all-pass filter such that

|Hap(jω)||G(jω)| = |G(jω)|, (2.6)

and

Hap(jω0)G(jω0) = |G(jω0)|. (2.7)

In polar form, G(jω0) = |G(jω0)|∠G(jω0), where ∠G(jω0) = 2πn + θG (n is an

integer and −π < θG ≤ π). Based on the developed equations, the relationship

Hap(jω0)G(jω0) = |G(jω0)|∠(2πn + θG + θap) (2.8)

The all-pass filter design constraint becomes θG + θap = 2π and α > 0 may be

solved by picking the appropriate transfer function. Let θap = π − θG and choose the

correct all-pass filter from the following options:

θap = π −→ H(s) = −1

0 < θap < π −→ H(s) =
s − α

s + α
, α =

ω0

tan
(

π−θap

2

)

θap = 0 −→ H(s) = 1

−π < θap < 0 −→ H(s) =
−(s − α)

s + α
, α =

ω0

tan
(

−θap

2

)

(2.9)

24

2.4 Norms for Signals and Systems

The robust and optimal controller analysis and synthesis considered here will be

quantified in terms of the “size” of signals and systems. One method for achieving

this is the use of signal and system norms. There are a variety of norms that are

commonly used to quantify controls systems; however, we will restrict the discussion

here to the norms that are used in the work presented here. For a more general review

of signal and systems norms, see [42; 43].

For signal norms, we will only utilize the 2-norm, which quantifies the energy in

a signal. The 2-norm of the signal w(t) is given by

‖w(t)‖2 =

(∫ ∞

−∞

∑

i

|wi(t)|
2dt

)1/2

. (2.10)

For system norms, we focus on the H2 and H∞ norms of a system G(jω). The

H2 norm of G(jω) is given by

‖G(jω)‖2 =

(
1

2π

∫ ∞

−∞

∑

i

σ2
i (G(jω))

)1/2

, (2.11)

which is finite if the transfer function G(s) is strictly proper. The H∞ norm of G(jω)

is given by

‖G(jω)‖∞ = sup
ω

σ(G(jω)), (2.12)

where σ(G(jω)) is the maximum singular value of the matrix G(jω).

In the optimal control settings considered later, controllers will be designed that

attempt to minimize the H2 norm and the H∞ norm of the final system (i.e., the

system that contains the plant and controller). These controllers are known as the

H2 optimal and H∞ optimal controllers, respectively.

25

2.5 Nominal Feedback Control

A traditional single degree-of-freedom linear time-invariant controller architecture is

shown in Figure 2.2.

K G+r(t) y(t)
e(t) u(t)

+
–

Figure 2.2: Nominal Feedback Controller Architecture

In this setting, the feedback controller adjusts the control signal u(t) based on the

error signal e(t). If the controller is tracking the output perfectly (i.e., y(t) = r(t)),

then the error is zero (i.e., e(t) = 0). The ability of the a closed-loop system to track

reference inputs is given by its sensitivity function

S(s) =
1

1 + G(s)K(s)
, (2.13)

which is the complex gain from commanded reference r(t) to tracking error e(t) (i.e.,

S(s) = E(s)
R(s)

). At frequencies where S(s) is small, the system is not very sensitive

and the output is tracking the reference input well (i.e., the error e(t) is small). The

complement of S(s) is known as the complementary sensitivity function T (s) and is

given by

T (s) = 1 − S(s) =
G(s)K(s)

1 + G(s)K(s)
, (2.14)

For the feedback system in Figure 2.2, the complementary sensitivity function is also

the closed-loop transfer function from commanded reference r(t) to plant output y(t)

and is labeled M(s) (i.e., M(s) = T (s) = Y (s)
R(s)

).

The feedback loop in Figure 2.2 is said have nominal stability (or internal stability)

if all of the poles of the closed-loop system satisfy Re(s) < 0 (i.e., they are in the open

left-half plane) and there are no pole/zero cancelations in Re(s) ≥ 0 when forming the

26

loop gain L(s) = G(s)K(s) (i.e., there are no unstable pole/zero cancelations). There

are standard ways (e.g., the Nyquist criterion) for determining internal stability of

the feedback structure in Figure 2.2 (c.f., [44; 42]).

For the discussion here [42], nominal performance is achieved if the plot of |S(jω)|

lies under a desired curve. This may be expressed as

|S(jω)| < |W1(jω)|−1 ∀ω (2.15)

or in other words

‖W1(jω)S(jω)‖∞ < 1. (2.16)

At frequencies where |W1(jω)| is large, the tracking error is required to be small

and the feedback controller is providing good tracking performance. At frequencies

where |W1(jω)| is small, the tracking error requirements are relaxed. This means that

the controller is not required to provide good performance in these frequency ranges,

which is often required for closed-loop stability. For many applications, performance is

required at lower frequencies (e.g., steady state tracking is a performance requirement

at DC). Most physical systems are strictly proper, which means that the interconnect

G(s)K(s) will be a strictly proper transfer function. Therefore, G(jω)K(jω) → 0 as

ω → ∞, which means that S(jω) → 1 at higher frequencies. As a result, it is difficult

to require much performance at higher frequencies.

2.6 SISO Robust Analysis

In this section, we build off the ideas of nominal stability (NS) and nominal perfor-

mance (NP) from the previous section to develop robust stability (RS) and robust

performance (RP) criteria that may be used to get a better understanding of how a

controller will perform on an actual system. For ease of reading, the transfer function

27

dependence on s will be dropped for this section, but the dependence is still implied

(e.g., the notation G will be used in place of G(s), but the two functions are identical).

In practice, the finite dimensional LTI plant model G will never fully “capture”

all of the dynamics of an actual plant. This is due to the fact that the actual plant

is infinite dimension and may contain nonlinearities. However, lower order models

are usually able to capture most of the actual plant dynamics, which is enough to

synthesize controllers that will be effective on the actual plant. For robustness anal-

ysis, we quantify a set of plants, labeled G̃, that contains the nominal plant G along

with a description of the un-modeled dynamics of the actual plant. For the cases

considered here, the set of plants G̃ is defined in terms of the nominal plant G and a

perturbation, labeled ∆. Two common perturbed plant descriptions are additive (i.e.,

G̃ = G + ∆) and multiplicative (i.e., G̃ = (1 + ∆)G); however other configurations

do exist. For more information, see [42; 43; 45].

For robust stability, stability must be guaranteed for every plant in the set G̃. The

tests for robust stability are specific to the formulation of the set of plants G̃. Nominal

stability is required for robust stability; however, the robust stability criteria discussed

next do not explicitly check for nominal stability. Therefore, nominal stability must

be checked separately before applying the robust stability tests.

For the discussion here, robust performance follows a similar path to nominal

performance in that it requires both robust stability and some weighted performance

criteria for all plants in the set G̃. Two methods for forming G̃ and their robust

stability and robust performance criteria are discussed next. These methods are

taken from [42].

2.6.1 Additive Uncertainty

One method for robust analysis is to consider a perturbed plant with additive uncer-

tainty. The set of additively perturbed transfer functions may be defined as

28

G̃ = {G + W2∆}. (2.17)

Here, W2 is a fixed stable transfer function, and an allowable ∆ is any stable transfer

function satisfying ‖∆‖∞ < 1. A block diagram for a standard feedback controller on

a plant with additive uncertainty is shown in Figure 2.3.

K G+r(t) y(t)
e(t) u(t)

+
–

+

W2 ∆

Perturbed Plant

+
+

Figure 2.3: Traditional LTI Feedback Architecture with Additive Uncertainty

The perturbed sensitivity function for a plant with additive uncertainty is given

by

S̃ =
1

1 + (G + ∆W2)K

=
1/(1 + GK)

(1 + GK + ∆W2K)/(1 + GK)
(2.18)

=
S

1 + ∆W2KS
(2.19)

For robust stability, the closed-loop poles of perturbed system must have Re(s) < 0

(i.e., the closed-loop poles must in the left half plane). This is addressed in the next

theorem that uses the methods provided in [42].

Theorem 1 (DFT [42]). (Additive uncertainty model) Assuming that K provides

nominal (closed-loop) stability for the block diagram in Figure 2.2, K provides robust

stability for the diagram in Figure 2.3 iff

‖W2KS‖∞ < 1.

29

Proof. (⇐) Assume that ‖W2KS‖∞ < 1. Construct the Nyquist plot of 1 + L =

1 + GK, indenting the contour to the left around poles on the imaginary axis. Since

nominal stability is assumed, we know that there are no unstable pole cancelations

when forming L = GK, the Nyquist plot of 1 + L does not pass through the origin,

and its number of counterclockwise encirclements of the origin equals the number of

poles of L in Re(s) ≥ 0.

Fix an allowable ∆. Construct the Nyquist plot of 1 + G̃K = 1 + (G + ∆W2)K =

1+GK+∆W2K. No additional contour indentations are needed since W2∆ introduces

no additional imaginary axis poles. We have to show that the Nyquist plot of 1+GK+

∆W2K does not pass through the origin and its counterclockwise encirclements of the

origin equals the number of poles of G+W2∆ in Re(s) ≥ 0 plus the number of poles K

in Re(s) ≥ 0. This is equivalent to requiring that the Nyquist plot of 1+GK+∆W2K

does not pass through the origin and encircles it exactly as many times as the Nyquist

plot of 1 + L. In other words, the perturbation does not change the number of origin

encirclements. To see this, observe from the derivation in eqn (2.18) that

1 + (G + ∆W2)K = (1 + L)(1 + ∆W2KS) (2.20)

Since ‖∆W2KS‖∞ ≤ ‖W2KS‖∞ < 1, the point 1 + ∆W2KS always lies in some

closed disk with center 1, radius < 1, for points s on the Nyquist contour. Therefore,

the disk does not include the origin. Thus, as s goes around Nyquist contour, the

net change in the angle of 1 + (G + ∆W2)K equals the net change in the angle of

1 + L, which means that the perturbation does not change the number of origin

encirclements. This gives the desired result.

(⇒) Suppose that ‖W2KS‖∞ ≥ 1. We will construct an allowable ∆ that destabi-

lizes the feedback system. When K is strictly proper (and S is proper), KS is strictly

proper, which means that at some frequency ω0,

30

|W2(jω0)K(jω0)S(jω0)| = 1. (2.21)

It was shown in Section 2.3.1 that a stable all-pass filter may be constructed such

that

∆(jω0)W2(jω0)K(jω0)S(jω0) = −|W2(jω0)K(jω0)S(jω0)| = −1. (2.22)

This ∆ is allowable and

1 + ∆(jω0)W2(jω0)K(jω0)S(jω0) = 0. (2.23)

From eqn (2.20), the Nyquist plot of 1 + (G + ∆W2)K passes through the origin, so

the perturbed feedback system is not internally stable. It should be noted that when

K is biproper, a limiting argument may be used to arrive at the same result.

Robust performance requires both robust stability and that the weighted per-

turbed sensitivity function be less than one for all ‖∆‖∞ ≤ 1 (i.e., ‖W1S̃‖∞ <

1 ∀ ‖∆‖∞ ≤ 1). This is stated more precisely as

‖W2KS‖∞ < 1 and

∥∥∥∥
W1S

1 + ∆W2KS

∥∥∥∥
∞

< 1, ∀ allowable ∆ (2.24)

With a slight abuse of notation, these criteria may be expressed as a condition on the

function

s 7→ |W1(s)S(s)| + |W2(s)K(s)S(s)|, (2.25)

which is denoted |W1S| + |W2KS|. A necessary and sufficient condition for robust

performance, which is proven next, is given by

‖|W1S| + |W2KS|‖∞ < 1, (2.26)

31

or equivalently,

|W1(jω)S(jω)|+ |W2(jω)K(jω)S(jω)| < 1 ∀ω ∪∞. (2.27)

This may be further expressed as

|W1(jω)S(jω)| < 1 − |W2(jω)K(jω)S(jω)| ∀ω (2.28)

⇐⇒
|W1(jω)S(jω)|

1 − |W2(jω)K(jω)S(jω)|
< 1 ∀ω (2.29)

⇐⇒

∥∥∥∥
W1S

1 − |W2KS|

∥∥∥∥
∞

< 1. (2.30)

Note that 1 − |W2(jω)K(jω)S(jω)| > 0 ∀ω is satisfied by the robust stability

requirement. Therefore, the inequality in eqn (2.29) holds.

Theorem 2 (DFT [42]). (Additive uncertainty model) A necessary and sufficient

condition for robust performance is

‖|W1S| + |W2KS|‖∞ < 1, (2.31)

Proof. (⇐) Assume eqn (2.31), or equivalently,

‖W2KS‖∞ < 1 and

∥∥∥∥
W1S

1 − |W2KS|

∥∥∥∥
∞

< 1 (2.32)

Fix ∆ and assume that each of the transfer functions are evaluated at an arbitrary

point jω. Then,

1 = |1 + ∆W2KS − ∆W2KS| ≤ |1 + ∆W2KS| + |W2KS|

and therefore

1 − |W2KS| ≤ |1 + ∆W2KS|.

32

This implies that

∥∥∥∥
W1S

1 − |W2KS|

∥∥∥∥
∞

≥

∥∥∥∥
W1S

1 + ∆W2KS

∥∥∥∥
∞

.

This along with eqn (2.32) yields

∥∥∥∥
W1S

1 + ∆W2KS

∥∥∥∥
∞

< 1. (2.33)

(⇒) Assume that

‖W2KS‖∞ < 1 and

∥∥∥∥
W1S

1 + ∆W2KS

∥∥∥∥
∞

< 1, ∀ allowable ∆. (2.34)

Pick a frequency ω0 where

|W1S|

1 − |W2KS|
(2.35)

is maximum. Now pick any ∆ such that

1 − |W2KS| = |1 + ∆W2KS|.

This amounts to choosing an allowable ∆ that satisfies

∆(jω0) = −∠W2(jω0)K(jω0)S(jω0) (2.36)

One way to achieve this is to choose an all-pass ∆ using the methods in Section 2.3.1.

Now,

∥∥∥∥
W1S

1 − |W2KS|

∥∥∥∥
∞

=
|W1S|

1 − |W2KS|
at ω0

=
|W1S|

1 + ∆W2KS
at ω0 (2.37)

≤

∥∥∥∥
W1S

1 + ∆W2KS

∥∥∥∥
∞

.

This finishes the necessity part of the proof.

33

2.6.2 Multiplicative Uncertainty

Another method for robust analysis is to consider a perturbed plant with multi-

plicative uncertainty. The set of perturbed transfer functions with multiplicative

uncertainty may be defined as

G̃ = {(1 + W2∆)G : ∆ is “allowable”}. (2.38)

As before, W2 is a fixed stable transfer function, and ∆ is variable stable transfer

function satisfying ‖∆‖∞ ≤ 1. In the case of multiplicative uncertainty, a ∆ is said to

be “allowable” if it satisfies this norm bound and if there are no unstable pole/zero

cancelations when forming G̃. A block diagram for a standard feedback controller on

a plant with additive uncertainty is shown in Figure 2.4.

K+r(t) y(t)
e(t) u(t)

+
–

+

W2 ∆

Perturbed Plant

+
+

G

Figure 2.4: Traditional LTI Feedback Architecture with Multiplicative Uncertainty

The perturbed sensitivity function for a plant with multiplicative uncertainty is given

by

S̃ =
1

1 + (1 + ∆W2)GK

=
1/(1 + GK)

(1 + GK + ∆W2GK)/(1 + GK)

=
S

1 + ∆W2T
(2.39)

For robust stability, the closed-loop poles of perturbed system must have Re(s) < 0

(i.e., the closed-loop poles must in the left half plane). This is addressed in the next

theorem that appears in [42].

34

Theorem 3 (DFT [42]). (Multiplicative uncertainty model) Assuming that K pro-

vides nominal (closed-loop) stability for the block diagram in Figure 2.2, K provides

robust stability for the diagram in Figure 2.4 iff

‖W2T‖∞ < 1.

Proof. The proof of this is very similar to the additive uncertainty proof in that it

uses a Nyquist argument to provide sufficiency and constructs a destabilizing ∆ to

show necessity. A full proof of this appears on pages 44-45 in [42].

Similar to the additive uncertainty case, the robust performance condition for

systems with multiplicative uncertainty is given by the following theorem.

Theorem 4 (DFT [42]). (Multiplicative uncertainty model) A necessary and suffi-

cient condition for robust performance is

‖|W1S| + |W2T |‖∞ < 1, (2.40)

Proof. The proof of this is very similar to the additive uncertainty proof. For suffi-

ciency, you fix an allowable ∆ and show the norm bound holds (across all frequency).

For necessity, you fix ω and show that all allowable ∆s will satisfy the norm bound

(for an arbitrary frequency ω). A full proof of this appears on pages 47-48 in [42].

2.6.3 Delay Uncertainty

A system with a time delay may be expresses as

Gd = Ge−sτd, (2.41)

where G is a delay free stable transfer function.

If there is a mismatch in time delay, the perturbed plant is defined as G̃d =

Ge−s(τd+∆τd), which results in the perturbed sensitivity function

35

S̃ =
1

1 + Ge−s(τd+∆τd)K

=
1/(1 + GK)

(1 + Ge−s(τd+∆τd)K)/(1 + GK)

=
1 + GK

1 + Ge−s(τd+∆τd)K
S. (2.42)

From this, weighted performance analysis can be computed in the frequency do-

main by evaluating S(jω) at individual frequencies. However, the robustness analysis

from previous section and the later controller synthesis require that the uncertainty be

described using rational transfer functions. In order to create this rational perturba-

tion, we note that this time delay uncertainty may be expressed using multiplicative

uncertainty. This is shown in Figure 2.5.

K Gi+r(t) y(t)
e(t) u(t)

+
–

+

Uncertain Time Delay

+
+

dse τ−

1−∆− dse τ

Figure 2.5: Traditional LTI Feedback Architecture with Time Delay Uncertainty

Now, a multiplicative uncertainty weight needs to be used that “covers” e−s∆τd−1.

Many ways for covering this uncertainty were given in [46] and their trade-offs were

examined. For the discussion here, we will pick our own weight based on the first

order Padé approximation

e−s∆τd ≈
1 − ∆τd

2
s

1 + ∆τd

2
s
. (2.43)

From this, an initial guess for the uncertainty weight is

W2(s) =
−∆τds

1 + ∆τd

2
s

(
≈ e−s∆τd − 1

)
. (2.44)

36

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

10

Original Weight (with ∆ τ
d
 = 0.5)

Frequency (rad/sec)
M

ag
ni

tu
de

 (
dB

)

Actual Delay
W

2
 Magnitude

Figure 2.6: Original Guess for a W2(s)

However, this weight does not “cover” e−s∆τd − 1. This is shown in Figure 2.6

This may be addressed by picking a weight of the form

W2(s) =
2βs

s + 2
α∆τd

. (2.45)

Now, the parameters α and β may be adjusted to cover e−s∆τd − 1. An example set

of parameters that were empirically tuned are α = 2.05 and β = 1.05. The resulting

weight is shown in Figure 2.7 and will be used in later robust controller synthesis

designs.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

10

Modified Weight (with ∆ τ
d
 = 0.5)

Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

Actual Delay
W

2
 Magnitude

Figure 2.7: Example W2(s) that will Cover an Uncertain Delay

37

2.7 Complex µ Analysis and Synthesis

In the previous section, we isolated a single tracking performance control objective

for a set of perturbed single-input single-output (SISO) systems. For multiple-input

multiple-output (MIMO) systems (and for SISO or MIMO systems with multiple

control objectives), a more general robustness framework is needed. In November

1982, two papers were published in the same issue of IEE Proceedings, Part D by

John Doyle [47] and Michael Safonov [48] that provided a general framework to handle

such systems. In Doyle’s paper [47], he defined the structured singular value (SSV),

which he labeled µ, and Safonov [48] defined the multivariable stability margin, which

he labeled km. From the definition of these two terms, it was clear that µ = 1/km

and that these two methods developed similar tools for analyzing robustness. For the

discussion here, we only consider the complex SSV as it was defined by Doyle in [47].

Over a decade after Doyle’s initial paper, a comprehensive and thorough treatment

of the complex SSV was provided in [49]. All of the information from this section was

taken from [50; 51; 52; 49; 43; 45].

P

K

















∆

∆

n

O

1

w z

u y

u∆ y∆

M

Figure 2.8: Standard Robust Controller Canonical System Interconnection

It may shown that many LTI interconnect may be rearranged into the standard

canonical form shown in Figure 2.8. In this configuration, P is the generalized plant

38

that contains the nominal plant and all of the weighted criteria that are used to

analyze and synthesize the controller K. In the previous section, the weighted criteria

were the model uncertainty weight W2(s) and tracking performance weight W1(s).

In a multiple objective control problem, tracking performance will not be the only

weighted performance criteria. In this case, signals such as the control authority may

also be weighted, and these weights are incorporated into the generalized plant model

P in Figure 2.8. ∆i for i = 1 . . .m are the block uncertainties that make up the

structured perturbation ∆ = block diag(∆1, . . . , ∆m). The set of all allowable ∆’s is

given by:

∆ = {∆ := block diag(∆1, . . . , ∆m), ∆i ∈ C
ni×ni}, (2.46)

where ni × ni are the dimensions of the perturbation ∆i.

Using linear fractional transforms (LFTs), the interconnect shown in Figure 2.8

may be expanded as

M = FL(P, K) = P11 + P12K(I − P22K)−1P21 (2.47)

z = FU(M, ∆)w, (2.48)

where

FU(M, ∆) = M22 + M21∆(I − M11∆)−1M12. (2.49)

Here, FL(·) and FU(·) are the lower and upper LFTs, respectively. In these defini-

tions, the generalized open-loop plant P and the nominal closed-loop system M are

partitioned as

39

P =

[
P11 P12

P21 P22

]
(2.50)

M =

[
M11 M12

M21 M22

]
, (2.51)

(2.52)

where the block partitions are obvious from the problem formulation.

For robustness analysis of a matrix with structured uncertainties such as those in

eqn (2.46), we use the structured singular value µ. The structured singular value for

a complex valued matrix M is given by

µ(M) =
1

min
∆∈∆

{σ(∆) : det(I − M∆) = 0}
, (2.53)

and if there is no ∆ ∈ ∆ that makes I − M∆ singular, we define µ(M) = 0.

Note that min
∆∈∆

{σ(∆) : det(I − M∆) = 0} is a size (measured via σ) of the

smallest “destabilizing” perturbation in the set ∆, i.e., one that makes det(I−M∆) =

0. Therefore, µ may be interpreted as the reciprocal of the size of the smallest

destabilizing perturbation.

In practice, the computation of µ is an NP-hard problem [53], which makes its

exact calculation computationally very intensive. To address this, upper and lower

bounds on µ have been derived that have shown to be very useful in practice (i.e.,

the upper and lower bounds appear to be very close to each other for many practical

problems). For the robust controller analysis and synthesis considered here, we make

particular use of the upper bound, which is stated next. Let D be the set of matrices

such that D∆ = ∆D, ∀ D ∈ D and ∆ ∈ ∆, (i.e., the matrices D and ∆ commute).

In the matrix case, this is not a trivial property. For the structured perturbation set

given in eqn (2.46), this set of matrices is given by

D = {D := block diag(d1I, . . . , dmI), di 6= 0}, (2.54)

40

where I denotes an identity matrix of the appropriate size (i.e., same size as the

appropriate block ∆i). Now, the (convex) µ upper bound is given by

µ(M) ≤ inf
D∈D

σ(DMD−1), (2.55)

which is a more tractable computation than calculating µ directly. Note that for

the discussion here, that the individual ∆i perturbations (and hence commuting diI

blocks) are assumed to be square matrices. While the theory may be extended to

non-square cases, the notation becomes cumbersome. For the details on computing

the µ upper bound with non-square perturbations, see [50].

To this point, µ has been defined for matrices; however the methodology may

be used in the context of systems. For robustness analysis of systems, we define

M(s) ∈ RH∞ to be a known stable system that contains the generalized plant P (s)

connected to the (stabilizing) controller K(s), and ∆(s) ∈ RH∞ to be an unknown,

but stable, transfer function with the appropriate block structure (see eqn (2.46)). In

Figure 2.8, robust performance is guaranteed if and only if ‖z(t)‖2 ≤ ‖w(t)‖2 for all

‖∆(s)‖∞ < 1. At any given frequency ω, M(jω) and ∆(jω) are matrices and µ is

well understood. Using the SSV, robust performance of the system may be expressed

as

RP ⇐⇒ sup
ω

µ(M(jω)) ≤ 1. (2.56)

It may be shown that the SISO robustness performance criteria from the previous

section are a special case of this more general result.

The robust controller synthesis considered in the work presented here relies on

the previously described µ framework. A procedure known as µ-synthesis is used

to synthesize both feedforward and feedback controllers. µ-synthesis approximately

optimizes µ via choice of K. For more details on µ-synthesis, see [50].

41

2.7.1 Optimal Control

For the feedforward controller designs considered in later chapters, H2 optimal and

H∞ optimal controllers are designed. For optimal control design, there are no struc-

tured uncertainties. The resulting general plant interconnect for optimal control

design is shown in Figure 2.9.

P

K

w z

u y

M

Figure 2.9: Standard Optimal Controller Canonical System Interconnection

The H2 optimal controller design optimizes ‖M(jω)‖2 via choice of K(s). The

computation of the H2 optimal controller involves two algebraic Riccati equations

that generate a global optimum solution.

The H∞ optimal controller design attempts to optimize ‖M(jω)‖∞ via choice of

K(s). This method uses a decision problem (i.e., a problem with a result of “pass”

or “fail”) to determine if a stabilizing K(s) exists with ‖M(jω)‖∞ < γ. Here, γ is

a real positive number. Using the decision problem, a search may be performed to

find the smallest γ (within a specified tolerance) for which there exists a stabilizing

controller with ‖M(jω)‖∞ < γ. Then, a stabilizing controller K(s) is calculated that

satisfies ‖M(jω)‖∞ = γ. The result is a slightly suboptimal controller.

From the definitions of the system norms in eqns (2.11) and (2.12), it is clear

that the H2 optimal controller minimizes all of the singular values of the closed-loop

system at all frequencies, whereas the H∞ optimal controller attempts to minimize

the peak value of the largest singular value. From a design perspective, each method

has its advantages and disadvantages. For more information on both of these design

42

methods, see [43; 45; 50].

2.8 Limitations on Performance

Feedback controllers are used to meet both performance requirements (such as track-

ing and disturbance rejection) and robustness requirements. These requirements are

satisfied by appropriately placing the poles of the closed-loop transfer function

M(s) =
G(s)K(s)

1 + G(s)K(s)
. (2.57)

By expressing G(s) = NG(s)
DG(s)

and K(s) = NK(s)
DK(s)

, the closed-loop transfer function

becomes

M(s) =
G(s)K(s)

1 + G(s)K(s)
=

NG(s)
DG(s)

NK(s)
DK(s)

1 + NG(s)
DG(s)

NK(s)
DK(s)

=
NG(s)NK(s)

DG(s)DK(s) + NG(s)NK(s)
. (2.58)

Equation 2.58 illustrates some general properties about the zeros and poles of the feed-

back system. The closed-loop poles, namely the roots of DG(s)DK(s)+NG(s)NK(s),

may be placed by choosing NK(s) and DK(s). In particular, unstable poles of the

plant G(s) may be moved into the left-half plane, which is required for stability.

However, the open-loop zeros of G(s)K(s) are also zeros of the closed-loop transfer

function. Left-half plane zeros in G(s) may be canceled by placing poles in K(s),

without violating internal stability. In this case, the zeros will not appear in either

the loop gain L(s) or closed-loop transfer function M(s). However, internal stability

requires that no RHP pole/zero cancelations happen when forming G(s)K(s). There-

fore, the right-half plane zeros of G(s) (and K(s)) will remain fixed in the closed-loop

response. This is a fundamental property that cannot be changed by either feedfor-

ward or feedback control.

43

2.8.1 Right-Half Plane Zero Step Response

Stable systems with right-half plane zeros will exhibit an inverse response. For ex-

ample, consider the transfer function

G(s) = 25
−s + 2

(s + 5)(s + 10)
, (2.59)

which has step response

s(t) = 1 − 7e−5t + 6e−10t. (2.60)

For this particular example, the step response has two zeros, namely t = 0 and

t = ln(6)
5

≈ 0.3584 seconds after the step has occurred. This may be seen by looking

at the plot of the step response shown in Figure 2.10. For the plot shown here, the

step occurs at t = 1 seconds. Therefore, the output from eqn (2.60) is delayed by one

second in Figure 2.10.

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5
Step Response

Figure 2.10: Step Response of a Stable System with One RHP Zero. The Red X
Marks the Second Zero Crossing that Results from the Initial Undershoot.

This undershoot behavior seen in Figure 2.10 may be proven by the following

theorem that is taken from [54].

Theorem 5. Suppose that G(s) is stable and G(0) 6= 0. Then its step response has

an undershoot if G(s) has a positive real zero.

44

Proof. Let z > 0 be a positive real zero of G(s) and y(t) be the step response. Then,

Y (s) = G(s)
1

s
=

∫ ∞

0−

y(t)e−stdt (2.61)

Notice that z is in the region of convergence of the Laplace transform of y(t). Then,

0 = G(z)
1

z
= L[y(t)](z) =

∫ ∞

0−

y(t)e−ztdt. (2.62)

Assume G(0) > 0. Then, y(∞) = G(0) > 0. Since y(t)e−zt > 0 for sufficiently large

t, there must exist t0 > 0 such that y(t0)e
−zt0 < 0, i.e., y(t0) < 0. A similar argument

applies when G(0) < 0.

2.9 Smith Predictors

Smith predictors provide a method for altering the properties in the feedback loop in

order to improve performance. Originally, they were used to improve the reference

tracking performance on systems with time delays [55; 1]. Since their conception,

the structure and methodology for Smith predictors has matured to further improve

their disturbance rejection performance and to improve their robustness properties

(c.f., [1]). In this section, we will outline the various forms of a Smith predictor. In

a sense, a Smith predictor acts as a cancelation controller. We will demonstrate this

by analyzing the internal stability of the various structures. For this reason, many

forms of the Smith predictor cannot be applied to unstable plants, since they form an

unstable pole/zero cancelation in the feedback loop. There has been much work in

this area and various researchers have provided their methods for compensating for

this.

45

2.9.1 Original Smith Predictor for Time Delays

The Smith predictor was originally introduced by Otto Smith in the 1950’s as a way to

overcome the effects of dead-time in a stable process [55]. In general, time-delays add

phase lag to systems that will reduce stability margins. In order to provide tracking

for such systems, controllers (e.g., PI controllers) are made less aggressive, so they

can maintain closed-loop stability. The Smith predictor seeks to remove the effect of

the time-delay by predicting what the plant output will be without the time delay.

In this setting, the plant model is defined as

Ĝ(s) = Ĝdf (s)e
−sτ̂d, (2.63)

where Ĝdf(s) is the delay free (and stable) plant model and e−sτ̂d is a model of the

plant time-delay. Here, the convention is that Ĝ(s) is a model of of the true plant

G(s) = Gdf (s)e
−sτd. This notation is used to expose the fact that model and physical

plant will differ in practice. Using this definition, A diagram of a Smith predictor for

a plant with time-delay is shown in Figure 2.11.

K(s) Gdf (s)e
-sτd+r(t) y(t)

e(t) u(t)

+
–

+Ĝdf (s) - Ĝdf (s)e
-s

+
+

yp(t)

dτ̂

Figure 2.11: A Smith Predictor for a Stable Plant with Time-Delay

Now, a prediction of the output without delay (yp(t)) is used in the feedback

path. In the nominal case (i.e., when Ĝ(s) = G(s)) with no external disturbances,

the nominal closed-loop system is given by

M(s) =
G(s)K(s)

1 + K(s)(G(s) + Gdf (s) − G(s))
=

G(s)K(s)

1 + Gdf(s)K(s)
. (2.64)

46

This shows that the feedback loop (i.e., 1 + Gdf (s)K(s)) does not contain the time

delay e−sτd. This removal of the time delay from the feedback loop may greatly

improve the tracking performance on plants with dead-time. However, the main

limitations to this method are

1. The performance can degrade quickly if there is a mismatch in time delay (i.e.,

τ̂d 6= τd).

2. The disturbance rejection performance is dominated by the slowest time con-

stant of the plant.

The last limitation may be overcome by using the modified Smith predictor discussed

on in the next section. For more information on the limitations of Smith predictors,

see [1].

2.9.2 The Modified Smith Predictor

The modified Smith predictor is a generalization of the original Smith predictor that

uses a (potentially) different plant model. The modification allows for improved

disturbance rejection and can be used to remove other plant dynamics (e.g., right-

half plane zeros) from the feedback path. An example implementation of a modified

Smith predictor is shown in Figure 2.12.

K(s) G(s)+r(t) y(t)
e(t) u(t)

+
–

+Gm(s) - Ĝ(s)
+
+

yp(t)

+

+
+

q(t)

Figure 2.12: A Modified Smith Predictor for a Stable Plant

In this setting, Ĝ(s) is the full plant model (with potential time delays), Gm(s) is

the modified plant model (without time delays), and K(s) is the feedback controller.

47

In the nominal case (i.e., Ĝ(s) = G(s)) with no disturbances, the predicted signal

being fed back is the output of Gm(s), and the closed-loop transfer function from r(t)

to y(t) is given by

M(s) =
Y (s)

R(s)
=

G(s)K(s)

1 + K(s)(G(s) + Gm(s) − G(s))
=

G(s)K(s)

1 + Gm(s)K(s)
. (2.65)

For the controller architecture that we will present later, we use a specific Gm(s) to

achieve our desired results. This will be presented in Chapter 5.

Let q(t) be a disturbance on the plant input shown in Figure 2.12, G(s) =

NG(s)e−sτd

DG
, Gm(s) = Nm(s)

Dm(s)
, and GK(s) = NK(s)

DK(s)
. Then, the response to the distur-

bance q(t) is given by

Y (s)

Q(s)
=

G(s)(1 + Gm(s)K(s) − G(s)K(s))

1 + Gm(s)K(s)

= G(s)

(
1 −

G(s)K(s)

1 + Gm(s)K(s)

)

=
NG(s)e−sτd

D2
G(s)

(
DG(s)Dm(s)DK(s) − NG(s)NK(s)Dm(s)e−sτd

Dm(s)DK(s) + Nm(s)NK(s)

)

(2.66)

This transfer function exposes one of the limitations of a Smith predictor, which

is that the poles of the original system G(s) may appear as poles in the disturbance

response. In particular, if there are slow poles in the plant, they have the potential to

dominate the disturbance rejection performance (i.e., the amount of time to correct for

a disturbance is dominated by the slowest pole in the original plant). One method for

dealing with this is to design Gm(s) such that the slow poles of G(s) are canceled in the

formulation G(s)(1+ Gm(s)K(s)−G(s)K(s)), which results in a form of cancelation

control. For stable pole/zero cancelations, this often works well [1]. It has been

argued that the same methodology may be extended to handle unstable systems by

putting constraints on K(s) and Gm(s) [1; 56]. These methods are discussed later in

48

the section on internal stability.

2.9.3 The Unified Smith Predictor

The unified Smith predictor is a general formulation of the previously discussed Smith

predictors. By using this formulation, we will show that the previous two Smith pre-

dictors are special cases of the unified Smith predictor. An example implementation

of a unified Smith predictor is shown in Figure 2.13.

K(s) G(s)+r(t) y(t)
e(t) u(t)

+
–

+H(s)

+
+

yp(t)

Figure 2.13: An Unified Smith Predictor

Here, H(s) and K(s) are design parameters that are picked to meet a certain

design objective. For the next discussion, we will assume the nominal case (i.e.,

perfect plant models). Some common choices of H(s) are:

H(s) = Ĝdf (s) − Ĝ(s) : Original Smith Predictor

H(s) = Gm(s) − Ĝ(s) : Modified Smith Predictor

H(s) = −Ĝ(s) : Internal Model Control

Using the factorizations Ĝ(s) = N̂nmp(s)N̂mp(s)

D̂u(s)D̂s(s)
e−sτ̂d, Ǧdf (s) = N̂nmp(s)N̂mp(s)

D̂u(s)D̂s(s)
and

Gm(s) = Nm(s)
Dm(s)

, these relations may also be expressed as

49

H(s) =
N̂mp(s)N̂nmp(s) − N̂mp(s)N̂nmp(s)e

−sτ̂d

D̂s(s)D̂u(s)
: Original Smith Predictor

H(s) =
Nm(s)D̂s(s)D̂u(s) − Dm(s)N̂mp(s)N̂nmp(s)e

−sτ̂d

Dm(s)D̂s(s)D̂u(s)
: Modified Smith Predictor

H(s) =
−N̂mp(s)N̂nmp(s)e

−sτ̂d

D̂s(s)D̂u(s)
: Internal Model Control

These methods work well when G(s) is stable. In these cases, the only restriction

on K(s) is that it must be stable. However, when G(s) is unstable, 1 + K(s)H(s)

is also required to have zeros at the location of the unstable poles of G(s) in order

to guarantee internal stability [56]. This restriction can severely limit the achievable

performance [56]. In the case of the modified Smith predictor, some of these restric-

tions are overcome by designing Gm(s) appropriately [1]. However, these methods

can lead to implementation issues. Some of these issues are addressed in the next

section.

2.9.4 Internal Stability

Internal stability of an LTI closed-loop system requires that all of the poles of the

closed-loop system be in the left half plane (i.e., Re(s) < 0) and that there are no

unstable pole/zero cancelations between the product of LTI systems in the feedback

loop. By their very nature, Smith predictors are cancelation controllers that attempt

to cancel all of the poles in a plant. This nature of Smith predictors makes them

unsuitable for implementation on unstable systems. In this section, we outline the

nominal stability conditions for controlling unstable systems using Smith predictors

that are currently present in the literature and demonstrate their limitations. In

the work presented in later chapters, we provide a model-based method that is more

promising for controlling unstable systems. To begin the discussion here, consider

the equivalent Smith predictor implementations shown in Figure 2.14.

Now, an equivalent Smith predictor may be expressed as the single feedback controller

50

K(s) G(s)+
+
–

+

H(s)

+
–

C(s)

K(s) G(s)+
+
–

+H(s)

+
+

r(t) r(t)y(t) y(t)

Figure 2.14: Equivalent Smith Predictor Implementations

C(s) =
K(s)

1 + K(s)H(s)
. (2.67)

For internal stability, we require that there are no unstable pole/zero cancelations

when forming G(s)C(s). Using the previously established notation, we can define the

equivalent feedback (Smith predictor) controller as

C(s) =

NK(s)
DK(s)

1 + NK(s)
DK(s)

NH(s)
DH(s)

=
NK(s)DH(s)

DK(s)DH(s) + NK(s)NH(s)
. (2.68)

It is clear from this representation that poles of H(s) (i.e., the roots of DH(s))

may appear as zeros of C(s). If the unstable poles of H(s) are also the unstable poles

of G(s), there is the potential for an unstable pole/zero cancelation when forming the

loop gain G(s)C(s), which would violate internal stability. In the previous section,

we showed that the common choices of H(s) will contain the same poles as G(s),

so this issue is present in the problem formulations considered here. It is possible

to design K(s) such that equivalent C(s) does not have RHP zeros at the roots of

DH(s). While this works in theory, there are implementation issues that that keep

this from being a viable option in practice. To see this, let H(s) (and also G(s)) have

RHP poles at s = pk = 1 . . .N . Then, DH(pk) = 0. In order for C(pk) 6= 0, we need

the following condition

DK(pk)DH(pk) + NK(pk)NH(pk) = 0, (2.69)

51

or equivalently,

1 + K(pk)H(pk) = 0. (2.70)

This restriction limits the behavior of K(s) near s = pk. As a result, this can seriously

limit the performance and robustness of the feedback system. A formal proof of this

along with the controller limitations for the IMC case is provided in [56]. To help

illustrate this point, let’s consider the case of IMC for the unstable plant

G(s) =
1

s − 1
(2.71)

For this plant, a stabilizing proportional controller is given by

C(s) = Kp, Kp > 1. (2.72)

Note that for IMC, H(s) = −G(s) = −1
s−1

. Using eqn 2.67, the feedback controller

K(s) may be solved for as

K(s) =
C(s)

1 − C(s)H(s)
=

Kp

1 + Kp

(s−1)

=
Kp(s − 1)

s + (Kp − 1)
(2.73)

Notice that the condition for closed-loop stability also results in K(s) being stable.

For IMC (and for Smith predictors), it is well known that K(s) must be stable in

order for the closed-loop system to be stable. This is proven in [56].

In eqn 2.70, the condition for closed-loop stability is that 1+K(s)H(s) = 0 when

s = 1. To verify this, note that

1 + K(s)H(s) = 1 +
Kp(s − 1)

s + (Kp − 1)

−1

s − 1
= 1 −

Kp

s + (Kp − 1)
. (2.74)

This means that

1 + K(1)H(1) = 1 −
Kp

1 + (Kp − 1)
= 0, (2.75)

52

and the nominal stability requirement is met. A simulation diagram for this is shown

in Figure 2.15.

Step1
Scope

1

s-1

Plant Model

s+6

7*[1 -1]

K(s)

Add2

Add

1

s-1

Actual Plant

Figure 2.15: Interconnect for the Unstable IMC Example with C(s) = Kp = 7

The simulation of this to a step response with Kp = 7 is shown in Figure 2.16. It

should be noted that this proportional controller does not provide very good steady

state performance (≈ 14.3% steady-state tracking error). This example is not de-

signed to provide good performance, but rather provide a numerical example of the

nominal stability conditions outlined to this point.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

O
ut

pu
t

IMC of an Unstable System

Reference
Measured

Figure 2.16: Example Simulation for the Unstable IMC Example with C(s) = Kp = 7

In eqn 2.74, there is an unstable pole/zero cancelation between K(s) and H(s).

Even though these are both user defined systems (and therefore known exactly), there

53

is an important practical implementation issue, namely it violates internal stability!

In particular, this structure assumes that the same exact control input (u(t)) will

be the input to both the “Plant Model” and the “Actual Plant” in Figure 2.16.

For the example here, nominal stability makes this assumption (i.e., that the two

systems see the same exact input signal). However, this method of implementation

does not satisfy internal stability. When there is any difference between the input

signals to the “Plant Model” and the “Actual Plant”, the unstable mode in the

“Plant Model” (i.e., in the H(s) for this example) will be excited and the closed-loop

system will go unstable. With the current example, there is always noise in the form of

numerical integration errors. Eventually, these errors will excite the unstable mode in

the “Plant Model” and the closed-loop system will go unstable. This is demonstrated

in Figure 2.17 where the same diagram from Figure 2.15 is simulated for a longer

time. After about 35 seconds of simulation time, the numerical integration errors on

the control signal (u(t)) excite the unstable mode in the “Plant Model” (H(s)). For

this very reason, this method will not be pursued further here.

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

O
ut

pu
t

IMC of an Unstable System

Reference
Measured

Figure 2.17: Example Simulation for the Unstable IMC Example with C(s) = Kp = 7

For the modified Smith predictor, methods have been proposed that remove the

54

unstable pole in H(s) by choosing Gm(s) appropriately (c.f.,[1] and the references

therein). To see this, let pk be an unstable pole in G(s) (i.e., DG(pk) = 0 and

Re(pk) ≥ 0). Then, if Gm(s) is defined such that

Nm(pk) − NG(pk)e
−pkτd = 0, (2.76)

there will not be an unstable pole at H(pk). In [1], they acknowledge the fact that

this method may not be implemented using a transfer function representation of

Gm(s). This is true even in the nominal case. In [1], they provide an alternate

implementation that suffers from its own limitations. Other approaches have tried

designing H(s) such that it does not contain any unstable poles (c.f., [57]). The

design of Smith predictors for unstable plants remains a topic of ongoing research

and will not be pursued further in the work presented here. Smith predictors are

fundamentally used to improve reference tracking, and we have our own approach for

doing this. Since Smith predictors are essentially cancelation controllers, they have

a fundamental limitation that does not make them well suited for unstable plants

and we will avoid using them in these situations. In light of this, we think that our

approach in Chapter 4 that improves reference tracking is more promising for unstable

plants.

2.10 Observers

Observers are used to estimate the internal state of a system. These state estimates

have many uses such as providing state information for state feedback controllers and

for model based feedforward control, the latter of which will be used in Chapter 11.

States may be estimated by considering the state-space representation of a linear time

invariant (LTI) model, namely

55

ẋ = Ax + Bu

y = Cx + Du. (2.77)

An estimate of the state variable x is created by explicitly creating the model in

equation (2.77). This estimated state variable is labeled x̂, and the estimated output

that it produces is ŷ. The state space equations for the modeled system state are

˙̂x = Ax̂ + Bu

ŷ = Cx̂ + Du (2.78)

Here, the actual input to the system, namely u, is used to produce the state and

output estimates, namely x̂ and ŷ, respectively. In practice, the initial conditions are

unknown (i.e., x(0) is unknown). After an initial startup period, the observer tracks

the state vector x̂, which overcomes this issue. Also, there are modeling errors in the

A, B, C, D matrices along with external disturbances that will cause the estimated

output ŷ and measured output y to diverge away from each other over time. As

a result, the state estimate x̂ will diverge away from the actual state x. For the

specified model in eqn (2.78), an observer may be used to track an estimate of x. A

block diagram for an observer that asymptotically tracks x is shown in Figure 2.18.

The part of the block diagram that implements equation (2.78) is surrounded by a

dotted box.

In order to track the state x, the error signal between the estimated output ŷ and

the measured (actual) output y is used to correct the state estimate x̂ through an

observer gain (L). The closed-loop model of x̂ is

56

+

D

L

+

+

s

1u

+
-

ŷ

y

+

+ +

+ +
B C

A

x̂x&̂

Figure 2.18: Basic Observer for an LTI System.

˙̂x = Ax̂ + Bu + L(ŷ − y)

= Ax̂ + Bu + L[(Cx̂ + Du) − (Cx + Du)]

= Ax̂ + Bu + LC(x̂ − x) (2.79)

The error signal between the estimated state and actual state is defined as

e = x̂ − x

ė = ˙̂x − ẋ (2.80)

With the help of equations (2.77) and (2.78), equation (2.80) becomes

ė = (A ˙̂x + Bu + LC(x̂ − x)) − (Ax + Bu)

= A(˙̂x − x) + LC(x̂ − x))

= (A + LC)e (2.81)

By placing the eigenvalues of A + LC suitably in the open left half plane, global

asymptotic stability is guaranteed for equation (2.81), which means that x̂ will track

x. As a general design rule, x̂ should track x about 5 to 10 times faster than the

57

plant dynamics [45], which is the methodology used to design the observer based

feedforward controller presented in Chapter 11.

58

Chapter 3

Problem Formulation

It is well known that the non-minimum phase components of a plant (i.e., right-half

plane (RHP) zeros and time delays) can limit the level of achievable performance of

a feedback control system. These limitations are quantified by the Bode sensitivity

integrals given in [42]. In Section 2.8, we showed that feedback is unable to move

zeros and that internal stability does not allow for unstable pole/zero cancelations

between systems in the feedback loop. This means that RHP zeros cannot be elimi-

nated using feedback. Also, theses zeros cannot be stably canceled using feedforward

methods. Therefore, RHP zeros in the plant (or feedback controller) will always ap-

pear in the final closed-loop transfer function. In a similar fashion, time delays cannot

be causally eliminated using feedforward or feedback controllers 1. Therefore, non-

minimum phase components of the plant will appear in the final closed-loop transfer

function. In the work presented here, a controller architecture is developed that can

quantify the achievable level of performance for a non-minimum phase system by

defining the class of signals that a non-minimum phase system can perfectly track in

the nominal case with no external disturbances.

After a brief overview of the nomenclature used, we will begin the problem for-

1In “preview control”, the reference input is known ahead of time and the controller is able to
act (non-causally) before the reference input occurs. This is not the case considered here.

59

mulation by considering a known feedforward plus feedback controller architecture

that can provide perfect tracking control for minimum-phase systems. Even with this

architecture, we can begin to formulate the restrictions that zeros at infinity impose

on perfect tracking control. This initial observation provides insight into the two new

architectures that we will provide for perfect tracking of non-minimum phase systems,

which we will label the dual feedforward predictive control (DFFPC) architecture and

the dual feedforward Smith predictor (DFFSP) architecture. One advantage to these

architectures is that the feedforward controllers may be nonlinear and time-varying

without affecting the closed-loop stability, provided the signals they inject into the

feedback loop are bounded. A detailed discussion of these two methods will be pro-

vided in Chapters 4 and 5.

The methods presented here rely on model-based feedforward controllers. There-

fore, the accuracy of these models will determine the performance of the overall

system. Robustness tools are developed in Chapters 4 and 5 that can predict how

well the controllers will perform for a given amount of model uncertainty. If more

performance is desired, either a better model with less uncertainty should be devel-

oped a priori, or the plant model should be learned via adaptation. The methods for

developing these models, evaluating robust performance, and improving the models

using adaptation techniques will be discussed in Chapters 4, 5, 6, 7, and 8. Numerical

examples that demonstrate the developed tools is provided in Chapter 9.

Each method presented here will contain two feedforward controllers. One con-

troller provides a prediction of the signal in the feedback path and the other provides

a feedforward control signal that will drive the plant output along the path provided

by the first feedforward controller. Some methods for designing pieces of these con-

trollers are: µ-synthesis, H2 optimal, and H∞ optimal control. These methods will

be presented in Chapter 6.

60

3.1 Nomenclature

The systems considered here are plants that are well modeled by proper linear time-

invariant (LTI) systems with possible non-minimum phase components such as time

delays and RHP zeros. The transfer function of the LTI plant G(s) is defined to be

G(s) =
KDCN(s)

D(s)
=

KDCNnmp(s)Nmp(s)

Ds(s)Du(s)
e−sτd , (3.1)

where KDC is a gain and Nnmp(s), Nmp(s), Du(s), and Ds(s) are the non-minimum

phase, minimum-phase, unstable, and stable polynomials that were discussed in Sec-

tion 2.1. When there are no integrators (i.e., poles at s = 0), KDC is the DC gain

of the system. Recall that if there are no roots in the half plane associated with the

polynomial, then the polynomial is set to one (e.g., if there are no minimum-phase

zeros in G(s), then Nmp(s) = 1). The systems considered here are not allowed to

have a zero at the origin (i.e., G(0) 6= 0, which means Nnmp(0) 6= 0). This is not

much of restriction since a plant with single zero at the origin (i.e., G(0) = 0) would

require a ramp input to asymptotically track step changes (i.e., an unbounded control

signal is required to maintain a constant output). Without loss of generality, most of

these polynomials may be defined to be equal to one when s = 0 (e.g., Nmp(0) = 1).

The only exception is when there are poles at s = 0. If there is an l-th order pole

at s = 0, then Du(s) may be expressed as Du(s) = slĎu(s), where Ďu(0) = 1. This

may be done by choosing the scaling KDC appropriately. As an example, consider the

transfer function

G(s) =
75(−s + 2)

(s + 5)(s + 10)
=

75(2)(−s
2

+ 1)

[5(s
5

+ 1)][10(s
10

+ 1)]
=

3(−s
2

+ 1)

(s
5

+ 1)(s
10

+ 1)
. (3.2)

Now,

61

KDC = 3

Nnmp(s) =
−s

2
+ 1

Nmp(s) = 1

Du(s) = 1

Ds(s) =
(s

5
+ 1
)(s

10
+ 1
)

.

For the controller architectures in the next chapter, the plant model is split into

two pieces, namely a piece that has a stable causal inverse (labeled Gi(s)) and a piece

that does not have a stable causal inverse (labeled Gnoi(s)) by defining G(s) as

G(s) = Gnoi(s)Gi(s). (3.3)

In the next sections, we provide a decomposition that achieves this desired split.

3.1.1 Non-invertible/Invertible Decomposition (NID)

For the plant provided in eqn (3.1), the invertible/noninvertible decomposition (NID)

is given by

Gnoi(s) = Nnmp(s)e
−sτd (3.4)

Gi(s) =
KDCNmp(s)

Ds(s)Du(s)
. (3.5)

This split comes directly from the plant definition, and it is clear that that G(s) =

Gnoi(s)Gi(s). Now, the stable causal (but not necessarily proper) inverse of Gi(s) is

given by

G−1
i (s) =

Ds(s)Du(s)

KDCNmp(s)
. (3.6)

62

For some of the controller synthesis methods used later in this chapter, it is nec-

essary to split Gi(s) into its stable and unstable parts. For this we will define

Gi(s) = Gis(s)Giu(s) =

(
KDCNmp(s)

Ds(s)

)(
1

Du(s)

)
, (3.7)

where Gis(s) = KDCNmp(s)
Ds(s)

and Giu(s) = 1
Du(s)

.

It should be noted that in this decomposition, Gnoi(s) and G−1
i (s) are not proper

transfer functions by themselves, which means that they cannot be physically realized

as individual systems. This will not be an issue in the controllers presented here

since these expressions will be pieces of an overall controller that will be proper, and

therefore, may be implemented using physical hardware.

3.1.2 Discrete-Time Representations

The NID has a discrete-time equivalent, where stable and minimum-phase compo-

nents are now strictly inside the unit circle (i.e., |z| < 1) (instead of the open left-half

plant (LHP)), and the unstable and non-minimum phase components are on or out-

side of the unit circle (i.e., |z| ≥ 1) (instead of the closed RHP). For a discrete-time

system, the decomposition is given by

G(z) =
KDCNmp(z)Nnmp(z)

Ds(z)Du(z)
z−Nd . (3.8)

Here, the Nd-sample delay translates to a delay of τd = NdTs seconds. In the ap-

plications considered here, G(z) will be the zero-order hold (ZOH) equivalent of a

continuous-time plant (G(s)). It should be noted that this formulation does not

require the plant delay of the underlying continuous-time plant to be an integer mul-

tiple of sample period, namely Ts, of the discrete-time system. For continuous-time

systems that have a non-integer delay, we can use a modified Z-transform to get a

different G(z) that contains the effect of the fractional part of the delay (i.e., the frac-

tional part of τd/Ts) [41]. Given the appropriate G(z), the factorization in eqn (3.8)

63

may be defined.

For illustrative purposes, we will continue with the previous example. For the

continuous-time plant in eqn (3.2), the ZOH equivalent of the continuous-time plant

with sampling period Ts = 0.01 is given by

GZOH(z) =
−0.68874(z − 1.0202)

(z − 0.9512)(z − 0.9048)
. (3.9)

At DC (i.e., ω = 0) the value of z = ejωTs is z = 1. In order to guarantee the same

polynomial constraint from before (i.e., G(z) = 1 when ω = 0, or G(1) = 1), the

following method is used to redefine the polynomials and appropriate DC gain.

GZOH(z) =
−0.68874(1 − 1.0202) z−1.0202

1−1.0202

(1 − 0.9512) z−0.9512
1−0.9512

(1 − 0.9048) z−0.9048
1−0.9048

=
3 z−1.0202

1−1.0202(
z−0.9512
1−0.9512

) (
z−0.9048
1−0.9048

) . (3.10)

Here, the DC gain is the same as before2 (i.e., KDC = 3) and the other polynomials

are given by

Nnmp(z) =
z − 1.0202

1 − 1.0202
≈ −49.4667z + 50.4667

Nmp(z) = 1

Du(z) = 1

Ds(z) =

(
z − 0.9512

1 − 0.9512

)(
z − 0.9048

1 − 0.9048

)
≈ (20.504z − 19.504)(10.508z − 9.508).

(3.11)

Here, the approximately equal signs are to account for rounding errors in the values

displayed.

2Due to the finite precision of polynomial representations given in eqn (3.10), KDC will appear

to be −0.68874(1−1.0202)
(1−0.9512)(1−0.9048) = 2.995. However, with more precision, the value of KDC is actually 3.

64

3.1.3 Perfect Tracking

Throughout the work presented here, the term “perfect tracking” is used in a very

specific context. In particular, we use it to describe systems in the nominal case (i.e.,

the plant model is perfect) when there are no external disturbances. In this case,

perfect tracking means that the feedback error is zero for all time (i.e., e(t) = 0), which

must hold for all reference inputs (r(t)). This is equivalent to having no sensitivity

to inputs (i.e., S(s) = E(s)
R(s)

= 0), which may be achieved by defining a (feedforward)

filtered reference input (rff) that the plant can actually follow in the nominal case

with no external disturbances. In this case, the error signal is really e(t) = y(t)−rff(t)

and not the standard feedback error e(t) = y(t) − r(t). This is necessary to achieve

perfect tracking for all strictly proper minimum-phase and all proper non-minimum

phase systems. The only class of systems that may be perfectly tracked under the

condition e(t) = y(t) − r(t) = 0 are stable minimum-phase biproper systems (i.e.,

G−1
i (s) is a biproper feedforward controller and G−1

i (s)G(s) = I is a trivial form of

perfect tracking control). This idea of perfect tracking for minimum-phase systems

and its extensions to non-minimum phase systems is developed next.

3.2 A Known Two-Stage Feedforward Controller

Architecture

For the control architecture discussed here, we will restrict the discussion to minimum-

phase plants with no time delays (i.e., G(s) = Gi(s) = KDCNmp(s)
Ds(s)Du(s)

). Perfect tracking

for minimum-phase plants may be achieved using a known architecture, which will

be presented next. This architecture forms the base for the architectures presented

later. Collectively, we will refer to these methodologies that provide perfect tracking

as two-stage feedforward control (TSFFC).

65

3.2.1 Minimum-phase Biproper Plants

To begin, we consider minimum-phase biproper plants. In the biproper case, G−1
i (s) =

Ds(s)Du(s)
KDCNmp(s)

is a stable biproper transfer function that is realizable in hardware. In this

case, any reference signal may be tracked with zero tracking error in the nominal case

with no external disturbances (i.e., perfect tracking of r(t) is achieved). A TSFFC

architecture that achieves this is shown in Figure 3.1.

Gi
-1(s)

K(s) Gi(s)+ +

r(t)

y(t)
e(t)

uff (t)

u(t)ufb(t)
+
+

+

–

Figure 3.1: Two-stage Feedforward Control for a Minimum-phase Biproper Plant

The controller architecture for a biproper minimum-phase plant shown in Fig-

ure 3.1 has sensitivity function

S(s) =
G−1

i (s)Gi

1 + Gi(s)K(s)
−

1

1 + Gi(s)K(s)
= 0, (3.12)

and closed-loop transfer function

M(s) =
G−1

i (s)Gi

1 + Gi(s)K(s)
+

Gi(s)K(s)

1 + Gi(s)K(s)
= 1. (3.13)

Notice that the unstable poles of Gi(s) become non-minimum phase zeros in

G−1
i (s). It should be noted that this implementation does not violate internal stability

since there are no direct unstable pole/zero cancelations between the systems G−1
i (s)

(in the feedforward controller) and plant Gi(s), but rather an interaction between a

stable signal (uff(t)) and a stable feedback loop formed by Gi(s) and K(s). This is

a subtle, but important, point. Internal stability of the system in Figure 3.1 requires

the feedback loop (defined by K(s) and Gi(s)) to be stable. If this feedback loop is

66

stable (i.e., the poles of 1+Gi(s)K(s) are in the open LHP and there are no unstable

pole/zero cancelations in the formation of Gi(s)K(s)), then the overall system will

be stable provided all of the external inputs are bounded. In this case, the external

signals that must be bounded are r(t) and uff (t). Since G−1
i (s) will be stable, uff(t)

will be bounded if r(t) is bounded. If Gi(s) contains an unstable pole, then uff(t)

will contain an inverse response to step changes that is a result of the non-minimum

phase zero in G−1
i (s). In a sense, this is an unstable pole/zero cancelation between

the signal uff(t) and the system Gi(s), which is not the same as a cancelation be-

tween two systems. To explore this further, let ǫ(t) be a non-zero time function. If

the feedforward control signal is perturbed to uff(t)+ǫ(t), the feedback loop (defined

by K(s) and Gi(s)) will still be stable, since the feedback loop is designed to be

internally stable. In this case, the feedback controller will use ufb(t) to stably correct

for the error caused by ǫ(t).

For the illustrative examples considered in the work presented here, performance

will be demonstrated by tracking reference input step functions. The fact that M(s) =

1 for minimum-phase biproper plants means that any reference input (r(t)) may be

perfectly tracked (i.e., y(t) = r(t)). In particular, this means that reference step

inputs may be perfectly tracked. To see this, consider the biproper unstable minimum-

phase plant

G1(s) =
s + 3

−s + 1
=

3(s
3

+ 1)

−s + 1
(3.14)

For this plant, the plant components from eqn (3.1) are given by KDC = 3,

Nnmp(s) = 1, Nmp(s) = (s
3

+ 1), Ds(s) = 1, and Du(s) = −s + 1, and the resulting

NID is Gi(s) = G1(s) and Gnoi(s) = 1.

A feedback controller was designed for this plant using a weighted µ-synthesis

algorithm with additive uncertainty. The result was

67

K(s) =
−46.3348(s + 200)(s + 30.02)(s + 10)(s + 0.3865)

s(s + 189.3)(s + 2.399)(s2 + 136.2s + 5750)
(3.15)

A simulation of the feedback only system with the above controller is shown in Fig-

ure 3.2.

0 2 4 6 8 10 12
0

0.5

1

1.5
Perturbed Step Responses using a Robust Feedback Controller

O
ut

pu
t

0 2 4 6 8 10 12
−0.5

0

0.5

1

C
on

tr
ol

 A
ut

ho
rit

y

Reference
Nominal Plant
Perturbed Plants

Nominal Plant
Perturbed Plants

Figure 3.2: Nominal and Perturbed Step Responses with a Feedback Controller

In this example, both the nominal plant G1(s) and randomly perturbed plants

G1(s) + ∆(s) with ‖∆(s)‖∞ = 0.3 are plotted. The results show that similar perfor-

mance is achieved in the nominal and perturbed cases.

Using the TSFFC block diagram in Figure 3.1, steps may be tracked perfectly. A

simulation of the TSFFC is shown in Figure 3.3.

In the top graph, the input step reference (solid red line) and plant output (dotted

black line) are identical, which demonstrates perfect tracking. This is echoed in the

bottom graph where the feedback error is zero for all time (i.e., e(t) = 0). Also in the

bottom graph, the control signal that provides perfect tracking is shown. Since the

plant and controller are both biproper, there is an instantaneous jump in both the

control signal and the plant output, which allows for the perfect tracking of a step

reference input.

68

0 1 2 3 4 5
0

0.5

1

1.5

O
ut

pu
t

TSFFC Nominal Step Response on a Biproper Minimum−phase Plant

Reference
TSSFC

0 1 2 3 4 5
−1

−0.5

0

0.5

F
B

 S
ig

na
ls

Control Signal
FB Error

Figure 3.3: Perfect Tracking of a Biproper System using TSFFC

Previously, it was claimed that the TSFFC architecture in Figure 3.1 does not

violate internal stability. This is demonstrated using two perturbation techniques.

In the first method, we leave G−1
i (s) = −s+1

s+3
, but we define Gi(s) = s+3

−s+1.2
. Now

there is a mismatch between the RHP zero in G−1
i (s) and the unstable pole in Gi(s).

Provided the feedback controller is able to stabilize this new plant, the TSFFC will

remain stable. A simulation of this is shown in Figure 3.4.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

O
ut

pu
t

TSFFC Perturbed Step Responses on a Biproper Minimum−phase Plant

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

F
B

 S
ig

na
ls

Reference
Nominal Plant
Perturbed Plants

Nominal Control Signal
Nominal FB Error
Perturbed Control Signal
Perturbed FB Error

Figure 3.4: TSFFC Perturbed Unstable Pole Step Response

69

Here, the TSFFC architecture is not providing perfect tracking, but the response

is still better than the feedback only structure. Also the overall system is stable, since

closed-loop stability of the system is determined solely by K(s) and is unaffected by

the stable dynamics in the signal uff (t).

As a second example, the same perturbations used for the feedback only simu-

lations in Figure 3.2 are used to perturb the plant. As in the previous example,

G−1
i (s) = −s+1

s+3
, but we define Gi(s) = Gi(s) + ∆(s) with ‖∆(s)‖∞ = 0.3 using the

same ∆(s) perturbations from feedback simulation example. The results are shown

in Figure 3.5.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

O
ut

pu
t

TSFFC Perturbed Step Responses on a Biproper Minimum−phase Plant

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

F
B

 S
ig

na
ls

Reference
Nominal Plant
Perturbed Plants

Nominal Control Signal
Nominal FB Error
Perturbed Control Signal
Perturbed FB Error

Figure 3.5: TSFFC Perturbed Additively Perturbed Step Responses

For this case, a similar level of robustness is achieved for both the perturbed

TSFFC and perturbed feedback only structures. The addition of the feedforward

controller acts to “center” the reference trajectory that the feedback controller must

correct against. Unlike the robust feedback only controller, which is trying to both

track “large” reference signals and reject “small” disturbance signals, the feedback

controller in the TSFFC architecture is only trying to reject “small” disturbances,

which is well suited to the robust and optimal controller synthesis algorithms used.

70

3.2.2 Minimum-phase Strictly Proper Plants

For strictly proper minimum-phase plants, Gi(s) = G(s) and G−1
i (s) is stable. Unlike

the biproper case, G−1
i (s) is not a proper transfer function, which means that it

not physically realizable. To account for this, a filter Pdes(s) may be created such

that the feedforward controller Pdes(s)G
−1
i (s) is strictly proper. In this case, the

overall control system will be able to perfectly track reference signals that have been

filtered by Pdes(s). A controller architecture that achieves perfect tracking for proper

minimum-phase systems is shown in Figure 3.6.

Pdes(s) Gi
-1
(s)

K(s) Gi(s)+ +

r(t)

y(t)

rff (t)

e(t)

uff (t)

u(t)ufb(t)
+
+

+

–

Figure 3.6: TSFFC for a Stable Minimum-phase Plant

In the nominal case with no external disturbances, the feedforward control signal

(uff(t)) will drive the plant output trajectory (y(t)) along the predicted filtered refer-

ence (rff (t)). When the plant is biproper (as in the previous example), Pdes(s) = 1 is

a valid option and the architecture in Figure 3.6 reduces down to the architecture in

Figure 3.1. When the plant Gi(s) is strictly proper, G−1
i (s) is not proper; however, the

cascade of systems formed by Pdes(s)G
−1
i (s) can be designed to be proper. To see this,

let Gi(s) have m zeros and n poles. Then, the relative degree of Gi(s) is n − m > 0

and G−1
i (s) has the negative relative degree of m− n < 0, which is not proper. How-

ever, if the relative degree of Pdes(s) is at least n − m, then Pdes(s)G
−1
i (s) will have

a positive relative degree, and therefore, be proper. For the TSFFC architecture in

Figure 3.6, the sensitivity function is given by

S(s) =
Pdes(s)G

−1
i (s)Gi

1 + Gi(s)K(s)
−

Pdes(s)

1 + Gi(s)K(s)
= 0, (3.16)

71

and closed-loop transfer function

M(s) =
Pdes(s)G

−1
i (s)Gi

1 + Gi(s)K(s)
+

Pdes(s)Gi(s)K(s)

1 + Gi(s)K(s)
= Pdes(s). (3.17)

Unlike the biproper case, strictly proper systems cannot track a step perfectly.

Instead they can perfectly track a step that has been filtered by Pdes(s). This ad-

ditional design parameter is required to make feedforward controller Pdes(s)G
−1
i (s)

proper. To see the implications of this, consider the strictly proper plant

G2(s) =
Kω2

n

s2 + 2ξωns + ω2
n

=
0.5

s2 + 0.1s + 0.25
, (3.18)

where, K = 2, ξ = 0.1, and ωn = 0.5 rad/sec. For this plant, the plant components

from eqn (3.1) are given by KDC = 2, Nnmp(s) = 1, Nmp(s) = 1, Ds(s) = (s2

ω2
n

+ 2ξs
ωn

+

1) = (4s2 + 0.4s + 1), and Du(s) = 1, and the resulting NID is Gi(s) = G2(s) and

Gnoi(s) = 1. For the example considered here, we will choose

Pdes(s) =
1

(τs + 1)2
, (3.19)

where the design parameter τ determines the bandwidth (1/τ) of the filter Pdes(s).

Specifically, a smaller τ will result in a larger bandwidth that will result in a faster

step response. This is illustrated in Figure 3.7, where step responses with τ = 1, 0.5,

and 0.1 are shown.

The TSFFC controller from Figure 3.6 is able to perfectly track the filtered refer-

ences in Figure 3.7 (i.e. y(t) = rff (t)). While it is not possible to perfectly track an

ideal step (i.e., the unfiltered step r(t) in Figure 3.7) in the proper case, the filtered

reference can be made arbitrarily close to an ideal step by making τ arbitrarily small.

However, as the bandwidth increases, so does the magnitude of the control signal.

This is illustrated in the bottom graph of Figure 3.7, where the peak magnitude of the

control signal is rapidly increasing as τ becomes smaller. This will lead to robustness

issues, which will put an additional design constraint that was not present in the

72

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

O
ut

pu
t (

y(
t)

 =
 r

ff(t
))

Perfect Tracking for Various τ Values

r(t) (unfiltered)
r
ff
(t) with τ = 0.4

r
ff
(t) with τ = 0.7

r
ff
(t) with τ = 1

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

C
on

tr
ol

 S
ig

na
l (

u ff(t
))

τ = 0.4
τ = 0.7
τ = 1

Figure 3.7: Nominal Step Responses for a Strictly Proper Minimum-phase Plant

biproper case. In the chapters that follow, robust analysis tools are developed that

may be used to guide the Pdes(s) design process. This example will be studied more

thoroughly in Chapter 9.

3.3 Limitations with Current Methods

In the biproper minimum-phase case, there are no RHP zeros in G(s) and ideal

steps may be perfectly tracked. When G(s) is strictly proper, but still minimum-

phase, it has a right-half plane zero at infinity (i.e., the region of convergence of

G(s) includes the RHP as it extends toward ∞ and lims→∞ G(s) = 0). The result is

that ideal steps can no longer be perfectly tracked; however, filtered reference signals

may be perfectly tracked (with an appropriate Pdes(s) filter). While not currently

presented this way in the literature, the requirement of a reference input filter for

perfect tracking demonstrates that a RHP zero at infinity will limit the achievable

performance.

When there is a finite RHP zero or time delay in the plant, the methods, as

they have been presented here, will not be able to provide perfect tracking. For

perfect tracking of a non-minimum phase plant, an augmentation to the architecture

73

is required. Two architectures are presented in the next two chapters that address

this limitation.

For the architectures in this chapter and the ones used in the next two chapters,

robust performance will directly related to the accuracy of models used in the feed-

forward controllers and the particular choice of Pdes(s). Currently, tools do not exist

for designing and analyzing the effectiveness of the controller architecture when there

are inaccuracies in the model. For this, robustness tools are developed that may aid

in the design process. Also, real-time adaptation techniques are developed that will

be useful for improving the plant models in the feedforward controllers (and hence

the overall performance of the control system).

In [39], a numerical example was used to shown how a specific version of the

architecture presented in this chapter could provide perfect tracking to a system with

a finite number of finite RHP zeros. However, the details for applying these techniques

to general non-minimum phase plants were not given. Also, the robustness analysis

tools and adaptation methods were never explored. The work presented here was

developed independent of the work in [39] and is presented for a wider class of systems

(i.e., for all LTI systems that may be expressed using eqn (3.1)) and provides tools

for analyzing and improving robust performance.

74

Chapter 4

Dual Feedforward Predictive
Control

The first method for implementing the general architecture is dual feedforward predic-

tive control (DFFPC), which handles the prediction, design constraint, and ballistic

response entirely in the two feedforward paths. The presentation of this architecture is

for single-input single-output (SISO) systems. Potential extensions to multiple-input

multiple-output (MIMO) systems are discussed as future work in Chapter 12. The

perfect tracking property presented here is valid for a larger class of plants than the

results currently provided in the literature (c.f., [39]). Specifically, this architecture

may provide perfect tracking for:

• Stable and unstable systems.

• Biproper and strictly proper systems.

• Minimum and non-minimum phase systems (including time delays).

The methods discussed here are able to provide perfect tracking in both a

continuous-time and a discrete-time framework. This is an advantage over exist-

ing perfect tracking methods (c.f., [34; 35; 36]) that use multi-rate digital controllers

to achieve perfect tracking at the sampling points of the slowest sampling rate in the

system. For the digital controllers presented here, the use of a faster rate controller

is not required for the perfect tracking property.

75

The initial presentation of this method is done in the continuous-time domain. At

the end of this chapter, we address the discrete-time implementation of the method.

4.1 Dual Feedforward Predictive Control

Recall that the perfect tracking property was defined as a control system that had

zero feedback tracking error when the plant model was perfect and there were no

disturbances. In order to obtain this perfect tracking property, there are two signals

that need to be generated, namely a desired reference trajectory that the nominal

plant will follow (rff (t)), and the control signal (uff (t)) that will drive the nominal

plant along the desired reference trajectory.

Pdes(s) Gi
-1(s)

K(s) G(s)+ +

r(t)

y(t)

rff (t)

e(t)

uff (t)

u(t)ufb(t)

Gnoi(s)

+
+

+

–

Figure 4.1: Nominal LTI DFFPC Architecture

The block diagram of the DFFPC architecture is shown in Figure 4.1. The blocks

Gnoi(s) and G−1
i (s) are the non-invertible and inverse of the stable minimum-phase

dynamics of the plant G(s) as they were defined in eqns (3.4) and (3.6), and Pdes(s)

is a design parameter that determines the desired reference trajectory (rff(t)) and

associated feedforward control signal (uff(t)).

The two feedforward controllers that will be implemented are FF1(s) =

Pdes(s)Gnoi(s), which generates rff (t) from r(t), and FF2(s) = Pdes(s)G
−1
i (s), which

generates uff(t) from r(t). There are three design constraints that must be satisfied

by Pdes(s), namely

1. The steady state gain from r(t) to rff(t) must be unity (i.e., Pdes(0)Gnoi(0) = 1)

76

2. The feedforward controller FF1(s) = Pdes(s)Gnoi(s) must result in a stable

proper transfer function

3. The feedforward controller FF2(s) = Pdes(s)G
−1
i (s) must result in a stable

proper transfer function

The first condition is required so that the steady-state reference equals the actual

reference (i.e., rff (t) = r(t) as t → ∞). The second and third conditions are required

to make the two feedforward controllers realizable in hardware. From the definition

that Gnoi(0) = 1 in eqn (3.4) and the fact that G(s) is proper, these conditions will

be met if:

• Pdes(0) = 1 (satisfies first condition above).

• Pdes(s) is stable, and the relative degree of Pdes(s) is greater than or equal to

the relative degree of Gi(s) (satisfies second and third condition above).

The overall sensitivity transfer function (i.e., from r(t) to e(t)) for DFFPC is

SDFFPC(s) = Pdes(s)Gnoi(s)S(s) − Pdes(s)G
−1
i (s)G(s)S(s)

= Pdes(s)Gnoi(s)S(s) − Pdes(s)Gnoi(s)S(s) (4.1)

= 0.

This means that the nominal performance is perfect (i.e., SDFFPC(s) = 0) and the

condition ‖W1(s)SDFFPC(s)‖∞ < 1 is trivially satisfied for any finite W1(s). The feed-

back error signal is zero and the feedforward controller is providing perfect tracking

of the filtered reference rff(t), which is a reference signal that the plant can exactly

follow. This is possible because rff(t) contains the effects of the non-minimum phase

part of the plant that neither the feedforward nor feedback components can stably

and causally invert. An example of this is when there is a time delay in the plant

77

(e.g., Gnoi(s) = e−sτd for some time delay of τd seconds). In this case, the FF2(s)

control signal will be applied to the plant, but the plant output y(t) will not start

changing for τd seconds due to the time delay. In this case, it is appropriate to delay

the filtered reference signal until the output resulting from FF2(s) can be sensed at

the output.

The intention of this method is not to remove the non-minimum phase components

from the plant, but rather utilize them to define a class of signals that may be perfectly

tracked. To see this, consider the closed-loop transfer function (from r(t) to y(t)):

MDFFPC(s) =
Pdes(s)Gnoi(s)G(s)K(s)

1 + G(s)K(s)
+

Pdes(s)G
−1
i (s)G(s)

1 + G(s)K(s)

= Pdes(s)Gnoi(s)
1 + G(s)K(s)

1 + G(s)K(s)
(4.2)

= Pdes(s)Gnoi(s).

Here, the non-minimum phase components appear in the closed-loop transfer function

as Gnoi(s) and Pdes(s)Gnoi(s) defines the class of signals that may be perfectly tracked.

The nominal design objective is to design Pdes(s) to get the desired closed-loop char-

acteristics. Even though the closed-loop poles (i.e., the roots of 1 + G(s)K(s)) do

not appear in the nominal closed-loop transfer function MDFFPC(s), they will affect

performance in terms of disturbance rejection and correcting for modeling errors.

Also, internal stability is always required. Therefore, the controller K(s) should be

designed to guarantee internal stability and to provide the desired level of robust

performance in terms of disturbance rejection. Since the feedforward signals are es-

sentially bounded external signals to the feedback loop, they do not affect closed-loop

stability. Therefore, it makes sense that nominal stability is unaffected by the ad-

dition of the feedforward components. By the same argument, robust stability is

also unaffected by the addition of the feedforward components, though they do affect

performance. This is addressed again later in the chapter.

78

In this architecture, the nominal tracking requirements are provided by the feedfor-

ward paths, and the feedback controller focuses on correcting for model inaccuracies

and disturbance rejection. This is a different design perspective than the standard

robust feedback controller that is designed to provide both good tracking perfor-

mance and good disturbance rejection in the presence of model uncertainty. Now,

the feedback controller is only used to provide disturbance rejection and to correct

for modeling errors, which is the preferred setting for robust and optimal controller

synthesis.

For the setting considered here, the feedforward and feedback designs are decou-

pled, since the feedforward controller is designed for nominal tracking performance,

and the feedback controller is designed for disturbance rejection, correcting for mod-

eling errors, and providing robust stability. Later in the chapter, we will develop a

robust performance criterion based on the weighted perturbed closed-loop sensitiv-

ity function. These criteria expose the inherent trade-offs between the two designs.

For example, if the feedback controller tries for too much performance, it will result

in smaller stability margins. This will limit the amount of performance improve-

ment that should be sought from from the addition of the feedforward controllers

and still maintain the robust performance criteria. However, in this case, the feed-

back controller will provide better disturbance rejection. Conversely, if the feedback

controller is designed with larger stability margins, the feedforward controllers may

be more aggressive and still maintain the robust performance criteria. However, in

this case, the feedback controller will take longer to correct for modeling errors and

disturbances. In the first case, it is assumed that the accuracy of the plant model

(and hence the quality of the two feedforward controllers) is lacking. Therefore, the

feedback controller is more active correcting for model inaccuracies. In the latter

case, the plant model is assumed to be more accurate, which means that there will be

more performance gain from the addition of the feedforward controllers. In general,

79

the amount of performance improvement gained from the feedforward controllers is

dependent on the quality of the plant model used. Specifically, better plant models

translate to a larger robust performance gain from the addition of the feedforward

controllers on a physical system. This means that for better performance gain, good

plant models must either be known a priori or learned via adaption (which is the fo-

cus of Chapter 7). For this architecture, the adaptation of the feedforward controllers

does not affect closed-loop stability, which is an advantage to using adaptation with

this method.

4.2 Controller Design

While the design constraints given above are required for the feedforward controllers

to be proper, they also provide limitations on achievable performance. In particular,

Pdes(s)Gnoi(s) determines the class of signals that may be perfectly tracked, and

Pdes(s)G
−1
i (s) is the feedforward controller that will provide the associated control

signal to achieve perfect tracking. The class of signals that may be perfectly tracked

includes the effects of the non-minimum components that neither feedforward nor

feedback controllers can eliminate. This phenomenon was discussed in Chapter 2.8.

There are two pieces that need to be designed, namely the feedforward and feed-

back controllers. The feedforward controller is designed for “large” signal reference

tracking and the feedback controller is designed “small signal” disturbance rejection.

Since the feedforward design is common to the known architecture presented in the

previous chapter, the DFFPC architecture presented in this chapter, and the con-

troller architecture presented in the next chapter, a full discussion of the feedforward

design is postponed until Section 6. The design of the feedback controller is cast as a

traditional feedback design (e.g., provide internal stability and desired performance).

There are many standard methods for designing the feedback controller (c.f., [44; 54;

43; 45]). A particular example of a feedback design that is well suited for this problem

80

is presented next.

4.2.1 Feedback Controller Design

The role of the feedback controller is to provide internal stability, disturbance rejection

performance, and to correct for modeling errors in the two feedforward paths. Since

nominal reference tracking is handled by the two feedforward controllers, the feedback

control design is cast as a disturbance rejection problem instead of a reference tracking

problem. Also, since the feedforward parts do not contribute to the disturbance

rejection, they are not included in the design. For the method presented here, the

focus here will be on designing robust controllers using µ-synthesis as it is described

in [58].

For the disturbance rejection problem considered here, we will use the design

interconnect shown in Figure 4.2.

∆(s)

+ +FB G(s)

Wi(s)

Wp(s)

Wd(s)Wu(s)

+
+

-

+
+

Uncertain Plant

Disturbance

Input

Weighted

Control

Authority

+

+
Measurement

NoiseWn(s)

Performance

Metric

Figure 4.2: Disturbance Rejection Robust Controller Synthesis Interconnect

Here, the objective of µ-synthesis is to minimize the H∞ norm from (weighted)

exogenous inputs to (weighted) exogenous outputs in the presence of (weighted) uncer-

tainty. The design weights may be used to shape the closed-loop frequency response.

Example weights are provided in Figure 4.2 that could be used to reject low frequency

disturbances.

Here, the two exogenous inputs are (weighted) external disturbances to the plant

81

Disturbance Input Weight

log(ω)

20
*l

og
10

(|
W

d(jω
)|

)

Performance Output Weight − STRICTLY PROPER

log(ω)

|Z
p(jω

)|

Noise Input Weight − NOT STRICTLY PROPER

log(ω)

|W
n(jω

)|

Control Authority Weight − NOT STRICTLY PROPER

log(ω)
|Z

u(jω
)|

Reject Low Frequency
Disturbances

Design For Low
Frequency

Disturbances

Do Not Attempt
To Reject High

Frequency
Disturbances

Assume
Measurements

Are Good At Low
Frequencies

Larger High
Frequency

Noise

Allow More
Control Authority

At Low Frequencies

Penalize High Frequency
Control Actions

Figure 4.3: Example Robust Controller Synthesis Weights

output and (weighted) sensor noise on the output measurement. In practice, sensors

tend to provide good low frequency measurements, but are unable to provide accurate

high frequency measurements. Therefore, the weight is selected as a high pass filter

that injects less noise at lower frequencies and more noise at higher frequencies.

Due to the placement of this weighted input in Figure 4.2, the sensor noise only

affects the measured signal that is used by the feedback controller. In contrast, the

weighted disturbance input also affects the weighted performance output. In many

applications, the sensor noise input may be considered optional. However, when the

weighted sensor noise input (Wn) is not used, the disturbance weight (Wd) must be not

strictly proper. For this example, we would like to reject low frequency disturbances,

which means that the disturbance input weight is large at low frequencies, where we

assume disturbances will reside, and small at larger frequencies, since the assumed

disturbances will have little high frequency content.

82

For this feedback design, the two exogenous outputs are the (weighted) perfor-

mance output and (weighted) control authority. In the frequency ranges where these

weights are large, the H∞ optimization penalizes these signals (i.e., tries to make

them small). Similarly, in the frequency ranges where these weights are small, the

H∞ optimization allows signals to have larger amplitudes. An example set of weights

and their associated trade-offs are shown in Figure 4.3. An example application where

we used these style of weights is provided in [59].

4.3 Robustness Analysis

This section explores the robust performance metrics on plants with additive and

multiplicative uncertainty.

4.3.1 Additive Uncertainty

For robustness analysis against model uncertainty, an uncertain plant model with

additive uncertainty is considered. In this case, the nominal plant model G is replaced

with the perturbed plant model G̃ = G + W2∆. The block diagram for this model is

shown in Figure 4.4.

K(s) G(s)+ +

r(t)

y(t)
e(t) u(t)uf b(t)

+
+

+

–
+

W2(s) ∆(s)

Perturbed Plant

Pdes(s) Gi
-1(s)

rff (t)

uff (t)

Gnoi(s)

+
+

Figure 4.4: Uncertain LTI DFFPC Architecture with Additive Uncertainty

The perturbed sensitivity function becomes

83

S̃DFFPC =
PdesGnoi

1 + (G + ∆W2)K
−

PdesG
−1
i (G + ∆W2)

1 + (G + ∆W2)K

=
PdesGnoi − PdesGnoi − PdesG

−1
i ∆W2

1 + (G + ∆W2)K

= −
PdesG

−1
i ∆W2/(1 + GK)

(1 + GK + ∆W2K)/(1 + GK)

= −
PdesG

−1
i ∆W2S

1 + ∆W2KS
(4.3)

The nominal and perturbed feedback characteristic equations (i.e., the denom-

inator polynomials of the feedback loops) are (1 + L) and (1 + L)(1 + ∆W2KS).

These are identical to the characteristic equations for the feedback only architecture

seen in Chapter 2.6.1. Using the same reasoning provided there (which assumes that

‖∆‖∞ ≤ 1), robust stability requires ‖W2KS‖∞ < 1 .

For robust performance, we require robust stability and a norm bound on the

weighted perturbed sensitivity function. This is given by

‖W2KS‖∞ < 1 (RS) and

∥∥∥∥W1
PdesG

−1
i ∆W2S

1 + ∆W2KS

∥∥∥∥
∞

< 1, ∀‖∆‖∞ ≤ 1. (4.4)

These criteria may be shown to be an exact test for robust performance. To

show this, the above equation, with a slight abuse of notation, may equivalently be

expressed as

s 7→ |W1(s)Pdes(s)G
−1
i (s)W2(s)S(s)| + |W2(s)K(s)S(s)|, (4.5)

which is denoted |W1PdesG
−1
i W2S|+ |W2KS|. Now, a necessary and sufficient condi-

tion for robust performance is given by

‖|W1PdesG
−1
i W2S| + |W2KS|‖∞ < 1, (4.6)

or equivalently,

84

|W1(jω)Pdes(jω)G−1
i (jω)W2(jω)S(jω)|+ |W2(jω)K(jω)S(jω)| < 1 ∀ω. (4.7)

This may be further expressed as

|W1(jω)Pdes(jω)G−1
i (jω)W2(jω)S(jω)| < 1 − |W2(jω)K(jω)S(jω)| ∀ω(4.8)

⇐⇒
|W1(jω)Pdes(jω)G−1

i (jω)W2(jω)S(jω)|

1 − |W2(jω)K(jω)S(jω)|
< 1 ∀ω (4.9)

⇐⇒

∥∥∥∥
W1PdesG

−1
i W2S

1 − |W2KS|

∥∥∥∥
∞

< 1. (4.10)

Note that 1 − |W2(jω)K(jω)S(jω)| > 0 ∀ω is a result of the RS requirement.

Therefore, the inequality in eqn (4.9) holds.

Theorem 6. (DFFPC with Additive Uncertainty Model) A necessary and sufficient

condition for robust performance is

‖|W1PdesG
−1
i W2S| + |W2KS|‖∞ < 1, (4.11)

Proof. (⇐) Assume eqn (4.11), or equivalently,

‖W2KS‖∞ < 1 and

∥∥∥∥
W1PdesG

−1
i W2S

1 − |W2KS|

∥∥∥∥
∞

< 1 (4.12)

Fix ∆ and assume that each of the transfer functions are evaluated at an arbitrary

point jω. Then,

1 = |1 + ∆W2KS − ∆W2KS| ≤ |1 + ∆W2KS| + |W2KS|

and therefore

1 − |W2KS| ≤ |1 + ∆W2KS|.

This implies that

85

∥∥∥∥
W1PdesG

−1
i W2S

1 − |W2KS|

∥∥∥∥
∞

≥

∥∥∥∥
W1PdesG

−1
i ∆W2S

1 + ∆W2KS

∥∥∥∥
∞

.

This along with eqn (4.12) yields

∥∥∥∥
W1PdesG

−1
i ∆W2S

1 + ∆W2KS

∥∥∥∥
∞

< 1 (4.13)

(⇒) Assume that

‖W2KS‖∞ < 1 and

∥∥∥∥
W1PdesG

−1
i ∆W2S

1 + ∆W2KS

∥∥∥∥
∞

< 1, ∀∆. (4.14)

Pick a frequency ω where

|W1PdesG
−1
i W2S|

1 − |W2KS|
(4.15)

is maximum. Now pick an all-pass ∆ such that

1 − |W2KS| = |1 + ∆W2KS|

.

The idea is that ∆(jω) should have a unity magnitude (i.e., |∆(jω)| = 1 ∀ω)

and the phase should the negative of the phase of W2(jω)K(jω)S(jω). This may be

done using an all-pass as was demonstrated in Section 2.3.1. Now,

∥∥∥∥
W1PdesG

−1
i W2S

1 − |W2KS|

∥∥∥∥
∞

=
|W1PdesG

−1
i W2S|

1 − |W2KS|

=
|W1PdesG

−1
i ∆W2S|

1 + ∆W2KS
(4.16)

≤

∥∥∥∥
W1PdesG

−1
i ∆W2S

1 + ∆W2KS

∥∥∥∥
∞

.

The equality in eqn (4.16) follows from the fact that ∆ is all-pass. From this and

eqn (4.14), there follows eqn (4.12) and therefore eqn (4.11).

86

4.3.2 Multiplicative Uncertainty

For robustness analysis against model uncertainty, an uncertain plant model with

multiplicative uncertainty is considered. In this case, the nominal plant model G is

replaced with the perturbed plant model G̃ = (1 + W2∆)G. The block diagram for

this model is shown in the Figure 4.5.

K(s)+ +

r(t)

y(t)
e(t) u(t)ufb(t)

+
+

+

–
+

W2(s) ∆(s)

Perturbed Plant

Pdes(s) Gi
-1(s)

rff (t)

uff (t)

Gnoi(s)

+
+

G(s)

Figure 4.5: Uncertain LTI DFFPC Architecture with Multiplicative Uncertainty

The perturbed sensitivity function becomes

S̃DFFPC =
PdesGnoi

1 + (1 + ∆W2)GK
−

PdesG
−1
i (1 + ∆W2)G

1 + (1 + ∆W2)GK

=
PdesGnoi − PdesGnoi − PdesGnoi∆W2

1 + (1 + ∆W2)GK

= −
PdesGnoi∆W2/(1 + GK)

(1 + GK + ∆W2GK)/(1 + GK)

= −
PdesGnoi∆W2S

1 + ∆W2T
(4.17)

It should be noted that the nominal and perturbed feedback characteristic equa-

tions are (1 + L) and (1 + L)(1 + ∆W2T). These are identical to the characteristic

equations for the feedback only architecture seen in Chapter 2.6.2. Using the same

reasoning provided there, robust stability requires ‖W2T‖∞ < 1 for all ‖∆‖∞ ≤ 1.

For robust performance, we require robust stability and a norm bound on the

weighted and perturbed sensitivity function. This is given by

‖W2T‖∞ < 1 (RS) and

∥∥∥∥W1
PdesGnoi∆W2S

1 + ∆W2T

∥∥∥∥
∞

< 1, ∀‖∆‖∞ ≤ 1 (4.18)

87

By a similar method used for the additive uncertainty case, a necessary and suf-

ficient condition for robust performance is

Theorem 7. (Multiplicative uncertainty model) A necessary and sufficient condition

for robust performance is

‖|W1PdesGnoiW2S| + |W2T |‖∞ < 1, (4.19)

Proof. The proof of the multiplicative case follows the same line of reasoning as the

additive uncertain case. In a similar fashion, an all-pass filter is required in the

necessity part of the proof.

4.4 Discrete-Time Implementations

In most applications, the controller will be implemented in discrete-time using a

processor (e.g., a microcontroller or a digital signal processor). In these cases, the

feedforward controller must be designed for the equivalent discrete-time plant. When

a zero-order hold digital to analog converter is used, it is appropriate to design the

discrete-time feedforward controllers based on the zero order hold equivalent of the

plant. The design process starts by determining the zero order hold equivalent plant

G(s) −→ GZOH(z) =
KDCNnmp(z)Nmp(z)

D(z)
z−Nd , (4.20)

where the zero-order hold equivalent plant GZOH(z) is calculated using standard

methods (c.f., [41]). This process was demonstrated in Chapter 3.1.2. This new

discrete-time equivalent plant is factored into GZOH(z) = Gi(z)Gnoi(z), where

Gi(z) =
KDCNmp(z)

D(z)
(4.21)

Gnoi(z) = Nnmp(z)z−Nd . (4.22)

88

The two feedforward controllers are defined as

FF1(z) = Pdes(z)Gnoi(z) (4.23)

FF2(z) = Pdes(z)G−1
i (z) (4.24)

Now, the design objective is to design Pdes(z) with the same design constraints (i.e.,

relative degree and unity at DC constraints). Recall that DC is when ω = 0. For

discrete-time systems, z = ejωTs, so the unity at DC constraint becomes Pdes(1) = 1,

In this scenario, the controller blocks are discrete-time blocks; however, the plant

is still a continuous time system. This is illustrated in Figure 4.6.

Pdes(z) Gi
-1(z)

K(z)+ +

r(t)

y(t)

rff [n]

e[n]

uff [n]

Gnoi (z)

+
+

+

–

y[n]

GZOH(z)

ZOH G(s)

u(t)

Figure 4.6: Discrete-time Implementation of the DFFPC Architecture.

The discrete-time implementation of DFFPC is shown in Figure 4.6. For this

implementation, perfect tracking still holds and the nominal closed-loop map is given

by Pdes(z)Gnoi(z). To see this, observe that the discrete-time sensitivity function

(from r[n] to e[n]) is

SDFFPC(z) = Pdes(z)Gnoi(z)S(z) − Pdes(z)G−1
i (z)G(z)S(z)

= Pdes(z)Gnoi(z)S(z) − Pdes(z)Gnoi(z)S(z) (4.25)

= 0,

89

which verifies perfect tracking. Similarly, the discrete-time closed-loop transfer func-

tion (from r[n] to y[n]) is given by

MDFFPC(z) =
Pdes(z)Gnoi(z)G(z)K(z)

1 + G(z)K(z)
+

Pdes(z)G−1
i (z)G(z)

1 + G(z)K(z)

= Pdes(z)Gnoi(z)
1 + G(z)K(z)

1 + G(z)K(z)
(4.26)

= Pdes(z)Gnoi(z),

which is the discrete-time version of eqn (4.2). The discrete-time implementation will

prove to be very useful in the adaptive cases where system identification is used to

identify the discrete-time plant model GZOH(z).

4.5 Conclusions

A method was presented that characterizes the general class of signals that may be

perfectly tracked for all LTI systems of the form of eqn (3.1). These systems include:

• Stable and unstable systems.

• Minimum and non-minimum phase systems.

• Biproper and strictly proper systems.

• Systems with and without time delays.

• Continuous or discrete-time systems.

The fact that this architecture is able to guarantee perfect tracking for non-

minimum phase systems (with possible time delays) is an extension to previously

existing methods. The characterization of perfect tracking for any LTI system is due

to the chosen plant factorization (i.e., G(s) = Gnoi(s)Gi(s)), which allows for the

addition of Gnoi(s) to one of the feedforward paths. This formulation will also prove

90

to be useful for the adaptation methods that will be presented in Chapter 7, which

identify the plant G(s) and use the plant factorization to update the two feedforward

controllers.

Robustness tools were developed that may be used to measure the expected perfor-

mance on the physical plant (for a given level of model uncertainty). These robustness

tools may also be used in the Pdes(s) design process. This will be discussed in more

detail in Chapter 6 and numerical examples will be provided in Chapter 9.

91

Chapter 5

Dual Feedforward Smith Predictor

This chapter provides another method for achieving perfect tracking (in the nominal

case with no external disturbances) that is based on a feedforward augmentation to

the standard Smith predictor (SP) discussed in Section 2.9. This method is referred

to as a dual feedforward Smith predictor (DFFSP). As with the DFFPC architecture,

this method is presented for single-input single-output (SISO) systems, with poten-

tial extensions to multiple-input multiple-output (MIMO) systems being discussed as

future work in Chapter 12. The main difference between this architecture and the

DFFPC architecture is that the non-invertible parts of the plant are handled in the

feedback loop instead of the first feedforward path.

To begin, we examine the standard Smith predictor as we will use it for DFFSP.

Robustness analysis of the standard Smith predictor is posed in the SISO case using

the robustness framework utilized in Section 2.6. This particular Smith predictor

structure and associated analysis tools will form the basis of the DFFSP architecture

presented here. The primary application for the DFFSP architecture will be on stable

plants. Due to the inherent limitation of a Smith predictor on an unstable plant, it

is not recommended to use the DFFSP architecture on unstable plants. As with the

DFFPC architecture, the discrete-time implementation of the DFFSP is presented.

92

5.1 The Smith Predictor as a Feedback Controller

The traditional Smith predictor for controlling plants with dead-time was discussed in

Chapter 2.9. In this setting, the stable plant model was defined as Ĝ(s) = Ĝdf (s)e
−sτ̂d,

where Ĝdf (s) was the delay free stable plant model and e−sτ̂d was the plant time-

delay. For reference tracking, this Smith predictor structure is able to eliminate the

effect of the time delay in the feedback loop in the nominal case with no external

disturbances. Here, the time delay is a specific example of a non-minimum phase

component. This idea may be trivially extended to eliminate any stable non-minimum

phase components (e.g., RHP zeros) from the feedback loop.

In the setting considered here, we can use the invertible / non-invertible decom-

position to define G(s) = Gi(s)Gnoi(s) and use the Smith predictor structure to

eliminate the (stable) non-invertible dynamics Gnoi(s) from the feedback loop. In

this case, a diagram of the Smith predictor that eliminates the (stable) non-invertible

plant dynamics is shown in Figure 5.1.

K(s) G(s)+r(t) y(t)
e(t) u(t)

+
–

+Ĝi(s) - Ĝ(s)
+
+

yp(t)

Figure 5.1: A Smith Predictor for a Non-minimum Phase Plant

For this chapter, we will assume that Ĝ(s) = G(s) (i.e., the nominal condition

where the plant model is perfect). In order to address errors in the model, a bounded

uncertainty description will be used. In the nominal case, the sensitivity function of

a Smith predictor is given by

Si(s) =
E(s)

R(s)
=

1

1 + Gi(s)K(s)
. (5.1)

Note that the notation here is a subscript i to denote that only the invertible part

93

of the plant (Gi(s)) appears in the loop gain (e.g., the denominator polynomial of

Si(s)). In a similar fashion, the loop gain of a Smith predictor will be denoted Li(s) =

Gi(s)K(s). Using the standard definition of complementary sensitivity function (i.e.,

T (s) = 1−S(s)), the complementary sensitivity function of a Smith predictor is given

by

Ti(s) = 1 − Si(s) =
Gi(s)K(s)

1 + Gi(s)K(s)
=

Yp(s)

R(s)
.. (5.2)

Unlike a standard feedback loop, Ti(s) is not the closed-loop transfer function

(i.e., Ti(s) 6= Y (s)
R(s)

), but instead is the transfer function from the reference input to

the predicted output that is fed back (i.e., Ti(s) = Yp(s)

R(s)
). This is due to the fact

that the non-invertible plant dynamics do not appear in the numerator of Ti(s). The

closed-loop transfer function of a Smith predictor is given by

Mi(s) =
Y (s)

R(s)
=

G(s)K(s)

1 + Gi(s)K(s)
= Ti(s)Gnoi(s). (5.3)

It is interesting to note that the closed-loop transfer function of a Smith predictor

is similar to the closed-loop transfer function for DFFPC in the sense that it is the

product of a stable minimum-phase transfer function with the non-invertible parts of

the plant. In both situations, the stable minimum-phase part is used to shape the ideal

closed-loop response. In the DFFPC case, this was done by picking Pdes(s), and in the

Smith predictor case, this is done by designing K(s) to shape Ti(s). A disadvantage

to the Smith predictor is that the feedback controller K(s) is being designed for both

(large signal) reference tracking and (small signal) disturbance rejection, which can

be conflicting design objectives. This is addressed here by augmenting the Smith

predictor with two feedforward controllers that will result in the perfect tracking of

the signal yp(t).

Using methods similar to those presented in Chapter 2.9.4, the Smith predictor in

Figure 5.1 may be equivalently written as a feedback only controller without affect-

94

ing the sensitivity or closed-loop transfer function. To see this, consider the Smith

predictor block diagram shown in Figure 5.2.

K(s) G(s)+r(t) y(t)
+
–

+

Gi(s) - G(s)

+
–

CSP(s)

Figure 5.2: A Smith Predictor Drawn as a Single Feedback Controller

In this configuration, the equivalent Smith predictor feedback controller may be

expressed as

CSP (s) =
K(s)

1 + (Gi(s) − G(s))K(s)
. (5.4)

While this does provide an equivalent block diagram from r(t) to y(t), it feeds

back the plant output signal (y(t)) that includes the non-invertible dynamics (e.g., the

process delay), and there is no longer a predicted signal (such as yp(t)) in the feedback

loop. This method for implementing a Smith predictor is generally not used. Instead,

the internal model control structure given in Figure 5.1 is preferred [56]. Also, for

achieving perfect tracking control using the DFFSP presented here, we will require

the Smith predictor structure shown in Figure 5.1.

5.2 SISO Robustness Analysis of the Smith Pre-

dictor

In Chapter 2.9, it was shown that the Smith predictor is essentially a cancelation

controller that cancels out the nominal plant dynamics. For this reason, it is not well

95

suited for unstable plants, which is the reason for restricting the initial discussion to

stable plants.

The Smith predictor considered here is able to essentially eliminate the non-

minimum phase dynamics from the feedback loop. However, real applications are

never equal to the nominal case, which raises the question of robustness. One of

the first papers to thoroughly address this issue was [60]. In this paper, the au-

thors considered both uncertainty in the delay free plant model and uncertainty in

the time delay, and provided some multiplicative weight selections to handle these

uncertainties. These weights are similar in form to the multiplicative uncertainty

weight provided for uncertain time delays provided in Chapter 2.6.3. In [61], the

authors provide criteria for nominal stability, nominal performance, robust stability,

and robust performance of a Smith predictor applied specifically to plants with time

delays. This work was used in [62; 46; 63; 64] to provide methodologies for designing

robust Smith predictors for systems with time delays. For completeness, the robust

stability and robust performance results for the Smith predictor shown in Figure 5.1

are provided here. These results are analogous to those in [61], except that they are

not restricted to Smith predictors that only eliminate time delays.

5.2.1 Additive Uncertainty

For the SISO robust performance criterion with additive uncertainty considered here,

the Smith predictor is able to eliminate the non-invertible parts of the plant from

the final robust performance criterion. This has been documented in the literature

(c.f., [61]) using an analytical argument. Specifically it was shown that the satisfying

µ robust performance on the delay free plant was equivalent to satisfying µ robust

performance on the full plant. Here, we derive a similar criterion on the norm bounded

weighted perturbed sensitivity function (i.e., the robust performance criteria used

here). To begin, consider a Smith predictor with additive uncertainty, which is shown

96

in Figure 5.3.

K(s) G(s)+r(t) y(t)
e(t) u(t)

+
–

+

W2(s) ∆(s)

Perturbed Plant

+
+

+Gi(s) - G(s)
+

+

yp(t)

Figure 5.3: Smith Predictor with Additive Uncertainty

The perturbed sensitivity function becomes

S̃i =
1

1 + (G + ∆W2 + Gi − G)K

=
1

1 + (Gi + ∆W2)K

=
1/(1 + GiK)

(1 + GiK + ∆W2K)/(1 + GiK)

=
Si

1 + ∆W2KSi

(5.5)

For the Smith predictor with additive uncertainty, the nominal and perturbed

feedback characteristic equations are (1 + GiK) and (1 + GiK)(1 + ∆W2KSi). By

using the same reasoning provided in Chapter 2.6.1, robust stability requires for all

‖∆‖∞ ≤ 1 that ‖W2KSi‖∞ < 1.

For robust performance, we require robust stability and a norm bound on the

weighted perturbed sensitivity function. This is given by

‖W2KSi‖∞ < 1 (RS) and

∥∥∥∥W1
Si

1 + ∆W2KSi

∥∥∥∥
∞

< 1, ∀‖∆‖∞ ≤ 1. (5.6)

Using an analogous method from Chapter 2.6.1, the following theorem may be

proved.

97

Theorem 8. (Additive uncertainty model) A necessary and sufficient condition for

robust performance with the Smith predictor in Figure 5.3 is

‖|W1Si| + |W2KSi|‖∞ < 1, (5.7)

Proof. The proof is analogous to the Theorem 2 in Chapter 2.6.1

For the additive uncertainty case, the plant in the feedback loop is G + ∆W2 +

Gi − G = Gi + ∆W2. Since our robustness criteria are defined by the sensitivity

function, an equivalent block diagram of the perturbed sensitivity function is shown

in Figure 5.4. Note that the actual perturbed output (ỹ(t)) does not appear in the

perturbed block diagram, but rather the perturbed prediction (ỹp(t)).

K(s) Gi(s)+r(t)
e(t) u(t)

+
–

+

W2(s) ∆(s)

Perturbed Plant

+
+

yp(t)

yp(t)

Figure 5.4: Smith Predictor with Additive Uncertainty

For the additive uncertainty case, this observation does not change the additive

uncertainty robust performance criteria, since the criteria is based on Si(s), which

only contains the invertible part of the plant Gi(s) and not the full plant G(s). A

similar observation may not be made for the multiplicative uncertainty case.

5.2.2 Multiplicative Uncertainty

Unlike the additive uncertainty case given in the previous section, the SISO Smith

predictor robust performance criterion with multiplicative uncertainty does not fully

eliminate the non-invertible parts of the full plant. Instead, the full plant will appear

98

+

W2(s) ∆(s)

Perturbed Plant

+
+

G(s)K(s)+r(t) y(t)
e(t) u(t)

+
–

+Gi(s) - G(s)
+

+

yp(t)

Figure 5.5: Smith Predictor with Multiplicative Uncertainty

in the final robust performance criterion. To see this, consider, consider a Smith

predictor with multiplicative uncertainty shown in Figure 5.5.

The perturbed sensitivity function becomes

S̃i =
1

1 + (G + ∆W2G + Gi − G)K

=
1

1 + (Gi + ∆W2G)K

=
1/(1 + GiK)

(1 + GiK + ∆W2GK)/(1 + GiK)

=
Si

1 + ∆W2Mi

(5.8)

For the Smith predictor with multiplicative uncertainty, the nominal and per-

turbed feedback characteristic equations are (1 + GiK) and (1 + GiK)(1 + ∆W2Mi).

By using the same reasoning provided in Section 2.6.1, robust stability requires for

all ‖∆‖∞ ≤ 1 that ‖W2Mi‖∞ < 1. Notice that robust stability is a norm condition

on the weighted nominal closed-loop transfer function W2(s)Mi(s). In the traditional

feedback case, the nominal closed-loop transfer function was also the complementary

sensitivity function (i.e., M(s) = T (s) in the traditional feedback case presented in

Section 2.5).

For robust performance, we require robust stability and a norm bound on the

weighted perturbed sensitivity function. This is given by

99

‖W2Mi‖∞ < 1 (RS) and

∥∥∥∥W1
Si

1 + ∆W2Mi

∥∥∥∥
∞

< 1, ∀‖∆‖∞ ≤ 1. (5.9)

Using an analogous method from Section 2.6.2, the following theorem may be

proved.

Theorem 9. (Multiplicative uncertainty model) A necessary and sufficient condition

for robust performance with the Smith predictor in Figure 5.5 is

‖|W1Si| + |W2Mi|‖∞ < 1, (5.10)

Proof. The proof is analogous to the Theorem 4 in Chapter 2.6.2

As with the additive uncertainty case, the result is analogous to the feedback only

case with only the invertible part of the plant appearing in the feedback loop (i.e.,

the denominator of Mi, which is 1 + GiK, only contains Gi and not G = GnoiGi).

However, the numerator of Mi does contain the full plant G = GnoiGi, which means

that a block diagram rearrangement that only includes Gi is not possible for the

multiplicative uncertainty case.

5.3 Dual Feedforward Smith Predictor

The DFFSP architecture is another method for achieving perfect tracking for min-

imum and non-minimum phase systems in the nominal case without disturbances.

This method is similar to the DFFPC architecture presented in the previous chapter

in the sense that two feedforward controllers are used to provide perfect tracking. The

differences are that we restrict the plant model to be stable and the non-invertible

plant dynamics (Gnoi(s)) are addressed by the Smith predictor feedback loop. The

restriction to stable plants makes this architecture less general than the DFFPC archi-

tecture in the previous chapter. The block diagram for DFFSP is given in Figure 5.6.

The blocks G, G−1
i and Pdes are analogous to the blocks used in Chapters 3 and 4.

100

Pdes(s) Gi
-1(s)

K(s) G(s)+ +

r(t)

y(t)

rff (t)

e(t)

uff (t)

u(t)uf b(t)
+
+

+

–

+Gi(s) - G(s)

+
+

yp(t)

Figure 5.6: Nominal LTI DFFSP Architecture

There are three design constraints that must be satisfied by Pdes(s), namely

1. The steady state gain from r(t) to rff (t) must be unity (i.e., Pdes(0) = 1)

2. The feedforward controller FF1(s) = Pdes(s) must result in a stable proper

transfer function

3. The feedforward controller FF2(s) = Pdes(s)G
−1
i (s) must result in a stable

proper transfer function

The first two conditions are required so that the filtered reference rff (t) asymp-

totically tracks the ideal reference r(t), and hence y(t) asymptotically tracks r(t).

The third condition is required to make the second feedforward controller FF2(s)

realizable in hardware. Unlike the DFFPC architecture, Gnoi does not appear in the

feedforward path, which means that the feedforward constraints do not include Gnoi.

Instead, the non-minimum phase components (Gnoi) are addressed in the feedback

path of the Smith predictor. The above conditions will be met when the following

hold:

• Pdes(s) is stable and Pdes(0) = 1 (satisfies first condition above), and

• Relative degree of the Pdes(s) is greater than or equal to the relative degree of

Gi(s) (satisfies second and third conditions above)

101

These are the same conditions required for the DFFPC architecture in the previous

chapter. The sensitivity transfer function for DFFSP is

SDFFSP(s) = Pdes(s)Si(s) − Pdes(s)G
−1
i (s)Gi(s)Si(s)

= Pdes(s)Si(s) − Pdes(s)Si(s) (5.11)

= 0,

Similarly to the DFFPC case, nominal performance is perfect for the DFFSP

architecture and the condition ‖W1SDFFSP‖∞ < 1 is trivially satisfied for any finite

W1(s). However, the sensitivity function is now defined as the gain from r(t) to

eDFFSP(t) = yp(t) − rff(t), whereas the DFFPC sensitivity was defined as the gain

from r(t) to eDFFPC(t) = y(t) − rff (t). This means that these sensitivity functions

are defined on different signals.

As with the DFFPC architecture, the intention of this method is not to remove

the non-minimum phase components from the plant, but rather utilize them to define

a class of signals that may be perfectly tracked. To see this, consider the closed-loop

transfer function (from r(t) to y(t)):

MDFFSP(s) =
Pdes(s)G(s)K(s)

1 + Gi(s)K(s)
+

Pdes(s)G
−1
i (s)G(s)

1 + Gi(s)K(s)

=
Pdes(s)Gnoi(s)Gi(s)K(s) + Pdes(s)Gnoi(s)

1 + Gi(s)K(s)

= Pdes(s)Gnoi(s)
1 + Gi(s)K(s)

1 + Gi(s)K(s)
(5.12)

= Pdes(s)Gnoi(s),

which results in the same nominal closed-loop transfer function as the DFFPC archi-

tecture.

As with the DFFPC architecture, the non-minimum phase components appear

in the closed-loop transfer function of the DFFSP architecture as Gnoi(s) and

102

Pdes(s)Gnoi(s) defines the class of signals that may be perfectly tracked. The nominal

design objective is to design Pdes(s) to get the desired closed-loop characteristics. Even

though the closed-loop poles of the Smith predictor (i.e., the roots of 1 + Gi(s)K(s))

do not appear in the nominal closed-loop transfer function MDFFSP(s), they will af-

fect performance in terms of disturbance rejection and to correct for modeling errors.

Also, internal stability is always required. Therefore, the controller K(s) should be

designed to guarantee internal stability and to provide the desired level of robust

performance to disturbance rejection. Since the feedforward signals are essentially

bounded external signals to the feedback loop, they do not affect closed-loop stabil-

ity. Therefore, it makes sense that nominal stability is unaffected by the addition of

the feedforward components. By the same argument, robust stability is also unaf-

fected by the addition of the feedforward components. This is addressed again later

in the chapter.

5.4 Controller Design

While the design constraints given above are required for the feedforward controllers

to be proper, they also provide limitations on achievable performance. In particular,

Pdes(s)Gnoi(s) determines the class of signals that may be perfectly tracked, and

Pdes(s)G
−1
i (s) is the feedforward controller that will provide the associated control

signal to achieve perfect tracking. The class of signals that may be perfectly tracked

includes the effects of the non-minimum components that neither feedforward nor

feedback controllers can eliminate. This phenomenon was discussed in Chapter 2.8.

There are two pieces that need to be designed, namely the feedforward and feed-

back controllers. The feedforward controller is designed for “large” signal reference

tracking and the feedback controller is designed “small signal” disturbance rejection.

A full discussion of the feedforward design is postponed until Chapter 6. The design

of the feedback controller is cast as a traditional Smith predictor feedback design

103

(e.g., provide internal stability and desired performance). There are many standard

methods for designing the feedback controller in Smith predictor (c.f., [65; 66; 67]).

A particular example of a Smith predictor feedback design that is well suited for this

problem is presented next.

5.4.1 Feedback Controller Design

The objective of the feedback controller in the DFFSP architecture is analogous to the

DFFPC case in the sense that it is designed to provide internal stability, disturbance

rejection performance, and to correct for modeling errors in the two feedforward paths.

As with DFFPC, the DFFSP feedback control design is cast as a disturbance rejection

problem instead of a reference tracking problem. The main difference between the

two methods is that the known non-invertible dynamics are addressed in the feedback

loop. When the performance criteria are properly assigned, this allows for a feedback

controller design that only uses the stable minimum-phase dynamics in the controller

synthesis. To see this, consider the Smith predictor synthesis interconnect shown in

Figure 5.7.

∆(s)

+ +FB G(s)

Wi(s)

Wd(s)Wu(s)

+
+

-

+
+

Uncertain Plant

Disturbance

Input

Weighted

Control

Authority

+

+
Measurement

NoiseWn(s)

+Gi(s)- G(s)
+

+

Wp(s)
Performance

Metric

Figure 5.7: Robust Controller Synthesis Interconnect for Disturbance Rejection with
Additive Uncertainty

104

In Figure 5.7, the objective of the optimization is to minimize the effects that the

disturbance will have on the predicted output yp(t) and not the actual plant output

y(t). The reason for this is that the feedback controller will use error between the

filtered reference and the predicted out yp(t) for its feedback control signal (and not

the error between the filtered reference and actual output y(t)). With this problem

formulation, the feedback controller synthesis may be recast as the synthesis diagram

shown in Figure 5.8.

∆(s)

+ +FB Gi (s)

Wi (s)

Wd (s)Wu (s)

+
+

-

+
+

Uncertain Plant

Disturbance

Input

Weighted

Control

Authority

+

+
Measurement

NoiseWn (s)

Wp (s)
Performance

Metric

Figure 5.8: Reduced Robust Controller Synthesis Interconnect for Disturbance Re-
jection with Additive Uncertainty

After these observations have been made, the weight selection is similar to the

methods used for the feedback design in Chapter 4.2.1. Since the design here is done

only on the invertible dynamics of the plant, the actual values for the optimization

weights may differ. However, the methodology will be the same.

5.5 Robustness Analysis

This section explores the robust performance metrics on plants with additive and

multiplicative uncertainty.

5.5.1 Additive Uncertainty

For robustness analysis against model uncertainty, an uncertain plant model with

additive uncertainty is considered. In this case, the nominal plant model G is replaced

105

with the perturbed plant model G̃ = G + W2∆. The block diagram for this model is

shown in Figure 5.9.

K(s) G(s)+ +

r(t)

y(t)
e(t) u(t)uf b(t)

+
+

+

–
+

W2(s) ∆(s)

Perturbed Plant

Pdes(s) Gi
-1(s)

rff (t)

uff (t)

+
+

+Gi(s) - G(s)
+

+

yp(t)

Figure 5.9: Uncertain LTI DFFSP Architecture with Additive Uncertainty

The perturbed sensitivity function becomes

S̃DFFSP =
Pdes

1 + (Gi + ∆W2)K
−

PdesG
−1
i (Gi + ∆W2)

1 + (Gi + ∆W2)K

=
Pdes − Pdes − PdesG

−1
i ∆W2

1 + (Gi + ∆W2)K

= −
PdesG

−1
i ∆W2/(1 + GiK)

(1 + GiK + ∆W2K)/(1 + GiK)

= −
PdesG

−1
i ∆W2Si

1 + ∆W2KSi
(5.13)

The nominal and perturbed feedback characteristic equations (i.e., the de-

nominator polynomials of the Smith predictor feedback loops) are (1 + Li) and

(1+Li)(1+∆W2KSi). These are identical to the characteristic equations for the Smith

predictor only architecture presented earlier in the chapter. Using the same reasoning

provided there, robust stability requires for all ‖∆‖∞ ≤ 1 that ‖W2KSi‖∞ < 1.

For robust performance, we require robust stability and a norm bound on the

weighted perturbed sensitivity function. This is given by

‖W2KSi‖∞ < 1 (RS) and

∥∥∥∥W1
PdesG

−1
i ∆W2Si

1 + ∆W2KSi

∥∥∥∥
∞

< 1, ∀ ‖∆‖∞ ≤ 1. (5.14)

106

These criteria may be shown to be an exact test for robust performance. To

show this, the above equation, with a slight abuse of notation, may equivalently be

expressed as

s 7→ |W1(s)Pdes(s)G
−1
i (s)W2(s)Si(s)| + |W2(s)K(s)Si(s)|, (5.15)

which is denoted |W1PdesG
−1
i W2Si| + |W2KSi|. Now, a necessary and sufficient con-

dition for robust performance is given by

‖|W1PdesG
−1
i W2Si| + |W2KSi|‖∞ < 1, (5.16)

or equivalently,

|W1(jω)Pdes(jω)G−1
i (jω)W2(jω)Si(jω)| + |W2(jω)K(jω)Si(jω)| < 1 ∀ω. (5.17)

This may be further expressed as

|W1(jω)Pdes(jω)G−1
i (jω)W2(jω)Si(jω)| < 1 − |W2(jω)K(jω)Si(jω)| ∀ω(5.18)

⇐⇒
|W1(jω)Pdes(jω)G−1

i (jω)W2(jω)Si(jω)|

1 − |W2(jω)K(jω)Si(jω)|
< 1 ∀ω (5.19)

⇐⇒

∥∥∥∥
W1PdesG

−1
i W2Si

1 − |W2KSi|

∥∥∥∥
∞

< 1. (5.20)

Note that 1 − |W2(jω)K(jω)Si(jω)| > 0 ∀ω is a result of the RS requirement.

Therefore, the inequality in eqn (5.19) holds.

Theorem 10. (DFFSP with Additive Uncertainty Model) A necessary and sufficient

condition for robust performance is

‖|W1PdesG
−1
i W2Si| + |W2KSi|‖∞ < 1, (5.21)

107

Proof. (⇐) Assume eqn (5.21), or equivalently,

‖W2KSi‖∞ < 1 and

∥∥∥∥
W1PdesG

−1
i W2Si

1 − |W2KSi|

∥∥∥∥
∞

< 1 (5.22)

Fix ∆ and assume that each of the transfer functions are evaluated at an arbitrary

point jω. Then,

1 = |1 + ∆W2KSi − ∆W2KSi| ≤ |1 + ∆W2KSi| + |W2KSi|

and therefore

1 − |W2KSi| ≤ |1 + ∆W2KSi|.

This implies that

∥∥∥∥
W1PdesG

−1
i W2Si

1 − |W2KSi|

∥∥∥∥
∞

≥

∥∥∥∥
W1PdesG

−1
i ∆W2Si

1 + ∆W2KSi

∥∥∥∥
∞

.

This along with eqn (5.22) yields

∥∥∥∥
W1PdesG

−1
i ∆W2Si

1 + ∆W2KSi

∥∥∥∥
∞

< 1 (5.23)

(⇒) Assume that

‖W2KSi‖∞ < 1 and

∥∥∥∥
W1PdesG

−1
i ∆W2Si

1 + ∆W2KSi

∥∥∥∥
∞

< 1, ∀∆. (5.24)

Pick a frequency ω where

|W1PdesG
−1
i W2Si|

1 − |W2KSi|
(5.25)

is maximum. Now pick an all-pass ∆ such that

1 − |W2KSi| = |1 + ∆W2KSi|

108

.

The idea is that ∆(jω) should have a unity magnitude (i.e., |∆(jω)| = 1 ∀ω)

and the phase should the negative of the phase of W2(jω)K(jω)Si(jω). This may be

done using an all-pass as was demonstrated in Section 2.3.1. Now,

∥∥∥∥
W1PdesG

−1
i W2Si

1 − |W2KSi|

∥∥∥∥
∞

=
|W1PdesG

−1
i W2Si|

1 − |W2KSi|

=
|W1PdesG

−1
i ∆W2Si|

1 + ∆W2KSi
(5.26)

≤

∥∥∥∥
W1PdesG

−1
i ∆W2Si

1 + ∆W2KSi

∥∥∥∥
∞

.

The equality in eqn (5.26) follows from the fact that ∆ is all-pass. From this and

eqn (5.24), there follows eqn (5.22) and therefore eqn (5.21).

5.5.2 Multiplicative Uncertainty

For robustness analysis against model uncertainty, an uncertain plant model with

multiplicative uncertainty is considered here. In this case, the nominal plant model

G is replaced with the perturbed plant model G̃ = (1 + W2∆)G. The block diagram

for this model is shown in the Figure 5.10.

+

W2(s) ∆(s)

Perturbed Plant

+
+

G(s)K(s)+ +

r(t)

y(t)
e(t) u(t)uf b(t)

+
+

+

–

Pdes(s) Gi
-1(s)

rff (t)

uff (t)

+Gi(s) - G(s)
+

+

yp(t)

Figure 5.10: Uncertain LTI DFFSP Architecture with Multiplicative Uncertainty

The perturbed sensitivity function becomes

109

S̃DFFSP =
Pdes − PdesG

−1
i ((1 + ∆W2)G + Gi − G)

1 + ((1 + ∆W2)G + Gi − G)K

=
Pdes − Pdes − PdesGnoi∆W2

1 + (Gi + ∆W2G)K

= −
PdesGnoi∆W2/(1 + GiK)

(1 + GiK + ∆W2GK)/(1 + GiK)

= −
PdesGnoi∆W2Si

1 + ∆W2Mi

, (5.27)

It should be noted that the nominal and perturbed feedback characteristic equa-

tions are (1 + Li) and (1 + Li)(1 + ∆W2Mi). These are identical to the characteristic

equations for the Smith predictor only architecture presented earlier in this chapter.

Using the same reasoning provided there, robust stability requires for all ‖∆‖∞ ≤ 1

that ‖W2Mi‖∞ < 1 .

For robust performance, we require robust stability and a norm bound on the

weighted and perturbed sensitivity function. This is given by

‖W2Mi‖∞ < 1 (RS) and

∥∥∥∥W1
PdesGnoi∆W2Si

1 + ∆W2Mi

∥∥∥∥
∞

< 1, ∀‖∆‖∞ ≤ 1 (5.28)

By a similar method to that used for the additive uncertainty case, a necessary

and sufficient condition for robust performance is

Theorem 11. (DFFSP with Multiplicative Uncertainty Model) A necessary and suf-

ficient condition for robust performance is

‖|W1PdesGnoiW2Si| + |W2Mi|‖∞ < 1, (5.29)

Proof. The proof of the multiplicative case follows the same line of reasoning as the

additive uncertain case. In a similar fashion, an all-pass filter is required in the

necessity part of the proof.

110

5.6 Discrete-Time Implementations

In most applications, the controller will be implemented in discrete-time using a pro-

cessor. Similar to the DFFPC architecture, the feedforward and Smith predictor

controllers for the DFFSP architecture may be defined based on a zero order hold

equivalent discrete-time plant. For reference, the zero order hold discrete-time equiv-

alent plant may be obtained via

G(s) −→ GZOH(z) =
KDCNnmp(z)Nmp(z)

D(z)
z−Nd , (5.30)

where the zero-order hold equivalent plant GZOH(z) is calculated using standard

methods (c.f., [41]). This process was demonstrated in Chapter 3.1.2. This new

discrete-time equivalent plant may be factored into GZOH(z) = Gi(z)Gnoi(z), where

Gi(z) =
KDCNmp(z)

D(z)
(5.31)

Gnoi(z) = Nnmp(z)z−Nd . (5.32)

For the DFFSP architecture, the two feedforward controllers are defined as

FF1(z) = Pdes(z) (5.33)

FF2(z) = Pdes(z)G−1
i (z), (5.34)

and the unity at DC constraint remains Pdes(1) = 1,

In this scenario, the controller blocks are discrete-time blocks; however, the plant

is still a continuous time system. This is illustrated in Figure 5.11.

The discrete-time implementation of DFFSP is shown in Figure 5.11. For this

implementation, perfect tracking still holds and the nominal closed-loop map is given

by Pdes(z)Gnoi(z). To see this, observe that the discrete-time sensitivity function

(from r[n] to e[n]) is

111

Pdes(z) Gi
-1(z)

K(z)+ +

r(t)

y(t)

rff [n]

e[n]

uff [n]

Gnoi (z)

+
+

+

–

y[n]

GZOH(z)

ZOH G(s)

u(t)

+Gi(z) - G(z)

+
+

yp[n]

Figure 5.11: Discrete-time Implementation of the DFFSP Architecture.

SDFFSP(z) = Pdes(z)Si(z) − Pdes(z)G−1
i (z)Gi(z)Si(z)

= Pdes(z)Si(z) − Pdes(z)Si(z) (5.35)

= 0,

which verifies perfect tracking. Similarly, the discrete-time closed-loop transfer func-

tion (from r[n] to y[n]) is given by

MDFFSP(z) =
Pdes(z)G(z)K(z)

1 + Gi(z)K(z)
+

Pdes(z)G−1
i (z)G(z)

1 + Gi(z)K(z)

=
Pdes(z)Gnoi(z)Gi(z)K(z) + Pdes(z)Gnoi(z)

1 + Gi(z)K(z)

= Pdes(z)Gnoi(z)
1 + Gi(z)K(z)

1 + Gi(z)K(z)
(5.36)

= Pdes(z)Gnoi(z),

which is the discrete-time version of eqn (5.12). The discrete-time implementation

will prove to be very useful in the adaptive cases where system identification is used

to refine the zero-order hold equivalent plant model GZOH(z).

112

5.7 Conclusions

Another method was presented that characterizes the general class of signals that

may be perfectly tracked for all stable LTI non-minimum phase system of the form of

eqn (3.1). Note that this Smith predictor architecture is restricted to stable plants,

unlike the tools from Chapter 4. However, for stable plants, it does provide another

method for achieving perfect tracking. In Chapter 2, it was shown that the distur-

bance rejection properties could be improved by using a modified Smith predictor;

however, that option is not available in this setting, because of the specified Smith

predictor feedback loop required for perfect tracking. In particular, the modified

model must be Gm(s) = Gi(s) for perfect tracking to hold, and not a free parameter

that may be used to improve the disturbance rejection properties. Therefore, the dis-

turbance rejection performance will be determined by the feedback controller K(s)

(as it was in the DFFPC architecture). If the same order feedback controller K(s)

is used for both the DFFPC and DFFSP architectures, the DFFSP architecture will

result in a higher order controller architecture, because of the extra states introduced

by the term Gi(s) − G(s) in the feedback loop. This higher order controller may be

less desirable to implement. The performance trade-offs between this method and the

DFFPC architecture will be studied using numerical examples in Chapter 9.

Since part of the model (i.e., Gi(s)−G(s)) appears in the feedback loop, it is more

difficult to stably adapt. Instead of adapting the components inside the feedback loop,

the feedforward part of the DFFSP structure may be modified for adaptation. The

modification makes the adaptive DFFSP architecture look like the adaptive DFFPC

architecture, which suggests that the DFFPC architecture is preferable to the DFFSP

architecture when adaptation is being used.

113

Chapter 6

Robust and Optimal Feedforward
Design

The role of the feedforward controllers is to provide nominal tracking performance.

There are three pieces that need to be defined for the feedforward controllers, namely

Pdes(s), Gnoi(s), and G−1
i (s). While Gnoi(s) and G−1

i (s) come straight from the plant

model, Pdes(s) is designed for performance. In general, the desired response will be

a multiobjective design that will have conflicting design objectives. As an example,

it may be desirable to have a fast rise time to steps without using too much control

authority in the presence of model uncertainty. Here more model uncertainty and

less control authority will increase the step rise time. These types of trade-offs are

common in many control applications. However, the design methodology is different

for feedforward versus the usual feedback case. For example, it is possible to directly

design the feedforward controllers to provide a specific rise time with no overshoot,

which is more difficult to do with a (weighted) feedback controller design.

Design constraints have been provided to ensure that the feedforward controllers

are proper and that the output y(t) asymptotically tracks the input r(t). These

design constraints also provide limitations on achievable performance. In particular,

Pdes(s)Gnoi(s) determines the class of signals that may be perfectly tracked, and

Pdes(s)G
−1
i (s) is the feedforward controller that will provide perfect tracking.

Two methodologies for designing these pieces will be discussed here, namely a

114

direct model-based design and robust/optimal feedforward controller design. The ro-

bust and optimal feedforward designs were inspired by the work presented in [68]. The

work of [68] is investigated further here to show how the current robust and optimal

designs may be used to design a Pdes(s). As will be demonstrated for the controller

synthesis methods chosen here, the final robust and optimal feedforward controllers

may be constructed to be of the form Pdes(s)G
−1
i (s). From observations of the final

feedforward controller, model reduction techniques may be used to approximate a

reduced order Pdes(s).

6.1 Direct Model-Based Feedforward Design

For the direct model based design, Pdes(s) must adhere to the following design con-

straints.

Pdes(s) Design Constraints:

• Pdes(s) stable, and relative degree of Pdes(s) ≥ Relative degree of Gi(s) (assum-

ing G(s) is proper).

• Pdes(0) = 1 (assuming that Gnoi(0) = 1 from the problem formulation).

Adhering to these constraints will guarantee that the the transfer functions

Pdes(s)Gnoi(s) and Pdes(s)G
−1
i (s) are proper, and therefore may be implemented in

physical hardware. This constraint also provides a limitation on the achievable ideal

closed-loop response Pdes(s)Gnoi(s). For example, if the relative degree of Gi(s) is

three and there are no right-half plane zeros (i.e., Gnoi(s) = 1), then the the class

of signals that can be perfectly tracked must have at least third order roll off (i.e.,

60 dB/decade or more) at high frequencies. However, the frequency at which this

roll-off occurs can be pushed out to arbitrarily high frequencies. The trade-off is

that a Pdes(s) with a larger bandwidth will generally lead to larger and faster control

signals. Therefore, analysis should be performed to determine that the actuator will

115

have enough control authority to respond to the control signals that are required for a

given Pdes(s). If the control signals fall outside of the operating range of an actuator,

then the bandwidth of Pdes(s) should be decreased. Also, increasing the bandwidth

of Pdes(s) will generally reduce the overall system robustness. Next, numerical ex-

amples are presented that show how the ideal step response may be shaped using a

specified structure for Pdes(s). The robustness trade-offs will be demonstrated later

in the illustrative examples of Chapter 9.

6.1.1 Numerical Example

A sample non-minimum phase system is selected to demonstrate the perfect tracking

property and design trade-offs. The plant in question is given as

G(s) =
3(−s

2
+ 1)

(s
5

+ 1)(s
10

+ 1)
, (6.1)

which may be factored into

Gnoi(s) =

(
−s

2
+ 1

)
Gi(s) =

3

(s
5

+ 1)(s
10

+ 1)
. (6.2)

For the first example, the design parameter is given as

Pdes(s) =
1

(s
5

+ 1)2
, (6.3)

which results in the two feedforward controllers

FF1(s) = Pdes(s)Gnoi(s) =
(−s

2
+ 1)

(s
5

+ 1)2
(6.4)

FF2(s) = Pdes(s)G
−1
i (s) =

(s
5

+ 1)(s
10

+ 1)

3(s
5

+ 1)2
=

(s
10

+ 1)

3(s
5

+ 1)
. (6.5)

A MATLAB Simulink simulation diagram for DFFPC is shown in Figure 6.1

For the simulations shown here, the feedback controller is set to an arbitrary

(stabilizing) controller, and the rest of the continuous-time system blocks (denoted

116

output1

output

Transport
Delay1

Transport
Delay

Step

pck
ss

Pdes / G_i

pck
ss

Pdes * G_noi

pck
ss

G

pck
ss

FB

Figure 6.1: Continuous-time LTI DFFPC Simulink Diagram

pck ss in Figure 6.1) are defined according to the methods outlined earlier in this

chapter. For the first simulation, the input reference (r(t)), the filtered reference

(rff(t)), and actual output (y(t)) are plotted along with the feedback error (e(t)) and

feedforward control authority (uff(t)). The results are shown in Figure 6.2.

0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

P
la

nt
 R

es
po

ns
e

Step Response (Nominal Case)

Reference Input (r(t))
Filtered Reference (r

ff
(t))

Plant Output (y(t))

0 1 2 3 4 5
−0.1

0

0.1

0.2

0.3

0.4

F
ee

db
ac

k
Lo

op
 S

ig
na

ls

Feedback Error (e(t))
Feedforward Control Signal (u

ff
(t))

Figure 6.2: Perfect Tracking Control using DFFPC

Here, the filtered reference (solid black line) and actual output (dotted red line)

are the same in the top plot of Figure 6.2. As a result, the feedback error is zero and

the feedforward controllers are providing perfect reference tracking when there are no

117

modeling errors or external disturbances. For this choice of Pdes(s), the undershoot

is about 100%. This provides an example of the fundamental limitation (i.e., the

significant undershoot) imposed by the right-half plane zero that is close to the origin

that neither feedforward nor feedback controllers can remove.

Since the transfer function FF2(s) = Pdes(s)G
−1
i (s) is biproper, the feedforward

control signal instantaneously jumps from 0 to 0.3 when the step is applied. In

many applications, the actuator will not be able to respond to this instantaneous

jump, which means the perfect tracking property will not be achieved on the physical

system. Therefore, a practical design rule is to choose the relative degree of Pdes(s)

to be strictly greater than the relative degree of Gi(s). An example of this is provide

in the next example where a high frequency pole is added to Pdes(s) to make FF2(s)

strictly proper. For the next set of simulations, Pdes(s) is redefined to be

Pdes(s) =
1

(s
100

+ 1)(τs + 1)2
, (6.6)

and simulations are run for various values of τ . Note that smaller values of τ will result

in a larger bandwidth in the feedforward controllers (i.e., the bandwidth is determined

by 1/τ). Since the perfect tracking property was demonstrated in Figure 6.2, only the

actual output is plotted for various values of τ . The results are shown in Figure 6.3.

Figure 6.3 illustrates the fundamental trade-offs that are encountered when de-

signing Pdes(s), namely that a faster settling time requires larger control signals and

that more undershoot will result. The performance metrics for the various Pdes(s)

designs are summarized in Table 6.1.1. Here, percent undershoot is given in terms

of undershoot per step size and the settling times are measured from when the step

occurred, to when the final value was within ∆ percent of the step size. For the cases

considered here ∆ = 5% and ∆ = 2% are given.

For a particular system, Pdes(s) should be chosen based on design requirements

with the understanding that a faster settling time will incur more overshoot and

118

0 1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

0.5

1

O
ut

pu
t

Step Response (Nominal Case)

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

F
ee

db
ac

k
E

rr
or

 a
nd

 C
on

tr
ol

 S
ig

na
l

Reference Input

Perfectly tracked plant output (τ
des

 = 1)

Perfectly tracked plant output (τ
des

 = 0.2)

Perfectly tracked plant output (τ
des

 = 0.1)

Feedback Error

Control Signal(τ
des

 = 1)

Control Signal(τ
des

 = 0.2)

Control Signal(τ
des

 = 0.1)

Figure 6.3: Perfect Tracking Control Bandwidth Effects

τ % undershoot 5% Settle Time 2% Settle Time max control authority
1 7% 5.18 sec 6.25 sec 0.33

0.2 71% 1.23 sec 1.45 sec 0.33
0.1 160% 0.68 sec 0.79 sec 0.57

Table 6.1: Perfect Tracking Control Trade-offs for a Non-minimum Phase Plant

require a larger control signal. Assuming that Pdes(s) satisfies its design constraints,

the transfer function Pdes(s)Gnoi(s) gives the class of signals that may be perfectly

tracked using the architectures presented here. Therefore, a search may be performed

over candidate Pdes(s) transfer functions to determine if the performance requirements

can be met.

6.2 Robust and Optimal Feedforward Controller

Design

In the known (Chapter 3), DFFPC, and DFFSP architectures, a feedforward con-

troller is used to invert the minimum-phase dynamics of a system. In many situ-

ations, the term G−1
i (s) is not a proper transfer function. However, the product

119

Pdes(s)G
−1
i (s) may be designed such that it is a stable proper transfer function. In

this section, robust and optimal controller synthesis is explored for the feedforward

controller designs. A method is provided that will result in the robust and opti-

mal design of Pdes(s). In many cases, the results show that the robust and optimal

controller methods discussed here result in proper transfer functions that tend to

essentially invert the stable minimum-phase dynamics in the system. Through the

use of standard model reduction techniques, is possible to find a low order Pdes(s)

without losing much performance.

For the initial presentation of this method, it will be assumed that the plant

is stable. This is required since the resulting robust and optimal controllers are

required to be internally stabilizing, which is not possible for unstable plants with

the formulation considered here. However, the design methodology may be modified

to address this, which is provided at the end of this section.

The use of µ-synthesis to design feedforward controllers was first discussed in [68].

In their work, a method was developed for designing robust feedforward controllers

for a measurable disturbance rejection problem. An example application was given

that showed the controllers improved ability to reject a measurable temperature dis-

turbance on a two tank process. The applicability of using µ-synthesis for feedforward

control was studied and conditions were provided to show when feedforward control is

beneficial; however, the structure of the final controller was never explored to see if it

was trying to essentially invert the plant. Here, we explore the structure of µ-optimal,

H2-optimal, and H∞-optimal feedforward controllers.

For the robust and optimal controller synthesis considered here, µ-synthesis is

achieved using the D-K iteration method given in [58], and the optimal controllers

will be synthesized using the software package in [69], which are based on the methods

in [70]. Through demonstration, we are able to offer that the µ-optimal, H2-optimal,

and H∞-optimal feedforward controllers essentially invert the stable minimum-phase

120

dynamics of the plant. For the parts of the plant that are not perfectly inverted by

the feedforward design, model reduction techniques may be used to extract a lower

order Pdes(s).

The basic design process for the robust and optimal controllers is as follows:

1. Design a robust/optimal FF2(s) (see details later).

2. Define Z(s) = 1
Kµ

FF2(s)Gi(s) (where Kµ is selected to make Z(0) = 1).

3. Use a minimum realization and model reduction techniques to reduce the order

of Z(s).

4. Define Pdes(s) = Z(s)F (s), where F (s) is a stable and proper transfer function

with F (0) = 1. NB: F (s) = 1 is a valid (and common) choice here.

The robust/optimal design will result in a FF2(s) that is strictly proper and the

formulation of Z(s) in step 2 will always guarantee that same the design constraint

on Pdes(s) is satisfied. In step 4, Z(s) is used to define Pdes(s). In many cases, the

design of choice will be Pdes(s) = Z(s) (i.e., F (s) = 1).

The formulation of Z(s) presented here is valid independent of the structure of

FF2(s). However, Z(s) in step 2 will, in practice, contain some stable pole/zero can-

celations (and possibly some stable pole/zero near misses). These stable cancelations

(and near misses) may be eliminated from the final Pdes(s) design. This observation

is also important for the design of FF2(s) on unstable plants, which is addressed at

the end of this section.

The intention of FF2(s) is to invert Gi(s) and not the full plant G(s). For the

robust and optimal designs it is desirable to know if the FF2(s) design may done

on just Gi(s) or if the full plant G(s) should be used. The use of these models

in the FF2(s) design are considered in the next two sections and it is argued that

it is preferred to design FF2(s) using only Gi(s). These next two sections also

121

demonstrate that FF2(s) is, in many cases, almost of the form Pdes(s)G
−1
i (s), which

motivates the use of a reduced order Pdes(s) for implementation.

6.2.1 Feedforward 2 Designed on the Full Plant G(s)

A FF2(s) µ-synthesis interconnect is shown in 6.4 that contains the full non-minimum

phase plant in the design.

∆(s)

G
-1
model

matching

error

+ + +FF2 G(s)

Wi(s)

Wp(s)

Wn(s)Wu(s)

++
+

-

+
+

Uncertain Plant

Measurement

Noise

Weighted

Control

Authority

Filtered

Reference

Input

Figure 6.4: FF2(s) Design Interconnect with the Full Plant Model

The µ-synthesis optimization attempts to minimize the gain from the exogenous

inputs to exogenous outputs in the presence of model uncertainty. Here, the exogenous

inputs are the filtered reference and measurement noise, and the exogenous outputs

are the weighted control authority and model matching error.

Recall from Chapter 3 that the invertible part of the plant is defined to be

Gi(s) =
KDCNmp(s)

D(s)
⇒ G−1

i (s) =
D(s)

KDCNmp(s)
. (6.7)

The µ-optimal FF2(s) controller resulting from the design interconnect shown in

Figure 6.4 may be expressed as

FF2µ(s) =
KµNµ(s)

Dµ(s)
. (6.8)

In order to ensure that FF2µ(s) is of the desired form, it may be expressed as

122

FF2µ(s) =

(
KµKDCNµ(s)Nmp(s)

Dµ(s)D(s)

)(
D(s)

KDCNmp(s)

)
(6.9)

= V (s)G−1
i (s). (6.10)

Using extensive numerical testing, the numerator and denominator polynomials

of V (s) tend to have the following properties:

Nµ(s) = N1(s)D(s) (6.11)

Dµ(s) ≈ D1(s)Nmp(s) (6.12)

In other words, the (stable) poles of Gi(s) are minimum-phase zeros in FF2µ(s)

and the minimum-phase zeros of Gi(s) are very near stable poles in FF2µ(s). The

notion of stable poles in FF2µ(s) being very close to the minimum-phase zeros of Gi(s)

will be demonstrated via example later in this section. Based on these observations,

these cancelations may be used to get a reduced order V (s) as

V (s) =
KµKDCNµ(s)Nmp(s)

Dµ(s)D(s)
=

KµKDCN1(s)Nmp(s)

Dµ(s)
≈

KµKDCN1(s)

D1(s)
(6.13)

From this, Z(s) may be defined as

Z(s) =
1

V (0)
V (s) =

1

KµKDC
V (s) =

N1(s)

D1(s)
. (6.14)

It should be noted that this final design of Z(s) does not rely on the observation

made in eqn (6.13); however, this observation (when it is valid) will result in a lower

order Z(s) (and hence (potentially) lower order Pdes(s)). Given Z(s), the final design

Pdes(s) may be given by

Pdes(s) = Z(s)F (s) : F (s) stable and proper with F (0) = 1, (6.15)

123

where F (s) provides another degree of freedom. For example, F (s) could be used

to limit the amount of control authority by creating more high frequency roll off in

Pdes(s). However, in many situations, F (s) = 1 is the best choice and Pdes(s) = Z(s).

In order to demonstrate the structure of the controller, the following non-minimum

phase plant is considered.

G(s) =
12(− s

2
+ 1)(s + 1)

(s
5

+ 1)(s
7

+ 1)(s
10

+ 1)
(6.16)

For the FF2(s) µ-synthesis, an input uncertainty weight of Wi(s) = 1/100 is chosen,

and the performance weight is given by

Wp(s) =
Kpωp

s + ωp
, (6.17)

which is a low pass filter. Here, Kp is the gain at low frequencies and ωp is the

bandwidth (in radians per second) that performance is sought after in the µ-optimal

design. This means that the final controller will attempt to approximate G−1 such

that |G−1(jω) − FF2(jω)| < 1/Kp for ω < ωp. The design was carried out for both

small and large Kp and ωp. A minimum realization of the product Gi(s)FF2(2) was

taken for each in MATLAB. The results are shown in Table 6.2.1.

Kp = 1 Kp = 10000

ωp = 1 rad/sec Z(s) = 1

(s
3.21

+1)(s2

1973
+ s

30.78
+1)

Z(s) = 1

(s
67.13

+1)(s2

161018
+ s

283.4
+1)

ωp = 100 rad/sec Z(s) = 1

(s
3.41

+1)(s2

587829
+ s

542.1
+1)

Z(s) = 1

(s
147.7

+1)(s2

26276282
+ s

3625
+1)

Table 6.2: Resulting Z(s) Transfer Functions for Various FF2(s) µ-synthesis Designs

Regardless of the design parameters chosen, the µ-optimal controller always placed

minimum-phase zeros in FF2(s) wherever there were stable poles in the plant (i.e.,

D(s) always appeared in the numerator of FF2(s)). For the cases where the plant

124

inverse was approximated out to 1 rad/sec (i.e., ωp = 1 rad/sec), the µ-optimal

controller put a pole at s = −1.00004387147732, which is very close to the minimum-

phase zero at s = −1. This is a (stable) near pole/zero cancelation, which was

removed from the final Z(s) shown in Table 6.2.1. This is an example of the com-

ment above where it was claimed that FF2µ(s) contained stable poles very near the

minimum-phase zeros of Gi(s). It is common in standard model reduction techniques

to eliminate the near pole/zero cancelation from Z(jω) with little consequence on the

frequency response or performance of the overall control system. For the cases where

the plant inverse was approximated out to 100 rad/sec (i.e., ωp = 100 rad/sec), the

µ-optimal controller put a pole so close to the minimum-phase zero at s = −1 that

the minimum realization of Z(s) in MATLAB had a pole/zero cancelation. From ob-

servations, this cancelation of the minimum-phase zeros in G(s) by FF2(s) does not

always happen. Therefore, the factorization in eqn (6.10) should be performed. If the

resulting V (s) (and hence DC corrected Z(s)) has a near pole/zero cancelation, then

a reduced order model may be used to represent the final Z(s). Regardless of this

possible pole/zero cancelation, the µ-optimal controller FF2(s) appears to always

cancel the (stable) poles of G(s).

In the case where F (s) = 1, the final feedforward controller will be FF2(s) =

Z(s)G−1
i (s). In this case, the transfer function Z(s) may be expressed as

Z(s) = FF2(s)Gi(s), (6.18)

and Z(jω) may be used to infer how well FF2(s) approximates G−1
i (s). In particular,

the complex frequency response Z(jω) will be close to one (i.e., magnitude one and

phase of 0◦ modulo 360◦). A Bode plot of the various Z(jω) in Table 6.2.1 are shown

in Figure 6.5.

Figure 6.5 illustrates the effects of the two parameters. Since the relative degree

of the plant G(s) is two, the controller was designed to be strictly proper, which

125

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−270

−180

−90

0
P

ha
se

 (
de

g)

Bode Plots for Z(jω)

Frequency (rad/sec)

K = 1, wp = 1 rad/sec

K = 1, wp = 100 rad/sec

K = 1e4, wp = 1 rad/sec

K = 1e4, wp = 100 rad/sec

Figure 6.5: Bode Plots of Z(jω) from Table 6.2.1.

means that the controller FF2(s) had a relative degree of three. This is seen by the

third order roll off (i.e., 60 dB/decade in the magnitude and -270 degrees in phase)

for Z(jω) at high frequencies. For the two cases that are approximating the inverse

out to ωp = 1 rad/sec (shown in blue and red), the magnitude plots of Z(jω) are

approximately equal one out to 1 rad/sec and then roll off at higher frequencies.

Similarly, the two cases that are approximating the inverse out to ωp = 100 rad/sec

(shown in green and cyan), the magnitude plots of Z(jω) are approximately equal

one out to 100 rad/sec and then roll off at higher frequencies. For the two cases that

have Kp = 1, all three poles roll off at about the same time. However, for the cases

where Kp = 10000, only one pole rolls off around ω = ωp, and then, the other two

poles roll off at higher frequencies. The result is that these controllers are trying to

hold the plant inverse approximation out to higher frequencies. Between these two

parameters, ωp has a larger effect on the effective bandwidth of the approximated

plant inverse.

126

6.2.2 Feedforward 2 Designed on Invertible part of the plant
Gi(s)

In the known, DFFPC, and DFFSP structures, the first feedforward controller pro-

vides the ideal response along with the effects of the non-minimum phase components

(if there are any), and the second feedforward controller is designed for the invertible

part of the plant, namely Gi(s). In the previous section, it was shown that the µ-

optimal controller approximates the inverse of the stable minimum-phase part of the

plant out to a bandwidth that is specified by the design parameters. In this section,

we explore the option of designing FF2(s) using only the invertible part of the plant,

namely Gi(s). Now, the design of FF2(s) is done using the design interconnect shown

in Figure 6.6.

∆(s)

G
-1
model

matching

error

+ + +FF2 Gi(s)

Wi(s)

Wp(s)

Wn(s)Wu(s)

++
+

-

+
+

Uncertain Plant

Measurement

Noise

Weighted

Control

Authority

Filtered

Reference

Input

Figure 6.6: FF2(s) Design Interconnect with the Invertible Piece of the Plant Model

The resulting controller will have the same common zeros and poles in FF2(s) and

a reduced order Z(s) is obtained. However, the polynomials N1(s) and D1(s) that

define Z(s) in eqn (6.13) will be different, which means that the approximation of the

plant inverse will also be different. In particular, the bandwidth of the approximation

will be larger and the phase response will be different at higher frequencies. To see

this, consider the same plant from eqn (6.16) with the same design parameters from

Table 6.2.1. Now, the plant is defined as

127

Gi(s) =
12(s + 1)

(s
5

+ 1)(s
7

+ 1)(s
10

+ 1)
(6.19)

The resulting Z(s) transfer functions from using the design interconnect in Fig-

ure 6.6 are shown in Table 6.2.2.

Kp = 1 Kp = 10000

ωp = 1 rad/sec Z(s) = 1

(s
17.67

+1)(s2

227.6
+ s

12.79
+1)

Z(s) = 1

(s
1532

+1)(s2

11000
+ s

63.8421
+1)

ωp = 100 rad/sec Z(s) = 1

(s
109.5

+1)(s2

11910
+ s

108.8
+1)

Z(s) = 1

(s
1451

+1)(s2

2101000
+ s

1448
+1)

Table 6.3: Resulting Z(s) Transfer Functions for Various FF2(s) µ-synthesis Designs
on Gi(s)

As in the previous case where the full plant is used, the µ-optimal controller

does not quite do a perfect cancelation of the minimum-phase zeros of Gi(s) and the

stable poles of Gi(s) are canceled by minimum-phase zeros in FF2(s). For the final

controller implementation, the near miss pole/zero cancelations of can be removed

without having a major effect on the final FF2(s) controller.

This new design methodology changes the Bode plots of Z(jω). To see this con-

sider the plots shown in Figure 6.7

The two main differences for this method are that the approximations go to a

larger bandwidth and that all three poles roll off at the same time for each method.

This suggests that the FF2(s) controllers designed on the full plant are attempting

to alter the phase in order to compensate for the non-minimum phase components

in the system. Since the FF2(s) does not need to be designed for the non-minimum

phase components, the design interconnect in Figure 6.6 is preferred.

128

−200

−150

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−270

−180

−90

0

P
ha

se
 (

de
g)

Bode Plots for Z(jω)

Frequency (rad/sec)

K = 1, wp = 1 rad/sec

K = 1, wp = 100 rad/sec

K = 1e4, wp = 1 rad/sec

K = 1e4, wp = 100 rad/sec

Figure 6.7: Bode Plots of Z(jω) From Table 6.2.2.

6.2.3 Feedforward 2 Designed on Plants with Time Delays

For the µ-synthesis tools considered here, the plant must be a rational transfer func-

tion. Therefore, time-delays are approximated using Pade approximations [43]. A

first order Pade approximation of time delay is given by

e−sτd =
e

−sτd
2

e
sτd
2

≈
1 − τd

2
s

1 + τd

2
s
, (6.20)

which has a non-minimum phase zero at s = 2
τd

and a stable pole at s = − 2
τd

.

Therefore, a µ-optimal design on the plant with the time delay will place a minimum-

phase zero at s = − 2
τd

and the phase will try to compensate for the non-minimum

phase zero at s = 2
τd

. For the same reasons given in the previous section, namely the

FF2(s) only needs to be handle the stable minimum-phase components of the plant,

time delays (and their Pade approximations) are not used to design the FF2(s).

6.2.4 H2 and H∞ Optimal Feedforward Design

Another method for synthesizing the FF2(s) controller is to use standard optimal

controller design methodologies, such as H2 and H∞ optimal controller designs. For

129

these designs a design connect without model uncertainty is used, which is shown in

Figure 6.8.

G
-1
model

matching

error

+ +FF2 Gi(s) Wp(s)

Wn(s)Wu(s)

+

-

+
+

Measurement

Noise

Weighted

Control

Authority

Filtered

Reference

Input

Figure 6.8: Robust FF2(s) Design Interconnect with the Invertible Part of the Plant

As with the µ-optimal feedforward design, the final feedforward controller may

be of the form FF2(s) = Z(s)G−1
i (s), where Z(s) has been reduced by removing

pole/zero cancelations.

6.2.5 Unstable Plants

In the methods presented in this section, the robust and optimal controllers require

that the final controller be internally stabilizing, which does not allow for any unstable

pole/zero cancelations. Also, the final controller does not contain feedback, which

means that it is unable to move or cancel unstable poles in G(s) (or Gi(s)). The

result is that the overall feedback connect in Figures 6.4 or 6.6 cannot be stabilized

when the plant is unstable.

When the plant is stable, a minimal realization may be made to eliminate the

redundant (stable) plant poles and zeros in Z(s). This observation may be used

to remove the unstable poles from G(s) (or Gi(s)) before the FF2(s) controller is

synthesized. In particular, the unstable poles of the plant may be reflected across the

jω-axis. Then, after the controller has been synthesized, Z(s) may be adjusted to

remove the effects of this unstable pole reflection.

130

To begin, let the plant denominator polynomial be given by D(s) = Ds(s)Du(s),

which has been decomposed into its stable and unstable pieces, respectively. Let J(s)

be an all-pass filter with

J(s) =
Du(s)

Du(−s)
, (6.21)

which has non-minimum-phase zeros where G(s) has unstable poles and stable poles

that are the reflection of the unstable poles of G(s) across the jω-axis (e.g., if G(s) has

an unstable pole at s = 2, J(s) will have a stable pole at s = −2 and a non-minimum

phase zero at s = 2). Now, define

Gi(s) = Gi(s)J(s) =
KDCNmp(s)

Ds(s)Du(s)

Du(s)

Du(−s)
=

KDCNmp(s)

Ds(s)Du(−s)
, (6.22)

which is now a stable system. In fact, it is Gi(s) with all of its unstable poles re-

flected across the jω-axis. Let FF2(s) be the robust or optimal feedforward controller

that has been designed for Gi(s). Using the notation and reasoning used in equa-

tions (6.10)-(6.10), assume that the cancelations1 and scaling (to make Z(0) = 1)

have taken place. Then, the final FF2(s) controller will be of the form

FF2(s) =

(
N1(s)Du(−s)

D1(s)

)(
Ds(s)

KDCNmp(s)

)
(6.23)

Now, let FF2(s) be defined as

1This assumption is not required for this design method to work. However, if the cancelations
do not occur, the resulting FF2(s) will be a higher order transfer function.

131

FF2(s) = FF2(s)J(s)

=

(
N1(s)Du(−s)

D1(s)

)(
Ds(s)

KDCNmp(s)

)(
Du(s)

Du(−s)

)

=

(
N1(s)

D1(s)

)(
Ds(s)Du(s)

KDCNmp(s)

)
(6.24)

= Z(s)G−1
i (s),

which is in the desired form.

6.3 Conclusions

In this chapter, two methods for designing Pdes(s) were explored. In the direct de-

sign, Pdes(s) is parameterized to provide desired closed-loop properties such as rise

time with no overshoot. In the second design method, standard optimal and robust

controller synthesis methods were presented that allowed for multiobjective optimiza-

tion such as fast rise while using limited control authority. In both design scenarios,

the robustness tools from the previous chapters may be used to guide the design of

Pdes(s). This will be illustrated on examples in Chapter 9.

132

Chapter 7

Adaptation Techniques

The achievable performance for the presented controller architectures depends upon

the accuracy of the models used for the feedforward components. In particular, better

models allow for better performance. These models either need to be known a priori or

they need to be learned via experience with the physical plant. One advantage of the

proposed controller architecture is that the feedforward controllers may be adapted

without affecting closed-loop stability. This is a different approach from our earlier

work that focused on adapting controllers inside the feedback loop [71; 72; 73; 74;

75]. While these earlier methods do guarantee stability for adapting controllers inside

a feedback loop, they are computationally intensive. Since the methods presented

here only adapt the feedforward controllers, they do not affect closed-loop stability

provided the signals that come out of the feedforward controllers are bounded. For

the situations considered here, stable adaptation schemes are assumed, which means

that closed-loop stability will be unaffected by the adaptation. The advantage to the

methods in [71; 72; 73; 74; 75] is that adapting the feedback controller will improve

both tracking performance and disturbance rejection performance, whereas adapting

the feedforward controllers in the architectures presented here only improves tracking

performance. The advantages to the methods presented here are greatly reduced

computational overhead required to guarantee stability, and there are no issues with

conservative robustness analysis bounds that can severely limit the adaptation. In

133

this section, two methods for adaptation are considered.

For systems that are well represented by linear models, model identification adap-

tive control (MIAC) schemes will be considered. For these methods, the plant iden-

tification will be done using standard system identification techniques. The unique

part of this adaptation is the way that the identified plant model is decomposed into

Gnoi and Gi to redefine the pieces of the feedforward controllers. The use of MIAC

for DFFPC is very straightforward, since all the model decomposition appears in

the feedforward loops. For DFFSP, a prediction of the minimum-phase plant output

is provided inside the feedback loop. For ease of stability analysis, the components

inside the feedback loop are not adapted in the cases considered here. Instead, a

feedforward augmentation is used to correct for the incorrect plant output predic-

tion. This augmentation makes the adaptable feedforward controller for the DFFSP

architecture look like the feedforward controller in the DFFPC architecture.

For systems that are nonlinear and time varying (NLTV), or high dimensional,

deriving the the inverse dynamics analytically may be impractical. In these cases,

better performance may be attained by using feedforward controllers that are NLTV.

The only restriction is that the output of the feedforward controllers have bounded

energy. While there are many NLTV techniques that may be used (c.f., [76]), we will

utilize a reinforcement learning (RL) controller here. This controller will use echo

state networks to provide the feedforward control signal. In the next chapter, we will

discuss the stability properties of echo state networks and provide conditions that

may be used to guarantee stability a priori.

For each of these methods, the learning may be done either on-line or in a batch

format. While on-line optimization routines are often sought after, they can be sen-

sitive to measurement noise. For sake of the discussion here, both will be considered.

However, care should be given to decide which format is best for the application.

134

7.1 Model Identification Adaptive Control

MIAC comprises a large class of adaptive controllers that use model identification to

update a controller based on an identified plant model. A basic diagram of MIAC is

shown in Figure 7.1.

Controller Plant

System

Identification

Adjustment

Mechanism

r(t)
y(t)

u(t)

Figure 7.1: General MIAC Setup

In this setup, system identification is done based on the observed input-output

behavior of the plant. System identification is a well studied problem and many

methods exist for identifying both continuous-time and discrete-time plant models.

While this piece of MIAC typically uses standard system identification algorithms, it

is the adjustment mechanism that varies between the different MIAC schemes. If the

adjustment mechanism updates a part of the controller that uses the current system

output, namely y(t), as an input (i.e., the controller is in the feedback path), then the

feedback system is being adapted and special care must be taken to ensure closed-loop

stability (c.f., [76; 71]. In order to simplify the closed-loop stability analysis here, only

the feedforward controllers will be updated.

For the adaptation considered here, discrete-time controller implementations of

the DFFPC and DFFSP architectures will be used. Therefore, the system identi-

fication part will focus on discrete-time system identification of the zero-order hold

equivalent discrete-time plant (GZOH(z)). We will consider both recursive and batch

methods. Recursive methods update the plant model at every time step based on a

135

correction (or innovation) that is determined by the current input into the systems

and the error between the modeled and actual outputs. This type of adaptation can

continually correct for differences in the model dynamics; however, it is restricted to

a fixed model order and time delay. In contrast, batch system identification may be

achieved by storing a history of the input-output time series and fitting a model to

the data. In this case, a search over the various model orders and time delays may be

used to determine the best model fit. In many practical cases, it may be desirable to

perform online recursive system identification to track minor changes and then per-

form intermittent batch identification to correct for larger problems like time delay

mismatches and to change the order of the identified model. Regardless of how the

model is identified, it will be sent to the adjustment mechanism, which will determine

the best method for updating the two feedforward controllers.

The specific structure of the DFFPC and DFFSP controllers allow for the ad-

justment mechanism to split the identified plant into its minimum-phase and non-

minimum phase components and update the two feedforward controllers accordingly.

For the DFFSP case, this non-minimum phase component appears in the feedback

loop, which will not be adapted. Instead, an additional piece is added to the first

feedforward controller that, under certain conditions, will restore the perfect tracking

property as it was defined in the previous chapters. In a traditional Smith predictor,

the feedback signal is a prediction of the delay free minimum-phase dynamics of the

system. If there are mismatches in the dynamics or time delay between the plant

and model, the predicted feedback signal will contain both minimum-phase and non-

minimum phase dynamics. In this case, a structure that is similar to the DFFPC

architecture may be used to exactly predict the feedback signal (i.e., it can restore the

perfect tracking property). This will be discussed in more detail later in this chapter.

136

7.1.1 Model Identification Adaptive Dual Feedforward Pre-
dictive Control

One of the advantages to DFFPC is that both the minimum-phase and non-minimum

phase parts of the plant appear in the feedforward paths. This means that the

identified plant may be factored into its invertible and non-invertible parts and the

transfer function coefficients in the two feedforward blocks may be updated directly.

This is illustrated in Figure 7.2 where the blue lines show the blocks in the two

feedforward paths that are updated.

)(ˆ zG

Pdes(z)

K(z)+ +

r[n]

y[n]
e[n]

+
++

–
)(

~
sG

)(
~

)(
~

)(
~

zGzGzG inoi=

ZOH

Actual Plant

System

Identification

y(t)

Ts

Adjustment Mechanism

)(ˆ)(ˆ)(ˆ zGzGzG inoi=

)(ˆ zGnoi

)(ˆ 1 zGi
−

Figure 7.2: Model Identification Adaptive DFFPC

The adaptation scheme has two distinct phases, namely a plant identification and

a controller update phase. This is illustrated by the following adaptation algorithm:

• System Identification

1. Identify the plant

2. If the order of the plant model has not changed since the last update,

(a) Send plant model to the adjustment mechanism.

3. If the order of the plant model has changed,

(a) Send plant model to the adjustment mechanism.

137

(b) Send the most current inputs and outputs required to establish the

initial conditions.

• Adjustment Mechanism

1. Perform Invertible/Non-invertible factorization on plant model

2. If the order of the plant model has not changed since the last update,

(a) Update the model parameters in feedforward controllers.

3. If the order of the plant model has changed,

(a) Replace the controllers with the new controller order.

(b) Initialize the feedforward controllers using stored initial conditions

7.1.2 Model Identification Adaptive Dual Feedforward Smith

Predictor

For the DFFSP, the non-invertible part of the plant appears in the feedback loop. In

order to approach the feedforward adaptation for this method, the introduction of a

new piece, labeled X(z), is required in the first feedforward path. This is illustrated

in Figure 7.3 where the blue lines show the blocks that are updated in the two

feedforward paths.

In this Figure, there are three system models, namely Ĝ(z), G(z), and G(z), where

Ĝ(z) and G(z) are chosen to match the notation used in Chapter 5. These systems

are as follows:

Ĝ(z) = Ĝnoi(z)Ĝi(z) Nominal Plant Model (Fixed) (7.1)

G(z) = Gnoi(z)Gi(z) Actual Plant (7.2)

G(z) = Gnoi(z)Gi(z) Estimated Plant Model (Adapted) (7.3)

138

)(zG

Pdes(z)

K(z)+ +

r[n]

y[n]
e[n]

+
++

–
)(sG

)()()(zGzGzG inoi=

ZOH

Actual Plant

System

Identification

y(t)

Ts

Adjustment Mechanism

)()()(zGzGzG inoi=

+

)(zX

)(1 zGi
−

+
+

)(ˆ)(ˆ zGzGi −

Figure 7.3: Model Identification Adaptive DFFSP

If Ĝ(z) 6= G(z), the perfect tracking property (i.e., e[n] = 0 for all n) will not

hold. However, it is possible to pick X(z) that will restore this property if the actual

plant can be exactly modeled by G(z) (i.e., G(z) = G(z)). To see this consider the

sensitivity function SDFFSP of Figure 7.3 with the estimated plant used in the two

feedforward paths. To simplify notation, define the Smith predictor equivalent of the

plant in the feedback to be

ĜSP (z) = Ĝi(z) + G(z) − Ĝ(z)

= Ĝi(z) + Ê(z), (7.4)

where Ê(z) = G(z) − Ĝ(z) is the modeling error between the actual plant and the

nominal plant model. When Ê(z) = 0, ĜSP (z) = Ĝi(z) and the perfect tracking

property for the DFFSP will hold. When Ê(z) 6= 0, the sensitivity with the estimated

plant is given as

139

SDFFSP(z) =
Pdes(z)X(z)

1 + ĜSP K
−

PdesG
−1

i ĜSP

1 + ĜSPK

=
Pdes(z)(X(z) − G

−1

i ĜSP)

1 + ĜSPK
(7.5)

If we can choose X(z) = G
−1

i (z)ĜSP (z), we can recover the perfect tracking property.

Upon further investigation, X(z) is given as

X(z) = G
−1

i (z)ĜSP (z)

= G
−1

i (z)(Ĝi(z) + G(z) − Ĝ(z)), (7.6)

which requires knowledge of the true plant G(z). However, if the true plant can be

perfectly modeled (i.e., G(z) = G(z)), then we can choose

X(z) = G
−1

i (z)(Ĝi(z) + G(z) − Ĝ(z))

= Gnoi(z) + G
−1

i (z)(Ĝi(z) − Ĝ(z)) (7.7)

which is the non-invertible part of the plant (as in the DFFPC architecture) plus the

result of the second feedforward controller being applied to the feedback predictor

path. Now, the Pdes(z)X(z) is providing the filtered reference (rff [n]) that the out-

put (y[n]) can perfectly track (in the nominal case with no external disturbances).

This makes the adaptive feedforward part of DFFSP structure become the adaptive

part of the DFFPC structure, which motivates the preference of the DFFPC struc-

ture over the DFFSP structure. For the DFFSP architecture, X(z) is modeling the

non-minimum phase dynamics being fed back in the DFFSP architecture, whereas

Gnoi(z) is modeling the non-minimum phase dynamics being fed back in the DFFPC

architecture.

In the nominal case where Ĝ(z) = G(z), X(z) = 1 and we recover the original

DFFSP structure. The implications to the closed-loop system are that MDFFSP(z) =

140

Pdes(z)Gnoi(z) when G(z) = G(z), which means that the achievable closed-loop trans-

fer function is of the same form as before. This may be seen by examining the new

closed-loop transfer function MDFFSP(z).

MDFFSP =
PdesX(z)G(z)K(z)

1 + ĜSP (z)K(z)
+

Pdes(z)G
−1

i (z)G(z)

1 + ĜSP (z)K(z)

=
Pdes(z)G

−1

i (z)ĜSP (z)G(z)K(z) + Pdes(z)G
−1

i (z)G(z)

1 + ĜSP (z)K(z)

=
Pdes(z)G

−1

i (z)G(z)ĜSP (z)K(z) + Pdes(z)G
−1

i (z)G(z)

1 + ĜSP (z)K(z)

= Pdes(z)G
−1

i (z)G(z)
1 + ĜSP (z)K(z)

1 + ĜSP (z)K(z)

= Pdes(z)G
−1

i (z)G(z) (7.8)

= Pdes(z)Gnoi(z) if G(z) = G(z)

In eqn (7.8), G
−1

i (z)G(z) represents the estimate of the non-minimum phase dy-

namics of the system. If the plant model is perfect (i.e., if G(z) = G(z)), this reduces

down to the expected result of Pdes(z)Gnoi(z) and the perfect tracking property holds.

However, if there is a model mismatch, the term G
−1

i (z)G(z) may contain both min-

imum and non-minimum phase dynamics and the perfect tracking property will not

hold.

For this case, the adaptation scheme for updating the two feedforward controllers

is illustrated by the following adaptation algorithm:

• System Identification

1. Identify the plant

2. If the order of the plant model has not changed since the last update,

(a) Send plant model to the adjustment mechanism.

3. If the order of the plant model has changed,

141

(a) Send plant model to the adjustment mechanism.

(b) Send the most current inputs and outputs required to establish the

initial conditions.

• Adjustment Mechanism

1. Perform Invertible/Non-invertible factorization on plant model

2. Calculate X(z)

3. If the order of the plant model has not changed since the last update,

(a) Update the model parameters in feedforward controllers.

4. If the order of the plant model has changed,

(a) Replace the controllers with the new controller order.

(b) Initialize the feedforward controllers using stored initial conditions

These methods will be demonstrated in Chapter 9.

7.2 Reinforcement Learning Control

When the plant being controlled is highly nonlinear or high dimensional, the LTI tech-

niques presented up to this point may not suffice. In these cases, nonlinear control

methods such as reinforcement learning control may be appropriate. Reinforcement

learning control seeks to find an optimal control policy by repeatedly interacting with

a physical system. In the standard formulation of reinforcement learning, an agent

takes actions in an environment in order to maximize some notion of a reward [77].

In terms of reinforcement learning as it will be applied as a feedforward controller

here, the agent will be a controller that maps (filtered) reference inputs to outputs

(or actions). For the stability required here, the only restriction is that the agent

must have a bounded output. If this condition holds, the agent is not restricted to be

142

of any particular form. For example, anything from a static function approximator

to a NLTV dynamic system may be used; however, given the nonlinear and dynam-

ical requirements of the feedforward controller, a NLTV agent such as an echo state

network is suggested. The environment that the agent will act upon is the physical

plant and the notion of reward will be better (smaller) tracking error.

In the ideal (perfect tracking) case, the error e[n] = rff [n]−y[n] = 0 would hold for

all discrete-time n. In terms of a reward function, the reinforcement learner develops

a policy that finds a mapping from states to actions that minimizes all future absolute

values of error, namely |e[n]| for all future n. (NB: In terms of the original problem

statement, −|e[n]| could be the reward and the policy could be stated as maximize

all future rewards −|e[n]|.) In the standard formulation of reinforcement learning,

the interaction with the environment is stated as a map between states and actions,

where the states define the state of the (dynamic) system. In (finite-dimensional)

LTI systems, states are well understood. For example, a second order system has

two states. This idea was demonstrated in the state-space representation given in

Chapter 2.10, where the states of an LTI system were represented by the vector x. In

this representation, there is an implicit mapping from input u to state x and then a

mapping from state x to output y. It is this last mapping between state and output

that a reinforcement learning controller uses to determine the best control policy. In

many applications, the state may not be measured directly, but may be “observed”

using the methods in Chapter 2.10. One method for determining the best policy is

to use an actor-critic structure, which is discussed next.

7.2.1 Actor-Critic Reinforcement Learning Algorithm

An actor-critic reinforcement learning algorithm may be used to find the optimal

control policy. In this setup, a critic is used to converge on the optimal policy from

(internal) model states to control actions. The critic is not used directly as a con-

143

troller, but rather to provide updated information to an actor. The actor is the

actual controller (agent) that maps (filtered) reference inputs to control actions. In

most practical situations, the number of states is larger than the number of inputs.

Therefore, the critic is usually has more inputs and is computationally more complex

than the actor. In our previous work using an actor-critic algorithm for reinforcement

learning [71; 72; 73; 74; 75], the critic was implemented as a multidimensional lookup

table and the actor was implemented as neural network. The critic had many inputs

(i.e., reference input, tracking error, feedback control signal, measured output, and

measured (or observed) internal plant states), while the actor only had one input

(i.e., tracking error). The main part of the reinforcement learning (i.e., determining

the policy) is done by the critic. Based on the model learned by the critic, the actor

is trained (e.g., via back-propagation) to mimic the behavior learned by the critic.

In this setup, the critic learns the optimal behavior from state to output and the

actor is trying to mimic the critic by mapping from (filtered) reference to control

output. Inherently, this means that the actor needs to internally model the mapping

from reference input to its own internal state and then from its own internal state to

controller output. The rest of this section focuses on the development of the critic.

For the control objective considered here, the absolute value of the tracking error

is used to reinforce (or penalize) the learner. Through experience, the learner is able

to find the best action (an) based on the current state (on) of the system. This is

stated more precisely by the value function

Qπ(on, an) = Eπ

{
N∑

k=0

γkR(on+k, an+k)

}
, (7.9)

where π refers to the policy learned, E{·} is the standard expected value, γ is

a discount factor between 0 and 1 that weights the reinforcement received, and

R(on, an) = |en| is the reward for the actions (an) taken at discrete-time index n.

When γ is closer to zero, the learner solves for immediate rewards, and when γ is

144

closer to one, the learner solves for delayed rewards. The state-action-reward state-

action (SARSA) temporal-difference algorithm [77] provides an online way to calculate

the Q function in eqn (7.9). SARSA updates the Q function according to

∆Qπ(on, an) = αn [R(sn, an) + γQπ(on+1, an+1)

−Qπ(on, an)] , (7.10)

where αn is the learning rate for the Q-function. Instead of trying to determine

the state transition probabilities ahead of time (which is not practical), the SARSA

temporal-difference algorithm continuously samples the state transitions by taking

actions and keeping track of rewards. In the limit, this method is known to converge

to the dynamic programming solution [77]. In this sense, the SARSA temporal-

difference algorithm may be viewed as the Monte-Carlo approach to the value iteration

algorithm in dynamic programming [77].

The Q function in eqn (7.9) implicitly defines a policy π(on) that gives the best

action for a given state. This is stated formally as

π(on) = argmin
an∈A

Q(on, an), (7.11)

where A is the set of allowable actions. Based on the policy learned by the critic, an

actor is trained to internally represent the optimal control trajectory for the current

state of the system. Examples of this applied to a feedback reinforcement learning

controller may be found in [71; 72; 73; 74; 75].

7.2.2 Reinforcement Learning Dual Feedforward Predictive

Control

While reinforcement learning could be used to augment or replace any part of the

feedforward controller in DFFPC, it is best suited to help improve the plant inverse

model. An example diagram is shown in Figure 7.4. Here, rdes[n] is the filtered

145

reference that the block G−1
i (s) is trying to invert. Since the reinforcement learner

is trying to improve (and add nonlinear dynamics to) the block G−1
i (s), it gets the

same input as G−1
i (s). The performance of this architecture will depend on how well

the first feedforward controller is modeling the non-minimum phase components. For

example, if there is a time delay in the plant, then modeling this could have a big

impact on the achievable performance. This could lead to a hybrid style adaptation,

where the model of the LTI non-minimum phase dynamics are adapted using model

identification and the plant inversion dynamics are updated using a reinforcement

learner.

Pdes(z)

K(z)+ +

r[n]

y[n]
e[n]

+
++

–
G
~

ZOH

Nonlinear Time -Varying Plant

Critic

y(t)

Ts

Actor

)(ˆ zGnoi

)(ˆ 1 zGi
− +

+
+

rdes[n]

Figure 7.4: Reinforcement Learning DFFPC

7.2.3 Reinforcement Learning Dual Feedforward Smith Pre-
dictor

In a similar fashion, a reinforcement learner may be added to improve the block

G−1
i (s) in the DFFSP. A block diagram of this is shown in Figure 7.5. As with the

reinforcement learner that augments the DFFPC architecture, the performance of

the controller will be dependent upon the accuracy of the modeled non-minimum

phase components (e.g., the time delay part of the plant). In order to improve the

performance, the same augmentation of X(z) from the previous section may added

146

to the architecture. In this case, a hybrid style adaptation that is similar to the one

described for the reinforcement learning DFFPC may be used.

Pdes(z)

K(z)+ +

r[n]

y[n]
e[n]

+
++

–
ZOH

y(t)

Ts

+

Critic

Actor

)(ˆ 1 zGi
− +

+rdes[n]
+

+
+

Nonlinear Time -Varying Plant

G
~

)(ˆ)(ˆ 1 zGzGi −−

Figure 7.5: Reinforcement Learning DFFSP

7.2.4 Actor Selection

Artificial neural networks are a popular choice for the actor network in an actor-

critic setup, because of their ability to model nonlinear dynamics. Two types of

neural networks are commonly used for these applications, namely feedforward neural

networks (FFNN) and recurrent neural networks (RNN). FFNN are attractive since

they are easy to train in a stable manner (e.g. using back propagation), but are

limited in the sense that they are only capable of providing a static map between

inputs and outputs (i.e. they have no way of internally representing the state of a

(nonlinear) dynamic system). In contrast, traditional RNNs may be very difficult

(and take a long time) to train stably; however, the recurrent connections of a RNN

form a dynamical system. It is this dynamical nature of RNN that allows them to

capture the dynamics of a nonlinear system, which makes them more applicable to

nonlinear system modeling required in the actor. For a review of traditional RNNs

and the problems associated with training them, see either [78; 79; 80].

147

In more recent years, a RNN called an echo state network has been developed [81].

In this case, there is a fixed recurrent layer that is followed by an adaptive linear layer,

which provides a good alternative to traditional RNNs, since the fixed recurrent layer

can provide nonlinear dynamics, and the adaptive linear layer can provide fast train-

ing algorithms. Echo state networks also have a natural fit to the actor described

previously, since they have a mapping from input to state (fixed nonlinear recurrent

connections) and a mapping from state to output that may be adapted to a specific

plant. Since the mapping from input to state is not adapted, a large “reservoir” of

states is used. The idea is that the large number of states will each contain their own

features and a combination of features from other states (i.e., the states are not com-

pletely independent). Then, the linear combination of these many features may be

used to model a wide variety of input-output dynamics, which makes it appropriate

for creating an actor. This approach would not work with our early methods pre-

sented in [71; 72; 73; 74; 75], because having the larger network inside the closed-loop

would greatly increase the computational complexity required to guarantee closed-

loop stability. However, in the approach presented here, echo state networks appear

in the feedforward path, which means that stability analysis is only performed once

when the echo state network is initialized. As it will be shown in the next chap-

ter, guaranteeing the a priori stability of an echo state network (in a feedforward

configuration) is readily achieved.

148

Chapter 8

Echo State Networks

The recent development of echo state networks [81] (ESNs) provides a class of RNNs

that alleviate the difficulties of training a recurrently connected network. ESNs are

characterized by their ability to uniquely map a temporal input history to an (inter-

nal) “echo state” that it can use to map to an output. In the context of reinforcement

learning, echo state networks have shown the potential to create their own represen-

tation of the internal dynamic state (i.e., echo state) of a system from a history of the

input time series. From this internal state representation, an ESN can learn a linear

mapping (policy) from states to optimal actions. These concepts were first explored

in [82].

From the view of stability, an ESN is said to be stable if it uniquely maps input

histories to an echo state. An ESN that has this characteristic is said to have the

echo state property. Previously, the echo state property was verified via two sufficient

conditions, namely one for the existence of echo states for all inputs and one for the

non-existence of echo states for certain inputs. In our work [40], these conditions are

reformulated and further developed into separate necessary and sufficient conditions

for the existence of echo states for all inputs. As mentioned in [81], the original

sufficient condition for the existence of echo states appears, in practice, to be rather

restrictive. We have addressed this problem by deriving a new sufficient condition that

is less conservative. Specifically, a result that is well known in the Robust Controls

149

community (see Section 2.7) is used to reduce the conservatism and in some cases make

the bounds tight (i.e., provide a single bound that is both necessary and sufficient).

The results of that work are presented here.

8.1 ESN Overview

An ESN is a multilayered network that consists of a feed-forward input layer, a

recurrently connected hidden layer, and a feed-forward output layer. This is shown

in Figure 8.1.

Win

W

LayerLayerLayer
Input OutputHidden

Input Output
uk

State
xk

yk

staticstatic dynamic
time-invariant time-invariant time-varying

Figure 8.1: Echo State Network Architecture.

The input layer weights and the hidden layer weights are fixed (i.e. time-invariant)

and only the output layer weights are trained (i.e. time-varying). This allows for a

neural network that has the dynamic modeling capabilities from the (stable) recurrent

connections in the hidden layer and the stable adaptive capabilities from the feed-

forward network in the output layer. As will be shown, the echo state property holds

for ESNs with asymptotically stable recurrent connections.

The input layer (with weights Win ∈ Rn×m) is used to map the lower dimensional

inputs uk ∈ Rm to a larger dimension Winuk ∈ Rn (i.e. n > m). In practice, the

weights Win do not appear to have an impact on the performance [81]. The echo

states xk are generated from the input layer and the recurrently connected neurons

150

in the hidden layer. Specifically, for a given an input vector uk, the transition from

one (echo) state vector xk−1 to the next (echo) state vector xk is defined to be

xk = T (xk−1, uk) = f(Winuk + Wxk−1), (8.1)

where W ∈ Rn×n is a square matrix (containing the hidden layer weights) that is

applied to the state vector xk−1, and f(·) is a nonlinear “squashing” function that is

applied to every element of the vector Winuk +Wxk. The state vectors xk are fed into

the final output layer. In the general statement of an echo state network, feedback

connections from the output layer to the hidden layer are allowed; however, in most

applications, these feedback connections are not used. The theory for dealing with

these connections will not be explored here.

The hidden layer weight matrix (W) is a randomly generated sparse matrix (i.e.

usually only 5% to 20% of the entries are non-zero) that is used to generate a (random)

basis for the echo states xk. The properties of this matrix may be used to determine

if an ESN has the echo state property. Let U−∞ and X−∞ be compact sets that

represent the set of left infinite sequences of the input and echo state time series,

respectively. Then, the definition of an echo state network (i.e. an ESN that has the

echo state property) is:

Definition (Jaeger [81]) Assume standard compactness conditions (i.e. the inputs

uk and states xk come from the compact sets U−∞ and X−∞, respectively). Assume

that the network has no output feedback connections. Then, the ESN has echo states

(i.e., the echo state property) if every echo state vector xk is uniquely determined for

every left infinite input sequence u−∞ ∈ U−∞.

This definition implies that nearby echo states must represent similar input histo-

ries. In turn, this means that the echo states should depend more heavily on the most

recent inputs and states. Intuitively, this means that the state-space is not disjoint,

151

and the echo states represent the current dynamics, or state, of the system the ESN

is modeling. In [81], this property is shown to be satisfied by requiring the echo states

to have a certain convergence property. This is stated more formally in the following

discussion.

In Jaeger’s paper [81], the existence of echo states may be verified in terms of

separate necessary and sufficient conditions on the (square) hidden layer weight matrix

W ∈ Rn×n. The necessary condition is ρ(W) < 1 and the sufficient condition is

σ̄(W) < 1. Note that in fact, the necessary condition in [81] is actually stated as a

sufficient condition for the nonexistence of echo states when ρ(W) > 1. The reason for

this constraint is that if the underlying linear system is unstable, then the nonlinear

system (resulting from the application of the squashing function) will also exhibit

instability. From this point of view, the sufficient condition for the nonexistence of

echo states is really ρ(W) ≥ 1. The necessary condition for the existence of echo

states (ρ(W) < 1) results from this. From a systems point of view, this requires that

the nonlinear recurrent system be locally asymptotically stable at the origin. For

global asymptotic stability, a more restrictive (sufficient) condition is required1. The

original proof of the sufficient condition (taken from [81]) is outlined next.

Let xk and x̃k be two distinct state vectors and yk = xk − x̃k. From an equivalent

definition, echo states exist if the states xk and x̃k satisfy the convergence property

‖yk‖ → 0 as k → ∞ for all right infinite input sequences u+∞ ∈ U+∞. Note that

in this definition, the vector norm is not specified; however, in Jaeger’s proof, the

standard Euclidean norm (i.e. the 2-norm) is used. Since all finite dimensional

norms are equivalent, proving convergence in the 2-norm guarantees convergence in

every other (finite dimensional) norm. Jaegers’s original sufficient condition is now

1For an ESN, bounded-input bounded-out (BIBO) stability is satisfied trivially, since outputs
from the squashing functions are bounded for all inputs. Here, the echo state property is defined in
terms of a global asymptotic stability requirement on the echo state vectors.

152

(re)stated as Theorem 12.

Theorem 12 (Jaeger[81]). Let an echo state network have a fixed internal weight

matrix W ∈ R and let f(x) = tanh(x). If σ(W) < 1, then the network has the echo

state property, i.e. limk→∞ ‖yk‖2 = 0 for all right infinite input sequences u+∞ ∈

U+∞.

Proof.

‖yk+1‖2 = ‖xk+1 − x̃k+1‖2

= ‖T (xk, uk) − T (x̃k, uk)‖2

= ‖f(W inuk + Wxk) − f(W inuk + Wx̃k)‖2

≤ ‖(W inuk + Wxk) − (W inuk + Wx̃k)‖2 (8.2)

= ‖Wxk − Wx̃k‖2

= ‖W (xk − x̃k)‖2

≤ ‖W‖2‖yk‖2

= σ̄(W)‖yk‖2, (8.3)

where W satisfies the contraction property σ̄(W) < 1. Note that this clearly implies

the required convergence property, namely limk→∞ ‖yk‖2 = 0.

Remark Note that eqn (8.2) assumes that the squashing function will shrink every

element of the vectors W inuk + Wxk and W inuk + Wx̃k towards zero. Therefore, the

difference of the “un-squashed” version will have a larger norm than the difference of

the “squashed” version. In the proof given in [81], the squashing function is assumed

to be f(x) = tanh(x); however, it is mentioned that any function satisfying the

(element-wise) Lipshitz condition |f(v)− f(z)| ≤ |v− z| ∀ v, z ∈ R will do. As a side

note, if f(·) is differentiable, then the Lipshitz condition is equivalent to |f ′(v)| ≤ 1

∀ v ∈ R.

This proof yields a rather conservative sufficient condition [81]. A less restrictive

sufficient condition may be derived by considering a different norm.

153

8.2 The Weighted Operator Norm

In linear algebra, it is a well known fact that there exists an operator norm (sometimes

referred to as an induced norm) for a matrix that is arbitrarily close to the spectral

radius of the matrix. This is summarized in Lemma 13.

Lemma 13. For every matrix W ∈ Fn×n and for every ǫ > 0, there exists an operator

norm ‖ · ‖D such that

ρ(W) ≤ ‖W‖D ≤ ρ(W) + ǫ (8.4)

Proof. See [83].

Remark These bounds may be achieved by choosing an appropriate weighted oper-

ator norm, namely ‖W‖D = ‖DWD−1‖ with D ∈ F nonsingular, that is specific to

the matrix W . This weighted operator norm does not depend on the underlying norm

used (e.g. any of the p-norms such as p = 1, 2, or ∞), but rather on the weighting

matrix D ∈ F that is selected based on the matrix W . Note that all finite-dimensional

norms are equivalent. Therefore, choosing a different norm may require a different

D; however, the property will hold for any chosen norm. For computational reasons,

the 2-norm will be used.

8.2.1 The Vector D-Norm

The D-norm of a vector x ∈ Fn is defined to be ‖x‖D = ‖Dx‖, where D ∈ Fn×n is

non-singular and ‖ · ‖ is a vector norm (e.g. one of the p-norms). It is easy to show

that ‖ · ‖D is in fact a vector norm provided D is nonsingular [84]. In this paper, the

D-norm will be defined in terms of the weighted 2-norm as ‖x‖D = ‖Dx‖2, where D

is an arbitrary nonsingular matrix to be chosen later.

154

8.2.2 The Matrix Operator D-Norm

Let x = D−1y, where y ∈ F
n. Then, the induced D-norm of a matrix W ∈ F

n×n is

given as:

‖W‖D = sup
x 6=0

‖Wx‖D

‖x‖D

= sup
x 6=0

‖DWx‖2

‖Dx‖2

= sup
y 6=0

‖DWD−1y‖2

‖y‖2

= σ̄(DWD−1), (8.5)

where σ̄(DWD−1) is the largest singular value of the matrix DWD−1. Since D is

nonsingular, N (D) = N (D−1) = {0}, so y = 0 if and only if x = 0. Therefore the

constraint y 6= 0 is equivalent to x 6= 0. The last equality in eqn (8.5) follows from

the definition of the induced 2-norm of a matrix.

8.2.3 Minimizing the Matrix Operator D-Norm

Since D is arbitrary, it may be chosen such that ‖W‖D = σ̄(DWD−1) satisfies Lemma

13 for a given ǫ. If D is allowed to have full structure, then

inf
D∈D

σ̄(DWD−1) = ρ(W), (8.6)

where infimum is used instead of minimum since D (or D−1), in many cases, may be

approaching a singular matrix.

If D is a set of matrices that has some structure imposed upon it, say the set

D = {diag(δ1, . . . , δn), δi ∈ C, then ‖W‖Dδ
= σ̄(DδWD−1

δ) with Dδ ∈ D will not

necessarily approach the spectral radius of W . Instead, the following relationship

holds.

155

ρ(W) ≤ inf
Dδ∈D

σ̄(DδWD−1
δ) ≤ σ̄(W) (8.7)

In eqn(8.7), the upper bound is obvious since Dδ = I is always an option. For a

typical W , taking the infimum over all possible Dδ ∈ D will result in a measure that

is less than σ(W) and greater than ρ(W). However, there are classes of matrices for

which the lower bound of eqn (8.7) is exact. This leads to the following theorem.

Theorem 14. Let W ∈ Fn×n be in one of the following two classes:

1. normal matrices, and

2. triangular matrices (upper or lower).

Then, there exists a Dδ ∈ D such that ‖W‖Dδ
= ρ(W) + ǫ for all ǫ > 0.

Proof. Class 1 : The first class is the easiest to prove since the singular values of

a normal matrix are equal to the absolute values of its eigenvalues. Therefore, the

maximum singular value and spectral radius are equal.

Class 2 : In contrast, the gap between the spectral radius and maximum singular

value of a triangular matrix may be arbitrarily large, but the operator Dδ-norm can al-

ways be made arbitrarily close to the spectral radius. To see this, let δ > 0, W ∈ Fn×n

be upper triangular, Dδ = diag(1, δ, δ2, . . . , δn−1), and D−1
δ = diag(1, 1

δ
, 1

δ2 , . . . ,
1

δn−1).

Then,

DδWD−1
δ =




w1,1
1
δ
w1,2 · · · 1

δn−1 w1,n

0 w2,2
. . .

...
...

. . .
. . . 1

δ
wn−1,n

0 · · · 0 wn,n


 (8.8)

Using a limiting argument yields

156

lim
δ→∞

σ(DδWD−1
δ) = σ




w1,1 0 · · · 0

0 w2,2
. . .

...
...

. . .
. . . 0

0 · · · 0 wn,n




= max
1≤k≤n

|wk,k|

= ρ(W), (8.9)

which from Lemma 13 is the smallest that any operator norm may approach.

Remark For a lower triangular matrix, the same argument would be used with the

limit δ → 0.

Remark In this derivation, D−1 is approaching a (rank one) singular matrix, but a

finite D may be chosen that is arbitrarily close to the to the infimum as stated in

Lemma 13.

Remark Theorem 14 also holds for matrices that may be permuted to triangular

matrices by swapping the matching rows and columns (e.g. swapping rows 3 and 5

followed by swapping columns 3 and 5). In the context of an ESN, this amounts to

a re-labeling of the recurrently connected neurons.

The results from this section will be used to obtain a tighter (and in some cases

exact) bound for the echo state property.

8.3 A New Sufficient Condition for the Echo State

Property

In this section, a new sufficient condition is derived using the results from the previous

section.

Theorem 15. Let an echo state network have a fixed internal weight matrix W ∈ R

and assume the squashing function f(·) satisfies the (element-wise) Lipshitz condition

157

|f(v) − f(z)| ≤ |v − z| ∀ v, z ∈ R. If inf
Dδ∈D

σ(DδWD−1
δ) < 1, then the network has

the echo state property, i.e. limk→∞ ‖yk‖Dδ
= 0 for all right infinite input sequences

u+∞ ∈ U+∞.

Proof.

‖yk+1‖Dδ
= ‖xk+1 − x̃k+1‖Dδ

= ‖T (xk, uk) − T (x̃k, uk)‖Dδ

= ‖f(W inuk + Wxk) − f(W inuk + Wx̃k)‖Dδ

≤ ‖(W inuk + Wxk) − (W inuk + Wx̃k)‖Dδ
(8.10)

= ‖Wxk − Wx̃k‖Dδ

= ‖W (xk − x̃k)‖Dδ

≤ ‖W‖Dδ
‖yk‖Dδ

= σ̄(DδWD−1
δ)‖yk‖Dδ

. (8.11)

where inf
Dδ∈D

σ(DδWD−1
δ) < 1 satisfies the contracting property. Note that this clearly

implies the required convergence property, namely limk→∞ ‖yk‖Dδ
= 0.

Remark Equation (8.10) is the reason for using the set of diagonal scaling matrices

D, which follows from removing the squashing function. If Dδ was allowed to have

full structure (i.e. if D ∈ D was used), this inequality will not hold for all state

vectors xk and x̃k. However, the diagonally structured Dδ ensures that every element

of the “squashed” version will be less than the “un-squashed” version and hence the

Dδ-norm will be less. Therefore, a sufficient condition for the existence of echo states

is inf
Dδ∈D

σ̄(DδWD−1
δ) < 1.

Remark Since all finite dimensional norms are equivalent, limk→∞ ‖yk‖Dδ
= 0 im-

plies that limk→∞ ‖yk‖2 = 0. Therefore, the original echo state property is satisfied

by the new constraint.

Corollary 16. If W is a normal matrix or a (permuted) triangular matrix, then

ρ(W) < 1 is both a necessary and sufficient condition for the existence of echo states

for all inputs uk.

158

Proof. The proof of this follows from Theorem 14.

Remark If W ∈ F is triangular, then ρ(W) < 1 is identical to max |diag(W)| < 1.

Remark The stability requirement inf
Dδ∈D

σ̄(DδWD−1
δ) < 1 is equivalent to a strong

form of Lyapunov stability [49].

Since D must be diagonal, this new bound is not tight in the sense that it is not

necessarily equivalent to ρ(W) < 1 for any arbitrary W , but it is considerably less

conservative than the bound σ̄(W) < 1.

The reason for using the operator 2-norm (as the underlying norm) is that there

exists commercial software for minimizing ‖DWD−1‖2 when D must be a structured

matrix. This result was presented in Section 2, where it was denoted as µ(W). Using

(for example) MATLAB’s µ-Robust Controls Toolbox [58], the infimum of ‖W‖Dδ
may

be calculated using the command

[muUB,muLB] = mu(W);

Here, muUB = inf
Dδ∈D

σ̄(DδWD−1
δ). Therefore, if muUB < 1, the ESN has the echo state

property. Note that if muUB ≥ 1, a new ESN may be defined with internal matrix

W̃ = .99
muUB

W , which will satisfy the new sufficient condition, and hence, have the

echo state property. In terms of using an ESN for feedforward reinforcement learning

control (as in Chapter 7), guaranteeing the echo state property will guarantee stability

of the ESN.

159

Chapter 9

Illustrative Examples

Much of the work to this point has focused on a mathematical framework for provid-

ing perfect tracking and analyzing robustness. However, the engineering motivation

is to apply these methodologies to real world applications. In particular, functional

requirements (e.g., rise time, overshoot, settling time, and maximum control author-

ity) may be directly designed for by choosing the ideal closed-loop transfer function

M(s) = Pdes(s)Gnoi(s) appropriately. As a consequence of this method, the maximum

achievable performance may be determined for a given structure on Pdes(s), which

will be demonstrated via the illustrative examples in this chapter.

In the nominal and unperturbed case, the feedforward controllers will provide per-

fect tracking; however, these feedforward controllers are extracted from plant models

and do not respond to external disturbances. Hence, they do not cope with model un-

certainty (errors) or signal uncertainty (disturbances). To deal with this, the feedback

controller is designed to be robust to model uncertainties and optimal at rejecting

(weighted) disturbance signals. Based on the robust analysis tools developed in the

previous chapters, robust performance is guaranteed for a given level of model uncer-

tainty. These analysis tools may be used to aid in the design of the various feedforward

and feedback controllers. See Chapters 4, 5, and 6 for the design methodologies.

For the case of model uncertainty, adaptation may be used to improve the models

in the feedforward controllers, and hence, improve the overall tracking performance

160

of the closed-loop system. In the case where the model uncertainty is a bounded LTI

perturbation, adaptation is able to restore the perfect tracking property. This will be

demonstrated via some illustrative examples presented in this chapter, namely:

1. Minimum-phase plant (non-adaptive).

2. Stable non-minimum phase plant with a right half plane zero and time delay.

• Compare the DFFPC and DFFSP methods

• Demonstrate adaptation techniques

3. Unstable non-minimum phase plant with a right half plane zero and time delay.

• Demonstrate perfect tracking on a “difficult” plant

• DFFPC only (not well suited for DFFSP)

9.1 Strictly Proper Minimum-Phase Plant

In the first illustrative example, we will show how the step response may be arbitrarily

shaped by increasing the bandwidth of Pdes(s). However, this arbitrarily fast step

response requires more control authority, which may not be available on the physical

system. Also, increasing the bandwidth of Pdes(s) may reduce the achievable robust

performance. These issues are addressed by designing feedforward controllers based on

actuator constraints and utilizing the developed robustness tools. For this particular

case study, the DFFPC and DFFSP architectures reduce down to the same structure.

For a minimum-phase plant, the nominal closed-loop system will perfectly track

the filtered reference for any arbitrarily shaped closed-loop response that is defined by

Pdes. For example, a rise time of τr < ǫ may be achieved (in the nominal case) with no

overshoot for every ǫ > 0. However, the resulting control authority (given by PdesG
−1
i)

may exceed the actuator limits, and the closed-loop response may become very fragile

161

to modeling errors in the plant G. In the latter case, the robustness measures from

Chapters 4 and 5 may be used to determine how fragile a system is to perturbations

for a particular Pdes. For the actuator constraints, various design tradeoffs need to be

made when designing Pdes. A specific example of how to make these tradeoffs for a

given set of actuator constraints will be considered here. However, it should be noted

that designing Pdes is usually specific to an application and care should be given to

make sure the final design meets the design objectives.

The first plant that will be considered is a lightly damped second order system

with an oscillatory step response. The general form for a second order system is

H(s) =
Kω2

n

s2 + 2ξωns + ω2
n

, (9.1)

where K is the DC gain of the system, ξ is the damping ratio, and ωn is the natural

frequency of the system (c.f., [44] for more information on second order systems). For

the system considered here, K = 2, ξ = 0.1, and ωn = 0.5 rad/sec, which results in a

lightly damped system with an oscillatory open-loop step response. In some contexts,

this type of system is referred to as an underdamped system. The resulting transfer

function is

G(s) =
(2)(0.5)2

s2 + 2(0.1)(0.5)s + (0.5)2
=

0.5

s2 + 0.1s + 0.25
. (9.2)

The open-loop step response of this system is shown in Figure 9.1, which shows that

the system is very lightly damped, and is difficult to control using classical feedback

methods. This is demonstrated next.

162

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5
Step Response of Underdamped Second Order System

Plant Input
Plant Output

Figure 9.1: Open-loop Step Response

9.1.1 Feedback Designs

In this section both a standard PID (proportional-integral-derivative) controller and

a robust controller will be designed for the plant to illustrate the difficulties with

controlling the underdamped plant given in eqn (9.2).

9.1.1.1 PID Design

To begin, a standard PID controller is simulated. Ideally, a PID controller may be

expressed as:

KPID(ideal)(s) = KP +
KI

s
+ KDs =

KDs2 + KPs + KI

s
, (9.3)

which is not a proper system. In order to make this physically realizable in hardware,

a high frequency pole is added to the transfer function to make the controller proper.

This proper controller may be expressed as

KPID(proper)(s) =
KDs2 + KPs + KI

s(τs + 1)
, (9.4)

which places an additional pole at s = − 1
τ
. The PID design methodology used here is

based on the algorithms provided in [44]. In this methodology, a PI controller is de-

signed to improve the steady state characteristics of the closed-loop transfer function,

163

and a PD controller (which is also a lead controller with the design methodology used)

is designed to improve the transient response of the closed-loop system. The pole at

s = − 1
τ

is determined by the PD design process. The final PID controller transfer

function is formed by multiplying the PI and PD controller transfer functions. The

resulting PID controller is

K(s) =
13.74s2 + 3.213s + 0.1602

s(0.04727s + 1)
=

290.5887(s + 0.07201)(s + 0.1619)

s(s + 21.16)
, (9.5)

and the resulting closed-loop step response is shown in Figure 9.2.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
Step Response of a PID Compensated Underdamped Second Order Plant

O
ut

pu
t

Reference
Plant Output

0 10 20 30 40 50 60 70 80 90 100
−100

0

100

200

300

C
on

tr
ol

 A
ut

ho
rit

y

Figure 9.2: PID Compensated Step Response

While this PID controller is able to asymptotically track a step with zero steady

state error with relatively low overshoot (1% overshoot for this case), it takes roughly

40 seconds for the output to settle within 2% of the final value. If little overshoot is

required, then this is about the best a PID controller can do on this plant.

9.1.1.2 Robust Controller Design

A general robust controller synthesis methodology for disturbance rejection was pro-

vided in Chapter 4 (see Figure 4.2), which will be used here. For the robust controller

design considered here, it was assumed that the additive model uncertainty was 0.1

164

at frequencies below 2 rad/sec and 1 at frequencies above 20 rad/sec. Therefore, an

additive uncertainty of

Wi(s) =
s + 2

s + 20
(9.6)

was chosen. Based on this uncertainty description, the performance weights were

adjusted by hand until the peak µ value of the final controller was approximately one

and the amount of overshoot was minimal. The resulting performance weights were

used:

Wd(s) =
1

s + 15
(9.7)

Wn(s) = 0.0001 (9.8)

Wp(s) =
10

s + 0.01
(9.9)

Wu(s) =
0.0001(s + 2)

s + 10
(9.10)

(9.11)

The resulting µ-optimal feedback controller was

Kµ(s) =
43.7637(s + 20)(s + 15.02)(s2 + 0.1s + 0.25)

(s + 44.42)(s + 23.85)(s + 0.00995)(s2 + 4.397s + 7.182)
(9.12)

This controller has pole at s = −0.00995, which means that it has approximate

integral action, but not zero steady state tracking (i.e., it does not have true integral

action resulting from a pole at s = 0). This a fundamental limitation of the “µ-

synthesis via D − K iteration” method used to synthesize the controller. However,

this can addressed after the design by approximating the µ-optimal controller with

one that has integral action. For the design here, the pole at s = −0.00995 results

from the choice of the Wp(s) weight. Since this pole is almost at s = 0, we can shift

165

this pole to get integral action. This idea is explained in more depth in [43]. The

adjusted controller is given by

K̂µ(s) =
43.7637(s + 20)(s + 15.02)(s2 + 0.1s + 0.25)

s(s + 44.42)(s + 23.85)(s2 + 4.397s + 7.182)
(9.13)

This substitution cannot be made without further investigating the effects that this

will have on the nominal stability and robust performance. Specifically, we must

verify that the closed-loop poles are stable and that the µ plot of the feedback system

with the new controller does not degrade too much. Now, the closed-loop transfer

function with this controller is given by

M(s) =
G(s)K̂µ(s)

1 + G(s)K̂µ(s)
=

21.8819(s + 15.02)(s + 20)

(s + 44.43)(s + 23.84)(s + 2.3)(s2 + 2.09s + 2.697)
.

(9.14)

which is stable.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
µ Bounds Comparison

Original Upper Bound
Upper Bound With Integral Action

Figure 9.3: µ Plot Comparison

The peak µ value increased from µ = 0.9845 to µ = 0.9883. Also, the µ upper

bound is decreased at lower frequencies. This is due to the integral action that will

improve low frequency sensitivity to modeling errors (e.g., the controller will provide

zero steady state tracking to step inputs). The step response of the two robust

controllers is shown in Figure 9.4. As it may be seen, the step responses are almost

166

identical, except that the robust controller with a pole at s = 0 has zero steady state

tracking error. The results of these robust controllers show better performance than a

PID controller in the sense that the response settles to the final value faster. Also, the

peak control authority for the robust controller is about 2, whereas the peak value of

the PID controller is about 300, which may not be desirable. However, the achievable

tracking for the robust controller (for the desired level of robustness) is still limited

and there is some overshoot. These issues will be addressed next through the use of

the feedforward controllers.

0 2 4 6 8 10 12
0

0.5

1

1.5

O
ut

pu
t

Step Response With Robust Feedback Controller

Reference
Original K(s)
Integral Action K(s)

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2

C
on

tr
ol

 A
ut

ho
rit

y

Figure 9.4: Step Response Comparison

167

9.1.2 Arbitrarily Shaped Nominal Closed-Loop Design

In robust (and optimal) feedback controller synthesis, design trade-offs are made by

choosing various (frequency based) weights. While these methods are very effective at

shaping the closed-loop frequency response of the system, it is often not clear how to

design the closed-loop system to satisfy operation requirements (e.g., specify the rise

time and maximum control authority with no overshoot). For the robust feedback

controller design given in the previous section, many iterations were performed until

the resulting closed-loop step response provided a good rise time with little overshoot.

In this section, we show how the nominal step response of the system can be

arbitrarily shaped for a stable minimum-phase system by picking Pdes appropriately.

First, note that for a stable minimum-phase system G(s) = Gi(s), which means that

both the DFFPC and the DFFSP collapse down to the same architecture. This

is due to the fact that for a stable minimum-phase plant, Gnoi(s) = 1 in the first

feedforward path in DFFPC which makes its feedforward portion identical to the

DFFSP structure. Also, G(s) = Gi(s) makes Gi(s)−G(s) = 0 in the Smith predictor

feedback path, which reduces it down to a traditional feedback structure. The result

of these observations reduces down to the known architecture shown in Figure 9.5.

Also, the robust performance conditions from Chapters 4 and 5 reduce down to the

same condition for each type of uncertainty. This is addressed later in this section.

Pdes Gi
-1

K Gi+ +

r(t)

y(t)

rff (t)

e(t)

uff (t)

u(t)ufb(t)
+
+

+

–

Figure 9.5: Two-stage Feedforward Control for a Stable Minimum-Phase Plant

The plant in eqn (9.2) is a stable minimum-phase plant with a relative degree

of two. Therefore, Pdes(s) must have a relative degree of two or more so that the

168

controller FF2(s) = Pdes(s)G
−1
i (s) is proper. For the design considered here, we will

choose

Pdes(s) =
1

(τs + 1)2
, (9.15)

which defines the nominal closed-loop transfer function of the system (i.e., M(s) =

Pdes(s)), and FF2(s) becomes

FF2(s) = Pdes(s)G
−1
i (s) =

s2 + 0.1s + 0.25

0.5(τs + 1)2
. (9.16)

For the nominal closed-loop system Pdes(s), the unit step response is given as

s1(t) = 1 −
t

τ
e−

t
τ − e−

t
τ (9.17)

From this, the desired rise time may be determined as a function of τ . For example,

the 5% to 95% rise time (i.e., the time from when s1(t) = 0.05 to s1(t) = 0.95) may

be set by choosing

τ =
tr(des)

4.3885
, (9.18)

where tr(des) is the desired rise time and the constant 4.3885 comes from solving for

the rise time in eqn (9.17). For this example, Maple was used to find a numerical

solution for this constant. Using eqn (9.18), τ was determined for a few different rise

times. The resulting nominal closed-loop step responses are shown in Figure 9.6.

Figure 9.6 demonstrates the basic tradeoff with this design, which is that a faster

rise time requires a larger control signal. In extreme cases, the rise time can be

made arbitrarily fast. To demonstrate a this, a rise time of 0.0001 seconds (or 100

microsecond) was chosen. Using eqn (9.18), this resulted in τ = 0.000022787. The

plot of this choice of rise time is shown in Figure 9.7.

In this case, a rise time of 0.0001 seconds is achieved, but the required control

authority is on the order of 109, which is likely not available with the actuator used.

169

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

Nominal Step Responses

0 0.5 1 1.5 2 2.5 3
−50

0

50

100

150
F

ee
db

ac
k

C
on

tr
ol

 S
ig

na
l

Reference Input
1.2 sec Rise Time
1.0 sec Rise Time
0.8 sec Rise Time
0.6 sec Rise Time

5% to 95%
Rise Time

Figure 9.6: Nominal Closed-Loop Step Responses for Specified Rise Times

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5

O
ut

pu
t

Nominal Step Responses

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
−2

−1

0

1

2

3

4
x 10

9

F
ee

db
ac

k
C

on
tr

ol
 S

ig
na

l

Reference Input
0.0001 sec Rise Time

5% to 95%
Rise Time

Figure 9.7: Nominal Closed-Loop Step Responses for a Fast Rise Time

If the design objective is to get the fastest rise time with no overshoot, while not

exceeding a specified amount of control authority, then a search may be made on

tr(des) (or τ) to ensure that all of the design objectives are met.

170

9.1.3 Design for Robustness

One of the effects of making FF2(s) biproper is that there is an instantaneous spike

in the control signal, which may not be practical for most available actuators. By

making FF2(s) strictly proper, this instantaneous change in the control signal can

be avoided. Also, a strictly proper FF2(s) will generally result in a control signal

with a smaller maximum amplitude, which may help keep the control signal inside

the operating range of the actuator. The tradeoff is that more bandwidth is usually

required in Pdes(s) to achieve the same rise time. For the example presented here,

Pdes(s) is redefined to be the following.

Pdes(s) =
1

(s
αdes

+ 1)3
, (9.19)

where αdes is (roughly equal to) the bandwidth of Pdes(s). For the case considered

here, the criteria for robust performance (with additive uncertainty) is

‖|W1(s)Pdes(s)G
−1
i (s)W2(s)S(s)| + |W2(s)K(s)S(s)|‖∞ < 1

where W1(s) is the performance weight and W2(s) is the uncertainty weight1. In the

example presented here, two different designs (i.e., values of αdes) will be examined.

In the first case, the bandwidth will be αdes = 5 rad/sec, and in the second case, the

bandwidth will be αdes = 10 rad/sec. For the robust performance check considered

here, the following performance and uncertainty weights will be used.

W1(s) =
0.8333s + 1

2.143s
(9.20)

W2(s) = 0.1. (9.21)

1Since G(s) = Gi(s), the condition for robust performance is equivalent for both the DFFPC and
the DFFSP architectures. This equivalence between the architectures will hold for all of the robust
performance criteria in the work presented here.

171

Here, the performance weight W1(s) is based on the weights used to design the

feedback controller. Since the final feedback controller was designed to have integral

action, this weight was selected to have a pole at s = 0, which is the equivalent

of requiring integral action in the performance specification. The (additive) uncer-

tainty weight W2(s) = 0.1 (at all frequencies) was also chosen based on the design

uncertainty used in the feedback controller design. For the fictitious numerical ex-

ample presented here, the selection of these weights is arbitrary; however, in a real

application, these weights are influenced by the design requirements.

For the specified weights, Pdes(s) with a bandwidth of αdes = 5 will satisfy the

robust performance criteria, while Pdes(s) with a bandwidth of αdes = 10 will not

satisfy the robust performance criteria. This is illustrated in Figures 9.8 and 9.9.

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DFFPC Robust Performance (with α
des

 = 5 rad/sec)

Frequency [rad/sec]

|W1*Pdes*Ginv*W2*S|
|W2*K*S|
|W1*Pdes*Ginv*W2*S| + |W2*K*S|
RP Upper Bound

Figure 9.8: DFFPC Robust Performance Check with αdes = 5

In order to demonstrate the robust performance of the two Pdes(s) designs, a

perturbation was generated (using MATLAB). The specific perturbation used here is

∆(s) =
0.053146(s + 0.9723)

(s + 0.5173)
(9.22)

It should be noted that ‖∆‖∞ = 0.1, which is at the bound defined by W2(s). Using

this perturbation, the perturbed plant becomes

172

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

DFFPC Robust Performance (with α
des

 = 10 rad/sec)

Frequency [rad/sec]

|W1*Pdes*Ginv*W2*S|
|W2*K*S|
|W1*Pdes*Ginv*W2*S| + |W2*K*S|
RP Upper Bound

Figure 9.9: DFFPC Robust Performance Check with αdes = 10

G̃(s) = G(s) + ∆(s) =
0.053146(s + 0.5397)(s2 + 0.5326s + 9.468)

(s + 0.5173)(s2 + 0.1s + 0.25)
(9.23)

For the simulations shown next, the same perturbed plant (given in eqn (9.23)) is

used. The perturbed step response for αdes = 5 is shown in Figure 9.10.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

O
ut

pu
t

Step Response (Nominal Case)

Reference Input
Filtered Reference (r

ff
(t))

Plant Output (y(t))

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

F
B

 E
rr

or
 a

nd
 C

on
tr

ol
 S

ig
na

l Feedback Error
Feedforward Control Signal (u

ff
(t))

Total Control Signal (u(t))

Figure 9.10: DFFPC Perturbed Step Response with αdes = 5 rad/sec

In Figure 9.10, the actual output (in the top graph) is no longer following the

filtered reference signal perfectly, since this is not the nominal case. The amount of

173

time it takes the output to reach 0.98 (i.e., 98% of the step size) went from about 1.3

seconds (in the nominal case) to about 1.65 seconds (in the perturbed case), which

is an increase of 0.35 seconds in the perturbed case. In the nominal case, there is

no overshoot, and in the perturbed case, the overshoot is about 3%. Since this (size

of) perturbation and choice of Pdes(s) satisfy the robust performance condition used

here, this perturbed step response still meets the performance objective defined by

W1(s) in eqn (9.20).

In the second example, αdes = 10 is used. It was shown in Figure 9.9 that

this design does not meet the robust performance criteria. In fact, the maximum

value of the robust criteria is about three times the required limit. Also, the

term that contains Pdes(s) dominates the robust performance criteria (i.e., the term

|W1(s)Pdes(s)G
−1
i (s)W2(s)S(s)| is the main contributing factor to the robust perfor-

mance criteria not being satisfied in Figure 9.9). The step response for this design is

shown in Figure 9.11.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

O
ut

pu
t

Step Response (Nominal Case)

Reference Input
Filtered Reference (r

ff
(t))

Plant Output (y(t))

0 1 2 3 4 5 6 7 8 9 10
−20

0

20

40

60

F
B

 E
rr

or
 a

nd
 C

on
tr

ol
 S

ig
na

l Feedback Error
Feedforward Control Signal (u

ff
(t))

Total Control Signal (u(t))

Figure 9.11: DFFPC Perturbed Step Response with αdes = 10 rad/sec

In Figure 9.11, performance degradation is more pronounced than the perturbed

174

step response shown in Figure 9.10. For example, after returning from an initial

overshoot of about 140%, it takes the controller about 1.4 seconds to reach 0.98. In

the nominal case, this would take about 0.75 seconds, which means that it takes almost

twice as long for the perturbed output to settle (when compared to the nominal case).

By examining the bottom graph of Figure 9.11, it may be seen that the majority of

the control signal is coming from the feedforward controller and very little is coming

from the feedback controller. These examples illustrate the trade-offs associated with

designing Pdes(s). Here, a faster rise time with no overshoot will make the overall

control system more sensitive to modeling errors. This phenomenon is accurately

predicted by the robust performance criteria derived in the work presented here.

9.2 Stable Non-minimum Phase Plant with a RHP

Zero and Time Delay

For the second illustrative example, a non-minimum phase system is considered using

both the DFFPC and DFFSP architectures. The non-minimum phase components of

this system can severely limit the tracking performance of a feedback only controller.

By addressing the non-minimum phase components in the feedforward controller,

better tracking tracking performance may be achieved for a given level of robustness.

As with the previous example, the design process consists of synthesizing a feed-

back controller first and then designing the feedforward controller. The feedback

controller may be synthesized using any method desired provided that it internally

stabilizes the closed-loop system, satisfies the disturbance rejection requirements, and

can adequately correct for modeling errors. Then, the feedforward controller is de-

signed to satisfy tracking requirements. In the nominal case, tracking requirements

are satisfied by designing Pdes(s)Gnoi(s) appropriately. When the controller is de-

signed for robust performance, the bounds given in Chapters 4 and 5 may be used.

While these designs are done sequentially (i.e., feedback first, then feedforward), they

175

are not entirely independent when designing for robust performance. Specifically, the

robust performance criteria are based on the S(s), M(s), K(s), and Pdes(s). The first

three terms are determined based on the feedback design K(s), and the last term is

determined by the feedforward design. Therefore, the overall performance that may

be achieved is determined by both the feedback and feedforward designs. To illustrate

this, two designs will be presented. In the first, an oscillatory feedback controller is

used along with a direct feedforward design (i.e., Pdes(s) is parameterized). In this

case, the overall closed-loop system is sensitive to errors in the modeled time delay

and the DFFSP architecture performs better than the DFFPC architecture. In a

second example, an almost critically damped feedback controller design is used along

with robust and optimal feedforward design. The result is that the DFFPC and

DFFSP architectures have an almost identical performance and that both are fairly

robust.

One of the limitations of all model based designs is that they require accurate

models in order to be effective. In order to overcome this limitation, adaptation will

be used to improve the models used in the feedforward controllers. In the example

that will be presented in this section, a discrete-time implementation of the DFFPC

will be used.

9.2.1 Plant Definition

Perfect tracking of a nominal non-minimum phase plant with both a right-half plane

zero and time delay is demonstrated in this section. To begin, we define the nominal

non-minimum phase plant with a 0.7 second time-delay as

G(s) = 25
−s + 6

(s + 5)(s + 10)
e−0.7s

= 3
−s
6

+ 1

(s
5

+ 1)(s
10

+ 1)
e−0.7s. (9.24)

For this plant, KDC = 3, Nnmp(s) = (−s
6

+ 1), Nmp(s) = 1, D(s) = (s
5

+ 1)(s
10

+ 1),

176

and the time delay is given as e−0.7s. The invertible/non-invertible decomposition is

then

Gnoi(s) = (
−s

6
+ 1)e−0.7s, G−1

i (s) =
1

3
(
s

5
+ 1)(

s

10
+ 1). (9.25)

These components will be used to define the feedforward controllers designed later

in this section.

9.2.2 Design #1

For both this design and the next, a robust feedback controller (K(s)) design is

cast as a weighted disturbance rejection problem with multiplicative uncertainty that

is synthesized using a µ-synthesis algorithm [58]. The specific weights (and hence

controllers) in the two case are different, but the design methodology is the same. For

the simulations that follow, the same K(s) is used for both the DFFPC and DFFSP

architectures. This is done to make a fair comparison between the two different

structures.

For the feedback design, the robust controller interconnect for disturbance re-

jection provided in Figure 4.2 will be used here. For the robust controller design

considered here, it is assumed that uncertainty is 20% at low frequencies and 200% at

high frequencies. Therefore, the following multiplicative uncertainty weight is chosen.

Wi(s) =
2(s + 5)

(s + 50)
(9.26)

For this first example, time delay uncertainty was not factored into the model un-

certainty weight selection, but will be addressed in Design #2 in the next section.

For Design #1, a set of weights is chosen that results in an oscillatory response with

overshoot. This design will be contrasted with the feedback in Design #2 that will

produce a faster response with almost no overshoot. For Design #1, the performance

weights are:

177

Wd(s) =
0.5

(s + 1)
(9.27)

Wn(s) = 0.001 (9.28)

Wp(s) =
0.5

s + 0.001
(9.29)

Wu(s) = 10 (9.30)

(9.31)

Using the same method from the previous section, the final controller was designed

to have integral action. The resulting feedback controller is given by the following.

K(s) =
41.0834(s + 50)(s + 10)(s + 5)(s + 1.011)

s(s + 1.17)(s + 1488)(s2 + 23.74s + 170.5)
(9.32)

A plot of the nominal step response with this controller is shown in Figure 9.12.

This figure shows the oscillatory response of the feedback system. This feedback

controller design will impact the robust performance that may be achieved by the

addition of the feedforward controllers, which is demonstrated next.

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

O
ut

pu
t

Step Response With Robust Feedback Controller

Reference Input
Plant Output

0 5 10 15 20
0

0.2

0.4

0.6

0.8

C
on

tr
ol

 A
ut

ho
rit

y

Figure 9.12: Design #1 Robust Feedback Controller Step Response

178

Based on the feedback controller design, the performance and multiplicative un-

certainty weights for the DFFPC and DFFSP are defined to be

W1(s) =
2(s + 1.4)3

s(s + 0.3)(s + 10)
and W2(s) =

2(s + 5)

(s + 50)
, (9.33)

which will be used to guide the feedforward design process. For the example provided

here, the feedforward design consists of parameterizing Pdes(s) and searching over

parameters. For the nominal design, both the DFFPC and DFFSP will provide

perfect tracking. Therefore, the resulting nominal designs may be used with either

architecture. In order to guarantee that the two feedforward controllers are proper,

Pdes(s) must have a relative degree of two or more. For the example here, we chose

Pdes(s) =
1

(s
αdes

+ 1)2
, (9.34)

which satisfies the relative degree constraint and the design constraint that Pdes(0) =

1. With this choice of Pdes(s), FF2(s) is given by

FF2(s) = Pdes(s)G
−1
i (s) =

1

3

(s
5

+ 1)(s
10

+ 1)

(s
αdes

+ 1)2
, (9.35)

and the nominal closed-loop transfer function is given by

MDFFPC(s) = MDFFSP(s) = Pdes(s)Gnoi(s) =
−s
6

+ 1

(s
αdes

+ 1)2
e−0.7s. (9.36)

The right-half plane zero in this transfer function means that the step response will

have an undershoot that is related to the bandwidth of Pdes(s), which is αdes rad/sec.

In particular, a faster response will require a larger bandwidth, which will result in

more undershoot. This phenomenon is described in [54].

Simulation results for various αdes are shown in Figure 9.13. In the top graph,

the plant output (y(t)) is plotted for various αdes. For these cases, the plant model is

perfect (nominal case) and y(t) = rff(t) in the DFFPC architecture (or yp(t) = rff (t)

179

in the DFFSP architecture). This is echoed again in the bottom graph where the

feedback error is zero for each case.

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

N
om

in
al

 O
ut

pu
t

Step Response (Nominal Case)

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

F
B

 E
rr

or
 a

nd
 F

F
 C

on
tr

ol
 S

ig
na

ls

r(t)

y(t) with α
des

 = 1)

y(t) with α
des

 = 5)

y(t) with α
des

 = 10)

e(t) (feedback error)

u
ff
(t) with α

des
 = 1

u
ff
(t) with α

des
 = 5

u
ff
(t) with α

des
 = 10

Figure 9.13: Nominal Plant Simulations with Various Choices of αdes

These simulations illustrate the design trade-offs for a system with a RHP zero.

For a faster response (i.e., more bandwidth or a larger αdes) there will be more un-

dershoot and it will take more control authority. For the case with αdes = 10 rad/sec,

the control signal spikes up quickly and then settles in to the final value. Depending

on the actuator being used, this may be undesirable. In the opposite extreme, if the

bandwidth is too small (e.g., αdes = 1 rad/sec in Figure 9.13), the control signal will

not increase so quickly, but the response may be sluggish. These design trade-offs

are shown in Figure 9.13. For a good trade-off between control authority and fast

response time, the design parameter αdes = 5 rad/sec may be used. These types of

trade-offs may be used to design the feedforward controllers for a specific plant.

For the rest of the example presented here, the bandwidth of Pdes is set to 8

rad/sec (i.e., αdes = 8), which is chosen based on the additive uncertainty robust

performance criteria developed in Chapters 4 and 5 (see eqns (5.29) and (4.19)). The

resulting additive uncertainty robust performance plots (versus frequency) are shown

in Figure 9.14.

180

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Multiplicative Uncertainty with Pdes BW = 8 rad/sec

DFFPC (max = 1.2307)
DFFSP (max = 0.69788)
RP Upper Bound

Figure 9.14: Multiplicative Uncertainty Robust Performance Criteria vs. Frequency

The robust performance conditions may be interpreted as: “If the plots stay

below the upper bound of one, then the performance criteria will be met for the

level of uncertainty specified”. For the plots in Figure 9.14, the DFFSP architecture

does satisfy the robust performance condition. In fact, it exceeds the performance

level. However, the DFFPC architecture misses the robust performance condition.

As a result, it is expected that the DFFSP structure will be more robust to model

mismatches.

Recall that the nominal plant had a time delay of 0.7 seconds. For the perturbed

simulations, the actual plant will have a 0.8 second delay, but the model used for

controller design will have a delay of 0.7 seconds. The results of this time delay

mismatch are shown in Figure 9.15.

From the simulation in Figure 9.15, it may be seen that there is a small mismatch

between the ideal closed-loop response (shown in green) and the actual plant output

(shown in red). The top graph shows the DFFPC output, which is oscillatory and

has not settled by the end of the simulation. The bottom graph shows the DFFSP

181

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

D
F

F
P

C
 O

ut
pu

t

Step Response with Delay Mismatch = 0.1 (sec)

Reference
Filtered Reference
Plant Output

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

D
F

F
S

P
 O

ut
pu

t

Reference
Ideal Output
Plant Output

Figure 9.15: Design #1 Perturbed Step with an Actual Process Delay of 0.8 Seconds

output, which settles within four seconds from when the step occurred. As expected

for this example, the DFFSP architecture is able to provide better performance when

there is a modeling error, which was predicted by the robust performance conditions

given in eqns 5.29 and 4.19.

9.2.3 Design #2

For this design, a different robust feedback controller (K(s)) is synthesized that pro-

duces a faster rise time with less overshoot than Design #1. As with the previous

example, the same K(s) is used for both the DFFPC and DFFSP architectures. This

is done to make a fair comparison between the two different structures. For the de-

sign presented here, Pdes(s) will be designed using the robust and optimal techniques

discussed in Chapter 6.

For the feedback design, the robust controller interconnect for disturbance re-

jection provided in Figure 4.2 will be used here. For the robust controller design

considered here, it is assumed that uncertainty is 20% at low frequencies and that

182

the time delay uncertainty is 0.1 seconds. Therefore, the following multiplicative

uncertainty weight is chosen.

Wi(s) =
2.2(s + 0.8)

(s + 8)
(9.37)

Unlike the model uncertainty weight in Design #1, this model uncertainty weight

“covers” the uncertainty of a time delay (up to 0.1 seconds). Given this new uncer-

tainty description, a set of performance weights is chosen to provide a nominal step

response that is almost critically damped, which resulted in the following weights:

Wd(s) =
0.5

(s + 1)
(9.38)

Wn(s) = 0.0025 (9.39)

Wp(s) =
0.5

s + 0.001
(9.40)

Wu(s) = 2 (9.41)

(9.42)

The changes between this design and the previous feedback design are that the

control authority penalty weight has been reduced and the noise weight has been

increased. For this specific example, the decrease in control authority penalty allows

for more control authority (i.e., larger signals with more bandwidth), and the increase

in noise weight penalty decreased the aggressiveness of the feedback controller. The

latter parameter was increased until the nominal output had (almost) no overshoot.

It should be noted that these weight modifications worked well for this particular

problem. In general, tuning the weights is specific to the plant model.

Using the same method from the previous section, the final controller was designed

to have integral action. The resulting feedback controller is given by the following.

K(s) =
0.13089(s + 8)(s + 10)(s + 5)(s + 2.857)(s + 1.061)

s(s + 10.61)(s + 6.804)(s + 1.058)(s2 + 4.579s + 14.65)
(9.43)

183

A plot of the nominal step response with this controller is shown in Figure 9.16.

This figure shows that the nominal step response has both a faster settle time and no

overshoot when compared to Design #1. This design is also more robust than Design

#1, which will allow for a more aggressive feedforward design (i.e., Pdes(s) may be

designed to have a larger bandwidth and the overall controller will still satisfy the

robust performance criteria).

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

Step Response With Robust Feedback Controller

Reference Input
Plant Output

0 5 10 15 20
0

0.1

0.2

0.3

0.4

C
on

tr
ol

 A
ut

ho
rit

y

Figure 9.16: Design #2 Step Robust Feedback Controller Response

Based on the feedback controller design, the performance and multiplicative un-

certainty weights for the DFFPC and DFFSP are defined to be

W1(s) =
(s + 2)3

s(s + 5)2
and W2(s) =

2.2(s + 0.8)

(s + 8)
, (9.44)

which will be used to guide the feedforward design process. For the example provided

here, the feedforward design consists of designing µ-optimal, H2, and H∞ robust

and optimal FF2(s) controllers. Based on the weight selection given above and the

DFFPC and DFFSP robust performance criteria, one of the feedforward designs will

be used to determine Pdes(s). The design will use the methods outlined in Chap-

184

ter 6.2.2. For this design, the design weights were chosen to be the following.

Wi(s) = 0.5 (9.45)

Wu(s) = 10 (9.46)

Wn(s) = 1 (9.47)

Wp(s) =
10

s + 10
(9.48)

(9.49)

For this design, the bandwidth of Wp(s) was set to 10 rad/sec. The bandwidth

of this affects the speed of the final Pdes(s). The control authority penalty weight

was increased to the point where the nominal step responses had minimal overshoot.

For the robust controller, the uncertainty weight was increased to further dampen

the step response. The nominal step responses and associated robust performance

criteria are shown in Figure 9.17.

For the design in Figure 9.17, the µ-optimal controller provides the fastest re-

sponse, while still satisfying the robust performance condition. Therefore, it will be

the design used going forward. The resulting feedforward controller is

FF2(s) =
4.6074(s + 5)(s + 10)

(s + 11.78)(s2 + 14.4s + 58.68)
(9.50)

Recall that Gi(s) = 3
(s
5
+1)(s

10
+1)

. Therefore,

Pdes(s) = FF2(s)Gi(s) =
691.1135

(s + 11.78)(s2 + 14.4s + 58.68)
. (9.51)

It should be noted that this satisfies the design constraints, namely a relative degree

of at least two and Pdes(0) = 1. For comparison between design #1 and design #2,

the same plant perturbation is used (i.e., a time delay mismatch of 0.1 seconds). The

results are shown in Figure 9.18. It may be seen that there is a small mismatch

between the ideal closed-loop response (shown in green) and the actual plant output

185

0 1 2 3 4
−0.5

0

0.5

1

1.5

P
la

nt
 O

ut
pu

t

Nominal Closed−Loop (Perfect Tracking) Step Responses
Wr = 1, Wu = 10, WP DC gain = 1, WP Ginv BW =10

µ (W
i
 = 0.5)

H
2

H∞
reference

0 1 2 3 4
0

0.1

0.2

0.3

0.4

C
on

tr
ol

le
r

O
ut

pu
t

10
−5

10
0

0

0.5

1

1.5

DFFPC RP => || |W1*Pdes*Gnoi*W2*S| + |W2*M| ||∞ < 1

µ FF2
H

2
 FF2

H∞ FF2

RP Upper Bound (<1)

10
−5

10
0

0

0.5

1

1.5

DFFSP RP => || |W1*Pdes*Gnoi*W2*S
i
| + |W2*M

i
| ||∞ < 1

µ FF2
H

2
 FF2

H∞ FF2

RP Upper Bound (<1)

Figure 9.17: Design #2 FF2(s) Designs

(shown in red). In this case, the two architectures have very similar performance

on the system with time delay mismatch, which results from a different feedback

controller design. As with design #1, this phenomenon was predicted by the robust

performance conditions (see the robust performance plots on the right side of Fig-

ure 9.17 where the feedforward design meets the robust performance criteria for both

architectures). This example also shows the inherent tradeoff between faster rise time

and more undershoot for systems with RHP zeros.

186

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

D
F

F
P

C
 O

ut
pu

t

Step Response with Delay Mismatch = 0.1 (sec)

Reference (r(t))
Filtered Reference (r

ff
(t))

Plant Output (y(t))

0 2 4 6 8 10
−0.5

0

0.5

1

1.5
D

F
F

S
P

 O
ut

pu
t

Reference (r(t))
Ideal Output
Plant Output (y(t))

Figure 9.18: Design #2 Perturbed Step with an Actual Process Delay of 0.8 Seconds

9.2.4 Discrete-Time Implementation with Adaptation

In this section, the final controllers from design #2 above are implemented in discrete-

time. The concept of perfect tracking is then verified for the discrete-time implemen-

tation. Then, the plant model and time delay parameter are perturbed to a different

LTI system. Through model identification adaptation, the perfect tracking property

is restored. For this section, only the DFFPC will be used.

To begin, the sampling rate is chosen to be Ts = 0.01 seconds. With this sampling

rate, the continuous time plant is converted to the zero-order hold equivalent plant

GZOH(z) =
−0.22482(z − 1.062)

(z − 0.9512)(z − 0.9048)
z−70. (9.52)

From this, the plant components are KDC = 3, Nnmp(z) =
(

z
1−1.062

− 1
1−1.062

)
,

Nmp(z) = 1, D(s) =
(

z
1−0.9512

− 1
1−0.9512

) (
z

1−0.9048
− 1

1−0.9048

)
, and the time delay is

70 samples (i.e., 70×Ts = 0.7 seconds). The invertible/non-invertible decomposition

is then

187

Gnoi(z) =

(
z

1 − 1.062
−

1

1 − 1.062

)
z−70 (9.53)

G−1
i (z) =

1

3

(
z

1 − 0.9512
−

1

1 − 0.9512

)(
z

1 − 0.9048
−

1

1 − 0.9048

)
. (9.54)

These components will be used to define the two feedforward controllers FF1(z)

and FF2(z). The other two pieces that need to be discretized are Pdes(s) and K(s).

Both of these have discretizations have their own considerations. For Pdes(s), a bilin-

ear Z-transformation may be used; however, there are some extra terms that result

from the bilinear Z-transform that need to be removed for Pdes(z) to satisfy the rela-

tive degree design constraint. To illustrate this, consider the bilinear Z-transform of

Pdes(s) from the previous section.

Pdes(s) =
691.1135

(s + 11.78)(s2 + 14.4s + 58.68)
BLZ
−−→

7.6e − 005(z + 1)3

(z − 0.8888)(z2 − 1.86z + 0.8658)

(9.55)

This Z-transform has three zeros at z = 1, which are a result of the zeros at

infinity in Pdes(s) (i.e., Pdes(s) has relative degree of three). For this discrete-time

Pdes(z), these zeros are not required and may be removed; however, the DC constraint

that Pdes(1) = 0 must hold for Pdes(z). This may be accounted for by scaling the Z-

transform such that Pdes(1) = 0. In this case, (z + 1)3 evaluated at z = 1 resulted in

multiplication by 8, which produced

Pdes(z)
0.000608

(z − 0.8888)(z2 − 1.86z + 0.8658)
. (9.56)

For the discrete-time controller K(z), the design should include the effect of the

sample and hold implementation. For more details on this, see [41]. For the example

here, a bilinear transform is used to convert the K(s) from design #2 (i.e., K(s) in

eqn (9.43)) to K(z), which results in

188

K(z) =
0.00066685(z − 0.9231)(z − 0.9048)(z − 0.9512)(z − 0.9718)(z − 0.9894)(z + 1)

(z − 0.8992)(z − 0.9342)(z − 0.9895)(z − 1)(z2 − 1.954z + 0.9553)

(9.57)

Now, the two feedforward controllers are given by

FF1(s) = Pdes(z)Gnoi(z) =
−0.0098175(z − 1.062)

(z − 0.8888)(z2 − 1.86z + 0.8658)
z−70 (9.58)

FF2(s) = Pdes(z)G−1
i (z) =

0.043667(z − 0.9512)(z − 0.9048)

(z − 0.8888)(z2 − 1.86z + 0.8658)
(9.59)

Using these controllers, the discrete-time DFFPC architecture is simulated to

demonstrate perfect tracking. This is shown in Figure 9.19. For display purposes,

the outputs are plotted as “continuous” lines (i.e., straight lines connect each of the

samples); however, the data really consists of samples spaced Ts = 0.01 seconds apart

in time.

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

O
ut

pu
t

Perfect Tracking Step Response

r[n] (reference input)
r
ff
[n] (filtered reference)

y[n] (plant output)

0 1 2 3 4 5
−0.1

0

0.1

0.2

0.3

0.4

C
on

tr
ol

 E
ffo

rt

u[n] (total control signal)
u

fb
[n] (feedback control signal)

u
ff
[n] (feedforward control signal)

Figure 9.19: Perfect Tracking with a Discrete-time DFFPC Controller

This example demonstrates that perfect tracking may be achieved in both

continuous-time and discrete-time.

189

9.2.4.1 Adaptation

For the final part of this example, the zero-order hold equivalent plant model is

modified. In this case, the perfect tracking property will not hold. To see this, we

redefine the plant to be

Gnew
ZOH(z) =

−0.21(z − 1.07)

(z − 0.95)(z − 0.91)
z−75. (9.60)

The plot of the original DFFPC controller on this plant is shown in Figure 9.20.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

O
ut

pu
t

Step Response with Model Mismatch

r[n] (reference input)
r
ff
[n] (filtered reference)

y[n] (plant output)

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

F
ee

db
ac

k
E

rr
or

 (
e[

n]
)

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

C
on

tr
ol

 E
ffo

rt

u[n] (total control signal)
u

fb
[n] (feedback control signal)

u
ff
[n] (feedforward control signal)

Figure 9.20: Perturbed Step Response using a Discrete-time DFFPC Controller

This new plant model has both a time delay mismatch of 0.05 seconds and a

parametricaly perturbed plant. The result is that the perfect tracking property does

not hold. For this particular example, the plant is LTI and may be identified using

the system identification techniques provided in Chapter 7. For this example, we use

a history of the time series data from u[n] and y[n] to identify the discrete-time plant.

Specifically, an autoregressive moving-average model was fit to the data using the

System Identification toolbox command arx in MATLAB [85]. Notice that the plant

input (i.e., u[n] = uff [n] + ufb[n]) is used for the plant identification and not just the

190

feedforward control signal uff [n]. For this particular example, the entire time series

from Figure 9.20 (i.e., 50 seconds worth of data sampled every 0.01 seconds) was used

for plant identification. In practice, this much data may not be needed to identify

the model. Also, more frequent plant identification may be desirable. For the case

presented here, the plant model was identified accurately and the perfect tracking

property is restored. The results are shown in Figure 9.21.

0 2 4 6 8 10 12 14 16 18
−1

0

1

2

O
ut

pu
t

Pefect Tracking after Adaptation

r[n] (reference input)
r
ff
[n] (filtered reference)

y[n] (plant output)

0 2 4 6 8 10 12 14 16 18
−0.01

−0.005

0

0.005

0.01

F
ee

db
ac

k
E

rr
or

 (
e[

n]
)

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

0.4

C
on

tr
ol

 E
ffo

rt

u[n] (total control signal)
u

fb
[n] (feedback control signal)

u
ff
[n] (feedforward control signal)

Figure 9.21: Perfect Tracking Restored after Plant Identification

This example shows one method of applying adaptation. The use of adaptation

to improve controller performance is a topic of ongoing research. This is discussed in

Chapter 12.

9.3 Unstable Non-minimum Phase Plant with a

RHP Zero and Time Delay

The purpose of the last illustrative example is to show the general capabilities of

the DFFPC architecture. For this example, only the nominal case with no external

disturbances (i.e., perfect tracking) is presented. For this, an unstable non-minimum

phase plant with a time delay is considered. This is an example of a plant that is

191

difficult to control using standard feedback controller techniques. The plant model is

given by

G(s) =
10(s − 2)

(s + 10)(s − 5)
e−2s =

0.4(−s
2

+ 1)

(s
10

+ 1)(−s
5

+ 1)
e−2s (9.61)

KDC = 0.4, Nnmp(s) = (−s
2

+ 1), Nmp(s) = s
10

+ 1, and D(s) = −s
5

+ 1. The

invertible/non-invertible decomposition is then given by

Gnoi(s) = (
−s

2
+ 1)e−2s, G−1

i (s) =
5

2
(

s

10
+ 1)(

−s

5
+ 1). (9.62)

In order to guarantee that the two feedforward controllers are proper, Pdes(s) must

have a relative degree of two or more. For the example here,

Pdes(s) =
1

(s
αdes

+ 1)2
, (9.63)

which satisfies the relative degree constraint and the design constraint that Pdes(0) =

1. With this choice of Pdes(s), FF2(s) is given by

FF2(s) = Pdes(s)G
−1
i (s) =

5

2

(s
10

+ 1)(−s
5

+ 1)

(s
αdes

+ 1)2
. (9.64)

The nominal closed-loop transfer function is given by

MDFFPC(s) = Pdes(s)Gnoi(s) =
−s
2

+ 1

(s
αdes

+ 1)2
e−2s. (9.65)

The right-half plane zero in this transfer function means that the step response will

have an undershoot that is related to bandwidth of Pdes(s), which is αdes rad/sec. In

particular, for a faster response, a larger the bandwidth is required that will result in

more undershoot. This phenomenon is described in [54].

The trade-offs for various Pdes(s) bandwidths are shown in Figure 9.22. The

limiting dynamics on the closed-loop response are the right half plane zero at s = 2

and the time delay of two seconds, which appear in the nominal closed-loop response

192

0 1 2 3 4 5 6 7

−1.5

−1

−0.5

0

0.5

1

O
ut

pu
t

Perfect Tracking of an Unstable NMP System using DFFPC

0 1 2 3 4 5 6 7
−4

−2

0

2

4

F
ee

db
ac

k
E

rr
or

F
ee

df
or

w
ar

d
C

on
tr

ol

Reference Input
Filtered Reference (r

ff
(t)) with BW = 5

Filtered Reference (r
ff
(t)) with BW = 10

Filtered Reference (r
ff
(t)) with BW = 15

Feedback Error
FF Control Signal (u

ff
(t)) with BW = 5

FF Control Signal (u
ff
(t)) with BW = 10

FF Control Signal (u
ff
(t)) with BW = 15

Figure 9.22: Perfect Tracking with Various αdes Bandwidths

Pdes(s)Gnoi(s). The fact that the plant is unstable only means that the control signal

that provides perfect tracking to steps has an undershoot, which is a result of the non-

minimum phase zero in G−1
i (s). The fact that the plant is unstable makes it harder

to control using standard feedback techniques, but does not affect the achievable

closed-loop transfer function.

9.4 Summary

These examples show the overall characteristics and limitations of the controllers used.

For example, when the plant is stable, G−1
i (s) is minimum-phase, which means that

a minimum-phase control signal may be used to provide perfect tracking (provided

there are no non-minimum phase components in Pdes(s). Conversely, when the plant

is unstable, G−1
i (s) is non-minimum phase, which means that a non-minimum phase

control signal is required to provide perfect tracking. These scenarios are illustrated

in Figure 9.22.

When a plant is minimum-phase, closed-loop response may be shaped solely by

193

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

P
os

iti
on

Stable Minimum-phase Plant

r(t)

y(t) = rf f(t)

0 1 2 3 4 5 6
0

1

2

3

4

C
on

tr
ol

 S
ig

na
l

u(t)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

P
os

iti
on

Unstable Minimum-phase Plant

r(t)

y(t) = rff(t)

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

C
on

tr
ol

 S
ig

na
l

u(t)

0 1 2 3 4 5 6

-0.5

0

0.5

1

P
os

iti
on

Stable Non-minimum Phase Plant

r(t)

y(t) = rf f(t)

0 1 2 3 4 5 6
0

1

2

3

4

C
on

tr
ol

 S
ig

na
l

u(t)

0 1 2 3 4 5 6

-0.5

0

0.5

1

P
os

iti
on

Unstable Non-minimum Phase Plant

r(t)

y(t) = rff(t)

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

C
on

tr
ol

 S
ig

na
l

u(t)

Stable Unstable

M
in
im
u
m
-p
h
a
s
e

N
o
n
-m
in
im
u
m
 P
h
a
s
e

Figure 9.23: Plant Implications

the choice of Pdes(s). The only limitation in these cases result from the (right-half

plane) zeros at infinity, which put a relative degree constraint on Pdes(s). When

there are non-minimum phase components in the plant, the FF2(s) controller is not

able to stably invert these dynamics in a causal manner, which means that these

dynamics will appear in the final closed-loop response. In these cases, the class of

signals that may be perfectly tracked (using causal and stable techniques) is defined

by Pdes(s)Gnoi(s). Together, the examples from this chapter demonstrate the limi-

tations that right-half plane zeros and time delays put on the achievable closed-loop

performance.

194

Chapter 10

Microalgae Modeling

In this chapter, a photobioreactor (PBR) model is developed that characterizes mi-

croalgae growth in a resource limited environment. While many other PBR models

exist, they mainly use an empirical model to model resource limited growth. Monod

models describe how bacteria grow in a media where the growth changes from ex-

ponential in the beginning (when there are plenty of nutrients in the media) to a

decaying growth phase, where nutrients deplete out of media (c.f., [86; 10]). In the fi-

nal stages of Monod kinetics, the growth goes through a stationary phase, and finally

a dying phase where biomass is lost. For the photobioreactors (PBRs) considered

here, microalgae spend all of their time in the growth phases (up to a possible sta-

tionary phase), but are not left in the PBR long enough for the dying stage to occur.

While Monod kinetic models do correlate with observed growth, they do not exploit

the physics of microalgae growth inside a closed PBR, which we address here. Our

early results on this method were published in [22].

Based on the measured model parameters, the photosynthetic efficiency (PE) and

carbon dioxide (CO2) uptake efficiency may be measured. These two performance

metrics are related since microalgae is approximately 50% carbon which they get

from dissolved CO2 in the surrounding media. Since this CO2 is provided to the

media via a sparged gas, all of the biomass accumulation is a result of carbon se-

questered from the input CO2 gas stream. In this sense, CO2 uptake and growth are

195

synonymous. From this, CO2 uptake efficiency is measured as the amount of CO2

consumed for growth versus the amount of CO2 delivered. Similarly, PE measures

the amount of algae produced for the amount of incident light versus a theoretical

maximum yield. In practice, these two performance objectives are competing, since

increased PE is achieved by continuously sparging through a gas mixture with the

appropriate CO2 concentration, and better CO2 uptake efficiency is achieved through

intermittently sparging CO2. For the model developed here, both continuous and

intermittent sparging may be simulated for pH regulation.

The developed model is applied to the flat panel PBR shown in Figure 10.1 that

is growing the microalgae strain Nannochloropsis oculata. In this setting, certain op-

erating conditions were held constant and only a selection of the modeled parameters

was measured. This led to a reduced order model, which is used in the validation

and verification (V&V) section. The performance of this system is given in terms of

measured model parameters.

10.1 Dynamic PBR Model

The dynamic PBR model is constructed by breaking down the overall system into

subsystems. These subsystems are modeled using a combination of the three basic

types of microalgae models, namely physically-based, empirical fits from data, and

biologically-based models. The different types of models with examples are shown in

Figure 10.2.

A combination of all three techniques is used in most microalgae models. Empirical

models use data fits to determine the performance of a specific reactor, but the fitted

parameters are not in physical units and therefore cannot be applied to different scale

reactors. More recently, microalgae models have focused on developing physically

based models, since they are in real units and therefore may be applied to both small

and large scale reactors. In physically based models, the model parameters often

196

Sensors

and

Actuators

Hoses and

Access Ports

Water

Basin

Location

of SCADA

PBR Flat

Panels with

Media and

Microalgae

Figure 10.1: Early Photobioreactor used for Modeling and Controller Development

Subsystem

Models

Dynamic

BiologicalPhysical

Static

Emperical

DynamicStatic

Algebraic

Equations

Differential

Equations

TD-

FFNN

RNN

ESN

Curve

Fits

Lookup

Tables

Photons per O2 Evolved

Photons per CO2 Captured

Photons per Algal Mass

Energy Stored per Incident Sun

Energy

Photoinhibition

Photorespiration

Figure 10.2: PBR Modeling Techniques

need to be measured. Biological models provide a way to convert between different

measures of growth. For example, biomass accumulation and CO2 uptake are both

measures of growth that may be related based on accepted biological facts. Biological

197

models are also useful for creating PE models, since they provide finite constraints

on the achievable growth for a given amount of photosynthetically active radiation

(PAR) from the sun that is incident on the PBR. In the work presented here, the

overall model is unique in that it takes a different approach to addressing the physics

of microalgae growth inside a PBR.

The PBR shown in Figure 10.1 was an earlier prototype that was used for modeling

and controller development. This prototype contained all of the components of a full

PBR; however, much work has been done to improve the operation and overall yield

from this early prototype. This experimental PBR testbed1 consisted of

• a water basin that provides support for the closed flat panel PBR,

• closed flat panels that contain media and microalgae,

• infrastructure (e.g., hoses, pipes, and access ports) to deliver CO2 and nutrients

to the microalgae during growth and remove the microalgae at harvest time,

• sensors to measure key variables (e.g., basin temperature, pH, dissolved O2, and

culture density) and

• a supervisory control and data acquisition (SCADA) system that provides con-

trol inputs (e.g., commanded CO2 flow rate and sparge air flow rate), store data

from sensors, and send alarms when the system malfunctions.

In order to make a model that is scalable, physical units were selected as densities

and concentrations. Therefore, the same performance metrics may be used to evaluate

both small and large scale reactors. From these, the aggregate values may be obtained

by multiplying the densities and concentrations by the reactor dimensions and mass

(gas) flow rates, respectively. A density based model is developed by considering the

1In general, a production system would not contain as many sensors as this testbed.

198

growth dynamics in a single flat panel. Figure 10.3 illustrates the dynamic interactions

of a single flat panel.

CO2

Air

Actuators

uCO2

uAIR

wCO2(supply)

wair(supply)

wsparge

2COm 2Om
algaem

pH
Basin

Temperature

Exhaust

Gas

Figure 10.3: Individual Flat Panel

PAR from the sun is incident to the PBR water basin. Some of this light enters

the bath and is used for photosynthesis by the microalgae, while the rest is reflected.

The amount of reflection is based on the angle of incidence of the incoming PAR.

This interaction makes up the light subsystem. The flat panel PBRs are submerged

in a water basin that provides some structure for the flat panel PBRs, regulates the

temperature of the microalgae and media mixture inside the closed flat panels, and

distributes the PAR that enters the bath.

Inside the closed flat panel reactors, microalgae cells are suspended in an industry

standard media that essentially mimics nutrient rich seawater. A CO2 enriched gas

stream is sparged 2 through the mixture of microalgae and media. The gas concentra-

tion in the sparging bubbles will seek equilibrium with the gas concentration in the

media. In the presence of light, microalgae photosynthesize to produce more biomass.

During this process, the microalgae interact with the media to remove nutrients and

dissolved carbon while releasing dissolved oxygen (DO) back into the media. For sus-

tained growth, the microalgae need the media to be supplied with additional dissolved

carbon and purged of built up DO from photosynthesis. The interaction between the

2Sparging is the act of bubbling a gas through the media to provide gas-liquid mass transfer
between the bubbles and media.

199

sparging bubbles and the media make up the water chemistry subsystem, and the

interaction between the microalgae cells and and the nutrient rich media make up

the photosynthesis subsystem. These phenomena are captured in the PBR model in

Fig. 10.4 that contains the three major subsystems, namely the light subsystem (red),

the photosynthesis subsystem (green), and the water chemistry subsystem (blue). The

details of each subsystem are described in the remainder of this section.

Commanded Inputs

Sunlight

Geography

Date and Time

sun intensity

pH
mixing

media

long_deg

longtude

long_std

longitude standard

lat_deg

latitude

daylight_sav

daylight savings

date_time_num

date number

cloud

nutrients

CO2diss

O2diss

pH

media

bubble

CO2in

CO2rate

O2rate

Water Chemistry
Subsystem

Temperature

CO2rate

O2rate

growthRate

DryMass

nutrients

CO2

O2

pH

temp

clight

darkRespiration

Photosynthesis
Subsystem

O2diss

Nutrients

mixing

date_time

geography

sun intesity

cloud

cell densit

PBR PAR

Light Subsystem

Growth Rate

DryMass

R

Dark
Respiration

Rate

CO2diss

CO2 MFC

Figure 10.4: Simulink Model of a PBR.

10.1.1 Incident Light Subsystem

The incident light subsystem determines the amount of light that will reach the

microalgae, which is a function of incident light to the PBR bath, sun position, amount

of mixing, culture density, and PBR geometry. This section describes a model based

on incident light. While mixing, culture density, and PBR geometry affect the amount

of light received by the microalgae, they are fixed for the operating conditions studied

here. Therefore, these parameters will be grouped into a sun utilization constant and

a critical density in the growth model, which will be discussed in the next section.

By grouping these terms together, a simplified model may be developed that still

captures all of the necessary information about the microalgae interaction with the

sunlight.

200

About 43% of the full spectrum of sunlight is photosynthetically active radiation

(PAR) which is the amount of light available for photosynthesis on earth. PAR is

the light intensity in the 400nm to 700nm range. When the sun is out, the primary

component of incident PAR is direct light, which will hit the bath water at a certain

angle depending on the position of the sun. A portion of this light will reflect back

off the water and some will enters the PBR bath. Not all of the light that enters the

bath will be absorbed, but modeling the amount of direct light that enter the bath

captures enough information about the light available for photosynthesis to provide

a realistic growth model. The following derivation of reactor light is based on the

information in [87].

The amount of direct sunlight that enters the bath water is a function of the angle

of incidence normal to the bath water. In turn, this angle is a function of the sun

position, which depends upon the day of the year, time of day, and location (longitude

and latitude). As the earth travels around the sun, the relative position of the sun in

the sky changes with the seasons. This is captured by the sun declination, which is

δ = 23.54 sin

(
2π

360

365
(284 + n)

)
(10.1)

where 1 ≤ n ≤ 365 is the day of the year. The sun intensity is a function of solar

time, where solar time is the local time adjusted so that the sun is the highest in the

sky at solar noon. The conversion from local time to solar time is as follows:

201

B =
360

365
(n − 1) (10.2)

E = 0.000287 + 0.0072 cos(2πB) − 0.1225 sin(2πB)

−0.0558 cos(4πB) − 0.1562 sin(4πB)) (10.3)

D =

{
1 : n during daylight savings
0 : n during standard time

(10.4)

∆t =
(Lst − Lloc)

15
+ E − D (10.5)

tsolar = tclock + ∆t (10.6)

In these equations, E is a correction in hours based on the day of the year (n).

The variables Lst and Lloc are the standard3 and actual longitude values in degrees

for the PBR location, and the flag variable D in equation (10.4) is equal to one when

it is during daylight savings and zero otherwise.

The next parameter to calculate is the “hour angle,” which measures the number

of degrees that the earth has traveled since solar noon. Because there are 360◦ of

rotation in a 24 hour day, the earth travels 15 degrees every hour (hence the division

by fifteen in equation (10.5)). The hour angle (in radians) is given by

ω = 2π × [15(tsolar − 12)]. (10.7)

The angle of incidence (θinc) on a horizontal surface, such as the PBR bath, at a

given latitude φlat is

cos(θinc) = cos(φlat) cos(δ)cos(ω) + sin(φlat) sin(δ) (10.8)

From Snell’s Law, the angle of transmission into the water, namely θwater, is given

by

3The standard longitudes for the United States are 75◦ for the Eastern time zone, 90◦ for the
Central time zone, 105◦ for the Mountain time zone, and 120◦ for the Pacific time zone.

202

nair

nwater

=
sin(θair)

sin(θwater)
(10.9)

where nair = 1 and nwater = 1.333 are the indices of refraction for air and water,

respectively, and θair = θinc from equation (10.8). This is enough information to

calculate θwater. To get the fraction of direct beam radiation that is transmitted

through the water, two more variables are used, namely the perpendicular and parallel

components of unpolarized radiation, which are given by

r⊥ =
sin(θwater − θair)

2

sin(θwater + θair)2
(10.10)

r‖ =
tan(θwater − θair)

2

tan(θwater + θair)2
. (10.11)

From this, the reflectance is
r⊥+r‖

2
and the transmittance (or fraction of the light

that enters the bath) is given by

ηbath = 1 −
r⊥ + r‖

2
. (10.12)

If PARsun is the amount of PAR from the sun, then the amount that will enter

the PBR bath is

PARbath = ηbathPARsun (10.13)

The actual amount of PAR that the microalgae will use for photosynthesis is

also a function of mixing and vertical flat panel geometry (i.e., panel thickness and

orientation). Therefore, the amount of incident light available for algal photosynthesis

will be

IPAR = f1(PARbath, mixing, geometry), (10.14)

where f1(·) is some nonlinear function. A simplified model of equation (10.14) is

203

IPAR = ηPBRPARbath, (10.15)

where ηPBR is the efficiency of the PBR for a given mixing and geometry. Cur-

rently, the term ηPBR is absorbed into the light utilization constant KPAR in the next

section. Therefore, IPAR = PARbath is used for the growth model. However, as more

information becomes available about the effects of mixing and geometry, it will be

incorporated into calculating a more accurate IPAR.

PAR may be measured in units of µmol light
m2s

; however, it is more convenient to

convert PAR to units of mol light
m2h

. The convenience comes from the fact that 8 moles

of light should produce 1 mole of O2 and that the growth rate is measured biomass

produced per hour. This will become apparent in the next section. The conversion

between the two PAR units is given by

mol

m2h
= 0.0036

µmol

m2s
. (10.16)

10.1.2 Growth Subsystem

The growth subsystem models the dynamics of the microalgae as they utilize photons

from the sun, CO2, and nutrients to produce oxygen (O2) and more microalgae. The

rate at which microalgae grow depends on their ability to utilize the incident light

and on the availability of nutrients. Assuming there are ample nutrients available,

microalgae growth is primarily a function of input light. Growth only happens when

there is available light; however, they will respire all of the time (i.e., in both the

presence and absence of light). During respiration, the microalgae will utilize O2 and

stored carbon as an energy source and release CO2 back into the media. Respiration

results in a loss of biomass. In the presence of light, growth (and hence carbon

204

assimilation) will dominate the metabolic process4. This means that growth will be

a function of the amount of microalgae that are exposed to light. In closed PBRs,

microalgae are grown to thick densities that will result in light limited growth. This

phenomenon is illustrated in Figure 10.5.

Exponential

growth

everywhere

Overall mass

accumulation is

exponential

Exponential

growth here (fixed

mass that utilizes

light)

No growth here

Overall growth is

linear (only mdense

is growing)Excess Light Light Limited

Figure 10.5: Light Limited Growth Inside a Closed PBR

When the culture is sparse, there are an excess number of PAR photons that are

not being utilized. Under this condition, microalgae will grow exponentially, since

the produced algal mass will not be limited by available photons. This is illustrated

on the left side of Figure 10.5. At some point, the algal density will become great

enough that all of the incident light will be utilized. At densities greater than this,

the microalgae growth rate will be linear. This is illustrated on the right side of

Figure 10.5. As the density continues to increase, a smaller fraction of the microalgae

will be able to receive the amount of light required for photosynthesis and respiration

will be the dominant metabolic activity. As this happens, the total microalgae growth

in the PBR will cease and eventually begin to decay. In the model, this feature is

captured by saturating the density in the growth term. When the density gets above

a critical density, labeled mdense, the amount of growth resulting from photosynthesis

becomes linear while the density lost due to respiration remains exponential. These

4Microalgae contain the enzyme Rubisco that will utilize both CO2 and O2 as substrates.

205

effects are described by the following nonlinear differential equation.

ṁalgae = KPARIPARm̄algae − Rmalgae (10.17)

where

m̄algae = min(malgae, mdense) (10.18)

mdense = f(malgae, mixing, geometry)

The state variable malgae is the amount of microalgae inside the PBR and its

derivative, namely ṁalgae, is the growth rate of microalgae inside the PBR. The term

KPAR is the sun utilization parameter that converts incident light, namely IPAR, into

microalgae growth rate, and the constant R is the rate of biomass loss due to respi-

ration (in the dark). The microalgae also respire while exposed to sunlight, so the

respiration term is still appropriate during growing times. However, the rate of respi-

ration is known to be greater during sunlight exposure. This discrepancy is hard to

measure directly. Instead, it is wrapped into the KPAR parameter (i.e., photorespira-

tion results in a smaller sun utilization parameter). Finally, the parameter mdense is

the critical density above which the growth becomes linear.

As microalgae grow, they consume carbon, which they get from dissolved CO2 and

other nutrients from their surroundings while releasing O2. In general, microalgae

biomass is 50% carbon by dry weight [2]. A mole of CO2 has a mass of 44 grams and

12 of these grams come from carbon. Based on these premises, the expression that 1

gram of microalgae can fix 1.83 grams of CO2 may be derived as follows

44gCO2/mol

12gC/mol

0.5gC

galgae

=
11

6

gCO2

galgae

= 1.83
gCO2

galgae

. (10.19)

206

A simplified equation for photosynthesis5 is given by

12H2O + 6CO2 + light −→ C6H12O6 + 6O2 + 6H2O (10.20)

This equation states that for every gram of CO2 consumed, there is a gram of O2

produced. While this is true, it does not account for all of the O2 that is produced.

This results from the fact that O2 molecules come from splitting water, which provide

energy for all of the metabolic processes inside the microalgae. Therefore, there is

not a one-to-one correspondence of O2 molecules produced to CO2 molecules fixed.

The excess energy that is not used to fix CO2 is used for other metabolic processes

such as fixing nutrients from the surrounding media and cell repair. This is often

echoed in the literature by the fact that it takes 8 photons of light to produce one

O2 molecule, but that it takes 8-12 photons of light to assimilate a CO2 molecule

(c.f., [88]). Assuming that 10 photons of light are required to fix one CO2 molecule,

the amount of O2 produced will be

32gO2/molO2

44gCO2/molCO2

8 molO2

10molCO2

11

6

gCO2

galgae
= 1.07

gO2

galgae
. (10.21)

Since these values are based on densities, they are independent of reactor size,

which means that the resulting models will be independent of scale. Based on the

assumptions in eqns (10.19) and (10.21), the CO2 consumption rate (density) and

O2 produced rate (density) may be expressed in terms of the growth rate (density).

In particular, the mass production and consumption rates (per gram microalgae) of

CO2 and O2, respectively, are

5Note that the reverse of photosynthesis is respiration, which is given by
C6H12O6 + 6O2 + 6H2O −→ 12H2O + 6CO2 + energy

207

ṁCO2(g/L/h) = 1.83ṁalgae(g/L/h) (10.22)

ṁO2(g/L/h) = 1.07ṁalgae(g/L/h), (10.23)

In general, the relationships may be expressed as

ṁCO2(mass/time) = KCO2ṁalgae(g/L/h) (10.24)

ṁO2(mass/time) = KO2ṁalgae(g/L/h), (10.25)

where, KCO2 and KO2 are the amount of gas consumed/produced per mass of mi-

croalgae growth and may be in units other than grams gas per gram microalgae. An

example of this is when the amount of CO2 is measured in standard liters per minute

(SLPM). Let VPBR(L) be the volume of the PBR in liters and using the fact that there

are 1.808 grams of CO2 (gCO2) per standard liter (SL), then KCO2 may be expressed

as

ṁCO2(SLPM) =
1h

60min

SL

1.808gCO2

VPBR(L)1.83
gCO2

galgae

ṁalgae

=
1.83VPBR(L)

1.808 · 60
ṁalgae(g/L/h) (10.26)

Here,
1.83VPBR(L)

1.808·60
is just KCO2 in different units.

10.1.3 Water Chemistry Subsystem

The water chemistry subsystem models both the dissolved gases and nutrients avail-

able to the microalgae in the media. The dissolved gases are a function of both

the gases being delivered by the MFCs and the internal gases being consumed and

generated by the microalgae. The main purpose of sparging is to regulate the con-

centrations of dissolved O2 and dissolved CO2 through mass transfer. In general, the

208

gas transfer rates may be modeled locally as a first order dynamic system. Due to the

distributed nature of the system, the model would require many cascaded first order

systems, which is common with process models. This phenomenon may be essentially

captured by using a first order plus dead time model [89], which is the method used

here.

When the media in the PBR is at equilibrium with air, there is about 8.3 mg/L

of dissolved O2 in the media, which is maintained through sparging when there is no

growth or respiration. During high growth periods, dissolved O2 will build up in the

system and is eventually purged at night. This is described by the following dynamic

model.

ṁ
DO

(t) = α
DO

wsparge(mDO,gas(t − τd,gas) − m
DO

(t)) + ṁO2(t) (10.27)

=
1

τ
DO

(m
DO,gas(t − τd,gas) − m

DO
(t)) + ṁO2(t) (10.28)

Here, wsparge is the flow rate of gas into the PBR, αDO is a lumped parameter that

determines the lag time for mass transfer of DO between the media and sparging

bubbles, m
DO,gas is the DO level that the media will equilibrate to, and ṁO2 is the

rate of oxygen produced through photosynthesis. For a specific reactor setup, the

lag time for reaching equilibrium will be a function of the size and frequency of the

bubbles, the location and pattern of the sparging holes, the dimension of the flat

panel reactor, and the volume of bubbles in the reactor during sparging. Since these

parameters will vary from reactor to reactor due to manufacturing variability and

operational variability (e.g., the reactors are not rigid, which means that their width

and height of media in the bag is dependent on how much back pressure is in the

system), they were grouped into two parameters, namely the sparge rate wsparge that

is proportional to the volume of bubbles in the reactor during sparging, and a lumped

parameter α
DO

that is the rate of mass transfer for a given bubble configuration. For

the system here, the product α
DO

wsparge determines the overall rate of oxygen diffusion

209

between the sparge gas and the media.

As the rate of sparging (wsparge) decreases, the lag time (given by τ
DO

= 1
α

DO
wsparge

)

increases, which means that the mass transfer between bubbles and media takes

longer. In the limit as wsparge → 0 (i.e., sparging is turned off), τ
DO

→ ∞, which

means that there is no mass transfer between the bubbles and media. In this case,

DO will build up in the media at rate ṁO2(t). This is illustrated in eqn (10.28).

The input gas stream is an air-plus-CO2 gas stream where the amount of added

CO2 varies. This variation may change the equilibrium value m
DO,gas. There is a delay

from when the CO2 concentration changes and when the new gas mixture arrives at

the media, which is captured by the delay τd,gas.

An analogous method may be used to model the dissolved inorganic carbon (DIC),

which is modeled in eqn (10.29).

ṁDIC(t) =
wsparge

τDIC
(mDIC,gas(t − τd,gas) − mDIC(t)) − ṁCO2(t) (10.29)

Here, mDIC,gas is the CO2 gas concentration required for a specific pH. As CO2 is

removed from the media through photosynthesis (i.e., ṁCO2), the value of mDIC,gas

will be increased to help replace the consumed CO2. Therefore, this value is always

changing during active growth to maintain a constant pH. Due to the distributed

nature of the system, there is a delay of τd,gas between when the commanded CO2

concentration changes, and when the CO2 reaches the media. This phenomenon is

demonstrated in the next chapter, where CO2 is used to regulate pH.

As CO2 dissolves in the media, it breaks down into different species, namely

aqueous CO2 (CO2(aq)), carbonic acid (H2CO3), bicarbonate (HCO−
3), and carbonate

(CO2−
3). The combination of all of these species makes up the total DIC. The amount

of aqueous CO2, namely CO2(aq), is a function of temperature and pressure, which is

governed by Henry’s Law. Based on the DIC and Henry’s law, the following chemical

equation will reach equilibrium.

210

CO2(aq) + H2O ⇋ H2CO3 ⇋ H+ + HCO−
3 ⇋ 2H+ + CO2−

3 (10.30)

The amount of each of carbonic acid, bicarbonate, and carbonate species deter-

mines the pH. As pH increases, the equilibrium shifts to the left. Similarly, as the pH

decreases, the equilibrium shifts to the right. As microalgae grow, CO2(aq) is removed

from the surrounding media, which causes the equilibrium to shift to the left and

the pH to rise. Some strains of microalgae will also utilize bicarbonate as a carbon

source. The microalgae still require CO2, which they get by splitting bicarbonate into

HCO−
3 ⇋ CO2 + OH−. The release of the OH− also causes the pH to increase. It is

unclear which method of carbon assimilation dominates the pH increase.

The addition of dissolved CO2 decreases the pH of the media. Since it can take

2-3 seconds for carbon to completely dissolve and only a fraction of the input CO2

dissolves before leaving the vent, there are some dynamics associated with the pH

in the media, which are captured by the first order dynamics (transfer function) in

eqn (10.31). The pH model is linearized about an operating pH (e.g., a pH of 7.3).

˙pH(t) =
1

τpH
(KpHmDIC(t) − pH(t)) (10.31)

Here, τpH is the lag time associated with the DIC settling into the appropriate species

and KpH is the conversion factor from DIC to pH units.

10.2 Photosynthetic Efficiency

In order to quantify a PBR’s performance, there are two questions that need to be

answered, namely

• What is the maximum biomass yield achievable?

• What is the actual photosynthetic efficiency (PE) achieved for a specific PBR?

211

The first question is surrounded by some controversy that depends on the method

used. In particular, the maximum yield is somewhere between 2.41 g algae
mol photons

and

3 g algae
mol photons

. The methods that achieve these are presented in this section. Some of

these methods are well documented in the literature (c.f., [90; 91; 8; 2]), while another

method is provided based on assumptions gathered from the literature. The results

may be used to provide an estimate of the maximum productivity for a given amount

of incident PAR. This is addressed in the next section. For the second question, a

combination of the model parameters and the maximum theoretical yield may be

used to determine the PE. As a consequence, this translates the sun utilization model

parameter KPAR into a performance metric and puts fundamental limits on how large

this parameter can be.

10.2.1 Theoretical Yields

There are a few different ways that PE can be defined. The two most common

ways to define PE are based on biomass accumulated and energy stored. Biomass

accumulation may be measured in terms of biomass produced, CO2 consumed, O2

produced, and photons of light captured. In the literature, there are a few assumptions

that may be used to relate these various growth measures. These were stated in

Section 10.1.2 and may be summarized as:

• 1.83 grams of CO2 are consumed for every gram of microalgae produced [2].

• 8 photons of light are absorbed by the microalgae for every molecule of oxygen

produced [91]

• Approximately 10 photons of light are absorbed for every molecule of CO2

consumed [92; 88].

From these assumptions, the maximum yield based on biomass accumulation may

be derived using the following relationship.

212

(
1g algae

1.83g CO2

)(
44.1g CO2

1 mol CO2

)(
1 mol CO2

10 mol photons

)
= 2.41

g algae

mol photons
. (10.32)

This provides a maximum theoretical yield based on assumed accumulation per

incident light. For a theoretical yield based on energy stored, a mathematical abstrac-

tion of the photosynthesis equation given in eqn (10.20) may be expressed as

2H2O + CO2 + 8 photons −→ CH2O + O2 + H2O. (10.33)

It should be noted that this equation does not represent an actual step in photo-

synthesis. In photosynthesis, it takes six molecules of CO2 to make one molecule of

C6H12O6.
6 However, it is common practice in the literature to write the true equation

of photosynthesis as the mathematical abstraction in eqn (10.33). The reason for this

is that it allows for an equation of photosynthesis that is based per molecule of CO2.

However, this is not a true chemical equation and there is not an actual CH2O that

occurs in nature during photosynthesis.

Equation (10.33) suggests that a CO2 molecule is assimilated for every 8 photons

absorbed. However, it is well known that mechanisms that release O2 and assimilate

carbon take place in two separate stages. Microalgae use light (or more specifically,

PAR) to split water (H2O) into hydrogen ions (H+ ions) and oxygen molecules (O2).

This takes place in two subsystems that are traditionally labeled Photosubsystem I

and Photosubsystem II. In these subsystems, it takes a total of 8 photons of light

to release one O2 molecule (c.f., [91]). All of the released energy (in the form of H+

ions) are used by the microalgae to perform cell functions. The primary function is

to store carbon, but some of this energy is used for other cellular activities such as

cell repair. Therefore, not all of the energy captured from light is used for carbon

6See eqn (10.20). In that equation, “light” would equal 48 photons.

213

assimilation, which means that it takes more than 8 photons to assimilate one CO2

molecule.

In the limiting case where all of the incident photons are used for carbon assimi-

lation, eqn (10.33) may be used to derive a yield based on energy. For the discussion

here, energy content is defined in terms of the amount of energy released when a sub-

stance is burned. For this, the amount of energy in a mole of (the fictitious element)

CH2O and the amount of energy in a gram of microalgae must be determined. There

are some discrepancies as to how much energy is in each of these. These are discussed

in detail in [90], and the following nominal values were obtained:

• One mole of CH2O contains about 482.5 kJ of energy.

• One gram of microalgae contains about 21.6 kJ of energy.

Based on these assumptions, the maximum yield based on energy stored may be

derived using the following relationships.

(
1mol CH2O

8 mol photons

)(
482.5 kJ

1mol CH2O

)(
1g algae

21.9 kJ

)
= 2.75

g algae

mol light
. (10.34)

Based on this higher yield, eqn (10.32) may be used to determine that 8.75 pho-

tons of light are used to assimilate on CO2 molecule7, which further motivates the

experimental range of 8-10 photons required to assimilate one CO2 molecule. Simi-

larly, the limiting case of eqn (10.32) with 8 photons per CO2 molecule assimilated

gives a maximum theoretical yield of 3 g algae per mole photons. While this does not

give an exact value, it does suggest that the maximum achievable yield is about 2.4

to 3 g algae per mole photons. For the work presented here, a nominal value of 2.7

g algae per mole photons will be used.

7This relationship may be determined by considering
(

1g algae
1.83g CO2

)(
44.1g CO2

1 mol CO2

)(
1 mol CO2

X mol photons

)
=

2.75 g algae
mol photons and solving for X = 8.75 mol photons of light.

214

10.2.2 Modeled Photosynthetic Efficiency

For the previously developed growth model, biomass accumulation is described in

terms of biomass per volume (i.e., a density) and incident light is described in terms of

incident light intensity per area. In order to convert these values into a photosynthetic

yield, a reactor specific conversion is needed that relates PBR flat panel volume to

PBR flat panel area. Let l, h, w determine the length, height, and width of a single

PBR flat panel and assume that there are two sides to each panel. Using the fact

that there are 1000L in a 1m3, the area per volume conversion is given by

Cm2/L =
APBR(m2)

VPBR(L)
=

2h(m)l(m)

2h(m)l(m)w(m)1000 L
m3

=
0.001

w(m)

[
m2

L

]
(10.35)

In the previous section, it was determined that the maximum yield is given by

Y max
algae(g)/I (mol) = 2.7

g algae

mol light
(10.36)

In terms of the growth model developed earlier, the actual (instantaneous) yield is

given by

Ỹ act
algae(g)/I (mol) =

ṁalgae (g/L/h)

C(m2/L)I(mol/m2/h)

(10.37)

From this, the instantaneous photosynthetic efficiency is given by

η̃PE =
Ỹ act

algae(g)/I (mol)

Y max
algae(g)/I (mol)

(10.38)

In terms of the growth model parameters provided earlier, the instantaneous yield is

given by

215

Ỹ act
algae(g)/I (mol) =

ṁalgae(g/L/h)

C(m2/L)IPAR(mol/m2/h)

=
KPAR(m2/mol)IPAR(mol/m2/h)m̄algae(g/L) − R(1/h)malgae(g/L)

C(m2/L)IPAR(mol/m2/h)

=

(
KPAR(m2/mol)m̄algae(g/L)

C(m2/L)

−
R(1/h)malgae(g/L)

C(m2/L)IPAR(mol/m2/h)

)[
g algae

mol

]
(10.39)

<
KPARm̄algae

C(m2/L)

[
g algae

mol

]

<
KPARmdense

C(m2/L)

[
g algae

mol

]
(10.40)

It should be noted that eqn (10.39) is only valid for IPAR(mol/m2/h) > 0. Also, the yield

is only positive when ṁalgae > 0 (i.e., when growth is occurring), which only happens

when IPAR > Rmdense

KPARm̄algae
.

For a given reactor setup, both the rate of respiration in the dark (R) and the

conversion factor C(m2/L) will be fixed parameters, since they are specific to the strain

of microalgae and physical reactor, respectively. Therefore, the only two parameters

that may be affected by operating conditions are the sun utilization parameter KPAR

and critical density mdense. While the critical density will be affected by PBR op-

erating methods, it is primarily a function of mixing and reactor geometry, whereas

the sun utilization parameter is capturing all of the effects from carbon and nutrient

availability, inhibiting effects of DO build up, and sun utilization from proper mixing

(i.e., microalgae need to spend some of their time in the light to capture photons,

and some of their time in the dark to perform carbon assimilation). Therefore, the

primary measures of a reactor’s performance are based on the sun utilization param-

eters KPAR. Using the developed relationships, an upper bound for KPAR is given

by

Kmax
PAR(m2/mol) =

2.7(g/mol)C(m2/L)

mdense(g/L)

(10.41)

The instantaneous yield in eqn (10.37) gives the yield for a specific light intensity.

216

In some scenarios, it is beneficial to measure an overall yield and associated efficiency.

For this, the total biomass yield versus total PAR must be calculated. This may be

expressed as

Y act
algae(g)/I (mol) =

∫ t

0
ṁ(τ)algae(g/L/h)dτ

C(m2/L)

∫ t

0
I(τ)mol/m2/hdτ

[
g algae

mol

]
(10.42)

=
m(t)algae(g/L/h) − m(0)algae(g/L/h)

C(m2/L)

∫ t

0
I(τ)mol/m2/hdτ

[
g algae

mol

]

where m(0)algae(g/L/h) and m(t)algae(g/L/h) are the beginning and ending biomass con-

centrations, respectively.

In this case, the aggregate PE is given by

ηPE =
Y act

algae(g)/I (mol)

Y max
algae(g)/I (mol)

(10.43)

10.2.3 Summary

The PE yield in eqn (10.39) provides many insights into PBR design and efficiency

trade-offs. At lower light intensities, the respiration is a dominant factor, which is

intuitive since at very low light there is more respiration than growth in a PBR. As

light intensity increases, the respiration term has less of a relative effect. As the mass

increases up to mdense, both the growth term (i.e., the positive term/first term on the

right) increases and the amount of respiration (i.e., the second term/subtracted term

on the right) increases as well. When the mass increases past the critical density,

namely mdense, the respiration term continues to increase while the growth term stays

fixed. The net effect of this is that the efficiency decreases as the mass increases above

mdense. As the area to volume ratio increases, the effect of respiration is decreased,

since there are more microalgae available on the surface of the PBR. On the growth

side, the ratio of KPAR(m2/mol) to C(m2/L) determines the amount of liters per mole

of light. Equation (10.41) suggests that a larger surface area to volume (C(m2/L)

217

term) will result in a larger sun utilization (KPAR(m2/mol) term); however, increasing

the surface to volume ratio may increase the cost to the point where it is no longer

economically feasible to operate or build the reactor. Also, PE, as it is measured

here, uses the ratio of KPAR(m2/mol) to C(m2/L) as part of its calculation. Therefore,

increasing C(m2/L) by itself will not necessarily result in a more efficient use of PAR.

Instead, the ratio of KPAR(m2/mol) to C(m2/L) may be used to evaluate various PBR

geometries.

10.3 Model Validation and Verification

The specific reactor used for model validation is shown in Figure 10.1, and a block

diagram of the reduced order model is shown in Figure 10.6. This system was operated

under the following conditions:

• pH regulated to 7.3 through CO2 addition,

• Temperature unregulated (varied 20oC to 25oC),

• Batch operation (nutrients provided with the initial culture medium only),

• Air sparge rate was held constant and only the CO2 flow rate was changed,

• The total gas sparge rate was about 40 standard liters per minute (SLPM) at

any given time,

• The (fixed flow rate) air stream and (variable flow rate) CO2 gas stream were

mixed before being sparged through the microalge/media mixture,

• Light was the only factor driving growth

• Sensors are read and the model is updated every 5 seconds

218

There were also a limited number of measurements available. For the validation

performed here, the following measurements were available (NB: Figure 10.6 uses the

acronyms stated here):

• PAR sensor (used to measure the amount of light available for photosynthesis),

• pH sensor,

• Dissolved Oxygen (DO) sensor,

• Optical Density (OD) sensor (this measurement correlated well with biomass

density),

• CO2 mass flow rate into the reactor, and

• By-hand biomass measurement (taken twice a day - once in the morning and

once at night)

Based on the amount of information available, a reduced order model was devel-

oped. This is covered in the next section. Based on this reduced order model, model

parameters were fit and then verified on reactor data from a Summer growing season

(i.e., from May until September).

10.3.1 Reduced Order Model

A diagram of the validation and verification (V&V) setup is shown in Figure 10.6,

which was used to create a reduced order model. In this setup, an on-sight PAR

sensor was available that was able to measure the rate of PAR photons incident to

the reactor. This sensor measured both the direct and diffuse light and provided a

good estimate for the amount of PAR that the microalgae were using. Given the

experimental systems used, the light model was not verified. Instead, the PAR sensor

was used as the light subsystem.

219

Light

Subsystem

Photosynthesis

Subsytem

Water Chemistry

Subsystem

PAR

Sensor

algaem
algaem&

2COm&

2Om&

PARI

CO2

Flow Rate

DO

pH

Controller
pH

Setpoint

(7.3)

+
+

-

CO2

Flow Rate

Physical

PBR
pH

OD

DO

Modeled Values

Measured Values

CO2

Figure 10.6: Model Validation and Verification Setup

The OD sensor measurement changed proportionally with the density of the

biomass. For the results here, this sensor was correlated to dry mass in units g/L.

Most of the time during daylight hours, this measurement was well correlated well

with biomass density. At times, this sensor was unreliable. To help determine the

reliability, by-hand measurements were taken twice daily. If the sensor values at the

measurement times did not match the by-hand measurements, the data for that day

was determined unreliable and the data was not used for validation.

Since the amount of dissolved CO2 was not measured, a reduced order model was

derived that had CO2 flow rate as an input and pH as an output. This eliminates the

model of total DIC from Section 10.1.3. Instead, it was assumed that regulating pH

also kept the dissolved CO2 in a range appropriate for accelerated growth. Since the

operating conditions included continuous sparging and nutrients only being added

in the beginning, there is no feedback to the growth model. This assumes that the

available nutrients are consistent for each density among batches and that there are

220

no inhibiting effects from DO build up.

The resulting model equations for each subsystem are provided in the next section

along with the methods used to fit parameters for each subsystem model.

10.3.2 Fitting Model Parameters

The PBR model for the test PBR (shown in Figure 10.1) required model parameters

for both the growth subsystem and the water chemistry subsystem. The two known

inputs were the input air flow rate and the input CO2 flow rate. For the PBR

model developed here, the input air flow rate was about 40 SLPM. This was not well

regulated and there were times when this flow rate was not maintained. However, the

data set used for validating the water chemistry model had a relatively constant input

air flow rate. This flow rate will affect the amount of CO2 required for pH regulation,

since it is the the concentration of CO2 that will affect the mass transfer between the

sparging bubbles and the media. Therefore, the input CO2 flow rate and input air

flow rate were combined to get a total flow rate and CO2 concentration (between 0

and 1). The models and fitted parameters are outlined in the next sections.

10.3.2.1 Growth Model

The growth model in Section 10.1.2 provided the nonlinear differential equations that

described growth, which are stated again here with the appropriate units.

ṁalgae(g/L/h) = KPAR(m2/mol)IPAR(mol/m2/h)m̄algae(g/L) − R(1/h)malgae(g/L)(10.44)

ṁCO2(SLPM) =
KCO2

ηCO2

ṁalgae(g/L/h) (10.45)

ṁO2(mg/L/h) = KO2ṁalgae(g/L/h) (10.46)

The rate of respiration in the dark (R) is a fundamental parameter of the microal-

gae used and may be measured during the night time when the microalgae are only

221

respirating. In particular, this value was measured by examining the rate of respira-

tion over multiple nights throughout a Summer growing season. This was calculated

by taking two points during the night and assuming exponential decay. For example,

if malgae(0) is the dry mass at 11pm at night (assuming that sunset is well before

11pm) and malgae(5) is the dry mass at 4am the next day (assuming that sunrise is

well after 4am), then the following models exponential decay.

malgae(5) = malgae(0)e−5R (10.47)

This method was repeated for various sampling times and over many days. For the

growth model validation done here, this value is R = 0.0045, which is in normalized

units.

The light driven growth portion of this model uses the PAR measurement, which

is given by IPAR(mol/m2/h), the sun utilization parameter KPAR(m2/mol), and the critical

density parameter mdense(g/L) to determine the light driven growth rate. For the

presentation of the model here, these values are normalized. Based on the data

collected, nominal values of KPAR = 0.01 (area/incident light) and mdense = 1 were

used. The sun utilization parameter (KPAR) is assumed to be specific to a strain

of microalgae. This parameter will be affected by external factors such as nutrient

availability and general health of the microalgae. Since the operating conditions

are kept the same for each batch grown (e.g., no nutrient depletion occurs in the

growth phase), this parameter is held constant. An example plot of the modeled and

measured growth is shown in Figure 10.7.

222

0 20 40 60 80 100 120
0

1000

2000

3000

time (hours)

P
A

R

Summer Data

0 20 40 60 80 100 120
2

4

6

8

10

D
ry

 M
as

s
[N

or
m

al
iz

ed
 U

ni
ts

]

Measured
Modeled

Figure 10.7: Growth Model Verification

10.3.2.2 Water Chemistry Subsystem

The water chemistry subsystem considered here models the DO and pH dynamics

of the PBR system shown in Figure 10.1. The DO model follows from eqns (10.27)

and (10.28). Here, the rates are in (mass/volume/time) and O2 production rate from

photosynthesis, namely ṁO2(mass/volume/time), comes from the growth model described

in the previous section. A line search algorithm was used to determine the lumped

parameter of α
DO

= 0.357. A simulation with the fitted parameters is given in

Figure 10.8.

In Figure 10.8, the top graph shows both the DO sensor and the modeled output.

For reference, the input to the DO model (i.e., the DO production rate from the

growth model) is provided. This bottom graph illustrates one of the challenges to

growing microalgae, which is the potential problem of DO build up. During peak

growing hours, DO is being produced at rates up to 7 (mass/volume/time), which has

the potential to quickly raise the level of DO to a point where growth will cease. Even

223

0 50 100 150
0.8

1

1.2

1.4

1.6

1.8

D
O

[n
or

m
al

iz
ed

 u
ni

ts
]

Modeled DO Output with α
DO

 = 0.357 and DO
eq

 = 1

 DO sensor
DO model

0 50 100 150
−2

0

2

4

6

8
Input From Growth Model

time (hours)

O
2 P

ro
du

ct
io

n
R

at
e

[n
or

m
al

iz
ed

 u
ni

ts
]

Figure 10.8: DO Model Verification

with continuous sparging, the DO levels build up to 1.5 times the normal equilibrium

with air; however, the microalgae are still able to grow in this environment without

many inhibitory effects.

In order to see the first order dynamics of the DO model, a zoomed in version of

Figure 10.8 is shown in Figure 10.9. By examining the DO model and sensor in the

top plot, the DO data is a slightly smoothed (and scaled) version of the modeled O2

production from growth. For a particular example, examine the two graphs between

hours 52 and 53 in Figure 10.9. Here, there are two distinct peaks in production

rate (bottom graph in Figure 10.9) that appear as one smoothed peak to the sensor

and model (top graph in Figure 10.9). This is a result of the mass transfer dynamics

between the bubbles and the media.

224

52 52.2 52.4 52.6 52.8 53 53.2 53.4 53.6 53.8

1

1.1

1.2

1.3

1.4

1.5

D
O

[n
or

m
al

iz
ed

 u
ni

ts
]

Modeled DO Output with α
DO

 = 0.357 and DO
eq

 = 1

DO sensor
DO model

52 52.2 52.4 52.6 52.8 53 53.2 53.4 53.6 53.8

0

2

4

6

Input From Growth Model

time (hours)

O
2 P

ro
du

ct
io

n
R

at
e

[n
or

m
al

iz
ed

 u
ni

ts
]

Two Distinct Peaks

One Smoothed Peak

Figure 10.9: DO Model Verification (Zoomed In)

The pH model was created by combining the DIC and pH models from Sec-

tion 10.1.3 into the first order model

ẏ
pH

(t) = α
pH

wsparge(KpH
x

CO2
(t − τd,gas) − y

pH
(t)) − ṁ

CO2
(t) (10.48)

=
wsparge

τ
pH

(K
pH

x
CO2

(t − τd,gas) − y
pH

(t)) − ṁ
CO2

(t) (10.49)

Due to the nature of PBR operation over the time the data was collected, the

parameters measured for the pH model were inconsistent. Unlike the DO model, the

model parameters were not well isolated. In the DO model, all of the DO produced

came directly from photosynthesis and its only method for removal was sparging,

which was held constant. Also, the oxygen content in the sparging gas was roughly

constant during the operation, which meant the rate of oxygen mass transfer did not

225

change during operation. For the pH model, pH was affected by both photosynthe-

sis and the concentration of CO2 in the sparging gas stream. This extra degree of

freedom caused much variation in the possible model parameters. As a part of ongo-

ing research, more data and experiments are needed to develop a more accurate pH

model. This issue is discussed in Chapter 12. In order to develop a simple model,

it was assumed that the rate of gas exchange for CO2 was similar to the rate of gas

exchange O2.

226

Chapter 11

Advanced Microalgae Control

For the PBR models and controllers presented here, the only commanded input is

CO2 flowrate, which affects the CO2 concentration in the input sparging gas stream.

It is well understood that the dissolved CO2 concentration in media may be sensed via

pH, which was describe in detail in the the previous chapter. Therefore, the control

objective is to maintain the appropriate dissolved CO2 concentration by regulating

the pH of the media. Proper pH regulation via input CO2 gas has been shown to have

a large impact on microalgae production [23; 24; 25], and in some cases, can improve

the biomass yield by up to 500%. In a larger PBR configuration, there may exist

long transport delays, which will affect the achievable pH regulation. Through the

use of the our developed controller architectures, we can characterize the achievable

pH regulation that may be attained for a specified PBR configuration.

In the previous chapter, a growth model was developed that can provide an esti-

mate of the CO2 being consumed (or produced) by the microalgae during photosyn-

thesis (or respiration). In our work [22], we presented a method for using this CO2

growth model as a feedforward CO2 control input to help improve pH regulation. In

this scenario, the model was used in two configurations, namely

1. An open-loop model that estimates CO2 consumption (and production) based

on incident PAR.

2. An observer corrected model that used measured dry mass and incident PAR

227

to estimate CO2 consumption (and production).

In the first part of this chapter, an observer-based growth model is presented in

both continuous-time and discrete-time, with the latter being more suitable for im-

plementation on a microcontroller. On a physical PBR, this observer could be used to

improve the feedforward controller performance. In the second part to this chapter,

pH regulation for various PBR configurations is presented. For this, a pH model is

developed that may be used for controller synthesis and validation. Then, a robust

feedback controller is synthesized, which characterizes a base level of performance

that may be achieved using only feedback control. One of the biggest factors that

limits performance is the (potentially) long CO2 transport delay that results from

a commercial size PBR setup. On commercial size PBR, the CO2 supply may be

located away from the actual PBR (e.g., the CO2 source could be a power plant and

the PBR with microalgae could be located a few hundred meters away from the power

plant). This physical distance will create a transport delay that is a non-minimum

phase component in this system. Even though this system contains nonlinear com-

ponents, a version of the previously developed DFFPC architecture may be used to

characterize the achievable pH regulation performance for a given transport delay.

These two controllers (i.e., feedback only and DFFPC) are presented in simulation

for various transport delays and their performance compared. Using the DFFPC ar-

chitecture, the achievable pH regulation performance is characterized. This example

also demonstrates how the DFFPC architecture could be extended to provide perfect

tracking on an example nonlinear system with a time delay.

11.1 Observer Based Growth Model

To begin, let’s consider the open-loop PBR growth model (from the previous chapter):

˙̂malgae = KPARIPAR
¯̂malgae − Rm̂algae, (11.1)

228

where m̂algae is the modeled dry mass, ¯̂malgae is the saturated mass used to model

linear growth above a critical density, and ˙̂malgae is the rate of microalgae growth as a

function of incident light IPAR. This model captures both growth from photosynthesis

(when IPAR is large enough) and respiration (which is always occurring). In this

representation, the “hat” notation is used to distinguish that m̂algae is a modeled

(and not measured) value. Signals that are measured will not contain a “hat” (e.g.,

malgae is a measurement of the actual dry mass). When there is a measurement of

malgae available, it may be used to improve the estimate of ˙̂malgae by creating an

observer (for more information, see Section 2.10). For the growth model considered

here, the equations may be augmented to create an observer as follows:

˙̂malgae = KPARIPAR
¯̂malgae − Rm̂algae + L(m̂algae − malgae). (11.2)

Here, malgae represents the measured dry mass and m̂algae is the modeled dry

mass. Using these values, the growth rate ˙̂malgae is corrected via an observer gain

L. A Simulink diagram that implements eqn (11.2) is shown in Figure 11.1. This

diagram also contains the components necessary to determine the CO2 consumption

and O2 production rates. For the application considered here, the CO2 consumption

rate will be used to determine the feedforward control input used for pH regulation.

For digital implementations, the continuous time observer based growth model

is converted to discrete-time. For this first order model, a (first-order) Backwards-

Euler numerical integration method is used to convert the continuous-time system to

a discrete-time system, which works well for this case (assuming the sampling time

is sufficiently fast). For the simulations considered here, the sampling period is 5

seconds, which is significantly faster than the dynamics of the system (that are on

the order of minutes). The discrete-time growth model is:

229

mhat(t) (g/L)mhatdot(t) (g/L/h)

K_PAR I_PAR

R m_algae

OD (error)

K_PAR I_PAR mbar_algae(t) - R m_algae(t)

y_DM(t)

yhat_DM(t)

min(m,m_dense)

simData_OD

Workspace1

R

R

Product7

Product6

Product4
Product3

Product2

PAR
mol/m2/h

L

Observer Gain
Observer
Correction

Obs GR filt

Obs GR

O2 Production Rate

K

K_PAR

K_O2

K_O2

K_CO2

KCO2

1
s

Integrator

simData_PAR

I_PAR(t)

b(z)

a(z)

Discrete Filter

0

Constant

CO2 Consumption Rate

0.0036

C1

Add6

Add2

Add1

Figure 11.1: Continuous-time Nonlinear Observer Growth Model in Simulink.

m̂algae[k + 1] − m̂algae[k]

T
= KPARIPAR[k] ¯̂malgae[k] − Rm̂algae[k] + L(ŷDM[k] − yDM[k])

(11.3)

Simplifying equation (11.3) results in the following difference equation

m̂algae[k + 1] = (TKPARIPAR[k]) ¯̂malgae[k] + (1 − TR)m̂algae[k] + TL(ŷDM[k] − yDM[k])

(11.4)

A Simulink diagram of this is given in Figure 11.2.

230

mhat[k] (g/L)mhat[k+1]

mdot[k] (g/L/h)

T K_PAR I_PAR

1-T R

DM (error)

T

Backwards Euler Numerical Integration

y_DM[k]

yhat_DM[k]

min(m,m_dense

simData_OD

Workspace1

z

1

Unit Delay

T_hours

T R

R

Product7

Product6

Product5

Product4
Product3

Product2

Product1

PAR
mol/m2/h

L

Observer Gain

Obs GR filt

Obs GR

O2 Production Rate

K

K_PAR

K_O2

K_O2

K_CO2

KCO2

simData_PAR

I_PAR[k]

b(z)

a(z)

Discrete Filter

CO2 Consumption Rate

0.0036

C1

Add6

Add5

Add4

Add2
Add1

1/T_hours

1/T

1

Figure 11.2: Discrete-time Numerical Integration of the Nonlinear Observer Growth
Model in Simulink.

For both observer implementations (shown in Figures 11.1 and 11.2), the open-loop

growth model may be recovered by setting the observer gain L = 0.

11.2 pH Model

In this section, a pH model is developed for the flat panel PBR (from the previous

chapter) that may be used for controller development. The pH of the media is pri-

marily a function of the amount of dissolved CO2 in the media. The two main factors

that affect the dissolved CO2 concentration in the media are the CO2 concentration

in the sparging bubbles (which use mass transfer to affect the amount of dissolved

CO2 in the media), and dissolved CO2 consumption and production by the microal-

gae (during photosynthesis and respiration). Therefore, the following two interactions

will be modeled:

231

1. Dynamics between commanded CO2 flow rate in sparge gas and the sensed pH

in the media.

2. pH change due to microalgae activity (i.e., photosynthesis and respiration).

These interactions are developed in the next two sections.

11.2.1 Water Chemistry pH Model

For the water chemistry part of the pH model, an input CO2 flow rate is commanded

(e.g., by a mass flow controller) that affects the measured pH. This commanded

flow rate changes the CO2 gas concentration upstream from the PBR, which means

that there is a transportation delay between when a CO2 flow rate is commanded and

when it reaches the PBR and is sensed via pH. When the commanded CO2 reaches the

PBR, there are diffusion dynamics between the media and sparging bubbles. These

dynamics may be modeled as a first order lag, whose time constant is on the order of

minutes1. There are also dynamics as the dissolved CO2 reaches equilibrium in the

media and as pH is detected by a sensor. Both of these dynamics may be modeled as

first order lag, whose time constants are on the order of few seconds. These dynamics

collectively modeled by a first order lag that dominated by the diffusion dynamics,

along with a time delay associated with the transportation delay.

These modeled LTI dynamics are only valid around an operating point. This is

shown in Figure 11.3, where the linearization offsets define the operating point. For

the hypothetical example that will be used in this chapter, let a constant flow rate

of 4 SLPM (standard liters per minute) of CO2 correspond to a media pH of 7.3.

As the commanded CO2 flow rate varies around 4 SLPM, the model predicts that

the pH will vary with first order plus time delay dynamics around a pH of 7.3. For

1A similar phenomenon was seen in the previous chapter where the time constant for diffusion of
O2 into the sparging bubbles was τ

DO
= 0.07 hours (or 4 minutes and 12 seconds).

232

the PBR model considered here, the CO2 flow rate will be able to vary from 0 to 10

SLPM and the pH will vary from 8.5 (for a CO2 flow rate of 0 SLPM) to a pH of 5.5

(for a CO2 flow rate of 10 SLPM). In practice, the pH scale is defined to be between

0 and 14, which puts fundamental limits on the output. Also, it is not possible to

command a negative CO2 flow rate, which means that it is not possible to raise the

pH above 8.5. Also, from experience on the physical PBR, it is difficult to lower the

pH of the media below 5 using a CO2 rich input gas stream. In general, the actual

pH model becomes nonlinear as the CO2 flow rate deviates much from its operating

point of 4 SLPM; however, the dynamics are approximately linear of the operating

range considered here. This is an example of modeling a nonlinear process as a linear

process around an operating point. For more information on using linearization to

model a nonlinear system, see [76].

1+s

K

pH

pH

τ
dse τ−

Figure 11.3: Water Chemistry pH Model.

This model takes into account the interaction between the sparge gas and media.

When there are microalgae in the PBR, there is another interaction between the

microalgae and media, which is discussed next.

11.2.2 PBR pH Model

As the microalgae consume and produce CO2, they will interact with the media to

change the pH. Microalgae will both photosynthesize (consume CO2) and respirate

(produce CO2), which will affect the CO2 concentration in the surrounding media.

Photosynthesis will dominate during the daylight hours and respiration will dominate

233

in the dark. These phenomenon are captured by the previously developed growth

model. For the pH model, it is assumed that the change in pH will be proportional to

the change in CO2 concentration. Therefore, a scaled version of the CO2 consumption

term from the growth model is added to the final pH value. This is illustrated

in Figure 11.4. In this figure, CpH,CO2 is the conversion between CO2 consumed and

increase in pH. Since this change in pH happens within a few seconds of photosynthesis

or respiration, it does not require the transportation delay or diffusion dynamics.

1+s

K

pH

pH

τ
dse τ−

Figure 11.4: PBR pH Model with Growth and Water Chemistry Dynamics.

For the pH model considered here, the model parameters are set to:

KpH = −0.3 [CO2 flow units to pH] (11.5)

τpH = 0.03 [hours] (11.6)

τd = 0.05 [hours] (11.7)

CpH,CO2 = 5 [CO2 consumption units to pH] (11.8)

234

The parameter KpH was chosen such that the pH could vary from 5.5 to 8.5 as the

CO2 flow rate varies from 0 to 10 SLPM (assuming that the linearization point is

4 SLPM regulates the media to a pH of 7.3). The time constant and process delay

were chosen based on estimates of the model parameters from experimental data;

however, these parameters have not been validated. The conversion CpH,CO2 from

CO2 consumption to change in pH was assigned for simulation purposes and has not

been validated.

The growth model parameters were set to arbitrary values for illustrative purposes.

These values are:

KPAR = 0.01 [m2/mol] (11.9)

R = 0.0045 [1/hours] (11.10)

mdense = 1 [g/L] (11.11)

KCO2 = 1 [−] (11.12)

Here, KCO2 is absorbed into CpH,CO2 (i.e., CpH,CO2 is really being used to convert from

microalgae growth rate to change in pH, since a true KCO2 is not known. However,

if a KCO2 were known, then CpH,CO2 would be the conversion from CO2 consumed to

change in pH). These parameters are used in the remaining sections of this chapter.

11.3 pH Regulation using Feedback Controllers

For the feedback controller design, a robust controller is designed based on the linear

part of the diagram in Figure 11.3 (i.e., the linearization offsets are not used in the

controller design). Therefore, the LTI plant used for controller synthesis is

GpH(s) =
KpH

τpHs + 1
e−sτd, (11.13)

235

where KpH, τpH, and τd were defined in eqns (11.5)-(11.7). For the purpose of feedback

controller design, the pH change due to microalgae growth (i.e., photosynthesis and

respiration) is a disturbance on the plant output that the feedback controller must

reject. Therefore, the robust feedback controller interconnect for disturbance rejection

provided in Chapter 4 (see Figure 4.2) will be used. For this robust controller design,

the following weights were chosen:

Wi(s) =
0.1(s + 20)

(s + 200)
(Additive Uncertainty Weight) (11.14)

Wd(s) =
10

(s + 20)
(11.15)

Wn(s) = 0.0001 (11.16)

Wp(s) =
10

(s + 0.0001)
(11.17)

Wu(s) = 0.01 (11.18)

(11.19)

Using similar methods to those in Chapter 9, the final controller was designed to

have integral action. The resulting feedback controller is given by the following.

K(s) =
−50.2104(s + 200)(s + 40)(s + 20.83)(s + 14.29)

s(s + 81.03)(s + 19.99)(s2 + 59.43s + 1849)
(11.20)

For simulation, the Simulink block diagram shown in Figure 11.5 is used.

r(t)
e(t) u(t)

y(t)

pH_linpt

pH
linearization

offset

pH_linpt

pH
linearization

offset

Step1

Step

Scope
In1 Out1

PBR pH Model

MFC_FlowRate

N_K(s)

D_K(s)

Controller

uCO2_linpt

CO2 MFC
linearization

offset

Figure 11.5: Feedback Only Microalgae pH Regulation Simulink Diagram

236

In Figure 11.5, the block labeled “PBR pH Model” is a Simulink block diagram

of the full pH model shown in Figure 11.4. For a demonstration of the designed

feedback controller, an example is created that regulates pH to 7.3 during the night

(i.e., between 8pm and 4am) and a pH of 7 during the day (i.e., between 4am and

8pm). An actual data set of PAR is used to drive the growth model. The simulation

(over a 24 hour period) is shown in Figure 11.6.

0 5 10 15 20 25
6.5

7

7.5

pH

Feedback Only pH Regulation with τ
d
 = 180 [sec]

Reference Input
Measured Output

0 5 10 15 20 25
2

4

6

8

C
om

m
an

de
d

C
O

2
 F

lo
w

 R
at

e
[S

LP
M

]

0 5 10 15 20 25

−0.2

0

0.2

F
ee

db
ac

k
E

rr
or

0 5 10 15 20 25
0

5

10

P
A

R
 [m

ol
/m

2 /h
]

Time [hours]

Figure 11.6: Simulated Feedback Only Microalgae pH Regulation

In Figure 11.6, it may be seen that the feedback controller is able to regulate pH

to +0.2089 to -0.1652 around the pH setpoint of 7 during the high growth period

(i.e., when the sun is out and measured PAR is more intense). For this example, the

high growth period is considered to be between hours 9 and 17 in Figure 11.6. This

provides a baseline for comparing the DFFPC architecture presented next.

237

11.4 pH Regulation using a DFFPC Architecture

with Growth Compensation

If the pH model did not include the nonlinear growth model, the extension of pH

regulation to a DFFPC architecture would be straight forward. The only modifica-

tion would be to include the linearization offsets inside the feedback loop. However,

the nonlinear growth model dynamics provide another non-minimum phase compo-

nent. To see this, note that as the microalgae grow, the pH changes instantaneously;

however, the controller must compensate for this change in pH through the trans-

port delay τd. In the DFFPC architecture, this instantaneous change in pH due to

growth may be captured in rff(t) by adding it to the output of Pdes(s)Gnoi(s). This

will restore the perfect tracking of pH in the sense that the feedback error will be

zero; however, only changing rff(t) means that the measured pH will vary with pho-

tosynthesis and no compensation will be made by the second feedforward controller

(FF2(s)) to correct for the amount of CO2 (sensed via pH) that is being removed

from the media during growth. In other words,

y(t) = rff (t) = r(t)+ “pH change due to growth”. (11.21)

This violates one of the design requirements which states that rff(t) must asymp-

totically track r(t) (and not r(t) + “some non-zero offset”). This is addressed by

subtracting the “pH change due to growth” from r(t) before it goes into the two

feedforward controllers. This will (asymptotically) cancel out the addition of the

“pH change due to growth” that has been added to rff (t). A simulation diagram

of a modified DFFPC architecture that may provide perfect pH tracking is shown in

Figure 11.7.

In Figure 11.7, the compensation of growth in the reference signals is labeled

“Growth Compensation”. For this example, the plant factorization is

238

Command Reference Input (pH)

External Disturbance on pH

Growth
Compensation

r_{ff}(t)

e(t)

u(t)

pH

d_{pH}(t)

pH_linpt

pH
linearization

offset

pH_linpt

pH
linearization

offset

Transport
Delay

N_K(s)

D_K(s)

Transfer Fcn

Step1

Step

Scope

PAR pH change

PBR pH Model
(without linearization

offsets)

In1 Out1

PBR pH Model

sensor_PAR

PAR Sensor

MFC_FlowRate

tau_pH.s+1

K_pH * [tau_des 1](s)

FF2(s) = Pdes(s) Ginv(s)

uCO2_linpt

CO2 MFC
linearization

offset

1

tau_des.s+1
 Pdes(s)

Figure 11.7: Microalgae pH Regulation using a Modified DFFPC Architecture
Simulink Diagram

Gi(s) =
KpH

τpHs + 1
(11.22)

Gnoi(s) = e−sτd . (11.23)

Let dpH(t) be the disturbance on pH that results from growth. Now, there are two

inputs and one output, which means that there are two closed-loop transfer functions,

namely one from reference input r(t) to output y(t) and one from disturbance dpH(t)

to output y(t). When there is no growth (i.e., dpH(t) = 0), then the nominal closed-

loop response from r(t) to y(t) is the expected one, namely

Mr→y(s) =
Y (s)

R(s)
= Pdes(s)Gnoi(s). (11.24)

However, the nominal closed-loop response from dpH(t) to y(t) is

239

MdpH→y(s) =
DpH(s)

R(s)
= Pdes(s)(1 − e−sτd) = Pdes(s)(1 − Gnoi(s)). (11.25)

This piece has no counterpart in the DFFPC presented in Chapter 4, but this modifi-

cation is required to get the desired tracking result. The overall closed-loop expression

(that includes the effects of both the reference input and disturbance input) is

Y (s) = Mr→y(s)R(s) + MdpH→y(s)DpH(s)

= Pdes(s)Gnoi(s)R(s) + Pdes(s)(1 − Gnoi(s))DpH(s)

= Pdes(s)Gnoi(s)R(s) + Pdes(s)(1 − e−sτd)DpH(s). (11.26)

For demonstration purposes, the same set of PAR data from the previous section

is used to demonstrate the performance improvement in the nominal case. For the

simulation here,

Pdes(s) =
1

(s
αdes

+ 1)
, (11.27)

where αdes is the bandwidth in rad/sec. An example simulation with αdes = 20 is

shown in Figure 11.8.

In Figure 11.8, the ability to track the reference changes has been improved by

Pdes(s) and the amount of variation in the pH is +0.1981 to -0.1506 around the

pH setpoint of 7 during the high growth period, which is about a 5% improvement

over the feedback controller presented in the previous section. The advantage to

this method over the feedback only case is improved performance (i.e., less total

variation). Also, the amount of recovery time is less (i.e., faster recovery) with the

DFFPC architecture. This may be seen by looking at the feedback error plots in

Figures 11.6 and 11.8. With the DFFPC architecture, the actual pH that may be

perfectly tracked (for this choice of Pdes(s)) will vary by at least +0.1981 to -0.1506

240

0 5 10 15 20 25
6.5

7

7.5

pH

Perfect pH Tracking of r
ff
(t) with α

des
 = 20, τ

d
 = 180 [sec]

Reference Input (r(t), not adjusted)
Measured Output (y(t) = r

ff
(t))

0 5 10 15 20 25
−2

0

2

4

C
om

m
an

de
d

C
O

2
 F

lo
w

 R
at

e
[S

LP
M

]

0 5 10 15 20 25

−0.2

0

0.2

E
rr

or
 (

r(
t)

 −
 y

(t
))

0 5 10 15 20 25
0

5

10

P
A

R
 [m

ol
/m

2 /h
]

Time [hours]

Figure 11.8: Simulated Microalgae pH Regulation using a Modified DFFPC Archi-
tecture

(around the pH setpoint). This is a fundamental limitation on how much the pH

will vary. If this is unacceptable, then structural changes will need to be made. For

example, the time delay could be reduced by putting more CO2 actuators that are

closer to the pH sensors. As an example, let the PBR be configured such that the

time delay has been reduced by a factor of ten (i.e., the time delay becomes 0.005

hours or 18 seconds). A simulation of this is shown in Figure 11.9.

The simulation in Figure 11.9 shows that the pH variation due to growth is now

+0.1418 to -0.0957 around the pH setpoint of 7 during the high growth period. This

is an example of control-structure interaction (CSI) that may be used to evaluate

the different PBR design trade-offs. The advantage that the DFFPC architecture

provides over the feedback design is that it characterizes the achievable performance

analytically. This alleviates the potential need to redesign a feedback controller for

241

0 5 10 15 20 25
6.5

7

7.5

pH

Perfect pH Tracking of r
ff
(t) with α

des
 = 20, τ

d
 = 18 [sec]

Reference Input (r(t), not adjusted)
Measured Output (y(t) = r

ff
(t))

0 5 10 15 20 25
−2

0

2

4

C
om

m
an

de
d

C
O

2
 F

lo
w

 R
at

e
[S

LP
M

]

0 5 10 15 20 25

−0.2

0

0.2

E
rr

or
 (

r(
t)

 −
 y

(t
))

0 5 10 15 20 25
0

5

10

P
A

R
 [m

ol
/m

2 /h
]

Time [hours]

Figure 11.9: Simulated Microalgae pH Regulation using a Modified DFFPC Archi-
tecture with Smaller Transport Delay

each configuration, which would introduce another variation to what the expected

performance will be for a given PBR setup. The idea of using the DFFPC and

DFFSP architectures for CSI is a potential future direction and will be mentioned

again in the next chapter.

11.5 Summary

In this chapter, a nonlinear pH model was developed that was suitable for controller

development. Using this nonlinear model, both feedback and DFFPC controllers were

developed for pH regulation, and their performance measured in simulation. The

DFFPC architecture is able to characterize the expected pH regulation that may be

achieved for a given process delay (and choice of Pdes(s)). Using this characterization,

the trade-offs between process delay and pH variation may be studied.

For this particular application, it may be observed that the CO2 regulation nat-

242

urally follows the feedforward growth model. This was true even in the feedback

only case, where the feedback controller was reacting to the changes in pH. Even in

this case, the commanded CO2 flowrate mimics the PAR driven growth rate during

high growth periods. This motivates the use of feedforward control on this system,

where the feedforward control input is well modeled by the nonlinear growth model.

In the case of DFFPC, the second feedforward controller (FF2(s)) is providing the

additional CO2 flowrate based on current consumption (from the nonlinear growth

model), and the feedback controller is correcting for small errors between the actual

pH and the pH that the first feedforward controller (FF1(s)) is predicting.

243

Chapter 12

Conclusions and Future Directions

The goal of the research was two-fold. In the first part, perfect tracking was explored

for linear time-invariant (LTI) systems (of the form provided by eqn (3.1) in Sec-

tion 3.1), which includes stable, unstable, minimum-phase, and non-minimum phase

systems, potentially with time delays. A class of signals that may be perfectly tracked

was defined for these systems, along with two architectures that may achieve perfect

tracking. Previously, this class of signals for non-minimum phase systems had not

been fully explored. In the DFFPC architecture, perfect tracking is achieved for both

stable and unstable systems; however, the DFFSP architecture is only suitable for

stable systems. This fundamental limitation is due to the cancelation properties of

the Smith predictor. This limitation was exposed in Section 2.9.

The performance of these two architectures is dependent upon the quality of the

models used in the feedforward controllers. To address this, robustness tools and

adaptation techniques were developed that may be used to guarantee robust perfor-

mance and improve performance, respectively. It was shown in Chapter 9 that the

robustness tools accurately predict the expected level of performance that may be

achieved for a given design (i.e., for a specific Pdes(s)). In the cases where there were

modeling errors, adaptation was used to improve the models used in the feedforward

controllers. In the cases where the plant was LTI, but was not correctly modeled,

perfect tracking was achieved following adaption via system identification. Since this

244

adaptation occurs only in the feedforward controllers, guaranteeing stability is numer-

ically much less computationally intensive than adapting the feedback components.

In fact, the method for adaptation via system identification (for the DFFPC archi-

tecture) can never result in unstable feedforward controllers. This is due to the plant

factorization that splits the identified plant into a the piece that does have a stable

causal inverse and a piece that does not. Then, only the piece that does have a stable

causal inverse is inverted and the other (non-minimum phase) piece is used to define

the class of signals that may be perfectly tracked.

In the second part of the presented research, the focus was on modeling and

control of photobioreactors (PBRs) growing microalgae for biofuel production. A

nonlinear dynamic physics-based model was developed that accurately modeled mi-

croalgae growth in a resource limited (e.g., light-limited) environment. This model is

a physics-based model that is independent of reactor size, which makes it a scalable

model. The model was verified on experimental data from an actual PBR.

The biggest known factor affecting microalgae growth is proper pH regulation.

For this, a pH model was developed that may be used for controller synthesis. The

model includes both the media dynamics (that are approximately linear around an

operating point), and the nonlinear growth dynamics (i.e., the dynamics of consuming

and producing CO2 as function of input PAR). Using this model, both a feedback ro-

bust controller and a DFFPC were synthesized and simulated. For the DFFPC, some

modifications were required to define and achieve perfect tracking for this specific

nonlinear system. The results provide an example of how the DFFPC architecture,

which was presented for LTI systems, may be extended to a specific nonlinear sys-

tem. While not presented here, a similar modification could be used to apply the

DFFSP architecture for pH regulation on a nonlinear PBR. This example shows the

potential versatility of the presented architectures to nonlinear systems. However,

the modifications required will be specific to the nonlinear plant being controlled.

245

12.1 Feedforward Design

For the feedforward designs presented here, both design for specifications (e.g., de-

sign for specific rise time with no overshoot) and multiobjective optimization were

presented for designing Pdes(s). In these methods, there is a design trade-off be-

tween control authority and nominal performance. These design methods were used

in conjunction with the robustness tools to guide the design process to provide robust

performance on the actual system (for a given level of uncertainty). In [39], a similar

controller architecture was used to design Pdes(s) in terms of the signal r(t) − y(t),

where r(t) is the unfiltered reference signal. In general, r(t) − y(t) 6= 0 (recall that

perfect tracking was with respect to the filtered reference, namely rff(t) − y(t) = 0,

so one can think of the filtered reference rff (t) as a class of signals that the output

can track perfectly). Design techniques such as those in [39] may also be considered

for the architectures presented here.

In terms of perfect tracking as it has been presented here, the idea of per-

fect tracking was presented as: “Given r(t), what is the rff (t) that the output

will perfectly track”, and Pdes(s) is designed to shape rff (t) to meet design spec-

ifications. Another way to approach the problem is ask: “What class of sig-

nals r(t) can be perfectly tracked?”. With the current presentation, we define

Rff (s) = Pdes(s)Gnoi(s)R(s). For the question asked here, we are interested in de-

termining R(s) = P−1
des(s)G

−1
noi(s)Rff(s). In this formulation, P−1

des(s)G
−1
noi(s) will not

necessarily be proper. Therefore, relative degree constraints will need to be put on

Rff (s). This type of design would be desirable when r(t) is a design parameter and

the control objective is to track r(t) perfectly.

12.2 Adaptation

The LTI adaptation techniques were based around known adaptation methods, such

as standard system identification techniques (c.f., [85]) that perform identification

246

on a (stored) time-series of input-output data. While these may work well in some

situations, it may be desirable to develop recursive methods that continuously update

online at every time step (or even every couple of time steps). It may even be possible

to identify the invertible and non-invertible dynamics separately, which could lead to

a new class of system identification algorithms.

The use of reinforcement learning control is an active area of research. For the

architecture presented here, any (stable) adaptation scheme may be used. This could

include both static and dynamic function approximators (e.g., neural networks and

echo state networks). More investigation needs to be done on the different meth-

ods available to see which methods are most suited for a specific (class of) systems.

In addition to the architectural exploration, there is also the question of: “How to

model reinforcement learning domains?”. Some initial work for modeling reinforce-

ment learning domains was presented in [82]. The modeling of reinforcement learning

domains is in contrast to modeling the internal state using an observer. Observers use

a model of the process and then “observe” the internal state, based on the model and

input-output time series. In reinforcement learning domains, the (hidden) internal

state is modeled using input/output data. One of the biggest challenges is model-

ing a (hidden) state from an input/output time series when there is no underlying

knowledge of the model. This challenge, some initial solutions, and potential future

directions were provided in [82].

12.3 Extensions to MIMO

In another form of the problem formulation, the plant may be factored into

G(s) = Gmp(s)Gap(s)e
−sτd, (12.1)

where Gmp(s) is a (potentially unstable) minimum-phase system that does have a

causal stable inverse and Gap(s)e
−sτd contains a stable all-pass Gap(s) with time

247

delay e−sτd . The latter piece will not have stable causal inverse, but will itself

be stable. This factorization is known as an all-pass/minimum-phase decomposi-

tion. Using this factorization, the two feedforward controllers could be defined as

FF1(s) = Pdes(s)Gap(s)e
−sτd (which defines the signals that may be perfectly tracked)

and FF2(s) = Pdes(s)G
−1
mp(s) (which defines the feedforward signal that provides

perfect tracking). There is no advantage to using this decomposition over the one

presented in Chapter 3, since the same relative degree constraint will result from

the formulation of Pdes(s)G
−1
mp(s). In fact, this method has the potential to be more

limiting, since it forces the class of signals that may be perfectly tracked (defined by

Pdes(s)Gap(s)e
−sτd) to have stable poles that mirror the RHP zeros in G(s). How-

ever, versions of this decomposition exist for general multiple-input multiple-output

(MIMO) LTI systems, which could make this method a potential starting point for

extending the DFFPC and DFFSP architectures to MIMO plants.

In the MIMO case, an all-pass/minimum-phase plant decomposition may be

achieved through an inner-outer factorization [43; 93]. For the description here, a

MIMO transfer function H(s) is inner if it satisfies the property H∗(s)H(s) = I and

is analytic in the closed RHP (i.e., s ≥ 0). In this definition, the real rational transfer

function matrix H(s) does not need to be square; however, when it is square, it is

the MIMO equivalent of a stable all-pass transfer function. Similarly, a real rational

transfer function matrix is outer if it is has no transmission zeros in the RHP, which

is the MIMO equivalent of a minimum-phase transfer function. As a consequence, an

outer transfer function matrix has a stable causal inverse. This factorization is given

by

G(s) = Gout(s)Gin(s), (12.2)

where Gin(s) is inner and Gout(s) is outer. From this definition, Gin(s) = G#
out(s)G(s),

where G#
out(s) is the left inverse of Gout(s). Using this method, there is the poten-

248

tial of creating the two feedforward controllers based on this MIMO decomposition.

In [93], the inner-outer factorization may be applied to a wide range of LTI (e.g.,

polynomial/proper/improper) systems, whose transfer function matrices may be rank

deficient and could have poles/zeros on the imaginary axis or at infinity [93]. While

this method does show potential for factoring the plant, there are still the questions

of:

• How to design Pdes(s)?

• How to perform adaptation?

Once a Pdes(s) has been chosen, methods similar to those presented in Section 2.7

may be used to analyze the overall robustness of the closed-loop system. While the

inner-outer factorization does look promising, it would be more desirable to factor a

MIMO system into a piece that does have a causal and stable inverse, and a piece

that does not have a causal and stable inverse. For this, a methodology that can

handle improper systems in the MIMO case is needed. Some potential methods could

include polynomial and rational matrices or descriptor systems; however, no known

MIMO factorization currently exist.

12.4 Microalgae Modeling and Control

The PBR model developed was physics-based and validated on the experimental data.

The measured model parameters were specific to the microalgae strain Nannochlorop-

sis oculata in a specific PBR. However, the developed model has the potential to be

used for system level optimization. For this, more data and experimentation would

be needed to determine the sun utilization constant (KPAR) for various algae strains

and PBR configurations. Based on the system level model created from this data,

the best algae strain and PBR configuration could be selected.

249

One of the main motivating applications for microalgae is to make biofuels from

them. One way to promote lipid accumulation in microalgae (which will increase the

overall biofuel content that may be extracted) is by depleting the microalgae of nu-

trients. For this, a lipid model could be created. This model would be fundamentally

different than the growth model in the sense that no growth happens in the lipid accu-

mulation stage. In fact, the growth model assumes that there are plenty of nutrients

and that the only limiting resource is light. In a lipid model, the nutrients have been

depleted, which means that growth will cease (and decaying will eventually begin to

occur). In this case, the lipid model would contain the effects of bath temperature

and incident PAR on lipid accumulation. The development of this “stress” model is

a topic of ongoing research.

Advanced controllers were developed and demonstrated in simulation; however,

they have not been validated on a test bed. For the DFFPC architecture, achievable

tracking was defined for a specific Pdes(s) structure. Other methods for designing

Pdes(s) and adapting of the growth model parameters would be useful. For adap-

tation, a real test bed would be needed to see how much benefit may be gained

from adapting the model parameters. For the PBR setup considered here, plant

model parameters could be adapted based on measured pH. For example, if the pH is

lower than the expected value (e.g., the pH value that could be perfectly tracked by

the DFFPC architecture), then the sun utilization constant KPAR may be too large.

Adaption could be use to adjust the parameter accordingly. This is one example of

how adaptation may be used.

12.5 Control-Structure Interaction

In all physical applications, the location of sensors and actuators will contribute

(in some form) to the overall dynamics of the system to be controlled. In the work

presented here, a class of signals that may be perfectly tracked for non-minimum phase

250

systems is provided. If a desired level of performance is not attainable for the class of

signals that is defined by the non-invertible dynamics of the plant, structural design

considerations may be used to rearrange sensors and actuators in order to change the

non-invertible dynamics of the system. An example was presented in Chapter 11 that

used the time delay associated with CO2 delivery in a PBR growing microalgae as

a structural parameter. When the delay between when a CO2 actuator opens, and

when the CO2 reaches the microalgae, was longer, there was more variation in the

attainable pH regulation. However, reducing the amount of pH regulation would come

at a potentially higher capital and operating cost, which means that a business trade-

off would be required to determine the appropriate PBR configuration. While this is

one specific example, it illustrates that there are fundamental limitations imposed by

the construction of a physical system. By classifying the signals that may be perfectly

tracked, it is possible to determine the achievable level of performance at the early

stages of controller design. This knowledge may be useful for the structural design

of the system by providing trade-offs between various actuator and sensor designs.

These trade-offs may include bandwidth and operating range of the actuators and

quality and placement of sensors.

251

REFERENCES

[1] J. E. Normey-Rico and E. F. Camacho, Control of Dead-Time Processes.
Springer-Verlag, London, 2007.

[2] Y. Chisti, “Biodiesel from microalgae,” Biotechnology Advances, vol. 25, no. 3,
pp. 294–306, 2007.

[3] J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, “A look back at the
U.S. department of energy’s aquatic species program—biodiesel from algae,”
Tech. Rep. NREL/TP-580-24190, National Renewable Energy Laboratory,
Golden, Colorado, July 1998.

[4] A. Richmond, “Microalgal biotechnology at the turn of the millennium: A per-
sonal view,” Journal of Applied Phycology, vol. 12, pp. 441–451, 2000.

[5] J. Merchuk and X. Wu, “Modeling of photobioreactors: Application to bubble
column simulation,” Journal of Applied Phycology, vol. 15, pp. 163–169, 2003.

[6] M. Janssen, L. de Bresser, T. Baijens, J. Tramper, L. R. Mur, J. F. Snel,
and R. H. Wijffels, “Scale-up aspects of photobioreactors: effects of mixing-
induced light/dark cycles,” Journal of Applied Phycology, vol. 12, pp. 225–
237, 2000.

[7] M. Janssen, J. Tramper, L. Mur, and R. Wijffels, “Enclosed outdoor pho-
tobioreactors: light regime, photosynthetic efficiency, scale-up, and future
prospects,” Biotechnology and Bioengineering, vol. 81, no. 2, pp. 193–210,
2003.

[8] A. Richmond and N. Zou, “Efficient utilisation of high photon irradiance for
mass production of photoautotrophic micro-organisms,” Journal of Applied
Phycology, vol. 11, pp. 123–127, 1999.

[9] A. P. Carvalho, L. A. Meireles, and F. X. Malcata, “Microalgal reactors: A
review of enclosed system designs and performances,” Biotechnology Progress,
vol. 22, pp. 1490–1506, 2006.

[10] J. Deschenes, A. Desbiens, M. Perrier, and A. Kamen, “On simultaneous control
of biomass and metabolite concentrations in perfusion bioreactors,” in DCDIS
4th Conference on Engineering Applications and Computational Algorithms,
(Guelph, Canada), pp. 663–667, 2005.

252

[11] F. Camacho Rubio, F. Garcia Camacho, J. M. Fernández Sevilla, Y. Chisti, and
E. Molina Grima, “A mechanistic model of photosynthesis in microalgae,”
Biotechnology and Bioengineering, vol. 81, no. 4, pp. 459–473, 2003.

[12] F. Camacho Rubio, A. Sánchez Mirón, M. Cerón Garcia, F. Garcia Camacho,
E. Molina Grima, and Y. Chisti, “Mixing in bubble columns: a new ap-
proach for characterizing dispersion coefficients,” Chemical Engineering Sci-
ence, vol. 59, no. 20, pp. 4369–4376, 2004.

[13] Y. Chisti, Airlift Bioreactors. Elsevier Applied Science, 1989.

[14] Y. Chisti, B. Halard, and M. Moo-Young, “Liquid circulation in airlift reactors,”
Chemical Engineering Science, vol. 43, pp. 451–457, 1988.

[15] Y. Chisti, M. Kasper, and M. Moo-Young, “Mass transfer in external-loop airlift
bioreactors using static mixers,” The Canadian Journal of Chemical Engi-
neering, vol. 68, no. 1, pp. 45–50, 1990.

[16] N. Kurano and S. Miyachi, “Selection of microalgal growth model for describ-
ing specific growth rate-light response using extended information criterion,”
Journal of Bioscience and Bioengineering, vol. 100, no. 4, pp. 403–408, 2005.

[17] S. Celikovsky, S. Papacek, A. C. Herrera, and J. R. Leon, “Singular perturbation
based solution to optimal microalgal growth problem and its infinite time
horizon analysis,” in 47th IEEE Conference on Decision and Control, 2008.

[18] M. Berenguel, F. Rodriguez, F. Acien, and J. Garcia, “Model predictive control of
ph in tubular photobioreactors,” Journal of Process Control, vol. 14, pp. 377–
387, 2004.

[19] F. Camacho Rubio, F. Acién Fernández, F. Garcia Camacho, J. A. Sánchez
Pérez, and J. M. Fernández Sevilla, “Prediction of dissolved oxygen and car-
bon dioxide concentration profiles in tubular photobioreactors for microalgal
culture,” Biotechnology and Bioengineering, vol. 62, no. 1, pp. 71–86, 1999.

[20] L. Mailleret, O. Bernard, and J. P. Steyer, “Nonlinear adaptive control for biore-
actors with unknown kinetics,” Automatica, vol. 40, no. 8, pp. 1379 – 1385,
2005.

[21] L. Mailleret, J.-L. Gouze, and O. Bernard, “Nonlinear control for algae growth
models in the chemostat,” Bioprocess and biosystems engineering, vol. 27,
no. 5, pp. 319–327, 2005.

[22] M. R. Buehner, P. M. Young, B. Willson, D. Rausen, R. Schoonover, G. Babbitt,
and S. Bunch, “Microalgae growth modeling and control for a vertical flat
panel photobioreactor,” in Proceedings of the 2009 American Control Con-
ference, 2009.

[23] “Center for the study of carbon dioxide and global change.” Internet Website.
http://www.co2science.org/.

[24] K. Logothetis, S. Dakanali, N. Ioannidis, and K. Kotzabasis, “The impact of
high co2 concentrations on the structure and function of the photosynthetic

253

apparatus and the role of polyamines,” Journal of Plant Physiology, vol. 161,
pp. 715–724, 2004.

[25] L. Yue and W. Chen, “Isolation and determination of cultural characteristics of
a new highly co2 tolerant fresh water microalgae,” Energy Conversion and
Management, vol. 46, pp. 1868 – 1876, 2005.

[26] D. Cooper, “Loop-pro software user’s guide.” Control Station.

[27] D. T. McRuer, R. E. Magdalena, and G. P. Moore, “A neuromuscular actuation
system model,” IEEE Transactions on Man-Machine Systems, vol. 9, no. 3,
pp. 61 – 71, 1968.

[28] K. Furuta, M. Iwase, and S. Hatakeyama, “Internal model and saturating actua-
tion in human operation from view of human-adaptive mechatronics,” IEEE
Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1236 – 1245, 2005.

[29] S. Lee and D. Terzopoulos, “Biomechanical modeling and neuromuscular control
of the neck,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 1188 – 1198,
2006.

[30] Y. Lin and S.-M. Sow, “Kinematic control and coordination of walking machine
motion using neural networks,” in IEEE International Joint Conference on
Neural Networks, pp. 248 – 253, November 1991.

[31] I. D. Loram and M. Lakie, “Human balancing of an inverted pendulum: posi-
tion control by small, ballistic-like, throw and catch movements,” Journal of
Physiology, vol. 540.3, pp. 1111 – 1124, 2002.

[32] S. Mangan, A. Zaslaver, and U. Alon, “The coherent feedforward loop serves as a
sign-sensitive delay element in transcription networks,” Journal of Molecular
Biology (2003) 334, 197204, vol. 334, pp. 197 – 204, 2003.

[33] T. E. Milner, B. Ng, and D. W. Franklin, “Learning feedforward commands to
muscles using time-shifted sensory feedback,” International Congress Series,
vol. 1291, pp. 113 – 116, 2006.

[34] H. Fujimoto, Y. Hori, T. Yamaguchi, and S. Nakagawa, “Proposal of seeking
control of hard disk drives based on perfect tracking control using multirate
feedforward control,” in International Workshop on Advanced Motion Con-
trol, pp. 74 – 79, 2000.

[35] H. Fujimoto, Y. Hor, and S. Kondo, “Perfect tracking control based on multirate
feedforward control and applications to motion control and power electron-
ics,” in Power Conversion Conference, 2002.

[36] F. Li, J. Lu, X. Zhao, and T. Yahagi, “Perfect tracking control of nonmiminum
phase systems in magnetic levitation system,” IEICE Transactions on Elec-
tronics, vol. E89-A, pp. 1437 – 1445, 2006.

[37] C. M. Schar, C. H. Onder, and H. P. Geering, “Control of an scr catalytic
converter system for a mobile heavy-duty application,” IEEE Transactions
on Control Systems Technology, vol. 14, pp. 641 – 653, 2006.

254

[38] F. Lange, J. Langwald, and G. Hirzinger, “Predictive feedforward control for
high speed tracking tasks,” in In Proceedings of the 1999 European Control
Conference, 1999.

[39] H. Okajima and T. Asai, “Performance limitation of tracking control problem
for a class of references,” in Proceedings of the 47th IEEE Conference on
Decision and Control, (Cancun, Mexico), Dec. 9-11, 2008 2008.

[40] M. R. Buehner and P. M. Young, “A tighter bound for the echo state property,”
IEEE Transactions on Neural Networks, vol. 17, pp. 820–824, 2006.

[41] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design.
Prentice-Hall, third ed., 1995.

[42] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory.
Macmillan Publishing Company, 1992.

[43] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control. New Jersey:
Prentice Hall, 1996.

[44] C. L. Phillips and R. D. Harbor, Feedback Control Systems. Prentice Hall, 2000.

[45] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice Hall, 1998.

[46] Z.-Q. Wang and S. Skogestad, Analysis and Optimization of Systems: State and
Frequency Domain Approaches for Infinite-Dimensional Systems, ch. Robust
controller design for uncertain time delay systems, pp. 610–623. Springer
Berlin / Heidelberg, 1993.

[47] J. Doyle, “Analysis of feedback systems with structured uncertainty,” IEE Pro-
ceedings, Part D, vol. 129, pp. 242–250, Nov. 1982.

[48] M. Safonov, “Stability margins for diagonally perturbed multivariable feedback
systems,” IEE Proceedings, Part D, vol. 129, pp. 251–256, 1982.

[49] A. K. Packard and J. C. Doyle, “The complex structured singular value,” Auto-
matica, vol. 29, pp. 71–109, 1993.

[50] P. M. Young, “Controller design with real parametric uncertainty,” International
Journal of Control, vol. 65, pp. 469–509, 1996.

[51] P. Young, “Robust control class notes,” 1997.

[52] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control. New York:
John Wiley & Sons, 1996.

[53] R. D. Braatz, P. M. Young, J. C. Doyle, and M. Morari, “Computational com-
plexity of µ calculation,” IEEE Transactions on Automatic Control, vol. 39,
pp. 1000–1002, 1994.

[54] L. Qiu and K. Kemin Zhou, Introduction to Feedback Control. Prentice Hall,
2010.

[55] O. Smith, “A controller to overcome dead time,” ISA Journal, vol. 6, pp. 28–33,
1959.

255

[56] M. Morari and E. Zafiriou, Robust Process Control. New Jersey: Prentice Hall,
1989.

[57] K. Yamada, “Modified internal model control for unstable systems,” in 7th
Mediterranean Conference on Control and Automation, 1999.

[58] G. Balas, J. Doyle, K. Glover, A. Packard, and R. Smith, “The µ analysis and
synthesis toolbox.” MathWorks and MUSYN, 1996.

[59] M. Anderson, M. Buehner, P. Young, D. Hittle, C. Anderson, J. Tu, and D. Hodg-
son, “MIMO robust control for heating, ventilating, and air conditioning
(hvac) systems,” IEEE Transactions on Control Systems Technology, vol. 16,
pp. 475–483, May 2008.

[60] D. L. Laughlin, D. E. Rivera, and M. Morari, “Smith predictor design for robust
performance,” International Journal of Control, vol. 46, pp. 477 – 504, 1987.

[61] Z.-Q. Wang and S. Skogestad, “µ analysis and synthesis of time delay systems
using smith predictor,” in Proceedings of the 30th Conference on Decision
and Control, 1991.

[62] T. H. Lee, Q. G. Wang, and K. K. Tan, “Robust smith-predictor controller for
uncertain delay systems,” AIChE Journal, vol. 42, pp. 1033 – 1040, 1996.

[63] Z.-Q. Wang and S. Skogestad, “Robust control of time-delay systems using the
smith predictor,” International Journal of Control, vol. 57, pp. 1405 – 1420,
1993.

[64] Y. J. Wang and J. B. Rawlings, “A new robust model predictive control method.
ii: examples,” Journal of Process Control, vol. 14, pp. 249–262, 2004.

[65] K.-S. Hong, D.-H. Kang, and J.-G. Kim, “Robust smith predictor design via un-
certainty quantification: Application to a reclaimer,” in IFAC System Iden-
tification, 2000.

[66] K. Yamada and H. Takenaga, “The parametrization of all stabilizing smith pre-
dictors for certain class of non-minimum phase time-delay plants,” in Pro-
ceedings of the First International Conference on Innovative Computing, In-
formation and Control (ICICIC’06), 2006.

[67] K. Yamada, H. Takenaga, and H. Yamamoto, “A design method for smith pre-
dictor for non-minimum-phase time-delay plants with multiple time-delays,”
in The 3rd Intetnational Conference on Innovative Computing Information
and Control (ICICIC’08), 2008.

[68] A. Faanes, Controllability Analysis for Process and Control System Design. PhD
thesis, Norwegian University of Science and Technology, 2003.

[69] “Control system toolbox.” Toolbox available from Mathworks. See http://www.
mathworks.com/products/control.

[70] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State space solutions to
H2 and H∞ control problems,” IEEE Transactions on Automatic Control,
vol. 34, pp. 831–847, August 1989.

256

[71] R. M. Kretchmar, A Synthesis of Reinforcement Learning and Robust Control
Theory. PhD thesis, Colorado State University, Department of Computer
Science, 2000.

[72] R. Kretchmar, P. Young, C. Anderson, D. Hittle, M. Anderson, C. Delnero,
and J. Tu, “Robust reinforcement learning control with static and dynamic
stability,” International Journal of Robust and Nonlinear Control, vol. 11,
pp. 1469–1500, 2001.

[73] R. M. Kretchmar, P. M. Young, C. W. Anderson, D. Hittle, M. Anderson, J. Tu,
and C. C. Delnero, “Robust reinforcement learning control,” in Proceedings
of the American Control Conference, pp. 902–907, 2001.

[74] C. W. Anderson, P. M. Young, M. R. Buehner, K. A. Bush, and D. C. Hittle,
“Robust reinforcement learning control using integral quadratic constraints
for recurrent neural networks,” IEEE Transactions on Neural Networks. Spe-
cial Issue on Neural Networks in Controls Applications, vol. 18, pp. 993–1002,
2007.

[75] M. R. Buehner, C. W. Anderson, P. M. Young, K. A. Bush, and D. C. Hit-
tle, “Improving performance using robust recurrent reinforcement learning
control,” in Proceedings of the European Control Conference, pp. 1676–1681,
2007.

[76] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2001.

[77] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The
MIT Press, 1998.

[78] J. J. Steil, Input-Output Stability of Recurrent Neural Networks. Göttingen:
Cuvillier Verlag, 1999. (Also: Phd.-Dissertation, Faculty of Technology,
Bielefeld University, 1999).

[79] A. F. Atiya and A. G. Parlos, “New results on recurrent network training: Unify-
ing the algorithms and accelerating convergence,” IEEE-NN, vol. 11, p. 697,
May 2000.

[80] P.-G. Plöger, A. Arghir, T. Günther, and R. Hosseiny, “Echo state networks for
mobile robot modeling and control.,” in RoboCup, pp. 157–168, 2003.

[81] H. Jaeger, “The echo state approach to analyzing and training recurrent neural
networks,” Tech. Rep. 148, German National Research Center for Information
Technology, 2001.

[82] K. A. Bush, An Echo State Model of Non-Markovian Reinforcement Learning.
PhD thesis, Colorado State University, 2008.

[83] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge Univer-
sity Press, 1985.

[84] L. N. Trefethen and D. Bau III, Numerical Linear Algebra. SIAM, Philadelphia,
1997.

257

[85] “System identification toolbox.” Toolbox available from Mathworks. See http:

//www.mathworks.com/products/robust.

[86] H. Dette, V. B. Melas, A. Pepelyshev, and N. Strigul, “Robust and efficient
design of experiments for the Monod model,” Journal of Theoretical Biology,
vol. 234, pp. 537–550, 2005.

[87] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes. Wiley-
Interscience, 2nd ed., 1991.

[88] H. W. Johnston, “The biological and economic importance of algae. part 4: the
industrial culturing of algae,” Tuatara : Journal of the Biological Society,
vol. 22, pp. 1–105, 1976.

[89] E. F. Camacho and C. Bordons, Model Predictive Control. Springer-Verlag,
London, 2004.

[90] K. Weyer, D. Bush, A. Darzins, and B. Willson, “Theoretical maximum algal oil
production,” in BioEnergy Research (to appear), 2009.

[91] J. V. Moroney, “Algal photosynthesis,” in Encyclopedia of Life Sciences, Joh
Wiley and Sons, Ltd., 2001.

[92] G. Edwards and D. Walker, C3, C4: Mechanisms and Cellular and Environmen-
tal Regulation of Photosynthesis. Blackwell Scientific Publications, 1983.

[93] C. Oara and A. Varga, “Computation of general innerouter and spectral factor-
izations,” IEEE Transactions on Automatic Control, vol. 45, pp. 2307–2324,
December 2000.

258

