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ABSTRACT 

 

 

A METHOD USING DRAWDOWN DERIVATIVES TO ESTIMATE AQUIFER PROPERTIES NEAR 

ACTIVE GROUNDWATER PRODUCTION WELL FIELDS 

 

This thesis describes the development of a new inverse modeling approach to estimate aquifer 

properties in the vicinity of continuously-pumped well fields.  The specific emphasis is on deep bedrock 

aquifers where monitoring well installation is often not practicable due to high drilling costs.  In these 

settings, water levels from groundwater production wells offer a transient dataset that can be used to 

estimate aquifer properties.  Well interference effects, if detectable at neighboring production wells, allow 

for an interrogated aquifer volume that is larger (and therefore more representative at the well field scale) 

when compared to single-well hydraulic tests. 

The parameter estimation method utilizes drawdown derivatives to estimate the aquifer 

transmissivity and storativity.  The forward model consists of an initial water level (or a recoverable water 

level drift function), an analytical solution for aquifer drawdown, and a correction term for well loss. The 

aquifer drawdown component is based on superposition of the Theis solution, although other analytical 

solutions are also applicable. The observed dataset was judiciously trimmed to reduce computer run-time 

while retaining enough points to adequately characterize aquifer and well parameters. By limiting 

observation points to special domains, the calculated drawdown and observed well water level derivatives 

with respect to time are independent of well loss, and therefore the transmissivity and storativity can be 

estimated without knowledge of the recoverable water level or loss coefficient for individual pumping 

wells. Aquifer properties in the forward model were estimated by minimizing the difference between the 

modeled and observed drawdown derivatives.  
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The parameter estimation method is tested using hourly water level and pumping data from 

municipal well fields producing groundwater from sandstone aquifers of the Denver Basin.  Data 

collected over a seven-year period from two distinct well fields, one operating in the Denver aquifer and 

another operating in the Arapahoe aquifer, are considered.  The estimated transmissivities are 30.0 m2/d 

and 46.5 m2/d for the Denver and Arapahoe aquifers, respectively, whereas the storativities are 4.7×10-4 

and 2.0×10-4, respectively.  These estimates are within the range of previously reported values, indicating 

that production well data can be used to derive reasonable aquifer properties.  A separate synthetic aquifer 

test case was considered to further test the parameter estimation methodology, as well as to evaluate the 

appearance of Theis-like response behavior at the wells.  Synthetic water levels were generated using a 

numerical model with geostatistically-simulated heterogeneity that is characteristic of the Denver Basin 

(sandstone bodies separated by less permeable inter-bedded siltstone and shale).  Analysis of the synthetic 

water levels revealed meaningful hydraulic properties; the effective hydraulic conductivity (best-fit 

transmissivity divided by the modeled aquifer thickness) was slightly higher than the geometric mean 

hydraulic conductivity of the heterogeneous field. 

In addition to aquifer properties, observed water level data were used to estimate the well-loss 

coefficient and recoverable water level for individual pumping wells.  Loss coefficients obtained for wells 

in the Denver Basin indicate that this mechanism (head losses due to turbulence around the well screen) 

may contribute between 20 and 150 m of the total drawdown (based on a pumping rate of 1500 m3/d) 

commonly observed in these wells.  The recoverable water level at each well, when fit with a linear drift 

function, provides a means of investigating the prevailing trend in aquifer heads due to other regional 

influences outside the modeled well field. 
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1 

INTRODUCTION 

 

 

Estimation of aquifer properties in continuously-pumped, municipal well fields is complicated by 

an inability to cease groundwater production to perform a traditional aquifer test. Fortunately, widespread 

use of pressure transducers and digital flow recorders has provided large databases of analyzable well 

pressure and pumping rate records. Recorded fluid pressures at groundwater production wells are 

influenced by aquifer properties such as transmissivity and storativity, recoverable (non-pumping) water 

levels, and well condition/health. Quantifying these influences is important and affects decisions made in 

well field management. 

By estimating aquifer transmissivity and well-loss coefficients, well field managers can design 

more energy-efficient pumping schemes. The energy requirement for pumping is directly proportional to 

the hydraulic lift [Sterrett, 2007]; maintaining higher water levels in production wells will therefore 

translate into energy savings. In addition, an accurate estimate of storativity is important for quantifying 

groundwater availability (e.g., municipal supply wells in Colorado extract over 100 million cubic meters 

of groundwater per year). However it is difficult to determine the storativity with confidence because it is 

influenced by estimated transmissivity [Beckie and Harvey, 2002] and measurement location in 

heterogeneous systems [Meier et al., 1998]. Following the convention of Sánchez-Vila et al. [2006], 

hydraulic properties derived from model-fitting are herein referred to as “estimated” parameters to 

acknowledge uncertainty associated with spatial heterogeneity, as well as the dependence of derived 

values on the interpretation method. “Effective” parameters, in comparison, are based on an ensemble 

average over many realizations.  

The objective of this study is to develop a method for estimating aquifer parameters and well-loss 

coefficients in a continuously-pumped well field given pumping history and well pressure recordings 

when static water level is unknown. A forward model using the Theis solution super-positioned in space 
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and time is used with a simple empirical well-loss function to identify aquifer parameters using observed 

water level data from groundwater production wells. Previous work by Davis [2013] used a similar 

forward model to estimate aquifer parameters from active well field data, but was focused strongly on 

cost analysis of pumping schemes, rather than on developing a robust inverse procedure for estimating 

aquifer properties.  Aquifer and well parameters were fit by visually matching observed to modeled 

curves, which is time consuming and limits confidence in the final solution. 

While literature exists on how heterogeneity influences aquifer drawdown [e.g., Oliver, 1993; 

Leven and Dietrich, 2006; Tumlinson et al., 2006; Ronayne et al., 2008], there are fewer suggestions or 

rules of thumb on how to determine when a system should be considered “too heterogeneous” to use a 

simple model that assumes uniform hydraulic properties. A key aim of this thesis is to determine whether 

or not useful parameter values may be obtained from continuously-pumped, groundwater production 

wells. As suggested by Harp and Vesselinov [2011], hydraulic parameters estimated using simplified 

analytical models may at least provide useful initial guesses for developing more complex heterogeneous 

models.  

Following in the footsteps of Renard et al. [2009] and Bourdet et al. [1989], we make use of the 

drawdown derivative. In this study, we focus on water level records from pumping wells and show that, 

in some time domains, the drawdown derivative with respect to time is not a function of static water level 

or well-loss coefficients, and may be used to estimate aquifer transmissivity and storativity values. The 

estimated parameters may then be used to subsequently best-fit static water levels and well-loss 

coefficients. One novel aspect of the proposed method is in breaking one large inverse problem into two 

smaller ones, thereby reducing calculation time and increasing the likelihood of finding global minimums 

in the objective function. 

The parameter estimation method developed in this study is tested using actual municipal well 

field data from the Denver Basin aquifer system, as well as synthetic water level datasets generated with a 

numerical model. The primary goal is to estimate aquifer parameters, but also to develop some 
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considerations for working with continuously-pumped well field data sets and to highlight the importance 

of developing methods and models to use in such systems, which are geographically widespread, yet have 

not been extensively studied.   
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2 

HYDROGEOLOGIC SETTING 

 

 

The Denver Basin aquifer system is a group of confined, deep-bedrock sandstones located east of 

the Colorado Front Range that spans approximately 320 kilometers (~200 miles) from north to south, 

where it is bounded by the Greeley and Apishapa arches. The aquifer system is underlain by the 

Cretaceous Pierre Shale and, in some localities, overlain by an alluvial aquifer that follows major surface 

water drainages [Paschke et al., 2011].  

 

Figure 1: West to east geologic cross section for the Denver Basin. (A) Four aquifer classification 

scheme. (B) Classification scheme proposed by Raynolds [2002]. Figure from Raynolds [2002] 
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The Denver Basin aquifer system was deposited during the Laramide orogeny during the late-

Cretaceous through the Tertiary. The system as a whole can be described structurally as a bowl-shaped, 

double-plunging syncline [Anderman and Ackman, 1963]. While differences exist between aquifer units, 

fluvial deposits are characteristic throughout much of the entire system.   

Raynolds [2002] has suggested grouping the basin into two large, unconformity-bounded 

sequences representing two distinct depositional pulses (figure 1). The boundary between the D1 and D2 

sequences is thought to be the result of a period of intense weathering and can be difficult to distinguish 

in cores and outcrops [Raynolds, 2002]. The top of the D1 sequence has been dated at around 63-65 Ma 

[Mutschler et al., 1987; Obradovich, 2002] and the bottom of the D2 sequence has been dated around 54 

Ma [Soister and Tschudy, 1978].  Also illustrated in figure 1 is the four-aquifer classification scheme used 

by the Office of the State Engineer of Colorado, which involves four primary bedrock aquifers that are 

separated by confining units. From oldest to youngest, these aquifer units are the Laramie Fox-Hills, 

Arapahoe, Denver, and Dawson (Table A3, from Paschke et al. [2011]). The four-aquifer 

conceptualization is used in this thesis (specifically when referring to test application data from the 

Denver and Arapahoe aquifers) in order to be consistent with other reports and the nomenclature 

commonly used at our field site.  However, we acknowledge that the interpretation of Raynolds [2002] is 

based on more recent, detailed geologic investigation, and we use this interpretation as well as other local 

data to guide the development of a synthetic aquifer model. 

The Laramie Fox-Hills aquifer formed during regression of the Interior Cretaceous Seaway and 

uplift of the Front Range. Subsequently, the regression caused formation of a deltaic environment 

consisting of interbedded clay, coal, and fluvial deposits. The Laramie Fox-Hills aquifer is 0-500 ft thick 

and is overlain by a 100-700 ft thick confining unit composed largely of shale and coal seams [Robson, 

1987] 
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The Arapahoe aquifer is comprised of alluvial fan deposits from the late Cretaceous. The 

Arapahoe is a 400-600 ft thick collection of interbedded conglomerate, sandstone, siltstone, and shale 

overlain by a 0-250 ft thick confining unit [Romero, 1976; Robson, 1987]. 

The Denver aquifer is a continuation of alluvial fan deposits. Composition is regionally different, 

with sandstone beds being more prevalent on the western flank and finer-grained sediments and coal 

being more common in the east [Crifasi, 1992]. The Denver aquifer spans from the late Cretaceous to the 

Tertiary and is a 600-1200 ft thick sequence of interbedded shale, claystone, siltstone, sandstone, coal, 

and volcanics [Romero, 1976; Robson, 1987].  

The Dawson aquifer is a fluvial deposit consisting of interbedded conglomerate, sandstone, 

siltstone, and shale [Romero, 1976; Robson, 1987]. The unit ranges from 100 to 1100 ft thick and is 

overlain by an easily identifiable shale and clay confining unit in the north. The confining unit, when 

present, is difficult to distinguish in the southern extent. Near Castle Rock, CO, the Dawson aquifer is 

overlain by the Castle Rock Conglomerate (figure 1b).  
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Figure 2: Interpreted geologic cross section in the vicinity of Castle Rock, CO based on geophysical 

logging.  Resistivity logs are illustrated as red lines.  Interpreted sandstone bodies are shown in yellow.  

Modified from Sale et al. [2010]. 

This study focuses on portions of the Denver and Arapahoe aquifers located near the Town of 

Castle Rock, CO. Sale et al. [2010] utilized core samples and geophysical logging to interpret the aquifer 

structure in this area (figure 2). They found that proportions and thicknesses of sandstones are highly 

dependent on location. The intervening material between sandstones (figure 2) consists of silty deposits 

with substantially lower permeability.  Although larger-scale regional trends are important in the Denver 

Basin aquifer system, this study considers heterogeneity at the well-field scale (100s of meters to several 

kilometers).  
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3 

METHODS 

 

 

3.1 Forward Model 

 

The forward model selected to calculate transient aquifer drawdown assumes radial flow to 

pumping wells in a homogeneous and isotropic system. With reasonable boundary conditions, the 

solution to which is (Theis, 1935) 

 

 
𝑠𝑎𝑞 =

𝑄

4𝜋𝑇
𝑊(𝑢) 

 

(3.1) 

 

 
𝑢 =

𝑟2𝑆

4𝑇𝑡
 

 

 

 

where 𝑠𝑎𝑞 is drawdown due to pumping in the aquifer formation [𝐿], 𝑄 is a constant pumping rate 

[𝐿3𝑇−1], 𝑇 is transmissivity [𝐿2𝑇−1], 𝑟 is the radial distance from a pumping location [𝐿], 𝑆 is storativity, 

𝑡 is time [𝑇] since pumping began, and 𝑊 is the 𝐸1 exponential integral, commonly referred to as the well 

function and defined as 

 

𝐸1(𝑢) = ∫
𝑒−𝑥

𝑥
𝑑𝑥

∞

𝑢

 

 

Since the governing PDE is linear, the solution in equation (3.1) may be superpositioned in the following 

way 
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𝑠𝑎𝑞 = ∑ {
𝑄𝑖,0

4𝜋𝑇
𝑊(𝑢𝑖,0) + ∑

∆𝑄𝑖,𝑗

4𝜋𝑇
𝑊(𝑢𝑖,𝑗)

𝑛

𝑗=1

}

𝑚

𝑖=1

 

 

(3.2) 

𝑢𝑖,𝑗 =
𝑟𝑖𝑆

4𝑇(𝑡𝑖,𝑗 − 𝑡)
 

 

where 𝑚 is the number of pumping wells, 𝑛 is the number of pumping rate changes occurring before time 

𝑡, and 𝑄𝑖,0 is the initial pumping rate at time 𝑡𝑖,0. In this study, drawdown is calculated at individual well 

locations in an active well field. Thus, 𝑟𝑖 may be the radial distance between two production wells or, for 

the purpose of computing the component of a well's drawdown that is caused by pumping at the same 

well, 𝑟𝑖 is a short distance that represents the radius of the well bore. 

Along with drawdown in the aquifer formation, additional head losses can occur at pumping 

wells [Jacob, 1947; Ramey, 1982; Konikow et al., 2009]. One commonly used expression for the 

drawdown due to well-loss effects (𝑠𝑤) can be found in Rorabaugh (1953) 

 

 𝑠𝑤 = 𝐵𝑄 + 𝐶𝑄𝑛 
 

(3.3) 

 

which represents head loss due to both laminar (𝐵𝑄) and turbulent (𝐶𝑄𝑛) flow through a well screen. This 

study uses a simplified form [Domenico and Schwartz, 1990] which only considers the turbulent well loss 

and assigns a value of 2 to 𝑛. 

 

 𝑠𝑤 = 𝐶𝑄2 
 

(3.4) 
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At low discharge rates, turbulent flow is negligible, and the well loss is dominated by laminar 

flow. In our model, pumping rates are assumed to be high enough that turbulent well loss is always 

present. Total drawdown (figure 3) is calculated from the combined effects of equations (3.2) and (3.4) 

 

 𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑠𝑎𝑞 + 𝑠𝑤 (3.5) 

 

 

Figure 3: Components of drawdown. Total drawdown (𝑠𝑡𝑜𝑡𝑎𝑙) is due to the combined effects of 

drawdown in the aquifer (𝑠𝑎𝑞) and drawdown due to well loss (𝑠𝑤). 

 

The water level within a production well (ℎ𝑤𝑒𝑙𝑙) is a composite hydraulic head (influenced by the 

variable heads at different depth intervals along the well screen) that may be approximated as 

 ℎ𝑤𝑒𝑙𝑙 = ℎ0 − 𝑠𝑎𝑞 − 𝑠𝑤 (3.6) 

 

where ℎ𝑤𝑒𝑙𝑙 is water level within a production well and ℎ0 is a recoverable water level (i.e., the level to 

which the water level in a well would eventually recover if pumping was stopped). In the aquifer testing 

literature, ℎ0 is conceptualized as the static water level, or the hydraulic head prior to the start of 
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pumping. Because our analysis focuses on continuously pumped well fields where it is difficult to define 

a meaningful static condition, we utilize the "recoverable" level in the above definition. Further, we note 

that this level could be represented as a constant or dynamic function (e.g., a drift function to account for 

temporal trends associated with neighboring pumping, outside the modeled well field, or leakage through 

confining units). 

3.2 Parameter Estimation 

 

As indicated in the previous section, water level in a production well depends on the following: 

the aquifer transmissivity and storativity, a well-loss coefficient, and a recoverable water level. An 

inverse methodology was developed to estimate these parameter values from the measured time-series 

data (pumping rates and water levels at individual production wells). 

The first step in the procedure is estimation of 𝑇 and 𝑆. To obtain a function that is independent 

of 𝐶 and ℎ0, which are generally unknown for continuously pumped wells, we differentiate equation (3.6) 

with respect to time: 

 

 𝜕

𝜕𝑡
ℎ𝑤𝑒𝑙𝑙 =

𝜕

𝜕𝑡
(ℎ0 − 𝑠𝑎𝑞 − 𝑠𝑤) 

 

 

(3.7) 

For periods when d𝑄/d𝑡 = 0, we assume 

 

 𝜕ℎ0

𝜕𝑡
= 0;    

𝜕𝑠𝑤

𝜕𝑡
= 0 

 

 

(3.8) 

which results in the following simplification 

 

 𝜕ℎ𝑤𝑒𝑙𝑙

𝜕𝑡
= −

𝜕𝑠𝑎𝑞

𝜕𝑡
 

 

(3.9) 
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indicating that, for a time period when the pumping rate is not changing, the temporal rate of change in 

the well water level should be equal to −
𝜕𝑠𝑎𝑞

𝜕𝑡
  (minus the drawdown derivative for the aquifer). 

Equation (3.9) is the basis for estimating 𝑇 and 𝑆. We calculate −
𝜕𝑠𝑎𝑞

𝜕𝑡
  from computed 

drawdowns obtained with the forward model described in Section 3.1. 𝑇 and 𝑆 are adjusted until there is 

an acceptable match between the observed and modeled derivatives. 

 

 

Figure 4:  Illustration of numerical averaging scheme to approximate the water level (or drawdown) 

derivative at time 𝑡 = 𝑡𝑖.  Figure adapted from Bourdet et al. [1989]. 

 

One practical challenge for this procedure is the determination of  
𝜕ℎ𝑤𝑒𝑙𝑙

𝜕𝑡
. The temporal derivative 

of observed water level data is characteristically noisy. An algorithm is borrowed from Bourdet et al. 

[1989] whereby neighboring points are used to calculate an averaged derivative over some length 𝐿 

(figure 4). 𝑃 is used as a generic representation of either observed water level or modeled drawdown. 
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(
𝑑𝑃

𝑑𝑡
)

𝑖
=

∆𝑃1
∆𝑡1

∆𝑡2 +
∆𝑃2
∆𝑡2

∆𝑡1

∆𝑡1 + ∆𝑡2
 

(3.10) 

 

For well fields instrumented with an automated data acquisition system, water levels are usually recorded 

at equally spaced intervals (∆𝑡1 = ∆𝑡2). Taking advantage of this, one may reduce equation (3.10) to 

 

 
(

𝑑𝑃

𝑑𝑡
)

𝑖
=

∆𝑃1 + ∆𝑃2

2∆𝑡
=

∆𝑃𝑎𝑣𝑔

∆𝑡
 

(3.11) 

 

The Levenberg-Marquardt algorithm [Marquardt, 1963] is used to identify values of 𝑇 and 𝑆 that 

minimize the difference between the observed and modeled derivative. Cooley [1985] defends usage of 

the LM algorithm based on its relatively high accuracy per runtime. Estimates are sought that minimize 

the objective function 

 

 

∑ ∑ [(
𝜕ℎ𝑤𝑒𝑙𝑙

𝜕𝑡
) + (

𝜕𝑠𝑎𝑞

𝜕𝑡
)]

𝑖,𝑗

2𝑛𝑑

𝑗=1

𝑚

𝑖=1

 

(3.12) 

 

where 𝑚 is the number of wells in a well field and 𝑛𝑑 is the number of times when a derivative is 

approximated using the observed and modeled water levels. 

 In addition to the aquifer properties, we use the analytical model presented in Section 3.1 to 

estimate values of 𝐶 and ℎ0 sequentially at each well. During recovery periods (𝑄 = 0), we assume 𝑠𝑤 is 

0 (equation 3.4) and equation (3.6) reduces to 

 ℎ𝑤𝑒𝑙𝑙 = ℎ0 − 𝑠𝑎𝑞 (3.13) 

 

The objective function (3.14) is applied over 𝑛 available points during recovery periods only, when there 

are negligible well loss effects.  
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∑(ℎ0 − 𝑠𝑎𝑞 − ℎ𝑤𝑒𝑙𝑙)

𝑗

2
𝑛

𝑗=1

 
(3.14) 

 

Since ℎ𝑤𝑒𝑙𝑙,𝑖 is known from well level records and 𝑠𝑎𝑞,𝑖 is previously estimated by minimizing the 

objective function (3.12), ℎ0,𝑖 is the only unknown. ℎ0,𝑖 is either represented as a static water level or a 

linear drift function. 

  

Lastly, 𝐶 is estimated by minimizing the following objective function using all available data 

 
∑(ℎ0 − 𝑠𝑎𝑞 − 𝑠𝑤 − ℎ𝑤𝑒𝑙𝑙)

𝑗

2
𝑛

𝑗=1

 
(3.15) 

 

where 𝑠𝑤 is the only remaining unknown. The complete parameter estimation process is summarized in 

figure 5. 

 

Figure 5:  Flow chart illustrating the procedure to estimate aquifer and well parameters. Shaded boxes 

represent the key steps of parameter estimation. 



15 

 

3.3 Corrections 

 

In continuously-pumped well fields, pumping may predate the availability of detailed flow rate 

and water level records. We modeled a spin-up period that was twice as long as the period of observed 

data at each well and did not consider water level elevations in our objective functions for the first 6 

months after pumping records were available. Sensitivity analyses showed that 6 months was a reasonable 

minimum spin-up period in our model. Drawdown due to past pumping rates becomes less significant as 

time goes on, but effects do not go away. Also, recoverable water levels are not necessarily static over 

long periods of time. We found that using a linear drift function rather than a static recoverable water 

level at each well provided a meaningful correction for predicting water levels. 

Also, extended periods of time, it may not be appropriate to assume that the well-loss coefficient 

is a constant value. Well condition may deteriorate over time due to clogging by sediment or chemical 

precipitates. When appropriate, we modeled the well-loss coefficient as a linear function of time. 

The slope of the drift line and well-loss coefficient function are considered small enough that 

periods of time over which pumping is constant do not result in a significant change in either the 

recoverable water level or well loss. Consequently, the simplification made in equation (3.7) still holds. 
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4 

TEST CASES 

 

 

4.1 Field Application 

 

The town of Castle rock has four well fields, all of which have wells screened in the Denver and 

Arapahoe formations. Herein, two sets of wells are addressed: the Castle Oaks that produces groundwater 

from the Denver aquifer and the Meadows well field that produces groundwater from the Arapahoe 

aquifer. The spatial distribution of wells is illustrated in Figure 6. The Castle Oaks well field contained 5 

pumping wells, and the Meadows well field contained 11 wells. Well head elevations ranged from 1935 

to 2010 meters above mean sea level (m amsl) in the Castle Oaks well field and from 1840 to 1910 m 

above mean sea level in the Meadows well field. Probe depths in these two fields ranged from 410 to 525 

m and 460 to 540 m, respectively. Well fields are approximately 2 to 5 kilometers apart, though 

individual wells on the outer rim of adjacent fields may be separated by as little as 1-2 kilometers. 

 

 

Figure 6: Planview maps showing well locations within two Castle Rock well fields used as test cases.  

(a) Castle Oaks well field in the Denver aquifer. (b) Meadows well field in the Arapahoe aquifer. 
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4.1.1 Processing Observation Data 

  

Well field data consisted of hourly water levels and pumping rates for each production well over 

a period of several years (see example time-series data in figure 7).  Operational pumping rates are 

typically between 500 and 3500 m3/d.  The range of water levels at individual wells can be greater than 

150 m.  

In addition to the effects of neighboring wells, our forward model calculates drawdown at a 

production well due to pumping at the same well. An effective well radius (𝑟𝑤) of 0.305 m (1 ft) was 

chosen based on borehole sizes.  

Parameter estimation was performed using manually selected periods of time where pumping 

rates were constant and drawdown or recovery curves had smooth behavior (i.e., the objective function 

compared modeled and observed values during these time periods). Noise in observed well level data can 

be exacerbated in the observed well water level derivative. Recovery periods were favored during 

estimation of 𝑆 and 𝑇 because they tended to have smoother behavior (figure 7) and are less likely to be 

significantly impacted by well inefficiency (equation 3.4).  

Water level or pumping rate recordings that were suspected to be erroneous were removed. Noisy 

level measurements due to small variations in pumping rates not recorded were retained, but not 

considered in the first step of the inversion process to estimate 𝑆 and 𝑇. 

Equation (3.4) produces a jump discontinuity in the drawdown due to well loss when there is a 

change in the pumping rate.  In reality, well water levels have a short transition period when adjusting to 

well loss from two different pumping rates. Water levels collected during the short period of time (one to 

two days) immediately following changes in pumping rate were excluded from the parameter estimation 

process to allow well loss to stabilize. 
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Figure 7: Example water level (open circles) and pumping rate (shaded bars) record for well CR110 

operating in the Denver aquifer. Hourly data is shown reduced to alternating days (∆t = 48 hrs) 

When data are collected at a high frequency, the derivative is characteristically noisy. Reducing 

water level data to daily or alternating days reduced run-time and noise in the derivative. The interval 

between water level readings (∆𝑡) must be long enough to avoid excessive noise and short enough to 

characterize the shape of the drawdown and recovery curves.  For the field applications presented in this 

chapter, a Δt of 48 hours was found to be sufficient. 

The number of pumping rates in the original dataset was computationally overwhelming to work 

with. Two schemes were tested for reducing the number of pumping rates considered. Prior to testing both 

schemes, all pumping rates less than some threshold 𝑄𝑚𝑖𝑛 were set to 0 (i.e., when 𝑄 ≤ 𝑄𝑚𝑖𝑛, the pump 

would be considered off). Our first scheme involved averaging pumping rates over blocks of time that 

were separated when two adjacent pump rates had a difference of some threshold ∆𝑄. A ∆𝑄 of 10 gpm 

was used for this study. Our second scheme averaged all pumping rates over the entire duration that a 

well was active, regardless of possible significant changes in pumping rates. Both methods produced 

similar results for the Denver Basin datasets, but we found that the latter method would occasionally omit 
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features due to pumping rate changes in the modeled drawdown that are clearly present in the observed 

data.  Thus, the scheme using the threshold ∆𝑄 was used for all modeling scenarios included in this thesis. 

Changes in the well loss coefficient are known to occur due to well degradation [Sterrett, 2007]. 

A second parameter estimation was performed in the Denver aquifer well field whereby well efficiency 

was represented as a linearly increasing function through time. That is, the well loss function was 

modeled as 𝐶(𝑡)𝑄2, where 𝐶(𝑡) = 𝑚𝑡 + 𝑏.  A linear well loss term may be too simple, but it serves as a 

reasonable starting place. 

In municipal well fields, wells are pumped at fairly regular pumping rates and it would be 

uncommon for a well to be pumped at low discharge rates for short durations following a long period of 

constant, higher discharge. Interference from pumping at adjacent wells can be seen during recovery 

periods when the slope oscillates from negative to positive. In the Castle Oaks well field, it was necessary 

to consider pumping from an adjacent Denver aquifer well field to accurately model these interference 

effects (figure 8). 

 

Figure 8: Well interference at well CR105 (Castle Oaks, Denver) due to pumping in an adjacent well 

field. Open circles show the observed water levels; solid line is the model solution. 

4.1.2 Results and Discussion 

 

Model results using the estimated transmissivity and storativity for each well field are provided in 

figures 9 and 10.  The Theis superposition model with a linear drift function for recoverable water level 
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provides an excellent match to observed water levels during recovery periods, when the well is off.  

During active pumping periods when the water level is low and characterized by greater volatility from 

day to day, the residuals are higher. 

Table 1 summarizes estimated aquifer properties for Denver and Arapahoe test well fields. 

Transmissivity and storativity estimates are within previously measured ranges. Paschke et al. [2011] 

report hydraulic conductivities for the Denver aquifer ranging from 0.009 to 7.3 m/d, with a geometric 

mean of 0.04 m/d. For the Arapahoe aquifer, their reported range is between 0.018 to 3.0 m/d with 

geometric mean of 0.15 m/d. Assuming aquifer thickness in ranges reported by Paschke et al. [2011], our 

estimated transmissivities translate to hydraulic conductivities of 0.02 to 0.05 m/d for the Denver aquifer 

and 0.08 to 0.12 m/d for the Arapahoe aquifer. Transmissivity estimates from single-well recovery tests 

performed by Hemenway Groundwater Engineering at the Castle Rock wells, are also available for 

comparison in Davis [2013]. The estimated transmissivities in the Denver aquifer ranged from 26 to 55 

m2/d and from 25 to 68 m2/d in the Arapahoe, which are also consistent with the values we obtained. 

Although still within published ranges, our estimated storativities are likely more uncertain than 

the transmissivity values due to imprecise knowledge of the effective well radii (𝑟𝑤) and skin effects 

(gravel pack and formation damage).  These factors, which are known to influence the storativity derived 

from single-well aquifer tests [Jacob, 1947], are assumed to also be sources of error in our storativity 

estimate, given that we use observed water level data at pumping wells. Our parameter estimation is 

complicated by simultaneously evaluating the combined effects of pumping at each well on other wells 

and pumping at each well on itself. It might be reasonable to assume that 𝑟𝑤 is at least approximately 

equal at every well in a well field if they all have the same casing radius, gravel pack, and completion. 

This being the case, the error in estimated storativity might possibly be attenuated by fitting a single 𝑟𝑤 

across all wells simultaneously with storativity and transmissivity, which is an improvement over single 

well pumping tests where 𝑟𝑤 (and consequently storativity) are uncertain. 
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Table 2 presents recoverable water levels, drift line slopes, and well-loss coefficients. Note that 

the recoverable water levels reported in the table actually represent the intercept of the drift line at the 

beginning of the historical observation period (Nov 30, 2007 for both well fields).  While drift line slopes 

may be interpreted physically as (among other things) pumping at distant well fields, leakage, or recharge, 

we have no uniquely apparent explanation. Nevertheless, a linear drift is still useful for predicting water 

level elevations in wells. Drift lines fit with less data over shorter periods of time are less effective at 

characterizing long-term trends. The effect of small datasets on estimating long-term drift line behavior 

can be witnessed from the recoverable water levels (𝑡0 intercepts) reported in Table 2 for wells CR101 

and CR72R. These wells have datasets that are temporally displaced from 𝑡0 more than wells CR105, 

CR110, and CR111 (figure 9) and therefore are less likely to provide a reliable estimate of recoverable 

water level at that time.  

The estimated drift line parameters are also sensitive to modeled pumping history (spin-up period 

prior to the first time that detailed pumping records are available). We found that adding more synthetic 

pumping history resulted in drift line slopes that were increasingly negative. The drift lines in table 2 are 

the result of adding ten years of synthetic pumping history to our models.  

Estimates of well-loss coefficient for Denver aquifer wells were consistent with one another and 

of reasonable magnitude. The median well loss (1.4 × 10−5 d2/m5) in our Denver aquifer well field 

represents ~ 40 m of additional drawdown at common pumping rates.   

Estimates of well-loss coefficient for Arapahoe wells are also presented in table 2. Our inverse 

method was constrained to 𝐶 ≥ 0; values of 0 indicate that the optimization algorithm attempted to 

identify a negative well-loss coefficient. Negative well-loss coefficients might result from several factors 

not captured in our forward model, including local heterogeneity or leakage between aquifers. The 

Denver and Arapahoe aquifers are known to have similar hydrogeology and negative well-loss 

coefficients do not show up with the same regularity in Denver aquifer well fields. Leakage from the 

Denver to the Arapahoe aquifer has been reported elsewhere [e.g., Paschke et al., 2011]; this extra source 
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of water (which is not accounted for in our model) would explain the tendency of the optimization routine 

to move toward a negative C value. 

Denver aquifer wells characteristically have increasing error through time during pumping 

periods and a temporally varying C value provides a much better match during pumping periods (figure 

11). It is unlikely that a simple linear function can accurately characterize the complex mechanisms 

involved in well degradation, and there is an inevitability of physically unrealistic long-term behavior. 

However, over the domain of our Denver aquifer model, a linearly increasing well loss function appeared 

to provide a reasonable correction. 

In addition to a temporal trend, other improvements in modeling the well loss effect may be 

achievable.  For example, equation (3.4) assumes a constant radius marking the transition between 

laminar and turbulent well loss effects. At higher pumping rates, turbulent effects occur at a larger radius 

from a well, and the exponent 𝑛 needs to be larger. Non-zero pumping rates in our well fields tend to be 

of approximately the same magnitude at individual wells, but vary between wells. A more appropriate 

well loss function might assign both an exponent (𝑛) and well-loss coefficient (𝐶) at each well. Assuming 

that pumping rate magnitudes at all wells in a field are approximately equal, a simple improvement would 

allow a single 𝑛 to be estimated across all wells. 

Table 1: Estimated aquifer properties for Denver Basin test cases 

Aquifer Storativity Transmissivity (m2/d) 

Denver 4.7 × 10−4 30.0 

Arapahoe 2.0 × 10−4 46.5 
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Table 2: Estimated well properties for Denver Basin test cases 

Well Recoverable Water Level 

(m) 

Drift Line Slope 

(m/yr) 

Well-Loss Coefficient 

(d2/m5) 

 Denver Wells  

CR72R 1736 -1.4 2.5 × 10−5 
CR101 1846 -8.8 7.6 × 10−6 
CR105 1779 2.0 6.8 × 10−5 
CR110 1786 -1.5 1.4 × 10−5 
CR111 1779 -3.2 1.2 × 10−5 

 Arapahoe Wells  

CR27 1516 -4.5 0 

CR28R 1518 -3.1 0 

CR49 1513 -0.8 0 

CR67 1557 -6.6 0 

CR82 1522 0.2 2.6 × 10−6 
CR83 1532 -2.7 1.9 × 10−5 
CR86 1549 -2.9 1.0 × 10−4 
CR176 1547 -0.8 0 

CR219 1531 -3.6 0 

CR220 1517 -2.2 0 

CR223 1533 -3.4 7.7 × 10−7 
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Figure 9: Comparison of modeled and observed water levels for the Castle Oaks well field (Denver 

aquifer).  Loss coefficient (C value) for each well is constant through time. 
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Figure 10: Comparison of modeled and observed water levels for the Meadows well field (Arapahoe 

aquifer).  Loss coefficient (C value) for each well is constant through time. 
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Figure 10 (continued) 
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Figure 11: Comparison of modeled and observed water levels for the Castle Oaks well field (Denver 

aquifer).  Loss coefficient (C value) for each well is time-varying (linear function).  
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4.2 Synthetic Well Field 

 

4.2.1 Model Methodology 

 

A three-dimensional (300x300x100), synthetic hydraulic conductivity field (figure 12) was 

generated using the multiple-point statistical (MPS) algorithm Impala [Straubhaar et al., 2011] and s2Dcd 

[Comunian et al., 2012], which extends the capability of Impala to include generating three-dimensional 

MPS models from two-dimensional training images. A portion of figure 2 was used as the training image 

for this geostatistical simulation. The grid spacing for the simulated field is as follows: Δx = 27.69 m; Δy 

= 27.69 m; Δz = 1.1 m.  Two isotropic hydraulic conductivities (0.1 m/d, 0.005 m/d) were selected to 

represent differences between the sandstone and silty deposits that occur in the Denver Basin. 

 

Figure 12: Synthetic hydraulic conductivity field generated using MPS simulation. Yellow represents 

sandstones and black represents siltstones or clays. Model dimensions are approximately 8000 m in the x 

and y directions, and 110 m in the z direction. 10x vertical exaggeration. 

  The hydraulic conductivity field was imported into MODFLOW and three synthetic wells 

(figure 13) were modeled using the multi-node well (MNW2) package [Konikow et al., 2009]. The 

pumping rates/schedule (figure 14) are characteristic of what one may find at a municipal well field and 

are implemented using 12 stress periods over a duration of six months.  All three wells penetrate the 

entire thickness of the synthetic aquifer (110 m), which is modeled as a confined system 
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Our synthetic observation dataset has been simplified by not modeling well loss and the 

background trend in recoverable water level. The parameter estimation algorithm was modified to find a 

single recoverable water level (i.e., drift line with zero slope) and no well loss. The MNW2 package uses 

an approximation based on the steady-state Thiem equation to estimate water levels at well locations 

within a cell.  This approximation, which allows for a correction due to the finite-difference cell size 

(model cell is larger than the well diameter), introduces some error in the numerically simulated well 

water levels.  For our application, the correction produces less drawdown at the well than would actually 

be expected during pumping with transient conditions.  This is an inherent limitation with the synthetic 

water level dataset; thus a perfect fit to the numerically simulated values should not be expected. 

 

Figure 13: Synthetic well field map (plan view) 
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Figure 14: Simulated water levels (open circles) and modeled pumping rates (shaded bars) for synthetic 

well field. 

 

4.2.2 Results and Discussion 

 

The model fit to our synthetic well field is shown in figure 15. An effective hydraulic 

conductivity was calculated using the estimated transmissivity and the thickness of our synthetic aquifer. 
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The best-fit effective hydraulic conductivity is shown in table 4 with the geometric and arithmetic mean 

hydraulic conductivities from our MPS model.  

 To investigate a potential bias in the estimated aquifer properties due to the finite-difference cell 

size correction, we performed a separate parameter estimation run where the objective function was 

formulated using only the earliest data from Well A (0-15 d) and Well C (0-30 d).  During those time 

periods, pumping had not yet started at either well, so both locations can be regarded as observation 

points.  Well A is 505 m (over 18 cell lengths) and Well C is 338 m (over 12 cell lengths) from the active 

Well B.  Therefore the influence of the cell size correction is not expected to be significant at either 

location.  The results of this second optimization run yielded nearly identical estimates of transmissivity 

(4.46 m2/d) and storativity (5.43e-04), indicating that the derivative behavior of the larger synthetic water 

level dataset is meaningful.  Besides consideration of the cell size effect, this additional run provides 

support for our methodology in general (i.e., use of derivatives from our synthetic pumping wells gives a 

result that is similar to the more traditional analysis focused on observation well data). 

 The effective hydraulic conductivity was between the arithmetic and geometric mean hydraulic 

conductivities of our synthetic well field.  For a heterogeneous field that follows a multivariate Gaussian 

distribution, the effective hydraulic conductivity converges to the geometric mean (Renard and de 

Marsily, 1997; Gomez-Hernandez and Wen, 1998; Wu et al., 2005). Our synthetic well field, which is 

generated by MPS does not necessarily have a distribution that can be as easily generalized.  However, an 

effective K greater than the geometric mean is consistent with other studies that have considered 

groundwater flow in systems with channel deposits or other laterally continuous high-K features (e.g., 

Zinn and Harvey, 2003; Ronayne and Gorelick, 2006). 

 Estimates of recoverable water level compared favorably to steady-state, pre-pumping water level 

elevations from our synthetic well field. The errors were all less than three meters and in one case was 
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less than one meter. Some error is expected from fitting a homogeneous to a heterogeneous model. Our 

estimates tended to all be high, which suggests a more systematic error due to the cell size correction.  

 

Figure 15: Fit of analytical model to synthetic water level observations after parameter estimation. 

Synthetic water level observations were generated using MODFLOW with the MNW2 package. 

 

Table 3: Estimated aquifer properties for synthetic test cases. Synthetic model storativity was 5.5 × 10−4 

Water level data used in objective 

function 

Storativity 

(10-4) 

Transmissivity (m2/d) 

All Data 5.254 4.435 

Observation Data Only 5.428 4.459 
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Table 4: Comparison of the effective hydraulic conductivity (obtained by parameter estimation) to mean 

K values for the entire heterogeneous field. 

 Hydraulic Conductivity  

(m/d) 

Parameter Estimation 0.040  

Arithmetic Mean (synthetic) 0.052 

Geometric Mean (synthetic) 0.022 

 

 

Table 5: Comparison of the estimated recoverable water levels to synthetic water levels simulated for each 

well in the steady-state period prior to pumping. 

Well Recoverable Water Level (m) 

(Synthetic) 

Recoverable Water Level (m) 

(Model Fit) 

A 822.47 824.7 

B 824.20 826.5 

C 823.35 823.9 
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5 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

 

5.1 Summary and Conclusions 

 

This thesis describes a new parameter estimation method to infer transmissivity and storativity 

from transient water levels measured at groundwater production wells. The method utilizes drawdown 

derivatives to estimate T and S. Analytically modeled drawdown derivatives are compared to derivatives 

estimated directly from the observed water level data. An optimization technique is used to identify best-

fitting T and S values that minimize model residuals across the entire well field. Consideration of the 

derivative (slope) behavior initially eliminates uncertainty associated with recoverable water levels and 

well loss coefficients. The method was applied to real datasets from municipal well fields operating in the 

Denver Basin, and the estimated properties were shown to be consistent with values published elsewhere.  

Also considered was a synthetic water level dataset generated using a numerical model that incorporated 

the style of heterogeneity that occurs within the Denver Basin sandstone aquifers. Reasonable aquifer 

properties were identified for the synthetic model; the effective hydraulic conductivity (best-fit 

transmissivity divided by the modeled aquifer thickness) was slightly higher than the geometric mean 

hydraulic conductivity of the heterogeneous field.  

After obtaining estimates of transmissivity and storativity in the parameter estimation workflow, 

subsequent optimization steps are used to identify the recoverable water level (modeled using a drift line) 

and well-loss coefficient for each groundwater production well. The effects of the drift line and well-loss 

coefficient estimates are related, and are therefore difficult to interpret in physical terms, but offer 

reasonable estimates of where to expect water levels in a production well to be.    

 Municipal well fields are typically not managed by professional groundwater modelers and 

operational constraints limit the types of pumping schemes that can be executed in practice. Our forward 
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model and parameter estimation method offers a simple way to assist in planning energy-saving, cost-

effective pumping schedules at municipal well fields under local operational constraints. A model that can 

predict where well water levels are going to be under different pumping routines is a prerequisite to 

calculate the costs associated with pumping.  

 Data analysis is complicated by long-term effects, unknown parameters, and the necessity of 

considering aquifer and well mechanics simultaneously. However, automated data acquisition provides a 

very rich dataset to work with. 

5.2 Future Research 

 

If the well loss functions in equations (3.3) and (3.4) are retained in future models, the model used 

for aquifer drawdown can be replaced by a different model. The Theis solution did not fully capture 

aquifer drawdown in our Arapahoe model; the leaky Hantush-Jacob solution [Hantush and Jacob, 1955], 

for example, may have provided better results. In other regions, one might use an unconfined analytical 

solution or even a numerical model. Our estimated aquifer properties may provide a useful starting guess 

for more complicated numerical analysis using tomography [Yeh and Liu, 2000; Zhu and Yeh, 2005], 

which may in turn be helpful in distinguishing the effects of heterogeneity from well-loss.   

The computer code developed for this project analyze hourly time-series data to reduce the number 

of measured water levels and establish temporal discretization (periods of time with constant pumping 

rates) for the forward analytical model.  This task relies on some initial processing of raw data from an 

automated data collection system to create a structured input file.  Faster accessibility to data would make 

future analysis less time-consuming. Records should be automatically fetched and parsed from their 

original format into a more user-friendly format. A small future project might be development of a 

program that retrieves and performs this format conversion automatically. 

 Planning cost-effective pumping schedules that minimize energy expenditure is a difficult task 

due to operational constraints and unforeseen circumstances (e.g., a power outage). The reality is that 
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while a computer can generate innumerable possible pumping combinations, only a small subset can be 

executed in practice. A practical optimization method might involve rules of thumb and a simple interface 

whereby multiple practical pumping schedules could be tested quickly by an operator and planning done 

months in advance.  
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APPENDIX A 

INVERSE SOLUTIONS FOR ALL WELL FIELDS 

 

A.1  Summary of Estimated Aquifer Properties at All Locations 

 

Location Storativity Transmissivity (m2/d) Transmissivity (gal/ft∙d) 

Arapahoe Aquifer 

Meadows 2.0 × 10−4 46.5 3740 

Castle Oaks 2.2 × 10−4 35.8 2880 

Founders 2.4 × 10−4 50.3 4050 

Denver Aquifer 

Meadows 2.0 × 10−4 38.8 3120 

Castle Oaks 4.7 × 10−4 30.0 2420 

Founders 9.4 × 10−4 27.1 2180 

Dawson Aquifer 

Meadows 4.0 × 10−4 10.6 850 

 

A.2  Drift Lines 

Note: drift line intercepts are at 𝑡0 occur on November 30, 2007 

A.2.1  Arapahoe 

 

 Well 𝑡0 Intercept 

(m) 

Slope (m/yr) 𝑡0 Intercept 

(ft) 

Slope (ft/yr) 

Meadows CR27 1516 -4.5 4973 -14.8 

CR28R 1518 -3.0 4980 -9.8 

CR49 1513 -0.8 4963 -2.6 

CR67 1557 -6.6 5108 -21.7 

CR82 1522 0.2 4993 0.7 

CR83 1532 -2.7 5026 -8.9 

CR86 1549 -2.9 5082 -9.5 

CR176 1547 -0.8 5075 -2.6 

CR219 1531 -3.6 5022 -11.8 

CR220 1517 -2.2 4977 -7.2 

CR223 1533 -3.4 5029 -11.2 

Castle Oaks CR73 1557 -3.7 5108 -12.1 

CR117 1563 -4.4 5127 -14.4 

CR118 1577 -0.5 5173 -1.6 

CR123 1584 -2.7 5196 -8.9 

CR124 1606 -6.6 5269 -21.7 

Founders CR31 1570 0.8 5151 2.6 

CR39 1550 3.7 5085 12.1 

CR43 1595 -5.8 5232 -19.0 

CR218 1578 -4.4 5177 -14.4 
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A.2.1  Denver 

 

 Well 𝑡0 Intercept 

(m) 

Slope (m/yr) 𝑡0 Intercept 

(ft) 

Slope (ft/yr) 

Meadows CR47 1656 -4.1 5433 -13.5 

CR50R 1652 -3.3 5420 -10.9 

CR51A 1680 0.4 5512 1.3 

CR84 1635 -3.8 5364 -12.5 

CR148 1648 -2.2 5407 -7.2 

CR149 1623 -0.2 5325 -0.7 

CR150 1656 -4.1 5433 -13.5 

CR174 1658 0.3 5440 1.0 

CR221 1643 -2.4 5390 -7.9 

CR224 1636 -3.3 5367 -10.8 

Castle Oaks CR72R 1736 -1.3 5696 -4.3 

CR101 1846 -8.8 6056 -28.9 

CR105 1786 -1.5 5860 -4.9 

CR110 1779 2.0 5837 6.6 

CR111 1779 -3.2 5837 -10.5 

Founders CR33R 1772 4.4 5814 14.4 

CR41 1802 -1.1 5912 -3.6 

CR45 1745 -2.6 5725 -8.5 

CR217 1792 -0.6 5879 -2.0 

 

A.2.1  Dawson 

 

 Well 𝑡0 Intercept 

(m) 

Slope (m/yr) 𝑡0 Intercept 

(ft) 

Slope (ft/yr) 

Meadows CR152 1820 -0.5 5971 -1.6 

CR168 1818 -0.6 5965 -2.0 

CR170 1820 -6.4 5971 -21.0 

CR222 1810 0.6 5938 2.0 

CR225 1816 -1.0 5958 -3.3 
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A.3  Well-Loss Coefficients 

A.3.1  Arapahoe 

 

 Well Well-Loss Coefficient 

(d2/m5) 

Well-Loss Coefficient (d2/ft5) 

Meadows CR27 0 0 

CR28R 0 0 

CR49 0 0 

CR67 0 0 

CR82 2.6 × 10−6 6.8 × 10−9 

CR83 1.9 × 10−5 5.0 × 10−8 

CR86 1.0 × 10−4 2.6 × 10−7 

CR176 0 0 

CR219 0 0 

CR220 0 0 

CR223 7.7 × 10−7 2.0 × 10−9 

Castle Oaks CR73 0 0 

CR117 0 0 

CR118 0 0 

CR123 7.1 × 10−7 1.9 × 10−9 

CR124 0 0 

Founders CR31 2.2 × 10−6 5.8 × 10−9 

CR39 0 0 

CR43 0 0 

CR218 0 0 

 

 

 

 

 

 

 

(Page break inserted to make tables more readable) 
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A.3.1  Denver 

 

 Well Well-Loss Coefficient 

(d2/m5) 

Well-Loss Coefficient (d2/ft5) 

Meadows CR47 7.1 × 10−5 1.9 × 10−7 

CR50R 2.8 × 10−5 7.4 × 10−8 

CR51A - - 

CR84 2.3 × 10−5 6.1 × 10−8 

CR148 2.9 × 10−5 7.6 × 10−8 

CR149 0 0 

CR150 1.6 × 10−5 4.2 × 10−8 

CR174 1.7 × 10−5 4.5 × 10−8 

CR221 8.6 × 10−5 2.3 × 10−7 

CR224 2.2 × 10−6 5.8 × 10−9 

Castle Oaks CR72R 2.5 × 10−5 6.6 × 10−8 

CR101 7.6 × 10−5 2.0 × 10−7 

CR105 6.8 × 10−5 1.8 × 10−7 

CR110 1.4 × 10−5 3.7 × 10−8 

CR111 1.2 × 10−5 3.2 × 10−8 

Founders CR33R 1.7 × 10−5 4.5 × 10−8 

CR41 3.1 × 10−6 8.2 × 10−9 

CR45 2.1 × 10−5 5.5 × 10−8 

CR217 7.2 × 10−5 1.9 × 10−7 

 

A.3.1  Dawson 

 

 Well Well-Loss Coefficient 

(d2/m5) 

Well-Loss Coefficient (d2/ft5) 

Meadows CR152 0 0 

CR168 0 0 

CR170 1.9 × 10−4 5.1 × 10−7 

CR222 1.0 × 10−5 2.7 × 10−8 

CR225 0 0 
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A.4  Model Fit Hydrographs 

A.4.1 Arapahoe 

A.4.1.1 Meadows 
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A.4.1.2 Castle Oaks 
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A.4.1.3 Founders 
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A.4.2 Denver  

A.4.2.1 Meadows 
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A.4.2.2 Castle Oaks 
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A.4.2.3 Founders 
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A.4.3 Dawson  

A.4.3.1 Meadows  
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APPENDIX B 

PYTHEIS INSTALLATION AND USAGE 

 

The forward model and parameter estimator discussed in Chapter 3 were written in Python and C.  

All of the software is in a single package named PyTheis.  This appendix provides instructions for the 

installation and application of PyTheis. For cases where inputs already exists in a structured database, it 

may be simpler to modify the core logic in pytheis.py to suit your needs. 

B.1 Software Requirements (Installation Required) 

 

Since PyTheis is written in Python, it does not require to be installed in the same sense most other 

programs are. A Python script is nothing more than a text document with a *.py extension that is 

interpreted and executed by a Python interpreter. Python 2.x is required to run the scripts for this project.  

Despite Python being a very feature-rich language, it does not come pre-packaged with all the 

tools necessary for the modeling and visualization applications presented in this thesis. Additional 

libraries for special functions, inverse solvers, and generating graphics also need to be installed. All 

dependencies are described below. There is some flexibility in which version one chooses for the 

dependencies and they are available pre-packaged in various ways. PyTheis was developed using the 

following dependencies: python-2.7.5.msi, numpy-1.7.1-win32-superpack-python2.7.exe, scipy-0.12.0-

win32-superpack-python2.7.exe, matplotlib-1.2.1.win32-py2.7.exe, sip-4.14.7.zip, PyQt4-

4.10.2.gpl.Qt4.8.4-x32.exe 

B.1.1  Python Interpreter 

 

At the time of writing this documentation, Python 3.x is the latest available version. Version 3.x 

broke backwards compatibility and some libraries used for this program have not yet completely shifted 

over from 2.x. Consequently, Python 2.x is required to run these scripts. 
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B.1.2  NumPy, SciPy, and Matplotlib 

 

NumPy is a package that adds array functionality. Much of the data in PyTheis is stored as an 

array, including well level measurements, pump rates, and drawdown. The SciPy package contains 

special functions, including the exponential integral that appears in the well function in the Theis solution 

and an implementation of the Levenberg-Marquardt least squares solver, used to inversely solve for 

aquifer parameters. Matplotlib is a flexible plotting package capable of generating the 2D and surface 

plots used in PyTheis.  

B.1.3  PyQt 

 

PyQt is a Python wrapper for the C++ Qt library, which is a multi-platform widget toolkit capable 

of generating modern-looking graphical interfaces for Windows, Gtk, and OS X desktops. Qt5 is the latest 

release of the Qt framework, but this project was started prior to the release of Qt5. Consequently, it is 

necessary to use a version of PyQt wrapped around the Qt4 framework. Installation of PyQt is necessary 

when using the graphical user interface that accompanies PyTheis.  

B.1.4  Troubleshooting 

 

It is assumed that the Python interpreter was properly installed. A Python command line 

environment can be opened from Start → Programs → Python 2.7 → IDLE (Python GUI). To check that 

all third-party packages are installed properly try importing them at the prompt: 

 

>>> import numpy 

>>> import scipy 

>>> import matplotlib 

>>> import PyQt4 

 



55 

 

If any of these commands returns an error, the the dependency is either not installed on your system or is 

not in the Python 2.x PATH. It is often worthwhile to copy and paste error messages into a web search 

engine to quickly resolve any common problems.  

B.2  Software Requirements (Pre-Packaged) 

 

The GSL, PyTheis C extensions, and FFMPEG  are likely to be pre-compiled in the PyTheis zip 

file, in which case installation may not be required.    

B.2.1  GNU Science Library 

 

The GNU Science Library (GSL) is an open-source math library written in C. The only function 

needed from the GSL is the exponential integral (well function) of the Theis solution. There is an 

exponential integral function packaged with SciPy, however GSL was used in order to keep portions of 

the code (forward model calculations) in C. The result is that NumPy arrays can be passed to compiled C 

functions to be processed rather than embedding them in Python loops. If the GSL is not linking properly, 

pytheis_old.py may be renamed as pytheis.py (to run all functions in pure Python), but the increase in 

runtime is on the order of about 5-10 times. 

B.2.2  FFmpeg 

 

FFmpeg is an open-source, cross-platform tool used for audio/video editing. It is used to convert 

a series of frames into an animation. 
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B.3  GUI Usage 

 

B.3.1  Pre-Processing Data 

 

PyTheis is designed to work with minimal pre-processing.  Using a spreadsheet program,  

1. Open a blank sheet 

2. In row 1, label columns A, B, and C (in any way you choose) 

3. Fill columns A, B, and C (in order) with time, pump rate, and water levels above probe. 

4. Save as a .csv file in the raw_data/ folder of your Pytheis directory. You may create 

subdirectories, such that the full path of your .csv is something like: 

 

c:\pytheis\raw_data\wellfield_name\aquifer_name\well01.csv 
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B.3.2  Creating and Editing Wellfields 

 

 

 

To launch the PyTheis well editing form, double-click on wfedit_dlg.pyw from within the 

PyTheis directory. This will initially load well field properties that are specified in the example input file 

(wells.json), as shown in the above figure. 

The relative path property of a well is the path to a pre-processed .csv file (as described in the 

previous section). Adding a new well defaults to a non-existent path called path/to/file.csv. This relative 

path would imply an absolute path of c:\pytheis\raw_data\path\to\file.csv. 

Changes to a set of well properties are temporarily changed when you click the “Update Well 

Properties” button. Changes are not written to the main input file until you click the “Save Changes” 

button. 



58 

 

The main input file is a JSON-formatted file called wells.json. Note that this file can be viewed in 

any text editor. Well properties may be edited in metric or imperial units, but they are always stored as 

metric. 

 

B.3.3  Setting Parsing Options 

 

 

 

PyTheis contains a collection of functions for parsing raw data. These parsing functions take 

arguments that may be chosen by the user through the parser settings dialog (parse_dlg.pyw). Available 

parser options include:  

 

Minimum Pump Rate If set to 𝑄𝑚𝑖𝑛, all pump rates 𝑄, such that |𝑄| <  𝑄𝑚𝑖𝑛, will be set equal to 

0. In large well fields, small values like 5 gpm are negligible and may be 

ignored.  
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Averaging Scheme If set to On/Off, the parser will average blocks of time when pumping is 

active. If set to “By Tolerance”, the parser will start a new block of time to 

average if the pump rate changes by more than “Threshold 𝑄” 

 

Threshold Q The change in pumping (or injection) that is required to establish a new 

block of time over which pump rates are averaged in the forward model. 

 

Input Units (flow rate) This should be consistent with the units for values in the second column of 

the CSV well input file. 

 

Conditioning Period The Theis solution assumes that the initial water level is equal everywhere 

(and known). In most real cases, the initial water level is not known, so it is 

a good practice to run the model for some time without fitting the predicted 

water levels to observed data. The conditioning period is how many days of 

pumping you would like to simulate before trying to fit observed levels. In 

cases where there are several years of data, 365 days may be a reasonable 

choice.  

 

Keep Every 'n' Points The trim interval is related to how sparsely you want to consider level 

readings. E.g., if 'trim interval' is set to 24, then only every 24th observed 

level will be simulated. This method does no averaging. It is simply 

removal of dense data.  

 

Input Units (level) This should be consistent with the units for values in the third column of 

the CSV well input file. 
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When the “Saved Changes” button is clicked, parser settings will be saved to the file 

parse_settings.py. 

B.3.4  Conducting Parameter Estimation 
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The parameter estimation form is an interface for estimating storativity and transmissivity in an 

aquifer using the Levenberg-Marquardt algorithm. 

The parameter estimation form may be launched by running inverse_dlg.py. A console will also 

be launched to display values at each step of the inverse procedure. The input for parameter estimation is 

specified using four steps: 

Step One: Select Wellfield and Aquifer 

 

Use the combo boxes to select the wellfield and aquifer for which you would like to estimate 

parameters for. Click the “Confirm” button. 

Step Two: Make Long Plots 

 

A "long" plot is an individual well hydrograph that illustrates water level versus time for the 

entire period of record. In PyTheis, the "long" plots are used to identify temporal windows with high-

quality data where meaningful drawdown derivatives can be calculated.  

Click the “Make Long Plots” button. After a few seconds, a series of plots will be be generated in 

a PyTheis subdirectory called long_plots/. You are likely going to need to zoom in to view them properly. 

Step Three: Select Windows to Fit 

 

A “window” in PyTheis is be defined as a period of time over which observed level readings are 

considered. The long plots created in step two will help identify appropriate windows. 

For the parameter estimation to work properly, windows of time which overlap with changes in 

pump rates must not be considered. In the long plots, vertical blue lines indicate when a pump was 

switched off and red lines indicate when a pump was either switched on or when a change in pump rate 

occured. Select windows such that they do not contain any blue or red lines.  
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The inverse solver relies on fitting the numerical derivative of observed levels over time to a 

modeled derivative. Observed derivatives are very sensitive to noise, so it is best to select windows with 

smooth behavior. 

To add windows, select a well, and then enter the time range using the following format (using a 

new line for each window):  

𝑡0,  𝑡𝑓; 

 

Step Four: Select Parameters for Inverse Solver 

 

Step four requires selection of parameters required by the inverse solver. They are: 

 

"L" Averaging 

Distance 

The observed derivative is smoothed by averaging a derivative with 

neighboring points. L is a value (in days) over which a derivative is 

calculated. Note: if your data contains any windows with gaps (time 

intervals between measurements) larger than L days, the program will 

likely crash. 

  

Initial S Guess The initial storativity value given to the solver.  

 

Initial T Guess The initial transmissivity value given to the solver in units of m²/d 

 

Parameter Tolerance The parameter tolerance is the value by which successive iterations of the 

LM algorithm must improve estimates of S and T. If consecutive 

iterations do not improve S or T by the parameter tolerance, the LM will 

finish.  
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SOSR Tolerance The inverse solver minimizes the sum-of-squared residuals between 

observed and modeled data. If the difference in SOSR between 

successive iterations is less than this tolerance (negligible improvement) 

convergence is reached and the solver will stop. The tolerance is set to a 

default value and may not need to be changed depending on the amount 

of observed data and the anticipated magnitude of the residuals. 

 

Max Function 

Evaluations 

This is how many iterations the inverse solver is given to find a solution. 

It is set to a default value that probably does not need to be changed. 

 

B.3.4  Run Inverse Model 

 

Click "Start Param Estimation" button. Each iteration will be printed to the console that was 

launched with your parameter estimation form. Final results will be presented as plots in the relative path 

inverse_model/. 

B.3.5  Creating an Animation 

 

The animaton form may be launched by opening animation_dlg.py. 

 

xmin, xmax, ymin, 

ymax 

Easting (x) and northing (y) boundaries expressed in meters.  

 

xn, yn How finely to discretize the surface grid. E.g., a value of 50 for xn will 

create 50 grid points in the east-west direction 
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Initial and Final Time The start and end time for the animation in days. If you're using dates 

imported from Excel, time is given in days since Jan-0, 1990. Check your 

original .csv file for a good interval. 

 

 

 

Frames for animation will be placed in Pytheis subdirectory frames/, where they will need to be 

manually deleted between each animation. The final animation will be in the Pytheis main directory and 

given the filename output.mp4. If your computer does not have the necessary codecs to play this format, 

we recommend VLC media player, which may be downloaded at no cost. 

 

 

 


