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ABSTRACT OF THESIS 

MUTATIONAL ANALYSIS OF THE HUMAN HISTONE CHAPERONE, NAP1, IN 

NUCLEOSOME DISASSEMBLY OF THE HTLV-1 PROMOTER 

 
The human genome is packaged to fit within the confines of the nucleus 

through the interaction with four core histone proteins, H2A, H2B, H3 and H4.  

These proteins organize the genetic material, however they also make it difficult 

for the cells to access the information stored within the DNA sequence for 

processes such as transcription and replication.   

One of the mechanisms by which the genetic information can be accessed 

is post-translational modifications of the histone tails.  Post-translational 

modifications, such as acetylation, act to neutralize charges on the histone tails 

and also serve to create new binding sites for other proteins.  These 

modifications have been associated with decompaction of condensed chromatin, 

alteration of nucleosome structure, and partial or complete disassembly of the 

histone octamer.  Our laboratory uses human T-cell leukemia virus, type 1 

(HTLV-1) as a model for studying eukaryotic transcription activation and gene 

regulation.   

Previous studies using chromatin immunoprecipitation to look at the 

HTLV-1 promoter have correlated transcription activation with a decrease in post-
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translational modifications that are traditionally associated with gene activation.  

This decrease in activating modifications was due to a decrease in histone 

occupancy at the promoter in vivo.  To recapitulate the results observed in vivo, 

we developed an immobilized template assay using the biotin labeled HTLV-1 

promoter fragment bound to a magnetic streptavidin coupled bead.  Nucleosome 

disassembly at the HTLV-1 promoter is dependent on the presence of the virally 

encoded Tax protein, as well as the phosphorylated form of the cellular protein 

cyclic-AMP response element binding protein (pCREB), cellular coactivators 

CREB binding protein (CBP)/p300, acetyl coenzyme A (acetyl CoA), acceptor 

DNA and nucleosome assembly protein (Nap1).  Tax and pCREB recruit the 

histone acetyltransferase, CBP/p300, which acetylates histone tails prior to 

disassembly of the octamer.  Nap1 is unique in this reaction because this was 

the first example of a histone chaperone supporting disassembly of the entire 

octamer in an acetyl CoA dependent fashion, independent of ATP consumption 

or the presence of chromatin remodeling complexes.   

In this study we examined the domains of Nap1 required for in vitro 

nucleosome disassembly at the HTLV-1 promoter template through a series of 

rationally designed deletion mutants.  Crystal structures of yeast Nap1 and 

SET/TAF-Iβ were used as models for designing mutations in the human Nap1 

protein.  Our results show that the minimal domain of human Nap1 able to 

support nucleosome disassembly is contained within amino acid residues 196-

290.  Using histone binding assays, we also found that the ability to disassemble 

nucleosomes is independent of histone interaction in vitro.  Removal of the β-
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hairpin that is required for Nap1 oligomerization renders the protein unable to 

support disassembly.  This suggests that the oligomeric form of Nap1 is required 

for nucleosome disassembly at the HTLV-1 promoter.     
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CHAPTER 1 

INTRODUCTION TO TRANSCRIPTION REGULATION AND THE HTLV-1 

PROMOTER 

 

1.1 Chromatin Structure 

Within the eukaryotic cell, genetic material is packaged into chromatin 

through interaction with four core histone proteins.  The first level of chromatin 

organization is accomplished by wrapping approximately 147 base pairs (bp) of 

DNA around an octamer containing two copies of each of the four core histone 

proteins, H2A, H2B, H3 and H4, to form a nucleosome (Figure 1A) [1-3].  Each 

histone is comprised of two parts: a highly conserved histone fold domain and an 

unstructured histone tail that extends beyond the gyres of the nucleosomal DNA 

[4].  The nucleosome assembly pathway begins with deposition of a H3/H4 

tetramer onto the DNA followed by the stepwise addition of two H2A/H2B dimers.  

H2A/H2B dimers do not physically interact with each other because they are 

positioned on either side of the H3/H4 tetramer, interacting along the 

dimer/tetramer interface as well as with approximately 30 bp of DNA per 

H2A/H2B dimer.  The octamer has 2-fold symmetry and wraps DNA in a left-

handed coil 1.7 turns around the histone octamer to form a nucleosome.  In this 

open form, the chromatin is referred to as a “beads-on-a-string” array because of 

the appearance of nucleosomal beads connected by a linker DNA string.  Further 
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Figure 1:  Nucleosomes are the most basic unit of chromatin (A) Crystal 
structure of the nucleosome showing the putative positions and orientations of 
the unstructured histone tails [1].  (B) Proposed model for the condensation of 
chromatin.  Starting with the 10 nm beads-on-a-string extended array, short 
range internucleosomal interactions along with the addition of linker histone H1 
form a condensed 30 nm fiber.  Further condensation of the 30 nm fiber through 
long range fiber-fiber interactions condenses the chromatin to fit in the nucleus 
(Adapted from [7]).   
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compaction is achieved through addition of the DNA binding protein, linker 

histone H1, which interacts with the linker DNA at the entry and exit points of the 

nucleosome.  Histone tail and fiber-fiber interactions help condense the 

chromatin to form a 30 nm fiber [5-7].  Finally, after a hierarchy of folding, which 

is not yet understood, the DNA reaches its most compacted form and the genetic 

material appears as chromosomes visible within the nucleus of eukaryotic cells 

during division (Figure 1B).   

1.2 Transcription Activation and the Dynamic Nature of Chromatin 

Assembly and Disassembly 

Although the compaction of chromatin allows DNA to be condensed to fit 

within the confines of the nucleus while maintaining organization of genetic 

material, it also poses a problem for accessing the information stored in the 

sequence of the DNA.  Hence, chromatin structure must remain dynamic, with a 

balance between assembly and disassembly of nucleosomes to allow the genetic 

material to be accessed without becoming tangled or disorganized.  Several in 

vitro studies have shown that chromatin is repressive to transcription compared 

to naked DNA [8-12].  Removal of nucleosomes by sliding or disassembly is 

necessary when access to genetic information is required, and the DNA must be 

repackaged once transcription or replication is completed to maintain 

organization within the nucleus.    

For the cell to carry out transcription, replication, and repair, a mechanism 

must be in place to expose the nucleosomal DNA.  As a result, chromatin must, 

by definition, be dynamic in nature.  The necessity of nucleosome removal is 
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demonstrated by the fact that transcription factor binding has repeatedly been 

shown to be inhibited by the presence of nucleosomes [13-17].  Additionally, the 

presence of a nucleosome at a transcription start site can physically hinder the 

binding of the RNA polymerase holoenzyme complex and inhibit transcription 

activation [18].  Removal of promoter nucleosomes allows for the binding of 

transcription factors and RNA polymerase II machinery as suggested by the 

evidence for nucleosome depleated regions at promoters of actively transcribed 

genes [19, 20].  In addition, studies from our laboratory of immobilized chromatin 

assembled promoter templates demonstrate that disassembly of promoter 

nucleosomes results in increases in transcription in vitro [179].  The combination 

of in vitro and in vivo studies mentioned above has demonstrated a correlation 

between depletion of nucleosomes and transcription activation.  Three major 

ways chromatin structure can be regulated are by modification of the 

physiochemical properties of the chromatin (such as by charge neutralization), 

nucleosome mobilization by ATP-dependent remodeling complexes, and 

interaction with histone chaperones. 

Physiochemical Properties of Modified Chromatin: 

One mechanism for regulating compaction of the chromatin is through 

post-translational modification of the histone tails.  Because the tails of the 

histones interact with the linker DNA between the nucleosomes, neighboring 

nucleosomes and long distance interactions with other histones when 

condensed, these unstructured tails make ideal targets for modifications that 

neutralize the charge and affect the chromatin structure.  Post-translational 
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modifications of the histone tails also serve as new binding sites for modifying 

proteins that recognize altered residues.  

ATP-Dependent Remodeling Complexes:   

The interaction between histones and DNA is very stable [21, 22].  Factors 

such as ATP-dependent remodeling proteins affect the stability of the 

nucleosomes so that they can be removed when needed but not disassemble 

randomly (reviewed in [23]).  Traditionally, these remodelers have been thought 

to function by disrupting histone-DNA contacts to aid in sliding of nucleosomes,  

however an additional role for ATP-dependent remodeling complexes in the 

disassembly of nucleosomes has been suggested.   

Histone Chaperones: 

Under normal physiological conditions, histones and DNA do not readily 

assemble into nucleosomes, instead they form non-specific aggregates [24]. 

Histone chaperones promote organized deposition of histones to form 

productive, stable nucleosomes.  Histone chaperones are negatively charged 

proteins that guide the assembly process and prevent non-productive 

interactions between positively charged histone proteins and negatively charged 

DNA [67].  These proteins can assemble histones and DNA into nucleosomes or 

disassemble nucleosomes to their components, histones and DNA [25-29]. 

1.3 Gene Regulation by Post-Translational Modifications 

It has been proposed that a histone code exists in which a particular 

combination of histone modifications signifies a specific change in the activity or 

arrangement of the chromatin to participate in gene regulation [30, 31].  There 
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are a variety of known post-translational modifications of histones, the most 

common including acetylation, methylation, phosphorylation, and ubiquitination, 

with acetylation being the most highly studied (Figure 2) (reviewed in [32]).  

Modifications occur primarily on the amino terminal tails of all four core histones 

and may occur in multiple combinations to regulate gene expression.  For 

example, mono-methylation of lysine residues in the H3, H4 and H2B tail is 

associated with activation [33-35] while di- and tri-methylation of H3K9 and 

H3K27 is associated with repression [33, 36].  One of the most important histone 

tail modifications is acetylation of lysine residues by histone acetyltransferases 

(HATs) because of the strong correlation between acetylation and gene 

activation.  Acetylation of H3 K9 and K14 is associated with activation [37].     

1.4 Effects of Histone Acetylation on Chromatin Structure 

As stated above, lysine acetylation of the histone tails is associated with 

gene activation and is one of the most well characterized histone tail 

modifications [31, 38-40].  Acetylation is best known for its role in neutralizing the 

positive charges on the histone tails and therefore disrupting internucleosomal 

interactions, resulting in relaxation of the chromatin fiber.  Multiple studies have 

shown that acetylation of the histone tails correlates with decondensation of 

compacted chromatin [41-44], along with alteration of nucleosome structure [45-

48].  For example, our lab has shown that lysine acetylation at a H3K14 

promotes disassembly of promoter nucleosomes [179].   
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Figure 2: Sequence of the four core histones depicting the published post-
translational modifications.  The bold and enlarged portions represent the 
alpha helices of the published crystal structure [1].  Histone Modification Map – 
created by Millipore Corporation (www.histone.com/modification_map.htm).  
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Acetyl groups are added by histone acetyltransferases (HATs) and can be 

removed by histone deacetylases (HDACs).  Traditionally, acetylation of the 

histone tails has been correlated with transcription activation and removal of 

acetyl groups is a mechanism for transcription repression [40].  Once acetylated, 

it is unknown how the presence of acetyl groups promotes gene activation, 

however it is known that histone acetylation increases the ability of transcription 

activators to bind DNA [16, 17, 49].  Additionally, the presence of an acetyl group 

may lead activation transcription by serving as a binding site for transcription 

regulatory complexes containing bromodomain subunits that recognize acetyl 

groups [50].  Acetyl groups may also alter the properties of chromatin and 

promote decondensation of compacted chromatin through weakening of 

interactions between histone tails and neighboring nucleosomes or linker DNA.  

However, acetylation has no effect on the overall stability of the nucleosome [45-

48] because histone tails do not directly contribute to its stability [47, 51-53].   

Recently, p300, a well-known HAT has been identified as a signature for 

transcriptionally active chromatin [19, 54].  The recruitment of p300 to promoters, 

followed by histone acetylation has been associated with transcription activation 

[13, 55-60].  The opposing effects of acetylation by HATs and deacetylation by 

HDACs help maintain a balance between transcriptionally active and 

transcriptionally silent chromatin.   

1.5 Histone Chaperones and Transcription Activation 

Histone chaperones have been implicated in the assembly, disassembly, 

and sliding of nucleosomes [61, 62].  The four core histones have been found in 
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complex with histone chaperones in multiple eukaryotic species [27, 63-66].  

Chaperones help prevent inappropriate interactions between histones and DNA 

that would disfavor in the formation of a nucleosome [67].  This is accomplished 

by shielding the charge of the histones by the histone chaperone until the 

histones are deposited onto the DNA in a functional manner [63, 68].  Once 

appropriate contact with the DNA is made, the histone chaperone releases the 

histones.  Although histone chaperones are capable of assembling nucleosomes 

without the aid of additional proteins or consumption of energy, during the 

disassembly process, chaperones frequently act in conjunction with ATP-

dependent remodeling proteins that use the energy from ATP hydrolysis to break 

histone/DNA contacts [69].   

In most cases, a specific histone chaperone will interact and stabilize 

either H2A/H2B dimer or H3/H4 tetramer.  However, there are a few examples of 

chaperones that are capable of interacting with all four core histone proteins, 

either in their dimer and tetramer forms or as a complete octamer [70-73].   

1.6 The Histone Chaperone Nap1 

Nucleosome assembly protein 1 (Nap1) was originally identified in HeLa 

cells and is one of few histone chaperones that is capable of recognizing all four 

core histone proteins [74].  Nap1 is a member of the Nap family of histone 

chaperone proteins that includes SET/TAF-Iβ, Vps75, as well as the human 

Nap1 variants Nap1-like proteins 1-5 (Nap1L1-5) and has homologues in yeast, 

Drosophila, and Xenopus (Figure 3).  Members of the Nap family of proteins are 

highly conserved and have a broad range of functions including  
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Figure 3: There is significant sequence homology between Nap1 family 
members.  The sequence alignment map of Nap variants includes yeast Nap1, 
Xenopus Nap1, Drosophila Nap1, human Nap1 (Nap1L1), human Nap1 like 
proteins 3 and 4, and human SET/TAF-1β. When comparing the central globular 
region of the Nap family members, there is conservation of sequence of Nap 
proteins between the species as well as with other human Nap family members.    
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transcription activation, assembly and disassembly of nucleosomes, and 

interaction with other proteins that carry out cellular processes unrelated to 

chromatin dynamics and transcription activation [75].  Specifically, Nap1 interacts 

with cellular proteins that carry out many diverse functions including cell cycle 

regulation, mediation of nuclear import, control of RNA synthesis and translation, 

ATPase activity within the mitochondria, lysine biosynthesis, and histone 

transport and control (reviewed in [75]).  Of these functions, the most highly 

studied is the histone chaperone activity of Nap1 because of its relevance to 

transcription activation and chromatin dynamics.      

In the cell, under physiological conditions, Nap exists as a dimer and does 

not exist in monomeric form [76].  As a chaperone, Nap1 is capable of interacting 

with both H2A/H2B dimers and H3/H4 tetramers.  Generally the ratio of 

interaction is 1:1, Nap monomer:histone monomer.  Specifically, one Nap dimer 

interacts with one H2A/H2B dimer or two Nap dimers interact with one H3/H4 

tetramer [25, 73].  

Histone chaperones, such as Nap1, have been implicated in maintaining a 

balance between assembly and disassembly of nucleosomes [62].  Previously, 

Nap1 was known for H2A/H2B dimer removal and exchange [61, 77-80].  

However, recent evidence suggests a role for Nap1 in disassembly of all four 

core histones [60, 78, 81].  Of significance, the Nap1-dependent disassembly of 

nucleosomes from the HTLV-1 promoter was the first example of a histone 

chaperone functioning to disassemble the complete octamer in an acetylation-

dependent manner [60].  This reaction occurs in the absence of ATP-dependent 
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chromatin remodeling proteins, transcription initiation, and elongation, discussed 

in Sharma and Nyborg 2008 [60].  This observation was noteworthy as Nap1-

mediated disassembly occurs in the absence of ATP, but required acetyl 

coenzyme A (acetyl CoA) and the HAT activity of p300.  

1.7 Brief History of HTLV-1 and its Infectivity 

Discovered in 1980, human T-cell leukemia virus type-1 (HTLV-1) was the 

first characterized human retrovirus [82].   It is estimated that between 10 and 20 

million people are infected with HTLV-1 worldwide, with high incidence in 

southwest Japan, the Caribbean, and parts of central Africa and South America 

[83-88].  The virus is the causative agent of the aggressive malignancy, adult T-

cell leukemia/lymphoma (ATLL), as well as the neurodegenerative disease 

tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM) 

(reviewed in [89]). The virus can be transmitted from person to person by 

exposure to contaminated blood, blood transfusions, sexual contact, or from 

mother to child by breastfeeding [83-88].  Once infected, there is a prolonged 

period of viral persistence in which the majority of individuals remain lifelong 

asymptomatic carriers of the virus.   

1.8 HTLV-1 as a Model System for Studying Nucleosome Disassembly and 

Transcription Activation 

 The HTLV-1 promoter is useful for studying eukaryotic transcription and 

gene expression because the provirus becomes stably and permanently 

integrated into the host cell’s chromosomes.  Once integrated, the provirus is 

packaged into chromatin in the same manner as a cellular gene.  In the context 
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of the chromosome, the viral DNA is indistinguishable from cellular genes and is 

regulated similarly, utilizing cellular transcription activators, coactivators, and 

polymerase machinery (Figure 4A).  In addition, HTLV-1 encodes its own potent 

transcription activator, Tax, which activates transcription more than a thousand 

fold in vivo [90].  

Previously, HTLV-1 has been used as a model promoter for both in vitro 

and in vivo studies of transcription activation in a chromatin context [13, 60, 90, 

179].  This promoter is useful because it has a relatively small regulatory region 

that spans less that 300 of base pairs rather than thousands of base pairs often 

observed for cellular gene promoters (discussed in more detail in the following 

section).   

1.8a HTLV-1 Provirus and Promoter 

 Like other retroviruses, HTLV-1 encodes its own structural proteins, 

transmembrane proteins, and surface glycoproteins along with reverse 

transcriptase and integrase.  Importantly, the viral genome also has regulatory 

and accessory proteins encoded in the pX region including Tax [91, 92] and Rex 

[93].  Tax will be described in greater detail in the following section.  Flanking the 

protein encoding region are two identical long terminal repeats (LTRs) 

characteristic of all retroviruses [94-97].  Each LTR is identical and is subdivided 

into three parts; the unique 3’ (U3), the repeated (R), and the unique 5’ (U5) 

region.  The U3 region is critical for our studies of transcription activation 

because it contains the HTLV-1 promoter elements and is followed immediately 

by the transcription start site at the U3/R junction [94-97] (Figure 4A).   
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Figure 4: Protein interactions at the integrated HTLV-1 provirus  (A) The 
HTLV-1 provirus has two long terminal repeats, each containing a U3, R, and U5 
region as well as coding regions.  The provirus is integrated into the host cell’s 
chromosome and is packaged into chromatin in the same manner as the cellular 
genetic material.  U3 is the primary regulatory region and contains three viral 
CREs that act to recruit activators and coactivators and a TATA element.  The 
transcription start site is at the U3/R junction. (B) The phosphorylated form of the 
cellular transcription activator CREB binds as a dimer to the viral CRE to an 8 bp 
consensus CRE sequence.  The viral oncoprotein, Tax interacts with CREB and 
the GC-rich regions that flank the viral CRE and serves to recruit the ubiquitous 
coactivator p300.  
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 Following infection, the viral RNA genome is reverse transcribed to make 

a double-stranded DNA copy of the viral genome.  Upon completion, the viral 

protein integrase randomly clips the host’s DNA, inserts the viral sequence, and 

repairs the breaks [98, 99].  Once integrated, the viral genome is packaged into 

chromatin.  Regulation of viral transcription (i.e. replication) is regulated by a 

combination of cellular and viral transcription activators and coactivators.  

In the U3 promoter region within the LTR there are three highly conserved 

21 bp repeats known as viral cyclic AMP response elements (vCREs) , located at 

-100, -200, and -250 bases relative to the transcription start site at +1 [100-103].  

These elements are required for Tax-activated transcription and are named so 

because their 8 bp core sequences resemble those of cellular enhancers known 

as CREs.     

1.8b CREB and Tax Recruitment   

 Initiation of viral transcription begins with the recruitment of transcription 

activators to the viral CREs.  Normally, cellular CREs and bind the cellular 

transcription activator CREB (cyclic-Amp response element binding protein) or 

other ATF/CREB family members [104-110].  To activate HTLV-1 through the 

viral CRE, CREB must become phosphorylated at ser133 through a pathway 

induced by the viral protein, Tax [111, 112].  Phosphorylated CREB (pCREB) 

binds as a dimer to the central 8 bp of the vCRE.  Binding of pCREB is followed 

by the interaction of two Tax molecules that form contacts with either side of the 

pCREB dimer [113].  Tax also makes protein-DNA contacts with the GC-rich 

regions of the vCRE that flank the 8 bp element (Figure 4B) [114-117].  The 
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requirement for phosphorylated CREB rather than unphosphorylated CREB for 

complex formation with Tax at the HTLV-1 vCRE is consistent with the 

observation of elevated pCREB levels in Tax-expressing cells [112, 118, 119].  

Tax cannot bind to the vCRE in the absence of CREB [117], however by virtue of 

the pCREB/Tax interaction, Tax is able to bind the vCRE and at the same time 

Tax increases the binding affinity of pCREB for the DNA [106, 109, 110, 120-

123]. 

1.8c Coactivator Recruitment to the HTLV-1 Promoter 

Tax binding to the pCREB/vCRE complex is required for high levels of 

transcription of the HTLV-1 provirus [100, 101, 103, 124].  As mentioned above, 

Tax and pCREB form a stable complex on the vCRE enhancer elements.  This 

complex, although required, is not sufficient for gene activation.  Together, 

pCREB and Tax recruit the cellular coactivator and histone acetyltransferase 

p300 or its homolog CREB binding protein (CBP) [57, 125, 126].  At the HTLV-1 

promoter, both CBP and p300 are functionally equivalent, and therefore will be 

referred to as CPB/p300.  Tax, pCREB, CBP/p300, and the vCRE form a stable 

quaternary complex through interaction of CBP/p300’s KIX domain with Tax and 

pCREB [13, 58, 112, 125-128].  Full length p300 has been shown to be recruited 

to the HTLV-1 by the Tax/pCREB complex both in vitro and in vivo [57, 58, 60, 

90, 129-131].  Importantly, Tax recruitment of CBP/p300 promotes histone 

acetylation. The phosphorylated form of CREB in complex with Tax is absolutely 

required for recruitment of the coactivators CBP/p300 to activate transcription of 

the HTLV-1 provirus [132-135].  In addition to interactions between Tax and 
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pCREB, the Tax, pCREB, vCRE complex interaction is stabilized greatly through 

interaction with CBP/p300 (Figure 4B) [125-128, 136].  Following the stable 

recruitment of CBP/p300 to the HTLV-1 promoter, the intrinsic HAT activity of the 

coactivators results in acetylation of the core histone tails of promoter 

nucleosomes, a critical step in the gene activation process.  

1.8d The Cellular Coactivator p300 and the Histone Chaperone Nap1 

 At 2441 and 2414 amino acids in length respectively, CBP and p300 are 

very large and extremely homologous proteins that show significant evolutionary 

conservation in both sequence and domain function (Figure 5) [137].  These 

cellular coactivators carry a histone acetyltransferase domain and are known to 

acetylate lysine residues in all four core histones [138, 139], both free in solution 

and in complex with DNA as nucleosomes [139-142].  This HAT activity is the 

primary means by which these proteins regulate gene expression [140, 142].  

Additionally, binding of CBP and p300 has been detected at the transcription 

start and end sites at more than 16,000 genes in the human genome [143], with 

enrichment at many active promoters [19].  Further, chromatin 

immunoprecipitation (ChIP) studies have shown that there is a correlation 

between CBP/p300 binding to the promoter and histone acetylation [90, 130, 

131].  Recruitment of CBP/p300 to promoters and enhancers correlates with 

acetylation of histone H3 and H4 tails [140-142, 144-147].  CBP/p300 do not 

interact directly with promoter DNA; in order for CBP/p300 to function, they must 

be recruited by DNA-bound factors, such as the recruitment of CBP/p300 to the 

HTLV-1 promoter via the vCRE bound Tax-pCREB complex.  



 
 

 
 

 
 

 

 
Figure 5: Linear schematic of p300.  Nap1 has been shown to interact with p300 through the C/H3 domain of p300.  
p300 is a very large protein that has many interacting domains including the KIX domain that interacts with Tax and 
pCREB, the Bromodomain that has been shown to bind acetyl-lysine residues, and the histone acetyltransferase domain. 
CBP has the same domain layout as p300 but with slight differences in the specific beginning and ending amino acid of 
each domain.  In addition to the interactions shown, which are pertinent to HTLV-1, many other proteins interact with both 
CBP and p300. (Adapted from [138]).  
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In 2006, Lemasson et al detected that upon Tax expression, pCREB and 

p300 were recruited to the HTLV-1 promoter using the chromatin ChIP assay.  

Unexpectedly, they also detected decrease in the activating post-translational 

modifications, acetylation and methylation, of the histone tails.  Consequently, 

the decrease in these activating modifications was attributed to depletion of 

histone H3 and linker histone H1 at the HTLV-1 promoter [90].   

To recapitulate results from in vivo studies our laboratory initiated in vitro 

immobilized template studies using a fragment containing the HTLV-1 promoter 

assembled into chromatin.  We found that following the addition of purified Tax, 

pCREB, p300, acceptor DNA, acetyl CoA, and the histone chaperone Nap1, 

nucleosomes were disassembled form the HTLV-1 promoter [60].  Importantly, 

this reaction was performed in the absence of ATP and chromatin remodeling 

proteins but required the histone chaperone Nap1.  In this reaction, Nap1 was 

the most difficult protein to identify, as it was originally supplied through the 

chromatin assembly process. 

1.8e The Interconnection between Nap1, HATs and Nucleosome 

Mobilization   

There are many individual links between histone chaperones, histone 

acetyltransferases, and nucleosome disassembly. The following is a bulleted list 

of the relevant links that establish a foundation for the study of Nap in 

acetylation-dependent nucleosome disassembly.   
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 Nucleosome depleted regions are observed in yeast, fly and 

humans near the start sites of transcription, and the level of 

depletion is directly related to the level of gene expression [19]. 

 There is a level of p300 enrichment at many active promoters [19].   

 Stable complexes with Nap1, p300, and H2A/H2B dimer have been 

identified [59, 148, 149].  

  During transcription the displacement of histones is enhanced by 

Nap1 [150].   

 Acidic histone binding proteins such as the histone chaperone 

SET/TAF-Iβ have been linked to assembly and disassembly of 

H2A/H2B [80].   

 SET/TAF-Iβ is also a potent activator of transcription through its 

association with chromatin [151].   

 FACT (facilitator of activated chromatin transcription), another 

histone chaperone, binds nucleosomes and displaces one or both 

dimers in transcribed regions [152, 153].   

 The chaperone nucleoplasmin assembles and disassembles 

nucleosomes in the remodeling of sperm chromatin [154].   

 In yeast, cells deficient for Nap1 have more than a two-fold change 

in the expression pattern in 10% of genes [155].   

Our in vitro, biochemically defined system is unique because it is the first 

example of Nap1 disassembling nucleosomes from a natural promoter in an 

acetylation-dependent fashion that is independent of ATP consumption [60].  In 
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support of the findings of nucleosome disassembly at the HTLV-1 promoter, 

Nap1 has been shown to stably interact with p300 [59, 148, 149].   

Nap1 is utilized by multiple viruses to bind viral and cellular proteins to 

promote viral transcription [60, 149, 156-158].  Additionally, Nap family members 

have frequently been shown to act in conjunction with other viral systems.  

Specifically, SET/TAF-Iβ has been shown to stimulate chromatin decondensation 

[159], interact with CPB/p300 to modulate acetylation [160], and activate 

adenovirus transcription [161].  In addition, Nap1 has been shown to function at 

other viral promoters to aid in transcription activation.  Nap1 interacts with the 

HIV Tat protein and promotes viral transcription [158], and a direct interaction 

between Nap1 and E2 protein has been shown to activate Papillomavirus 

transcription [156].   

The research discussed above sets a precedent for the link between 

histone chaperones of the Nap family, interaction with CBP/p300, and activation 

of viral transcription.  The retroviral model is useful for studying eukaryotic gene 

regulation because Nap1-mediated disassembly occurs at viral promoters that 

are packaged into chromatin, indistinguishable from cellular genes.  

1.9 Nap1-Dependent Nucleosome Disassembly at the HTLV-1 Promoter 

 To summarize, disassembly of HTLV-1 promoter nucleosomes begins with 

the recruitment of Tax and pCREB.  The cellular protein, CREB becomes 

phosphorylated by a pathway induced by Tax.  Tax is a virally encoded 

oncoprotein known to stimulate HTLV-1 transcription.  Tax, pCREB, and p300 

form a stable quaternary complex with the HTLV-1 promoter DNA.  Nucleosome 
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disassembly at the HTLV-1 promoter also requires acetyl CoA as a substrate for 

p300’s HAT activity and the histone chaperone Nap1.  HTLV-1 is a useful tool for 

studying eviction of histones because a highly purified biochemically defined 

system can be used to monitor disassembly uncoupled from transcription using 

purified activators and coactivators.  Work from our laboratory has demonstrated 

that Tax, pCREB, p300, acetyl CoA, acceptor DNA and Nap1 are absolutely 

required for nucleosome disassembly from the HTLV-1 promoter.   

 Although disassembly is dependent on Nap1, the mechanism by which 

this histone chaperone disassembles nucleosomes is unknown.  For my thesis 

research I set out to use mutational analysis to characterize the minimal domain 

of Nap1 required for disassembly of nucleosomes from the HTLV-1.   
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CHAPTER 2 

DESIGN AND CLONING OF NAP1 DELETION MUTANTS: DETERMINING 

THE MINIMAL DOMAIN OF HUMAN NAP1 REQUIRED FOR NUCLEOSOME 

DISASSEMBLY 

 

2.1 Background 

 Nucleosome disassembly from the HTLV-1 promoter is dependent on Tax, 

pCREB, Nap1, p300, acetyl CoA, and acceptor DNA [60].  Interestingly, eviction 

of the octamer is independent of chromatin remodeling complexes that utilize 

ATP.  Instead, our data points to a prominent role for Nap1 in facilitating 

disassembly of the acetylated nucleosomes.  Because of the novelty of Nap1 in 

acetylation dependent nucleosome disassembly, I focused my studies on Nap1 

and its physical properties to aid in determining its role in nucleosome 

disassembly from the HTLV-1 promoter.   

The original studies published by Sharma and Nyborg in 2008 used full 

length Drosophila Nap1.  Recognizing that all the other non-histone proteins 

used in the assay were of human origin or derived from a human retrovirus, we 

incorporated human Nap1 (hNap1) into the histone eviction assays [60].  We 

found that hNap1 performed indistinguishably from dNap1 in the eviction assays 

(Figure 6).  
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Figure 6:  Drosophila and human Nap are function indistinguishably in the 
acetyl CoA-dependent disassembly of HTLV-1 promoter nucleosomes.  
Using the same protocol shown in figure 18, disassembly was assayed at the 
HTLV-1 chromatin assembled promoter following addition of Tax, pCREB, p300, 
and acceptor DNA.  Nucleosome disassembly required the presence of acetyl 
CoA, as indicated.  Histone proteins present in the template-bound and 
supernatant (evicted) fractions were detected by SDS-PAGE followed by 
Coomassie staining.  Experiment performed by Neelam Sharma. 
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Using the human Nap1 protein, we were interested in determining the 

minimal domain of hNap1 required for nucleosome disassembly at the HTLV-1 

promoter.  Further studies were performed in our laboratory using deletion 

mutants of hNap1 obtained from the Giacca laboratory, which were originally 

cloned the Steger laboratory [156] (see Figure 7 for deletion locations).  Based 

on the sequence alignment with yeast Nap1, the hNap1 deletions were designed 

to occur at the domain junctions determined by the yeast Nap1 crystal structure.  

These hNap1 deletion mutants allowed for a comprehensive analysis of the 

domains of hNap1. GST pull-downs were used to examine histone binding 

capability, and eviction assays were used to test the disassembly function of the 

mutants (Figure 8).  Binding studies were used to determine if a correlation exists 

between hNap1-histone interaction and the ability to disassemble nucleosomes 

from the HTLV-1 promoter (Figure 8A).  All hNap1 domains containing residues 

162-290 support disassembly of nucleosomes from the chromatin-assembled 

HTLV-1 promoter template (Figure 8B).  This particular domain is referred to as 

hNap1Δ6 by Rehtanz et al 2004 and will be referred to as such throughout this 

report.     

The goal of the work discussed in this chapter is to design and generate 

further hNap1Δ6 deletion mutants to be tested in GST pull-downs and for their 

ability to support nucleosome disassembly.  Although no structure of hNap1 is 

currently available, we designed the mutants using a computer-generated model 

to limit the impact on the structure as much as possible, discussed in more detail 

in the results section.  
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Figure 7: Linear diagram of full length human Nap1 and deletion mutants.  
Deletion mutants of full length human Nap1 enable a comprehensive analysis of 
domains required for nucleosome disassembly from the HTLV-1 promoter.  
Truncation locations were designed using sequence alignment  of human Nap1 
and yeast Nap1 and the domains in the crystal structure of yeast Nap1  (Adapted 
from [156])  
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Figure 8:  Functional analysis of full length hNap1 and various Nap1 
deletion mutants  (A)  GST pull-down assay indicates that the Nap1 deletion 
mutants have variable capacity to bind histones.  GST pull-down was performed 
with 20 pmol GST-tagged yeast Nap1 (yNap1), hNap1, or the indicated hNap1 
deletion mutant (see figure 8).  GST-hNap1 proteins were incubated with 10 pmol 
histone octamer as describe in Chapter 3.  Bound proteins were analyzed by 
SDS-PAGE followed by Coomassie staining.  Experiment performed by Dinaida 
Egan.  (B) Nucleosome eviction assay reveals that hNap1 proteins carrying the 
core region of the Nap domain (see figure 7) support nucleosome eviction.  The 
hNap1 deletion mutant composed of amino acids 162-290 (hNap1Δ6) 
represented the minimal region required for nucleosome disassembly and thus 
served as the parent construct for further analysis.  Experiment performed by 
Neelam Sharma  
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To aid in designing mutants, we utilized the crystal structures available for 

two other conserved Nap family histone chaperone members, yeast Nap and 

human SET/TAF-Iβ to predict the structure of hNap1.  There is significant 

structural and sequence homology between the histone interacting domains of 

hNap1, SET/TAF-Iβ, and yNap1 [162] (Figure 9).  All three proteins form 

homodimers and have similar structural characteristics (Figure 9A).  Both yNap 

and SET/TAF-Iβ have a long α-helix at the N-terminus that serves as a 

dimerization domain followed by a globular region comprised of three more 

separate domains (Figure 9B).  One domain of the globular region has been 

shown to bind histones.  This domain is referred to as the “green” domain of 

yNap1 [163], the “earmuff domain” of SET/TAF-Iβ [160], or Δ6 of hNap1 (Figure 

9C).     

Based on the results of the structural prediction software, I created a 

series of rationally designed mutations that remove either the N- or C- terminals 

from hNap1Δ6.  The work discussed in the chapter outlines the design, cloning, 

and purification of these deletion mutations.        

2.2 Materials and Methods 

SLIM cloning 

 Site-directed ligase-independent mutagenesis (SLIM) procedure was 

adapted from [164, 165].  SLIM can be used for generating insertions, deletions, 

and point mutations.  Figure 10 shows the reaction set-up for generating deletion 

mutants.  
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Figure 9: Comparison of crystal structures of yeast Nap1 and human 
SET/TAF-1β  (A) Crystal structures of yeast Nap and SET/TAF-Iβ dimers [162, 
163]  (B)  Single monomer of SET/TAF-Iβ and yeast Nap to show similar domain 
layout.  Adapted from [178].  (C) Structural comparison of the central histone 
binding domain of human SET/TAF-Iβ.   
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Figure 10: Site-directed ligase-independent mutagenesis reaction example. 
SLIM can be used for making deletions and insertions.  Each mutant requires 4 
primers.  A combination of deletions and insertions can be made using a single 
set of primers.  Two polymerase chain reactions are done.  A short forward 
primer is paired with a reverse long primer and vice versa. (F and R stand for 
Forward and Reverse, S and L stand for Short and Long).  PCR is performed and 
template is digested with Dpn1.  The reactions are hybridized and transformed 
into E. coli.  Following transformation positive clones are screened by colony 
PCR.  
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To make a deletion mutant, primers are designed to flank the sequence 

that will be deleted.  Four primers were designed per mutant: forward primer with 

and without a tail and reverse primer with and without a tail.  Each mutant 

requires two separate PCR reactions.  Two primers are used per reaction.  A 

forward tailed primer is paired with a reverse un-tailed primer and vice versa.  

Reactions contained 2 mM dNTP mix, 50 ng pGEX-2T Nap1Δ6 plasmid 

template, 10 pmol of each primer, 1xPhusion HF-Buffer, and water to a final 

volume of 25 μL.  Samples were incubated at 98°C for 2 min prior to addition of 

polymerase and the temperature was reduced to 85°C for polymerase addition 

(0.5 U Finnzymes Phusion High-Fidelity DNA Polymerase, NEB Product Code F-

530). The reaction was allowed to proceed for 40 cycles (95°C for 15 sec, 55°C 

for 20 sec, 68°C for 3.5 min) followed by 68°C for 7 min and a 4°C hold.  After 

amplification, samples were diluted  5 fold in D-buffer (5XD-Buffer: 20 mM MgCl2, 

20 mM Tris pH 8.0, 5 mM DTT) and digested with 0.5 U DpnI (NEB Catalog 

#R0176) for 1 hour at 37°C to digest template DNA.  

 After digestion, samples were hybridized by combining each amplification 

reaction along in H-buffer (3XH-Buffer: 750 mM NaCl, 125 mM Tris pH 9.0, and 

100 mM EDTA pH 8.0).  Reactions were heated to 99°C for 3 min to inactivate 

the enzyme and subjected to three cycles of 65°C for 5 min and 30°C for 15 min.  

The entire hybridization reaction was transformed into DH5α cells and amplified 

on LB agar plates containing ampicilin overnight at 37°C.  Colonies were 

screened by PCR for successful mutation.  A primer was designed to be unique 

to the deleted sequence.  Lack of amplification product was an indication of 
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successful cloning as determined by ethidium bromide stained 1% agarose gel.   

Mutant plasmid containing cells were expanded and the plasmid was purified. 

Primers for generating hNap1Δ6ΔN: 

FT:  5’ CTG GTT CCG CGT GGA TCC TTG AAA GAT AAT AAA GTG AAG TTC 

TCA GAT 3’ 

FS:  5’ TTG AAA GAT AAT AAA GTG AAG TTC TCA GAT GCT GCC C 3’ 

RT:  5’ GGA TCC ACG CGG AAC CAG ATC CGA TT TGG TGG ATC GTC 3’  

RS:  5’ ATC CGA TTT TGG AGG ATG CTG GCC ACC 3’ 

Primers for generating hNap1Δ6ΔC: 

FT:  5’ TAC CAG ATA GAT TGG AAA GGA TCC CCG GGA ATT CAT CGT 3’ 

FS:  5’ GGA TCC CCG GGA ATT CAT CGT 3’ 

RT:  5’ TTT CCA ATC TAT CTG GCA CCC TGT ACA ACC CAT AAT TTC 3’  

RS:  5’CCC TCT ACA ACC CAT AAT TTC TGG TCC TCC 3’ 

Screening primers (to the deletion): hNap1Δ6ΔN: 

Top: 5’ GAC CCC AAA GGA ATT CCT GAA TTT TGG 3’ 

Bottom: (pGEX-2T sequencing) 5’ CCG GGA GCT GCA TGT GTC AGA GG 3’  

Screening primers (to the deletion): hNap1Δ6ΔC: 

Top: (pGEX-2T sequencing) 5’ GGG CTG GGA AGC CAC GTT TGG TG 3’ 

Bottom: 5’ CTG TCC CAC TGC CCT TGT G 3’ 

 GST affinity purification of Nap1 mutants 

 Purified pGEX-2T plasmid containing human Nap1 (or Nap1 mutant) 

sequence was transformed into BL21DE3 pLysS cells and incubated overnight at 

37°C on LB plates containing ampicilin and chloramphenicol.  Cultures were 
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expanded to 1 L, allowed to grow to A600 = 0.5, and induced using 0.4 mM IPTG.  

Three hours post induction, cells were harvested using a Beckman J2-21 

centrifuge with a JA-10 rotor at 3000 rpm for 30 min.  Supernatant was discarded 

and pellets were resuspended in 10 mL PBS and stored at -70°C until protein 

purification.  

 The pellet was thawed and protease inhibitors were added (1 mM PMSF, 

8 μg/mL aprotinin, 8 μg/mL leupeptin, 2 mM DTT).  Cells were lysed by 

sonication using the Branson Sonifier 450 with a flat tip three times for 3 min at 

output 4/40% with 5 min between each sonication.  Tween-20 was added to a 

final concentration of 1% and the cellular debris was pelleted by centrifugation for 

30 min at 14,000 rpm at 4°C.  The supernatant was added to equilibrated 

glutathione agarose resin and incubated with gentle agitation at 4°C for 45 

minutes.  Resin was separated by centrifugation in a Beckman Allegra 6KR 

conical centrifuge at 1500 rpm for 10 min at 4°C and the supernatant was 

removed.  Beads were washed three times with PBS+1% Tween-20 by 

incubating with gentle agitation for 10 min at 4°C followed by centrifugation.  

Protein was eluted with elution buffer (50 mM Tris pH 7.9, 5 μM reduced 

glutathione, 2 mM DTT) and dialyzed into 0.1 M TM (50 mM Tris pH 7.9, 100 mM 

KCl, 12.5 mM MgCl2, 1 mM EDTA, 20% Glycerol) with 2 mM DTT.  Concentration 

was determined using a BSA Protein was stored at -70°C. 

2.3 Results 

From the series of truncation mutants our lab previously obtained, we 

were able to determine that the minimal domain required for histone eviction is 
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hNap1Δ6, which is comprised of amino acid residues 162-290.  Additional 

deletions of hNap1Δ6 were designed to further test the minimal domain of hNap1 

required for nucleosome disassembly at the HTLV-1 promoter.  Once 

constructed, deletion mutants of hNap1Δ6 will supplement data previously 

obtained in the lab using hNap1Δ1-8 (refer back to figures 8 and 9).  The 

hNap1Δ6 deletion mutants will be tested in GST pull-down and nucleosome 

disassembly assays, discussed in Chapter 3. 

To perform these studies, I designed my deletions in a way that would limit 

the impact on the structure of the protein.  Because human Nap1 has not been 

crystallized, I used the structural prediction software known as Phyre to aid in the 

design of the mutants [166, 167].  This program utilizes existing protein 

structures to predict the structure of the input amino acid sequence, human 

Nap1.  The primary advantage of the Phyre program is that it searches multiple 

protein databases (e.g. the protein data bank) for crystallized proteins with a high 

level of sequence homology.   Based on the sequence alignments, the program 

models the structure of the input protein.  The use of this program eliminates 

potential human bias because the user does not provide the structural homologs 

and the alignment can be performed with multiple proteins to produce multiple 

models.  The output of this program is a structural file along with a map depicting 

the strength of the sequence alignment between the input protein and the 

crystallized protein that was used as a model.  When provided the sequence of 

hNap1, the program yielded three viable models based on the structures of yNap 

and SET/TAF-Iβ (Figure 11).  
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Figure 11: Predicted structure of human Nap1 can be used to design 
rational deletion mutants.  (A) Predictions from the Phyre (Protein 
Homology/Analogy Recognition Engine). Two possible models for human Nap 
were created based on the yeast NAP crystal structure shown as an overlay in 
green and magenta.  One structure was generated based on the human 
SET/TAF-I structure shown in cyan.  (B)  Based on sequence alignment the 
strongest parts of all three models were used to generate a single model.  
Colored by domain, the hNap1Δ6 domain is shown in lime green and cyan.  
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Two models were generated based on the yNap structure, C2AY and 

D2AY, and one model, C2E5, was generated based on the SET/TAF-Iβ structure 

(Figure 11A).  There are many similarities between the three predicted structures 

of hNap1.  However, areas of divergence occur as a result of parts of yNap and 

SET/TAF-Iβ were not originally crystallized by the Luger and Horikoshi 

laboratories [162, 163]. Consequently, there are segments of the hNap1 structure 

that are not modeled.  These sections include some of the flexible linker regions 

that connect the alpha helices and beta strands.  

A single hypothetical crystal structure was generated using the strongest 

alignments between the sequence of hNap1 and either yNap or SET/TAF-Iβ and 

the representative portions of their crystal structures.  This model was colored to 

correspond to the different domain coloring of yNap from Park and Luger, 2005 

[61] (Figure 11B).  This model was used as a platform for the design of deletion 

mutants that were tested in GST pull-down and nucleosome disassembly assays.   

Using Nap1Δ6, colored in green on the combined model (amino acids 

162-290), I designed three deletion mutants that should have a limited impact on 

the structure of the protein (Figure 12A).  The first deletion removes the N-

terminal alpha helices (amino acids 162-195), leaving amino acids 196-290 

(referred to as hNap1Δ6ΔN) (Figure 12B).  The second deletion removes the C-

terminal beta sheet (amino acids 264-290), leaving amino acids 162-263 

(referred to as hNap1Δ6ΔC) (Figure 12C).  The final deletion is a combination of 

the first and second (removing amino acids 162-195 and 264-290), leaving just 

196-293 (referred to as hNap1Δ6ΔN/C) (Figure 12D). 
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Figure 12: Rational design of Nap1 deletion mutants.  The full Δ6 domain is 
shown with the deletions in Magenta and the remaining part of the protein shown 
in Green (A) Starting with the Δ6 domain deletions were made at the N and C 
terminals and then both terminals were removed.  (B) hNap1Δ6ΔN (C) 
hNap1Δ6ΔC  (D) hNap1Δ6ΔN/C. 
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 The rationally designed mutants were generated using a variation of the 

SLIM cloning technique [164, 165].  This technique utilizes a series of primers to 

create a deletion using polymerase chain reaction (PCR) for amplification of the 

plasmid and hybridization of the PCR products.  The SLIM method allows for 

amplification, hybridization, and bacterial transformation in a single day (refer 

back to Figure 10).  Following transformation, colonies were screened using 

colony PCR with a primer designed to be specific to the deleted sequence.  

Screening of colonies prior to plasmid purification is critical because theoretically, 

only half of the colonies contain the correctly hybridized product.  Successful 

deletion was confirmed by the absence of amplification product from the colony 

PCR reaction.  Following plasmid purification, the mutation was also confirmed 

by DNA sequencing.   

The hNap1Δ6 deletion mutants were purified by GST affinity purification.  

The purification yielded protein product with similar or greater purity than 

previous hNap1Δ6 preparations (Figure 13 and 14).  Concentration and purity 

were compared using BSA as a concentration standard on Coomassie stained 

denaturing polyacrylamide gel (Figure 15). 

2.4 Discussion 

The structural prediction software known as Phyre was used to generate 

three models of hNap1 based on the published crystal structures of yeast Nap 

and human SET/TAF-Iβ.  These three models were combined to generate a 

single model using the strongest sequence alignment to determine the most well 

predicted portions of the three models.  There were regions of all of the models 

 



39 
 

 
 
 
 

Figure 13: Full length human Nap1 and Δ 6 were purified using GST affinity 
purification.  Proteins were grown using pLysS cells induced with IPTG, 
harvested and lysed by sonication.  After removal of cellular debris, supernatant 
was bound to glutathione agarose beads, washed, and protein was eluted using 
reduced glutathione.  (A) Purification of Full Length hNap1  (B) Purification of 
hNap1Δ6  
 



 
 

 

 

 

Figure 14: Deletion mutants were purified using GST affinity purification.  Proteins were grown using pLysS cells 
induced with IPTG, harvested and lysed by sonication.  After removal of cellular debris, supernatant was bound to 
glutathione agarose beads, washed, and protein was eluted using reduced glutathione.  (A) Purification of hNap1Δ6ΔN 
(B) Purification of hNap1Δ6ΔC  (C) Purification of  hNap1Δ6ΔN/C  



 
 

 

 
 
Figure 15: Comparison of yield and purity of full length Nap1, Δ6, Δ6ΔN, Δ6ΔC, Δ6ΔN/C.  BSA was used as a 
standard for determining the concentration of the purified proteins.  Post-dialysis sample was loaded onto a 13% 
denaturing polyacrylamide gel with SDS sample buffer.  Titrating proteins: 1, 2, and 4 microliters of each protein 
post dialysis for comparison on purity and relative concentration.  
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that lacked predicted structure.  This is likely a result of unstructured regions of 

the protein or portions of the proteins that exist in multiple conformations.  These 

regions are not shown in the hNap1 model crystal structure.  From these 

structures, I determined the most rational locations to design deletion mutations 

of hNap1Δ6. 

Although the alignment was very strong, it must be mentioned that the 

generated structure is only a prediction.  The actual human Nap1 structure may 

vary slightly in terms of what residues are in α-helices and β-sheets or in flexible 

linker regions, etc.  It is also possible, however unlikely, that the predicted 

structure is an inaccurate representation of the actual hNap1 structure.    

The hNap1Δ6 deletion mutants were cloned using a variation of the 

published SLIM technique.  The creation of the deletions was confirmed by 

sequencing.  Following bacterial expression, purification of the hNap1 deletion 

mutants produced lower protein yields than previous preparations of GST tagged 

full length hNap1.  Full length GST-hNap1 is cloned into the same plasmid and 

was expressed under the same conditions.  The difference in yields could be a 

result of precipitation of the protein due interaction of the hydrophobic patches 

that were potentially exposed in the design of the hNap1 deletion mutants.  

Adequate amounts of protein was obtained to continue with the functional 

studies, however optimization of the expression and purification process is 

discussed in the future directions section of chapter 4.  
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CHAPTER 3 

FUNCTIONAL CHARACTERIZATION OF HUMAN NAP1 DELETION 

MUTANTS AND THEIR FUNCTION IN NUCLEOSOME DISASSEMBLY AT 

THE HTLV-1 PROMOTER 

 

3.1 Background 

This chapter will focus on the function of human Nap1 and will utilize the 

mutants designed in the previous chapter for in vitro analysis in histone binding 

and nucleosome disassembly assays.  Previous reports from our laboratory 

described an immobilized template assay utilizing the HTLV-1 promoter as a 

DNA template [60].  It has been established that nucleosome disassembly and 

transcription activation at the HTLV-1 promoter requires recruitment of the 

Ser133 phosphorylated form of the cellular protein, CREB (pCREB), together 

with the viral protein, Tax.  Phosphorylated CREB forms a homodimer that 

interacts with the central region of the viral CRE.  In addition, two Tax molecules 

make protein-protein interactions with pCREB while simultaneously interacting 

with the GC-rich regions of the DNA in the vCRE.  Together, Tax and pCREB 

recruit the cellular coactivator and histone acetyltransferase, p300.  Tax and 

pCREB bind the KIX domain of p300.  The protein-DNA complex formed with 

Tax, pCREB, p300 and the vCRE is very stable.  Upon recruitment, p300 

acetylates the histone tails of promoter nucleosomes.   
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 In addition to formation of the quaternary complex, the presence of the 

histone chaperone, Nap1, is also required for nucleosome disassembly from the 

HTLV-1 promoter.  In our assay, multiple proteins in the complex at the HTLV-1 

promoter may interact with Nap1.  Nap1 may be recruited to the promoter by 

p300 because Nap1 and p300 are shown to interact in vitro [59, 148, 149].  

Unpublished data from the Nyborg laboratory has also shown by GST pull-down 

and coimmunoprecipitation that Nap1 and Tax interact.   

As discussed in Chapter 2, the minimal domain of hNap1 functional in 

nucleosome disassembly assays is hNap1Δ6, which encompasses residues 162-

290.  The research discussed in this chapter aims to utilize additional deletion 

mutants (as designed in the previous chapter) to provide a foundation for future 

studies to identify the specific residues of Nap1 required for Nap1-dependent 

nucleosome disassembly.  

3.2 Materials and Methods 

CREB expression, phosphorylation, and purification 

 CREB was purified as outlined in [168]. 

CREB was cloned into pET-3B, an inducible E. coli expression plasmid 

[106]. PET-3b-CREB was transformed into Rosetta BL21DE3 pLysS competent 

cells and incubated overnight at 37°C on LB agar plates containing ampicilin and 

chloramphenicol.  Colonies were expanded to 1 L, grown to an OD600 of 0.5-0.8, 

and induced using 0.4 mM IPTG.  Three hours post induction, cells were pelleted 

in a Beckman J2-21 centrifuge with a JA-10 rotor at 3,000 rpm for 30 min at 4°C.  

Supernatants were discarded and pellets were resuspend in 15 mL CREB 
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Resuspension Buffer per liter of culture (50 mM Tris pH 7.9, 12.5 mM MgCl2, 100 

mM KCl, 1 mM EDTA pH 8.0, 10 μM ZnSO4) and stored at -70°C. 

 The pellet was thawed, incubated 15 min at 65°C, and placed back on ice.  

Protease inhibitors, RNase A, and reducing reagent were added to the 

resuspended pellet (1 mM PMSF, 8 μg/mL aprotinin, 8 μg/mL leupeptin, 2 mM 

DTT, and 200 μg/mL RNase A).  Resuspended pellet was centrifuged at 14,000 

rpm for 30 min at 4°C.  Supernatants were combined and the concentration was 

determined by Bradford assay.  

 PKA phosphorylation of CREB was carried out at 30°C for 30 min in PKA 

reaction buffer (20 mM Tris pH 7.5, 1 mM NaF, 1 mM MgCl2), with 3000 Units 

PKA, and 20 μM ATP and 8 mM DTT.  The final concentration of CREB in the 

reaction was 1 pmol/μL.  

 Phosphorylated CREB was incubated with gentle agitation on hepharin 

sepharose resin overnight at 4°C.  Protein-bound resin was transferred to a Bio-

Rad column and washed with CREB Resuspension buffer (50 mM Tris pH 7.9, 

12.5 mM MgCl2, 100 mM KCl, 1 mM EDTA pH 8.0, and 10 μM ZnSO4, 2 mM 

DTT, 1 mM PMSF).  Phosphorylated CREB was eluted from the column using 8 

M Urea Buffer (8 M Urea, 1 M NaCl, 50 mM Na2PO4 pH 8.0, 2 mM DTT, 1 mM 

PMSF) and concentrated using an Amicon Ultra-15 (MWCO 10K) conical to a 

final volume of 2 mL from an initial elution volume of 60 mL.  Concentrated 

protein was centrifuged at 14,000 rpm for ten minutes to eliminate precipitates 

from the final product.  
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A  HiLoad Superdex 200 16/60 column (Amersham Cat # 17-1069-10) 

was equilibrated in 8 M Urea Buffer before the addition of pCREB.  Concentrated 

pCREB was loaded onto the Superdex column and eluted in 1.5 mL fractions.  

Purified pCREB was dialyzed at room temperature in CREB Dialysis Buffer (50 

mM Na2PO4, 100 mM NaCl, 1 mM MgCl2, and 2 mM DTT) before storage at -

70°C. 

Tax Expression and Purification 

 The pTaxH6 plasmid for His6-tagged Tax [123] was transformed into 

competent pLysS cells and incubated overnight at 37°C on LB agar plates 

containing ampicilin and chloramphenicol.  Cultures were expanded to 2 liters 

and cultures grown for 13 hours at 37°C.  Cells were pelleted in a Beckman 

GPKR at 3600 rpm for 30 min at 4°C and resuspended in 40 mL Tax Lysis Buffer 

(100 mM Tris pH8, 100 mM KCl, 10 μM ZnSO4) and stored at -70°C until 

purification. 

 The pellet was thawed and 50 mM imidazole and protease inhibitors were 

added (1 mM PMSF, 8 ng/μL leupeptin, 8 ng/μL aprotinin, 4 mM β-Me, and 1 

EDTA free protease inhibitor tablet Roche Product #11 873 580 001).  

Resuspended cells were lysed by sonication using a Branson Sonifier 450 with a 

flat tip at three times for 3 min at output 6/40% with 5 min rest between each 

sonication.  Cellular debris was pelleted by centrifugation in Oakridge tubes in a 

Beckman J2-21 centrifuge with a JA-20 rotor at 15,000 rpm for 30 min at 4°C.  

 Supernatant was bound to equilibrated Ni-NTA slurry by incubating with 

gentle agitation at 4°C overnight.  Resin was transferred into a column, washed, 
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and eluted in 1 mL fractions with a 0 mM to 300 mM imidazole gradient.  Peak 

protein fractions were pooled and concentration was determined by Coomassie 

stained 12% SDS-page.  BSA was used as a concentration standard.  Following 

purification, protein was stored at -70°C.  

p300 Expression and Purification 

His6-tagged p300 was expressed from recombinant baculovirus in Sf9 

cells cultured in spinner flasks [169].  A 1 L culture at 1x106 cells/mL was infected 

with 100 mL of recombinant baculovirus.  Cells were harvested 60 hours post 

infection when they showed slight enlargement and a granular appearance.  

Cells were pelleted by centrifugation and flash frozen in liquid nitrogen and 

stored at -70°C.   

The pellet was thawed and resuspended in homogenization buffer (10 mM 

Tris pH 7.5, 500 mM NaCl, 10% Glycerol, 0.1% NP-40, 15 mM Imidazole, 2 mM 

β-Me, 2 mM PMSF, 20 μg/mL leupeptin, and 20 μg/mL aprotinin) and 

homogenized on ice using a Dounce homogenizer, tight pestle.  After 

centrifugation 30 min/4°C at 2000 rpm in a Beckman Allegra 6KR Centrifuge, the 

supernatant was incubated with gentle agitation for 2 hr at 4°C with equilibrated 

Ni-NTA slurry.  Beads were pelleted at 2000 rpm and washed 3 times with wash 

buffer (10 mM Tris pH 7.5, 200 mM NaCl, 10% Glycerol, 0.2% NP-40, 15 mM 

Imidazole, 2 mM β-Me, 2 mM PMSF).  Protein was eluted using elution buffer (10 

mM Tris pH 7.5, 10 mM NaCl, 10% Glycerol, 0.1% NP-40, 500 mM Imidazole, 2 

mM β-Me, 2 mM PMSF) and dialyzed into 0.1 M TM (50 mM Tris pH 7.9, 100 mM 

KCl, 12.5 mM MgCl2, 1 mM EDTA, 20% Glycerol) with 2 mM DTT. 
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Acetyltransferase activity was tested using radiolabeled acetyl CoA and histone 

substrates. The purified p300 was stored at -70°C.  

Purification of hNap1 and the Nap1 Deletion Mutants 

 Refer to Chapter 2 for cloning, expression and purification of hNap1 and 

the deletion mutants.  

-306 fragment amplification and purification 

A 588 bp fragment carrying the full HTLV-1 promoter upstream of a G-less 

cassette was amplified and biotinylated by PCR (referred to as -306, the position 

at which the fragment begins relative to the transcription start site at +1).   

Top Primer Sequence:   

5’ Bio/5’ GTC TGA AAA GGT CAG GGC C 3’ 

Bottom Primer Sequence: 

5’ GGA TAT ATG AGA TGA GTA GG 3’ 

 PCR reactions contained 500 ng of template DNA, 200 ng each primer, 

Polymerase Reaction Buffer to a final concentration of 1X, 200 nmol dNTP 

mixture, and 25 units Taq polymerase to produce 1 mL of final PCR product.  

The fragment was amplified using the following protocol: 2 min at 94°C then 

allowed to proceed for 40 cycles (94°C for 30 sec, 45.5°C for 1 min, 72°C for 45 

sec) followed by and additional elongation step at 72°C for 5 min and a hold step 

at 4°C.   

 Phenol/chloroform/isoamyl alcohol (IAA) extraction was used to purify 

biotinylated -306.  Equal volume of phenol/chloroform/IAA was added followed by 

vortexing and centrifugation in a Beckman J2-21 centrifuge with a JA-20 rotor at 
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5000 rpm for 5 min.  The top phase was removed for DNA purification and the 

bottom and interphases were discarded.  NH4OAc was added to a final 

concentration of 2 M and 2.5X the volume of cold 100% EtOH was added.  The 

mixture was vortexed and placed in the -70°C freezer overnight to aid in 

precipitation followed centrifugation at 5000 rpm for 30 min at 4°C.  Supernatant 

was discarded and pellets were washed with cold 70% EtOH.  DNA was pelleted 

by centrifugation at 5000 rpm for 30 min at 4°C.  Supernatant was removed and 

the pellet was allowed to air dry.  Purified biotinylated 588 bp DNA fragment was 

resuspended in H2O. 

Immobilized Template Chromatin Assembly 

Biotinylated -306 HTLV-1 promoter fragment was incubated with 

Streptavidin coupled magnetic Dynabeads® (Invitrogen catalog number 112-

05D) for 1 hour while shaking at 30°C/1200 rpm in an eppendorf Thermomixer R.  

After binding, -306 bound to Dynabeads was stored in 10 mM Tris, 1 mM EDTA 

(1XTE) or assembled into chromatin.   

Chromatin was assembled using the salt dilution method.  An empirically 

determined optimal core histone to DNA ratio was incubated in 1XTE for 40 min 

at 4°C/1200 rpm with a starting NaCl concentration of 1 M.  At 40 minute 

intervals, 1XTE was used to dilute the reaction to NaCl concentrations of 0.9 M, 

0.8 M, 0.6 M, 0.4 M, 0.2 M, and 0.1M respectively.  Sample was magnetically 

separated and the supernatant was removed.  Chromatin bound to the magnetic 

beads was resuspended in storage buffer (10 mM Tris-Cl pH 7.5, 1 mM EDTA, 5 
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mM DTT, 0.1% NP-40, 20% Glycerol, 100 mM NaCl) to a final DNA 

concentration of 100 ng/μL. 

Micrococcal Nuclease Assay 

 Micrococcal nuclease (MNase) assay was used to analyze for correctly 

assembled chromatin.  Chromatin (0.6 μg for each desired time point) was 

resuspended in micrococcal Buffer (20 mM Tris HCl pH 8.0, 5 mM NaCl, 2.5 mM 

CaCl2) and incubated 5 min at 37°C/1200 rpm.  Prior to treatment with MNase, 

the t=0 time point was removed and the remaining chromatin was treated with 1 

unit of MNase per remaining time point.  Time points were determined arbitrarily 

to capture the digested chromatin when it exists as a mixture of trinucleosome, 

dinucleosome, and mononucleosome.  The digested sample was removed and 

added to MNase stop buffer (5 mM Tris, 250.5 mM EDTA).  Protinase K buffer 

(250 mM NaCl, 1% SDS, 20 mM Tris HCl pH 7.5, 5 mM EDTA) was added to the 

reaction in a 4/3 ratio to the volume of the stopped reaction with 50 μg of 

Protinase K and incubated for 30 min at 30°C/1200 rpm.  DNA was extracted 

using phenol/chloroform/isoamyl alcohol and samples were separated on a 1.5% 

agarose-TBE gel.  DNA fragment was visualized using ethidium bromide.  

Eviction Assay 

Refer to Figure 16 for a schematic of the eviction assay.  The biotinylated 

HTLV-1 promoter bound to a magnetic streptavidin bead was assembled into 

chromatin using salt deposition.  For each reaction, 1 μg assembled chromatin 

was resuspended in 0.1 M Eviction TM (50 mM Tris pH 7.9, 100 mM KCl, 6.25 

MgCl2, 1 mM EDTA, 20% glycerol) containing 2 mM DTT.  Chromatin was  
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Figure 16: Schematic showing the nucleosome disassembly assay.  The 
disassembly assay begins with assembly of chromatin on the biotinylated 588 bp 
promoter fragment of HTLV-1 bound to a magnetic streptavidin bead.  Chromatin 
is assembled by salt dilution method.  Activators pCREB and Tax are incubated 
with assembled chromatin followed by addition of the coactivator, p300 and the 
histone chaperone human Nap1.  Following assembly, the template is washed to 
remove excess proteins and Acetyl CoA is added to complete the disassembly 
assay.  Acetylated histones are removed from the template in a Nap1 and  Acetyl 
CoA dependent manner.  The exact mechanism for disassembly is currently 
unknown. [Key: pCREB = Red, Tax = Blue, p300 = Yellow, hNap1 = Green, 
histones = Purple]  
 



52 
 

incubated for 20 min at 30°C/1200 rpm with 60 pmol of both pCREB and Tax.  

The acetyltransferase, p300, was added based on relative HAT activity with 45 

pmol human Nap1 (or mutants of human Nap1) and incubated for 30 min at 

30°C/1200 rpm.  Following incubation, the unbound fraction may be removed for 

clarified eviction results or may remain in the sample to prevent shifting of the 

equilibrium of Tax/pCREB/p300 complex formation.  Acetyl CoA was added (14C 

radiolabeled acetyl CoA can also be used to monitor acetylation patterns of the 

four core histones and other proteins in complex at the HTLV-1 promoter).  The 

bead-bound fraction was incubated for 40 min at 30°C/1200 rpm.  The bound and 

evicted fractions were mechanically separated by magnetic isolation and the 

bead-bound fragment was washed with 0.1M TM buffer.  Samples were 

resuspended in SDS loading dye and separated on a 13% denaturing 

polyacrylamide gel.  Histones were visualized by Coomassie staining.   

GST Pull-down Assay 

GST-tagged Nap1 mutants were used to investigate the domain of Nap1 

required for Nap-histone interactions.  Positive controls for Nap1-histone 

interactions included full length Nap1 and Nap1Δ6 with histones. As a positive 

control for the GST pull-down assay, the GST-KIX domain of p300 was tested for 

interaction with pCREB (the pCREB and KIX interaction has been well 

characterized in our laboratory).  GST protein alone was used as a negative 

control for histone binding.  Glutathione agarose beads were incubated with 20 

pmol of the GST fusion proteins for 2 hours with gentle agitation at 4°C in 

0.5XSuperdex-150 buffer (12.5 mM HEPES pH 7.9, 6.25 mM MgCl2, 5 μM 
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ZnSO4, 150 mM KCl, 10% glycerol, and 0.5% Tween-20).  Samples were 

washed three times with 0.5XSuperdex-150.  Approximately 10 pmol of the 

secondary protein (either octamer with GST-Nap1 proteins or pCREB with GST-

KIX) was incubated with gentle agitation at 4°C overnight.  Samples were 

washed three times with 0.5XSuperdex-150 buffer to reduce non-specific 

interactions, separated on a 13% denaturing acrylamide gel, and visualized by 

Coomassie staining. 

3.3 Results 

Functionality of the three new hNap1 deletion mutants that were designed, 

cloned, expressed, and purified (as described in chapter 2) were tested in a 

combination of in vitro assays.  Specifically, the histone binding properties of 

mutants were assayed for histone binding by GST pull-down assay and their 

ability to support nucleosome disassembly using the immobilized template assay.  

3.3a Analysis of hNap1-histone interaction by GST pull-down assay 

  We hypothesized that if a hNap1 mutant is unable to interact with 

histones, then that hNap1 mutant protein would be unable to support 

disassembly of nucleosomes from the HTLV-1 promoter.  GST pull-down assays 

allow for characterization of protein-protein interactions based on specific binding 

as well as non-specific electrostatic interactions.  Briefly, each GST-hNap1 

protein was incubated with increasing concentrations of purified recombinant 

Xenopus histones.  GST protein was used as a negative control for histone 

interaction.  Full length GST-hNap1 and GST-hNap1Δ6 were used as positive 
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controls because both proteins bind histones and support nucleosome 

disassembly (see Figure 17).  

 GST protein alone was used to monitor non-specific interactions with GST 

because all of the hNap1 constructs are GST-tagged.  GST has non-specific 

interactions with histones only at the highest concentration of octamer (Figure 17, 

lanes 2-5). 

 Full length hNap1 appears to bind all four core histones with equal affinity 

(H2A, H2B, H3, and H4) (Figure 17, lanes 6-9) and reaches histone binding 

saturation upon incubation with 1 μg of histone octamer (Figure 17, lane 7).     

 GST-hNap1Δ6 was used for the GST pull-down assay because previous 

work in our laboratory demonstrated that hNap1Δ6 is the minimal domain of 

hNap1 able to support histone eviction.  In the GST pull-down assay (Figure 17), 

at low concentrations of histone octamer, hNap1Δ6 binds all four core histones 

with equal affinity (Figure 17, lanes 10 and 11).  As the concentration of octamer 

is increased, hNap1Δ6 demonstrates a clear preference of H3/H4 binding (Figure 

17, lanes 12 and 13). 

 The two hNap1Δ6 deletion mutants, hNap1Δ6ΔN and hNap1Δ6ΔC both 

appear to possess a higher affinity for all four core histones than the parent, 

hNap1Δ6, at all concentrations of histone octamer (Figure 17, lanes 16-23).  

Binding of histones H3/H4 to the hNap1 mutants increased as the concentration 

of octamer in the reaction increase, while H2A/H2B remained constant despite 

the increasing amount of octamer present (Figure 17, lanes 19 and 23).  The 

third mutant, hNap1Δ6ΔN/C has a decreased affinity for the both H2A/H2B and



 
 

 

 
 
 
 
 
Figure 17:  GST pull-down using deletion mutants assayed for binding of increasing amounts of Xenopus wild 
type histone octamer.  Each sample contains 20 pmol of hNap1 or hNap1 mutant.  Histone octamer is titrated in 
increasing amounts. Human Nap1 bound to GST agarose beads was incubated with either 0.5 μg, 1 μg, 2 μg, or 4 μg of 
Xenopus wild type octamer.  A 0.1 μg input is shown in lanes 14 and 28.  This is equivalent to 10% of 1.0 μg, the amount 
of histones in the reactions shown in lanes 3, 7, 11, 17, 21, and 25.  Marker is shown in lanes 1 and 15.  
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H3/H4 compared to the other two mutants.  Overall, the histone binding pattern 

of hNap1Δ6ΔN/C is similar to hNap1Δ6, maintaining a higher affinity for H3/H4 

compared to H2A/H2B.    

3.3b Analysis of the Nucleosome Disassembly Activity of the hNap1 

Deletion Mutants 

 We hypothesized that if a deletion mutant is unable to disassemble 

nucleosomes from the HTLV-1 promoter, then this portion of hNap1 performs a 

critical function in the disassembly reaction.  To test the ability of the hNap1 

deletion mutants to support disassembly, the immobilized HTLV-1 -306 promoter 

template was assembled into chromatin using the salt deposition method.  The 

integrity of the chromatin was examined by micrococcal nuclease assays (Figure 

18).  As described in figure 16, the template was incubated with Tax and pCREB 

followed by addition of p300 and hNap1.  Finally, acetyl CoA and acceptor DNA 

are added, and the bound and evicted fractions are separated by magnetic 

isolation.  Following isolation the samples are separated using SDS-PAGE and 

visualized using Coomassie staining (Figure 19).  The appearance of evicted 

histones in the supernatant correlates with a decrease in histones remaining 

bound to the template.   

Full length hNap1 and hNap1Δ6 were used as positive controls for the 

disassembly assay.  A disassembly assay was performed on both hNap1 and 

hNap1Δ6 in the presence and absence of acetyl CoA.  In the presence of Tax, 

pCREB, p300, acetyl CoA, acceptor DNA and Nap1 (or Nap1Δ6) nucleosomes  
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Figure 18: Micrococcal nuclease assay reveals approximately three 
nucleosomes assembled onto the HTLV-1 promoter.  Micrococcal nuclease 
digests the DNA that is not protected by histone proteins.  Unassembled DNA is 
used as a control to determine the effectiveness of the nuclease.  At all time 
points, the naked DNA is completely digested.  The recovery standard is used to 
visualize the amount of DNA at the beginning of the reaction prior to digestion 
and DNA extraction.  The chromatin is digested with nuclease for 30 seconds, 1 
minute, and 2 minutes.  At 30 seconds, undigested template, trinucleosome, 
dinucleosome, and mononucleosome are indicated with black arrows.  As 
digestion progresses at t=1:00 and t=2:30, the final product is the DNA protected 
by a single nucleosome, approximately 150 base pairs.  
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Figure 19: Deletions lacking the C-terminus of the Δ6 domain of human 
Nap1 are unable to evict nucleosomes from the HTLV-1 promoter template.  
(A) Eviction assays were performed using the Nap1 deletion mutants as outlined 
in figure 17.  All samples contain Tax, pCREB, and p300 along with one of the 
Nap1 mutants.  Full length Nap1 and the Δ6 domain were used as positive 
controls, samples lacking acetyl CoA were used as negative controls.  (B)  Linear 
model of the Δ6 deletion mutants used in eviction assays with a summary of the 
eviction results.   
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are disassembled.  Binding of histones to the template is noticeably diminished 

concurrent with appearance of histones in the supernatant.   

The eviction assay was also performed on the hNap1 deletion mutants 

designed in chapter 2.  Of the three new hNap1Δ6 deletion mutants, hNap1Δ6ΔN 

is the only mutant able to disassemble nucleosomes from the HTLV-1 promoter.  

Overall, deletions lacking the C-terminus of hNap1Δ6 domain, including 

hNap1Δ6ΔC and hNap1Δ6ΔN/C, were defective for disassembly function (Figure 

19).  The deletion that removes the C-terminus of hNap1Δ6 contains the β-

hairpin from amino acids 264-290, which is involved in Nap1 oligomerization 

[170].     

3.4 Discussion  

Previous reports have shown that the β-hairpin of Nap1 is not involved in 

histone interaction (Andrews and Luger unpublished, refer to [170]).  GST pull-

downs with Nap1 mutants lacking this β-hairpin do not show distinctly different 

histone binding patterns compared to hNap1Δ6 mutants containing the β-hairpin, 

including hNap1Δ6 and hNap1Δ6ΔN.  The reduced binding affinity of Nap1Δ6 

and the other mutants to H2A/H2B could be a result of deletion of the C-terminal 

acidic domain of hNap1, which associates with H2A/H2B [74].  This domain is not 

present in Nap1Δ6 or any of the deletion mutants we designed using hNap1Δ6 

as a parent, including Nap1Δ6ΔN, Nap1Δ6ΔC, and Nap1Δ6ΔN/C.   

Interestingly, there is contradictory evidence regarding the affinity of Nap1 

for dimer compared to tetramer.  Our GST pull-down histone binding studies elicit 

a difference in affinity for dimer and tetramer, with an apparent diminished 
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capacity to bind H2A/H2B.  It has been demonstrated that under physiological 

assay conditions used in the pull-down assays histone, octamer dissociates to 

dimer and tetramer [171].  In vivo studies show that Nap1 coimmunoprecipitates 

with H2A/H2B, but not H3/H4 [172, 173].  However, in vitro, Nap binds to all four 

core histones [71, 73, 174-176].  Some studies have shown that Nap1 has a 

preference for H2A/H2B [173], but in vitro pull-down assays performed in the 

Luger laboratory demonstrated that when incubated with either dimer or tetramer, 

the affinities were approximately equivalent, but when incubated with octamer 

(which dissociates to dimer and tetramer), Nap has a greater affinity for tetramer 

[73].  Further interaction based studies with separate dimer and tetramer may 

provide more information about mutant Nap1-histone affinities.  Binding studies 

performed with GST-hNap1 mutants and histone octamer do not show a 

correlation for histone binding capacity and nucleosome disassembly function.     

Because the C-terminal deletions do not evict, the C-terminus would be an 

ideal location to begin making point mutations.  It is interesting to note that this β-

hairpin is involved in oligomerization [170], and that in the conditions of the 

nucleus, Nap exists as a mix of dimer and octamer [177].  This suggests a direct 

role for the oligomeric form of hNap1 in disassembly of nucleosomes from the 

HTLV-1 promoter.  Oligomerization of Nap1 occurs through the formation of a β-

sheet from the β-hairpins of two separate Nap1 monomers.  The formation of a β-

sheet occurs through the interaction of nine hydrogen-bonding sites between the 

β-hairpins [170].  When the β-hairpin is deleted in Nap1Δ6ΔC and Nap1Δ6ΔN/C, 

these mutants would not be able to oligomerize.  



61 
 

In addition to the disruption of the oligomerization of hNap1, there are 

multiple reasons one of the mutants may be unable to support disassembly of 

nucleosomes.  It is possible that removing this portion of the protein causes a 

structural disturbance and the protein becomes misfolded.  It would be beneficial 

to design a series of point mutations that would disrupt the hydrogen bonding of 

the β-hairpins, and thus oligomer formation, and test these mutants in 

disassembly reactions.  

In conclusion, it appears that the oligomerization of Nap1 is critical for 

nucleosome disassembly from the HTLV-1 promoter.  Further studies with full 

length Nap1 are required to confirm this result (discussed in the Future Directions 

section of Chapter 4).    
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CHAPTER 4 

FUTURE DIRECTIONS 

 In the preceding chapters we explored the different domains of Nap1 and 

their function in histone binding and nucleosome disassembly assays.  Previous 

unpublished work from the Nyborg laboratory was used to identify amino acid 

residues 162-290 as the minimal domain of Nap1 required for the disassembly of 

nucleosomes.  This domain is referred to as Nap1Δ6 and was the starting point 

for making further deletion mutants.  In addition, we predicted a crystal structure 

of human Nap1.  This predicted structure aided us in determining rational 

locations to begin making deletion mutants.   

 Briefly, Nap1 deletion mutants were cloned using a novel technique known 

as SLIM and subsequently expressed in and purified from E. coli.  Nap1 deletion 

mutants were then tested in functional assays, including GST pull-downs and 

immobilized template assays.  From these studies, we determined that 

Nap1Δ6ΔC and Nap1Δ6ΔN/C are unable to disassemble nucleosomes from the 

HTLV-1 promoter.  Of note, both of these mutants lack the C-terminal residues of 

Nap1Δ6, referred to as the β-hairpin domain, which is involved in Nap1 

oligomerization, suggesting that Nap1 oligomerization is necessary for 

nucleosome disassembly from the HTLV-1 promoter.  
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 We propose these future studies to further characterize the functional 

state of Nap1 required for nucleosome disassembly from the HTLV-1 promoter 

template.   

4.1 Optimization of Nap1 Purification 

 In consideration of possible confounding variables, optimizing the 

expression and purification of the three Nap1 deletion mutants, as well as the Δ6 

domain, could provide more conclusive results.   

Although protein expression was successful and protein was obtained to 

perform the studies, after sonication much of the protein remained in the cell 

pellet, resulting in less than optimal purification yields.  Additional purification 

steps could be added to purify the proteins, such as:  

1. The Nap1 mutant proteins may be insoluble due to hydrophobic patches 

becoming exposed in the process of deleting domains of Nap1.  The 

presence of Nap1 mutants in the cell pellet suggests that the insoluble 

proteins are forming inclusion bodies.  An inclusion body preparation 

would extract the insoluble protein and denaturation would allow for proper 

refolding of the proteins.    

2. A second GST purification step may separate Nap1 from other proteins 

that interact non-specifically with the glutathione agarose beads or with 

Nap1 itself.  

3. Size exclusion chromatography could be used to separate proteins of 

different sizes from the mutants of interest.  Additionally, this step may 

provide information about the association state of Nap1.  



64 
 

4.2 In Vitro Binding Assays 

 The initial goals of performing GST pull-down assays was to determine if 

there was a difference in affinity of the Nap1 mutants for histones and determine 

if mutants defective for eviction were also defective for histone binding.  

Interestingly, results of GST pull-downs using GST-Nap1 deletion mutants in 

which histone octamer was added showed that the Nap1 deletion mutants have a 

different affinity for H2A/H2B dimer than they do for H3/H4 tetramer.  The Nap1 

deletion mutants show a decreased affinity for H3/H4 compared to wild type, with 

a significantly decreased affinity for H2A/H2B. 

Previous published studies have shown that when GST pull-downs are 

performed with GST-Nap1, the affinity of Nap1 for H2A/H2B compared to H3/H4 

changes depending on whether the Nap1 is present with dimer and tetramer 

separately or together as octamer [73].  When presented with dimer and 

tetramer, Nap1 has an equal affinity for both.  When performed with an equal 

molar mixture of dimer and tetramer, Nap1 preferentially binds H3/H4 tetramer 

[73].  Although this pattern was not observed for full length Nap1 in our reactions, 

all of the Nap1 mutants expressed this binding pattern.  Performing binding 

assays to compare dimer and tetramer may produce different for the binding 

capability of the Nap1 mutants.  In this experiment, tetramer would be used as a 

control for dimer binding.  It is possible that one or more of the mutants may not 

bind H2A/H2B even in the absence of H3/H4.  (For example: if the C-terminal 

deletions are unable to interact with H2A/H2B, this would suggest that the 
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deletion affects H2A/H2B disassembly and could explain why the mutants are 

defective for nucleosome disassembly).   

4.3 Mutational Analysis of Full Length hNap1 

 Because disruption of the oligomerization β-hairpin affects the 

nucleosome disassembly capability of Nap1, this suggests that the oligomeric 

form of Nap1 may be required to disassemble nucleosomes from the HTLV-1 

promoter.  To test this hypothesis point mutations in the β-hairpin of Nap1 could 

be made to prevent formation of the hydrogen bonds that participate in β-sheet 

formation in the oligomeric form of Nap1.  A deletion mutant that replaces the β-

hairpin with a flexible linker that would not support oligomerization could also be 

designed to test this hypothesis.  Size exclusion chromatography could also be 

performed on these Nap1 mutants compared to wild type to characterize the 

association state of the various Nap1 mutants.   

4.4 Nap1 Interaction with other HTLV-1 Associated Proteins 

Current coimmunoprecipitation studies in our laboratory show that Nap1 

and Tax interact in vivo.  There is also evidence that Nap1 and p300 interact [59, 

148, 149].  GST pull-downs using the Nap1 deletion mutants with p300 and Tax 

could aid in determining if the Nap1 deletion mutants are defective for 

nucleosome disassembly are also unable to bind another protein in the eviction 

reaction (i.e. p300 or Tax).  If we find the mutants defective for histone eviction 

are also unable to interact with another protein in the eviction reaction, this would 

suggest that this interaction is critical for nucleosome disassembly.  
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