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Abstract

New Constructions of Strongly Regular Graphs

There are many open problems concerning strongly regular graphs: proving non-existence

for parameters where none are known; proving existence for parameters where none are

known; constructing more parameters where examples are already known. The work addressed

in this dissertation falls into the last two categories. The methods used involve symmetry,

geometry, and experimentation in computer algebra systems.

In order to construct new strongly regular graphs, we rely heavily on objects found in

finite geometry, specifically two intersection sets and generalized quadrangles, in which six

independent successes occur. New two intersection sets are constructed in finite Desarguesian

projective planes whose strongly regular graph parameters correspond to previously unknown

and known ones. An infinite family of new two intersection sets is also constructed in finite

projective spaces in 5 dimensions. The infinite family of strongly regular graphs have the

same parameters as Paley graphs. Next, using the point graph of the classical GQ H(3, q2),

q even, a new infinite family of strongly regular graphs is constructed. Then we generalize

three infinite families of strongly regular graphs from large arcs in Desarguesian projective

planes to the non-Desarguesian case. Finally, a construction of strongly regular graphs from

ovoids of generalized quadrangles of Godsil and Hensel is applied to non-classical generalized

quadrangles to obtain new families of strongly regular graphs.
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CHAPTER 1

Introduction

The main aim of this thesis is the construction of strongly regular graphs, a concept

introduced by Bose in 1963 [14]. Interestingly, Bose was a former professor at CSU in the

1970’s.

A graph is regular if every vertex has a constant number of neighbors. It is strongly

regular if, in addition, any pair of adjacent vertices have a constant number of neighbors and

any pair of non-adjacent vertices have a constant number of neighbors.

The study of strongly regular graphs is part of algebraic graph theory. One illustration of

this is that amongst regular graphs that are neither complete nor null, the strongly regular

graphs are precisely those graphs with the algebra generated by the adjacency matrix of

minimum dimension (namely, two).

The methods used in this thesis to construct strongly regular graphs are a novel mix

of computer algebra, group theory and finite geometry. The computer algebra is used to

perform experiments to discern the truth, and leans on the finite group theory to do this.

The finite geometry is a constant companion.

The thesis has six independent successes. In Chapter 4, two of them occur. First, new

two intersection sets are constructed in finite Desarguesian projective planes giving strongly

regular graphs, some with new parameters, and some new ones with known parameters.

Second, an infinite family of new two intersection sets are constructed in finite projective

spaces of five dimensions giving an infinite family of strongly regular graphs. In Chapter

5, the whole mix of techniques is applied to construct new infinite families of strongly

regular graphs with the parameters of the collinearity graphs of some classical generalized

1



quadrangles. In Chapter 6, two of the successes occur. The first is tripartite: three

different constructions of infinite families of strongly regular graphs from large arcs in

Desarguesian projective planes are generalized to the non-Desarguesian case. The second is a

generalization of one of these three to maximal arcs in non-Desarguesian planes. In Chapter

7, a construction of strongly regular graphs from ovoids of generalized quadrangles of Godsil

and Hensel is applied to non-classical generalized quadrangles to obtain new infinite families

of strongly regular graphs.

There are recurrent themes. Finite projective geometries are used explicitly in all but

Chapter 7, and there the non-classical generalized quadrangles are constructed in finite

projective spaces of dimension 5. Two intersection sets occur explicitly in the results of

Chapters 4 and 6. Generalized quadrangles occur explicitly in the results of Chapters 5 and

7, and implicitly in Chapter 6. Classical simple groups underly all the successes: PSL(3, q)

in Chapters 4 and 6, PΩ(3, q) in Chapter 6, PSp(6, q) in Chapter 7, PΩ−(6, q) in Chapter

1, and in its other guise as PSU(4, q2) in Chapter 5.

Put more broadly, our mix of techniques involves experimental mathematics enabled by

computer algebra, geometry and symmetry.

Finite geometry is the study of an incidence structure with a finite number of elements.

Projective geometry as an independent subject was introduced by Poncelet’s treatise in 1822

[86]; affine geometry by Möbius in 1827 [72]. Finite projective geometries first attracted

serious interest in the 1890’s in the work of Peano and Fano. In dimension at least three,

all projective and affine geometries arise from vector spaces; but in dimension two, there

are other geometries, for which the theorem of Desargues (1648) fails. (Consequently, finite

projective spaces of dimension at least three and finite Desarguesian projective planes are
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operands for the simple projective special linear groups.) Finite projective spaces occur

throughout the thesis; non-Desarguesian finite affine planes occur in Chapter 6 in order to

obtain a more general result for large arcs.

One of the sources of great beauty in projective geometry is the principle of duality.

If the distinction between a projective plane and its dual is abandoned, then projective

planes can be considered as being bipartite graphs with girth six and diameter three,

such that every vertex has at least three neighbors. Bipartite graphs with girth double

their diameter, such that every vertex has at least three neighbors are called generalized

polygons, a concept introduced by Jacques Tits in 1959 [107]. The case of diameter four-

generalized quadrangles- occurs in many places throught the thesis. Both the collinearity and

concurrency graphs of finite generalized quadrangles are strongly regular. Partial geometries,

a further generalization of generalized quadrangles, were introduced by Bose in 1963, and

they occur in Chapter 6. (They also have collinearity and concurrency graphs of finite

generalized quadrangles that are strongly regular.)

Configurations in finite projective spaces also play a role. Two intersection sets (sets of

points such that every hyperplane meets them in one of two numbers) were connected to

two weight codes and strongly regular graphs by Delsarte in the 1970’s [22]. Special two

intersection sets include quadrics and Hermitian varieties, which are associated with the

classical orthogonal and unitary simple groups, respectively. Maximal arcs and hyperovals

are also special instances of two intersection sets. Spreads of projective spaces have been

used to construct projective planes since the work of Andre in 1954, independently discovered

by Bruck and Bose in 1964. The fact that some of these spreads consist of totally isotropic

subspaces with respect to a non-degenerate alternating form is one motivation for studying
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spreads in generalized quadrangles, and the dual concept, ovoids. (Another motivation is

given by the family of simple groups discovered by Suzuki in 1959, see [106].) Families of

(classical) generalized quadrangles are associated with the classical groups of Lie rank two.

Hyperovals (and related arcs) were used to construct generalized quadrangles by Tits in

1968, Aherns and Szekeres in 1969, Hall in 1971 and Payne in 1985. Maximal arcs were used

to construct partial geometries in two ways by Wallis and Thas in the 1970’s. Ovoids of

generalized quadrangles were used to construct strongly regular grpahs by Godsil, building

on work of his student Hensel, all of which will be discussed in further detail.

Thus, despite the focus of this paper being on strongly regular graphs, much of this work

can be related to many other areas within finite geometry.

1.1. Symmetry

In addition to these objects, symmetry is a central component when constructing new

strongly regular graphs. Not only is symmetry useful for constructing, the use of groups

is necessary for the characterization, classification, and calculation of objects. Objects are

distinguished via their automorphism groups.

If one chooses a permutation group at random and calculates all the strongly regular

graphs on which it acts, then, with probability one, you will get none. Some permutations

are not automorphisms of strongly regular graphs. One way to avoid these bad permutations

is to choose a subgroup of the automoprhism group of a known strongly regular graph. Unlike

in group theory, a small subgroup is better, for then there are more likely to be new graphs

found. If the known strongly regular graph has a small group, then this technique is less

likely to be effective (or possible to be implemented). When it can be implemented, it allows
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the consideration of paramter sets beyond the range of complete enumeration techniques.

This is one explanation for the recurring role of classical groups in the thesis- two others

being their beauty and the ease of understanding their subgroups.

1.2. Graphs

While symmetry is an underlying and unifying theme, so are graphs. Graph theory is

the study of graphs, which are structures used to depict pairwise relations between objects.

Graphs are used in both mathematics and computer science. Graphs are comprised of

vertices and lines or edges that connect vertices. More specifically, a graph is an ordered

pair G = (V,E) consisting of a set V of vertices together with a set E of edges, which are

two-element subsets of V .

1.2.1. History. The study of graphs did not begin until 1736 when Leonhard Euler

published a paper on the Seven Bridges of Konigsberg [50]. The ideas that Euler used

(relating edges and vertices) were picked up by Cauchy and L’Huiller in order to study

convex polyhedrons [25, 70], which was the start of topology. More than a century after the

Konigsberg result, Cayley discovered connections between trees (a specific type of graph) and

calculus [26]. These results lead to the branch of graph theory known as enumerative graph

theory, which has had numerous implications in the field of chemistry. (The other branches

of graph theory are algebraic, geometric, and algorithmic.) The first text on graph theory

was not published until 1936 and it was written by Denes Konig [67]. It is believed that

it wasn’t until Frank Harary’s book [63], published in 1969, that mathematicians, chemists,

and engineers could speak to one another about graph theory. Since then, various texts have

been published on the subject.
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1.2.2. Definitions. There are numerous adjectives associated with graphs. The definitions

provided here are the only ones necessary for the remainder of this paper. A graph is

undirected whenever each edge has no orientation. That is, edge {a, b} is identical to edge

{b, a}. We will assume that our graphs are undirected. In addition to that, the graphs will

be simple. A simple graph is an undirected graph containing no loops or multiple edges.

In order for a graph to be loopless, there can be no edges of the form {a, a}. A complete

graph is a simple undirected graph in which every pair of distinct vertices is connected by a

unique edge. A graph is regular if each vertex has the same number of neighbors; i.e. every

vertex has the same degree or valency. A distance-regular graph is a regular graph such

that for any two vertices v and w, the number of vertices at distance j from v and at distance

k from w depends only on j, k, and the distance i between v to w. We can also discuss

the diameter of a graph, which deals with the distance between two vertices. The distance

between two vertices in a graph is the number of edges in the shortest path connecting them.

There can be more than one shortest path between two vertices. The diameter of a graph is

the maximum distance between all pairs of vertices in that graph. A distance-regular graph

with diameter 2 is strongly regular. Lastly, a bipartite graph is a graph whose vertices

can be divided into two disjoint sets U and V such that every edge connects a vertex in U

to one in V . Bipartite graphs will be discussed in further detail in Chapter 7. The girth of

a graph is the length of its shortest cycle.

1.2.3. Adjacency Matrix. For each graph, there is an associated adjacency matrix.

The adjacency matrix for a finite graph on n vertices is an n × n matrix where the

non-diagonal entry aij equals the number of edges from vertex i to vertex j. Entry aii = 0,

as the graphs we will be dealing with are loopless. Furthermore, aij will equal 0 or 1, as we
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will not allow for multiple edges between vertex i and vertex j. If the graph is undirected,

which we are assuming, then the adjacency matrix is symmetric. That is, aij = aji for all

i, j ∈ {1, 2, ..., n}.

An adjacency matrix can embody multiple characteristics of a graph. Since the adjacency

matrix of an undirected simple graph is symmetric, it must have real eigenvalues and

an orthogonal eigenvector. Furthermore, suppose two graphs Γ1 and Γ2 have adjacency

matrices A1 and A2, respectively. Then Γ1 and Γ2 are isomorphic if and only if there exists

a permutation matrix P such that

PA1P
−1 = A2.

In particular, if Γ1 and Γ2 are isomorphic, then by definition, A1 and A2 are similar, which

implies that they have the same minimal polynomial, characteristic polynomial, eigenvalues,

determinant, and trace. These five objects can then serve as isomorphism invariants of

graphs. However, it should be noted that two graphs can have the same set of eigenvalues

but not be isomorphic.

1.2.4. Automorphism Group. As previously mentioned, the automorphism group of

a graph is a distiguishing characteristic between like graphs. An automorphism of a graph

G = (V,E) is a permutation σ of the vertex set V , such that the pair of vertices (u, v) form

an edge of G if and only if (σ(u), σ(v)) also form an edge. Less formally, an automorphism of

a graph G is a graph isomorphism from G to itself. The automorphism group of a graph

is the set of automorphisms of that graph, under the composition function.

The Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a useful

graph in the sense that it is small and can be used as an example or a counterexample

for many graph theory problems. The automorphism group of the Petersen graph is S5, the
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symmetric group on 5 points. To illuminate this fact, it is important to note that the Petersen

graph is symmetric, meaning it is edge and vertex transitive. An even stronger condition is

that it is 3-arc transitive, meaning that every directed 3-edge path can be transformed into

every other such path by a symmetry of the graph. Every homomorphism of the Petersen

graph to itself that doesn’t identify adjacent vertices is an automorphism. There are various

ways of drawing the Petersen graph, each of which can exhibit 5-way or 3-way symmetry, but

it is impossible to draw the graph in the plane in such a way as to exhibit the full symmetry

group, which helps to emphasize the fact that computing a graph automorphism is NP hard.

1.2.5. Applications. Graphs are used to model various relations and processes; they

are used to represent many practical problems, ranging from biology to information systems.

Biochemists use them in order to study genomics; electrical engineers use them to represent

communication networks and for coding theory. Graphs are also used in operations research

for scheduling purposes. While the previously mentioned applications are very important

for their specific users, graphs can also be used for less practical purposes, like playing chess.

Besides the practical application side of graph theory, the methods used to study such objects

have proven to be useful when proving results in various arenas of mathematics, like Fermat’s

Little Theorem. The coding-theoretic duals of two-weight codes- uniformly packed codes-

have found application in communication over noisy channels- the theory of error-correcting

codes.

1.3. A Case Study

The result in Chapter 5 illustrates beautifully the mixture of ideas. The result began

with a known graph which had the same parameters as the collinearity graph of the classical

generalized quadrangleH(3, 4) associated with the unitary group PSU(4, 4). The automorphism
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group of this graph suggested using the stabilizer of a point in PΓU(4, q2). Computer algebra

experiments in Magma showed that similar graphs could be constructed from subgroups of

PΓU(4, q2), for q=4 and 8, but not for q odd. Proper subgroups of the stabilizer of a point in

PΓU(4, q2) were needed. Moreover, the pre-existing knowledge of the subgroup structure of

PΓU(4, q2) identified the appropriate group as being the stabilizer of two orthogonal tangent

lines to the Hermitian variety at the point (which equalled the stabiliser of the point when

q = 2). This suggested that there is a construction of a new family of strongly regular graphs

from the classical generalized quadrangle H(3, q2) and that this construction is in terms of

a point P of the generalized quadrangle and two lines t1, t2 of PG(3, q2) on P , with only

totally isotropic point P , which are interchanges by the unitary polarity. Further computer

algebra experiments in Magma suggested what the new adjacency should be. Then a proof

was sought and found. It should be noted that exerperimentation was used throughout

this process, including during the write up of the proof, with finite geometry providing the

language necessary to describe what was occuring.
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CHAPTER 2

Background

Strongly regular graphs originate from the study of association schemes. This section

will begin by looking at the evolution of strongly regular graphs, ending with how they are

related to finite projective spaces.

2.1. Association Schemes

The history of strongly regular graphs is a short one, with the term being coined in 1963.

The driving force behind such graphs are association schemes. While Bose and Shimamoto

first defined association schemes in 1952 in terms of partially balanced designs [16], we will

present the standard definition. An n-class association scheme consists of a set X together

with a partition S of X × X into n + 1 binary relations, R0, R1, ..., Rn which satisfy the

following:

(i) R0 = {(x, x)|x ∈ X},

(ii) If R ∈ S, then R∗ := {(x, y)|(y, x) ∈ R} ∈ S, and

(iii) If (x, y) ∈ Rk, then the number z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is a

constant pkij depending on i, j, k.

With Bose and Shimamoto first coining the term association scheme, appropriately

enough its primary use was in statistics. And despite the term being coined so late, the

concept actually arose in 1939 when Bose and Nair published a paper on Partially Balanced

Incomplete Block Designs, as these are categorically association schemes [15]. Nevertheless,

association schemes provide a unified approach to combinatorics, coding theory, and graph

theory, with specific uses in statistics as well.
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Bose first introduced the concept of strongly regular graphs in his 1963 paper [14], stating

that strongly regular graphs are isomorphic to Partially Balanced Incomplete Block Designs

with 2 symmetric associate classes. However, this is not the standard definition. Rather, a

graph Γ, that is simple, undirected, and loopless of order v is a strongly regular graph

with parameters v, k, λ, and µ whenever Γ is not complete or edgeless and

(i) each vertex is adjacent to k vertices,

(ii) for each pair of adjacent vertices, there are λ vertices adjacent to both, and

(iii) for each pair of non-adjacent vertices, there are µ vertices adjacent to both.

The parameters of a strongly regular graph are denoted as (v, k, λ, µ). Per the original

definition, a strongly regular graph is a symmetric association scheme with two non-identity

classes, where by one relation is the adjacency relation and the parameters are given in terms

of the constants pkij.

2.1.1. Examples of Strongly Regular Graphs. Two simple well-known examples

of strongly regular graphs include the pentagon, whose parameters are (5, 2, 0, 1), and the

Peterson graph, whose parameters are (10, 3, 0, 1). Interestingly enough, each of these graphs

are uniquely determined by their parameters. This is not always the case though, as will be

seen later on.

2.2. Finite Projective Spaces

While the definition of a strongly regular graph and an association scheme give no

immediate insight as to how they are related to finite projective spaces, these three areas

are, in fact, interrelated. These relationships were not exposed until 1968 by Delsarte, who

made specific connections between certain strongly regular graphs and other combinatorial
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objects [22]. The connecting objects are projective two-weight codes, t-sets of type (m,n),

and difference sets. The connection between t-sets of type (m,n) and strongly regular graphs

is a driving force behind understanding finite projective spaces. (Generalized quadrangles

are another reason to study projective spaces. This will be discussed extensively in Chapter

5.)

2.2.1. Definitions and Properties. In order to define a projective space, we must

first understand incidence geometry. An incidence structure is a triple (X, f, I), where X

is a set, f is a function whose domain is X, and I is a symmetric relation on X such that

for any x, y ∈ X, if xIy and f(x) = f(y), then x = y. The set X is viewed as the objects of

the incidence structure, f(x) as the type of x, and I as the incidence relation on X. A finite

projective space is an example of an incidence geometry.

Let V be a finite-dimensional vector space of dimension d+ 1 over the finite field GF(q).

Let X be a set of proper, non-trivial subspaces of V , f(U) = dim(U), with incidence defined

by symmetrized inclusion. The resulting structure is the projective geometry

PV = PG(d, q). The one-dimensional subspaces are called points, the two-dimensional

subspaces are called lines, and the d-dimensional subspaces are hyperplanes. When d = 2,

we obtain the projective plane PG(2, q), which is of particular interest to us, as will be seen

later on.

In addition to the definition given here, projective spaces can also be defined synthetically.

Defining a projective space synthetically can be beneficial to understanding t-sets of type

(m,n), so we will present that definition as well. A projective space is a collection of

points and lines such that
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(i) there is a unique line through two distinct points;

(ii) every line contains at least three points;

(iii) there is at least one line;

(iv) if a line meets two sides of a triangle, not at a vertex, then the line meets the third

side of the triangle.

The projective space PG(d, q) is the collection of subspaces of GF(q)d+1, and it is common to

denote the point< (x1, ..., xd+1) >∈ PG(d, q) by its homogeneous coordinates (x1, ..., xd+1).

This is because a point is defined up to multiplication by an element of GF(q)∗.

Theorem 2.2.1. Let P be a finite projective space of dimension d and order q; that is,

P= PG(d, q). Let U be a t-dimensional subspace of P (1 ≤ t ≤ d). Then the following

statements are true:

(i) The number of points of U is

qt + qt−1 + ...+ q + 1 = qt+1−1
q−1

.

In particular, P has exactly qd + ...+ q + 1 points.

(ii) The number of lines of U through a fixed point of U equals

qt−1 + ...+ q + 1.

(iii) The total number of lines of U equals

(qt+qt−1+...+q+1)(qt−1+...+q+1)
q+1

.

The proof of parts (i) and (ii) rely on induction, while the proof of part (iii) relies solely

on a counting argument.

Theorem 2.2.2. Let P be a finite projective space of dimension d and order q. Then:

(i) The number of hyperplanes of P is
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qd + ...+ q + 1;

(ii) The number of hyperplanes of P through a fixed point of P equals

qd−1 + ...+ q + 1.

Proof. Part (i) will be proven by induction on d. For d = 1, the theorem says that any

line contains q + 1 points. For the case when d = 2, the assertion follows from the previous

theorem. Suppose (i) is true for all projective spaces of dimension d − 1 ≥ 1. Let H be a

hyperplane of P. Since dim(< M,N >) = dim(M)+dim(N)−dim(M∩N) for any subspaces

M and N of P, every hyperplane different than H intersects H in a subspace of dimension

d−2. Thus, any hyperplane not equal to H of P is spanned by a (d−2)-dimensional subspace

of H and a point outside of H.

For each (d− 2)-dimensional subspace U of H and each point P ∈ P \H, the subspace

< U, P > is a hyperplane, which contains (qd−1 + ... + q + 1) − (qd−2 + ... + q + 1) = qd−1

points outside of H. Since there exist qd points of P outside of H, there are q hyperplanes

not equal to H through U. By induction, there are exactly qd−1 + ...+ q + 1 hyperplanes of

H, which are subspaces of dimension d − 1. Thus, the total number of hyperplanes of P is

q(qd−1 + ...+ q + 1) + 1 = qd + ...+ q + 1.

(ii) Let P be a point of P and let H be a hyperplane not containing P . Every hyperplane of

P through P intersects H in a hyperplane of H. Thus, by (i), there are exactly qd−1 + ...+ 1

such hyperplanes. �

Since finite projective planes are a major component of this thesis, we present the

following Corollary.
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Corollary 2.2.3. Let P be a finite projective plane. Then there exists an integer q ≥ 2

such that every line of P has exactly q+1 points, and the total number of points is q2 +q+1.

2.2.2. Desarguesian Planes. All projective planes of the form PG(2, q) satisfy Desargues’

Theorem, named after Girard Desargues. Let P be a projective space. Then the theorem

of Desargues holds if the following statement is valid:

For any choice A1, A2, A3, B1, B2, and B3 of points with the properties

• Ai, Bi are collinear with a point C 6= Ai 6= Bi for all i,

• no three of the points A1, A2, A3, and C and no three points C, B1, B2, and B3 are

collinear,

we have that the points

P12 := A1A2 ∩B1B2, P23 := A2A3 ∩B2B3, and P31 := A3A1 ∩B3B1

lie on a common line.

Theorem 2.2.4. Desargues’ Theorem holds in PG(d, q), d ≥ 3.

Proof. Let v1, v2, and v3 be vectors such that A1 =< v1 >, A2 =< v2 >, and A3 =<

v3 >. Since A1, A2, and A3 are not collinear, v1, v2, and v3 are linearly independent.

Therefore they form a basis of the 3-dimensional vector space V :=< v1, v2, v3 >.

Case 1: The point C lines in the plane that is spanned by A1, A2, and A3.

Then there are a1, a2, a3 ∈ GF(q) with C =< a1v1 + a2v2 + a3v3 >. Since no three of the

points A1, A2, A3, and C are collinear, we have a1, a2, a3 6= 0. Therefore, replacing vi by

aivi, if necessary, we may assume without loss of generality that C =< v1 + v2 + v3 >.

Since C, Ai, and Bi are collinear, there exists an a1, a2, a3 ∈ GF(q) such that

B1 =< v1 + v2 + v3 + a1v1 >=< (a1 + 1)v1 + v2 + v3 >,
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B2 =< v1 + (a2 + 1)v2 + v3 >,

B3 =< v1 + v2 + (a3 + 1)v3 >.

Now we can determine Pij.

P12 = A1A2 ∩B1B2 =< a1v1 − a2v2 >,

P23 =< a2v2 − a3v3 >, and

P31 =< a3v3 − a1v1 >.

Thus, all three points are collinear and lie on the line

< a1v1 − a2v2, a3v3 − a1v1 >.

Case 3: The points C =< v >, A1 =< v1 >, A2 =< v2 >, and A3 =< v3 > do not lie on a

common plane.

The vectors v, v1, v2, and v3 are linearlly independent. Therefore, without loss of generality,

we assume that

B1 =< v + v1 >,

B2 =< v + v2 >, and

B3 =< v + v3 >.

It then follows that

P12 =< v1 − v2 >,

P23 =< v2 − v3 >, and

P31 =< v3 − v1 >.

These three points lie on the line < v1 − v2, v2 − v3 >.

Therefore, Desargues’ Theorem holds for PG(d, q), d ≥ 3. �
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More generally, Desargues’ Theorem holds for the real projective plane, for any projective

space defined from a division ring, and for any projective space in which Pappus’s Theorem

holds.

Let P be a projective space. We say that in P the theorem of Pappus holds if any

two intersecting lines g and h with g 6= h satisfy the following condition. If A1, A2, and A3

are distinct points on g and B1, B2, and B3 are distinct points on h all different from g ∩ h,

then the points

Q12 = A1B2 ∩B1A2,

Q23 = A2B3 ∩B2A3, and

Q31 = A3B1 ∩B3A1

lie on a common line.

On the other hand, a non-Desarguesian plane is a projective plane that does not

satisfy Desargues’ Theorem. Examples of non-Desarguesian planes include

• the Moulton plane,

• 3 projective planes of order 9, each with 91 points and 91 lines,

• Hughes planes,

• Moufang planes,

• André planes.

2.2.3. The Group. Additionally, these objects are highly symmetric, and in order to

determine how much symmetry they actually possess, we need to define an automorphism.

An automorphism (or collineation) of PG(d, q) is an incidence preserving bijection from

the point set onto itself. We can then describe the automorphisms by considering invertible

matrices A. Multiplication by A is a linear map for the underlying vector space GF(q)d+1
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that preserves inclusion of subspaces. We can also think of A as acting on the projective

space by multiplication on the homogeneous coordinates of points in PG(d, q). But this

means that A is only defined up to multiplication by a scalar, in particular, an element of

GF(q)∗. This tells us that the group PGL(d + 1, q) = GL(d + 1, q)/{λI : λ ∈ GF(q)∗} is

a subgroup of Aut(PG(d, q)). Unfortunately, the use of the matrix A does not lead to all

symmetries. A map of the form x 7→ xα for α ∈ Aut(GF(q)) is also an automorphism of

PG(d, q). In addition, we can compose both types of automorphisms in order to obtain other

automorphisms. Thus, the automorphism group of PG(d, q) is PΓL(d+ 1, q) = {x 7→ Axα :

A ∈ PGL(d+ 1, q), α ∈ Aut(GF(q))}, and any symmetry of PG(d, q) has this form.

2.3. Affine Spaces

Given a projective space, one can construct an affine space. Let P be a projective space

of dimension d ≥ 2, and let H∞ be a hyperplane of P. Then the geoemtry A = P \H∞ is

defined as follows:

• The points of A are the points of P that are not in H∞.

• The lines of A are the lines of P that are not contained in H∞.

• The t-dimensional subspaces of A are those t-dimensional subspaces of P that are

not contained in H∞.

• The incidence of A is induced by the incidence of P.

The rank 2 geometry consisting of the points and lines of A is called an affine space of

dimension d. An affine space of dimension 2 is an affine plane. Furthermore, the set of all

subspaces of A is called an affine geometry. The hyperplane H∞ is called the hyperplane

at infinity and the points of H∞ are called the points at infinity of A.
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It seems counterintuitive to define an affine space in terms of a projective space, as the

latter seems much more theoretical in nature. (That is, an affine geometry has the concept

of parallel lines, which seems natural.) However, these structures are basically the same, as

witnessed by their definitions. The distinguishing factor is only that of differing view points.

Interestingly enough, one may prefer focusing on projective geometries (over an affine one)

because of the homogeneous properties and the fact that there is no need to distinguish

many special cases (like one must do for affine geometries). Nevertheless, various results of

an affine space will be presented here.

Let G = (P ,B, I) be a rank 2 geometry. A parallelism of G is an equivalence relation

|| on the block set B satisfying the parallel axiom:

If P ∈ P is a point and B ∈ B is a block of G, then there is precisely one block C ∈ B

through P such that C||B. (Blocks B and C are said to be parallel.)

Theorem 2.3.1. Every affine geometry has a parallelism.

Proof. Let P be a projective space belonging to A, and let H∞ be the hyperplane

at infinity. Consider two t-dimensional subspaces U and W of A. By definition, U and W

are t-dimensional subspaces of P not contained in H∞. Thus, U ∩ H∞ and W ∩ H∞ are

t− 1-dimensional subspaces of H∞. Now define

U ||W :=⇔ U ∩H∞ = W ∩H∞.

We will show that || is a parallelism. Clearly || is an equivalence relation as it is defined via

an equality relation. Let P be a point of A. Then if W through P is parallel to U , then U

must contain P and U ∩H∞. Since < U ∩H∞, P > is a t-dimensional subspace of P , which

is contained in W , it follows that W =< U ∩H∞, P >. Therefore, || is a parallelism. �
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Lemma 2.3.2. Let A = P \H∞, where P is a d-dimensional projective space and H∞ is

the hyperplane at infinity of A.

(i.) Each line that is not parallel to a hyperplane H intersects H in precisely one point of

A.

(ii.) If d = 2, then any two non-parallel lines intersect in a point of A.

Our primary focus is with the affine plane, so a few results will be presented.

Corollary 2.3.3. Any affine plane A has the following properties:

1. Through any two distinct points, there is exactly one line.

2. (Playfair’s parallel axiom) If g is a line and P is a point outside g then there is precisely

one line through P that has no point in common with g.

3. There exist three points that are not on a common line.

Theorem 2.3.4. Let S = (P ,G, I) be a geometry that satisfies conditions (1), (2), and

(3). Then S is an affine plane.

This theorem implies that the Euclidean plane is also an affine plane. The smallest affine

plane is K4, the complete graph on four vertices. Furthermore, it is the Fano plane with the

removal of one line (and the 3 points on that line). If P is a finite projective space of order

q and H a hyperplane of P, then the affine space A = P \H is said to have order q.

Theorem 2.3.5. Let A be an affine space of order q.

(i) There exists a positive integer q ≥ 2 such that any line of A is incident with exactly q

points.

(ii) If U is a t-dimensional subspace of A, then U has qt points.
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Proof. Let P be a projective space belonging to A. Let H∞ be the hyperplane at

infinity of A.

(i) Let g be a line of A, and let q be the number of points (in A). Then g has q + 1 points

in P. Hence P has order q. Therefore any line of A has exactly q points of A.

(ii) Any t-dimensional subspace U of A intersects, when considered as a subspace of P, the

hyperplane at infinity in a (t− 1)-dimensional subspace U ∩H∞. Thus we have

the number of points of A in U

= the number of points of U in P − the number of points in U ∩H∞

= qt + ...+ q + 1− (qt−1 + ...+ q + 1) = qt.

�

Thus, every affine plane of order q has q2 points, every line contains q points, every point

is contained in q + 1 lines, and there is a total of q2 + q lines.
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CHAPTER 3

Strongly Regular Graphs

As previously noted, the pentagon and the Petersen graph are both examples of strongly

regular graphs that are determined uniquely by their parameters. This is not always the

case though. In this chapter, we will examine various properties of strongly regular graphs.

3.1. Families of Graphs

3.1.1. Kneser Graph. The Petersen graph not only provides us with a unique example

of a strongly regular graph whose parameters entirely define it, it also leads us to a family

of graphs, not all necessarily strongly regular. (This is also true of the pentagon.) The

Kneser graph KGm,k is a graph whose vertices correspond to k-element subsets of a set of

m elements. Two vertices are adjacent if and only if the two corresponding sets are disjoint.

The Petersen graph can be denoted by KG5,2. Thus, we can define the Petersen graph as a

graph whose vertices correspond to 2-element subsets of the set {1, ..., 5}, and two vertices

{a, b} and {c, d} for a, b, c, d ∈ {1, ..., 5} are adjacent if and only if |{a, b}∩{c, d}| = 0. While

not all Kneser graphs are strongly regular, we do get that KGm,2 is always a strongly regular

graph.

Furthermore, we can discuss the complement of the Petersen graph, T (5). T (5) is also

a strongly regular graph with parameters (10, 6, 3, 4). More generally, T (5) falls into the

family of triangular graphs, T (m), whose vertices correspond to 2-element subsets of a set

of m-elements, and two vertices are adjacent whenever they meet in one point. Unlike the

Kneser graphs, all triangular graphs are strongly regular, with parameters (
(
m
2

)
, 2(m−2),m−

2, 4).
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It is not a coincidence that the complement of the Petersen graph is also a strongly

regular graph.

Theorem 3.1.1. The complement of a graph Γ is the graph Γ′ with the same vertex set as

Γ, where two vertices are adjacent if and only if they are not adjacent in Γ. If the parameters

of Γ are (v, k, λ, µ), then the parameters of Γ′ are (v, v − k − 1, v − 2k + µ− 2, v − 2k + λ).

Proof. Clearly Γ′ is a regular graph of valency v − k − 1. The other two parameters

can easily be calculated using Inclusion-Exclusion. In Γ′, the number of common neighbors

of adjacent vertices is (v − 2)− 2k + µ = v − 2k + µ− 2, and for non-adjacent vertices, the

number of common neighbors is v − 2k + λ. �

Since all parameters must be non-negative, if follows that

v ≥ 2k − µ+ 2,

v ≥ 2k − λ.

Later on, we will discuss further parameter restrictions as well. At this time, we will introduce

another family of strongly regular graphs. This family will play a critical role later on, so

while not all properties will be addressed at this stage, they will be addressed later on, as

needed.

3.1.2. Generalized Quadrangles. Generalized quadrangles were first introduced in

1959 by Tits in the study of finite geometry. These objects are related to numerous combinatorial

objects, such as partial geometries. But, they also happen to be related to strongly regular

graphs. A generalized quadrangle is an incidence structure (P,B, I), with P being the

set of points, B the set of lines, and I ⊂ P ×B an incidence relation satisfying the following

axioms:
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• There is an s (s ≥ 1) such that every line contains exactly s + 1 points. There is at

most one point on two distinct lines.

• There is a t (t ≥ 1) such that through every point there are exactly t + 1 lines. There

is at most one line through two distinct points.

• For every point p not on a line L, there is a unique line M and a unique points q such

that p is on M and q is on M and L.

The parameters of a generalized quadrangle are denoted by (s, t); if s = t, then we say the

generalized quadrangle has order s. The number of points of a generalized quadrangle is

(st + 1)(s + 1), while the number of lines is (st + 1)(t + 1). The collinearity (or point)

graph of a generalized quadrangle is a strongly regular graph, whose points are those of the

generalized quadrangle with adjacency defined by collinearity in the generalized quadrangle.

The parameters for its strongly regular graph are ((st+ 1)(s+ 1), s(t+ 1), s− 1, t+ 1).

Now that two families of strongly regular graphs have been introduced, we will proceed

with properties of strongly regular graphs.

3.2. Properties

By considering the complement of a strongly regular graph, parameter restrictions became

apparent. More restrictions can be obtained by considering the adjacency matrix of a

strongly regular graph. Let Γ be a strongly regular graph whose vertices are distinct. If

Γ has v vertices, then there exists an v × v adjacency matrix A whose entries consist of

zeros and ones. Entry Ai,j := 1 if vertices i and j are adjacent in Γ for i, j ∈ {1, ..., v} and

i 6= j; otherwise Ai,j := 0. Matrix A consists of three eigenvalues: k, r, and s. We will

assume that r > s. It can easily be shown that the multiplicity of k is 1. Additionally, r
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and s are restricted eigenvalues of A. That is, the eigenvectors corresponding to r and

s are perpendicular to the all-ones vector, the eigenvector of k. This information can be

summarized in the following theorem.

Theorem 3.2.1. For a simple graph Γ of order v, not complete or edgeless, with adjacency

matrix A, the following are equivalent:

(i) Γ is a strongly regular graph with parameters (v, k, λ, µ) for certain integers k, λ, µ.

(ii) A2 = (λ − µ)A + (k − µ)I + µJ for certain real numbers k, λ, µ and where I is the

v × v identity matrix and J is the v × v all-ones matrix.

(iii) A has precisely two distinct restricted eigenvalues.

Proof. Note that the equation in (ii) can be rewritten as

A2 = kI + λA+ µ(J − I − A).

Thus, (i)⇔(ii) is obvious, as the entry A2
i,j counts the number of common neighbors of

vertices i and j and A2
i,i is the valency of vertex i. Furthermore, the complement of Γ has

adjacency matrix J − I − A.

(ii)⇔(iii): For every vector w orthogonal to 1,

A2w = (λ− µ)Aw + (k − µ)w,

as Jw = 0. Thus, every eigenvalue in Θ of A other than k satisfies

Θ2 = (λ− µ)Θ + k − µ.

�
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Strongly regular graphs can be classified as primitive and imprimitive. The focus here is

on the primitive type. This implies that k > r > 0 and s < −1. But further restrictions are

also placed on the parameters. For example, there are the rationality conditions.

Theorem 3.2.2. Let Γ be a strongly regular graph with adjacency matrix A and parameters

(v, k, λ, µ). Let r and s (r > s) be the restricted eigenvalues of A and let f, g be their

respective multiplicities. Then

(i) k(k − 1− λ) = µ(v − k − 1),

(ii) rs = µ− k, r + s = λ− µ,

(iii) f, g = 1
2
(v − 1∓ (r+s)(v−1)+2k

r−s ).

Proof. (i): Fix a vector x of Γ. Let A(x) and N(x) be the sets of vertices adjacent and

non-adjacent to x, respectively. By counting the number of edges between A(x) and N(x)

in two different ways yields (i).

(ii): Follows directly from the fact that A2 = (λ− µ)A+ (k − µ)I + µJ .

(iii): Since the multiplicity of k is 1, f + g = v − 1. Since Γ is loopless and by definition,

0 =trace(A)= k + fr + gs = k + 1
2
(r + s)(f + g) + 1

2
(r − s)(f − g). These two facts yield

equation (iii). �

Few other parameter restrictions are known, besides the rationality conditions. The

Krein conditions are given as follows:

Theorem 3.2.3. Let Γ be a strongly regular graph with adjacency matrix A and parameters

(v, k, λ, µ). Let r and s be the restricted eigenvalues of A. Then

(r + 1)(k + r + 2rs) ≤ (k + r)(s+ 1)2,

(s+ 1)(k + s+ 2rs) ≤ (k + s)(r + 1)2.
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When equality holds in either of these two inequalities, the induced subgraphs on the

neighbors and non-neighbors of a given point in Γ are both strongly regular graphs as well.

In addition to these restrictions, we have two additional ones. The absolute bound for the

number of vertices is

v ≤ f(f + 3)/2,

v ≤ g(g + 3)/2.

Another useful identity is the Frame quotient,

fg(r − s)2 = vk(v − k − 1).

From the Frame quotient, it can be concluded that if v is prime, then r − s =
√
v.

As previously mentioned, strongly regular graphs originated from association schemes.

The Krein conditions, absolute bound, and Frame quotient are all just special cases of general

(in)equalities for association schemes.

3.2.1. Group constructions. While strongly regular graphs are defined in terms of

parameters and spectra, the way a group acts on a set of points can also determine a strongly

regular graph. Let G be a permutation group acting on a set Ω. The rank of an action is

the number of orbits of G on Ω× Ω. The orbits of G on Ω× Ω are called orbitals. If G is

transitive, of rank 3, and its orbitals are symmetric (for all x, y ∈ Ω, (x, y) and (y, x) are in

the same orbital), where I, R, and S are the three orbitals, then (Ω, R) and (Ω, S) is a pair

of complementary strongly regular graphs. In the case when G = S5, we obtain the Petersen

Graph and its complement, T (5).

3.2.2. Automorphisms. As mentioned in the first chapter, computing automorphism

groups, no matter the type of graph, can be NP hard. But, once again, knowing the

automorphism group of a strongly regular graph can be extremely beneficial, if not necessary,
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in determining whether the graph is new or not. For a complete list of strongly regular graphs

and their automorphism groups, see [19]. This list also contains restricted parameters as well

as parameters for which nothing is known.

If A is the adjacency matrix of a graph Γ and P the permutation matrix that describes

an automorphism ω of Γ, then PA = AP . Furthermore, if ω has order j, then P j = I, the

identity matrix. Therefore, the eigenvalues of AP are j-th roots of unity times the eigenvalues

of A. If we further restrict Γ so that it is a strongly regular graph, more information can be

obtained. Suppose that ω has l fixed points and moves m points to a neighbor. Then we get

that the trace (the sum of the diagonal entries) of P is l and the trace of AP is m. Next,

define M := A−sI. Then the eigenvalues of M are (k−s) (with multiplicity 1), (r−s) (with

multiplicity l), and 0 (with multiplicity m). (Note that the definitions of k, r, and s are the

same as those given in the previous section.) Thus, MP has eigenvalues k − s, (r − s)ζ for

certain j-th roots of unity ζ, and 0. Then it follows that m−sl = tr(MP ) ≡ k−s(mod(r−s)).

As for the Petersen graph, every automorphism must satisfy f ≡ g + 1(mod3).

There do exist some tools to help determine what the automorphism graph is [2].

Theorem 3.2.4. Let Γ be a non-trivial strongly regular graph of degree k ≤ (v − 1)/2.

Then any nontrivial automorphism of Γ fixes fewer than v − k/2 vertices.

Before presenting the next result, the following definition is needed. A graph Γ is graphic

if Γ or its complement is the line graph of a graph. Testing for isomorphisms of graphic graphs

is straightforward.
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Theorem 3.2.5. Let Γ be a non-trivial and non-graphic strongly regular graph with v

vertices. Let σ be a non-identity automorphism of Γ. Then

(i) σ has at most 7v/8 fixed points;

(ii) σ has order less than or equal to v8.

To reiterate, calculating the automorphisms of a graph can be difficult. But in some

cases, it is unnecessary. For example, if the collinearity graph of a generalized quadrangle

is the only known strongly regular graph, and a new graph with the same parameters is

constructed, automorphisms are not necessary.

Theorem 3.2.6. The point graph of a finite generalized quadrangle does not contain

K4 \ {e}, for some edge e, as an induced subgraph.

Corollary 3.2.7. If a graph contains K4 \ {e} as an induced subgraph, it is not the

point graph of a generalized quadrangle.

Proof. Let P,Q,R, S be distinct points on a generalized quadrangle with R not collinear

with S, but all other pairs collinear. Then since P,Q,R are all collinear, R is collinear with

more than one point on the line l joining P and Q, so R is on l. Similarly, S is on l. But

then R and S are collinear, a contradiction. �

Based on this result, showing that a graph has this particular property can be used in

order to verify that the graph is new. Similarly, a clique search can be used to determine

whether a graph is new or not as well.

With the primary background information in place, the next chapter will proceed with the

direct connection between finite projective spaces and strongly regular graphs, as surveyed

in the 1986 Calderbank and Kantor paper [22].
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CHAPTER 4

Two Intersection Sets

An object of particular interest in finite projective spaces is a t-set of type (m,n) (or a

two intersection set). A t-set K of type (m,n) in PG(d, q) is a set K consisting of t points

such that every hyperplane of the projective space PG(d, q) contains either m or n points of

K, m < n. These sets are also called two intersection sets as they consist of two intersection

numbers (with respect to hyperplanes), m and n. We will begin by discussing some properties

of two intersection sets and their relationship to various combinatorial objects, followed by

a survey of known two intersection sets. Finally, new results will be presented.

4.1. Properties

If K is a t-set of type (m,n) in PG(d, q), we define an m-secant (n-secant) to be a

hyperplane of PG(d, q) that intersects K in exactly m (n) points of K. Let tm and tn denote

the number of m-secants and n-secants. Then elementary counting leads to the fundamental

equations

(1) tm + tn =
qd+1 − 1

q − 1
,

(2) mtm + ntn = t
qd − 1

q − 1
,

(3) m(m− 1)tm + n(n− 1)tn = t(t− 1)
qd−1 − 1

q − 1
.
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By taking the linear combination mn(1) + (1−m− n)(2) + (3), we obtain a quadratic in t:

(4) t2
qd−1 − 1

q − 1
+ t(1−m− n)

qd − 1

q − 1
− tq

d−1 − 1

q − 1
+mn

qd+1 − 1

q − 1
= 0.

Now, let rn and rm denote the number of n-secants and m-secants, respectively, through

a points P ∈ K. Let sn and sm be the number of n-secants and m-secants, respectively,

through a point Q 6∈ K. Then simple counting yields

sn + sm = qd−1
q−1

,

nsn +msm = t q
d−1−1
q−1

,

rn + rm = qd−1
q−1

,

(n− 1)rn + (m− 1)rm = (t− 1) q
d−1−1
q−1

.

Using these equations, we can then solve for rm, rn, sn, and sm, obtaining

rm =
(n−1) qd−1

q−1
−(t−1) qd−1−1

q−1

n−m ,

rn =
(t−1) qd−1−1

q−1
−(m−1) qd−1

q−1

n−m ,

sm =
n qd−1

q−1
−t q

d−1−1
q−1

n−m ,

sm =
t q

d−1−1
q−1

−m qd−1
q−1

n−m .

An important consequence of these equations is that n−m is a divisor of qd−1 (as rm−sm ∈ Z).

In addition, equation (4) is useful in obtaining the following result.

Lemma 4.1.1. Let K be a t-set of type (m,n) in PG(d, q). Then:

a.) The complement of K is a ( q
d+1−1
q−1

− t)-set of type ( q
d−1
q−1
− n, qd−1

q−1
−m) in PG(d, q).

b.) The m-secants of K form a tm-set of type (rm, sm) in PG(d, q).

c.) The n-secants of K form a tn-set of type (sn, rn) in PG(d, q).
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When constructing a two intersection set with the same parameters as a previously known

one, applying group theoretic techniques can be useful in determining set equivalence. Let

K be a two intersection set. K is equivalent to another two intersection set L if there exists

an automorphism taking K to L.

Theorem 4.1.2. Let K and L be two intersection sets. Then K ≡ L if and only if there

exists a f ∈ PΓL(d+ 1, q) such that K = fL.

Based on the above theorem, without loss of generality, PΓL(d+1, q)K = PΓL(d+1, q)fL.

Theorem 4.1.3. Let G = PΓL(d+ 1, q). If PΓL(d+ 1, q)K = PΓL(d+ 1, q)L = H, then

K ≡ L if and only if K and L are in the same orbit of NG(H).

Therefore, the subgroup of the full automorphism group that stabilizes a set can be

used to determine if two sets are equivalent or not. Using this information, as well as the

fundamental equations, we can construct new two intersection sets.

4.2. Two Intersection Sets and Strongly Regular Graphs

Due to notational constraints, let K be a t-set of type (m,n) in PG(d− 1, q) that spans

PG(d− 1, q). Based on Delsarte’s work, using K, we can construct a strongly regular graph.

Embed PG(d − 1, q) in PG(d, q) as a hyperplane H, and define Γ(K) to be the graph with

vertices the points of PG(d, q)\H. Two vertices P and Q are adjacent in Γ(K) if and only if

PQ∩H ∈ K. Then by [22, Theorem 3.2], Γ(K) is a strongly regular graph with parameters

v = qd,

k = t(q − 1),

λ = t2 + tq − 3t+ qm+ qn− tqm− tqn+mnq2,
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µ = q2

qd
(t−m)(t− n).

The fact that two intersection sets give rise to strongly regular graphs is a motivating factor

in studying such objects. They also give rise to projective two-weight codes and difference

sets.

4.2.1. Projective two-weight codes. Given a two intersection set K in PG(d, q),

if we define each point in K by its corresponding ordered tuple in GF(q)d+1 a generating

matrix of dimension (d + 1) × t exists, with the columns of the matrix being the ordered

tuples of K. Such a matrix corresponds to a projective two-weight code.

A linear [t, d+ 1]q code C is a (d+ 1)-dimensional subspace of GF(q)t. The vectors of

the subspace are called codewords. The easiest means of constructing a generating matrix

is to arbitrarily choose a (d+ 1)-dimensional basis and let the vectors of the basis form the

rows, which will correspond to a (d+1)× t generating matrix. By using a generating matrix,

we are creating a compact form in which all the codewords can be computed by taking linear

combinations of the rows of that matrix.

Some interesting facts arise from the use of a generating matrix. Let M be the generating

matrix for a code C, and let c be a codeword of C. Then there exists a unique vector v

of GF(q)d+1 such that vM = c. Furthermore, by using a generating matrix, it is easy to

determine if two codewords are equivalent. This is due to the fact that the generating

matrix stores a basis for a (d + 1)-dimensional subspace, and the ordering of the rows is

unimportant. Similarly, the code will remain unchanged if we permute the columns, scale

the rows or columns, or add additional rows. These facts hold in general for any code C.
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The weight of a codeword c of C is defined to be the number of nonzero elements of the

vector c, denoted by wt(c). As the name suggests, for two-weight codes we only consider

codes which consist of two weights, w1 and w2. As perfect codes and uniformly packed codes

are completely classified, two-weight codes are the most interesting types of codes to study.

Additional restrictions can be placed on two-weight codes. For example, we can require

the code to be projective. A linear code C is projective if the ith and jth columns of the

generating matrix are linearly independent for any pair (i, j), i 6= j.

Before proceeding with the statement of the relationship between two intersection sets

and projective two-weight codes, an interesting fact should be noted. As was seen in Lemma

4.1.1, finding one two intersection set led to three additional two intersection sets, with one

of them being the dual of the original. The same can be said for codes. The dual of a

[t, d+ 1]q code is a [t, t−d−1]q code, whereby the dual is defined to be the space orthogonal

to the (d + 1)-dimensional space of the original code. A projective linear code will have a

dual code with minimum weight at least 3.

Assume that the points of the two intersection set span the entire space. This implies

that there exist d+ 1 columns which form a basis for the entire projective space. Thus, d+ 1

linearly independent rows exist.

Recall that points and hyperplanes of a projective space can be denoted by vectors of

length d+1, and a point lies on a hyperplane if their dot product is zero. This last condition

results in a code consisting of two-weights. Furthermore, for any codeword c of C, there

exists a unique v such that c = vM , where M is the generating matrix for C. The unique

vectors v correspond to the hyperplanes. Thus, the resulting entries of c will either have m

or n zeros depending on whether the hyperplane was an m or n-secant. We also get that the
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resulting weights are t −m and t − n. Thus, the code must be a two-weight code. Lastly,

we know that all the columns of the generating matrix are pairwise linearly independent,

and thus, the code is also projective. By a similar argument, it can be shown that given a

projective two-weight code, we can obtain a two intersection set. Thus, the two objects are

equivalent.

4.2.2. Difference Sets. Like projective two-weight codes, there is an equivalence

relationship between two intersection sets and {α, β}-difference sets (which can also be

extended to projective two-weight codes and strongly regular graphs). Let Ω be a proper set

of non-zero vectors in a vector space V over GF(q). Then Ω is a {α, β}-difference set over

GF(q) if GF(q) ∗ Ω = Ω and if, for v ∈ V , v 6= 0,

|{(x, y)|x, y ∈ Ω, x− y = v}| =


α : v ∈ Ω

β : v /∈ Ω

As surveyed by [22], if K is a proper non-empty set of points of PG(d−1, q) and if Ω = {v ∈

V | < v >∈ K}, then Ω is a difference set if and only if K is a two intersection set.

4.3. Survey of Known Two Intersection Sets

The primary focus of this section will be on the projective plane. Beginning in the

projective plane PG(2, q), there are two trivial sets: the 1-sets of type (0, 1) and the q+1-sets

of type (1, q + 1). The first set consists of a single point and its intersection numbers follow

from the definition of a projective plane. Similarly, the second set consists of a line and its

intersection numbers follow from the definition. More generally, a subspace of PG(d, q) of

dimension f is a qf+1−1
q−1

-set of type ( q
f−1
q−1

, q
f+1−1
q−1

).
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There are a few families of two intersection sets that are notable. A q + 2-set of type

(0, 2) in PG(2, q), for q even, is called a hyperoval. Hyperovals are related to maximal arcs,

another combinatorial object. Maximal arcs are also two intersection sets. They are sets of

type (0, n) in PG(2, q) where n is the degree of the set K. Numerous families of maximal arcs

have been studied [42, 60, 100, 101]. Currently, all known examples of maximal arcs are in

planes of even order. (Ball-Blokhuis-Mazzocca [5] showed that maximal arcs in Desarguesian

planes of odd order do not exist.) Two other sets with names occur in PG(2, q2). A Baer

subplane is a q2 +q+1-set of type (1, q+1), while a q3 +1-set of type (1, q+1) in PG(2, q2)

is a unital. Lastly, a q2 + 1-set of type (1, q + 1) in PG(3, q) is an ovoid. Furthermore, we

can obtain a family of two intersection sets by taking the union of disjoint Baer subplanes.

Theorem 4.3.1. The union of u disjoint Baer subplanes in PG(2, q2) is a u(q + 1)-set

of type (u, q + u) in PG(2, q2).

Proof. Let u be the number of disjoint Baer subplanes in PG(2, q2). Then all u Baer

suplanes are q+1-sets of type (1, q+1). Thus, the union of these will have u(q+1) points with

possible intersection numbers u, q+u, and u(q+1). Consider the fundamental equations (1),

(2), and (3). These are three linear equation in the unknowns tu, tq+u, and tu(q+1). It is easy

to see that the determinant of the coefficient matrix is non-zero. Thus, it is non-singular,

and hence, these equations have a unique solution. As a u(q + 1)-set of type (u, q + u) is

arithmetically feasible, we can find a solution to these equations with tu(q+1) = 0. Hence,

this must be the unique solution. �

The history of two intersection sets in finite projective planes goes back to at least two

1966 papers by Tallini Scafati [97, 98], with precursors dealing with unitals [90], maximal

arcs [6], and hyperovals [13]. Calderbank and Kantor surveyed these sets, as well as their
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higher-dimensional counterparts, in 1986 [22]. Postdating their survey, a number of constructions

have been given for two intersection sets in finite projective planes, which will now be

presented.

Payne (1985) [79], O’Keefe-Penttila (1992) [77], Cherowitzo-Penttila-Pinneri-Royle (1996)

[33, 77], Cherowitzo (1998) [28], and Cherowitzo-O’Keefe-Penttila (2003) [32] construct

hyperovals in PG(2, 2n). Mathon (2002) [71], Hamilton (2002) [59], Hamilton-Mathon (2003,

2004) [60, 61], and De Clerck-De Winter-Maes (2011,2012, 2012) [37, 38, 39] construct

maximal arcs in PG(2, 2h). Blokhuis-Lavrauw (2000) [21] constructs (qt−1)(q2t+qt+1)
q−1

-sets of

type ( q
t−1
q−1

, q
t−1
q−1

+ qt) in PG(2, q2t). de Resmini-Migliori (1986) [48] constructs a 78-set of

type (2, 6) in PG(2, 16); de Resmini (1987)[43] constructs a 35-set of type (2, 5) in PG(2, 9);

Penttila-Royle (1995) [84] classify all two intersection sets in PG(2, 9); Hamilton (1995) [58]

constructs 104-sets of type (4, 8) in PG(2, 16) and 912-sets of type (8, 16) in PG(2, 64), and

Batten-Dover (1999) [8] constructs a 829-set of type (4, 9) in PG(2, 125) and a 3189-set of

type (4, 11) in PG(2, 343). Further constructions, which are hard to summarize, appear in

[62] and [88].

4.4. New Two Intersection Sets

4.4.1. Sets in the plane. There is also a family of (q2−q+1)(q2+1)
2

-sets of type ( (q+1)2

2
, q

2+1
2

)

in PG(2, q2) for q odd in Casse-Jackson-Penttila-Royle (in preparation), and these are

parameters not previously obtained (for q > 3). To these, we add examples with new

parameters in PG(2, 25) and PG(2, 81). To the best of our knowledge, the only examples of

two intersection sets in finite Desarguesian planes admitting insoluble groups known before

this paper are the regular hyperovals, the classical unitals, and Baer subplanes (and their

complements). Thus, it is of some interest that four of our examples (and their complements)
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have insoluble groups. We also contribute further examples admitting insoluble groups (but

some without new parameters). All two intersection sets in PG(2, 25) were found using

Magma [18], while the two intersection set in PG(2, 81) was found using GAP [53].

Inspired by an example found by Penttila and Royle [84] of a 35-set of type (2, 5) in

PG(2, 9) admitting PΩ(3, 3), we explore the possibility of existence of two intersection sets

in PG(2, q2), q odd, admitting PΩ(3, q). Before stating the new theorems, for the remainder

of this section, we assume that points of B, a Baer subplane, are real, and points not in B

are imaginary. In addition, lines meeting B in more than 1 point are real.

Theorem 4.4.1. Let C be a conic in PG(2, 25) and let B be a Baer subplane meeting

C in 6 points. The derived group of the stabilizer of B ∩ C in PΓL(3, 25) has two orbits on

imaginary points on a real tangent line. Arbitrarily choose one of them and call it O. Let S

be the union of :

the real points internal to the conic B ∩ C of PG(2, 5);

the points of C not in B;

O;

the imaginary internal points P on a real secant line (to B ∩ C) such that P⊥ ∩ O is not

empty (where P⊥ is the polar line of P with respect to C).

Then S is a 210-set of type (5, 10) in PG(2, 25) with group PSL(2, 5)× C2 (of order 120).

Proof. This is a straightforward computation in Magma. �

Note that the stabilizer of S has index two in its normalizer, which is isomorphic to

PGL(2, 5)×C2 and maps S to the 210-set of type (5, 10) arising from the other choice of O.

This set gives rise to a strongly regular graph with parameters (15625, 5040, 1595, 1640). No
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strongly regular graph with these parameters was previously known. In addition to the

strongly regular graph, the weights for the projective two-weight code are 200(= 210 − 10)

and 205(= 210− 5).

Theorem 4.4.2. Let C be a conic in PG(2, 25) and let B be a Baer subplane meeting C

in 6 points. The derived group G of the stabilizer of B ∩ C has two orbits on points on a

real tangent line. Arbitrarily choose one of them and call it O. G has two orbits on internal

imaginary points on a real external line. Arbitrarily choose one of them and call it O′. Let

S be the union of:

O;

O′;

the imaginary external points on a real external line to B ∩ C;

the two orbits of imaginary internal points P on a real secant line (to B ∩ C) such that

|P⊥ ∩O| = 2 (call the union of these two orbits O′′);

the orbit of imaginary external points P on a real secant line such that |P⊥ ∩O| = 4;

the orbit of imaginary external points P on a real secant line such that P⊥∩O′′ is non-empty.

Then S is a 315-set of type (10, 15) in PG(2, 25) with group PSL(2, 5) (of order 60).

Proof. This is a straightforward computation in Magma. �

The stabilizer of S has index four in its normalizer, which is isomorphic to PGL(2, 5)×C2

and maps S to the other three 315-sets of type (10, 15) arising from the other choices of O and

O′. This set gives rise to a strongly regular graph with parameters (15625, 7560, 3655, 3660).

No strongly regular graph with these parameters was previously known. The two-weight

code parameters are 300 and 305.
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Theorem 4.4.3. Let G be the stabilizer of {(1, t, t2) : t ∈ GF (5)} in PΓL(3, 25), η ∈

GF (25) with η2 − η + 2 = 0. Then the union S of the orbits of

(0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 4, η11), (1, 1, η2),

(1, η5, η10), (1, η3, 0), (1, η20, η2), (1, η5, η16), (1, η22, 2), (1, η15, η13)

is a 231-set of type (6, 11) with full stabilizer G, which is isomorphic to AGL(1, 5)× C2 (of

order 40).

Proof. This is a straightforward computation in Magma. �

This two intersection set is also self-polar and was constructed by fixing a Baer-subconic,

as well as a point in the Baer-subconic. This set gives rise to a strongly regular graph with

parameters (15625, 5544, 1943, 1980). No strongly regular graph with these parameters was

previously known. The weights for the code are 220 and 225.

We were also able to construct a 155-set S of type (5, 10). It should be noted that S in

PG(2, 25) has stabilizer PGL(2, 5) (of order 120). Sets with these parameters were known

previously (unions of five disjoint Baer subplanes), but S is not a union of disjoint subplanes

and S has an insoluble group. The code consist weights are 145 and 150, while the strongly

regular graph parameters are (15625, 3720, 935, 870).

The next construction includes the use of a block-tactical decomposition matrix, so we

will first define this before proceeding. Given a collineation group G of PG(2, q), the number

n of point orbits equals the number n of line orbits [[41] 2.3.1(b)]. Ordering the pint orbits

P1, ..., Pn and the line orbits L1, ..., Ln, and choosing representative lj of Lj, for j = 1, ..., n,

the n × n matrix with entry in row i and column j equal to |lj ∩ Pi| is the block-tactical

decomposition matrix (of G).
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The embedding of A6 as a subgroup of PSU(3, 5) (and so of PSL(3, 25)) goes back to

Mitchel (1911), Section 15 and Theorem 15. From the proof of Theorem 15, the following

orbits of A6 can be read off:

O1: 36 points fixed by an element of order 5 (and on the axis of a homology of order 2);

O2: 45 points that are the centers of homolgies of order 2 in A6;

two orbits O3, O4 of 60 points that are fixed by elements of order 3 (and on the axis of a

homology of order 2);

O5: 90 points that are fixed by elements of order 4;

two orbits O6, O7 of 180 points that are on the axis of a homology of order 2, but fixed by

no elements of orders 3, 4, or 5.

The union of O1 and O5 is a classical unital. Thus A6 commutes with the corresponding

unitary polarity π, and thus the orbit lengths of lines are the same as those on pionts. The

line orbits are thus Oπ
i , i = 1, ..., 7.

The block-tactical decomposition matrix is



1 5 0 0 0 10 10

4 4 4 4 2 4 4

0 3 5 0 6 6 6

0 3 0 5 6 6 6

0 1 4 4 1 8 8

2 1 2 2 4 10 5


where the orbits are in the order above.
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Then the union of O2, O5, and either O6 or O7 is a 315-set of type (10, 15), as the sums

of the entries in the 2nd, 5th, and 6th (or 2nd, 5th, and 7th) columns are all equal to 10 or

to 15. Thus we have:

Theorem 4.4.4. There exists a 315-set S of type (10, 15) in PG(2, 25) with the full

stabilizer of S in PΓL(3, 25), which is isomorphic to PGL(2, 9) (of order 720).

Proof. PSL(2, 9) is isomorphic to A6, and Aut(A6) is isomorphic to PΓL(2, 9), which

is a maximal subgroup N of PΓL(3, 5), but Section 15 of Mitchell (1911). Indeed, the rest

of the results of Mitchell (1911) establish that an overgroup of A6 in PΓL(3, 25) contains

PSU(3, 5) or normalizes A6 (and so is contained in PΓL(2, 9)). Since PSU(3, 5) does not

stabilize S, it follows that the full stabilizer of S in PΓL(3, 25) is isomorphic to a subgroup

of PΓL(2, 9). Since N has interchanges the two choices for S, the full stabilizer of S in

PΓL(3, 25) is isomorphic to a subgroup of index 2 in PΓL(2, 9). A calculation show that it

is PGL(2, 9). �

This set also gives rise to a strongly regular graph with parameters (15625, 7560, 3655, 3660).

We were able to construct another, yet different set with the same parameters.

Theorem 4.4.5. Let G be the full stabilizer of PΓL(3, 25). Then G has two orbits of

length 36 with groups of orders 72. Arbitrarily choose one of them and call it O. Based on

the choice of O, there are two choices out of six for selecting 2 orbits of length 72 with groups

of order 72. These two possibilities give different (non-isomorphic) sets. Denote one choice

at O′ and the other as O′′. Let S be the union of:

O;

all three orbits of length 9;
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the one orbit of length 36 with a group of order 144;

the one orbit of length 72 with a group of order 432;

either O′ or O′′.

Then S is a 315-set of type (10, 15) with full stabilizer G, which is isomorphic to AGL(1, 9)

(of order 72).

Proof. This is a straightforward computation in Magma. �

This set gives rise to a strongly regular graph with parameters (15625, 7560, 3655, 3660).

We were able to construct two different 252-sets of type (7, 12) in PG(2, 25).

Theorem 4.4.6. The full stabilizer of PΓL(3, 25) has two orbits of length 72 whose group

order is 216. Arbitrarily choose one of them and call it O. Let S be the union of:

O;

the only orbit of length 108;

the only orbit of length 72 whose group has order 432.

Then S is a 252-set of type (7, 12) with full stabilizer in PΓL(3, 25) isomorphic to AGL(2, 3)

(of order 216).

Proof. This is a straightforward computation in Magma. �

Theorem 4.4.7. Let G be the full stabilizer of PΓL(3, 25). Then G has two orbits of

length 18 with group order 54. Arbitrarily choose one of them and call it O. Based on the

choice of O, there are two choices for selecting 2 orbits of length 54; one with group order 54

and the other with group order 108. These two possibilities give different (non-isomorphic)

sets. Denote one choice as O′ and the other as O′′. Let S be the union of:

O;
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O′ or O′′;

the only orbit of length 18 with group order 432;

the only two orbits of length 27 with group order 108;

the orbits of (0, 1, ω3) and (1, ω4, 1), where ω ∈ GF (25) with ω2 − ω + 2 = 0.

Then S is a 252-set of type (7, 12) in PG(2, 25) with group G, which is isomorphic to (C3 ×

C3) o C6.

Proof. This is a straightforward computation in Magma. �

Both of these sets give rise to strongly regular graphs with parameters (15625, 6048, 2323, 2352).

No strongly regular graph with these parameters was previously known. The weights of the

projective two-weight code are 240 and 245.

We now present the last set constructed in PG(2, 25).

Theorem 4.4.8. Let G be the full stabilizer of PΓL(3, 25), ν ∈ GF (25) with ν2−ν+2 = 0.

Then the union S of orbits of

(1, ν9, 2), (1, ν22, ν), (1, ν13, 4),

(1, ν16, ν7), (1, ν3, 0), (1, ν22, ν16)

is a 189-set of type (4, 9) in PG(2, 25) with full stabilizer in G, which is isomorphic to

(C3 × C3) o C6 (of order 54).

Proof. This is a straightforward computation in Magma. �

This set gives rise to a strongly regular graph with parameters (15625, 4536, 1279, 1332).

No strongly regular graph with these parameters was previously known. The projective

two-weight code weights are 180 and 185. However, in PG(2, 81), we were able to construct

one two intersection set.
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Theorem 4.4.9. Let G be the full stabilizer of PΓL(3, 81), π ∈ GF (81) with π4+2π3+2 =

0. Then the union S of orbits of

(0, 1, 0), (1, π65, π45), (1, π53, 2),

(1, π68, π64), (1, π70, π69), (1, π51, π4),

(1, π5, π60), (1, π50, π12), (1, 0, π12),

(1, π78, π36), (1, π31, 0), (1, π42, π61),

(1, π62, π19), (1, π76, π4)

is a 3285-set of type (36, 45) in PG(2, 81) with full stabilizer in G isomorphic to PSL(2, 9)

(of order 720).

Proof. This is a straightforward computation in Magma. �

It should be noted that this set was constructed by fixing a Baer-subconic. This set

gives rise to a strongly regular graph with parameters (531441, 262800, 129951, 129960). No

strongly regular graph with these parameters was previously known. The weights of the

projective two-weight code are 3240 and 3249.

Based on two of the newly constructed sets, as well as previous results, we have (q2−q+1)(q2+q)
2

-sets

of type ( q
2−q
2
, q

2+q
2

) in PG(2, q2) admitting PΩ(3, q), for q = 3, 5, 9. Unfortunately, no such

set exists for q = 7. Perhaps there is some connection with the fact that, for these q, PΩ(3, q)

is isomorphic to an alternating group.

4.4.2. Higher dimensional sets. All of the sets thus far have been constructed in the

plane. We will now consider higher dimensional two intersection sets. In order to do so, we

must first state a few results. The first is due to de Finis in 1981 [40].
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Theorem 4.4.10. In PG(2, q2), q = ph, p is a prime, h ≥ 1 an integer, there exists

k-sets of type (m,n), where

k = s(q2 + q + 1), m = s, n = q + s

for s = 2, 3, ..., q2 − q − 2.

The main idea behind this theorem is that we can take the union of two disjoint two

intersection sets in PG(2, q2) and obtain a new two intersection set. We can extend this

technique to higher dimensions as well.

Theorem 4.4.11. The union of a q(d+1)/2+1
q(d−1)/2+1

(m1+q(d−1)/2)-set K1 of type (m1,m1+q(d−1)/2)

in PG(d, q) and a q(d+1)/2+1
q(d−1)/2+1

(m2 + q(d−1)/2)-set K2 of type (m2,m2 + q(d−1)/2) in PG(d, q),

disjoint from K1, is a q(d+1)/2+1
q(d−1)/2+1

(m1 +m2 + 2q(d−1)/2)-set K of type

(m1 +m2 + q(d−1)/2,m1 +m2 + 2q(d−1)/2) in PG(d, q), q odd.

Proof. Any hyperplane intersects K in either m1 +m2, m1 +m2 +q(d−1)/2, or m1 +m2 +

2q(d−1)/2 points. We must show that there are no hyperplanes in the first class. Consider the

fundamental equations (1), (2), and (3) for the set K. There are three linear equations in the

unknowns tm1+m2 , tm1+m2+q(d−1)/2 , and tm1+m2+2q(d−1)/2 . It is easy to see that the coefficient

matrix has determinant 2q(3/2)(q−1). Thus, it is non-singular, and hence these equations have

a unique solution. As an q(d+1)/2+1
q(d−1)/2+1

(m1 +m2 + 2q(d−1)/2)-set of type (m1 +m2 + q(d−1)/2,m1 +

m2 + 2q(d−1)/2) is arithmetically feasible, we can find a solution to these equations with

tm1+m2 = 0. Hence, this must be the unique solution. �
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Let us consider two infinite families of two intersection sets in PG(5, q). In [22, Example

FE1, page 112], Calderbank and Kantor constructed the following family.

Theorem 4.4.12. There exists a (q5 + q2)/2-set K1 of type ((q4 − q2)/2, (q4 + q2)/2) in

PG(5, q) admitting PΩ−(5, q) for q odd. Namely, if Q is a non-degenerate quadratic form on

GF (q)6 of minus type, then K1 = {< v >: Q(v) is a non-square}.

In [35, Remark 3.3(4)], Cossidente and Penttila constructed another infinite family of

two intersection sets in PG(5, q).

Theorem 4.4.13. There exists a (q4 + q3 + q + 1)/2-set K2 of type ((q3 − q2 + q +

1)/2, (q3 + q2 + q + 1)/2) in PG(5, q) admitting PSL(2, q2), for q odd. Moverover, there is a

non-degenerate quadratic form Q on GF (q)6 of minus type, with Q(v) = 0 for all < v >∈ K2.

It should be noted that K1 is disjoint from K2 if we fix the quadratic form Q on GF (q)6

of minus type. Thus

Corollary 4.4.14. There exists a (q5 + q4 + q3 + q2 + q+ 1)/2-set K of type ((q4 + q3 +

q + 1)/2, (q4 + q3 + 2q2 + q + 1)/2) in PG(5, q) admitting the group PSL(2, q2) for q odd.

Proof. This follows from the observation immediately before this theorem and from

Theorem 4.4.11, with K = K1 ∪K2. �

4.4.3. Paley Sets. The set constructed in Theorem 4.4.14 has the same parameters as

some previously constructed sets. First we consider the Paley set [78], which is an orbit of

the group generated by the square of a Singer cycle.
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Theorem 4.4.15. The sets K from Theorem 4.4.14 are inequivalent to Paley sets.

Proof. Let K be a set from Theorem 4.4.14, and let P be a Paley set in PG(5, q) for

q odd. If K and P are equivalent under an element of PΓL(6, q), then Γ(K) and Γ(P )

are isomorphic, and thus have isomorphic automorphism groups. By [65, Corollary 8.2] or

[73], the automorphism group of Γ(P ) (the Paley graph) is a subgroup of AΓL(1, q6), and

so is solvable. But PSL(2, q2) is a subgroup of Aut(Γ(K)), so Aut(Γ(K)) is not solvable.

Therefore, K and P are not equivalent. �

As mentioned before, given a two intersection set, we can construct a strongly regular

graph. Paley graphs, named after Raymond Paley, are dense (the number of edges is

close to the maximal number of edges) undirected graphs constructed from the elements of

a finite field by connecting pairs of elements that differ in a quadratic residue. Paley graphs

are strongly regular graphs. More specifically, they form an infinite family of conference

graphs, a type of strongly regular graph with parameters (v, v−1
2
, v−5

4
, v−1

4
). A conference

graph is associated with a symmetric conference matrix, and must then have the order of v

being 1 (modulo 4) and a sum of two squares.

Corollary 4.4.16. The strongly regular graphs arising from the sets of Theorem 4.4.14

have the same parameters as, but are not isomorphic to, Paley graphs. Namely, the parameters

are (q6, q
6−1
2
, q

6−5
4
, q

6−1
4

).

The same proof shows that Γ(K) is not isomorphic to the strongly regular graphs

constructed from commutative semifields of order q6 in Theorem 1.3 of Chen and Polhill

(2011) [27], by [27, Theorem 1.4]. Also, K contains no plane, so cannot be equivalent to the

union of a partial 2-spread of size q3+1
2

.
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CHAPTER 5

Generalized Quadrangles

Generalized quadrangles play a prominent role in finite geometry, as they are connected to

various other combinatorial structures, sometimes in multiple ways. Generalized quadrangles

also play a central role in this thesis, so we will flesh-out some of these relationships.

Generalized quadrangles were first introduced by Tits in 1959 [107]. A (finite) generalized

quadrangle (GQ) is an incidence structure, like that of a projective space. The incidence

structure will be denoted by S = (P ,B, I) such that P is a non-empty set of points and B

is a non-empty set of lines. I is a symmetric point-line incidence relation that satisfies the

following axioms:

(i) Each point is incident with 1 + t lines (t ≥ 1) and two distinct points are incident with

at most one line.

(ii) Each line is incident with 1 + s points (s ≥ 1) and two distinct lines are incident with

at most one point.

(iii) If x is a point and L a line not incident with x, then there is a unique pair

(y,M) ∈ P × B for which xIMIyIL.

5.1. Properties

The parameters of a generalized quadrangle are integers s and t and S is said to have

order (s, t). If s = t, then we just say that S has order s. The dual of a generalized

quadrangle is also a generalized quadrangle in which points and lines are reversed, as well

as s and t.
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Given two points x, y of S, we say that x and y are collinear provided that there exists

a line L such that xILIy. We will denote that x is collinear with y by x ∼ y. Dually,

two lines L and M are concurrent if they intersect, denoted by L ∼ M . For x ∈ P ,

x⊥ = {y ∈ P|y ∼ x}. Per the definition of collinearity, we get that x ∈ x⊥. We also define

{x, y}⊥ = x⊥ ∩ y⊥ and {x, y}⊥⊥ = ∩z∈{x,y}⊥z⊥. If x 6∼ y, we call {x, y}⊥⊥ a hyperbolic

line of S. Lastly, a point x ∈ P is regular if |{x, y}⊥⊥| = t+ 1 for all y 6∼ x.

Based on the definition of a generalized quadrangle, we can extract some parameter

information.

Theorem 5.1.1. Let S = (P ,B, I) be a generalized quadrangle of order (s, t), then

(i) |P| = (s+ 1)(st+ 1),

(ii) |B| = (t+ 1)(st+ 1).

Proof. Fix a line L of S and count the number of ordered pairs (x,M) ∈ P × B such

that x 6 IL, xIM , and L ∼ M . Then v − s − 1 = (s + 1)ts, and solving for v yields

v = (s+ 1)(st+ 1). Part (ii) follows from duality. �

Furthermore, for a generalized quadrangle of order (s, t) we get the following restrictions:

1. s+ t divides st(s+ 1)(t+ 1).

2. If s > 1 and t > 1, then t ≤ s2, and dually, s ≤ t2.

3. If s 6= 1, t 6= 1, s 6= t2, and t 6= s2, then t ≤ s2 − s, and dually, s ≤ t2 − t.

The proofs of these facts can be found in [82].

5.1.1. Classical Generalized Quadrangles. There are three known families of

classical generalized quadrangles, all associated with classical groups. All classical

generalized quadrangles embed in PG(d, q) for 3 ≤ d ≤ 5.
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The first family arises from a nonsigular quadric Q of projective index 1 of the projective

space PG(d, q). The points and lines (hyperplanes) of Q form a generalized quadrangle,

denoted by Q(d, q), with parameters

s = q, t = 1, |P| = (q + 1)2, |B| = 2(q + 1) for d = 3,

s = t = 1, |P| = |B| = (q + 1)(q2 + 1) for d = 4, and

s = q, t = q2, |P| = (q + 1)(q3 + 1), |B| = (q2 + 1)(q3 + 1) for d = 5.

The canonical equations for the quadric Q are as follows:

x0x1 + x2x3 = 0 for d = 3,

x2
0 + x1x2 + x3x4 = 0 for d = 4, and

f(x0, x1) + x2x3 + x4x5 = 0 for d = 5,

where f is an irreducible binary quadric form. The hyperbolic quadric Q(3, q) may also

be denoted as Q+(3, q), and the elliptic quadric Q(5, q) is often denoted as Q−(5, q). The

parabolic quadric, Q(4, q), is always denoted as such. It should be noted that Q+(3, q)

is considered a trivial point-line incidence structure, as it is just the structure of a grid.

However, as a quadric, it is associated with numerous interesting combinatorial objects.

The second classical generalized quadrangle arises from a nonsignular hermitian variety

H of the projective space PG(d, q2) for d = 3 or 4. The points and lines of H form a

generalized quadrangle H(d, q2) with parameters

s = q2, t = q, |P| = (q2 + 1)(q3 + 1), |B| = (q + 1)(q3 + 1) for d = 3 and

s = q2, t = q3, |P| = (q2 + 1)(q5 + 1), |B| = (q3 + 1)(q5 + 1) for d = 4.

The canonical equation for H is xq+1
0 + xq+1

1 + ...+ xq+1
d = 0.
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The final classical generalized quadrangle arises, specifically, from PG(3, q). The points

of PG(3, q), along with the totally isotropic lines with respect to a symplectic polarity form

a generalized quadrangle, denoted as W (q). The parameters of W (q) are

s = t = q, |P| = |B| = (q + 1)(q2 + 1).

The canonical bilinear form for the symplectic polarity of PG(3, q) is

x0y1 − x1y0 + x2y3 − x3y2 = 0.

Several theorems relate the three classical generalized quadrangles. A few will be presented

at this time.

Theorem 5.1.2 ([9]). A generalized quadrangle S is isomorphic to W (q) if and only if

all the points of X are regular.

Theorem 5.1.3 ([82]). Q(4, q) is isomorphic to W (q) if and only if q is even.

Theorem 5.1.4 ([82]). The dual of Q(4, q) is isomorphic to W (q).

The dual of Q−(5, q) is isomorphic to H(3, q2).

The proof is taken from the book Finite Generalized Quadrangles by Payne and

Thas [82].

Proof. Let Q−(5, q) be an elliptic quadric in PG(5, q). Then extend PG(5, q) to

PG(5, q2). The extension of Q−(5, q) is a hyperbolic quadric, Q+(3, q), in PG(5, q2). Thus,

by definition, we get that Q+ is the Klein quadric of the lines of PG(3, q2). So for Q− in Q+

there corresponds a set V of lines in PG(3, q2). Thus, for any line L of Q−, there corresponds

q+ 1 lines of PG(3, q2) that all lie in a plane and pass through a point x ∈ PG(3, q2). Let P

be the set of points on the lines contained in V . Then for each point of Q−, there corresponds
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a line in V and with each line L in Q−, there corresponds a point x in P . So for distinct lines

L and M in Q− there correspond distinct points x and y in P , as a plane of Q+ contains at

most one line of Q−. Now, since a point y of Q− is on q2 + 1 lines of Q−, these q2 + 1 lines

are mapped onto the q2 + 1 points of the image of y. Thus, there exists an anti-isomorphism

from Q− onto (P, V, I) where I is the natural incidence relation. Therefore, (P, V, I) is a GQ

of order (q2, q) embedded in PG(3, q2). But, this says that the GQ (P, V, I) is H(3, q2) due

to a result by F. Buekenhout and C. Lefevre [21]. �

Let S = (P ,B, I) be a GQ of order (s, t). Given a pair of distinct points x, y ∈ P , the

trace of (x, y) is defined to be the set x⊥ ∩ y⊥, denoted by tr(x, y) or {x, y}⊥. Define B∗

to be the set of all spans (the set of all hyperbolic lines). Then S∗ = (P ,B∗, I) is a linear

space. A linear variety of S∗ is a subset P ′ ⊂ P such that x, y ∈ P ′, x 6= y, implies that

{x, y}⊥⊥ ⊂ P ′. P ′ is a proper linear variety if P ′ 6= P and |P ′| > 1. With these definitions

in place, we can now state Tallini’s theorem [95].

Theorem 5.1.5. Let S = (P ,B, I) be a GQ of order (s, t) with s 6= t, s > 1, and t > 1.

Then S is isomorphic to H(3, s) if and only if

(i) all points of S are regular, and

(ii) if the lines L and L′ of B∗ are contained in a proper linear variety of S∗, then the

lines L⊥ and L′⊥ of B∗ are contained in a proper linear variety of S∗.

The proof is several pages long, and will, thus, not be presented here. The proof can be

found in [82, 95]. This theorem is also known as Tallini’s characterization of H(3, s). While

there are further relationships between non-classical generalized quadrangles, they do not

play a prominant role (except in the last chapter), so they will not be addressed at this time.
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5.1.2. The Group of H(3, q). Not only does the hermitian variety H(3, q2) play a

critical role in constructing the family of strongly regular graphs we are after, but so does

its group, PΓU(4, q). Before discussing the characteristics of PΓU(4, q), we will first define

some general group properties, coming from Taylor’s book The Geometry of Classical

Groups [99].

Let G be a group and Ω a non-empty set, then we say that G acts on Ω if for all g ∈ G,

there exists a bijection α 7→ g(α) of Ω such that

1(α) = α ∀α ∈ Ω and

(gh)(α) = g(h(α)) ∀α ∈ Ω and ∀g, h ∈ G.

Now for ∆ ⊂ Ω and g ∈ G, let g(∆) := {g(α)|α ∈ ∆}. Then we call the subgroup

G∆ := {g ∈ G|g(∆) = ∆}

the stabilizer of ∆ in G. The subgroup

G(∆) := {g ∈ G|g(α) = α

∀α ∈ ∆} is the pointwise stabilizer of ∆. The assignment ∆ 7→ g(∆) is defined to be

the action of G on the set of all subsets of Ω. The subgroup G(Ω) of G is defined to be the

kernel of the action of G on Ω. If G(Ω) = 1, then we say that G acts faithfully on Ω or

we say that G is a group of permutations of Ω. If G∆ = G, then ∆ ⊂ Ω is G-invariant.

The smallest, nonempty subset of Ω such that it is G-invariant is called an orbit. We then

get that Ω is the disjoint union of all its orbits. If α ∈ Ω, then the orbit which contains

α is defined to be orbG(α) := {g(α)|g ∈ G}. If |orbG(α)| = n for some n ∈ N, then the

Orbit-Stabilizer Theorem says that |orbG(α)| = |G||Gα|. If there is only one orbit in G, then

G is transitive. Furthermore, if G is transitive and Gα = 1 ∀α ∈ Ω, then G is said to act

regularly on Ω.
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With these definitions in place, we can now construct PΓU(4, q). Let π be a unitary

polarity of the projective geometry P (V ), where V is a vector space of dimension n over the

field F. A polarity is a correlation π of order 2, where by π is a bijection from P (V ) to P (V )

which reverses inclusion. The fact that makes the polarity a unitary polarity is that σ2 = 1,

σ 6= 1, and β(u, v) = σβ(v, u) ∀u, v ∈ V , whenever π arises from a non-degenerate reflexive

σ-sesquilinear form β. More simply speaking, in PG(2, q2), a unitary polarity is a polarity π

having q3 + 1 absolute points and for any non-absolute line, that line contains exactly q + 1

absolute points. Let π be induced by a σ-hermintian form β, where σ is an automorphism

of F of order 2. Then the elements f ∈ GL(V ) such that β(f(u), f(v)) = β(u, v) ∀u, v ∈ V

forms the unitary group U(V ). That is to say, U(V ) is the group of square unitary

matrices. The full unitary group ΓU(V ) consists of τ -semilinear transformations f that

induce a collineation of P (V ) that commutes with π. In other words, for some a ∈ F such

that a = σ(a),

β(f(u), f(v)) = aτβ(u, v) ∀u, v ∈ V .

From ΓU(V ) we can then construct the general unitary group, GU(V ).

GU(V ) := ΓU(V ) ∩GL(V ).

GU(V ) consists of all n× n matrices A such that A∗A = bI for some b 6= 0.

A property that distinguishes U(V ) from other classical groups is the fact that U(V )

need not contain transvections. Transvections in U(V ) correspond to an important set of

points in P (V ), which we will need later on. Therefore, we will define transvections. Let

t ∈ GL(V ) be a linear transformation that fixes every element of a hyperplane H of V . Now

let v ∈ V such that v /∈ H and let φ be a linear functional defined by

φ(av + h) := a ∀a ∈ F, h ∈ H.
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Then kerφ = H and if w ∈ V , then w − φ(w)v ∈ H. Furthermore, we get that

t(w) := w + φ(w)u, where u := t(v)− v.

But, if φ ∈ V ∗ and if u is a vector such that φ(u) 6= −1, then

tφ,u(w) := w + φ(w)u

is an element of GL(V ) which fixes every vector in kerφ. If φ(u) = 0, then tφ,u is a

transvection.

Transvections in U(V ) are equivalent to the existence of isotropic points in P (V ). When

constructing a new family of strongly regular graphs, isotropic points will come into play.

An isotropic point in P (V ) is a nonzero vector in V which is orthogonal to itself. We say

that a subspace W is totally isotropic if W ⊂ W⊥.

There are two nice consequences based off of the field with are useful for determining

if there are isotropic points. But before stating them, we will need a couple definitions.

Let F0 denote the fixed field of σ, where σ is an automorphism of F of order 2. That is,

F0 := {a ∈ F|a = σ(a)}. The function

N : F× → F×0

: a 7→ aσ(a)

is called the norm.

Lemma 5.1.6. If dim V ≥ 2 and the norm map N is onto, then V contains isotropic

vectors.

Proof. Suppose that v 6= 0 is not isotropic. Since v is not isotropic, there exists a b 6= 0

such that b = β(v, v). Then b = σ(b) and for a ∈ F, u ∈< v >⊥, we get that

β(u+ av, u+ av) = β(u, u) + aσ(a)b.

56



Since −bβ(u, u) ∈ F0 and N(a) = 1 if and only if a = b
σ(b)

for some b ∈ F×, we have that

there exists an a ∈ F such that u + av is isotropic. Therefore, V contains isotropic vectors,

provided that the dimension of V is greater than or equal to 2. �

From this Lemma, we obtain the following Corollary.

Corollary 5.1.7. If dim V ≥ 2 and F is finite, then V contains isotropic vectors.

Now, we have been denoting the unitary group as U(V ), but if F0 is the finite field Fq and

n := dimV , then we denote the unitary group as U(n, q). The same applies to ΓU(V ), giving

us ΓU(n, q). By switching to this notation, we can compute the orders of these groups, as

well as count the number of isotropic vectors in V .

Lemma 5.1.8. V contains (qn−1 − (−1)n−1)(qn − (−1)n) isotropic vectors.

The order of U(n, q) is

q
n(n−1)

2

∏n
i=1(qi − (−1)i).

Another group of particular interest is PGU(4, q), the projective general unitary group.

PGU(4, q) is obtained from GU(4, q) by factoring out the scalar matrices contained in that

group. The order of PGU(4, q) is

q6(q4 − 1)(q3 + 1)(q2 − 1).

Similarly, PΓU(4, q) is obtained from ΓU(4, q) by factoring out the scalar matrices contained

in ΓU(4, q). The order of PΓU(4, q) is

h|PGU(4, q)|,

where q2 = ph and p is prime.
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5.1.3. Relationships. As previously mentioned, generalized quadrangles are related to

other combinatorial objects. For example, a generalized quadrangle can be defined in terms

of a partial geometry. A partial geometry is an incidence structure S = (P ,B, I) in which

P and B are disjoint, nonempty sets of objects. P is the set of points, while B is the set of

lines and I is a symmetric point-line incidence relation that satisfies the following axioms:

(i) Each point is incident with t+ 1 lines (t ≥ 1) and two distinct points are incident with

at most one line.

(ii) Each line is incident with s+ 1 points (s ≥ 1) and two distinct lines are incident with

at most one point.

(iii) If x is a point and L is a line not incident with x, then there are α points (α ≥ 1)

x1, ..., xα and α lines L1, ..., Lα such that xILiIxiIL, i = 1, 2, ..., α.

By definition, if α = 1, then a partial geometry is also a generalized quadrangle. Partial

geometries were introduced by Bose in 1963 [14].

Another object related to a generalized quadrangle is a partial quadrangle. A partial

quadrangle is an incidence structure S = (P ,B, I) of points and lines satisfying conditions

(i) and (ii) of a partial geometry, as well as

(iii)’ If x is a point and L is a line not incident with x, then there exists at most one pair

(y,M) ∈ P × B for which xIMIyIL.

(iv)’ If two points are not collinear, then there are µ points (µ > 0) collinear with both.

These objects were introduced by Cameron in 1974 [23]. We get that a partial geometry is

a generalized quadrangle if and only if µ = t+ 1.
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A semi-partial geometry was introduced by Debrocy and Thas in 1978 [36] as being

an incidence structure S = (P ,B, I) of points and lines satisfying (i) and (ii) as given above,

as well as

(iii)” If x is a point and L is a line not incident with x, then there are 0 or α points (α ≥ 1)

which are collinear with x and incident with L.

(iv)” If two points are not collinear, then there are µ points (µ > 0) collinear with both.

We then get that a semi-partial geometry is a partial geometry if and only if µ = (t + 1)α.

Thus, it is a generalized quadrangle if and only if α = 1 and µ = t+ 1.

We also get that generalized quadrangles are related to designs. A partial geometric

design is an incidence structure S = (P ,B, I) of points and blocks satisfying the following

properties:

(i) Each point is incident with t+ 1 blocks (t ≥ 1), and each block is incident with s+ 1

points (s ≥ 1).

(ii) For a given point-block pair (x, L) such that

(a) if x is not on L, we have
∑

yIL[x, y] = α, where [x, y] denotes the number of blocks

incident with x and y and

(b) if xIL, we have
∑

yIL[x, y] = β.

The notation used to denote such a partial design is D(s, t, α, β). A generalized quadrangle

is a partial design in which α = 1 and β = s + t + 1. Such structures are due to Bose,

Shrikhande, and Singhi [17].

The underlying connection (which we are primarily concerned with) between all of these

objects is strongly regular graphs. Let S be a partial geometry with parameters s, t, and α.

Let the points of S be the vertices of a graph. Then two vertices are adjacent if and only
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if they are collinear in S. This graph is known as the point or collinearity graph of the

partial geometry S. Whenever α 6= s + 1, the point graph is a strongly regular graph with

parameters

((s+ 1)(st+ α)/α, s(t+ 1), s− 1 + (α− 1)t, α(t+ 1)).

But, as previously stated, if α = 1, the partial geometry, S, is a generalized quadrangle.

Thus, the point graph of a generalized quadrangle is a strongly regular graph with parameters

((s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1).

The classicial generalized quadrangle H(3, q2), for q even, which will be denoted as H, is

of primary interest. The point graph of H is a strongly regular graph with parameters

((q2 + 1)(q3 + 1), q3 + q2, q2 − 1, q + 1).

5.2. New Family of Graphs

The new family of strongly regular graphs which we have constructed relies on the point

graph of H(3, q2), for q even.

Theorem 5.2.1. Let Γ be the point graph of H = H(3, q2), q even. Fix a point P of H

and two orthogonal tangent lines t1 and t2 on P , and define A := {A ∈ H : A ∼ P} and

B := {Q ∈ H : Q 6∼ P}. Define a graph Γ′ as follows:

• Remove all edges {Q,R} in Γ if and only if Q,R ∈ B.

• Add edge {Q,R} if and only if there exists a totally isotropic point Y ∈ P⊥ \ Q⊥ such

that Y 6= P with V := t2 ∩ (PQ)⊥, S := V Y ∩ t1, and R := S⊥ ∩ Y Q.

Then Γ′ is a strongly regular graph with parameters ((q2 + 1)(q3 + 1), q3 + q2, q2 − 1, q + 1).
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Proof. By definition, the number of vertices of Γ is (q2 + 1)(q3 + 1), so clearly the

number of vertices of Γ′ is the same. Show that the valency of Γ′ is q3 + q2. By definition P

is adjacent to the q2 + q3 points in A. For A ∈ A, A is adjacent to P , q2−1 points in A, and

q3 points in B. Since adjacency between points in A and B is left unchanged, the valency of

A ∈ A is unchanged as well. Let Q ∈ B, then in Γ Q is adjacent to q + 1 points in A and

(q2− 1)(q+ 1) points in B. In Γ′, those (q2− 1)(q+ 1) edges are removed. It must be shown

that the number of edges added equals (q2 − 1)(q + 1). This is obvious provided that R, as

defined, is not adjacent to P and is totally isotropic (because the number of Y ∈ P⊥ \ Q⊥

such that Y 6= P and Y is totally isotropic is (q2 − 1)(q + 1)). R is not adjacent to P

because R 6= Y , as SY is hyperbolic and P⊥ ∩ Y Q = Y . WLOG, let P =< p >, Q =< q >,

U =< u >, and V =< v >. Then the Gram matrix with respect to p, u, v, q is

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0


.

If we define R =< r >, then r = y+q because < y >=< p+u+v >, which implies that S =<

p+u >. So S⊥ consists of points of the form (x1, x2, x3, x2), which implies that r = y+q. Now

< r, r >=< y + q, y + q >=< y, y > + < y, q > + < q, y > + < q, q >=< y, q > + < q, y >

because Q and Y are totally isotropic. Now < y, q >=< p + u + v, q >=< p, q >= 1, so

< y, q > + < q, y >= 1 + 1 = 0 in characteristic 2. Therefore, < r, r >= 0, and R is totally

isotropic. Furthermore, it must be shown that Γ′ is symmetric. That is, it must be shown

that the edge {Q,Q′} is undirected for Q,Q′ ∈ B. Suppose {Q,Q′} is an edge in Γ′, then

there must exist a Y ∈ P⊥ \ Q⊥ such that Y is totally isotropic and Y 6= P . We can then
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define V := (PQ)⊥ ∩ t2 and S := V Y ∩ t1, so that Q′ := S⊥ ∩ Y Q. But Q′ = S⊥ ∩ Y Q

implies that Q′ ∈ Y Q. Thus, Y ∈ P⊥ \ (Q′)⊥. Let V ′ := (PQ′)⊥ ∩ t2 and S ′ := V ′Y ∩ t1.

Show that Q := (S ′)⊥ ∩ Y Q′. In order to do so, we must first show that {P, S, V ′, Y } is a

quadrangle. P and V ′ are on t2, for which S and Y are not. P and S are on t1, for which V ′

and Y are not. PY is a totally isotropic line not containing S or V ′, as neither of them are

isotropic. S cannot lie on the line Y V ′, for if it did, Q = Q′. Similarly, V ′ cannot lie on the

line Y S, for if it did, Q = Q′. Therefore, {P, S, V ′, Y } is a quadrangle in characteristic two,

which implies that the diagonal points are collinear. The diagonal points are SY ∩V ′P = V ,

SV ′∩Y P = A, where A ∈ A is a common neighbor of Q and Q′, and SP ∩Y V ′ = S ′. Thus,

V , A, and S ′ are collinear. Now Q′ ⊥ V ′ and Q′ ⊥ A implies that Q′ ⊥ V ′A, which implies

that Q′ ⊥ S ′. But Q′ = S⊥ ∩ Y Q, so Q = (S ′)⊥ ∩ Y Q′. Thus, Γ′ is symmetric.

Show that the number of common neighbors given two adjacent vertices is q2 − 1.

Case 1: Suppose {P,A} is an edge in Γ′ for A ∈ A. P is adjacent to q2 + q3 points in A,

one of which is A. A is adjacent to q2 − 1 points in A and q3 points in B (as well as P ).

Since P is not adjacent to any points in B, the number of common neighbors between P and

A is q2 − 1.

Case 2: Suppose {A,B} is an edge in Γ′ for A,B ∈ A. By definition, both points are

adjacent to P . In Γ, A and B have q2−2 common neighbors in A and no common neighbors

in B. Since adjacency between points in A is unchanged in Γ′, the number of common

neighbors is q2 − 1.

Case 3: Suppose that {A,Q} is an edge in Γ′ for A ∈ A and Q ∈ B. In Γ, A and Q

have no common neighbors from A. So the same is true in Γ′. Show that A and Q have

q2 − 1 common neighbors from B in Γ′. Let R ∈ B be a common neighbor. Then R ∼ Q
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implies that there exists a Y ∈ P⊥ \ Q⊥ such that Y is totally isotropic and Y 6= P . Then

V := (PQ)⊥ ∩ t2 and S := V Y ∩ t1, so that R := S⊥ ∩ Y Q. Since R := S⊥ ∩ Y Q, Y ∈ RQ.

Suppose that Y 6∈ PA \ {P,A}, then A 6∈ (RQ)⊥. But this contradicts the fact that Q ∼ A

and R ∼ A. Thus, Y ∈ PQ \ {P,A}, and since the number of Y ∈ PA \ {P,A} ⊂ P⊥ \Q⊥

is q2 − 1, Q and A have q2 − 1 common neighbors from B in Γ′.

Case 4: Suppose {Q,Q′} is an edge in Γ′ for Q,Q′ ∈ B. In Γ, Q and Q′ have one common

neighbor from A. Thus, in Γ′, they still have one common neighbor from A. Show that Q

and Q′ have q2 − 2 common neighbors from B. Suppose that R ∈ B is a common neighbor.

Then Q ∼ R implies that there exists a Y ∈ P⊥\Q⊥ such that Y 6= P , Y is totally isotropic,

V = t2 ∩ (PQ)⊥, and S = V Y ∩ t1 such that R = S⊥ ∩ Y Q. Similarly, Q′ ∼ R implies that

there exists a Y ′ ∈ P⊥ \ (Q′)⊥ such that Y ′ 6= P , Y ′ is totally isotropic, V ′ = t2 ∩ (PQ′)⊥,

and S ′ = V ′Y ′ ∩ t1 such that R = (S ′)⊥ ∩ Y ′Q′. If A ∈ A is the common neighbor, then

< P,Q,Q′ >⊥= A. By definition, we know that S, S ′ ∈ t1 with R ∈ S⊥ and R ∈ (S ′)⊥.

Thus, S, S ′ ∈ (PR)⊥, which is a line, call it lR, on A. So S = lR ∩ t1 = S ′. Hence, S = S ′.

Choose S on t1 such that S 6= P , S /∈ Q⊥ and S /∈ (Q′)⊥. Then there are q2−2 choices for S.

Consider the planes < S, V,Q >,< S, V ′, Q′ >,S⊥. We get that < S, V,Q > ∩ < S, V ′, Q′ >

is a tangent line on S, call it ts. Then S⊥ ∩ ts = R(S) for some R(S), and R(S) is totally

isotropic as R(S) ∈ S⊥ and S is not totally isotropic. Thus, the number of common neighbors

is q2 − 2, as there are q2 − 2 choices for S. Therefore, the number of common neighbors

given a pair of adjacent vertices is q2 − 1. Now we must show that the number of common

neighbors given two non-adjacent vertices is q + 1. This will be done by considering various

cases, the first of which deal with the unique point P and a point in B. The final case

considers two non-adjacent vertices in B.

63



Case i: Let Q ∈ B, then P and Q are not adjacent. P is adjacent to all q2 + q3 points from

A. Q is adjacent to q+ 1 points from A. Thus, P and Q have q+ 1 common neighbors in A.

Case ii: Suppose that A and B are non-adjacent vertices in A. Then both A and B are

adjacent to P . Furthermore, in Γ, A and B have q common neighbors from B and no common

neighbors from A. Since adjacency between points in A and B is left unchanged in Γ′, A

and B still have q common neighbors from B. Thus, there are q + 1 common neighbors.

Case iii: Suppose that A ∈ A and Q ∈ B are not adjacent. In Γ, A and Q have 1 common

neighbor from A. Since adjacency is unchanged between points from A and B, A and Q still

have one common neighbor from A, call it B. Show that A and Q have q common neighbors

from B. For all R ∈ B, if R ∼ Q, then there exists a C ∈ A such that Q ∼ C and R ∼ C and

B 6= C. Q ∼ C implies that C ∈ (PQ)⊥, and Q ∼ R implies that there exists a Y ∈ P⊥ \Q⊥

such that Y is totally isotropic and Y 6= P . Then V := t2 ∩ (PQ)⊥ and S := V Y ∩ t1, so

that R := S⊥∩Y Q. Furthermore, suppose that R ∼ A (and Q 6∼ A), then C = AS∩ (PQ)⊥

(because AC is a hyperbolic line in P⊥ meeting t1 and contains all points from A adjacent

to R) and, hence, Y = PC ∩ V S. There are q choices for C on (PQ)⊥ such that C ∈ A and

C 6= B. Thus, there are q common neighbors from B.

Case iv: Suppose that Q,Q′ ∈ B are not adjacent in Γ′.

a. If Q ∼ Q′ in Γ, then there exists an A ∈ A such that Q ∼ A and Q′ ∼ A in both Γ

and Γ′. Show that Q and Q′ have q common neighbors from B. Suppose that R ∈ B

is a common neighbor. Then Q ∼ R implies that there exists a totally isotropic point

Y ∈ P⊥ \Q⊥, for Y 6= P , V = t2 ∩ (PQ)⊥, and S = V Y ∩ t1 such that R = S⊥ ∩ Y Q.

Similarly, Q′ ∼ R implies that there exists a totally isotropic point Y ′ ∈ P⊥ \ Q′⊥, for

Y ′ 6= P , V ′ = t2 ∩ (PQ′)⊥, and S ′ = V ′Y ′ ∩ t1 such that R = (S ′)⊥ ∩ Y ′Q′. By the
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same argument as in Case 4, S = S ′. Now since A ∼ Q, A ∼ Q′, and Q ∼ Q′ in Γ,

there exists a totally isotropic line l through A,Q,Q′ which does not contain P , but

is contained in < P,Q,Q′ >. Furthermore, P, Y, Y ′ are collinear as Y, Y ′ ∈ P⊥, which

implies that P ⊂ (Y Y ′)⊥. This line is contained in < P,Q,Q′ >. We also know that

S⊥∩ < P,Q,Q′ > is a hyperbolic line on P , containing q totally isotropic points not

equal to P , and since S⊥ ∩ Y ′Q′ = S⊥ ∩ Y Q = R, Q and Q′ have q common neighbors

from B.

b. Suppose that Q 6∼ Q′ in Γ.

1. Suppose that QQ′ is a hyperbolic line not containing P . Then in Γ, there does

not exists an A ∈ A such that Q ∼ A and Q′ ∼ A. Thus, Q and Q′ have no

common neighbors from A in Γ′. Furthermore, < P,Q,Q′ > is a non-degenerate

plane containing either t1 or t2. WLOG, suppose that t1 ⊂< P,Q,Q′ >. Let

R ∈ B be a common neighbor of Q and Q′ in Γ′. This implies that there exists

a totally isotropic point Y ∈ P⊥ \ Q⊥ such that Y 6= P , V = t2 ∩ (PQ)⊥, and

S = V Y ∩ t1 such that R = S⊥∩Y Q, and that there exists a totally isotropic point

Y ′ ∈ P⊥ \ (Q′)⊥ such that Y ′ 6= P , V ′ = t2 ∩ (PQ′)⊥, and S ′ = V ′Y ′ ∩ t1 such

that R = (S ′)⊥ ∩ Y ′Q′. But S = S ′, because if not, R ∈ t1, which cannot happen.

Thus, R = S⊥ ∩ Y ′Q′ = S⊥ ∩ Y Q. Now let W = QR ∩ P⊥ and m = VW , then

S = t1 ∩m, which implies that R ∈ S⊥∩ < Q,Q′, V > (R 6= W ). Since Q 6∼ Q′ in

Γ′ and there does not exist a common neighbor from A, Q 6∼ R in Γ. So QQ′ is a

hyperbolic line with q + 1 totally isotropic points from B. Thus, W is not totally

isotropic (because W ∈ P⊥). Hence, the number of common neighbors from B in

Γ′ is q + 1.
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2. Suppose that QQ′ is a hyperbolic line containing P . Then in Γ, Q and Q′ have

q + 1 common neighbors in A, which translates to Q and Q′ having q + 1 common

neighbors from A in Γ′. There does not exist an R ∈ B such that R is a common

neighbor, because if there did exist one, then S = S ′. But if S = S ′, then Y = Y ′

(as (PQ)⊥ = (PQ′)⊥ and V = V ′), which says that Q = Q′, a contradiction.

Thus, the number of common neighbors for any two non-adjacent vertices is q + 1.

Therefore, Γ′ is a strongly regular graph with parameters ((q2 + 1)(q3 + 1), q3 + q2, q2−1, q+

1). �

It remains to be shown that these graphs are in fact new. When q = 2, this graph had

been found using backtracking algorithms [34]. A geometrical description of the graph was

not given. As for the case when q ≥ 4, the only known strongly regular graphs with these

parameters arise from generalized quadrangles. Thus, in order to show that these graphs

are new, it must be shown that there exists a complete graph on 4 vertices minus an edge e

(K4 \ {e}).

Theorem 5.2.2. The family of graphs given in Theorem 5.2.1 for q ≥ 4 are new strongly

regular graphs.

Proof. Since the only known graphs with these parameters are point graphs of generalized

quadrangles, we can apply Corollary 3.2.7. That is, it must be shown that there exists a

K4 \ {e}, for some edge e, as a subgraph of Γ′. Pick a point Q ∈ B. Q is adjacent to

q3 +q2−q−1 points from B. And two adjacent points from B have q2−2 common neighbors

in B. Thus, there are (q3 + q2 − q− 1)(q2 − 2)/2 triangles on Q. Now Q is adjacent to q + 1

points from A, and a point from A that is adjacent to a point from B has q2 − 1 common
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neighbors from B. Thus, there are at most (q + 1)(q2 − 1) points in A that can be used to

get a complete graph on 4 vertices. But (q3 + q2 − q − 1)(q2 − 2)/2 > (q + 1)(q2 − 1) for

q ≥ 4. Therefore, Γ′ contains at least one subgraph of the form K4 \ {e}. �

Computer evidence suggests that the automorphism group of Γ′ is the stabilizer of two

orthogonal tangent lines in PΓU(4, q2). This has been confirmed for q = 2, 4, 8.

5.3. Miscellaneous Graphs

Using the same search process as the one used to find and construct Γ′ from Theorem

5.2.1, we were able to find numerous new strongly regular graphs. Some of these graphs

provide promising leads into constructing infinite families, but this requires further investigation.

Consider strongly regular graphs with parameters ((s+1)(st+1), (t+1)s, s−1, t+1) (the

parameters of a point graph from a GQ of order (s, t)) for (s, t) = (q, q), (q2, q3), and (q2, q2),

where q is a prime power greater than 3. The canonical examples have groups PSp(4, q),

PGU(5, q), and PGO(5, q).

When examing subgroups of PGO(5, q), the following result was obtained.

Theorem 5.3.1. Fix a point P and a line l of Q(4, 4h), for h = 1, 2. Let Q be a point

on the line joining P and the nucleus N of Q(4, 4h). Let Γ be the point graph of Q(4, 4h),

and let Γ′ be the graph obtained by deleting all edges {R, S} of Γ where RS is skew to l and

P is not collinear with R and S, and adding edges {R′, S ′} whenever R′ is not collinear with

P , S ′ is not collinear with P if and only if there exists a Q(4, 2h) subquadrangle containing

R′, S ′, P,Q and meeting l in 2h+1 points. Then Γ′ is a strongly regular graph with parameters

(85, 20, 3, 5) and (4369, 272, 15, 17) whose automorphism groups have order 1536 and 3000,

respectively.

67



Proof. This is a straightforward computation in Magma. �

Using Magma, we have found new strongly regular graphs whose automorphism groups

have orders 1280, 1440, 1536 as subgroups of PSp(4, 4), 4320 in PGU(5, 2), 768 and 1440 in

PGO(5, 4), and 2400 in PGO(5, 5).
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CHAPTER 6

Strongly Regular Graphs From Large Arcs in

Affine Planes

Continuing with the theme of generalized quadrangles, one of particular interest is the

Ahrens-Szekeres generalized quadrangle. It is of order (q−1, q+1) and was constructed using

a q-arc of PG(2, q). Before discussing the construction, we will first develop the necessary

background information.

6.1. Arcs

A k-arc is a set of k (k ≥ 3) points in PG(2, q) such that no three points are collinear.

It is possible to have k-arcs exist in both Desarguesian and non-Desarguesian planes. If

the plane has order q, then k ≤ q + 2. However k cannot equal q + 2 unless q is even. If

k = q + 1, then the arc is called an oval, and if k = q + 2 (and q is even), then the arc

is called a hyperoval. Hyperovals are maximal arcs, as k has reached its upper bound.

More generally, in a finite projective plane of order q, a {k;n}-arc K is a nonempty proper

subset of k points of the plane such that no n+ 1 points are collinear, where 2 ≤ n ≤ q− 1.

If k = nq + n− q, then K is a maximal arc.

6.1.1. Families of Arcs. Ovals in Desarguesian projective planes PG(2, q), q odd, are

nonsingular conics [92]. This implies that every oval of PG(2, q) has the parameterization

{(t, t2, 1)|t ∈ GF(q)}∪{(0, 1, 0)}. For the case when q is even, no such classification has been

made. As noted before, ovals need not be constructed in a Desarguesian plane. Furthermore,

they can be defined in such a way so as they cannot be embedded in a projective plane.
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When q is even and an oval exists, it is possible to construct a hyperoval. Let O be

an oval. There exists a unique tangent line through each point in O. These tangent lines

meet at a point P ∈ PG(2, q) \ O. P is known as the nucleus of the oval. Then O ∪ {P}

is a hyperoval. Thus, all hyperovals in PG(2, 2h) can be parameterized as {(t, t2, 1)|t ∈

GF(2h)} ∪ {(0, 1, 0)} ∪ {(1, 0, 0)}. These, however, are not the only hyperovals in PG(2, 2h).

We do know that by the Fundamental Theorem of Projective Geometry we can assume that

the points (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1) are contained in any hyperoval. As for the

other points, when h > 1, they will be of the form (t, f(t), 1), where t ∈ GF(2h) and f is a

permutation polynomial of degree less than or equal to 2h − 2.

A plethora of hyperovals have been constructed [28, 29, 32, 33, 54, 77, 80, 91, 93]. All of

these were constructed in the Desarguesian setting. On the other hand, constructing ovals

in non-Desarguesian planes is an unsolved problem, considered to be of immense difficulty.

6.1.2. Non-Desarguesian Arcs. Various methods have been used to construct ovals

in non-Desarguesian planes. Some methods include the use of polarities and collineations.

In a particular setting, an irreducible conic C of the affine plane AG(2, q), for q = ph,

p prime, is an inherited arc of σ (a modified affine plane) if no three points are collinear

in σ. If C is an ellipse in AG(2, q), then C is an oval in the projective closure of σ. Ovals

obtained in such a way are called inherited ovals. Inherited ovals make up a fair bit of the

ovals constructed in the non-Desarguesian setting. They consist of hyperbolic, parabolic,

and elliptic inherited ovals. Most of these have been constructed in non-associative Moulton

planes [7, 69].
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In addition to inherited ovals, Room [87] showed that in the Hughes plane there exists

a ploarity such that the set of absolute points contains an oval. Constructions involving

the Suzuke group and collineation groups have also yielded new ovals [66]. Nevertheless, it

is believed these techniques will not work in other settings. Various other ovals have been

constructed using ad hoc techniques [28, 66] and computer searches [29, 31, 45, 46, 49].

Those of most interest are as follows. In 1992, O’Keefe, Penttila, and Pascasio constructed

an infinite family of ovals in Hall planes [76], while Cherowitzo (1990) [30] and de Resmini

and Hamilton (1998) [47] constructed infinite families in Figueroa planes. In 1972, Ganley

constructed an infinite family of ovals in commutative semifield planes [52].

6.2. Generalized Quadrangles and Arcs

Recall that a generalized quadrangle of order (s, t) is a point-line incidence structure Π

such that every pair of points is incident with at most one line, given a point P and a line l

not incident with it, there is a unique point incident with l and collinear with P , and every

line is incident with s+ 1 points, while every point is incident with t+ 1 lines. By definition,

there are (s+ 1)(st+ 1) points and (t+ 1)(st+ 1) lines.

Theorem 6.2.1. ([1, 57]) Every hyperoval of PG(2, q) gives rise to a generalized quadrangle

of order (q − 1, q + 1).

Theorem 6.2.2. ([105]) Every oval of PG(2, q) gives rise to a generalized quadrangle of

order (q, q).

Theorem 6.2.3. ([79]) Every q-arc of PG(2, q) gives rise to a generlized quadrangle of

order (q + 1, q − 1).
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As previously mentioned, the point graph of a generalized quadrangle of order (s, t) is a

strongly regular graph with parameters ((s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1). Similarly, the

concurrency graph is also a strongly regular graph with parameters ((t + 1)(st + 1), t(s +

1), t− 1, s+ 1). Therefore, two families of strongly regular graphs arise for each of the three

before mentioned theorems. But, it should be noted that each of these graphs come about

in a Desarguesian plane. So the question that stems from this knowledge should be, can

strongly regular graphs be constructed from large arcs of non-Desarguesian planes? The

answer is yes. The following results are due to joint work with Stan Payne.

Theorem 6.2.4. Let A be an affine plane of order q (with point set P) containing a

q-arc K. Define a graph Γ(A, K) as follows: the vertex set is P ×K and (P,A) is adjacent

to (Q,B) if and only if A 6= B and either P = Q or PQ||AB or A = B and P 6= Q and PQ

is parallel to some tangent line of K at A. Then Γ(A, K) is a strongly regular graph with

parameters (q3, q2 + q − 2, q − 2, q + 2).

Proof. The number of vertices is clearly q3, as |P| = q2 and |K| = q. In order to show

that the graph is regular, consider the vertex (P,A). There are q − 1 points B in K \ {A},

so there are q − 1 vertices of the form (P,B). Furthermore, if B 6= A, then let l be the line

of A through P parallel to AB. There are q− 1 points of l \ {P}, so there are q− 1 vertices

of the form (Q,B) which are adjacent to (P,A). Thus, for the first case of adjacency, (P,A)

is adjacent to q− 1 + (q− 1)(q− 1) = q(q− 1) vertices. For condition (ii), it should be noted

that there are two lines of A through A tangent to K and q − 1 points Q different than P

on each of the two lines through P parallel to a tangent line of A. Thus, there are 2(q − 1)

vertices adjacent to (P,A). Hence the valency is q(q − 1) + 2(q − 1) = q2 + q − 2.

Next, we show that the number of common neighbors given two adjacent vertices is q − 2.
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Case 1: Let (P,A) be adjacent to (P,B) (A 6= B). There are q−2 common neighbors of the

form (P,C) for C ∈ K \ {A,B}. Suppose (X,C) is a common neighbor with X 6= P . Let l

be the line through A parallel to PX and let k be the line through B parallel to PX. Then

(X,C) is adjacent to (P,A) if and only if A 6= C and l = AC or A = C and PX is parallel to

a tangent line at A. (X,C) is adjacent to (P,B) if and only if B 6= C and k = BC or B = C

and PX is parallel to a tangent line at B. But, A 6= B 6= C, because that would imply that

l = AC = BC, which contradicts the definition of an arc. Thus, A = C or B = C. Without

loss of generality, suppose that A = C, then k = BC, PX is parallel to a tangent line at A

and also parallel to AB, which is not tangent to A. Thus, (P,A) and (P,B) cannot have a

common neighbor of the form (X,C). Hence, if A 6= B, then (P,A) and (P,B) have exactly

q − 2 common neighbors.

Case 2: Suppose that A 6= B, P 6= Q, and PQ||AB. That is (P,A) and (Q,B) are adjacent.

Let (X,C) be a common neighbor. Suppose that X = P . Then (P,C) being adjacent to

(P,A) implies that C 6= A, and (P,C) being adjacent to (Q,B) with P 6= Q implies that

PQ||BC. Thus, BA = BC, which implies that A = C since K is an arc. Therefore, X 6= P .

Similarly, X 6= Q. Thus, we have that P 6= X 6= Q with PQ||AB. Let l be the line through

A parallel to PX, and let k be the line through B parallel to QX. Then (X,C) is adjacent

to (P,A) if and only if A 6= C and l = AC or A = C and PX is parallel to a tangent line

at A. Similarly, (X,C) is adjacent to (Q,B) if and only if B 6= C and k = BC or B = C

and QX is parallel to a tangent line at B. Since C cannot equal A and B simultaneously,

without loss of generality, assume that A 6= C and AC is the line through A parallel to

PX. Suppose that C = B and QX is parallel to a tangent line at B. Then k = AC = AB

is the line through A parallel to PX. But that means that ABis parallel to both PQ and
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PX, implying that X is on PQ. Then QX = PQ is parallel to AB, which is not a tangent

through B. This implies that A, B, and C are distinct. Furthermore, AC is the line through

A parallel to PX; BC is the line through B parallel to QX, and AB||PQ. Thus, the number

of C ∈ K \ {A,B} is q − 2. Let l be the line through P parallel to AC, and let k be the

line through Q parallel to BC. Since AC and BC cannot be parallel (because K is an arc),

l and k are not parallel either and meet at a unique point X. Thus, there are exactly q − 2

vertices (X,C) which are common neighbors of (P,A) and (Q,B).

Case 3: Let P 6= Q and PQ be parallel to some line tangent to a point A in K. That is,

(P,A) is adjacent to (Q,A). Suppose that (X,C) is a common neighbor. If X = P , then

(P,C) being adjacent to (P,A) implies that C 6= A. Furthermore, (P,C) being adjacent to

(Q,A) imples that PQ||CA, which is impossible because PQ is parallel to some line tangent

to A in K. Thus, X 6= P . Similarly, X 6= Q. Now suppose that C 6= A (and P 6= Q 6= X).

Then (X,C) being adjacent to (P,A) imples that PX||AC. Furthermore, QX||AC implies

that X ∈ PQ, which forces PQ||AC. But this means that A = C, since PQ is parallel

to a tangent line at A. Thus, the common neighbors are vertices of the form (X,A) where

X ∈ PQ \ {P,Q}. Thus, there are q − 2 choices for (X,A).

Therefore, given any two adjacent vertices, there are q − 2 vertices adjacent to both.

Next we will show that given any two non-adjacent vertices, there are q+ 2 vertices adjacent

to both.

Case i: Suppose that A 6= B and that (P,A) is not adjacent to (Q,B), which implies that

P 6= Q and PQ 6 ||AB. For each C ∈ K \{A,B}, let l be the line on P parallel to AC and m

the line on Q parallel to BC. Since AC 6 ||BC, l must meet m in a point X. Then (X,C) is a

common neighbor of (P,A) and (Q,B). (Note that PQ||BC if and only if (X,C) = (P,C).
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Similarly, PQ||AC if and only if (X,C) = (Q,C).) Thus, (P,A) and (Q,B) have q − 2

common neighbors so far. Next, we will consider neighbors of the form (X,A) or (X,B),

and if they can be common neighbors. If (X,A) is adjacent to (P,A) then PX is parallel to

a tangent line on A in K. Since PQ 6 ||AB, the line l on Q parallel to AB does not contain P .

If m is eigher one of the two lines on P parallel to a tangent line on A in K, then X = l∩m

yields a vertex (X,A), which is a neighbor of both (P,A) and (Q,B). Similarly, there are

two common neighbors of the form (X,B). Therefore, there are q + 2 common neighbors.

Case ii. Suppose that A = B and (P,A) is not adjacent to (Q,A) for P 6= Q. Consider

vertices of the form (X,A). We must have that P 6= X 6= Q, PX is parallel to a tangent

line at A in K, and QX is parallel to a tangent line at A in K. Let l be one tangent line

through A and let k be the other. Now let lP be the line on P parallel to l and kP the line

on P parallel to k. Similarly, lQ and kQ are the lines on Q parallel to l and k, respectively.

Since PQ is not parallel to either l or k (by the hypothesis), it must be that lP meets mQ

at a point X1 while mP meets lQ at a point X2, giving two common neighbors, (X1, A) and

(X2, A). Finally, consider neighbors of the form (X,C) for C 6= A. Then we get that P = X

or PX||AC and Q = X or QX||AC. In either case, we end up with PQ||AC. Since we are

given that PQ is not parallel to the tangent lines on A in K, it must be that PQ is parallel

to a unique secant line, namely AC, C ∈ K. So, if P 6= X 6= Q, PX||AC||PQ implies that

X lies on the line PQ. Conversely, for any point X on PQ, (X,C) is a common neighbor.

Thus, there are q + 2 common neighbors.

Thus, given any two non-adjacent vertices, there are q + 2 vertices adjacent to both.

Therefore, Γ(A, K) is a strongly regular graph with parameters (q3, q2+q−2, q−2, q+2). �
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We can also construct strongly regular graphs from maximal {k;n}-arcs in non-Desarguesian

planes, as is witnessed in the following theorem. (Thank you to Stefaan De Winter for the

encouragement to consider this case.)

Theorem 6.2.5. Let A be an affine plane of order q (with point set P) containing a

maximal {k;n}-arc M , 2 ≤ n ≤ q− 1. Define a graph Γ′(A,M) as follows: the vertex set is

P ×M and (P,A) is adjacent to (Q,B) if and only if A 6= B and P = Q or PQ||AB. Then

Γ′(A,M) is a strongly regular graph with parameters

(nq3 − q3 + nq2, nq2 − q2 + nq − q, 2qn− 3q, qn− q).

Proof. The number of vertices is clearly nq3 − q3 + nq2, as the number of points in P

is q2 and nq + n − q in M . The fact that Γ′ is regular follows from the observation that

the neighbors of (P,A) with second coordinate B must have B 6= A, for which there are

nq+ n− q− 1 such choices, and first coordiante Q must lie on the line parallel to AB on P ,

on which there are q choices. Therefore the valency is q(nq+ n− q− 1) = nq2− q2 + nq− q.

We now consider the number of common neighbors given two adjacent vertices.

Case 1: Suppose that (P,A) ∼ (P,B) for A 6= B. There are nq+n−q−2 common neighbors

of the form (P,C) with C ∈ M \ {A,B}. Suppose that (X,C) is a common neighbor for

X 6= P . If (X,C) ∼ (P,A) then PX||AC and if (X,C) ∼ (P,B) then PX||BC. Since

A 6= B 6= C, BC = AC. Thus, there are (q − 1)(n − 2) common neighbors of the form

(X,C). Hence, if A 6= B, (P,A) and (P,B) have 2qn− 3q common neighbors.

Case 2: Suppose that (P,A) ∼ (Q,B) for A 6= B and PQ||AB. Suppose (X,C) is a

common neighbor. Then PX||CA and QX||CB with A 6= B 6= C. If A,B,C are collinear,

then CA = CB and there are q(n− 2) such neighbors. If A,B,C are not collinear, then X

is uniquely determined by C; in which case, there are qn− q such choices for C. Thus, the
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number of common neighbors is 2qn− 3q. Thus, given any two adjacent vertices, there exist

2qn−3q vertices adjacent to both. We now consider the number of common neighbors given

two non-adjacent vertices.

Case i: Let (P,A) and (Q,A) be two distinct (non-adjacent) vertices. Let lA be the line

parallel to PQ on A and let B be one of the n − 1 points in M on lA. Then there are q

choices for X such that X is on PQ which is parallel to lA. Thus there are q(n− 1) = qn− q

common neighbors.

Case ii: Let (P,A) 6∼ (Q,B) with A 6= B. Then P 6= Q and PQ 6 ||AB. Let C ∈M \{A,B}

and let l be the line on P parallel to AC and m be the line on Q parallel to BC. If A,B,C

are not collinear, then l ∩m = X. So X is uniquely determined by C, of which there are

qn − q to choose from. If A,B,C are collinear then l||AC and m||BC, which implies that

l||AB and m||AB. But l 6= m, as (P,A) 6∼ (Q,B). Thus, there does not exist a common

neighbor (X,C) with C being collinear to A and B.

Therefore, the number of common neighbors given two non-adjacent vertices is qn− q.

�

When A is Desarguesian, Γ′(A,M) is the point graph of the partial geometry T ∗2 (M) of

Thas [101].

When n = 2, q is even and M is a hyperoval.

Corollary 6.2.6. Let A be an affine plane of order q (with point set P) containing

a hyperoval H. Define a graph Γ′(A, H) as follows: the vertex set is P × H and (P,A) is

adjacent to (Q,B) if and only if A 6= B and either P = Q or PQ||AB. Then Γ′(A, H) is a

strongly regular graph with parameters (q3 + 2q2, q2 + q, q, q).
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This family of strongly regular graphs yields a symmetric (q3 + 2q2, q2 + q, q)-design

whose polarity has no absolute points. Additionally, the sets {(P,A) : P ∈ P , A ∈ H} are

cocliques of Γ′(A, H), which partitions Γ′(A, H) into cocliques. So if Γ′(A, H) is geometric,

the corresponding GQ(q + 1, q− 1) admits a partition into ovoids. Moreover, for each ovoid

in the partition, every pair of distinct points of the ovoid is regular. It remains to be shown

whether Γ′(A, H) is geometric or not.

Theorem 6.2.7. Let A be an affine plane of order q (with point set P) containing an

oval O. Define a graph Γ′′(A, O) as follows: the vertex set is (P × O) ∪ O and (P,A) is

adjacent to (Q,B) if and only if either A 6= B and either P = Q or PQ||AB or A = B and

P 6= Q and PQ is parallel to the tangent line of O at A; A is adjacent to B for all A 6= B

in O; and (P,A) is adjacent to B if and only if A = B. Then Γ′′(A, O) is a strongly regular

graph with parameters (q3 + q2 + q + 1, q2 + q, q − 1, q + 1).

Proof. The number of vertices is clearly q3 + q2 + q + 1, as |A| = q2 and |O| = q + 1.

A vertex (P,A) having neighbors with the second coordinate B must have that B 6= A and

consist of pairs (X,B) with X on the line parallel to AB on P (q2 of these) or have B = A

and consist of pairs (X,A) with X a point, other than P , on the line through P parallel to

the tangent line on A in O (q − 1 of these). The other neighbor of (P,A) is A. Therefore,

the valency of (P,A) is q2 + q.

Case 1: Let (Q,C) be a vertex distinct from (P,A). We will show that the number of

common neighbors is q−1. Suppose that (X,B) is a common neighbor such that A 6= B 6= C.

Suppose that A 6= C, then a vertex (X,D) is a common neighbor of (P,A) and (Q,C) if

and only if A 6= D 6= C and P = X or PX||AD and Q = X or QX||CD. So X lies on the

line through P parallel to AD and on the line through Q parallel to CD. Since A, C, and
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D are on O, they cannot be collinear. Thus, AD and CD are not parallel, and, for each D,

X is uniquely determined. Hence, in either case, there are exactly q − 1 common neighbors

of this form.

Suppose that (Q,C) and (P,A) are common neighbors. We will show there are not any

common neighbors of another form. Since (Q,C) and (P,A) are adjacent, P = Q or PQ||AC.

Since the tangent to O at A and the tangent to O at C are distinct, if P = Q, there are

no further common neighbors. If P 6= Q, then PQ||AC, so PQ cannot be parallel to the

tangents of O and either A or C. Therefore, there are no further common neighbors.

Case 2: Suppose that (P,A) and (Q,A) are adjacent. The vertex (X,A) with PX parallel

to the tangent to O at A parallel to QX is a common neighbor. Such vertices only exist if

PQ is parallel to the tangent to O at A. There are q − 2 of them. Now consider (X,B) for

A 6= B. If (X,B) is a common neighbor, then PX||AB||QX. There are q such neighbors;

those (X,B) with X on the line PQ and B the other point of O on the line parallel to PQ.

But this means that (P,A) and (Q,A) are not adjacent, because PQ is not parallel to the

tangent to O at A. Therefore, there are no neighbors of the form (X,A) whenever (P,A)

and (Q,A) are adjacent. Lastly, A is a common neighbor of (P,A) and (Q,A). Thus, the

number of common neighbors is q − 1.

Note that (P,A) and B are not adjacent whenever A 6= B. So we will consider this case

later on.

Case 3: Vertices A and B are adjacent, and their common neighbors are C ∈ O \ {A,B}.

Therefore, given two adjacent vertices, the number of common neighbors is q − 1. Now we

will consider two non-adjacent vertices.
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Case i: Suppose that (Q,C) and (P,A) are not adjacent. As shown in the adjacency

case, there are q − 1 common neighbors, whether or not (Q,C) and (P,A) are adjacent.

Furthermore, if (Q,C) and (P,A) are not adjacent, then Q 6= P and there are two addition

common neighbors, namely, (X,A) where X is the intersection of the line through P parallel

to the tangent line to O at A with the line through Q parallel to AC, and (Y,C) where

Y is the intersection of the line through Q parallel to the tangent line to O at C with

the line through P parallel to AC. Therefore, the number of common neighbors given to

non-adjacent vertices of the form (Q,C) and (P,A) is q + 1.

Case ii: As mentioned before, given the vertices (P,A) and (Q,A), they are not adjacent

whenever they have a common neighbor of the form (X,B) for B 6= A. There are q points

of this form. Additionally, they are both adjacent to the point A. Thus, there are q + 1

common neighbors.

Case iii: If A 6= B, then (P,A) and B are not adjacent. Their common neighbors are the

vertices (X,B) with X on the unique line through P parallel to AB (q of these), together

with the vertex A.

Therefore, given two non-adjacent vertices, there are q + 1 vertices adjacent to both.

Therefore, Γ′′(A, O) is a strongly regular graph with parameters (q3 + q2 + q + 1, q2 + q, q −

1, q + 1). �

Each of these strongly regular graphs gives rise to a symmetric (q3 + q2 + q + 1, q2 +

q + 1, q + 1)-design with a polarity with all points absolute. It does remain to be answered

whether or not these graphs are geometric. As it stands, we only know that these graphs

are pseudo-geometric.

80



CHAPTER 7

Godsil-Hensel Strongly Regular Graph

Construction

We can extend the definition of an oval in PG(2, q) to an ovoid in PG(3, q). This extension

will be necessary, as we will examine results due to Godsil and Hensel, who constructed a

number of strongly regular graphs with the parameters of the point graph of a generalized

quadrangle from an ovoid.

7.1. Motivation

In PG(3, q), q a prime power greater than 2, an ovoid is a set of q2 +1 points in PG(3, q)

such that no three are collinear. An additional property of ovoids is that there are exactly

q + 1 tangent lines for each point on the ovoid. This can be restated, yielding the following

interpretation. Through every point P on the ovoid, there is a unique plane intersecting the

ovoid at that point. The q + 1 tangents lie on that unique plane. The q2 + 1 points of an

elliptic quadric is an example of an ovoid in any projective three-space. Interestingly enough,

when q is odd or q = 4, 16, no ovoids exist other than the elliptic quadrics. Furthermore,

every plane which is not a tangent plane meets the ovoid in a oval;for the elliptic quadric,

this is a conic. For the case when q = 22h+1, it has been conjectured that the only ovoid,

other than an elliptic quadric, in PG(3, q) is the Tits (or Suzuki) ovoid, and this has been

proved for q = 8.

More specifically, an ovoid of a generalized quadrangle is a set of points such that every

line of the generalized quadrangle meets the set in exactly one point. (Theorems of Segre

and Thas [103] connect the two concepts by showing that every ovoid of PG(3, q), q even, is
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an ovoid of the GQ W (q), and conversely.) In 1992, Godsil and Hensel (and Godsil, [55, 56])

constructed a number of strongly regular graphs with the parameters of the point graph of a

generalized quadrangle of order (s−1, s+1), s odd, from an ovoid of a generalized quadrangle

of order (s2, s) that has an automorphism t of order 2 fixing every point of the ovoid. They

note that the U(4, q) generalized quadrangle H(3, q2) has such an ovoid. The ovoid is the

intersection of the perp of a point not on the Hermitian variety with the Hermitian variety.

However, they did not state the isomorphism type of this strongly regular graph. In fact, it

is isomorphic to the point graph of the Ahrens-Szekeres generalized quadrangle. Therefore,

their construction gives nothing new. Nevertheless, their construction procedures can be used

in another setting to obtain new strongly regular graphs. More generally, they constructed

other strongly regular graphs from an ovoid of a generalized quadrangle of order (s2, s) that

has an automorphism t of order r 6= 1 fixing every point of the ovoid, and this does yield

something new when applied to the above ovoid, which admits automoprihsms of all orders

dividing q + 1 fixing every point of the ovoid.

7.1.1. Covers. One such object necessary to apply the Godsil-Hensel construction is a

cover. A covering graph of a graph H is a graph G together with an equitable partition π

of G such that G/π is isomorphic to H. An equitable partition of a graph G is a partition

π of the vertices of G such that if Ci, Cj ∈ π then cij = |{v ∈ Cj : v adjacent to wi}| is

constant, for all wi ∈ Ci. The quotient G/π is a directed multigraph with loops where the

vertices are the cells Ci ∈ π and the directed edges are cij going from Ci to Cj if and only if

there is an edge from an element of Ci to an element of C − j.
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An equitable partition of a graph are the orbits of the graphs automorphism group.

However, there are usually many other partitions. For example, if we let G be the incidence

graph of a finite projective plane, then each equitable partition with four cells corresponds

to a complementary pair of two intersection sets and their dual sets. Nevertheless, such an

equitable partition will arise as the orbits of a group if and only if the corresponding strongly

regular graph is a rank three graph.

As we have only been considering simple graphs, H must be loopless. Thus, cii = 0 for all

i. This implies that the induced subgraph of G on a cell Ci of π is null (a coclique-a subgraph

whose complement is a clique, i.e. an independent set). Furthermore, H has no multiple

edges, so there is exactly one edge from each wi ∈ Ci to a vertex in Cj, for i 6= j, provided

the corresponding vertices of H are adjacent. And since H is undirected, the same is true

with i and j interchanged. Thus, the preimage under p of an edge is a perfect matching.

We then get that the cells have the same size if H is connected. The common size r is the

index of the cover, and we refer to the cover as an r-cover. Therefore, these (special) types

of equitable partitions give rise to covers of connected graphs where each cell is a coclique

of the same cardinality and there are either no edges between a pair of cells or there is a

perfect matching between a pair of cells. Such partitions are automatically equitable.

Interestingly enough, a cover of a trivial graph may be non-trivial [10]. It is known that

for a distance-regular graph that is not bipartite, if it is a cover, then it is an antipodal cover;

that is, the relation of being antipodal (at maximum distance) is an equivalence relation and

the cells (fibers) consist of the equivalence classes of this relation. This is what happens

for the distance-regular graph of diameter three constructed from the collinearity graph of

a generalized quadrangle by deleting a spread (the dual to an ovoid). It is also known
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that every distance-regular graph of diameter three that is a cover is an antipodal cover

of a complete graph. In addition to that, an r-cover of the complete graph on n vertices

is distance-regular if and only if non-adjacent vertices from distinct fibers have a constant

number of common neighbors.

7.1.2. Ahrens-Szekeres GQ. The Ahrens-Szekeres generalized quadrangle is an example

of a non-classical generalized quadrangle. For each prime power of q, the Ahrens-Szekeres

generalized quadrangle has order (q− 1, q+ 1) [1]. Hall found these examples independently

for the case when q is even [57]. Later, Payne [79] constructed generalized quadrangles which

included the Ahrens-Szekeres generalized quadrangle.

Let q be odd, and let P be the points of the affine 3-space AG(3, q). Define L to be the

curves of AG(3, q) such that

(i) x = σ, y = a, z = b,

(ii) x = a, y = σ, z = b,

(iii) x = cσ2 − bσ + a, y = −2cσ + b, z = σ

for a, b, c ∈ GF(q) and for σ ranging over GF(q). If incidence I is defined as the natural

one, then (P ,L, I) is a generalized quadrangle of over (q − 1, q + 1). The parameters of the

strongly regular point graph of this generalized quadrangle are (q3, q2 + q − 2, q − 2, q + 2).

(This is isomorphic to the graph Γ′′ constructed from a q-arc of PG(2, q); see [85].)

7.2. Construction Extension

The Godsil-Hensel construction gives a graph Γ, which is a distance regular graph of

diameter three, with vertices the orbits of length two of < t > (where t is an order 2

automorphism of the ovoid of a generalized quadrangle of order (q2, q)), such that the
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neighborhood graph Γ′(v) of Γ at a vertex v is strongly regular with the parameters of a point

graph of a generalized quadrangle of order (q − 1, q + 1). More generally, the Godsil-Hensel

construction gives a graph Γ with vertices the orbits of length two of < t > (where t is an

order r automorphism of the ovoid of a generalized quadrangle of order (q2, q)), such that

the neighborhood graph Γ′(v) of Γ at a vertex v is strongly regular with the parameters

(q3, (q − 1)(
(q + 1)2

r
− q), r(q + 1

r
− 1)3 + r − 3, (

q + 1

r
− 1)(

(q + 1)2

r
− q)).

It is known that r must be a divisor of q + 1.

7.2.1. Flocks and GQs. A quadratic cone is a set of points in PG(3, q) that arise

when a point V not on a plane is joined to every point of a non-degenerate conic in that

plane. A flock of the quadratic cone is a partition of the points of the cone, other than the

vertex V , into conics. In 1979, in a joint paper with Thas, Fisher constructed a flock of the

quadratic cone which now bears his name over fields of odd order greater than 3 [51]. In

1987, by reinterpreting a number of papers by Kantor and by Payne, Thas constructed a

generalized quadrangle of order (q2, q) from any flock of the quadratic cone [102]. In 1994,

Payne and Thas constructed an ovoid of these flock quadrangles [104]. The Payne-Thas

ovoid will be discussed later. Interestingly enough, the Payne-Thas ovoid of the Fisher flock

GQ has an automorphism of order 2 fixing every point of the ovoid, provided the field order

is 3 modulo 4. Thus, it appears that if we apply the same process of the Godsil-Hensel

construction to the Payne-Thas ovoid of the Fisher flock generalized quadrangle, we get two

orbits on vertices, one short and one long, provided the ovoid is stabilized. A vertex from

the short orbit gives the point graph of the Ahrens-Szekers GQ yet again. But we believe

that a vertex from the long orbit gives a new graph. This remains to be proven.

85



7.2.2. Knarr Construction. As the Knarr construction is necessary to extending the

Godsil-Hensel result, it will be discussed in depth here. We begin by introducing much of

the necessary notation. Let F = {C1, C2, ..., Cq} be a flock of the quadratic cone K, whose

vertex is x in PG(3, q), q odd. Now let πi represent the plane of Ci for i ∈ {1, ..., q}. Assume

that K is embedded in the nonsingular quadric Q of PG(4, q), and let Li respresent the polar

line of πi with respect to Q. Then Li ∩Q = {x, xi} for i ∈ {1, ..., q}. This says that no point

of Q is collinear with all three points x, xi, xj, 1 ≤ i < j ≤ q. Furthermore, in 1990, Bader,

Lunardon, and Thas extended this concept by proving that no point of Q is collinear with

all three points xi, xj, xk, 1 ≤ i < j < k ≤ q [4]. Hence, this set is known as a BLT-set.

BLT-sets can be extended to refer to sets of lines (or planes). This is due to the fact that the

generalized quadrangle Q(4, q) arising from Q is isomorphic to the dual of the generalized

quadrangle W (q). Hence, a BLT-set (of points) in Q corresponds to a set of q + 1 lines in

W (q) such that no line of W (q) is concurrent with three distinct lines of the BLT-set.

As mentioned in the last section, given a flock F , we can obtain a generalized quadrangle

of order (q2, q). Let G be such a generalized quadrangle arising from F . Then in 1992,

Knarr proved that G is isomorphic to the following structure: Let ξ be a symplectic polarity

of PG(5, q), with p ∈ PG(5, q). Let PG(3, q) be a 3-dimensional subspace of PG(5, q) not

containing p such that PG(3, q) ⊂ pξ. Then ξ induces a symplectic polarity ξ′ in PG(3, q),

which yields W (q). Let V be a BLT-set of W (q) arising from F (see Bader, Lunardon and

Thas [4]) and construct the incidence structure as follows:
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• Points:

– p;

– lines of PG(5, q) not containing p but contained in one of the planes πi, where Li

is a line of V;

– points of PG(5, q) not in pξ.

• Lines:

– planes πi, with Li ∈ V ;

– totally isotropic planes of ξ not contained in pξ and meeting πi in a line (not through

p).

Incidence is defined by the natural incidence relation inherited from PG(5, q). Once again,

this is isomorphic to G and is, thus, a generalized quadrangle of order (q2, q) [68].

The Knarr GQ is classical (isomorphic to H(3, q2)) if and only if the flock F is linear.

7.2.3. Automorphism group of Knarr GQs. In [81], Payne and Thas showed that

the automorphism group of a non-classical Knarr GQ is the stabilizer of B = {πi : i} in

PΓSp(6, q).

7.2.4. Payne-Thas ovoid. In the Knarr construction, if Σ is a 3-space meeting pξ in a

plane on p, disjoint from the planes πi, then the set of points of Σ not in pξ together with p

forms an ovoid of G.

Thus, if there is an automorphism of order r 6= 1 of a Knarr GQ fixing a Payne-Thas

ovoid pointwise, then this is induced by an element of PΓSp(6, q) stabilizing B (which implies

that it is an element of PSp(6, q)), and thus there is an element of order r 6= 1 of PSp(4, q)

stabilizing the BLT-set of W (q) arising from the flock F and also fixing a line of PG(3, q),

disjointwise from the lines of the BLT-set, pointwise. It turns out that the line involved
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is hyperbolic. Dualizing, there is an element of order r 6= 1 of PGO(5, q) stabilizing the

BLT-set of Q(4, q) arising from the flock F and also fixing all the lines on a regulus in

a hyperbolic quadric hyperplane section disjoint from the BLT-set. Which known infinite

families of BLT-sets of Q(4, q) have this property? The groups of the known BLT-sets have

been calculated, with the last family worked out in Eric Nelson’s 2012 Ph.D. thesis at CSU

[74]. Only the family of Fisher BLT-sets have this property. (The BLT-sets of Q(4, q) of

Bader-Durante-Law-Lunardon-Penttila [3] for q = 23, 47 also have this property.)

7.2.5. The Fisher BLT-sets. This section follows Penttila [83]. Let q be an odd

prime power, and let Q denote the function with domain V = GF (q2) × GF (q2) × GF (q)

and Q(x, y, a) = x(q+1) + y(q+1) +a2. Then Q is an non-degenerate quadratic form on V . Let

η be a primitive q + 1-st root of unity in GF (q2), and γ be a primitive 2(q + 1)-st root of

unity in GF (q2). Then B = {(γη2i, 0, 1) : i ∈ {0, . . . , q−1
2
}} ∪ {(0, γη2i, 1) : i ∈ {0, . . . , q−1

2
}}

is a Fisher BLT-set of Q(4, q). Moreover, {(x, y, 0) : x, y ∈ GF (q2)} is a hyperplane section

of Q(4, q) meeting it in a hyperbolic quadric, one the reguli of which is

{{(δηj, ηj, 0) : j + 1, . . . , q} : δa(q+1) = −1} = R

The map (x, y, a) 7→ (η2, η2, 1) is an isometry of Q of order q+1
2

, fixing B and every line on

R. Moreover, the lines of R are disjoint from B.

7.2.6. Construction Procedure. Consider the polar space admitting Sp(6, q), q odd.

(Note that this is W(5, q), q odd, and Sp(6, q) is necessary for constructing a BLT-set.) Apply

the Knarr construction to a Fisher BLT-set. Choose a 3-space Σ that meets pξ in the plane

π such that π/p is the special hyperbolic line fixed pointwise by the stabilizer of the Fisher
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BLT-set in W (5, q)/p. Then the Payne-Thas ovoid arising from Σ has elements of order

q+1
2

in its pointwise stabilizer the stabilizer in PSp(6, q) of the BLT-set of planes. Then the

Godsil-Hensel construction yields a distance regular graph of diameter three with vertices

the orbits of the subgroup generated by an element of order r fixing the Payne-Thas ovoid

pointwise on the lines of the Knarr GQ. There are two orbits on vertices of this graph. By

then considering the neighborhood graph of a vertex in the long orbit after having stabilized

the Payne-Thas ovoid, we believe there exist new strongly regular graphs with parameters

(q3, q2+q−2, q−2, q+2) for q ≥ 7, q congruent to 3 modulo 4. (The short orbit seems to give

the previously constructed examples.) More generally, there seem to be new Godsil-Hensel

strongly regular graphs with the parameters

(q3, (q − 1)(
(q + 1)2

r
− q), r(q + 1

r
− 1)3 + r − 3, (

q + 1

r
− 1)(

(q + 1)2

r
− q)),

where r is be a divisor of q+1
2

. These conjectures are supported by computer evidence for

small field orders.
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[107] J. Tits. Sur la trialité et certains groupes qui sen déduisent. Inst. Hautes Etudes Sci.

Publ. Math., 2:14-60, 1959.

99


