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ABSTRACT 

 

 

 

IMPROVING END-USE QUALITY IN HARD WINTER WHEAT THROUGH GLUTENIN  

 

ALLELE COMBINATIONS AND GENOMIC SELECTION 

 

 

 

Wheat (Triticum aestivum L.) has unique properties that allow for a variety of end 

products, such as pan bread, steamed bread, cookies, cakes, and tortillas.  Most wheat-breeding 

programs focus on increasing yield and yield-related traits as primary objectives.  However, end-

use quality is also crucial as quality characteristics influence grain sale price and market success 

of a variety.  Large-effect quantitative trait loci (QTL) have been identified for quality related 

traits.  The Glu-1 loci encoding high molecular weight glutenin subunits (HMWGS) have a 

major effect on dough mixing properties.  However, many quality traits are too complex to be 

controlled by only a small number of loci.  These traits may benefit from genomic selection 

(GS), which utilizes all effective loci regardless of effect size.  Genomic selection can accelerate 

genetic progress especially for traits that are costly or time consuming to phenotype, like quality-

related traits.  This research focused on the genetic improvement of end-use quality in hard 

winter wheat by targeting specific loci with known effects or by using all loci in a GS approach.  

The objectives of this study were to: i) evaluate agronomic and quality effects associated with 

different combinations of HMW-GS at the Glu-B1 and Glu-D1 loci among a set of near isogenic 

lines (NILs); ii) use a genome-wide association approach to identify QTL and develop predictive 

models for pre-harvest sprouting tolerance (PHST) and iii) assess GS models for milling and 

baking traits in hard winter wheat lines representative of west-central U.S. Great Plains 

germplasm. 
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A set of NILs that varied for alleles at the Glu-B1 and Glu-D1 loci were evaluated for 

dough mixing properties, kernel characteristics, and agronomic effects.  Results confirmed the 

Bx7
OE 

+ By8 HMW-GS (Glu-B1a1 allele) at Glu-B1 contributed to greater dough strength 

compared to the common Bx7 + By8 HMW-GS (Glu-B1b allele); however, the effect was not as 

significant as that conferred by Dx5 + Dy10 subunits (Glu-D1d allele). Near isogenic lines with 

the combination of both favorable alleles at Glu-B1 and Glu-D1 had the largest mixograph 

mixing time.  However, a decrease in yield was observed for groups containing the Bx7
OE 

+ By8 

subunits.  These results suggest glutenin allele combinations are useful for improving bread-

making characteristics in winter wheat but some combinations may be associated with negative 

effects on yield.     

Pre-harvest sprouting (PHS) is a major problem in wheat that results in decreased yield 

and quality.  Genomic selection was evaluated as a potential breeding method for PHST given 

the complex inheritance and phenotyping difficulty of this trait.  In this study, genotyping-by-

sequencing (GBS) markers were used to identify QTL associated with PHST among a panel of 

hard red and white winter wheat lines.  Genomic selection models were developed with the GBS 

data and phenotype data collected across seven growing seasons.  The effect of including 

identified QTL and kernel color as fixed effects in the model was assessed, as kernel color has 

been generally associated with sprouting tolerance.  Optimum marker number was also 

determined as accuracy can vary with different numbers of markers.  Results showed model 

accuracy did not improve with kernel color information but weighting major QTL increased 

predictive performance.  Optimum marker number was 4,000 with no improvement in accuracy 

above this threshold.  Overall, model accuracies were promising and confirmed wheat breeding 

programs would benefit from incorporating GS models for PHST.    
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Lastly, the accuracy of GS models for 11 end-use quality traits in a panel of hard red and 

white winter wheat breeding lines phenotyped across multiple years and locations was assessed.  

Trait heritability, marker number, and marker imputation method were evaluated for their effect 

on model accuracy.  Traits measured included flour yield, single kernel characteristics, protein 

concentration, mixograph mixing time and tolerance, bake absorption, bake mixing time, crumb 

grain score, and loaf volume.  Genotyping-by-sequencing marker data varied for marker density 

and imputation method used for missing data.  Across traits, model accuracies ranged from 0.30 

to 0.63 and trait heritability ranged from 0.03 to 0.61.  Imputation method and marker density 

had little to no effect on model accuracy.  Heritability appeared to have the greatest effect on 

accuracy as GS models for traits with higher heritability had higher accuracies.  Additionally, GS 

models for moderate to high heritability traits performed better than expected when predicting a 

set of genotypes separate from the training panel.  Results showed model accuracies for end-use 

quality traits were sufficient for increasing genetic gain in a wheat breeding program.   

In summary, genetic improvement in end-use quality can be made by utilizing both large 

effect and small effect loci in the wheat genome for such traits and will reduce phenotyping costs 

while increasing efficiency in a breeding program.  In many winter wheat breeding programs, 

particularly those at higher latitudes, phenotypic quality evaluations from one season cannot be 

used for planting decisions of the next season due to the short turn-around time from harvest to 

planting.  Genomic selection potentially solves this problem as selection decisions based on 

genotypic data can be implemented before the next season of planting.  Thus, results from this 

study support the implementation of GS to reduce phenotyping costs and increase the rate of 

genetic gain for end-use quality in wheat.   
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CHAPTER 1  

 LITERATURE REVIEW 

 

INTRODUCTION 

Cereal crops are an importantfood source worldwide due to their high nutritional value, 

good storing capacity, and easy transporting ability (Feuillet et al., 2008).  One cereal crop in 

particular, wheat (Triticum aestivum L.), has become one of the world’s most significant food 

crops with a global production of over 660 million tons in 2013 (FAO, 2014).  Wheat is unique 

from other cereal crops in its distinctive proteins that allow for various end products depending 

on the protein make-up of the flour, as well as other characteristics.  An important objective in 

wheat breeding programs is to improve or maintain end-use quality to produce cultivars with 

good milling and baking characteristics while retaining high yields.   

GLUTENIN PROTEINS 

A key factor in the bread-making process is the formation of gluten, which is a cohesive 

mass that has the ability to deform, stretch, recover and trap gas molecules. These are key 

components in determining dough structure and strength.  Gluten gives dough its viscoelastic 

properties allowing for elasticity and extensibility (Cauvain, 2003).  

Rheological characteristics that positively affect bread baking properties are due in part to 

glutenin subunits (Payne et al., 1988b).  Glutenins and gliadins make up the storage protein 

groups found in the kernel endosperm (Kreis et al., 1985).  Glutenins are defined as the proteins 

extractable in dilute acids or bases but not in 70 percent ethanol (Payne, 1987).  They are divided 

into high molecular weight glutenin subunits (HMW-GS) and low molecular weight glutenin 

subunits (LMW-GS; Payne and Holt, 1981; Jackson et al., 1983).  These subunits are linked 
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together by disulfide bonds between cysteine residues forming polymers that contribute to 

elasticity and strength (Branlard and Dardevet, 1985).  

Studies have focused on improving the end-use quality of wheat through analyzing 

effects of glutenin genes (Lawrence and Shepherd, 1980; Payne et al., 1988a; Rogers et al., 1991; 

Peña et al., 1995; Obreht et al., 2007; Zheng et al., 2009; Gao et al., 2012).  Glutenin genes have 

been identified at the Glu-A1, Glu-B1 and Glu-D1 loci.  Payne et al. (1987) confirmed the 

relationship between glutenin genes and bread baking quality by identifying a subunit that was 

significantly correlated (r=0.72) with high loaf volume and demonstrated that the difference in 

bread baking quality was due to relative amounts of glutenin.  Allelic variation at the loci for 

HMW-GS has given rise to over 500 million possible combinations of these genes (Payne, 

1987).  Partial additive effects on bread making were inferred from combining desired alleles at 

different loci (Payne et al., 1984).  Drawing from this, some breeders are approaching the task of 

increasing end use quality in wheat by choosing parents with complimentary alleles to produce 

better progeny.  Thus, the influence of glutenin allele combinations on quality is of value.   

Rogers et al. (1991) found that allelic variation at the Glu-D1 locus had a greater effect 

on baking quality than the Glu-B1 locus.  HMW-GS are encoded by “x” and “y” type genes that 

are tightly linked (Payne et al., 1987).  In a study of near isogenic lines (NILs) with either an “x” 

or “y” type subunit missing at Glu-B1 or Glu-D1, the lines with null alleles at Glu-D1 suffered 

more loss of dough strength than lines with a null allele at Glu-B1 (Rogers et al., 1991).  

However, further analysis is needed to confirm this claim.   

Studies have characterized alleles at the Glu-D1 locus (Bekes et al., 2001; Zheng et al., 

2009).  In a study of 96 cultivars and lines by Zheng et al. (2009), the most common subunits 

were Dx5 + Dy10  (Glu-D1d), which was shown to be beneficial over the 2+12 subunits (Glu-
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D1a) according to mixograph peak time, a common indicator of dough strength.  Other studies 

have also shown Glu-D1d to be associated with enhanced dough strength and bread-baking 

characteristics (Payne et al., 1987; Butow et al., 2003; He et al., 2005; Huang et al., 2006). 

Subunits Bx7
OE 

+ By8 (Glu-B1a1 allele)  at the Glu-B1 locus have been shown to 

enhance dough strength over the common Bx7 + By8 subunits (Butow et al., 2003).  Bx7
OE

 is an 

overexpression of Bx7 (Gao et al., 2012), and several studies have discussed this allele (Butow et 

al., 2003, 2004; Obreht et al., 2007; Ragupathy et al., 2008; Jin et al., 2011; Gao et al., 2012).  

Butow et al. (2003) differentiated alleles at the Glu-B1 locus to define at the molecular level the 

Bx7
OE 

+ By8 subunits and characterize its association with dough quality parameters.  Butow et 

al. (2004) identified the source of this allele to be from a Uruguayan landrace, Americano 44D.  

Ma et al. (2003) developed a marker to discriminate Bx17 from Bx7 which was later used by 

Obreht et al. (2007) to discriminate Bx7* and Bx7
OE

.  A recent survey of 718 cultivars from 

across the world showed Bx7
OE 

+ By8 to be present in 3.1 percent (Jin et al., 2011).  In another 

survey of 316 hexaploid wheat cultivars, 40 were found to carry the  allele for Bx7
OE 

+ By8 

(Ragupathy et al., 2008).  Ragupathy et al. (2008) concluded that the overexpression of Bx7 was 

likely due to a single duplication event at the locus facilitated by a retroelement insertion.  

The Bx7
OE 

+ By8 subunit is found in the Colorado variety, ‘Snowmass,’ and has become 

a focal point of the breeding program for hard white wheat at Colorado State University (Haley 

et al., 2011).  Despite having been identified as sources of dough strength, there is little known 

about the influence of variation at Glu-B1 in combination with variation at Glu-D1 among Great 

Plains hard winter wheat germplasm. 
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PRE-HARVEST SPROUTING  

Pre-harvest sprouting (PHS) is the mature germination of a wheat kernel in a 

physiologically mature spike before harvest, usually occuring after periods of prolonged rainfall 

and high humidity.  Besides causing a reduction in grain yield, PHS can be very detrimental to 

end-use quality (Gale and Lenton, 1987), causing economic losses for the farmer and processor.     

Previous studies have shown pre-harvest sprouting tolerance (PHST) to be a complex 

trait controlled by many QTL across the genome (Tyagi and Gupta, 2012).  QTL studies have 

identified many loci associated with PHST but the most important loci are thought to belong to 

homoeologous group 3 (3A, 3B, 3D; Kulwal et al., 2005; Liu et al., 2008)) and chromosome 4A 

(Mares et al., 2005).  On the long arms of group 3 are vivipary genes (TaVp1) which encode a 

transcription factor that represses genes involved with germination.  However the group 3 

chromosomes also carry genes for red grain color (R-A1, R-B1, R-D1; Sears, 1944).  Breeding 

efforts have been made to develop PHS tolerant white-grained varieties as these are usually 

preferred for whole grain products (Liu et al., 2008).   

Improving tolerance to sprouting is a challenge to breeders because of its quantitative 

inheritance and laborious procedures required for phenotyping.  Additionally, winter wheat 

breeding often occurs with a short window of time between harvest and planting, preventing 

phenotypic evaluations from one season from being applied for planting decisions for the next 

season.  Using molecular markers to screen for tolerant lines would be helpful in addressing this 

problem.  However, due to the polygenic nature of PHS using only one or a few markers may not 

be effective.  In an association study, as many as 30 markers were identified for associations with 

PHST (Jaiswal et al., 2012).  Utilizing markers across the genome could be a better option when 

breeding for PHST.  Also, the genetic architecture of pre-harvest sprouting has not been 
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thoroughly studied.  Genomic data could help provide answers to this issue and shed light on 

how to breed more efficiently for this trait.   

QUALITY TESTING PROCEDURES 

Measuring quality and predicting bread making characteristics of wheat varieties are 

important to produce varieties that meet quality standards.  Unfortunately, there is no universal 

test to measure all the components of end-use quality.  This is not surprising given the many 

processes and products involved with wheat flour.  Thus, the following mentions some but not 

all testing procedures and traits measured for end-use quality of wheat.     

Mixograph 

A mixograph records a time curve of dough resistance during mixing.  This test measures 

dough strength and is used in many end-use quality studies.  The mixograph measures four 

properties of flour: water absorption (the amount of water needed to produce a representative 

curve), dough strength (related to peak time), extensibility (related to curve bandwidth), and 

tolerance to over-mixing (related to length, thickness, and slope of the curve; Bekes et al., 2001; 

Chung et al., 2001).  The mixograph measures the resistance of dough against the continual 

mixing movements of pins.  A mixograph of high quality hard winter wheat flour will have a 

longer peak time and greater width indicating greater tolerance to over-mixing.    

Single Kernel Characterization System 

The single kernel characterization system (SKCS) evaluates texture characteristics of the 

wheat kernels, which are related to milling properties of the grain (Wheat Marketing Center, 

2008).  In this process, a sample of kernels are poured into the access hopper of the SKCS 

instrument, which analyzes 300 individual kernels and outputs means and standard deviations.  

Kernels are tested for weight, diameter, moisture content and hardness.   
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Sedimentation Test  

The sedimentation test indicates the protein quality of ground wheat or flour.  

Sedimentation volume is highly correlated with gluten strength and loaf volume.  To conduct this 

test, the wheat sample is emersed in a lactic acid and sodium dodecyl sulphate (SDS) solution.  

Glutenin proteins will swell and precipitate as sediment under such conditions.  Volume of the 

sediment is recorded with a higher value indicative of a wheat with strong gluten. Correction for 

differences in protein concentration among samples may be done by reporting SDS 

sedimentation volume per unit of protein concentration.    

NIRS, Protein, Moisture and Ash Content 

Near-infrared reflectance spectroscopy (NIRS) measures the moisture, protein 

concentration, and ash concentration of the flour and grain without destroying the sample.  NIRS 

is a commonly used tool due to its accuracy and precision, ease-of-use, consistency, and 

relatively low operating cost (Ross and Bettge, 2009).  The near-infrared region of the 

electromagnetic spectrum, about 500-800 nm, is used to determine the concentration of physical 

or chemical constituents in materials (Pasquini, 2003).  A typical sample will be approximately 

12 percent moisture.  It is desirable for a flour to have low moisture for more stability during 

storage.  High grain moisture content will lead to deterioration problems due to mold, bacteria, 

and insects.  There are also some downsides to a moisture content that is too low as special 

equipment or processes may be needed before milling to reach standard moisture levels.  Ash 

concentration is typically measured with NIRS but can be measured by high temperature 

incineration of a flour sample in an electric muffle furnace.  The previously weighed sample is 

heated overnight at 585 °C until its weight is stable. The process of incinerating the sample 

drives out the moisture and burns away organic materials such as the starch, protein, and oil.  
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Remaining inorganic minerals are concentrated in the bran layer.  After cooling and weighing the 

residue, the ash concentration is recorded as the percentage of the initial sample weight.  Ash 

concentration also indirectly reveals the amount of bran contamination and can affect color, 

leading to darker color of end products. 

Protein is considered to be the most important functional property of wheat grain and 

flour.  Therefore, it is of interest in hard wheat breeding programs to select lines that have an 

above average value for protein.  This may be difficult due to the negative relationship that exists 

between protein concentration and grain yield.   There is also a positive relationship between 

water absorption and protein.  Both of these traits are desirable to improve through breeding 

while still maintaining high grain yield.  The goal of developing a predictive model for end-use 

quality is to select candidates that possess high values for yield, water absorption and protein 

concentration.  

Solvent Retention Capacity 

Solvent retention capacity (SRC) is determined by the weight of a solvent held by flour 

after centrifuging for 15 minutes.  It is expressed as a percent of flour weight on a 14 percent 

moisture basis. Four different solvents are prepared and used one at a time to determine different 

characteristics.  Water as a solvent is used to determine absorption components, sodium 

carbonate for damaged starch, sucrose for pentosan components, and lactic acid is related to 

gluten protein characteristics.  A functionality profile combining all four results is developed 

from this test and useful for predicting baking performance of the flour.   

PPO 

Polyphenol oxidase (PPO) is mostly a concern with noodle making but can also lead to 

discoloration in other end-products (Glen Weaver, personal communication, 2010).  It is 
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desirable to have low levels of PPO for products with color specification as excess PPO enzyme 

can lead to darkening and shorter shelf-life (Ross and Bettge, 2009). 

Extensibility and Dough Strength 

An extensograph produces a curve which records maximum dough resistance to 

stretching as Rmax and the amount the cylindrical shaped dough piece can be stretched before 

breaking.  Nash et al. (2006) found extensibility to be negatively correlated with mixograph 

tolerance (r= -0.45) and loaf volume ( r = -0.26).  Thus it may be difficult to select for both 

dough strength and extensibility.  The aim is to have high dough strength with moderate 

extensibility.   

GENOMIC SELECTION 

 To improve end-use quality of wheat, breeders have utilized recent advancements in 

genetic technologies.  Marker-assisted selection (MAS) is one breeding tool that has led to 

many genetic improvements in breeding programs (Graybosch et al., 2013; Kumar et al., 2010; 

Liu et al., 2014; Varshney et al., 2009).  However, MAS is most successful with large effect 

QTL for traits with high heritability.  A new technology that has entered the molecular breeding 

world is genomic selection (GS).  Genomic selection was first proposed in animal breeding by 

Meuwissen et al. (2001) as a method of statistically estimating the breeding value of individuals 

where dense genome-wide molecular markers are available.  The genomic estimated breeding 

value (GEBV) may be used to initiate another cycle of mating and selection.  Genomic selection 

has been used and discussed in many areas of plant and animal breeding (Heffner et al., 2009; 

Iwata and Jannink, 2011; Kumar et al., 2011; Zhao et al., 2011).  Application of GS is described 

in two steps; First, estimating the marker effects in a reference population, usually referred to as 

the ‘training population’ and second, predicting GEBVs of new individuals not necessarily in 
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the training population (Hayes, 2007).  These new individuals are referred to as the selection 

candidates and may be used as parents of new crosses in the breeding program.  During GS, 

candidate lines are selected based on their genotype with little or no phenotypic evaluation.  

Figure 1.1 depicts depicts the application of GS into a breeding program (Heffner et al., 2009). 

 

 

Figure 1.1 Flow diagram of genomic selection in a breeding program (Heffner et al., 2009). 

 

GEBVs are predicted according to genotype information by summing marker effects of 

the individual: 

𝐺𝐸𝐵𝑉 = ∑ 𝑋𝑖𝑔𝑖

𝑛

𝑖

 

where n is the number of chromosome segments across the genome, Xi is a design matrix 

assigning individuals to the marker effects at segment i, and gi is the vector of marker effects 

effects (Hayes, 2007). 

To estimate the breeding values, various statistical approaches have been used to develop 

the prediction model.  Least squares is not a valid option as all haplotype effects cannot be 
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estimated simultaneously and only including the largest effects gives a low accuracy (Meuwissen 

et al., 2001).  Accuracy is described as the correlation between true and estimated breeding 

value.  Other models and methods have been evaluated for their influence on model accuracy.  

De los Campos et al. (2009) described methods available for the use of GS, such as linear 

models, penalized estimation methods, Bayesian methods, and semi-parametric models. 

In a traditional breeding program, elite parents are crossed and their progeny evaluated.  

Depending on the number of parents, it is usually impossible to evaluate all possible crosses 

from a set of elite lines.  Thus, a model that predicts the value of the crosses before resources are 

used in creating and phenotyping them would be advantageous.  Potentially, GS will perform in 

this way, producing superior inbreds in an efficient and feasible manner (Zhong and Jannink, 

2007).  Even for polygenic traits with low heritability, simulation studies have shown sufficient 

accuracies for breeding values (Heffner et al., 2009).  Thus, GS would aid in saving time, money, 

field space, and fieldwork while still producing desired phenotypes.   

Selection gain per unit time is critical in the comparison of genomic to phenotypic selection. 

Meuwissen et al. (2001) concluded that using GS could increase the rate of genetic gain 

especially if combined with reproductive techniques that shorten the generation cycle.  Genetic 

gain was particularly increased when GS was applied to traits difficult to measure or with low 

heritability.  Simulated data for polygenic traits in maize (Zea mays L.) showed GS to have 43% 

greater genetic gain than MAS (Bernardo and Yu, 2007).  Schaeffer (2006) found genetic gain 

per year increased two-fold with GS in dairy cattle (Bos Taurus L.) breeding.  Studies have also 

shown benefits of GS in a wheat breeding program (Heffner et al., 2010; Poland et al., 2012b).    
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Considerations for Implementing Genomic Selection 

Several factors are important to consider when implementing GS into a breeding 

program.  These include model choice, composition and size of training panel, marker density, 

marker platform, linkage disequilibrium, and trait heritability.  Resources such as money, field 

space, time and work force available to the breeder play a major role in making decisions for 

implementing GS.  

Next generation sequencing (NGS) methods allow for massively parallel analysis, are 

high throughput, and are much lower in cost than previous marker platforms (reviewed in Liu et 

al., 2012). Liu et al. (2012) compared various sequencing platforms side by side and found 

advantages and drawbacks to all, depending on the goals of the user.  Illumina Hi-seq provided 

the biggest output of short reads at the lowest cost compared to the Roche 454 and SOLiD 

system.   

During the last few years array-based marker platforms have become increasingly 

popular in genotyping plants (Gupta et al., 2013).  The basic procedure of an array-based 

platform is the hybridization of DNA with targeted mRNA labeled with a fluorescent dye on an 

array (Gibson and Spencer, 2009).  Arrays may be used for detection of single nucleotide 

polymorphisms (SNP) like Illumina’s SNP chip, which is based on Bead Array Technology.  

SNP Chips are useful in generating a lot of marker data, which can be used for GS in a breeding 

program.  Diversity arrays are a platform for producing diversity array technology (DArT) 

markers.  These arrays are  crop-specific and contain a large amount of diverse anonymous 

clones.  Diversity arrays may be used to develop polymorphic markers for marker assisted 

selection in a breeding program (Gupta et al., 2013).  Array-based marker platforms are useful 

for detecting QTL or genes through association mapping and for improving efficiency of 
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breeding programs through GS (Gupta et al., 2013).  The limitations in array-based platforms are 

the ascertainment bias due to the reference population used to develop the array and the higher 

costs relative to recent alternatives.   

Genotyping by sequencing (GBS) uses restriction enzymes to capture a reduced set of the 

target genome  (Poland and Rife, 2012).  These DNA samples are barcoded, which allows for 

multiplexing of the samples via NGS platforms.  Genotyping by sequencing markers are useful 

in a breeding program for GS and genome-wide association studies.  Genotyping by sequencing 

markers are beneficial because they produce a vast amount of marker data on a large amount of 

samples with a low cost.  Another major benefit of GBS markers is the lack of ascertainment bias 

seen in array-based platforms.  In one study, the commonly used DArT marker platform was 

compared to a GBS platform for a panel of wheat lines (Heslot et al., 2013).  Results showed the 

DArT markers to have more clustering of markers and ascertainment bias than GBS markers, 

however this in itself did not lead to a reduction in GS accuracy.  The GBS platform produced 

over 38,000 SNPs, whereas the DArT platform produced about 1,500 markers.  In comparing the 

two platforms with an equal number of markers (i.e., reducing GBS to 1,500), there was no 

difference in GS accuracy except for the pre-harvest sprouting trait (Heslot et al., 2013).  

Therefore the better prediction was due to an increase in available markers and not due to a lack 

of ascertainment bias.  The drawback of the GBS platform is the high amount of missing data but 

this can be overcome with imputation methods (Poland et al., 2012). 

With GS, there are many more marker estimates than phenotypic entries.  This leads to a 

problem referred to as “large-p-small-n” and must be addressed through shrinkage of the 

estimates (de los Campos et al., 2013a).  Accuracy of estimators in a model can be measured 

with mean square errors (MSE) which are the distance between estimated and true values of a 
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parameter.  With ordinary least squares and maximum likelihood methods, the mean square error 

estimates will be very high and problematic but shrinking the marker estimates towards zero will 

reduce the marker variance.  Ridge regression methods perform shrinkage that is homogenous 

across all markers, thus addressing the “large-p-small-n” problem (de los Campos et al., 2009).   

There are various methods for estimating marker effects for GS.  The ridge regression 

best linear unbiased prediction (RR-BLUP) is a common method used with the assumption that 

marker variances are equal.  An alternative to this approach is to estimate variances for each 

marker individually.  Bayesian methods have been produced to achieve this and the R package 

BLR (de los Campos et al., 2013b) contains several Bayesian regression models for GS.  In 

Bayesian methods, a prior distribution for the variance associated with marker effects must be 

assumed.  Fernando et al. (2007) observed that accuracy with a Bayes B model didn’t decline 

with an increase in markers compared to the decline while using RR-BLUP and suggested 

Bayesian methods might be better suited to handle situations with marker colinearity due to large 

marker sets and limited phenotypic data.  In another study using dairy cattle data, Bayesian 

modeling had superior accuracies (r=.75) to traditional BLUP (r=.51; de Roos et al., 2007). 

Although Bayesian methods make a more correct assumption, the RR-BLUP method is 

computationally more convenient.  In more recent studies, Bayesian models have shown little to 

no gain over RR-BLUP (Asoro et al., 2011; Heffner et al., 2011; Heslot et al., 2012), and in 

some cases RR-BLUP has outperformed Bayesian methods (Schulz-Streeck et al., 2012).  Some 

studies have shown Bayesian methods to result in a slight increase in accuracy for traits 

involving large-effect QTL but generally there is little difference between models (de los 

Campos et al., 2013a).   
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If optimal genome coverage is achieved, the next limiting factor to genomic prediction 

accuracy is the reference population used to train the model (Clark et al., 2011).  Increasing the 

size of the training panel has been shown to improve accuracy (Heffner et al. 2011b).  

Riedelsheimer et al (2012) found that reducing the training panel to a core set by removing 

highly related lines did not have an effect on prediction accuracy for hybrid maize testcrosses.  

Thus, removing redundancy from the training panel did not improve the model.  Perhaps more 

important than size is the composition of the training panel.  Clark et al. (2011) showed that 

genetic relatedness between the training and validation panel has a strong effect on GS accuracy.  

Thus, it is important to consider this when choosing an effective population panel.    

Another consideration is to decide when to implement GS into the breeding program.  GS 

involves selection for two components in the pipeline; i.) selecting for advancement to the next 

breeding stage, and ii.) selecting for individuals to return back to the crossing block.  It is best to 

make the latter decision as early as possible to see the benefits of reduction in cycle time and 

optimization of genetic gain.   

RESEARCH OBJECTIVES 

Use of molecular tools has led to improvements in plant breeding and will continue to 

enhance genetic trend.  Benefits of MAS and GS have been clearly described in the literature 

(Heffner et al., 2009, 2010; Heslot et al., 2012; Varshney et al., 2009).  The focus of this research 

was to evaluate potential methods of marker-assisted and genome-wide selection for end-use 

quality of hard winter wheat.  The objectives of this study were to i) evaluate agronomic and 

quality effects associated with different combinations of HMW-GS at the Glu-B1 and Glu-D1 

loci; ii) identify significant QTL for PHST and develop predictive models for this trait; and iii) 

evaluate GS models for milling and baking traits in hard winter wheat.   
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CHAPTER 2  

QUALITY AND AGRONOMIC EFFECTS OF HIGH-MOLECULAR-WEIGHT GLUTENIN 

SUBUNIT COMBINATIONS IN HARD WINTER WHEAT  

 

SUMMARY 

Glutenin proteins play an important role in determining end-use properties of wheat 

(Triticum aestivum L.).  In particular, high molecular weight glutenin subunits Bx7
OE 

+ By8 have 

been targeted for selection in hard winter wheat breeding programs to increase dough strength.  

In this study, agronomic and quality effects of different allele combinations at the Glu-B1 and 

Glu-D1 loci encoding high molecular weight glutenin subunits (HMW-GS) were evaluated.  

Four groups of near-isogenic lines (NILs) were developed with variation at the Glu-B1 and Glu-

D1 loci.  Kernel characteristics and composition, dough mixing properties, and agronomic traits 

were measured from multiple Colorado locations across two growing seasons.  Results 

confirmed the Bx7
OE 

+ By8 subunits contributed to greater dough strength over the common Bx7 

+ By8 subunits.  However, the effect was not as significant as that conferred by the Dx5 + Dy10 

subunits.  NILs with the combination of Bx7
OE 

+ By8 and Dx5 + Dy10 at the two loci had the 

longest mixograph mixing time.  However, a decrease in yield was observed for groups 

containing the Bx7
OE 

+ By8 subunits in some environments.  These results suggest combinations 

of glutenin alleles are useful for improving bread-making characteristics in hard winter wheat 

germplasm but may be associated with negative effects on yield.      
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INTRODUCTION 

A hard wheat cultivar with good dough rheology and therefore good bread-making 

characteristics will have high values for gluten strength.  Studies have focused on improving the 

end-use quality of wheat through understanding the genetic basis underlying gluten strength, 

specifically focusing on glutenin genes (Lawrence and Shepherd, 1980; Payne et al., 1988; 

Rogers et al., 1991; Peña et al., 1995; Obreht et al., 2007; Zheng et al., 2009; Gao et al., 2012).  

These genes have been identified at the Glu-A1, Glu-B1 and Glu-D1 loci, with the greatest 

influence at the B and D loci.  Allelic variation at the glutenin loci allow for various 

combinations of glutenin genes resulting in different effects on the phenotype.  Therefore, the 

influence of different glutenin allele combinations on mixing and baking traits is an important 

consideration in breeding for end-use quality in wheat.  Alleles at these loci are defined by their 

x and y subunits.  The Dx5 + Dy10 subunits (Glu-D1d allele), at the Glu-D1 locus, tend to be 

superior to the Dx2 + Dy12 subunits (Glu-D1a allele) with regard to dough strength for bread 

making (Payne et al., 1987; Butow et al., 2003; Zheng et al., 2009).  Subunits Bx7
OE 

+ By8 (Glu-

B1a1 allele) at the Glu-B1 locus, have been shown to enhance dough strength over the common 

Bx7 + By8 subunits (Glu-B1b allele; Butow et al., 2003).  Increased gluten strength associated 

with Bx7
OE 

+ By8 is due to the increased amount of x-type subunit as inferred by Radovanovic et 

al. (2002) and confirmed by Butow et al. (2003).  Thus, these data suggest that Bx7
OE 

+ By8 may 

be useful as a selection target when breeding for cultivars with enhanced dough strength. 

To determine the effects of glutenin genes, it is necessary to test for quality among lines 

that differ for these genes.  A common small-scale test for assessing dough quality is the 

mixograph, which records a time curve of dough resistance during mixing (reviewed in Chung et 

al., 2001).  The mixograph works by measuring the resistance of dough against the continual 
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mixing movements of pins.  Three main properties of flour can be obtained from a mixograph: 

water absorption (the amount of water needed to produce a representative curve), dough strength 

(related to peak time), and tolerance to over-mixing (related to length and thickness of the curve) 

(Gras et al., 2000).    

The environment also plays a role in determining the end-use quality of wheat.  Studies 

have shown that environmental factors like temperature, moisture, and nutrient availability can 

affect end-use quality of wheat (Dupont and Altenbach, 2003).  Cornish et al. (2001) found 

properties related to dough extensibility to be more influenced by the environment than those 

related to dough strength. Some studies have assessed stability of quality traits across 

environments.  Guttieri et al. (2000) observed some bread-making properties to be stable across 

different irrigation levels.  Zheng et al. (2010) found that effects of glutenin alleles on dough 

mixing did not differ greatly between irrigated and non-irrigated environments.  As studies have 

found varying results, environmental effects should be considered when analyzing genotypic 

effects on quality.      

Although glutenin alleles have been associated with dough strength and bread-making 

quality, there is little known about the influence of variation for alleles at Glu-B1 in combination 

with variation at Glu-D1 among U.S. Hard Winter Wheat germplasm.  While the Dx5 + Dy10 

subunits are quite common in Great Plains hard winter wheats (Graybosch, 1992; Zheng et al., 

2009), the Bx7
OE 

+ By8 subunits are especially rare, only being found in two percent of regional 

nursery entries since 1995 (B. Seabourn, personal communication). In this study, we estimated 

the effects of glutenin combinations on quality and yield in environments typical of the west 

central U.S. Great Plains winter wheat-growing region.  Previous studies have investigated the 

effects of allele combinations at these two loci but they included germplasm from other countries 
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and trials in different environments (Cornish et al., 2001; Butow et al., 2003; Vawser and 

Cornish, 2004).  An overall evaluation of how glutenin subunit composition affects dough 

rheological properties and yield in U.S. Great Plains regions has not been conducted.  Therefore, 

the objective of this study was to determine the effects of different combinations of alleles at the 

Glu-B1 and Glu-D1 loci among Great Plains environments on agronomic and quality 

characteristics. The specific objectives were to i) characterize the influence of different allelic 

combinations at the Glu-B1 and Glu-D1 loci in a set of NILs on end-use quality traits, 

specifically dough mixing properties; and ii) determine if these allelic combinations are 

associated with any agronomic advantage or disadvantage.  In addition, observations were made 

about environmental interactions with glutenin alleles.   

Abbreviations 

BC, backcross; CSU, Colorado State University; HMW-GS, high molecular weight glutenin 

subunits; MPT, mixograph midline peak time; MPH, midline peak height; MPW, midline peak 

width; MRS, mixograph right slope; MRW, mixograph right width; NIL, near isogenic line; 

STS, sequenced-tagged sites 

MATERIALS AND METHODS 

Germplasm 

BC3F2:4 and BC4F2:4 near isogenic lines (NILS) were developed from a backcross 

population of ‘Glenlea’ and ‘Ripper’, which differ for alleles at the Glu-B1 and Glu-D1 loci.  

The recurrent parent Ripper is a hard red winter wheat cultivar released by Colorado State 

University in 2006 (Haley et al., 2007).  Ripper carries the Bx7 + By8 subunits at Glu-B1 (Glu-

B1b) and the Dx2 + Dy12 subunits at Glu-D1 (Glu-D1a). The donor parent Glenlea is a 

Canadian hard red spring wheat, released in 1972, that carries the Bx7
OE 

+ By8 subunits at Glu-
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B1 (Glu-B1a1) and the Dx5 + Dy10 subunits at Glu-D1 (Glu-D1d), which confers high dough 

strength (Evans et al., 1972).  The NILs were derived using marker-assisted selection to identify 

heterozygotes for the Glu-B1a1 and Glu-D1d alleles after each cycle of backcrossing and then 

selecting lines homozygous for the respective alleles in selfed progeny.  Allele combinations 

were denoted by the allele at Glu-B1 locus followed by the allele at Glu-D1 locus (ie. Glu-

B1a1/Glu-D1a refers to lines with the subunits 7
OE

 + 8 at loci Glu-B1 and subunits 2 + 12 at loci 

Glu-D1).  For the 2012 harvested trials, there were 19 lines containing the Glu-B1b/ Glu-D1a 

combination, 17 lines containing the Glu-B1b/ Glu-D1d combination, 7 lines containing the Glu-

B1a1/ Glu-D1a combination, and 21 lines containing the Glu-B1a1/ Glu-D1d combination.  For 

the 2013 harvest trials, the number of lines for each group was 20 for Glu-B1b/ Glu-D1a, 18 for 

Glu-B1b/ Glu-D1d, 13 for Glu-B1a1/ Glu-D1a, and 21 for Glu-B1a1/ Glu-D1d.   

Locations and Field Design 

The NILs were planted in replicated field trials in a latinized row-column trial design at 

five locations in Colorado during the 2011 – 2012 season and four locations during the 2012 – 

2013 season.  Henceforth, trials will be referred to by the harvest year.  The 2012 trial locations 

were Akron (40.15 ̊ N, 103.14 ̊ W, elevation 1383 m), Burlington (39.27 ̊ N, 102.11 ̊W, elevation 

1271 m), Dailey (40.6 ̊ N, 102.74 ̊ W, elevation 1230 m), Julesburg (40.59 ̊ N, 102.1 ̊ W, 

elevation 1060 m), and Sheridan Lake (38.54 ̊ N, 102.5 ̊ W, elevation 1208 m) and the 2013 

locations were Burlington, Dailey, Julesburg, and Fort Collins (40.65 ̊ N, 105 ̊ W, elevation 1558 

m).  In 2012, the two trials planted at Akron and Fort Collins included a high and low nitrogen 

treatment at each location as part of a separate study. At Akron trials, 112 kg NO3 N ha-1 and 22 

kg NO3 N ha-1 were applied for high and low nitrogen treatments, respectively.  At Fort Collins, 

112 kg NO3 N ha-1 and 56 kg NO3 N ha-1 were applied for high and low nitrogen treatments, 
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respectively. A total of 11 environments were used and labeled according to location, nitrogen 

treatment if applicable, and harvest year (ie. AkHi12 refers to Akron,CO with a high nitrogen 

treatment during the 2012 season).  At each location, plots consisted of six rows, 3.5 m long with 

23 cm between rows except for Akron where plot length was 1.8 m.  Irrigation was applied as 

needed to maximize yields at Fort Collins by a linear overhead sprinkler irrigation system while 

all other environments were rainfed.   

Quality Data 

All quality evaluations were done in the wheat quality lab at CSU in Fort Collins, 

Colorado.  Traits were measured using approved methods of the American Association of Cereal 

Chemists (AACC, 2000).  Single kernel hardness, diameter, and weight were determined using 

the single kernel characterization (SKCS4100; Perten Instruments, Springfield, IL).  Protein 

concentration was measured using near-infrared spectroscopy (NIRS) on whole grain samples 

with a Foss NIRSystems model 6500 (Foss North America Inc., Eden Prairie, MN).  Samples of 

50 g of grain from each plot were tempered to 155 g kg
-1

 (15.5%) moisture and milled using a 

modified Brabender Quadrumat Junior milling system (C.W. Brabender Instruments, Inc. South 

Hackensack, NJ; Method AACC26-50 for milling).  Mixing properties were obtained with a 10-

gram mixograph according to AACC Method 54-40A and included optimizing for water 

absorption based on protein output from the NIRS according to the equation: 

predicted absorption = 42.7 + 1.69*sampleprotein14 

 where sampleprotein14 is the protein concentration at 140 g kg
-1

 moisture basis.  The 

prediction equation was calibrated based on the variety ‘Cheyenne’ (PI 553248; B. Seabourn, 

personnel communication).   
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Mixograph parameters were reported with MIXSMART software for computer-analyzed 

parameters (v. 1.0.484 for Windows, National Manufacturing, Lincoln, NE).  The following key 

parameters were measured: mixograph peak time (MPT), midline peak height (MPH), midline 

peak width (MPW), midline right slope (MRS), and curve width at two minutes after peak time 

(MRW).  Previous studies have used MPT to estimate dough strength (Butow et al., 2003; 

Zheng, 2011).  MRS and MRW have been used to estimate mixing tolerance as these parameters 

were highly correlated with visual tolerance scores in a previous study (Chung et al., 2001).   

Field Data 

The following data were collected from the field trials: grain yield, test weight, height, 

and heading date.  Plots were combine harvested at maturity and grain yield (120 g kg
-1

 moisture 

basis) was recorded with an on-combine HarvestMaster GrainGage (Juniper Systems, Logan, 

UT).  Test weight (grain volume weight) was measured by hand with a 151 filling hopper 

(Seedburo, Des Plains, IL).  Plant height was recorded as the distance from the soil surface to the 

tip of the spikes, excluding the awns.  Heading date was determined as the number of days from 

the first of January when half of the spikes in a plot were fully visible above the flag leaf collar.  

Yield was measured in all environments, test weight in 10 environments, plant height in nine 

environments, and heading date in five environments.   

Genotyping 

Sequence-tagged site (STS) markers were used for marker analysis in development of the 

NILs.  Sequence-tagged site markers were first introduced by Olson et al. (1989) as markers 

developed with sequence-specific primers, usually for a particular genome region.  Leaf tissues 

from 11 seedlings of each line were bulked and placed into a single well in 96 deep-well plates.  

Tissues were freeze-dried for approximately 48 h and ground to a fine powder using a 4.5 mm 
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stainless steel bead for two to five min of agitation at 25 cycles per sec.  A 10 μL reaction mix 

was used for the polymerase chain reactions consisting of 10 to 100 ng DNA template, 25 mM 

MgCl2 , 0.2 nM deoxyribonucleotide triphosphates (dNTPs; Bioline, Boston, MA), 10 x (NH4)2 

SO4  buffer, 1 U Taq DNA polymerase (New England BioLabs, Ipswich, MA), 0.1 μM reverse 

primer, and 0.05 μM each of M13-tailed forward primer and M13 universal primer labeled with 

either FAM (blue) or VIC (green) fluorescent tags.  

Fragments were amplified using a PTC-200 Thermo Cycler with a 384-well block (MJ 

Research, Inc., Waltham, MA). The PCR products were multiplexed for detection by pooling 

two markers with different fluorescent labels to a final volume of 12 μL with 0.06 μL GeneScan-

500 LIZ size standard (Applied Biosystems, Carlsbad, CA) and 9.94 μL Hi-Di Formamide 

(Applied Biosystems, Carlsbad, CA).  Pooled marker fragments were analyzed on an ABI 3730 

Genetic Analyzer (Applied Biosystems, Carlsbad, CA) at the USDA Central Small Grain 

Genotyping Laboratory (Manhattan, KS). Fragments were visualized and scored using 

GeneMarker v1.6 software (SoftGenetics, 2007).  A codominant marker, Bx MAR, was used to 

detect alleles at Glu-B1 (Butow et al., 2004), while the co-dominant marker UMN26 was used to 

target alleles at Glu-D1 (Liu et al., 2008).  For Glu-B1 alleles, the reference cultivar Ripper 

(contains Glu-B1b), has a band at 530 bp, while the reference cultivars ‘Snowmass’ (Haley et al., 

2011) and Glenlea (both contain Glu-B1a1), have a bands at 573 bp.   For Glu-D1, the reference 

cultivar Ripper (contains Glu-D1a) has a band at 311 bp, while the reference cultivars Snowmass 

and Glenlea (both contain Glu-D1d) have bands at 293 bp.  Marker analysis was performed twice 

to confirm homogeneity of each NIL for the respective alleles at the Glu-B1 and Glu-D1 loci.   
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Statistical Analysis 

All quality data were analyzed using the statistical software R (R Development Core 

Team, 2011).  Within each environment, main and interaction effects of Glu-B1 and Glu-D1 

were modeled as fixed effects with the lme4 package (Bates et al., 2014).  Least square means 

were calculated for each allele combination by quality trait using the lsmeans package (Lenth, 

2014).  For agronomic data, least square means for each allele combination by trait were 

calculated with PROC MIXED in SAS software 9.2 (SAS Institute, 2008).  Because of potential 

spatial variation within each environment, six different spatially adjusted models were run to 

account for the following spatial patterns: row-column, spherical, exponential, power, 

anisotropic power, and Matern  (Littell et al., 2006).  The model with the lowest Akaike 

information criterion value was chosen for each environment by agronomic trait.  Because spatial 

patterns varied among environments, the environments could not be combined for data analysis.  

Effects of alleles at the Glu-B1 and Glu-D1 loci, and their interaction, were treated as fixed 

effects and spatial patterns as random effects.  Agronomic means for allele combinations were 

compared with the ‘lsmean/pdiff’ statement of PROC MIXED.   

RESULTS AND DISCUSSION 

In this study, effects of allele combinations at the Glu-B1 and Glu-D1 loci on agronomic 

and end-use quality characteristics in winter wheat production environments typical of the west-

central Great Plains region of the U.S. were examined.  Little is known about the agronomic 

effects associated with HMW-GS (Graybosch et al., 2011).  Butow et al. (2003) studied dough 

properties of these same combinations in Australia but no associations with field traits were 

determined.  Also, this previous study included various genetic backgrounds, which could impact 
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results.  Thus, our study included a population of NILs to control for genetic background 

variation.   

End-Use Quality  

Endosperm texture is an important characteristic as it affects both milling and bread 

baking. Hard wheat will have starch that is tightly fixed to the protein matrix.  Harder wheat is 

more difficult to fracture and results in more starch damage leading to broken granules that 

absorb more water.  In this study, NILS with the Glu-B1a1/Glu-D1a allele combination had 

significantly lower (P < 0.05) values for grain ash and hardness than other NIL groups (Table 

2.1).  The desired range for hardness index is 60-80 for pan bread (B. Seabourn, personal 

communication, 2006).  It is unclear if this glutenin allele combination would be beneficial for 

bread-making because results across environments were inconsistent within this range.  

However, the decrease in grain ash associated with this group is desirable for bread-making.  

Reasons for this decrease in grain ash and hardness are unclear but this could be useful in 

selection for lower ash and hardness to meet quality standards.  

Mixograph testing has been used in many studies to assess dough properties.  In this 

study, MPT was used to assess dough strength while MRS and MRW were used to assess mixing 

tolerance as these parameters are correlated to visual tolerance scores (Chung et al., 2001).  

Midline peak height and MPW involve a combination of factors that contribute to mixing 

properties as they are affected by protein concentration, dough strength, and water absorption. 

These factors can be informational in understanding mixing properties of wheat flour.   

Dough strength is an important quality criterion for end-use quality.  In this study, the 

Glu-D1d allele contributed the most to dough strength (P <  0.001 in all environments) but Glu-

B1a1 also had a significant contribution (P < 0.05 in 6 out of 9 environments).  Across 
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environments, there was a clear pattern seen for MPT with NIL groups ranking Glu-B1a1/Glu-

D1d > Glu-B1b/Glu-D1d > Glu-B1a1/Glu-D1a > Glu-B1b/Glu-D1a (Table 2.2).  Similar results 

were reported by Butow et al. (2003) using Australian spring wheats.  The NIL group with the 

Glu-B1a1/Glu-D1d allele combination had the highest values for MPT, MRS, MRW, and 

intermediate values for MPH compared to other groups.  Lines with glutenin allele combination 

Glu-B1b/Glu-D1d had the second highest MPT with low values for MPH and MPW and high 

values for MRS and MRW.  The NIL group with Glu-B1a1/Glu-D1a combination had lower 

values for MPT and MRS but the highest values for MPH and MPW compared to other groups.  

Lastly, the NILs with Glu-B1b/Glu-D1a had the lowest values for MPT, MRW, MRS and 

intermediate MPH.    

NILs with the Glu-B1a1/Glu-D1d combination had the greatest dough strength with the 

greatest contribution due to Glu-D1d.  However, there was a significant contribution from Glu-

B1a1 even though the increase was not great enough to make up for the decrease in NIL groups 

with Glu-D1a.  In this study, interaction between alleles at the two loci was significant for 

mixograph mixing time (P < 0.05) but no other mixograph traits.  It appears that the interaction 

between Glu-B1 and Glu-D1 is important for dough strength but less important for other 

mixograph properties.   Radovanovic et al. (2012) observed no interaction between alleles at the 

Glu-B1 and Glu-D1 loci for MPT, MPH, and MPW.  Butow et al. (2003) found significant 

interaction for mixing time in one out of two locations.  Zheng et al. (2010) found significant 

interaction effects for MPH but not for MPT, MPW, MRW, or MRS.  Differing results from 

previous studies could be due to differences in genetic backgrounds and environments.   



 

30 

 

Agronomic Characteristics 

Across environments NIL groups were not consistent in yield or test weight rankings.   

There appears to be a year by allele effect as consistencies can be found across locations within 

years.  In 2013, NIL groups ranking the highest and lowest for yield (Glu-B1b/Glu-D1a and Glu-

B1a1/Glu-D1d, respectively) ranked the opposite for dough strength, suggesting a negative 

correlation between dough strength and yield.  In this study, a significant negative correlation 

was observed between yield and mixograph mix time (R
2
 = -0.44, P < 0.05).  In 2013 trials, the 

NILs with the Glu-B1a1/Glu-D1d combination were consistently among the lowest yielding 

groups.   However in 2012, NILS with the Glu-B1a1/Glu-D1d combination were not 

significantly different from other groups except in 12AkHi where they were among the top 

yielding (Table 2.3).  Thus, I cannot conclude there is a consistent negative association with 

yield for this group.  In all environments, NILs with the Glu-B1b/Glu-D1d combination, which 

ranked second in dough strength, had yield higher than or equal to NILs with the Glu-B1a1/Glu-

D1d combination.      

NILS with Glu-B1b/Glu-D1a had the lowest test weight in 2012 but NILs with Glu-

B1a1/Glu-D1a had the lowest test weight in 2013 (Table 2.3).  The NIL groups with Glu-D1a 

had the lowest test weight across environments, and NILs with Glu-D1d were the highest group 

for test weight in all but one environment.  For plant height and heading date, lines with Glu-

B1a1 were taller than those with Glu-B1b and the NIL group with the combination Glu-

B1a1/Glu-D1a had earlier heading dates than other groups.  

Environments 

Field environments utilized for this study represented target environments for winter 

wheat production in the west-central region of the U.S. Great Plains.  Because the data from each 
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trial were analyzed with spatial models, environments could not be combined for data analysis.  

Meteorological data were obtained from the Colorado Agricultural Meteorological Network 

(Colorado State University and USDA, 2010) for environments where trials were planted and 

data were available.  Maximum temperatures during the 2012 season (41 to 43 °C) were higher 

than for the 2013 season (35 to 39 °C; Figure 2.1). All sites, except the irrigated site at Fort 

Collins, were characterized by little to no precipitation from September to March (Figure 2.2). 

The 2013 season was characterized by a few late freezes in April and severe drought resulting 

from inadequate precipitation throughout the season.  The average heading date for 2012 trials 

was 16 days earlier than the average heading date for 2013.  This difference in heading date is 

most likely due to inadequate moisture and high temperatures in the 2011–2012 season, causing 

heat stress and leading to an earlier harvest than the 2012-2013 season.  The 2012 harvest began 

early on June 18 and lasted only two and half weeks, while harvesting in 2013 began later on 

June 25 and lasted through the end of July. 

Across environments, similar results were seen for mixograph parameters by glutenin 

allele combinations (Table 2.2).  This consistency suggests a strong genetic influence of these 

HMW-GS on dough mixing properties and less environmental influence.  For kernel and 

compositional traits, there was less of a pattern observed although discrimination of these traits 

was not observed in most environments (Table 2.1).  Yield and test weight were more affected 

by environmental conditions as rankings were not consistent across environments (Table 2.3).    

The negative effect on yield associated with groups containing the Glu-B1a1 allele 

(Bx7
OE 

+ By8) was more prevalent in the 2013 trials.  In 2012 environments, there was a 

negative correlation between heading date and yield (R
2
= -0.55, P < 0.05).  Thus, there was a 

yield advantage for earlier maturing lines in 2012, possibly to avoid heat stress from high 
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temperatures observed later in the season.  Lines from the NIL group with the Glu-B1a1/Glu-

D1a allele combination had significantly earlier heading dates than other groups (Table 2.3), 

which could explain why a yield decrease wasn’t observed in most of the 2012 trials for this NIL 

group.  However, 2013 trials showed no yield advantage in earlier heading lines (R
2
 = 0.12, P > 

0.05) thus the association with heading did not improve yield for NILs with the Glu-B1a1/Glu-

D1a allele combination.      

CONCLUSIONS 

Both Glu-B1 and Glu-D1 are important loci influencing dough strength.  This study 

confirmed the superior dough strength due to the glutenin allele combination of Glu-B1a1 with 

Glu-D1d, but showed the Glu-D1d allele to contribute more so than Glu-B1a1.  The environment 

played a major role in determining yield and had less of an effect on dough properties.  Caution 

should be taken when utilizing this allele combination, as there may be an effect on yield that 

negates the quality advantage of Glu-B1a1.  However, more research is needed to determine if 

this negative effect on yield occurs in other genetic backgrounds and why this occurs in order to 

determine effective breeding strategies that mitigate yield reductions while increasing dough 

strength.   
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Figure 2.1 Rolling seven day average of maximum and minimum temperatures observed at field 

trial locations. 
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Figure 2.2 Monthly precipitation observed at field trial locations.  

 



 

35 

 

Table 2.1 Least square means of kernel characteristics and composition of glutenin allele combinations across Colorado 

environments 

  Environment 

Glu-B1 Glu-D1 12Akhi   12AkLo   12Bu   12Ju   13Bu   13Da   13FoHi   13FoLo   13Ju   

Grain Protein (g kg
-1

) 
                 b (7+8) a (2+12) 157.0 a
†
 130.0 a 121.5 a 112.1 ab 170.1 a 133.6 a 118.4 a 117.8 a 148.3 a 

 

d (5+10) 155.5 a 132.0 a 124.1 a 113.4 a 168.5 a 131.4 a 121.3 a 118.0 a 148.0 a 

a1 (7
OE

+8) a (2+12) 157.5 a 133.8 a 126.5 a 110.4 ab 165.2 a 131.5 a 118.5 a 118.4 a 150.4 a 

 

d (5+10) 155.8 a 130.3 a 124.8 a 109.3 b 167.9 a 134.5 a 120.1 a 116.6 a 150.0 a 

Grain Ash (g kg
-1

) 
                 b (7+8) a (2+12) 14.3 ab 13.7 a 13.9 a 13.5 a 15.9 bc 14.3 bc 13.3 ab 13.6 b 15.1 b 

 

d (5+10) 14.4 a 13.9 a 14.1 a 13.6 a 16.2 a 14.7 a 13.6 a 14.0 a 15.4 a 

a1 (7
OE

+8) a (2+12) 13.9 b 13.4 a 13.1 b 13.0 b 15.8 c 14.2 c 13.0 b 13.2 c 14.9 b 

 

d (5+10) 14.3 a 13.9 a 13.8 a 13.4 a 16.2 ab 14.6 ab 13.4 a 13.6 b 15.4 a 

Kernel Weight (mg kernel
-1

)                  

b (7+8) a (2+12) 26.4 a 28.7 a 30.0 a 29.6 a 26.3 a 29.3 a 40.6 a 38.9 a 28.1 a 

 d (5+10) 26.6 a 28.9 a 30.0 a 30.2 a 26.0 a 30.2 a 40.1 ab 39.0 a 28.1 a 

a1 (7
OE

+8) a (2+12) 27.0 a 28.6 a 30.2 a 30.7 a 25.8 a 29.5 a 39.1 b 38.2 a 27.2 b 

 d (5+10) 26.4 a 28.6 a 29.9 a 30.1 a 26.4 a 29.2 a 39.2 b 38.2 a 27.4 ab 

Kernel Diameter (mm) 
                 b (7+8) a (2+12) 2.50 a 2.58 a 2.56 a 2.60 a 2.45 a 2.57 b 2.94 a 2.90 a 2.55 a 

 

d (5+10) 2.52 a 2.59 a 2.57 a 2.64 a 2.45 a 2.61 a 2.92 ab 2.91 a 2.55 a 

a1 (7
OE

+8) a (2+12) 2.52 a 2.55 a 2.58 a 2.64 a 2.45 a 2.59 ab 2.91 ab 2.90 a 2.53 a 

 

d (5+10) 2.51 a 2.57 a 2.58 a 2.63 a 2.47 a 2.57 ab 2.90 b 2.88 a 2.53 a 

Hardness (score) 

                  b (7+8) a (2+12) 83.1 a 83.2 a 76.3 a 76.7 a 69.8 a 52.1 a 60.7 a 59.5 a 65.4 a 

 

d (5+10) 83.4 a 82.3 ab 76.8 a 76.0 b 70.2 a 51.0 a 61.1 a 59.1 a 66.0 a 

a1 (7
OE

+8) a (2+12) 81.0 a 80.3 b 68.9 c 72.2 c 65.7 b 47.2 b 54.7 b 53.7 b 62.1 b 

 

d (5+10) 82.4 a 81.9 ab 72.8 b 74.8 b 68.5 a 49.9 ab 58.3 ab 56.3 ab 65.4 a 

†Within environment and trait, means followed by the same letter are not significantly different (α = 0.05). 
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Table 2.2 Least square means of mixograph properties for glutenin allele combinations across Colorado environments 

Glu-B1 Glu-D1 Environment 

  

12Akhi   12AkLo   12Bu   12Ju   13Bu   13Da   13FoHi   13FoLo   13Ju   

MPT
† 

                   b(7+8) a(2+12) 3.19 d
‡
 3.36 c 3.55 c 3.60 c 3.72 d 3.48 d 2.89 d 3.02 c 4.09 d 

 

d(5+10) 5.58 b 4.92 b 5.14 b 5.20 b 7.36 b 5.14 b 3.80 b 4.13 b 7.93 b 

a1(7
OE

+8)  a(2+12) 4.09 c 3.67 c 4.08 c 3.84 c 5.22 c 4.09 c 3.22 c 3.41 c 5.62 c 

 

d(5+10) 7.52 a 6.17 a 6.81 a 6.33 a 9.17 a 6.44 a 4.54 a 5.03 a 10.16 a 

MPH 

                   b(7+8) a(2+12) 63.66 b 55.95 b 54.65 bc 49.60 ab 64.57 b 52.54 a 49.93 ab 48.30 ab 55.17 b 

 

d(5+10) 59.56 c 53.51 c 52.62 c 47.85 c 58.33 c 49.37 b 48.39 b 45.93 c 50.38 c 

a1(7
OE

+8) a(2+12) 67.28 a 59.92 a 57.91 a 50.97 a 67.55 a 54.36 a 52.08 a 50.52 a 60.01 a 

 

d(5+10) 63.23 b 56.58 b 55.01 b 48.52 bc 63.47 b 52.25 a 49.50 b 47.53 bc 55.90 b 

MPW 

                   b(7+8) a(2+12) 28.79 b 23.18 b 24.55 b 20.96 b 30.40 b 25.40 b 22.28 b 22.39 b 28.26 b 

 

d(5+10) 27.10 b 23.82 b 25.32 b 20.09 b 27.18 c 24.38 b 22.74 b 23.27 b 27.66 b 

a1(7
OE

+8) a(2+12) 31.94 a 29.31 a 31.42 a 24.02 a 33.52 a 29.01 a 25.93 a 26.85 a 33.69 a 

 

d(5+10) 31.05 a 28.07 a 28.53 a 23.28 a 30.50 b 29.97 a 26.97 a 26.79 a 31.57 a 

MRS 

                   b(7+8) a(2+12) -3.22 c -2.40 b -1.72 b -1.57 b -2.97 b -2.47 b -2.41 c -2.36 b -2.57 b 

 

d(5+10) -2.00 a -1.63 a -1.18 a -0.94 a -1.63 a -1.49 a -1.95 b -1.44 a -1.25 a 

a1 (7
OE

+8) a(2+12) -3.81 c -2.96 b -1.88 b -1.68 b -2.87 b -2.47 b -2.71 c -2.11 b -2.75 b 

 

d(5+10) -2.51 b -1.57 a -1.01 a -0.97 a -2.11 a -1.43 a -1.30 a -1.10 a -2.02 ab 

MRW 

                   b (7+8) a(2+12) 15.05 b 16.28 b 17.28 b 14.76 c 19.85 b 17.45 b 13.49 c 15.14 c 19.63 b 

 

d(5+10) 19.63 a 17.38 b 18.67 b 15.23 bc 20.59 a 17.09 b 15.95 b 16.86 b 20.48 b 

a1 (7
OE

+8) a(2+12) 12.59 b 16.21 b 21.23 a 16.29 ab 22.50 b 18.79 b 16.54 b 17.46 b 22.95 a 

 

d(5+10) 20.61 a 19.66 a 21.30 a 16.81 a 23.11 a 20.89 a 18.87 a 19.51 a 23.61 a 

†MPT, mixograph peak time (min); MPH, mixograph peak height; MPW; mixograph peak width; MRS, mixograph right slope; MRW, mixograph right width.  

‡Within environment and traits means followed by the same letter are not significantly different (α = 0.05). 
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Table 2.3 Least square means for agronomic traits of wheat NILs by glutenin allele combinations across Colorado 

environments 
  Environment 

Glu-B1 Glu-D1 12AkHi 12AkLo 12Bu 12Da 12Ju 12SL 13Bu 13Da 13FoHi 13FoLo 13Ju 

Yield (Mg ha
-1

) 

                      b (7+8) a (2+12) 2.27 bc
† 3.26 a 4.19 a 3.75 a 3.96 a 0.96 a 1.02 a 4.56 a 5.96 a 5.43 a 2.00 a 

 d (5+10) 2.41 a 3.27 a 4.25 a 3.77 a 3.97 a 0.97 a 0.99 ab 4.44 ab 5.64 b 5.20 bc 1.97 a 

a1 (7
OE

+8) a (2+12) 2.21 c 3.09 a 4.34 a 3.80 a 4.10 a 0.91 a 0.94 bc 4.38 b 5.69 b 5.32 ab 1.75 b 

  d (5+10) 2.37 ab 3.21 a 4.19 a 3.75 a 3.96 a 1.01 a 0.94 c 4.19 c 5.58 b 5.09 c 1.72 b 

Test Weight (kg hL
-1

) 

                    b (7+8) a (2+12) 96.7 b 99.4 b 96.9 a 98.1 b 98.6 c 89.2 a 

  

92.3 c 99.6 a 98.5 a 86.0 b 

 d (5+10) 97.7 a 100.0 a 97.4 a 99.2 a 99.7 b 89.1 a 

  

94.1 a 99.6 a 98.7 a 87.6 a 

a1 (7
OE

+8) a (2+12) 98.2 a 100.5 a 97.6 a 99.4 a 100.4 a 89.6 a 

  

92.9 bc 99.1 b 98.1 b 84.8 c 

  d (5+10) 97.8 a 100.0 a 97.2 a 99.4 a 100.1 ab 89.3 a 

  

93.8 ab 99.5 a 98.6 a 85.3 bc 

Height (cm)                       

b (7+8) a (2+12) 56.1 b 66.3 b 75.2 c  72.4 b 73.7 a 51.8 b   67.1 a 74.9 ab 71.9 b   

 d (5+10) 56.6 b 67.3 b 75.2 c  73.7 b 73.2 a 52.1 ab   68.3 a 73.4 b 72.9 ab   

a1 (7
OE

+8) a (2+12) 58.4 a 68.1 ab 79.8 a  75.4 a 75.4 a 51.3 b   67.8 a 75.2 ab 73.9 a   

  d (5+10) 57.9 a 69.6 a 77.2 b  76.2 a 74.7 a 53.3 a   67.6 a 75.2 a 73.4 ab   

Heading date (days)                       

b (7+8) a (2+12)   136.7 a   133.9 a 130.4 a       150.8 a 149.0 a   

 d (5+10)   136.1 b   133.1 b 129.9 ab       150.6 a 148.2 bc   

a1 (7
OE

+8) a (2+12)   133.2 c   131.7 c 128.4 c       149.5 b 147.6 c   

  d (5+10)     136.3 ab     133.2 b 129.5 b           150.6 a 148.8 ab   

†Means followed by different letters indicate a difference significant at P < 0.05  

Empty cells indicate no data available for that environment. 
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CHAPTER 3  

GENOMIC SELECTION MODELS FOR PRE-HARVEST SPROUTING TOLERANCE ARE 

IMPROVED BY WEIGHTING QTL IDENTIFIED VIA GENOME-WIDE ASSOCIATION 

 

SUMMARY 

Pre-harvest sprouting (PHS) is a major problem in wheat (Triticum aestivum L.) that 

occurs when grains in a mature spike germinate before harvest, resulting in reduced yield, quality 

and grain sale price.  Improving PHS tolerance (PHST) is a challenge to wheat breeders because 

it is quantitatively inherited and tedious to score.  Genomic selection (GS) is particularly useful 

for predicting phenotypes that are costly and time-consuming to assess.  In this study single 

nucleotide polymorphism (SNP) markers obtained by genotyping-by-sequencing (GBS) were 

used to identify significant marker trait associations and develop predictive models for PHST.  A 

panel of 1118 breeding lines representative of U.S. Great Plains hard winter wheat germplasm 

was scored for PHST over multiple years.  A genome-wide association approach was used to 

identify quantitative trait loci (QTL) among the individuals.  Two primary factors were examined 

for their influence on model accuracy: the effect of including identified QTL and kernel color as 

fixed effects in the model, and increasing marker number.  Model accuracy did not improve with 

kernel color information but weighting QTL increased predictive performance.  Optimum marker 

number was about 4,000 with no significant improvement in accuracy above this threshold.  

Overall, model accuracies were promising and confirm effectiveness of GS for predicting PHST 

in wheat.  
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Abbreviations 

EMMA, efficient mixed model association; GBS, genotyping-by-sequencing; GWAS, genome-

wide association study; GS, genomic selection; HRW, hard red winter wheat; HWW, hard white 

wheat; LD, linkage disequilibrium; MLM, mixed-linear model; PC, principal component;  PCA, 

principal component analysis; PHS, pre-harvest sprouting; PHST, pre-harvest sprouting 

tolerance; QTL, quantitative trait loci, RR-BLUP, ridge-regression best linear unbiased 

predictor; SNP, single nucleotide polymorphism.  

INTRODUCTION 

Pre-harvest sprouting (PHS) is the germination of a wheat kernel in a physiologically 

mature spike before harvest. It usually occurs after periods of prolonged rainfall and high 

humidity.  Besides causing a reduction in grain yield, PHS can be detrimental to end-use quality 

leading to smaller bread loaf volumes or sticky crumb grain (Gale and Lenton, 1987).  This 

reduction in yield and quality leads to economic losses for the farmer as well as those in the 

milling and baking industry.  Worldwide, it was estimated about one billion dollars are lost per 

year as a result of pre-harvest sprouting (Black et al., 2006), and as such, reducing PHS carries a 

significant economic benefit.  

Improving tolerance to pre-harvest sprouting (PHST) has been a challenge for breeders 

because of its quantitative inheritance and laborious procedures required for phenotyping.  It is 

also difficult to breed for PHST in winter wheat as turnaround time is much shorter than the time 

required to phenotype and make selections decisions for PHST.  Using molecular markers to 

screen for tolerant lines would be helpful in addressing this problem.  Although the genetic 

architecture is still unknown, quantitative trait loci (QTL) studies have identified several 

chromosomal regions associated with PHST. The most important loci are thought to belong to 
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homoeologous group 3 (3A, 3B, 3D; Kulwal et al., 2005; Liu et al., 2008), chromosome 4A 

(Mares et al., 2005) and chromosome 2B (Munkvold et al., 2009).  Also located on the 

homoeologous group 3 are genes for red grain color, R-A1, R-B1, R-D1 (Sears, 1944).  Several 

studies have shown a general association between red kernel color and tolerance to PHS, 

possibly due to linkage between these genes (Groos et al., 2002; Gao et al., 2013).  Because 

white grain wheat is generally preferred for whole-grain products, efforts have been made to 

develop PHS tolerant white-grained varieties (Kottearachchi et al., 2006; Liu et al., 2008; 

Graybosch et al., 2013).  Despite this general association between red wheat and sprouting 

tolerance, genetic diversity exists among both red and white wheat for PHST (Wu and Carver, 

1999).  Marker assisted selection techniques have shown some promise in this area, with several 

QTL identified for PHS (Kumar et al., 2010; Liu et al., 2008; Mares et al., 2005).  For example, a 

major QTL for PHST was identified in the hard white wheat cultivar ‘Rio Blanco’ (Liu et al., 

2008), and the underlying gene, designated as TaPHS1, has been cloned and characterized (Liu 

et al., 2013).  Even so, some studies have shown PHS to be affected by many small effect loci 

throughout the genome (Tyagi and Gupta, 2012).  For this reason, using many markers across the 

genome could be a more effective approach when breeding for tolerance to PHS.  Genomic 

selection (GS) could enable more rapid gains for PHST as all underlying loci would be exploited, 

regardless of prior identification for significant effects.   

Meuwissen et al. (2001) first proposed the fundamentals of GS with the basic concept of 

regressing phenotypes on all available markers using a linear model.  Since this first proposal, 

advancements in statistical models have led to greater gains in prediction accuracies.  However, 

there are factors to consider when implementing GS into a breeding program, including model 

choice, size and composition of the training panel, and marker density. Other factors, such as 
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linkage disequilibrium (LD) and genetic architecture of the trait, may influence the accuracy of 

the models but these are outside the scope of factors controlled by the breeder.       

Ridge regression best linear unbiased prediction (RR-BLUP) is a common method used 

for estimating marker effects for GS (Whittaker et al., 2000; Meuwissen et al., 2001; Endelman, 

2011).  However, RR-BLUP makes the assumption that marker variances are equal, which is 

unlikely in practice.  An alternative to this approach involves estimating variances for each 

marker individually with Bayesian methods (de los Campos et al., 2013). Although Bayesian 

models make a more realistic assumption, the RR-BLUP method is computationally more 

convenient.  In addition, Bayesian models have shown little to no gain over RR-BLUP (Asoro et 

al., 2011; Heffner et al., 2011; Heslot et al., 2012), and in some cases RR-BLUP can outperform 

Bayesian models (Lorenzana and Bernardo, 2009; Schulz-Streeck et al., 2012).  De los Campos 

et al. (2013) found that Bayesian methods resulted in a slight increase in accuracy for traits 

involving large-effect QTL but generally there has been little difference between the two 

approaches, and as such, there does not appear to be a universally preferred model.  If the trait 

follows the infinitesimal model, then RR-BLUP should be sufficient (Clark et al., 2011).  In the 

infinitesimal model, many small effect loci across the genome contribute to the phenotype and 

therefore a model that includes all of the markers with equal marker variances would suffice.  As 

such, RR-BLUP may serve as a more computationally efficient means for implementing GS 

models in breeding programs without reducing accuracy of predictions.     

Some studies have shown an improvement in prediction accuracy when including 

functional markers in the model.  Zhao et al. (2014) used a weighted RR-BLUP prediction 

approach (W-BLUP) to include effects of known functional markers for heading date and plant 

height in a hybrid wheat population. In this study, the accuracy of models for heading date and 
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plant height improved with the weighted model relative to the base model. The W-BLUP 

approach improved prediction accuracy by utilizing both marker-assisted and genomic selection 

approaches (Zhao et al., 2014).  Bernardo (2014) demonstrated the effectiveness of using major 

genes in a genomic selection model with simulated data.  Conclusions from this study showed 

that selection for a trait with high heritability (H
2
 = .80) and large effect QTL (R

2
 = .50) modeled 

as fixed effects increased the relative efficiency compared to a model that did not weight the 

QTL.  In another study on rust (Puccinia graminis, P. triticina, and P. striiformis) resistance in 

wheat, model accuracy improved with the inclusion of known rust resistance genes (Daetwyler et 

al., 2014).  Combining MAS with GS in this way is worth exploring as others have seen 

improvements by weighting markers known to be associated with the target trait.   

In addition to QTL, it may be advantageous to include kernel color in the model as this is 

often associated with PHS (Groos et al., 2002; Himi et al., 2002; Morris and Paulsen, 1992; 

Nilsson-Ehle, 1914).  Previous studies on using GS for PHS have not included kernel color in the 

model or weighted specific markers to make genomic predictions (Heffner et al., 2011; Heslot et 

al., 2013).  Therefore, these two approaches were implemented in this study to determine their 

effects on model accuracy.  The specific objectives were to i) use genome-wide markers to 

identify QTL for pre-harvest sprouting tolerance in an association panel of hard winter wheat 

lines; ii) develop a GS model to predict PHST in winter wheat; iii) determine if modeling kernel 

coat color or PHST-QTL as fixed effects could improve prediction accuracy of the GS model, 

and iv) determine the effect of marker number on model accuracy.   
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MATERIALS AND METHODS 

Germplasm and Phenotyping 

This study included a panel of 1118 hard winter wheat breeding lines and released 

cultivars representative of the Colorado State University Wheat Breeding program.  Entries were 

from various nursery trials harvested in 2006 – 2013 from the Colorado State University 

Agricultural Research, Development, and Education Center (ARDEC; 40.65 N, 105 W, 

Elevation 1560 m) in Fort Collins, Colorado.  Trials included the following: CSU Elite Trials, 

Variety Performance Trials, Advanced and Preliminary Yield Nurseries, and Single-Seed 

Descent-Derived Preliminary Nurseries.  Of the 1118 breeding lines, 30 percent were hard red 

winter wheat (HRW), 66 percent were hard white wheat (HWW), and 4 percent were mixed for 

kernel color.  On average 75 genotypes were evaluated in each year from trials harvested from 

2006 to 2011.  The number of genotypes evaluated in 2012 and 2013 was 411 and 670, 

respectively.   

Samples of wheat spikes were collected from plots at physiological maturity, as 

determined by the lack of green color in the peduncles.  Samples were dried at room temperature, 

threshed, and stored in a freezer at -20 °C until germination tests were performed.  For 

germination tests, approximately 50 kernels were placed in petri dishes with filter paper and 

moistened with distilled water.  Samples were then placed in a lighted growth chamber at 20 °C 

for 12-h days.  After one to two days, entries were scored by counting the number of germinated 

kernels each day for seven days.  To break dormancy, samples were placed in a cold room at 4 

°C for four d and then moved back to the growth chamber for three to four d.  The remaining 

germinated kernels were counted and any non-germinated kernels were removed from the 

analysis for the total grain count.  A germination index was calculated to give greater weight to 
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kernels that germinated earlier in the seven day period (Walker-Simmons, 1988).  The 

germination index (GI) was calculated from the following formula: 

GI = 
(7𝑥𝑛1+6𝑥𝑛2 + 5𝑥𝑛3+ 4𝑥𝑛4 + 5𝑥𝑛3+ 6𝑥𝑛2+ 1𝑥𝑛7)

total days∗ total kernels
 

where xn1, xn2…xn7 refer to the number of germinated kernels on day 1, day 2 …day 7.   

Across environments, a mixed model was used to calculate best linear unbiased 

predictors (BLUPs) for each line using the lme4 package in R (Bates et al., 2014; R 

Development Core Team, 2011).   

Genotyping 

Breeding lines were genotyped using a two-enzyme genotyping-by-sequencing approach 

(Poland et al., 2012a).  Libraries were prepared according to protocols reported previously 

(Elshire et al., 2011) and modified by using the restriction enzymes PstI and MspI (Poland et al., 

2012a).  Single nucleotide polymorphisms (SNPs) were called from GBS tags using a 

population-based filtering approach as described previously (Poland et al., 2012b).  

Markers were binned to nearest reference sequences using a combination of wheat survey 

sequences from the International Wheat Genome Sequencing Consortium (IWGSC; 

http://www.wheatgenome.org) and the 90 K SNP array developed at Kansas State University 

(Wang et al., 2014) as a reference map (Manmathan et al., unpublished).  Markers were filtered 

for LD values below 0.9 and minor allele frequencies above 0.027, as such frequencies indicated 

that at least 30 lines carried the allele (R. Bernardo, personal communication, 2014).  Marker 

subsets were created by setting the maximum percentage of missing values to various thresholds 

followed by mean imputations of remaining missing values with the A.mat function in the R 

package rrBLUP  (Endelman, 2011).  Table 3.1 summarizes the marker subset information.  For 



 

48 

 

the analysis of trait associations the marker file with a maximum missing value of 70 percent was 

used (M7; Table 3.1).    

Genome-Wide Association 

Principal component analysis (PCA) was performed with GBS markers to estimate and 

visualize population structure.  Association analysis was conducted with a compressed mixed 

linear model (Zhang et al., 2010) implemented in the R package GAPIT (Lipka et al., 2012).  

GAPIT uses the efficient mixed model association (EMMA) algorithm developed by Kang et al. 

(2010).  The mixed-linear model (MLM) can account for both population structure and marker-

based kinship.  The “Model.selection” parameter was called to determine the optimized number 

of principal components (PCs) to include based on Bayesian information criterion (BIC) values 

(Schwarz, 1978).  It was determined that the best fit was the model with only the kinship matrix 

and no PCs.  The detection threshold for significant SNPs corresponded to the Bonferroni 

corrected value of –log10 (0.05/ 17158) = 5.53 at an alpha level of 0.05 with the M7 subset of 

17,158 markers.  Sequences of significant markers were blasted to the IWGSC draft sequence via 

Ensembl Plants (http://plants.ensembl.org).  

Genomic Selection Models 

Genomic estimated breeding values (GEBVs) were calculated using ridge regression 

BLUP (Meuwissen et al., 2001).  RR-BLUP assumes equal variances for marker effects.  The 

general form of the model was:  

𝑦 = 𝜇1𝑛 + 𝑍𝑢 + 𝜀 

where 𝑦 is a vector of phenotypic means for individuals; 𝜇 is an intercept term, 1𝑛 is a 

vector of ones; 𝑍 is a design matrix (n x m) allocating marker values to individuals; 𝑢 is a vector 

(n x m) of marker effects; and 𝜀 is a vector of error terms with a variance of 𝜎𝜀.   
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Fixed effects were added to the model according to the equation: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝜀 

where all symbols are the same as the previous equation with the addition of 𝑋 as the 

design matrix (n x p) allocating fixed effect values to individuals and 𝛽 is a vector (p x 1) of 

fixed effects. 

Accuracy of the models was determined with cross-validation (CV) to assign individuals 

to training or validation sets.  A random 5-fold CV involved randomly assigning lines to one of 

five folds and using four folds to train the model and one to validate.  This was repeated until all 

folds were used as validation sets.  Accuracy was calculated as the correlation between GEBVs 

and BLUPs from the validation set, and reported as the mean across folds.  This was repeated 

100 times for each marker set and model combination. 

Calculating MAS Accuracy 

 To determine accuracy values for a hypothetical MAS approach, a model was developed 

that included only the top five most significant markers as fixed effects.  Similar to GS, 

accuracies were determined with a 5-fold CV and calculated as correlation between estimated 

breeding values (EBVs) and BLUPs from the validation set.  This was repeated 100 times and 

averaged across iterations.  

Least significant differences were calculated between models for the same marker subset 

and between marker subsets for the same model.  This was done with LSD.test for multiple 

comparisons under the agricolae package in R (de Mendiburu, 2014).  Heritability was calculated 

on an entry-mean basis (Fehr, 1987, p. 98) with ASREML-R (Butler et al., 2009).  Row and 

column values from field plots were included as random effects in the model for each site.   
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RESULTS AND DISCUSSION 

Population Structure 

PCA analysis was performed to gain insight into population structure that may affect 

association analysis (Figure 3.1).  The first two principal components explained only 10.5% of 

the total variation, reflecting a lack of population structure. However, the visual of the PC biplot 

shows a slight clustering of two groups, especially defined by PC1.  Reasons for this clustering 

are unclear and no apparent pattern was observed for kernel color.  Thus, red wheat and white 

wheat were not distinct genetic groups in this breeding population but instead share many 

common alleles as seen by the mixture of red and white genotypes in the biplot.   

Association Analysis  

Results from the mixed model showed that five SNPs were significantly associated with 

PHST (Table 3.2).  The quantile-quantile plot can be used to assess how well the model 

accounted for population structure or relatedness among the lines (Figure 3.2).  The observed 

negative logarithm of p-values will fall along the dotted line if they fit the null hypothesis of no 

trait association.  It is expected that most points will fall along the dotted line but those furthest 

to the right will deviate as they are most likely associated with PHST.  This was the case in this 

study as the p-values for the highly significant SNPs deviated while most of the remaining ones 

did not.  Significant marker trait associations were all located on chromosome 3AS according to 

blast results, and had R
2
 values above 30 percent (Table 3.2).  The short arm of chromosome 3A 

is well established in the literature as being associated with PHST (Liu et al., 2008).  Currently 

efforts are underway to determine more precise locations of QTL identified in this study, 

especially in relation to the TaPHS1 gene.   
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 Although QTL have been identified on several chromosomes in wheat, there has been 

inconsistent detection across genetic backgrounds, thus it is necessary to identify markers that 

allow for selection across a range of genetic backgrounds (DePauw et al., 2012).  Some 

chromosomal regions reported in the literature as being involved in PHST were not identified in 

our study, including the QTL on 2B (Somyong et al., 2014) or 4AL (Chen et al. 2008).  Although 

these QTL could have gone undetected in this breeding population for various reasons, one 

possibility could be because this breeding population lacks these alleles.  If this is true, then there 

is potential to introduce these alleles into the germplasm for greater improvement of PHST.   

Genomic Selection Models 

Genomic selection accuracies in the base model, without fixed effects of kernel color or 

QTL, ranged from 0.49 to 0.58 for various marker subsets (Table 3.3).  Accuracies were 

comparable to other studies of genomic selection for PHST in wheat (Heffner et al., 2011; Heslot 

et al., 2013).  An estimate of MAS accuracy was calculated by using only the highly significant 

SNPs reported in Table 3.2.  The average accuracy for MAS was 0.40 and even with the lowest 

marker set of 500 markers there was significant improvement in accuracy when using GS over 

MAS.  The highest accuracy for the base GS model (.59) was 49 percent higher than with MAS.  

Therefore the GS approach, which captured all marker effects, performed significantly better 

than the approach of identifying and using only QTL.  These results strongly support the use of 

GS in breeding for PHST in wheat.   

Marker Density 

Ascertainment bias can occur in marker assays when markers are not obtained from a 

random sample of polymorphisms in the population of interest, and can lead to false estimates of 

allele frequencies and LD (Albrechtsen et al., 2010; Nielsen and Signorovitch, 2003). In one 
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study, the commonly used DArT marker platform was compared to a genotyping-by-sequencing 

(GBS) platform for a panel of wheat lines (Heslot et al., 2013).  Results showed the DArT 

markers were more clustered and led to more ascertainment bias than GBS markers, although 

this in itself did not lead to a reduction in GS accuracy.  The GBS platform produced over 38,000 

SNPs, whereas the DArT platform produced only 1,500.  In comparing the two platforms with an 

equal number of markers (i.e., reducing GBS markers to 1,500), there was no difference in 

accuracy for most traits.  Therefore the better prediction was due to an increase in available 

markers and not due to a lack of ascertainment bias.   

In this study, we observed an increase in model accuracy with the inclusion of more 

markers (Figure 3.3, Table 3.3).  However, after a threshold of about 4,000 markers (M3 subset) 

there was no significant increase in accuracy. Other studies have also identified an optimum 

marker size with diminishing return above a certain threshold (Heffner et al., 2011a; Heslot et 

al., 2013b; Lorenzana and Bernardo 2009).  For GS, it is desirable to obtain adequate genome 

coverage so that all contributing loci are in LD with at least one marker.  Studies have shown this 

optimum marker size to be trait and population specific (Erbe et al.,2013; Poland et al., 2012b) .  

Heffner et al. (2011a) identified the optimum marker number to be 384 in a panel of 288 soft 

winter wheat breeding lines. Lorenzana and Bernardo (2009) also found diminishing returns 

from increasing marker size, while Heslot et al. (2013b) observed optimum marker densities 

varied depending on the target trait.  In a simulated study, Muir (2007) found increasing marker 

density without also increasing training panel size would not increase accuracy and in some 

cases could actually decrease accuracy.  In the present study, a slight but statistically 

insignificant decrease in accuracy was observed when increasing the marker density from 17,000 

to 22,000 in all GS models (Table 3.3).  Resend et al. (2012) observed a decrease in accuracy 
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with greater marker densities for disease resistance traits.  This decrease was due to model over 

parameterization, which can occur if a large number of markers are used in the model for a trait 

controlled by a few major loci.  This over parameterization could explain the slight decrease 

observed in our data but should not be a major concern as the decrease was insignificant.  Muir 

(2007) suggested increasing marker density would only increase accuracy if it scaled with an 

increase in the training panel size.  Implementing GS into a breeding program would likely 

involve increasing training panel size over time as more phenotypic data are generated.  Thus, as 

more individuals are added to the model, there may be a need to recalculate the optimum marker 

size as it has the potential to vary with changes in the data set.    

Inclusion of Fixed Effects in the Model 

Studies have found that phenotypic information correlated to the target trait can be useful 

in increasing prediction accuracy. For example, Rutkoski et al. (2012) found that including 

correlated trait information, such as incidence, severity, and kernel quality, improved prediction 

accuracy for Fusarium head blight (Gibberella zeae) resistance in wheat.  However, including 

such information involves the added step of phenotyping for these traits which can be costly and 

time consuming, thereby mitigating one of the key benefits of GS (i.e., minimizing resources 

spent on phenotyping).   In this study, including kernel color as a fixed effect in the model had 

no effect on the prediction accuracy (Table 3.3).  The coefficient of determination for the model 

with kernel color explaining sprouting tolerance was very low (R
2
 = 0.01).  Thus, in this 

breeding population kernel color was not a reliable indicator of PHST.    

Although reports have suggested that white wheats generally have less tolerance than red 

wheats (Morris and Paulsen, 1992), it is not uncommon to find a red wheat with poor tolerance 

to PHS or a white wheat with good tolerance.  Among Great Plains hard white winter wheats, 
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‘Rio Blanco’ has been identified as a good source of PHST (Wu and Carver, 1999) with the 

major QTL on 3AS identified in this cultivar (Liu et al., 2008).  Liu et al.’s (2013) results 

suggested major differences in PHST were independent of grain color; however color may 

contribute in modifying PHST regulated by the TaPHS1 gene. In this study, genotypes with red 

kernel color had on average a slightly lower sprouting rate (GI = .33) compared to the white (GI 

= .36) but the difference was not significant. Thus, kernel color genes could modify the level of 

tolerance but do not have a large enough effect to lead to an increase in accuracy when included 

as fixed effects in GS models.   

In a simulated analysis, Bernardo (2014) demonstrated the effectiveness of adding major 

genes as fixed effects in a GS model.  Conclusions from this study showed that selection for a 

trait with high heritability (H
2
  = .80) and large effect QTL (R

2
 = 50%) would benefit from a GS 

model that weighted the QTL as fixed effects.  There was no disadvantage to specifying a fixed 

effect unless the R
2
 was below 10%.  Results from this study confirmed findings from 

Bernardo’s simulated study as including fixed effects of major PHST-QTL identified via GWAS 

increased model accuracy (Table 3.3).  However, including color as a fixed effect did not 

decrease accuracy despite the low R
2
 value.  The average heritability for pre-harvest sprouting 

tolerance was 0.42 with a standard deviation of 0.22.  Even with moderate heritability and R
2
 

values, an improvement in accuracy was observed when weighting large-effect QTL.  Accuracies 

for models with both color and QTL as fixed effects were not significantly different from the 

model with only QTL (Table 3.3).  This confirms the significant improvement in accuracy was 

due to weighting QTL and not to including color as a fixed effect.   

Differing from our results, Rutkoski et al. (2012) observed no increase in accuracy when 

adding targeted QTL to the base model for traits which responded better to GS over MAS.  It is 
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unclear if low trait heritability or low R
2 

values for targeted QTL contributed to these results, as 

these parameters were not reported.  Similar to our results, Daetwyler et al. (2014) also observed 

a slight increase in GS accuracy by including markers for known rust (Puccinia sp.) resistance 

genes into the model as fixed effects.  However, a greater improvement was observed with 

diagnostic markers than linked markers.  This comparison could not be made in our study as it 

was unclear where in relation to the known gene the markers were located.  However, knowledge 

of positions of these QTL may allow for this comparison in future work.   

CONCLUSION  

Unlike with spring wheat breeding, winter wheat breeding programs ahve a much shorter 

turnaround time from harvest of one season to planting of the next.  Thus, selections for 

tolerance to PHS cannot be made in one year to plant for the following season, and the rate of 

genetic gain under phenotypic selection is less than for traits like yield because cycle time is 

increased.  This issue of short turnaround time makes GS especially valuable as genotypic 

information would be readily available to make selections prior to planting the next year’s crop.   

This study used data from a wheat breeding program to confirm a previous simulated 

study concerning major genes as fixed effects in a GS model (Bernardo, 2014).  Accuracies from 

these models endorse implementing GS in a wheat breeding program for traits that are controlled 

by both large-effect and small-effect loci throughout the genome.  Genome-wide association 

analysis shed light on the underlying loci that control for PHST, with results showing that this 

trait is controlled by both large effect and many small effect loci.  If only the large effect loci 

were contributing to the trait, then MAS accuracy would be comparable to GS accuracy.  

However, the model with the highest predictive accuracy included all small effect loci in 

addition to weighted large effect loci, suggesting that MAS may fail to capture useful loci 
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affecting PHST.  In addition, the large effect loci identified here will be strong candidates for 

future research.  Further work may include a candidate gene study to validate if any of the 

identified SNPs reported here may be used as markers in a marker-assisted pre-screening before 

collecting genome-wide data on new breeding material.   
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Table 3.1 Marker subset information for genotype-by-sequencing markers 

Subset Name Max Missing
†
 (%) n

‡ 

M1 0.1 507 

M2 0.2 2,083 

M3 0.3 4,340 

M5 0.5 9,816 

M7 0.7 17,158 

M8 0.8 21,951 

†Maximum percentage of missing data allowed per marker 

‡Number of markers in the subset 
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Table 3.2 Quantitative trait loci for pre-harvest sprouting tolerance identified through genome-wide association in 1118 inbred 

wheat lines  

QTL
† 

 Chr
‡ 

Score
§ 

Blast hit 
¶ 

Present (%)
#
 MAF

†† 
R

2
 (%) 

Phst-qtl-3AS-gbs2177 3AS 6.601 IWGSC_CSS_3AS_scaff_3406427 51 0.15 30.5 

Phst-qtl-3AS-gbs24267 3AS 5.434 IWGSC_CSS_3AS_scaff_3444297 59 0.36 30.1 

Phst-qtl-3AS-gbs30209 3AS 7.990 IWGSC_CSS_3AS_scaff_3340678 89 0.33 30.9 

Phst-qtl-3AS-gbs392 3AS 7.813 IWGSC_CSS_3AS_scaff_3406679 89 0.31 31.0 

Phst-qtl-3AS-gbs25739 3AS 5.629 IWGSC_CSS_3AS_scaff_3343774 73 0.33 30.7 
 

† QTL were named according to four parts: first: Phst indicates pre-harvest sprouting tolerance; second: qtl indicates a quantitative trait locus; 

   third: the chromosome number and arm; and fourth: the name of the genotyping-by-sequencing marker showing significant association with phst  
‡ Chromosome position of QTL 

§ –log(p) with the K model 

¶ According to IWGCS draft sesquences (http://plants.ensemble.org/Triticum_aestivum/) 
# Percent of 1118 wheat lines with available data for marker 

†† MAF, Minor allele frequency 

 

http://plants.ensemble.org/Triticum_aestivum/
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Table 3.3 Mean accuracies of genomic selection models for pre-harvest sprouting tolerance 

in wheat  

Marker Subset n
†
 Mean Accuracies of Model

‡
 

    Base Model
§
 Color Effect¶ QTL Effect

#
 Both Effect

†† 

M1 507 0.49 b
‡‡ 

0.50 b 0.54 a 0.55 a 

M2 2,083 0.54 b 0.54 b 0.58 a 0.58 a 

M3 4,340 0.57 b 0.57 b 0.59 a 0.60 a 

M5 9,816 0.58 b 0.59 ab 0.61 a 0.60 a 

M7 17,158 0.59 b 0.60 ab 0.61 a 0.62 a 

M8 21,951 0.58 b 0.58 b 0.60 a 0.61 a 
 

† Size of marker subset (refer to Table 3.1) 

‡ Accuracies were calculated from 5-fold cross validation repeated 50 times.  

§ Model includes all markers as random effects with no fixed effects. 
¶ Model includes all markers as random effects and kernel color as a fixed effect.  

# Model includes all markers as random effects and five QTL as fixed effects. 

†† Model includes all markers as random effects and kernel color and five QTL as fixed effects. 
‡‡ Within each row means with different lower case letters are significantly different (LSD t test; α= 0.05). 
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Figure 3.1 Principal component analysis of 1118 inbred wheat genotypes with genotyping-by-

sequencing marker data, labeled according to kernel color. 
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Figure 3.2 Quantile-Quantile plot of negative base 10 logarithm of p-values for each genotyping-

by-sequencing marker. 
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Figure 3.3 Model accuracy versus number of markers used in the model. 
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CHAPTER 4  

GENOMIC PREDICTION FOR END-USE QUALITY IN HARD WINTER WHEAT 

 

SUMMARY 

End-use quality is an important breeding objective for wheat (Triticum aestivum L.) as 

quality characteristics influence grain sale price and market success of a variety.  However, 

breeding for quality traits can be difficult due to high costs, sample size requirements, and short 

turn around time for winter wheat.  Genomic selection (GS) can accelerate genetic progress 

especially for traits that are costly to phenotype and can’t be implemented in selection decisions 

for the following year’s crop.  In this study, we assessed the accuracy of GS models for 11 end-

use quality traits in a panel of hard winter wheat breeding lines phenotyped across multiple years 

and locations in Colorado.  Traits measured were flour yield, single kernel characteristics, 

protein concentration, mixing time and tolerance, bake absorption, bake mixing time, crumb 

grain, and loaf volume.  The panel included experimental lines and cultivars of hard red and 

white winter wheat.  Single nucleotide polymorphism (SNP) markers obtained by genotyping-

by-sequencing (GBS) were filtered for varying thresholds of maximum missing data and 

remaining missing markers were subject to imputation via the mean or a random forest (RF) 

algorithm.  Random 5-fold cross-validation accuracies ranged from 0.30 to 0.63 for quality traits 

with heritabilities ranging from 0.03 to 0.61.  No difference in model accuracy was observed 

between mean and RF imputations.  Slight improvement of accuracy was seen with increased 

marker number but this was trait dependent.  Traits with higher heritability had greater model 

accuracy than traits with low heritability.  GS models for moderate to high heritability traits 

performed better than expected when predicting most recent genotypes in the breeding program.  
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Results suggest GS models for end-use quality traits with low heritatiblity may require more 

resources in developing training panels to increase predictive performance for these traits.   

Abbreviations 

BLUP, best linear unbiased predictor; CV, cross-validation; GBS, genotyping-by-sequencing;  

G x E, genotype by environment interaction; GS, genomic selection; MAS, marker-assisted 

selection; QTL, quantitative trait locus; RF, random forest; RR-BLUP, ridge-regression best 

linear unbiased predictor; SNP, single nucleotide polymorphism. 

INTRODUCTION 

Breeding for end-use quality in wheat (Triticum aestivum L.) presents numerous 

challenges, in part because many traits related to quality are quantitatively inherited and costly to 

phenotype.  Quantitative trait loci (QTL) for end-use quality traits have been identified for the 

use in marker-assisted selection (MAS; Chen et al., 2008; Liu et al., 2008; Zhang et al., 2009) 

and have been used as an effective tool in making breeding decisions.  However, MAS carries a 

number of limitations, such as the time and cost required for identifying and implementing 

selection for significant QTL.  Also, many traits are too complex to be captured by a few QTL.  

An alternative to utilizing specific loci for selection decisions is to use loci across the entire 

genome.  Whereas MAS assesses a limited number of target loci, genomic selection (GS) 

examines the influence of the entire genome on phenotypes.  The GS approach involves 

regressing phenotype on genotype to develop a model that predicts new phenotypes based solely 

on genome-wide markers (Meuwissen et al., 2001).  With GS, the focus is not on the underlying 

genetic architecture or QTL associated with the target trait but rather on the sum of the additive 

effects, or the breeding value of the individual.  Benefits of GS for plant breeding have been 

discussed in the literature (Heffner et al., 2009), especially for complex genomes like wheat 
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(Heffner et al., 2011b; Poland et al., 2012b; Lado et al., 2013).  Simulated and empirical studies 

have demonstrated advantages of GS over other methods of selection in terms of maximizing the 

efficiency of breeding programs (Mayor and Bernardo, 2009; Rutkoski et al., 2012).  

Yield and yield-related traits have been primary targets for GS models for wheat.  

However, quality is also a crucial breeding objective given the direct influence of quality 

characteristics on grain sale price and the market success of the end product.  A successful wheat 

variety will have high values for yield while maintaining desired values for quality.  Therefore, it 

is desirable that a breeding program utilizing GS will implement models that simultaneously 

promote selection for both yield and quality characteristics.   

A primary benefit of GS is the ability to select for traits in fewer years than is possible 

using phenotypic selection.  Some quality parameters like protein concentration can be measured 

in early generations with rapid high-throughput tests like near infrared reflectance spectroscopy 

(NIRS).  However, this does not fully explain the end-use quality of the samples evaluated.  

Traits related to dough viscoelasticity, mixing properties, and baking performance must be 

delayed until later generations due to high costs and limited grain supply.  As a result, lines may 

be advanced through the breeding pipeline only to be discarded in subsequent seasons due to 

inferior quality.  Genomic selection can allow for milling and baking traits to be considered in 

selection earlier in the breeding pipeline, increasing the efficiency of selection decisions. 

In many winter wheat breeding programs, particularly those at higher latitudes, selections 

for end-use quality in one year cannot be used for planting decisions in the following year due to 

the short turn-around time from harvest to planting.  By the time the quality evaluation has been 

performed the next year’s crop is already planted.  This issue makes GS even more valuable as it 

can allow for genotypic information to be readily available in enough time to make selections for 
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quality traits before planting the subsequent year’s crop.  Overall, GS can reduce the years to 

select for specific characteristics by at least half. 

When implementing GS into a breeding program, a prerequisite is to decide on a marker 

platform.  Genotyping-by-sequencing (GBS) is an alternative to fixed-array marker platforms 

used for generating genome-wide markers (Poland et al., 2012a).  Genotyping-by-sequencing can 

be used for de novo genotyping of polyploid organisms with large, complex genomes, making it 

an ideal platform for wheat.  It reduces the genome complexity by targeting gene-rich areas and 

is more cost effective than other array-based platforms (Poland et al., 2012b).  Problems 

associated with ascertainment bias are not a concern with the GBS platform because there is no 

fixed assay.  However, one drawback of this platform is the high percentage of missing data that 

can occur as genomic fragments are sequenced at a low depth leading to very low coverage in 

some individuals.  Even so, this shortcoming can be addressed through various marker 

imputation methods.  One method involves using the average marker effect across all individuals 

to impute missing values.  Mean imputation is considered to be sufficient in cases where there 

are few missing values or low marker density but may be insufficient for GS under conditions of 

very high marker density with a high percentage of missing values.  Random forest (RF) is 

another imputation method that involves creating “trees” of data and choosing the largest cluster 

of trees (Breiman, 2001). Random forest is considered to be a sufficient imputation method for 

GBS data but has the major constraint of being more computationally intensive and thus may be 

impractical for large data sets.  Previous studies have compared imputation methods for genome-

wide markers  (Poland et al., 2012b; Rutkoski et al., 2013).  Although differences were found in 

accuracy of marker imputations, imputation method did not reliably affect accuracy of the GS 
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models.  The influence of imputation method on GS accuracy for quality traits in wheat is not yet 

clearly established.  

GS for end-use quality traits such as mixograph parameters or pup-loaf baking 

parameters in wheat is limited.  Heffner et al. (2011a) compared GS to MAS and phenotypic 

selection for end-use quality traits in two bi-parental wheat populations.  The authors noted that a 

multi-family approach would capture more effects in a breeding population and be more 

effective than a bi-parental model.   Phenotyping individuals across many environments would 

also be beneficial when implementing GS, as marker estimates would be more robust under these 

conditions.  In another study, Heffner et al. (2011b) followed through with this idea of multi-

family and multi-environment data to develop GS models for agronomic and quality traits using 

a population of wheat breeding lines phenotyped across two years.  Their results indicated that 

GS was superior to MAS and phenotypic selection; however, the effects of marker imputation 

method and trait heritability when implementing GS for wheat quality were not investigated.  

The objective of this study was to develop and assess the accuracy of GS models for 11 

end-use quality traits in hard winter wheat utilizing GBS markers and phenotypic data from 

multiple years and locations.  To meet this objective, cross validation was performed by 

randomly assigning individuals phenotyped across multiple locations from 2006 – 2012 to 

training or testing populations.  Effects of trait heritability, marker imputation, and marker 

number on GS accuracy were investigated.  Additionally, implications of validation methods to 

determine model accuracy were investigated. 
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MATERIALS AND METHODS 

Source Materials 

The germplasm used in this study consisted of experimental lines and released cultivars 

representative of the Colorado State University (CSU) Winter Wheat Breeding Program.  Entries 

were from various trials harvested from 2006 to 2013.  Trials included the following: CSU Elite 

Trials, Variety Performance Trials, Advanced and Preliminary Yield Nurseries, and Single-Seed 

Descent-Derived Preliminary Nurseries.  Locations were in Colorado and included the following: 

Akron, Arapahoe, Burlington, Dailey, Fort Collins, Genoa, Haxtun, Julesburg, Lamar, Orchard, 

Rocky Ford, Roggen, Sheridan Lake, Walsh, and Yuma.  For all traits, the most data available 

was used to develop models.  Because every individual was not subject to all quality testing in 

the breeding pipeline, training panel sizes varied among traits (see Table 4.1). 

Phenotyping 

Evaluation of end-use quality in wheat involves measuring traits that are related to 

overall milling and baking characteristics.  Milling involves physical characteristics relating to 

the kernel structure and make up, while baking involves characteristics related to dough 

rheology, or how the dough will form, stretch, and deform.  To assess milling and baking 

characteristics, eleven traits were measured: kernel hardness, kernel diameter, kernel weight, 

protein concentration (grain protein), flour yield, mixograph peak time (mixo mix time), 

mixograph tolerance (mixo tolerance), bread dough water absorption (bake abs), bread dough 

mixing time (bake mix time), crumb grain score, and loaf volume.   

All quality evaluations were done in the wheat quality lab at Colorado State University in 

Fort Collins, Colorado.  Traits were measured using approved methods of the American 

Association of Cereal Chemists (AACC, 2000).  Single kernel hardness, diameter, and weight 



 

74 

 

were determined using the single kernel characterization system (SKCS4100; Perten 

Instruments, Springfield, IL).  Protein concentration was determined using NIRS on whole grain 

samples using a Foss NIRSystems model 6500 (Foss North America Inc., Eden Prairie, MN) and 

reported on a 120 g kg
-1

 (12%) moisture basis.  Samples of 300 g of grain were tempered to 155 

g kg
-1

 (15.5 %) moisture and milled using a modified Brabender Quad Senior milling system 

(C.W. Brabender, South Hackensack, NJ; Method AACC 26-10A for milling).  Flour yield was 

determined as the percentage of total grain weight accounted for by all flour fractions.  

Mixograph parameters of dough peak time and mixing tolerance were obtained with a 10-gram 

mixograph and MIXSMART software for computer-analyzed parameters (v. 1.0.484 for 

Windows, National Manufacturing, Lincoln, NE).  Mixograph tolerance was scored visually on a 

7-point scale of 0–6, where zero is unacceptable and six is outstanding.  To measure bread-

making parameters of bake water absorption, bake mix time, and loaf volume, the pup loaf (100 

g of flour) straight-dough procedures were used (method 10-10B; AACC 2000).  After cooling, 

loaves were sliced in half and evaluated by a trained panelist for crumb grain on a 7-point scale 

of 0-6, where zero is unsatisfactory and six is outstanding.    

All phenotypic data were collected from 14 Colorado locations over a seven-year period 

from 2006 to 2012. An imbalanced set of year-by-location combinations generated a total of 39 

environments.  Across all environments a mixed model was used to calculate best linear 

unbiased predictors (BLUPs) for each genotype by trait using the lme4 package (Bates et al., 

2014) in R (R Development Core Team, 2011).  Environments were treated as random effects in 

the model.  Heritability for each trait was calculated on an entry-mean basis (Fehr, 1987, p. 98) 

with ASREML-R (Butler et al., 2009).   
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Additionaly, phenotypic data was collected from nine Colorado locations harvested in 

2013 and used in the forward prediction approach described later.  Any common genotypes 

between the two data sets were removed from the 2013 data.   BLUPs for each genotype by trait 

were calculated with the same procedures used for the 2006 – 2012 dataset.   

Genotyping 

Materials were genotyped using a two-enzyme GBS approach as described by Poland et 

al. (2012a).  Libraries were prepared according to protocols reported previously (Elshire et al., 

2011).  A total of 45,816 single nucleotide polymorphisms (SNPs) were detected from GBS tags 

using a population-based filtering approach (Poland et al., 2012b).  Markers were filtered for 

minor allele frequencies above 0.01 and missing data below various thresholds (>0.2,  >0.3, 

>0.5, and >0.7).  Remaining missing markers were imputed with the mean or by a random forest 

algorithm using the R packages rrBLUP (Endelman, 2011) and randomForest (Breiman et al., 

2012), respectively. Random forest regression is an ensemble approach that involves the creation 

of decision trees followed by selection of the most common output from the trees (Breiman, 

2001).  Marker sets ranged in size from 5,085 to 35,159 SNPs.  Due to computational demand, 

random forest was used on marker sets containing up to 50 percent missing data per marker, 

while mean imputation data sets included marker sets including up to 70 percent missing data.       

GS Models and Prediction Accuracy 

Genomic estimated breeding values were calculated using ridge regression best linear 

unbiased prediction (RR-BLUP; Meuwissen et al., 2001).  RR-BLUP makes the incorrect 

assumption of equal marker effect variances but is computationally more convenient than 

Bayesian methods, which allow for unequal variances of marker effects and epistasis.   RR-
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BLUP marker estimates were calculated using the R package rrBLUP (Endelman, 2011) 

according to the following model: 

𝑦 = 𝜇1𝑛 + 𝑍𝑢 + 𝜀 

where 𝑦 is a vector of phenotypic means for individuals; 𝜇 is an intercept term, 1𝑛 is a 

vector of ones; 𝑍 is a design matrix (n x m) allocating marker values to individuals; 𝑢 is a vector 

(n x m) of marker effects; and 𝜀 is a vector of error terms with a variance of 𝜎𝜀.   

 

Cross-Validation Accuracy 

Cross-validation (CV) is a common technique in determining accuracy of genomic 

predictions and has been used in previous GS studies (Crossa et al., 2010; Hayashi and Iwata, 

2013; Heffner et al., 2011a; Heslot et al., 2013a; Lorenzana and Bernardo, 2009).  A random 

five-fold cross-validation method was used to estimate accuracy on models utilizing data from 

2006 - 2012.  This involved randomly assigning genotypes to one of five folds, using four folds 

to train the model, and one fold to validate the model.  This was repeated until all folds were 

used to validate the model, following the procedure used by Lorenzana and Bernardo (2009).  

Accuracy was calculated as the correlation coefficient between GEBVs and BLUPs from the 

validation set, and reported as the mean across folds.  This was repeated 100 times for each trait 

and marker set combination.  Least significant differences (LSD) of accuracies were calculated 

between marker sets for each trait with the LSD test for multiple comparisons in the R package 

agricolae (de Mendiburu, 2014).  

Forward Prediction Accuracy 

An additional validation method was used to estimate model accuracy that involved 

predicting the most recent breeding lines phenotyped in 2013.  This involved using all available 
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data from 2006 – 2012 as the training set and individuals from 2013 data as the validation set, 

with no common genotypes between training and validating sets.  Accuracies were calculated as 

the correlation between GEBVs and BLUPs from 2013 individuals and averaged across mean 

marker subsets.  Across traits, percentage of validation lines out of total number of lines ranged 

from 10 to 20 percent so that no trait had an unusual ratio of training to testing populations and 

size of validation sets were comparable to CV testing sets.  

RESULTS AND DISCUSSION  

Genomic Prediction for Quality Traits 

Although the cross-validation approach used in this study did not partition years or 

environments between training and testing populations, phenotypic values used to train the 

model came from BLUPs calculated across 39 environments.  Using multi-environment data 

should reduce error due to genotype by environment interaction (G x E) and provide a greater 

sample of the target environmental conditions for the breeding program.  Previous studies have 

shown the benefit of phenotyping across multiple years and locations to establish robust models 

with high predictive performance (Heffner et al., 2011b; Wang et al., 2014).  Environmental 

factors like temperature, moisture, and nutrient availability have been shown to affect end-use 

quality of wheat (Cornish et al., 2001; Dupont and Altenbach, 2003). Thus, it was necessary in 

this study to address G x E interaction by phenotyping across several years and locations and 

including environment as an effect in the estimation of BLUP phenotypic values.  This is the 

most common method of addressing G x E in GS but another approach is to incorporate G x E 

effects directly into the model.  Dawson et al. (2013) explored modeling G x E in prediction 

models for a large historical dataset of international wheat genotypes but found no increase in 

prediction accuracy compared to the global random cross-validation accuracies. The wheat 
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breeding program at CSU does not breed for quality specific to target environments because of 

the difficulty and expense of separating grain based on quality.   For these reasons, the method 

employed in the current study was likely sufficient in addressing G x E effects.   

Average cross-validation accuracies for quality characteristics ranged from 0.30 for bake 

absorption to 0.63 for bake mix time (Table 4.1).  Accuracies for flour yield and grain protein 

were similar to previous studies in wheat (Heffner et al., 2011a, 2011b), while GS accuracies for 

other quality traits in wheat have not been reported.  In a simulated study for winter wheat, a GS 

accuracy of 0.3 was suggested as a threshold for genetic gain via GS to exceed that of MAS 

(Heffner et al., 2010).  Thus, in this study, even GS for the trait with the lowest accuracy would 

likely lead to greater rates of genetic gain.    

The value of obtaining an estimate for a quality parameter in wheat is high relative to 

many other traits because of the time and cost involved in phenotyping (e.g., measurements from 

a pup loaf baking test).  In addition, the short turnaround time between harvest and planting for 

winter wheat makes it very difficult to apply phenotypic data from the present year on planting 

decisions for the following year.  This delay in phenotypic evaluations also delays the process of 

returning a line to the crossing block to be used as a parent, also known as the cycle time.  The 

benefit of GS lies in the reduction of cycle time in a breeding program.  Target traits that are time 

consuming to phenotype will result in a longer cycle time under phenotypic selection, and thus 

benefit more from GS.  Therefore, models for such traits may allow for lower GS accuracies as 

the primary benefit is in the reduction of cycle time even with a low predictive ability.  Results 

from this study show moderate to high accuracies, giving more support for implementing a GS 

approach for breeding wheat varieties with acceptable end-use quality characteristics.  Among 

quality traits measured, two traits commonly used when assessing dough rheology and baking 
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performance are mixograph mix time and loaf volume.  In this study, predictive accuracies for 

these two traits were among the highest reported (0.62 and 0.55, Table 4.1).  As such, these traits 

may be useful to emphasize when implementing GS into a wheat breeding program with a goal 

of maintaining end-use quality.  Additionally, mix time was positively correlated with loaf 

volume (R
2
 = 0.54, P < 0.05).  Thus, GS models for predicting loaf volume may benefit from 

phenotypic information on mix time as studies have shown correlated trait information could 

improve GS accuracy (Rutkoski et al., 2012).  More phenotypic data on mix time would be 

available as this test is performed on more individuals in the breeding program than loaf volume. 

Trait Heritability and CV Accuracies 

Across traits, a positive linear relationship was observed between trait heritability and CV 

accuracy (Figure 4.1).  This is expected as heritability is a measure of the proportion of 

phenotypic variation that can be explained by genotypic variation.  The data used to train the 

model was poor for traits with low heritability, which is why the model accuracy was low 

relative to models for other traits.  Heffner et al. (2009) observed an increase in prediction 

accuracy as heritability increased.  Other studies have observed a positive correlation between 

trait heritability and model accuracy (Combs and Bernardo, 2013; Daetwyler et al., 2014). Bake 

absorption followed this linear trend as heritability (0.07) and accuracy (0.30) were both low 

relative to other traits in this study (Table 4.1).  However, GS accuracy for grain protein was 

moderate (0.47) despite its low heritability (0.03).  Previous studies have also observed 

exceptions to this trend in some traits (Combs and Bernardo, 2013; Heffner et al. 2011a).  

Reasons for these exceptions could be due to other factors contributing to model accuracy such 

as number of individuals included in the training panel.  In this study there was a larger panel of 

individuals (1095) for grain protein compared to other traits measured.  Other studies have 
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observed an increase in accuracy due to an increase in training panel size (Heffner et al., 2011b).  

Thus, the high GS accuracy for protein may simply reflect the large training panel available for 

the trait in this study.  However, studies have shown the effective training panel size to be 

dependent on the targeted trait and population (Combs and Bernardo, 2013).  This could explain 

why some traits, e.g., bake mix time, had a smaller training panel but greater prediction 

accuracies.  To determine the effective training panel size, one must look at each trait separately 

and test for accuracies among different sizes of the training panel, which was beyond the scope 

of this study.  

Effect of Marker Imputation and Density 

Choosing a marker platform is an important step in incorporating GS into a breeding 

program.  An advantage of the GBS platform is the ability to generate an abundance of marker 

information at a relatively lower cost compared to other platforms (Poland et al., 2012b).  Prior 

work has shown that GBS markers are superior to array-based markers because of this increase 

in marker density (Heslot et al., 2013b).  However, the limitation to GBS markers is the high 

degree of missing data per marker.  To address this, it is important to have a marker imputation 

method that is successful at making genomic predictions and easy to implement during the 

marker data filtering process.  As such, two common methods for marker imputation were 

compared with regard to their impact on GS accuracy: mean imputation and Random Forest 

imputation.   

Across marker sets, differences in GS accuracies among marker imputation methods were 

minimal (< 0.02; Table 4.2).  When comparing imputation methods for each trait and marker 

density, only two out of 33 scenarios showed a significant difference, with the mean imputation 

method superior in one (flour yield, 50% missing) and RF superior in the other (mixo mix time, 
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20% missing).  For all other scenarios, differences in accuracies were not statistically significant 

(P  >  0.05).  Poland et al. (2012b) demonstrated that RF had less imputation error than the mean 

imputation method, but similar to this study, this didn’t affect the predictive accuracy of their 

model.  Rutkoski et al. (2013) found some cases where mean imputations led to a decrease in GS 

accuracy when using marker sets with 70 percent or more missing data.  In this study, we were 

unable to compare the two imputation methods for the largest marker set with 70 percent missing 

data due to the computational demands of RF imputation.  However, no significant improvement 

was observed from the RF markers with 50 percent missing data compared to the mean markers 

with 50 percent missing data (Table 4.2).  Results suggest that the simpler mean imputation 

method should be sufficient given its computational ease and similar resultant model accuracy.  

Another consideration when implementing GS concerns the number of markers needed to 

obtain optimal prediction accuracy.  The goal of this step is to obtain genome coverage so that all 

contributing loci are in complete linkage disequilibrium with at least one marker.  Because the 

GBS platform produces an abundance of markers at a relatively low cost, this goal is attainable 

for most breeding programs.  In this study, reducing number of markers had little impact on 

model accuracy across all traits for both imputation methods tested.  For all traits, reducing the 

marker sets from 35,000 (for mean imputation) or 21,000 (for RF imputation) to 5,000 reduced 

the model accuracy by less than 0.03 (Table 4.2).  Despite these small differences, significant 

differences were found among marker sets as accuracy calculations were repeated 100 times for 

each scenario, reducing the standard errors.  In this case, results showed that optimum marker 

number varied depending on the trait.  Only one trait, grain protein, increased in accuracy when 

the largest marker set of 35,000 was used (Table 4.2).  Because differences were small in this 

study, it was concluded that accuracy was generally not influenced by marker number. 
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Heffner et al. (2011b) observed a benefit in increasing number of markers up to 384 but 

found no significant increase in model accuracy after this threshold, with the largest marker set 

used in the study containing 1158 markers.  Lorenzana and Bernardo (2009) also found 

diminishing returns from increasing number of markers, indicating that increases in marker 

density do not always result in greater accuracy.  Similar to these results, Heslot et al. (2013b), 

found that optimum marker densities varied from 4,787 to 38,120 depending on the trait.  It has 

been suggested that the advantage of increasing marker density will only be realized if it scales 

with an increase in training panel size (Muir, 2007).  This may explain why the trait with the 

largest training panel (grain protein) was the only trait to show a significant increase in model 

accuracy when the largest number of markers were used.  However, the single kernel 

characteristics had almost as many individuals in the training panel (1060) but varied in the 

optimum marker density (hardness: 21K; diameter: 10K; and weight: 5K).  Thus, other factors 

such as the number of effective loci contributing to the trait may affect the optimum marker size, 

as traits controlled by fewer underlying loci would require fewer markers.   

Forward Prediction Accuracy 

Random CV accuracies were compared to ‘forward prediction’ accuracies to investigate 

if the cross-validation method used was a good estimate of how the model would perform when 

predicting new material in the breeding program.  This forward prediction approach represents 

implementation of GS in a breeding program as past individuals will likely be used to predict 

phenotypes of new lines.  Similar to CV estimates, a positive linear relationship was observed for 

forward prediction accuracy and trait heritability (Figure 4.2), demonstrating the strong influence 

of heritability on GS accuracies.  A significant positive correlation existed between CV and 

forward prediction accuracy (R
2
 = 0.35; P < 0.05), although forward prediction accuracies of 
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traits varied in their deviation from CV estimates (Table 4.3).  It was expected that CV 

accuracies would be higher than forward prediction accuracies as environmental effects are 

shared between training and testing sets in the former method.  However, this did not occur for 

all traits in our study.  With the exception of bake absorption for traits with heritability above 

0.3, the forward prediction accuracy was greater than the CV accuracy. For traits with 

heritability below 0.3, the forward prediction accuracy was less than the CV accuracy (Table 4.1, 

Table 4.3).  Thus, in this scenario, if the heritability was high enough, the model would perform 

better than expected when predicting new lines.    

  Reasons for this increase in accuracy are unclear but could be due to the difference in 

training panel size as forward prediction included all 2006-2012 individuals while CV used 80 

percent of the individuals to train the model.  A decrease in accuracy for low heritability traits 

could be due to poor estimates of phenotypic data.  To increase accuracy in low heritability traits, 

more resources could be put into obtaining accurate phenotypic data for model training.  This 

could involve more replications or better experimental designs to reduce error in the phenotypic 

calculations but could also negate the cost reduction benefit of GS.   

The forward prediction method only involved prediction for one year and more data are 

needed to draw clear conclusions about validation methods as forward prediction estimates can 

vary from year to year (Dawson et al., 2013).  It has been suggested that random cross validation 

is a sufficient assessment of accuracy for a breeding program (Daetwyler et al., 2013).  From a 

breeding perspective, the goal in calculating GEBVs is to predict a breeding value for an 

individual representative of the individual’s worth over the next several years.  Therefore, 

prediction of performance for one year would be insufficient compared to a cross-validation 

prediction using data from several years and locations.   
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Table 4.1 Heritability, population size, and mean genomic selection accuracy for quality 

traits in wheat 

Trait Heritability N
†
 

Cross-Validation 

Accuracy
‡ 

Flour Yield 0.18 428 .56 

Kernel Hardness 0.21 1060 .50 

Kernel Diameter 0.18 1060 .50 

Kernel Weight 0.19 1060 .49 

Grain Protein 0.03 1095 .47 

Mixograph Mix Time 0.45 908 .62 

Mixograph Tolerance 0.39 458 .48 

Bake Absorption 0.07 458 .30 

Bake Mix Time 0.61 448 .63 

Crumb Grain 0.44 454 .54 

Loaf Volume 0.32 420 .55 

†Number of unique individuals genotyped and phenotyped. 
‡ Mean 5-fold cross-validation accuracy. 
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Table 4.2 Genomic selection cross-validation accuracies† for end-use quality traits with different marker sets based on 

imputation and density 

Marker Set
‡ 

 (% Missing) 
n 

Flour 

Yield 

Kernel 

Hardness 

Kernel 

Diameter 

Kernel 

Weight 

Grain 

Protein 

Mixo 

Mix 

Time 

Mixo  

Tolerance 

Bake 

Abs 

Bake 

Mix 

Time 

Crumb 

Grain 

Loaf 

Volume 

Mean (20) 5K 0.57 ab
§
 0.49 cd 0.48 b 0.49 abc 0.47 b 0.60 b 0.47 c 0.30 ab 0.61 cd 0.52 c 0.54 b 

Mean (30) 10K 0.57 ab 0.50 bc 0.49 ab 0.49 bc 0.47 b 0.62 a 0.48 abc 0.32 a 0.64 ab 0.55 a 0.56 ab 

Mean (50) 21K 0.57 a 0.51 ab 0.50 a 0.50 a 0.47 b 0.62 a 0.48 bc 0.31 ab 0.64 ab 0.54 a 0.56 ab 

Mean (70) 35K 0.57 ab 0.51 a 0.50 a 0.50 abc 0.49 a 0.63 a 0.47 bc 0.31 ab 0.62 bc 0.54 a 0.57 a 

RF (20) 5K 0.55 b 0.48 d 0.50 ab 0.48 c 0.47 b 0.62 a 0.47 bc 0.31 ab 0.60 d 0.52 bc 0.54 b 

RF (30) 10K 0.55 ab 0.49 cd 0.50 a 0.49 abc 0.47 b 0.62 a 0.50 a 0.30 ab 0.64 a 0.55 a 0.54 b 

RF (50) 21K 0.55 b 0.50 ab 0.50 a 0.50 ab 0.47 b 0.62 a 0.49 ab 0.29 b 0.64 ab 0.54 ab 0.57 a 

Average   0.56   0.50   0.50   0.49   0.47   0.62   0.48   0.30   0.63   0.54   0.55   
†Mean 5-fold cross-validation repeated 100 times for each marker set and trait combination. 
‡ Marker sets labeled by imputation method used for missing data and threshold of maximum percent missing per marker allowed in parenthesis. 

§Within traits, means with the same letter are not significantly different (α = 0.05). 
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Table 4.3 Genomic selection accuracies for end-use quality traits in winter wheat 

Trait 

 

Cross-Validation 

2006-2012 accuracy† 

Forward Prediction of  

2013 accuracy 
‡
 

Difference§ 

 

Flour Yield 0.57 0.34 -0.23 

Kernel Hardness 0.50 0.45 -0.05 

Kernel Diameter 0.49 0.24 -0.25 

Kernel Weight 0.49 0.13 -0.36 

Grain Protein 0.47 0.24 -0.23 

Mixograph Mix Time 0.62 0.67  0.05 

Mixograph Tolerance 0.48 0.66  0.18 

Bake Absorption 0.32 0.50  0.18 

Bake Mix Time 0.64 0.73  0.09 

Crumb Grain 0.55 0.70  0.15 

Loaf Volume 0.56 0.77  0.21 
†Random 5-fold cross validation accuracies from 2006-2012 data set. 
‡ Accuracies from models trained with 2006-2012 data to predict 2013 data. 

§ Difference between accuracy methods calculated by subtracting cross-validation from forward prediction accuracy. 
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Figure 4.1 Regression of genomic selection cross-validation accuracies on heritability for 11 

quality traits in wheat 
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Figure 4.2 Regression of genomic selection forward prediction accuracy on heritability for 11 

quality traits in wheat 
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