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ABSTRACT

This research undertook to study the economic and other factors affecting the demand for
residential water in Colorado, with particular emphasis on the roles of metering and conservation
programs for reducing water consumption. The study was motivated by the American Water
Works Association's 1982 survey which reported that only about half of the Colorado water
utilities used water meters, and evidence of higher use by nonmetered customers. We
formulated a mail survey which requested 1985 and 1986 data on residential water use and on
a range of factors hypothesized to affect water demand, including the levels and forms of water
charges, the experience with conservation programs, frequency of billing and residents per
connection. The survey responses were supplemented by federal government data on household
income and on summer rainfall and temperature. In spite of repeated mailings and telephone
requests, of the twenty eight utilities responding, only six were non-metered. Without meters,
only water production data are available to represent water consumption. We contacted non­
respondents in unmetered systems; they often told us that they lacked detailed records from
which to fill out our questionnaire. With but two significant exceptions, nonmetered utilities
tended to be those serving but a few customers and to be located where water was plentiful and
inexpensive. Several respondents reported that they were in process of converting to meters or
had recently done so. It appears that metering residential water use is no longer a major
potential source of reduced residential water use in Colorado. -

The two years of data for all respondents were pooled and statistical regression analysis
was applied to test the hypothesis that annual residential water u~e could be explained by the
following variables: marginal and average cost of water, average family _income, summer
temperature and rainfall, density (persons per household), frequency of billing and the presence
of conservation education programs. Of the several functional forms tested, linear and semi-log
forms provided the most satisfactory fit to the data. Water changes were found to have a
negative and statistically significant effect on water use. However, the presence of a
conservation education program exhibited no statistically significant influence on water use. The
equations using average price explained the data somewhat better than did marginal price
formulations. (At the mean of the observations, price elasticity of demand for metered water
was found to be about -0.4, quite similar to that reported for other regions of the U.S.)
Somewhat surprisingly, a strong negative association was found also between cost of water and
water use for the non-metered subsample, although the limited sample size cautions against
generalizations from this fmding. Also of interest was that more frequent billings reduce water
use. (The above fmdings, taken together, show that cost does negatively influence water use,
but that the residential water user departs somewhat from textbook model of the fully informed
consumer who precisely responds to marginal price). Household size, as expected, positively
influenced water consumption. Weather variables also showed impacts in the expected
directions, although the associations were not particularly strong. However, household income
was not found to be a statistically significant influence on average water use.
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CHAPTER I

INTRODUCTION

Throughout much of the western United States, water continues to be a prominent policy

issue. This comes about because water, at its current price level and within the present political

infrastructure, is being demanded in quantities greater than can be supplied. Competing interests

exist between municipal and agricultural demands, upstream and downstream users, and instream

flow considerations versus offstream diversion requirements, making water a scarce resource

indeed.

In order to properly satisfy the competing uses for water, the resource must be allocated

efficiently. Economic theory implies that when the free market functions correctly, resources

are optimally allocated to the different competing demands. Economic efficiency results when

-
water is supplied in quantities such that the marginal price charged for water is equal to the

-
marginal cost to provide it. However, in today's market, certain characteristics of the

-
production and sale of water prevent an optimal and efficient distribution. One example occurs

when water is not priced according to the quantity consumed so that its marginal price to the

user is equal to zero. This is called flat rate pricing and occurs when water meters and a

volumetric pricing schedule are absent. A customer of a nonmetered system will pay a flat-rate

charge every billing period regardless of how little or how much water is consumed. Contrast

this situation to a metered system where water is priced at the margin (marginal price greater

than zero), and the total water bill is at least partially determined by the quantity of water

consumed as a function of the consumer's water demand behavior.

Despite the inherent common sense appeal of a metered system for efficiency, equity and

accounting reasons, some municipalities in Colorado and elsewhere in the west still support a



nonmetered water system. And, in spite of the need to better understand the variables that

influence water demand, very few studies exist that have actually compared any differences that

may exist between metered and nonmetered water systems and their demand for water.

Objectives and Procedures

The purpose of this study is to measure the residential demand for water in Colorado,

and particularly to examine possible differences in demand behavior between metered and non­

metered water users. And, if differences do exist, to determine what variables affect the

different demands for water.

Data used in this study were collected by a questionnaire sent to water managers

throughout Colorado requesting information on the consumptive use of water for two years, 1984

and 1985. The United States 1980 Census Data for Colorado provided data for income and

population figures as needed, while the Climatological Data Annual Summary for 1984 and 1985

was consulted for the appropriate weather data. Statistical regression analysis was employed to

measure the effects of various factors on water use.

Characteristics of Water

Our use and valuation of water reflect a host of contradictions. On the one hand, we

herald water's almost sacred, life giving properties, while on the other hand, we price it so low

that there is little if any incentive to conserve it. Recent controversies concerning the allocation

of water suggests an increasing degree of scarcity as an economic resource. Yet, we seem

unwilling to change our modes of consumption to comply with this inferred scarcity. These
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social and economic incongruities exist, in part, because of several characteristics inherent in

water that impart an elusive nature to the resource.

Transient

Water, by its physical nature, is constantly changing. It can appear in three different

physical states: solid, liquid, and gaseous. Consequently, it moves from one location to another

and from one form to another as the physical state, quantity, and quality are transformed.

Variables that affect the transitory nature of water are oftentimes transient themselves: rainfall,

sunshine, and evaporation rates.

Recyclable

Water is a renewable resource and can be reused or recycled on several different levels.

On the local level, water can be reused within and/or between communities. Treated residential

sewage can be reused by agriculture, industry, public authority, or even resident users again for

sprinkling and irrigation purposes. (It can be reused for domestic demand if the treatment

technology is appropriately sophisticated and if the community attitudes are accepting enough.)

If the geographical boundaries are extended, water is observed being recycled between upstream

and downstream users. An upstream user returns a portion of diverted water back into the

system for downstream users who return a portion of water back into the system for further

downstream users as the cycle continues to repeat itself. For example, in the South Platte River

Basin of Colorado, " ... the total annual volume of water withdrawn for use in the basin ranges

from 2 to 2.5 times the annual native supply. ,, 1
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Extending further beyond state boundaries, one can observe whole hydrologic basins such

as the Colorado River Basin which includes six states. On this level, the social value derived

from this recyclable property is enormous. Of course, the proportion of water diverted and

returned to the system will vary across space, time, and medium. Water initially diverted from

groundwater may be returned to a surface stream and then evaporated into the atmosphere. And

lastly, water on a global scale is constantly being recycled and redistributed through atmospher­

ic, surface, and underground sources of water.

Competing Uses

Because of water's transient qualities and apparent ignorance of man-made boundaries,

water does not lend itself to well defmed property rights the way other resources do in terms of

fmite, measurable, and stationary quantities. Therefore, the potential for conflict for competing

uses is greater than with other economic resources. Competition for water exists between down­

stream and upstream users, municipal and agricul~l demands, recreation and urban, and

instream flow considerations and diversion projects. Competing uses for water also infer

competing degrees of the quality of water.

Universal Solvent

Water has widespread application as a solvent for assimilating pollutants and waste.

Because of its capacity for absorbing and transporting wastes and toxins, questions of water

quality are especially relevant.
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Bulkiness

Water is an example of what economists call~ economic goods. Relative to other

consumer goods, the price per unit of water consumed at the margin is very low even though

its total aggregate value may be very high. Consequently, we do not think of water in the same

way that we think of other economic goods and the fmite value we derive from their

consumption. Rather, we associate certain tangibles and intangibles that we perceive water to

provide for us: a non-native, water loving landscape in a semi arid region, convenience applian-

ces such as dishwashers and washing machines, status, recreation, time, and money. And if

water is priced artificially low, an unrealistically high value will be placed on cheap water and

the amenities it can provide. As Milliman (1963) comments,

Clearly, our tastes for outdoor landscaping have been conditioned by a long heri­
tage of cheap water supplies and subsidies on peak use. There exists a whole
range of landscaping alternatives which could be adapted to a water scarce urban
environment.2 -

The Water Industty

Possibly as a consequence of these aforementioned traits associated with water, or maybe

in spite of them, the water industry has evolved its own set of distinguishing characteristics

which has shaped the distribution and pricing of water. One of the most consistent features of

the water industry is the dominance of public ownership. Most water providing entities that

serve municipalities are publicly or semi-publicly owned. This situation can be attributed to

several reasons:
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Water is Different

Water is perceived to be different from other economic goods whose quantities and prices

are determined by the market. Water is considered such a critical life force that it cannot be

trusted to the private sector. (This may be more strongly ingrained in the minds of water

managers than the public.) Young and Haveman (1985) quote Boulding to underscore this point,

"The sacredness of water as a symbol of ritual purity exempts it in some degree from the dirty

rationality of the market. ,,3

Control

In the arid west, especially, water availability could single-handedly determine the

economic fate and direction of a region or town. Acting as _a representative for the collective

good, a municipally governed water system would have legitimacy in the public eye as well as

greater political and legal power.

Financial Reguirements

Water supply projects are long-lived and capital-intensive. They require a great deal of

fmancial backing which municipalities can often provide with their ready access to such

mechanisms as low-interest bonds, taxation, government assistance, and powers of

condemnation.

Economies of Scale

Water projects are often characterized by economies to scale or decreasing costs, a

situation commonly associated with monopolies. This raises questions of equity and fairness

since an efficient pricing scheme is not readily determined in the market place. Politically, this
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situation is more easily accepted if the controlling entity is publicly owned rather than privately

owned.

Another trait (and point of criticism of the water industry) is its "resistance to change. "

Early critics have pointed to its longstanding reliance on a fmancial criteria for pricing and

planning rather than an economic one. Milliman (1963) suggests that one reason for the

industry's reluctance to switch to an economic decision criteria is the technological stagnation

that has shaped the industry's approach to dealing with water. Excluding treatment technology,

the manner in which water is impounded, transported, and distributed has remained relatively

constant since Roman times.4 Consequently, the water industry has evolved with an emphasis

on dealing with water issues through "structural means" rather than developing or emphasizing

nonstructural mechanisms of dealing with water issues such as pricing, conservation, or water

right exchanges. This has resulted in the entrenchment of institutional and attitudinal barriers

to change in dealing with water.

The emphasis on dealing with water issues via structural means has been encouraged by

the longstanding existence of very low water costs. For many years, the costs of providing

water were very low in comparison to the total aggregate value derived from its end uses.

Consequently, municipalities usually adopted a pricing scheme that did not reflect the marginal

cost of supplying water. More commonly, the price of water was set to equal historical average

total costs. The existence of very low water prices was due in part to economies of scale

resulting from large water projects which in tum, encouraged large water projects to be built.

A common pricing practice under conditions of inexpensive water was a declining block rate

structure. This faced the consumer with a lower, marginal price as consumption increased. Of
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course, sometimes the price for water was set to meet some other agenda. For example, it is

still a common practice of cities to charge a low price for water in order to attract residential,

industrial, and commercial growth.

The emphasis on dealing with water issues by structural means is illustrated by observing

how a water system is designed to meet different demands. One such description for a typical

urban water system is provided by Howe and Linaweaver (1967). Generally, there are three dif-

ferent measures of water demand that a system must consider: average annual demand, maxi-

mum day demands, and peak hour demands or maximum day plus frre flow (whichever is

greater). Consequently, there exist three different components of the water system that are

designed to meet these different demands. These are, resPectively: basic sources; transmission

and treatment facilities, distribution pumping stations, and major feeder mains; and local dis-

tribution ma1ns, connections, and local storage. (These different components might roughly

account for 30%, 20%, and 50% res~ctively of total system investment...y

Thus two systems eXPeriencing equal average annual demands would be designed
differently if their peak demand patterns differed. That a large portion of system
investment may be keyed to maximum day and peak hour demands serves to point
up the importance of differences exhibited in demand behavior between metered
and flat-rate areas ...6

When Howe and Linaweaver made this comment in 1967, forecasting water demand for

purposes of system design consisted of applying peak-to-average ratios to a total city average

daily per capita use figure. Peak-ta-average ratios released by the Federal Housing

Administration in 1965 prompted this comment from Howe and Linaweaver:

In the absence of reliable records, an average demand of 100 gallons Per capita
per day and 4 persons Per dwelling unit should be used. A maximum daily
demand of 200% of average and peak hourly demand of 500% of average are
suggested, except for areas where 'extensive lawn irrigation is practiced,' when
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700% of average for peak hour rates is recommended. The Residential Water
Use Research Project at Johns Hopkins University concluded that these criteria
can lead to substantial over or under-design of systems. Clearly they contain no
allowance for climate, economic level, price, and other effects. In the 39
residential study areas used in this study, average annual use per capita ranged
from 47 gpcd to 437 gpcd. Persons per dwelling unit ranged from 1.8 to 4.9, the
maximum day to average ratio ranged from 157% to 541 % and peak hour to
average from 247% to 1650%.7

One other reason that has been cited for the water industry's resistance to change is that

until recently, water projects were not very controversial and did not enter the public arena very

often. Since they were absent from the public eye, there was little public input or objection to

proposed water projects.8 Certainly, with our society's growing environmental consciousness,

large water supply projects like the proposed Two Forks Dam on the upper South Platte River

can no longer escape public scrutiny.
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CHAPTER II

UTERATURE REVIEW

Introduction

Early water studies were based on a "requirements" concept that assumed the demand

for water to be a function of only two variables: population and the type of industrial

development present. And because this period of time was characterized by water supply

projects with economies of scale, modest levels of water demand, and low rates of inflation,

there was little need to question this approach. Consequently, traditional economic factors such

as price, income, tastes, and availability and pricing of substitute and complementary goods were

not considered relevant and were treated as constants in the demand for water (Foster and

Beattie, 1979).

Wong (1972) observed four "complexities" associated with economic studies that may

have acted as a barrier to abandoning the requirements approach for studying water demand.

these complexities still exist today:

(1) Water consumption data are oftentimes unreliable. Because water has been so

inexpensive, there has been little incentive for water providers to keep strict records of water

consumption. And, even when meters have been present, consumption figures are often only

a rough estimate. This situation is reflected by the common practice of aggregating consumption

data of the different user classes (residential, commercial, etc.).

(2) No standard pricing policy is adhered to by public water providers. This may be the

case between user classes within a single community as well as between different communities.

One user class may be nonmetered and charged with flat-rate pricing (e.g. residential) while

another user class may be metered and face a multi-part tariff, either decreasing or increasing.



Some communities have their sewage charge included in their price for water, others have it

charged separately. Oftentimes, sewage.charges may be only minimally related to the quantity

of water consumed. Variation in the frequency of billing only compounds the situation. This

omnipresence of inconsistency in pricing led one reviewer to quip, "that municipal water rates

are 'the most unscientifically determined price in the public utility field.' ,,9

(3) Appropriate income data can be difficult to obtain. Because water is a normal good,

economic theory dictates that income should be relevant in influencing the demand for water.

However, appropriate and reliable income data is not easily secured. Several of the more recent

water studies using income as an explanatory variable have shown it to be insignificant. This

may occur in part, because of the lack of variability often found in available income data.

Attempts to circumvent this problem by using proxies for income such as house value, sales tax,

and number of bathrooms, etc. often result in a high degree of correlation when included togeth­

er in the same model. Yet, exclusion of the income effect from the model may result in model

error.

(4) Sufficiently large data sample sets may not be available. Due to the difficultly of

securing an ideal data set, sample reliability may be compromised. For time series analysis, the

time period may be too short and for cross-sectional data, the sample size may be too small.

Using pooled data (combining cross-sectional and time series) will provide for a larger data set,

but introduces other statistical challenges that must be addressed. to

The above-mentioned difficulties still exist today and produce their share of challenges

for researchers. Therefore, it is understandable that Wong expressed little surprise at the dearth

of economic studies on the demand for water up through the early 1970's. However, as easy
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and cheap sources of water have become increasingly scarce, the need for a better understanding

of the forces affecting water demand has provided the impetus for a change from the strict

"requirements" approach to incorporating an "economics" approach.

The Economics Approach

Initially, some of the newer breed of water studies evaluated both metered and

nonmetered data. Howe and Linaweaver (1965) conducted a study that included eight non­

metered (flatrate, public water) municipalities along with several metered municipalities from

across the country. They found that the nonmetered communities responded to fewer variables

than did metered communities. For domestic demand, nonmetered areas were influenced only

by the market value of the house and the number of persons per dwelling unit. For summer

sprinkling demand, only the market value of house influenced water consumption. Maximum

day sprinkling demand was affected by the market value of house and irrigable ~ea per dwelling

unit. In comparison, variables shown to influence the demand for water by metered areas also

included: the market value of the dwelling unit, age of the dwelling unit, the price of water that

varied with quantity consumed, marginal commodity charge, climate, and income. Their

analysis indicated that after controlling for these variables, nonmetered residents consumed an

average 692 gallons (of water) per day per dwelling, while the metered residents consumed an

average 458 gallons (of water) per day per dwelling.

Hanke (1969) utilized time series data for Boulder, Colorado to demonstrate that water

users consumed less water under a metered system than they did under a nonmetered system for

both domestic and sprinkling needs. For the years 1956 to 1968, Hanke determined that a

change from flat rate pricing to a positive, incremental charge resulted in significant changes in
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behavior for water demand. The level of domestic consumption dropped by 36% the frrst year

metering was employed and remained stable at that reduced level. The level of the sprinkling

demand declined as well from earlier, nonmetered levels. In addition, Hanke found both an

increasing price elasticity and a decreasing income elasticity for water over time. However, the

results could not support the a priori hypothesis that the rate of demand for water would decline

as did the total quantity of water demanded. That is, consumers did not appear to change their

rate of demand for water, but rather, only their total demand for water. Graphically, this is

illustrated only by a parallel shift downward in the demand curve rather than an additional

change in the~ (i.e. rate of change) of the demand curve.

Hanke (1971) conducted a follow up study which consisted of interviews of residents

utilized in the frrst study. The results of his second study supported the conclusions drawn in

the frrst study: that people became more aware of the quantity of water they consumed when

under a metered system. Consequently, the reduced demand for water remained stable and did

not climb back up to former levels associated with the earlier nonmetered system.

After the studies conducted by Howe and Linaweaver and Hanke, most other studies

relied primarily on metered data. The reasons for this may be twofold:

(1) As water became more expensive to supply, and water providers felt the need to

better account for their water, switching to a metered system was a natural progression. Conse.

quently, nonmetered data were not so readily available. (However, it should be noted that in the

American Water Works Association 1982 Utility Report, about half of the utilities reported for

Colorado were nonmetered.)11 and,
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(2) Because an accurate measuring mechanism does not exist within a nonmetered

system, reliable and accurate data are difficult to obtain for nonmetered water consumption.

Consequently, most studies would naturally seek out the more accurate data that can be obtained

from metered water systems.

Because of the dominant use of metered data, most analysis has been restricted to

studying variables that affect the demand for metered water. Gardner and Schi~k(1963)

examined cross-sectional, annual data for northern Utah and found average price and lot size (for

irrigation purposes) to exert the most influence on water demand. Young (1973) evaluated

annual, time series data for Tucson, Arizona and found the demand for water to be influenced

by average price and rainfall. In both studies attempts were made to include income or a proxy

for income, but the results showed the coefficients for the variable to be insignificant.

Wong (1972) conducted a bipartit~ study of Chicago, Illinois and the surrounding

communities utilizing a time series model. For the bedroom communities of Chicago, the

marginal price of water was significant in explaining the demand for water but not so for the city

of Chicago. Wong suggests this difference may be partially explained by the extremely low

water prices faced by Chicago relative to her surrounding communities and the fact that much

of Chicago was not metered. However, income was found to influence water demand in

Chicago but not in the surrounding communities. Other variables found to influence the demand

for water for both Chicago and her surrounding areas were average household income and the

average summer temperature.

In the second part of the study, Wong looked at crosssectional data for 103 surrounding,

municipal water systems which relied exclusively on groundwater in contrast to Chicago and her
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suburbs that relied strictly on surface water from Lake Michigan. In the cross-sectional analysis,

income was statistically significant for the two larger sized community groups. Price was

significant for all but the smallest sized community group. Average summer temperature was

not included because there was little variation. Despite the significance of the aforementioned

variables, the degree of variation explained by these variables was rather low. The coefficient

of determination, R2, ranged from 0.29 to 0.48.

Danielson (1979) utilized pooled data at the household level to estimate the effect of

several variables on total residential demand, sprinkling demand, and winter demand for

Raleigh, North Carolina. His results showed a.verage rainfall, average temperature, house value

(as a proxy for income), marginal price and household size all influenced the total residential

demand for water. Household size explained more variation in the total demand for water than

.any other variable. For winter demand, (to~l minus summer), house value, the marginal price

charged for water, and household size influenced water demand. For summer sprinkling de­

mand, average rainfall, average temperature, house -value, and water price were significant.

Foster and Beattie (1979) developed a "generalized model allowing for categorical effects

due to regional and size of city differences on urban residential water demand. ,,12 They found

municipal (residential) water demand to be a function of the median household income, rainfall

during the growing season, average number of residents per meter, the average price of water,

and a subregional dummy variable. (They divided the U.S. into six subregions to pick up

regional differences.)

Hansen and Narayanan (1981) utilized monthly time series data for municipal water use

in Salt Lake City, Utah. Their estimated model indicated that the price of water, total rainfall,
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average temperature, number of daylight hours, and a non-growing season dummy variable were

significant in explaining the average monthly demand for water per household.

Hanke and de Mare (1982) conducted a study on water demand for Malmo, Sweden.

One emphasis of their study was to secure data which was not plagued by the types of biases and

problems often found in aggregated data. Variables found to influence the semi-annual residen­

tial demand for water were: real gross income per household, number of adults, number of

children, rainfall, the age of the house, and the real marginal price of water.

Frerichs, Becker, and Easter (1987) studied municipal water data for cities and

communities in Minnesota. They found the demand for water to be influenced by marginal

price, average price (separate models), income, number of persons per household, and the

proportion of youth per household (assuming that even though someone under 18 years of age

may have less awareness to conserve water, an adult will use more water). A dummy variable

to pick up differences in demand between different sized cities proved insignificant, even though

the proportion of variation in the model(s) was better explained for larger cities than for smaller

ones.

Dellenbarger, Kang and Schreiner (1988) studied differences in water demand behavior

between urban and rural residents in Oklahoma. Hypothesizing that rural households have more

uses for water but also more alternative supply sources (e.g. private wells or other irrigation

services), they expected rural water users to exhibit a more price elastic response to water

demand than their urban counterparts. Variables shown to influence the rural demand for water

were: marginal price, annual household income, number of persons per household, a dummy
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variable to capture the increased demand during the growing season, and urban or roral water

user status.

The Price Variable

As mentioned earlier, a number of alternative pricing mechanisms exist within the water

industry. However, the industry as a whole is faced with meeting similar fmancial objectives

and overhead costs. Therefore, most metered utilities have a flat rate service charge combined

with some type of commodity charge based on the incremental consumption of water. The

situation becomes more complex if the pricing schedule is a multi-part tariff versus one of con­

stant pricing per unit of consumption. Multi-part tariffs can be increasing or decreasing depend­

ing upon the policy of the water utility. When water was very inexpensive, declining block rate

structures were very common so that the more water the customer demanded, the lower was the

marginal price paid. How such rate structure complexities affect the consumer's perception of

the price he pays for water is difficult to say.

Except for a discussion on the preferred use of marginal price in the John Hopkins study

by Howe and Linaweaver (1967), the question of an appropriate price variable was not

extensively discussed in the literature until the late 1970's. Prior to that time, many studies used

either average price, marginal price, or simply did not specify what form of price was being

used.

Foster and Beattie (1979) used average price per 1000 gallons as the price variable.

(They did acknowledge the potential for a simultaneity problem with aggregated data, but felt

it was unavoidable but manageable.) This initiated a flurry of articles addressing the question

of the proper price variable. In response to Foster and Beattie's (1979) study, Griffm, Martin
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and Wade (1981) criticized their choice of average price for several reasons. However, the

criticism that has drawn the most attention is their concern that the use of average price, " .

. . at low levels of consumption, . . . is not closely related to the marginal price faced by

consumers ... ,,13

The critics argue that marginal price is the preferred price variable because it is

consistent with consumer demand theory in terms of consumers wanting to maximize their utility

at the margin. Consequently, using average price will produce unreliable results in "predicting

the effect of price on water demand"14 by overestimating the relationship between changes in

price and the demand for water.

Billings and Agthe (1981) criticized the use of average price in earlier studies in

general .. They argued that average price is not the marginal price except in special cases and

suggest the use of a two-part price variable designed to accommodate both the pr!ce and income

effects present with multi-part tariffs, ~specially those with a declining block stnlcture. The

two-part price variable model ~uggested by Billings and Agthe (1981) was frrst proposed by

-
Taylor (1975) for electricity demand and later modified by Nordin (1976).

In response, Foster and Beattie (1981) defend their choice of average price as the

appropriate price variable because of a breakdown in one of the required conditions necessary

for preferring marginal priced. In quoting Taylor who quotes Anderson,

The correct price variable to appear . . . for these commodities is, therefore, not
the average unit price but the price of a marginal unit of consumption, provided
that consumers are well informed (emphasis ours).15

They wonder how many water consumers are aware of their tnle, marginal price given

the complexities surrounding the typical water bill, such as time constraints facing consumers,
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seasonal differences, the combining of sewer charges with water, etc. Rather, they suggest" .. ­

.it is probable that most residential water consumers, not just minimum block users, perceive

their total expenditure function as a ray line. ,,16 Since this expenditure function extends outward

from the origin, average price and marginal price are the same. The average price of water is

perceived by the consumer to be the marginal price for water. Foster and Beattie offer this

reasoning to explain why consumers facing a fIXed charge block behave as if they are facing a

variable charge block (Danielson 1977).

Besides the commonsense appeal of their argument, additional support is lent to Foster

and Beattie's position by the lack of decisive empirical support for the superiority of the other

proposed price variables. Studies that have utilized the two part price variable have failed to

produce superior results to their average price counterparts. This includes both the explanatory

power of the estimated model(s) in addition to the degree of statistical sign!ficance of the

coefficients for price and other explaDa:tory variables. Most of these studies do fInd marginal

price to be significant in expla~g water demand. However, whereas the difference variable

chosen to pick up the income effect resulting from intramarginal charges is oftentimes the right

sign and statistically significant, not one study has shown it to be equal in magnitude to the

income variable as postulated by economic theory. (It is always smaller in magnitude.)

The consistent unruliness of the (income) difference variable may be explained by the

very low income effect resulting from the inframarginal charges in a declining block structure.

For residential water, it constitutes such a small percentage of total income, that the income

effect resulting from changes in the inframarginal charges may be negligible in the mind of the

consumer.
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Chicoine, Deller, and Ramamurthy (1986) developed a water demand model for testing

alternative price variable specifications. One of their conclusions was, " The Taylor Nordin

specification of demand for goods sold under block rate pricing schedules may not always be the

best description or representation of consumer behavior. ,,17 Boland et al (1984) reported a

comprehensive comparison of water studies to evaluate the effect of price and rate structure on

municipal and industrial water demand. When comparing the differences between using

marginal price and average price, they concluded, " ... it is not clear that average price is in-

ferior to marginal price as an estimator of customer perception price, economic theory notwith­

standing . . . ,,18 because of such variables as complexities of rate schedules and time lags in

the billing frequency.

Another related controversy in water demand studies concerns what the proper statistical

methodology should be. Studies that are concerned with problems of simultaneity bias arising

from the presence of block rate structures have utilized two and three-stage-Ieast squares regres-

sion in an attempt to counter possible errors resulting from simultaneity bias. However, it is

not clear from the results that the more sophisticated approaches are any better in predicting

water demand. Chicoine et al (1986) concluded that,

The similarity between three-staged-Ieast squares and single equation ordinary
least squares estimates provides some validation for the use of simpler single
equation demand models of potable water when water is sold in block rate pricing
schedules. 19

In addition to controversies concerning the proper price variable and statistical

methodology, disagreement also exists over the proper functional form. Of course this may vary

depending on the purpose of the study, but researchers have lamented the absence of a defmitive

link between theory and a preferred functional form for water demand models.20 Different
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forms have been hypothesized as preferable for different reasons (Foster and Beattie, 1982;

Plourde and Ryan, 1986). Each functional form reflects different expectations for utility

maximization and price and income elasticities, but explanations and results have not been

conclusive. And despite some of the elegant discussions for or against a particular functional

form, no one form has distinguished itself in residential water demand studies. The simpler,

single equation models using linear, double-log, and mixed-log functions have been commonly

used in residential water demand studies and have produced comparable (if not more robust)

results than some of the more sophisticated functional forms.

The absence of anyone functional form, regression model, or price variable dominating

the study of water in terms of producing superior results may be indicative of the wide range

of dynamics that can affect water demand and the problems in trying to model for it. To expect

that one particular price variable or statistical approach should be preferred, no matter what the

situation, may be unrealistic and may act as a barrier to a greater understanding of the demand

for water. And though there are common patterns of behavior that emerge throughout water

studies, there is also a great deal of variation and inconsistency among those same studies. In

light of such variable parameters as consumer perception, cultural differences, availability and

reliability of data, and external forces (e.g. weather patterns), it may be unrealistic to expect to

be able to model for local demand from a national or even regional perspective for anything but

a general trend or pattern. Realizing the importance of local conditions in water demand studies

should allow for the development and acceptance of a wide range of relevant models.
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CHAPTER III

MODEL SPECIFICATION AND DATA SOURCES

Introduction

This chapter addresses considerations relating to model specification and data sources.

In particular, five general areas are discussed:

(1) Neoclassical theory applied to the residential demand for water. Relevant

factors of demand include traditional variables such as price, income,

and substitute and complementary goods as well as,

(2) Other variables affecting the demand for residential water such as weather, cultural

values, and consumer perception.

(3) The design of the survey and, in addition, the collected data set.

(4) Hypothesized models and preliminary results.

(5) Simple descriptive statistics of the data set.

Neoclassical Theory AWlied to
Residential Water Demand

According to the neoclassical theory of consumer demand, consumption of a good or

service is largely influenced by four different factors: the price of the good being demanded

income of the prospective purchaser, the price of related goods (complements and substitutes),

and tastes or preferences. But the degree of influence these variables exert on the demand for

water will vary across space and time due in part to such factors as available information,

perceptions, cultural biases, and climate.

The demand for a normal good moves inversely to its price. The higher the cost, the

smaller the quantity that will be demanded, ceteris paribus. The extent of influence that price



will have on the demand for water will depend partially upon people's perception of price and

the relative proportion of total income that is allocated to pay for water. Agreeing with the logic

and reasons supplied by Foster and Beattie (1981), average price is chosen as the preferred price

variable for explaining the demand for water in this study. It is postulated that people perceive

the average price they pay for water to be their marginal price.

Strongly linked to the influence price can exert on demand is the proportion of total

income allocated to pay for an economic good. If the good is needed only in small quantities

and/or infrequently, a high marginal price may be more acceptable. However, if the good is

desired in large quantities and/or its expenditures require a large proportion of available income,

then a high marginal price will exert a more profound impact on demand. Traditionally, water

has been priced very low with total expenditures being quite low. In these lower price ranges,

an inelastic response to changes in price has been observed. This situation should not be

interpreted as reflecting some inherently high value for water at a very low price level. Rather,

the inelastic response may be indicative of the small impact water purchases have on total

income at these low price levels.

If the proportion of income allocated to water is high enough, and if changes in people's

water demand behavior can affect that proportion, then the price for water will exert a strong

impact on the demand for water. For example, the greater the proportion of the total water bill

determined by marginal consumption, the more freedom the consumer has in detennining her/his

total water bill. A total water bill with a flat-rate service charge that accounts for 30% of an

average total bill will allow the consumer to affect her/his total water bill to a greater extent than

the consumer with a flat-rate service charge that accounts for 60% of an average total bill. And
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the greater the share of his/her income that goes to paying the water bill, the greater the

incentive to reduce that water bill.

Cross-price effects or the price of substitute and complementary goods are also

expected to affect the demand for water. Foster and Beattie (1979) argued that water has no real

substitutes so that cross-price effects are negligible. Certainly, for the basic, life sustaining

requirements, there truly may not be any substitutes. But the percentage of total water

demanded for this need is small, so it is difficult to imagine that viable substitutes do not exist

for many of the other uses of water. Rather, the price of water has been so low, that there has

been little reason to seek out substitute goods.

Certainly, the availability of alternative water sources will affect the demand for

substitute goods for water. The most common uses of water for family and commercial

purposes can be divided into domestic uses (indoor uses such as drinking, cooking, washing,

etc.) and outdoor uses (for example, sprinkling demand, swimming pools, or car washing) and

are usually provided by the same water source. Since most municipal serving water suppliers

are controlled by some government or quasi-government entity, consumers (especially urban)

are limited in their access to alternative water supplies. For non-urban demands, private wells

are very common in rural areas where groundwater supplies are accessible within a reasonable

price range. In other situations, water is hauled by truck. But these are not considered

preferable in urban areas, and as long as water is relatively inexpensive and of good quality,

there has been little reason for consumers to seek alternatives to municipally supplied water.

However, the situation is beginning to change.
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With growing concerns surrounding water quality, an increasing number of homes and

businesses are buying bottled water for drinking and cooking purposes. And although this

accounts for a very small percentage of total water demanded, it is a substitute good.

Another substitute good for water which may have much wider application is increased

technical efficiency, where capital and improved technology of water use is being substituted for

increased water demand and consequently, increased water supplies.24 Technologic~ly, greater

efficiency can be obtained with the installation of such devices as low flush toilets, low use

showerheads, automatic sprinkling systems, leak detection devices, and more efficiently designed

convenience appliances (for example, dishwashers and washing machines).

Behavioral changes that can substitute for increased water demand include: using water­

efficient products, substituting water-thrifty grasses and plant species for water loving grasses

_and plants in lawns and yards, greater awareness of watering needs, adjusting water schedules

to maximize plant assimilation and minimize peak demand, reduction of irrigable lawn and yard

areas, and voluntary rationing.

When water is inexpensive relative to other goods, there is little incentive to make

substitutions for water. But, when the price of water increases enough to force a comparison

of the relative value of goods, substitutes for water that did not exist with cheaper water begin

to emerge and develop.

At present, water is still inexpensive enough that the demand for these substitute goods

is relatively low. Consequently, the cross-price effects appear to be small, though on a local

level they have the potential to be significant. In time, as the price of water continues to

increase, the cross-price effects of these substitute goods will affect the demand for water.
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However, for this study, it is assumed that cross-price effects of substitute goods are still

negligible.

Along with the price of substitute goods that determine the demand for water, is the price

of complementary goods. Many complementary goods are convenience-saving, water-using

appliances that are one time expenses. The price effects of these durable goods are also assumed

to be negligible.

Another set of dynamics that can affect water demand relates to tastes and preferences.

If attitudes toward resource conservation change, water-saving devices and behavior will be more

readily accepted and used. Of course, different tastes or preferences can work in different direc-

tions. A society with increasing emphasis on recreation may place an increasing demand on

water resources of all types: irrigation for golf courses and parks, swimming pools, boating and

lakes, and fishing and free flowing streams. And, though these different activities may cQmpete

against one another for available water, they should also work together to promote greater

conservation in order to expand water supplies in general.

Additional Factors Affecting
Residential Water Demand

Other variables that are expected to influence the demand for water include weather

variables, billing procedures instituted by the water utility, water conservation programs, and

the number of persons per household. Because metered and nonmetered water users face a

positive and zero marginal price respectively, it is hypothesized that they will respond in

different degrees to some variables: average maximum daily summer temperature, average total

monthly rainfall, and the existence and duration of a conservation program.
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Without an increasing incremental cost, as the maximum daily summer temperature rises,

nonmetered consumers will be expected to water more frequently and for a longer duration than

metered consumers. That is, the metered group will be more discriminating in responding to

temperature because of the increased marginal cost. This same reasoning can be applied to

precipitation and its impact on the sprinkling demand. Both metered and nonmetered customers

are hypothesized to be influenced inversely by the amount of precipitation received during the

summer months, but metered will be more discriminating in their water demand. It is expected

that their demand for water will not increase as much in response to increases in temperature

or insufficient precipitation.

A similar but reversed response between metered and nonmetered customers may also

be observed with regards to the existence and duration of a conservation program. For metered

customers, the presence of a positive marginal price can act as a natural water conse~ation

mechanism. Hence, the implementation of a conservation program may not be as effective

because the presence of a positive marginal price has already precipitated a reduced demand for

water. But, since nonmetered customers have no positive marginal price to induce them to

conserve, the implementation of an intelligently-conceived conservation program would be ex­

pected to have a greater impact on reducing nonmetered water demand than on metered

demand. Of course, the success of such a program would depend upon such variables as the

customer's perception of the need for the program, the incidence of burden, the perceived ef­

fectiveness of the program, and commitment by the administering water utility.

Responses collected in this study revealed a wide spectrum of conservation measures,

enforcement policies, and level of commitment by water providers. Because of the difficulty
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in trying to quantify such a diverse variable as "conservation efforts," and because the length

of time used in the study did not allow for the testing of a trend variable for conservation efforts

and attitudes, it was decided that the most reasonable measure of the possible impact of a

conservation program was to denote (with a dummy variable) whether a program existed and the

number of years it had been in existence.

A variable hypothesized to affect only metered customers is the frequency of billing (one,

two, or three for the number of months between billings). The more frequent the billing

process, the greater the link is between water consumed and money paid. The higher the

associated cost of water is, the less water that is expected to be demanded in the next billing per­

iod. Nonmetered users are not expected to be affected by the frequency of billing since their

water bill is constant regardless of consumption.

The number of persons per dwelling ("density") is hypothesized to influence both metered

and nonmetered consumers. As density increases, the demand for water can be anticipated to

increase. It is difficult to say, a priori, whether metered and nonmetered water users should

respond differently in degree to density.

The Data Set and Surveys

Initially, the hypothesized models describing differences in water demand between

metered and nonmetered customers were tested using data from communities in Colorado

presented in the American Water Works Association's (AWWA) Annual Utility Reporting Data,

1980. This publication listed data by state that was received from AWWA member throughout

the United States.
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Our initial analysis indicated a significant difference of the mean water use groups

between the two groups; (metered and nonmetered). However, more elaborate analysis failed

to yield reliable generalizations regarding factors hypothesized to influence water demand.

Later, it became apparent that the typical format of collection report to AWWA did not yield

sufficient data for analyzing water demand for single family residential water demand.

Therefore, in 1986 a mail survey was initiated which contacted municipal water providers

in six southwestern states: Colorado, Utah, New Mexico, Arizona, Nevada, and California. It

was decided to focus on the southwest region because of similar weather patterns and familiarity

with the region.

The sample set selected for this study was determined by the limited availability of an

accessible list of water provider names. Ideally, one would draw a random subset of

observations (water. providers) from the total population to be contacted f~r purposes of

providing water data. The "sample se!" is assumed to possess a pattern of behavior similar to

the total population so that r~dom events cancel out one another and the resulting estimated

parameters are "accurate" estimators of behavior for the real variables describing the parent

population. In Colorado, no single entity exists (public or private) that accounts for all water

serving utilities in the state. At the time the survey was being developed, it appeared that the

AWWA had the most complete information on water provider contacts of any other organization.

Fortunately for our project, the AWWA generously consented to provide their information,

consisting of names of individuals and!or utilities involved in the providing of domestic water.

Since the study was interested in securing information on more than just water production data

(as the AWWA survey had concentrated on), it was decided to contact individuals who were
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coded as "water managers" in the AWWA database. Then, if other "specialists" were needed

to provide specific information, the survey could be forwarded to the appropriate individual.

In addition, by contacting just those individuals denoted as water managers, the problem of

redundant mailings within the same utility was addressed (since many of the larger utilities had

more than one contact listed depending upon the area of specialty). (It was also mentioned in

the cover letter that if the addressee was inappropriate, to please pass the survey packet on to

the appropriate individual(s).

The fmal sample set consisted of a selected subset of the AWWA membership mailing

list for the aforementioned six southwestern states. For this thesis, only those surveys sent to

municipalities and water providers located throughout Colorado were analyzed.

Conflicting objectives existed in attempting to design a survey that would encourage the

reporting of accurate data in a form that could be readily utilized, that was flexible enough_ to

allow for individual accounting styles, and that would not be a burden to the participating utility .

In addition, because time and money were scarce resources, it was decided to maximize the

collection effort by securing a database that could be utilized to test additional hypotheses for

future research.

The survey used by the AWWA in their data collection effort for their Annual Utility

Reporting Data. 1980 and a questionnaire developed and utilized by Frerichs, Becker, and Easter

(1987) in a similar research effort were used as models in the design and development of the

survey used in this study. The survey packet was pretested by having it filled out by employees

of water utilities in Northern Colorado. Resulting comments were reviewed, and appropriate
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suggestions were incorporated into the survey. (See Appendix I for a reproduction of the survey

packet.)

The data requested from the contacted participants included monthly consumption data

for two years, 1984 and 1985, broken down by the different user classes: single family

residence, multifamily, commercial, industrial, public authority, irrigation, and other. In

addition, information was requested on the number of households, population, the rate schedule,

a description of a conservation program and number of years it had been in existence, and the

number of nonmetered households being served. Since preliminary inquiries indicated that most

water providers did not have information on such variables as income, temperature, and preci­

pitation, outside sources were consulted for these variables. Data presented in the AWWA 1982

Annual Report indicated that for Colorado metered and nonmetered organizations were equally

represented. Therefore, it was expected to receive a similar proportion with the survey.

However, this was not the case. Out of eighty-eight contacts made, seventy-three were deemed

appropriate water providing entities and capable of responding. Fifty-seven responded in one

form or another. Thirty-eight responded with completed surveys from which thirty-three distinct

reporting areas provided reliable annual data. This reflects a fmal return rate of 42%. By using

data for two years, 1984 and 1985, a total of 66 observations of pooled data were used. Of

these 66 observations, only 12 represent nonmetered areas (18%). Table 3.1 presents Jl

breakdown of the results of the mailed surveys.
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Table 3.1. Results of Surveys Mailed to Colorado Water Suppliers

Breakdown of Surveys

Total Number of Surveys Mailed

Total Number Deemed Applicable

Total Number of Responses

Total Number of Surveys Completed

Questionnaires with Annual Data

Questionnaires with Monthly Data

Questionnaires with Annual Data Only

Number of Questionnaires Promised But Not Received

Number of Surveys

88

73

57

38

30

28

7

11

Hypothesized Models and Preliminary Results

For this study, the dependent variable to be explained is the average monthly water

-consumption per household in gallons for .single family homes. For metered customers, it is

hypothesized that the demand for water will be affected by the following variables: average

price, average yearly income, temperature, precipitation, frequency of billing, density per

household, and the existence and duration of a conservation program. Since water is considered

a normal good, water consumption is anticipated to vary directly with income. In addition,

water consumption is hypothesized to increase proportionally to the number of persons per

household, the longer the time between billing periods, and the average maximum summer

temperature. Both average monthly maximum summer temperature and average total monthly

precipitation are hypothesized to be reflected in the sprinkling demand. Precipitation is expected

to influence water demand inversely as should the existence and duration of a water conservation

program, and the average price per 1000 gallons of water consumed. The average price per
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1000 gallons was calculated by dividing the average monthly (household) water bill by the

average monthly (household) water consumption (in gallons).

For nonmetered customers, it is hypothesized that water demand will move in a positive

direction with average yearly income, the number of persons per household, and the average

monthly maximum summer temperature. In contrast, water demand should move inversely to

the existence and duration of a water conservation program and the amount of precipitation

received during the summer. Since nonmetered customers face a zero marginal price, so that

the total water bill does not change regardless of how much water is consumed, they are not

expected to respond to changes in average price. For income estimates, 1980 United

States Census data were used.

National Weather Service records for temperature and prec!pitation data were consulted.

Initially, we planned to use "evapo-transpiration rates" to represent climatic factors. However,

data from the National Weather Service on evapotranspiration was lacking for many of the

communities. This does not compromise the model as later reflection suggested that even though

rates of evapo-transpiration would indicate when lawns should receive water, precipitation and

temperature may, in fact, be the more accurate explanatory variable with regards to people's

perception for sprinkling needs and the demand for water.
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Descriptive Statistics

Simple descriptive statistics can serve as a useful analytical tool for comparison purposes

between the different data sets. Table 3.2 lists the values for the average figures for the

metered, nonmetered, and combined data sets for the dependent and independent variables.

Table 3.3 lists the range of values for the metered and nonmetered data sets. Six variables,

frequency in billing, monthly household consumption, average price per 1000 gallons, the

marginal price per 1000 gallons, the average monthly water bill, and the duration a conservation

program has been in existence are noticeably different in magnitude between the metered and

nonmetered water users. Density also varies between the two groups but to a smaller degree,

while temperature, precipitation, income, and the existence of a conservation program appear

to be comparable.

Table 3.2. Descriptive Statistics For Colorado Residential
Water Use Data Sets For The Range Of Values (1984, 1985).

Variable Metered Nonmetered Combined

Monthly household demand (gallons) 11,543 27,176 14,532

Average price ($/1000 gals.) $2.25 $0.60 $1.95

Marginal price ($/1000 gals.) $1.56 $0.00 $1.26

Average monthly water bill $23.60 $16.31 $22.21

Billing frequency (months) 1.26 2.17 1.43

Density (persons/dwelling) 3.29 4.00 3.42

Conservation program (percentage) 0.52 0.50 0.515

Duration of conservation program 4.60 2.60 4.36
(years)

Maximum daily temperaturea 83.72 82.83 83.55
(Fahrenheit)

Total monthly precipitationa 1.76 1.75 1.76
(inches of rainfall)

Yearly household income ($) $12,571 $13,840 $12,814

Average population (persons) 37,100 68,695 42,845

a\summer months
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Table 3.3. Descriptive Statistics for Colorado Residential
Water Use Data Sets for the Range of Values (1984-1985).

Variable

Monthly household demand (gallons)

Average price ($/1000 gals.)

Marginal price ($/1000 gals.)

Average monthly water bill ($)

Billing frequency (months)

Density (number of persons)

Duration of conservation program (years)

Maximum daily temperaturea (Fahrenheit)

Total monthly precipitationa (inches of rainfall)

Yearly household income ($)

Average population (persons)

Metered Nonmetered

3,098 - 26,3962 15,182 - 45,982

$0.79 - $4.66 $0.20 - $1.22

$0.56 - $3.40 $0.00

$11.17 - $59.87 $8.00 - 22.28

1.0 - 3.0 1.0 - 3.0

2.37 - 4.50 2.80 - 9.19

0-46 0-9

74.73 - 90.13 77.33 - 86.40

0.41 - 3.18 1.21 - 2.32

$9,421 - $17,573 $11,501 - $16,409

588 - 166,636 3,511 - 323,212

a\summer months

The differences highlighted in Tables 3.2 and 3.3 between metered and nonmetered water

systems underscore the separate set of dynamics that operate under the different water systems.

Nonmetered systems typically have access to relatively inexpensive water. Otherwise, mounting

economic pressure would force the utility to switch to a metered system in order to have a more

precise accounting of the water delivered. The absence of a reliable measure of water

consumption makes it very difficult to keep accurate records. Therefore, when examining single

family consumption data reported by a nonmetered system, it must be acknowledged that the

estimates likely include system losses and/or water consumed by another user class that could

not be separated out. The fact that the utility is willing to support this system reflects how

inexpensive the water is relative to the cost to switching to a metered system.
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This absence of real scarcity is likely conveyed to the consumer via low water bills, a

low billing frequency, or a limited emphasis on water conservation. Of course, the existence

of meters will not guarantee an accurate water accounting scheme or wise use of water, but

without the capability to precisely monitor the distribution and consumption of water, it is very

difficult for a utility to be efficient with its water. (A copy of the raw data is in Appendix II.)

Scattergrams

Graphical tools can also be useful in providing a visual depiction of an hypothesized

relationship between variables. Three scattergrams are presented to discern if such a relationship

between variables does exist. In spite of this' author's agreement with Foster and Beattie

concerning the preferability of average price, the proper price specification may in fact be an

empirical question. Therefore, scattergrams were produced to determine if one of the two forms

of price might be more closely correlated with the demand for water. Figure- 3.1 depicts the

relationship between the average price for water (dollars/l00<> gallons) and the average monthly

wa!er consumption per household (gallons). Figure 3.2 depicts the relationship between the

marginal price for water (dollars/1()()() gallons) and the average monthly water consumption per

household (gallons). In both Figure 3.1 and Figure 3.2, a downward sloping demand curve can

be traced out. It is not obvious considering only the scattergrams that average price is

significantly better at tracing out a demand curve than marginal price. Figure 3.3 depicts the

relationship between average price and marginal price. A linear relationship between the two

that is suggested by Figures 3.1 and 3.2 is visible in Figure 3.3. In this set of data, it appears

that a high marginal price is associated with a high average price and visa versa. In other

words, water users who have a high water bill relative to the amount of water they consume (and

hence a high average price), also face a high marginal price.
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CHAPTER IV

STATISTICAL ANALYSIS AND RESULTS

This chapter discusses the methodology and results of the statistical procedures and

functional forms. Then the analytic process is described and results displayed.

Methodological Considerations

Regression Tests

The general purpose of this study is to identify and quantify those factors that influence

residential demand for water in Colorado. A specific sub-objective is to determine if metered

customers behave differently than nonmetered customers. In other words, are two different

populations being observed with regards to water demand behavior. One approach to this

problem is to test whether or not a structural change exists betw~en the two groups. Such a

procedure is outlined by Johnston (1984) and is accomplished by comparing the residual sums

of squares of the "restricted" model to the residual sums of squares of the "unrestricted" model.

The terms "restricted" and "unrestricted" are relative depending upon what parameters

are being tested. "Restricted" refers to constraints that are placed on the model. In this study,

a restricted model forces both metered and nonmetered observations into at least one common

parameter. This is the null hypothesis and can be stated as: Ho: am + bmXm = 3n + bnmXnm

(where "m" denotes the metered data set, and "run" denotes the nonmetered data set.

The unrestricted model allows at least one of the parameters to vary between the metered

and nonmetered sets. This is the alternative hypothesis and can be stated as:

Ha: 3m + bmXm < > Clmn + bnmXnm· Theory and common sense are expected to provide

direction as to what the restricted and unrestricted models will be.



The most unrestricted form of the model is comprised of two different regressions where

both intercepts and sloPes are allowed to vary between the two groups ("u" is the error term):

Ym = cm + bmXm + u (demand model for metered users) Ynrn = cnm + bnrnXnrn + u demand

model for nonmetered users).

Or the two models can be combined into one regression still allowing the sloPeS and

intercepts to vary: Y = cm + cnrn + bmXm + bnrnXnm + u.

Because more than one test is possible, Johnston (1984) has outlined a "hierarchy of

models" that are used with this approach. These are presented in shorthand matrix form and are

presented in sequential order starting with the most restricted model.

Model 1 formulates a common regression for both groups so there is no difference

between water demand behavior. Their intercepts and rate of consumption are identical (lie"

denotes the combined data sets): Y = Co + beXe + u.

Model 2 formulates different intercepts but common slopes for the two populations. This

is the situation that Hanke (1969) found in his study of Boulder, Colorado:

Y = cm + cnrn + beXe + u.

Model 3 formulates different intercepts and different slopes, thereby treating the two

groups as two different populations that have different water demand functions:

Y = cm + cnm + bmXm + bnrnXnm + 11m + Unm·

The regression results for the different models are computed and the appropriate residuals

are tested and compared with a modified F-statistic. The test for different sloPe coefficients

compares the residuals for Model I to those of Model II, while the test for different slope coef­

ficients compares Model II to Model III, and the test for different regressions compares Model
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I with Model ITI. The formulas for the F-tests used to test the different null hypotheses are

listed below the residual sum of squares (RSS) of the different models and are identified by their

respective numbers with the appropriate degrees of freedom listed in parentheses:

(1) Test for different intercepts and common slope:

F = RSSI - RSS2 - F(I, N-K-l)
RSS2/(N-K-l)

(2) Test for different slopes:

F = (RSS2 - RSS3)/(K-l) - F(K-l,N-2K)
RSS3/(N-2K)

(3) Test for different regressions (different slopes and different intercepts):

F = (RSSI - RSS3)/K - F(K,N-2K)
RSS3/(N-2K)

The K in the numerator is the difference in the degrees of freedom of the residual sums

of squares obtained in going. from the unrestricted model to the restricted model. In the

denominator, K is the number of the variables in the specified model.25 Because so little prior

work has been done in testing for differences between metered and nonmetered behavior, three

possible models are tested:

(1) One single regression representing a single population.

(2) Different intercepts but identical rates of consumption.

(3) Two different regressions reflecting two entirely different populations.
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Because of differences in incremental charges between metered and nonmetered rate

systems (positive vs. zero), one a priori expectation is that the rate of consumption (the slope)

should be significantly different between the two groups. It is difficult to predict if the intercept

terms should be identical or different because of the very low quantity of water necessary to

satisfy basic human needs that the intercept term should (in theory) represent. In addition,

because of the "junk term" role that the intercept term plays for the error term, it is usually

difficult if not unwise to place much value on the intercept term~

Functional Form

For this study, it was decided to use- a single equation, ordinary-least squares demand

model. In light of the discussion presented in the literature review, the potential for simultaneity

bias resulting from the employment of average price is considered small, and it is not clear that

- utilizing a more sophisticated statistical approach will yield a better model, especially without

a more sophisticated understanding of how the different dynamics interact in their influence on

the demand for water. However, even with the simpler ordinary-least squares, the proper func­

tional form must still be chosen.

One criterion for choosing a particular functional form is what will be the resulting

characteristic slope. A linear function will produce a constant slope but non-constant elasticities.

A double-log function will produce a non-eonstant slope but constant elasticities. Partial-log

equations can produce a variety of slopes and elasticities.26 Economic theory is not defmitive

as to which functional form is to be preferred, because plausible explanations of consumer

behavior can be presented for several different slopes and elasticities. Therefore, the choice of

a functional form is considered to be as much of an empirical question as the choice of relevant

43



variables. Consequently, linear, semi-log, partial-log in price, and log-log functions are

considered. These functional forms have been employed in other water studies and have yielded

satisfactory results.

Preliminary Analyses

Testing of Variables

Because the results of the scattergrams did not provide convincing support that average

price would better explain the demand for water than marginal price, several price variables to

represent price were tested in preliminary regressions. These included: average price; marginal

price; average price and marginal price together; and marginal price with an income difference

variable to pick up the income effect present in decreasing block rate schedules (Billings and

Agilie, 1981).

Almost without exception, for this data set, the coefficient for average price taken by

itself proved to be the most robust price variable and consistently outperformed the other price

variables. The coefficient for marginal price by itself was also negative but less statistically

significant in degree and was accompanied by less robust overall results. Since Figure 3.3

suggests a positive linear relationship between these two price variables, it is not surprising that

both price variables appear to capture part of the price effect when used individually. However,

when average price and marginal price were included together in the same regression to test for

preferred consumer response, the coefficient for average price was always negative and

significantly different from zero while that for marginal price was positive and usually

statistically insIgnificant. The use of marginal-price with an income effect variable produced

inconclusive results similar to fmdings in other studies - the coefficient on marginal price was
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negative and significantly different from zero while that for the income effect variable was

statistically insignificant. (For this data set, this result is not unexpected since only thirteen of

sixty-six observations had a decreasing block rate schedule.) Based upon these preliminary

results, it was decided to use average price by itself as the preferred price variable.

Initially, one other price-related variable was included in the preliminary models. It was

speculated that the proportion of the fIXed service charge to the total water bill might affect the

demand for water. As mentioned earlier, the smaller the proportion of a flat rate service charge

to the total incremental charge, the greater freedom people have in determining their total water

bill. Inclusion of this variable produced inconclusive results. Several reasons exist that might

explain why. One reason is that the effect of the fIXed service charge to the total water bill is

-

so small as to be negligible. Along the same lines, the water bill might be so small relative to

total disposable income that any impact from a water bill is negligible.

Another variable hypothesized to affect the demand for water was the quantity of

minimum gallonage allowed before application of the incremental charge. The smaller the

quantity allowed, the greater the effect an incremental charge should have on water demanded.

Results for this variable were indeterminate. As with the fIXed service charge, it is possible that

the proportion of minimum gallonage is so small relative to the total consumed and/or water is

so inexpensive relative to income and spending power, that its effect on water demand is

negligible. Both the fIXed service charge and minimum gallonage were subsequently removed

from the study due.

In addition, average yearly (household) income was initially included, but without

exception, the coefficient of the income variable was found to have the wrong sign and could
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not consistently reject the null hypothesis. This statistical instability was present for metered,

nonmetered, and combined data sets. Insufficient variation among the sample communities in

the income data from the U.S. Census is one likely source of error.

One additional variable hypothesized to inversely affect water demand by both metered

and nonmetered groups was the presence and duration of a conservation program. Moreover,

with the absence of the economic incentive to conserve water that is provided by a positive

marginal price, it was expected that nonmetered water users would be more strongly influenced

by the presence and duration of a conservation program than metered users. However, prelimi­

nary results of the statistical test proved indeterminate. Both a dummy variable and a time

variable (measuring the duration of the program) were utilized to try to capture any influence

this variable might have but neither yielded any supportable results. The immense range in

kinds and degree of quality of conservation programs in the study, no doubt, was too great to

accurately measure with the variables_available. This variable was also discarded from the

study. Table 4.1 lists the depel)dent variable and the fmal independent variables for this study.

All variables were used for both data sets. All units of measure are related to average annual

consumption.
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Table 4.1. Notation and Defmition of Selected Model Variables.

y = Average annual water consumption per household
(gallons/household/year)

C - The intercept term for water users (gallons).

AP = The average price per 1000 gallons of water for water users ($/1000
gallons).

B = The billing frequency for water users (months between billing periods).

D - The density per water consuming household (number of persons per
dwelling).

T = The average maximum summer temperature (June, July, and August)
for water users (degrees Fahrenheit).

p = The average summer precipitation (June, July, and August) for water
users (total inches per month).

U - The error term.

Preliminary -Testing of Alternative Models

Initial analysis of the models yielded relatively weak results, especially for the

nonmetered data set. This was not unexpected given earlier concerns associated with the small

sample set (thirty-three total observations for each year with six nonmetered observations for

each year). Since individual models for each separate year and for each metering system seemed

lacking, it was decided to run a series of regressions. The idea being that each succeeding series

would expand the sample set either by increasing the time period (from one year to two years)

and/or, by expanding the data set (by combining metered and nonmetered data). It was hoped

that a trend of increasing robustness in the results would emerge that would provide adequate

support for the hypothesized models describing metered and nonmetered water demand and any

difference between them. This methodology allowed for statistical analysis to be done in spite
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of the very low number of nonmetered observation points which severely curtailed the ability

to compare separately run regressions.

The frrst level of regressions utilized metered data from the frrst year only. The second

level utilized metered data from the second year only. The third level was expanded to combine

metered data for both years. Next, metered and nonmetered data were combined together for

both years. And fmally, metered and nonmetered data were combined for both years but

separated with the use of dummy variables. Four functional forms (used in other water demand

studies) were employed: linear, semi-log, partial-log in the price variable, and log-log. For the

fITst three stages of regressions, the results are not strikingly different, although some

distinguishable patterns do emerge. In general, for metered (linear), it appears that the adjusted

R2,s and F-statistic vary between models as a function of what weather variables are included.

When temperature was included as the weather variable, the second year was a little stronger

in explanatory power (R2 = .54 vs. R2 = .49). When precipitation was the only weather

variable, the second year showed slightly stronger results for the adjusted R2 (R2 = .54 vs. R2

= .488).

The coefficients for the two different years were comparable overall. APM was always

negative and statistically significant, while the constant term fluctuated as did the weather

variables. Usually the weather variables demonstrated the expected sign but varied in the degree

of statistical significance. Billing and density exhibited some differences between the two years.

BM was always positive and significantly different from zero in the frrst year. For the second

year, BM was still positive but not statistically significant. ~ was always positive and
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significantly different from zero in the second year, but positive and statistically insignificant in

the fIrst year.

When the two years were combined, the results improved as the degree of significance

of the coefficients stabilized in consistency and sign throughout the regressions. The

improvement was not dramatic but was noticeable. Along with average price, the coefficients

for both density and billing stabilized and were now consistently significantly different from zero

and of the hypothesized sign. For the two years combined (metered only), the F-statistic,

without exception, doubled in value, while the adjusted R2 either increased slightly

(approximately five points) over that for either year or remained comparable.

The predicted values of the coefficients as given by the models for the fIrst three levels

of regressions where only metered data was used, were consistent with data averages. (For the

log-log function, however, those models often predicted unrealistic values for some of the

variables - temperature in particular - despite the apparent "normalness" of the fmal predicted

value for water consumption.) Next, the nonmetered data points were included for both years

but were not differentiated by dummy variables. It is difficult to predict a priori if combining

metered and nonmetered data observation points will yield better or worse results. For some

variables (e.g. temperature, precipitation, and density), it is likely that metered and nonmetered

will behave similarly in kind but different in degree. Other variables, (e.g. price and billing),

are likely to exhibit opposite effects on water demand. The relative strength of the different

variables will determine whether there will be more or less explanatory power by the models.

For the combined data sets of metered and nonmetered, there is a slight reduction in

goodness of fit in those models in a linear functional form: many of t-statistics for the
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coefficients declined slightly as did the value for the F-statistic and the adjusted R2. For all

nonlinear functions, the values for the t-statistics varied slightly -some decreased while some

increased with no notable exceptions except for density and the partial-log functions. In this

situation, density, which had been consistently positive and statistically significant for metered

only (both years combined), now became statistically insignificant. For all three nonlinear

functions, the F-statistic doubled in value from the regression before while the adjusted R2

increased by five to thirteen points.

The last stage of regressions combined metered and nonmetered data points for both

years but separated them in the regression with dummy variables. This is the stage that allows

for testing between metered and nonmetered water demand behavior. This last series of

regressions also differentiated between a common intercept term and different intercept terms

for metered and nonmetered respectively. (Initially, the question ~as raised as to whether both

the level and rate of water demand would differ between water users or if the-rate alone would

differ between the two populations. It was decided to disregard a model with a common

intercept term due to inconsistencies in data and the resulting unknown errors.)

In general, by combining and separating out metered and nonmetered observations, the

results of this last series do consolidate and strengthen earlier results. The adjusted R2,s

increased noticeably (between ten to twenty points) so that all models were explaining 70% to

80% + of the variation in water demand. The F-statistics either increased or remained

comparable, and the Durbin-Watson test statistics were either able to reject the null hypothesis

of serial correlation or were indeterminate, and the variable coefficients solidified the repeated

patterns of demand behavior that were suggested by earlier regressions.
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For metered water users, regardless of functional form or model, the coefficient for

average price was always negative and consistently significantly different from zero at the 0.5 %

level, while those for billing and density was always positive and significantly different from

zero at 10% and 5% (or greater) respectively. The coefficient for precipitation was always

negative and significantly different from zero for six out of the eight models where precipitation

was included, while the coefficient for temperature was always positive and significantly

different from zero for six out of the eight models where temperature was included. The

constant term was usually positive and significantly different from zero in the log models, except

for the log-log models where it was always negative and statistically insignificant. For the linear

models, it was always positive but usually statistically insignificant.

For nonmetered water users, the results do not so much identify what influences their

demand for water, but rather, identifies what does not influenc~ their demand for water as

reflected by the generally weak coefficients. However, some repeatable patterns do emerge.

Except for one model, the constant term is always positive and significantly different from zero.

The coefficient for average price is always negative and significantly different from zero (not

as expected), while that for billing is always statistically insignificant. The coefficient for

density is never positive and significantly different from zero as hypothesized, rather it is usually

negative and oftentimes statistically significant. The coefficient for precipitation is always

negative but only statistically significant in three out eight models, while the coefficient for

temperature varies in sign but is never significantly different from zero when positive.

For overall results, the linear models outperform the log forms with regards to adjusted

R2 's, Durbin-Watson value, and the F-statistics. For the models in linear form, the adjusted
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R2,s ranged from .80 to .83, the Durbin-Watson values are 2.02 to 2.07 (serial correlation is

absent), and the F-statistic ranges from 29.24 to 35.13 (the coefficients are significantly different

from 0; Xl < > X2 < > X3 < > 0.) Contrast this to any of the log forms where the adjusted

R2,s = .685 to .71, the Durbin-Watson values range from 1.30 to 1.65 (serial correlation is

indeterminate), and the values for F-statistics range from 15.16 to 19.06 (the coefficients are

significantly different from zero).

The predicted values for monthly household water demand were satisfactory for the

linear and semi-log models but not so for the partial-log and double-log models. The partial-log

models predicted average monthly household water demand to be under 1000 gallons for both

metered and nonmetered water users, while the double-log models produced even more unre­

alistic figures. For the double log models, the predicted values for metered monthly demand

were unbelievably low (e.g. 0.0048993 gallons), while the predicted values for

nonmetered demand were unrealistically high (e.g. 172,123 gallons).

Final Models

Modified F-tests as outlined earlier in this Chapter are used to determine if metered and

nonmetered water users behave differently enough to be statistically different populations. Three

models in the linear form and three models in the semi-log form are able to reject the null

hypothesis that YM - YNM = 0, and only one partial-log model and no double-log models are

statistically significant in rejecting the null hypothesis that metered and nonmetered water users

behave identically. From these different regressions, four models emerge that best support the

original hypotheses proposed by this study as well as exhibit the most robust results. These
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models have been chosen for their consistency and degree of statistical significance of hypothe-

sized variables, overall robustness, F-test significance (testing for different populations), and

predictive capability. One linear and three semi-log models are presented in Table 4.2.

Table 4.2. Estimated Water Demand Models.

IModel

L-l
Linear

SL-l
Semi-Log

SL-2
Semi-Log

- SL-3
Semi-L9g

IEquation

Y = cM + cNM + a1APM + a2APNM + a3BM + a4BNM
+ aSDM + a6DNM + a~M + aloPNM + UM + UNM

In Y = cM + cNM + a1APM + a2APNM + a3BM + a4BNM
+ asDM + a6DNM +-a~M + aloPNM + UM + UNM

In Y = cM + cNM + a1APM + a2APNM + a3BM + a4BNM
+ aSDM + a6DNM + a7™ + agTNM + ~M

+ aloPNM + UM + UNM

In Y = cM + cNM-+ a1APM + a2APNM + a3BM + a4BNM
+ aSDM + a6DNM + a7™ + agTNM + UM + UNM

The level of significance for testing for different populations (modified F-test); the

coefficients and their t-statistics and level of significance; the adjusted R2; the Durbin-Watson

value (for serial correlation); and the F-statistic for individual coefficients are listed in Table 4.3.

The level of significance for a one tailed test as denoted by the T-statistic is indicated

by the number of asterisks in superscript form to the right of the parentheses: no asterisk = is

not significant, ""''' = 10 % level of significance, ""'''''' = 5% - 2.5% level of significance, and

""'••" = 1% level of significance. Table 4.3 presents those regression results.

The selected models explain between 71 % to 83 % variation in the demand for water.

In the estimated models, serial correlation is either absent (linear model) or indeterminate (all
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semi-log models). For all four models, the F-statistic is significantly different from zero at the

1% level of significance level. In addition, all four models reject the null hypothesis that YM ­

YNM = 0 at the 1% level of significance.

Discussion of Results for Individual Variables

Price

For metered water users, average price is consistently negative and statistically

significant (1 % level of significance). The (average). price elasticities of demand are inelastic

and range from -0.31 to -0.33, which are typical of price elasticities found in other studies.

Unexpectedly, the models show nonmetered water users to be responsive to changes in average

price. Unexpectedly, the models show nonmetered water users to be responsive to changes in

average price. All coefficients were negative and significantly different from zero (at the 1%

significance level). The "price elasticities" produced were less inelastic than those for metered

(-0.648 to -0.756).

Billing

The impact of the frequency of billing was also very consistent throughout the models.

BM was significantly different from zero (1 %- 5% level of significance). However, for metered

water users, it was observed that whenever density and billing were included together, the

impact and significance of the coefficients for both variables was consistently diminished in

comparison to when one was excluded. A positive correlation of .65 was found to exist between

the two variables. Since no obvious reason to explain their correlation could be identified, the

variables were both included in the model. As expected, the frequency of billing had no impact

on nonmetered water users.
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Table 4.3 Regression Coefficients from the Selected Models.a

Variables L-l SL-l SL·2 SL-3

8001 9.11 7.20 6.61
CM (2.38)*** (33.80)*** (6.40)*** (6.24)***

67368 11.53 12.70 10.98
CNM (9.40)*** (20.06)*** (4.14)*** (4.05)***

-1731 -0.20 -0.19 -0.18
APM (-3.52)*** (-5.16)*** (-4.76)*** (-4.53)***

-32627 -1.23 -1.26 -1.22
APNM (-8.07)*** (-3.79)*** (-3.83)*** (-3.70)***

3517 0.19 0.178 0.18
BM (3.07)*** (2.03)** (1.95)** (1.92)**

676 0.05 0.035 0.035
BNM (0.46) (0.41) (0.29) (0.29)

1664 0.186 0.166 0.167

~ (1.59)* (2.21)** (2.01)** (1.98)**

-1936 -0.07 -0.077 -0.05
DNM (-2.02)** (-0.92) (-0.99) (-0.64)

-446 -0.044 -0.033
PM (-1.66)* (-1.93)** (-1.43)*

-2069 -0.69 -0.079
PNM (-2.57)*** (-1.07) (-1.15)

0.023 0.027
TM (1.74)** (2.16)**

-.013 0.001
TNM (-0.387) (0.047)

Adj.R2 .83 .71 .71 .71

D-W 2.07 1.46 1.53 1.65

35.13 18.34 15.62 18.27
F-stat. (2.70)*** (2.70)*** (2.66)*** (2.70)***

18.27 4.38 3.53 4.33
F-test (3.51)*** (3.51)*** (3.29)*** (3.51)***

N= 55 55 53 55

aSee table for the list of variables. Student's "t" statistics are shown in parentheses.
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Density

The coefficient for density (per household) was, as expected, positive and significantly

different from zero (2.5% - 10% level of significance) for metered households. Surprisingly,

this same result was not found for nonmetered households. In fact, DNM was consistently nega­

tive for nonmetered households, and in model L-1, it was significantly different from zero at the

2.5% level of significance.

Weather

For metered water users, the coefficients for the weather variables were consistently

significantly different from zero and of the right sign for both precipitation (2.5% - 10% level

of significance) and temperature (2.5% - 10% level of significance). For nonmetered water

users, in only one model (L-1) was a coefficient for a weather variable (precipitation)

significantly different from zero (at the 99% level) and of the hypothesized sign.

Predictive Capability of the Models

Predicted values for some of the variables for metered demand are presented in this

section. Because the results for nonmetered demand are so weak, their predicted values will not

be presented in table or graph form. To do so, would infer a degree of conclusiveness that is

not supported by the results. While the predicted values for nonmetered water demand appear

to be within a normal range (3 % to 13% above the nonmetered data set average), the lack of

explanatory power for nonmetered demand, weak coefficients, and unrealistic predicted values

for some of the independent variables, offer little support for the nonmetered part of the

models's predictive capability. Table 4.4 lists the average monthly water demand for metered

residents as predicted by the selected models along with the actual average monthly consumption

for the data sets. In general, predictions for metered consumption are lower than the average

(0% - 9%).
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Table 4.4. Predicted Monthly Water Demand for Metered Users in Gallons per Month.

Model

L-1

SL-l

L-2

SL-3

Average Valoe of Predictions

Metered (Gallons)

11550

10683

10835

10520

11543

Demand curves describing the hypothesized relationship between price and consumption

are presented for the four models in Figure 4.1. The estimated models are used to calculate the

demand curves depicting a change in water consumption given a change in the average price of

water. Similarity in rate of demand appears to be a consistent pattern for the plotted demand

functions as the four estimated models plot out fairly similar demand curves. The semi-log

model (SL-1) demonstrates the greatest variation, while the other semi-log models plot an almost

identical graph except for the y-intercept. This indicates a similar rate of consumption between

the different models, but slightly different levels of consumption possibly as a function of what

weather variables are included in the respective regressions.

The billing frequency and its predicted impact on water demand is presented in Table

4.5. The number listed under "billing indicates the number of months between billing mailings.

Table 4.5. Frequency in Billing and Predicted Metered Monthly Household Water Demand.

Billing Models

Months L-l SL-l SL2 SL-3

1.00 10635 9997 10425 9730

1.26 11550 10683 10835 10520

2.00 19079 12052 12444 12469

3.00 22595 14530 15413 14898
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Though this study was limited to using annual data, one would expect the frequency of billing

to exert a greater impact during the summer when the demand for sprinkling is highest and the

consumer faces a larger water bill than during the other seasons when the sprinkling demand is

low. Realistically, the frequency of billing cannot be any smaller than one month between bil­

lings given the present billing procedures adopted by most water utilities.

Table 4.6 shows the positive relationship between density and metered water demand as

estimated by the models.

Table 4.6. Impact of Density on Metered Water Demand.

Density Models

(# Persons) L-l SL-l SL-2 SL-3

2.37 10019 8932 9350 8785

2.50 10235 9150 9533 8978

3.00 11067 10037 10394 9760

3.29 11550 10683 10835 10520

3.50 11899 11009 11305 10609

4.00 12731 12076 12296 11533

The numbers listed in Table 4.6 depict the number of persons per household (3.29 is the

average) and the corresponding predicted monthly (household) demand for water by household

in gallons. As expected, as density increases, the demand for metered water increases. (This

fmding provides support for the idea that the proportion of domestic water demand is high

enough relative to total water demand that it is not overshadowed by the outdoor demand which

might be the situation with density and nonmetered water demand).
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Domestic Demand for Metered Water
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Price Elasticities

Price Elasticities for metered water users derived from the models at the mean quantities

are presented in Table 4.7. The figures for metered Colorado utilities are consistent between

models and range from -0.33 to -0.46.

Table 4.7. Price Elasticities Derived from the Estimated Models.

Model Metered

L-l - 0.337

SL-l - 0.457

SL-2 - 0.425

SL-3 - 0.405

Average - 0.406

"Price elasticities" were also derived for nonmetered water users. The estimates range between -

_0.72 to -0.76. There appears to be a strong negative correlation between average charges and

average consumption, although this relationship cannot be properly termed a price elastIcity of

water demand. It might be conjectured that either consumers respond inversely to average cost

(even if marginal charges are zero) or that the scarcity of water is communicated to users by

means other than price.

For comparison purpose's, Table 4.8 lists price elasticities derived from other studies.

Table 4.8 provides a context against which the results of this study can be compared to results

derived from other studies. These other studies used average price and cross-sectional data.

This combination most closely approximates this study's use of pooled data and average price.

Very few studies have used pooled data so direct comparisons are difficult to make. As can be

seen, the average price elasticities derived from this study are comparable with those listed in
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Table 4.8. The range in the price elasticity values presented (in Table 4.8) can be attributed to

such factors as: different functional forms, different relevant variables (e.g. cultural and geo-

graphical parameters; Foster and Beattie, 1979), and varied degrees of the quality of data

employed.

Table 4.8 Price Elasticities from Selected Water Demand Studies.26

Author(s)

Ware and North (1967)
Turnovsky (1960)

Primeaux and Holland (1973)

Grunewald et al. (1979)

Foster and Beattie (1979)

Male et al. (1979)

Jones and Morris (1984)

Average price elasticity

Price elasticity

- 0.67, - 0.61
- 0.28, - 0.25

- 0.26, - 0.37, - 0.45

- 0.92

- 0.47, - 0.52, - 0.65
- 0.30, - 0.33, - 0.38
- 0.60,_- 0.36, - 0.69
- 0.69, - 0.68

- 0.20, - 0.37, - 0.68

- 0.18, - 0.29, - 0.34

- 0.46

The studies cited in Table 4.8 relied almost exclusively on metered data and/or nonmetered data

that was included in the data set but not separated out.
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CHAPTER V

SUMMARY AND CONCLUSIONS

Overview

This study was undertaken to identify factors affecting residential water demand in

Colorado, and particularly, what differences, if any, exist between metered and nonmetered

water users and their respective demands for water. Data used in preliminary analysis published

by the American Water Works Association in their 1982 production report27 indicated that half

of reporting membership utilities for Colorado were nonmetered and further, that nonmetered

customers, on the average, used more water per household. If that information was reflective

of all of the water utilities in Colorado, significant savings in water might made in switching to

metered systems.

A clearer understanding of the differences in water demand behavior between metered

and nonmetered water users was needed. A literature search of the subject yielded surprisingly

little except for the early report by Howe and Lineaweaver (1967). And, despite a significant

difference of the mean being obtained with the AWWA data, our preliminary statistical analysis

proved unable to establish additional reliable relationships. Since all further leads for securing

reliable consumption figures for water demand for any of the southwestern states proved futile,

it was decided to initiate a mail survey for the purposes of securing reliable data from water

utilities. It was assumed that the AWWA production report to be reflective of the ratio of

metered to nonmetered utilities, so that this approach appeared to be a reasonable way to secure

needed data for both groups of water users.

An explanation of why there might be a problem in obtaining nonmetered water

consumption data appeared with the results of the mail survey. Between 1982 and when the



survey was sent in 1986, the percentage of nonmetered utilities had either declined in numbers,

or no longer had membership with the AWWA based upon the responses that were received.

Several of the utilities that were contacted indicated they had recently switched to a metered

system or were in the process of switching. Many of these were unable to provide any non­

metered data for the requested years.

In addition, many of those utilities that were still nonmetered were unable to complete

the survey because the requested information did not exist. (This situation was also applicable

to some metered utilities, but more often other reasons were supplied as to why the survey could

not be completed such as limitations on staff and/or time.)

In general, the results from the survey indicated that good, reliable data could be difficult

to obtain. One likely explanation for this situation is that it is not uncommon for utilities

(metered and nonmetered) to be "production" oriented in their approach rather than "consump­

tion" oriented. Their focus (and subsequent available data) is oftentimes directed to where the

water comes from rather than where it goes. A not uncommon comment that was received was,

". . . we have no such breakdown for the information you are requesting. ,,28 In addition,

evaluation of the returned questionnaires produced the realization that reliable data for some

variables were almost inherently elusive. Numbers for population figures and conservation

programs proved especially spotty. It also became apparent that an inevitable amount of bias

was present in the data because of the "casual" accounting practices used by many water utilities

with regards to consumption figures for different user groups. It is not uncommon for utilities

to combine several water user classes into one or two inclusive classes. This situation seemed

especially chronic for nonmetered data because most nonmetered systems are unable to
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accurately measure water consumption by user class. This appears to be an inevitable problem

with the data and no statistical technique can compensate for it since quantification of the error

is an unknown. For this study, several responses were discarded due to poor quality and/or

insufficient data despite the need for an adequate sample size. Based upon the survey responses,

it appears that despite cries of pending water shortages in Colorado, water is oftentimes

produced, sold, and measured as if it were not particularly scarce.

The data collecting portion of the survey did not yield the number of responses originally

expected, especially regarding nonmetered data. However, the remaining data that was used for

the study is considered reliable in spite of the small sample size. After much discussion, it was

decided that a statistical technique was available to partially compensate for some of the

deficiencies of the data, and make possible the pursuance of the original hypothesis.

The Results

-
A series of regressions were utilized as a mechanism to try to establish a consistent

-
pattern of behavior for water demand. And in fact, consolidation of the results did emerge from

this sequence of reg~essions. Patterns of behavior that were suggested by earlier regressions

were statistically supported. The results of anyone model were too weak to offer any

substantial support for the original hypotheses. But taken together, the trend of results that was

established provided statistical support for metered water demand, and provided circumstantial

support for non-metered water demand and differences in behavior between the two consuming

groups.

It appears from the results presented in Chapter IV, that the increase in statistical

validation is largely directed towards the metered data set. Several fluctuations in the metered
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data set in the frrst two stages was smoothed out in the later stages as the sample set was

expanded. In general, statistical measures such as the adjusted R2 and the F-statistic improved

as did the reliability of certain variable coefficients. DM (density for metered users) which was

usually significantly different from zero for the frrst year only, and BM (billing for metered

users), which was not significantly different from zero for the second year stabilized at a

consistent level of significance in the later regressions. (See Table 4.1 for variable defmitions).

The same can be said for the weather variables, TM and PM (temperature and precipitation for

metered users, respectively).

In contrast, satisfactory results for the nonmetered samples did not materialize. And

although some variables were consistent (APNM was always negative and significantly different

from zero, BNM was never significantly different from zero), most coefficients could not refute

the null hypothesis (Cljxi = 0). Due to the "nonexplanatory" power of the model(s) to explain

nonmetered water demand, this study can offer only circumstantial evidence for nonmetered

water demand. It is difficult to say if the variables included in this study do not influence non­

metered demand and/or if the hypothesized relationships were not sufficiently developed because

of the low number of nonmetered observations, and/or if the quality of the nonmetered data set

was insufficient.

Limitations of the study to be explained include why some variables, initially

hypothesized to influence the demand for water, were excluded from the study, and why certain

variables for nonmetered demand, in general, did not perform as expected. For both metered

and nonmetered demand, the presence of a conservation program was eXPected to negatively

influence the demand for water. Income, or some proxy for income, is expected to positively
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influence water demand. However, it was not uncommon for the income variable(s) to exhibit

poor results. In earlier studies, this problem has been attributed to poor data, a lack of variation

in the cross-sectional sample data, correlation among proxy variables, and/or a very small water

expenditure to total income ratio. In this study, all of the above may have contributed to the

lack of statistical significance demonstrated by the income variable.

The conservation program variable also proved indeterminate. The absence of any clear

pattern of behavior for this variable is likely due to the immense amount of variation that exists

in conservation programs between water systems and the difficulty in adequately quantifying that

variation. There are so many different dimensions to a conservation program: type of

program(s) employed, degree of implementation, perceived need and burden of incidence, degree

of commitment by the utility, etc. Even with accurate and reliable data, it would be very

difficult to quantify this variable.

Specifically regarding nonmetered water demand, several variables in the study exhibited

unexpected results. For example, density was expected to positively influence the demand for

nonmetered water. Surprisingly, DNM was usually negative in the non-metered sample, and not

often significantly different from zero. It is not clear why water demand would decline as the

number of persons per household increases for nonmetered households. Assuming that density

and nonmetered water demand are positively related, one possible explanation would question

the reliability of the population figures provided by the utilities. (And in fact, several water

managers made cautionary remarks concerning the reliability of the population figures being

provided.) This situation in combination with the small number of nonmetered data points may

be responsible for the inability to support the a priori hypothesis.
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Of course, it is possible that density and nonmetered demand are inversely related despite

the initial hypothesis. This situation could exist if the difference between metered and non­

metered users is primarily concentrated in their respective outdoor watering demands, and if

domestic indoor water demand for nonmetered users is small enough relative to their outdoor

water demand. Then, an increase in density on total water demand for nonmetered users would

be overshadowed by the dominance of the outdoor demand. The use of monthly data versus

average annual and the separation of indoor from outdoor demand might better clarify this

relationship.

And still another explanation is that nonmetered systems might have a higher percentage

of large families, and that larger families are less able to afford large yards.

A reduced sprinkling demand would result in a lower total consumption. For this study, five

of the six nonmetered communities have strong agricultural ties where large families are

common.

The effect of weather variables on nonmetered demand also proved elusive. The initial

hypothesis postulated that nonmetered users would be less sensitive to changes in temperature

and precipitation (and the subsequent impact it would have on outdoor demand) than metered

users. This hypothesis was supported by the results only in the sense that the results failed to

support nonmetered water demand relative to metered demand. Therefore, it is inappropriate

to conclude from these results that nonmetered residents are less sensitive to changes in

temperature and precipitation than metered residents. However, it should be noted that

whenever the two populations were treated as one for temperature and precipitation, the statistics
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for the coefficients, Tc and Pc (temperature and precipitation for metered and nonmetered

combined, respectively), were not weakened and in some cases even strengthened.

In general, the weather variables demonstrated the greatest degree of fluctuation in the

regressions. This is not surprising given the variable nature of both the weather variables and

the reporting of data. The actual weather phenomenon, perception, and recording of weather

can be highly dependent upon local conditions and subject to human perception and

interpretation. It is not uncommon for a single weather station to be the only point of weather

data collection for several miles. Therefore, the events and quantities recorded by a weather

station may differ significantly from the weather encountered by nearby areas. One might

reasonably assume that errors will average out in the long run, but for a short term study with

a small sample such as this, discrepancies between recorded data and information utilized by the

water user may be too great to be compensated for by the assumptions of randomness. Both

temperature and precipitation can demonstrate variation within short distances. However,

precipitation can vary immensely in quantities and distribution patterns especially with regards

to its impact on the demand for water (sprinkling demand). Therefore, discrepancies in

precipitation data between the recording station and nearby communities might be expressed with

less dependable results. In this study, PM (precipitation for metered users) appeared to be the

more consistently significant (different from zero), though TM (temperature for metered users)

appeared to exert greater impact on water demand when it was statistically significant.

An additional problem for the nonmetered water demand models is reflected in the values

assigned to the intercept term(s). The models oftentimes assigned a high proportion of total

water demand to the intercept term. (This phenomenon was especially acute with the log-log
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function and can be interpreted as additional evidence illustrating the difficulties associated in

trying to model for nonmetered water demand in addition to a poorly dermed role for the

intercept or constant term.) For nonmetered users, the value(s) for the intercept term(s)

predicted by the models also was proportionally higher than that predicted for metered water

users. In all of the models, the intercept term for nonmetered demand was greater than required

to cover basic water needs.

The consistency in sign and significance of the coefficient for average price for

nonmetered demand presents the result most difficult to explain. As was postulated earlier, the

coefficient for APNM was expected to be statistically equal to zero. The most obvious

explanation for why this is not so, is that the results are spurious. And certainly, one does not

have to look far for a reason given the small sample set for nonmetered data, and, .i! priori, that

nonmetered customers should not respond to an incremental "price" since one does not exist.

However, for argument's sake, let us assume that the results are not spurious and in fact, a

negative relationship does exist between average price and nonmetered water demand. Is there

an explanation that can support this rmding?

The crux of why this rmding might be spurious is based upon the assumption that people

respond to changes in marginal price. Since nonmetered water users have a zero marginal price,

they should not be affected by any incremental price as dictated by economic theory. They pay

a set rate regardless of how much water they consume. However, earlier in the study the

question of people's "perception" concerning the price of water was raised since most other

consumer goods are bought on an incremental (per unit) basis. Therefore, when a consumer is
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in a store musing over prospective purchases, a linear way of thinking might be a likely tool of

analysis. What is the best buy that will provide the lowest average price for the unit bought?

And in fact, the resulting "linear" function may be such a common response to price comparison

buying, that it may be an unconscious reaction even when it is not deemed appropriate

(theoretically speaking), such as when flat-rate pricing is present. Is it possible that consumers

have been so conditioned to using price as a mechanism to regulate the consumption 3)ld use of

a resource, that if the real marginal cost is not obvious, one will be created? Hence, the nonme­

tered water users in this study had developed a mental incremental "price" for water in spite

of standard theoretical expectations. Their perc~ptionof the cost of water was likely less defmed

or maybe not even consciously recognized, but it existed and decisions regarding the use of

water were made based upon that perception.

Of course, if nonmetered water user~ do perceive a positive marginal price for water,

then one would expect the frequency of billing also to affect the nonmetered demand for water.

However, the results consistently indicated that billing did not affect the nonmetered demand for

water. Why should nonmetered water users appear to be so responsive to price but not to billing

frequency? The data for this study shows that only one nonmetered utility mailed their billing

on a monthly basis. The majority were mailed bimonthly with a few mailing water bills every

three months (average = 2.17 months). Such a lack of variation in combination with the small

sample set might explain why the regressions for nonmetered water users failed to reflect a

response to billing frequency yet appeared to respond to changes in average price.
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Summaty

In summary, this study attempted to quantify differences in water demand behavior

between metered and nonmetered water users. Why such a dearth of analysis on nonmetered

water demand existed despite a predominance of nonmetered systems until recently became

apparent as the study evolved: nonmetered water data is inherently elusive. It is very difficult

to say, categorically, that nonmetered systems fit into one pigeon hole of description and metered

systems fit into another. Individual utilities in both systems presented evidence of a rather

casual approach to accounting for water and a general lack of intense concern as to where the

water was going - either to consumption and/or system losses. However, as the study

developed, overall patterns of behavior emerged that separated and identified different modes

of behavior between the two groups. For example:

(1) Of the nonmetered utilities contacted, t!te majority could not provide the requested

data.

(2) The average charge for water produced by nonmetered systems was noticeably

lower ($0.60/1000 gallons) than the price for metered water ($2.25/1000 gallons).

(3) The average monthly household demand was higher for nonmetered (27,176 gallons)

than metered (11,543 gallons).

Since the nonmetered data is more likely to contain system losses (and/or water demand

for other user classes), it is not unlikely that the consumption figures are inflated. Subsequently,

when calculating the average price of water, that price will be deflated downwards due to the
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inflated consumption figure. A more accurate comparison may be the average monthly bill of

the two data sets, nonmetered ($16.31) and metered ($23.60).

In light of these observations and despite their resistance to quantification, common sense

suggests that nonmetered systems will probably utilize more water than metered systems, ceteris

paribus. It is difficult to defend casual management of a resource if it is truly perceived to be

scarce. Therefore, it is likely that nonmetered systems reflect a secure and plentiful water

source relative to expected demand. In such cases, a tight accounting system is not critical

because of a perceived low risk of exceeding consumption limits and costs are not perceived as

excessive by the consumer.

Given this elusive "background" information, it is understandable why some of the results

of this study were weak and inconclusive. Much of the characteristics that describe nonmetered

water systems are "too soft" for quantification and traditional statistical analysis.

Because the -results for nonmetered water demand were not defInitive, any inferences

drawn for the nonmetered water demand must rely heavily upon circumstantial evidence. In a

situation where adequate data is unavailable, circumstantial evidence may be one of few methods

available for providing supporting information for hypothesized relationships. Such an approach

is obviously lacking, but necessary when the data does not exist and insights into behavior can

only be provided by carefully guarded inference. Contrast this to the metered water demand

behavior as predicted by the models where the fmdings are more defInitive and can be validated

or refuted with greater statistical confidence.

However, despite the limitations of the study, some fmdings did emerge that do add new

information describing water demand behavior. These fmdings pertain mostly to metered
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demand since that is what is most supported by direct statistical means. The observation that

the results for metered improved throughout the regressions while those for nonmetered did not

do suggest that there is a degree of difference in behavior between metered and nonmetered

demand for water. The low number of nonmetered data points collected for this study is a

weakness but not a deathblow. The presence of inadequate nonmetered data simply reflects the

problems inherent in dealing with a nonmetered water system. This is a fmding in itself that

describes how utilities value and distribute nonmetered water and is indicative of how

nonmetered water users might value that water.

The fmding that billing frequency is significant in affecting metered water demand is a new

result in water studies. Milliman (1963) suggested that billing frequency could affect water

demand but did not present any supporting evidence. No other studies have published this same

fmding. This type of information can be used effectively by water managers if nonstructural

reductions in demand on the system are desired.

Density was confmned as an important explanatory variable for metered water demand.

And, as was hypothesized, metered users do appear to respond to the weather variables, average

maximum summer daily temperature and average monthly precipitation.

An "interesting" fmding of the study is the significance of average charge in explaining

water demand for both metered and nonmetered water users. This result can be interpreted as

providing additional support for the idea proposed by Foster and Beattie that perception is

critical in determining the proper price specification. For this study, average price was deter­

mined to be the proper price variable. For other studies, marginal price or some other

combination of charges might prove to be the preferred price variable(s).
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The fmding that nonmetered water users might also respond to changes in average price

provides additional, though unconventional support for the importance of perception and how

it affects economic decisions. Given the low average price for nonmetered water ($0.60 per

thousand gallons) in comparison to that for metered ($2.25), it is logical that nonmetered water

users are shown to have a more elastic response to changes in price than metered water users

(assuming that nonmetered users are price responsive). And whereas the result is anything but

conclusive, it does provide discussion for the parameters of perception and economic decisions.

And fmally, the derived price elasticities provide additional support for the validity of the

results produced by the study. The average price elasticity value derived from the four models

of -0.41· with a range of -0.34 to -0.46 for metered users is very close to the average elasticity

of -0.46 for comparable studies cited in Table 4.8. This fmding provides little surprise

regarding the expected inelastic response to price by metered users as found in other water

demand studies but does help to further affrrm the validity of the models.

An average "cost elasticity" of -0.73 with a range of -0.72 to -0.76 for nonmetered users

was also derived from the four models, but conclusions are more tentative. (No other studies,

to our knowledge have estimated elasticities for nonmetered water demand.) Because of the

lower unit price paid by nonmetered users, a relatively more elastic response to changes in the

price of water is expected relative to their metered counterparts. Of course, the reliability of

the derived cost elasticities for nonmetered users is more uncertain than those for metered users.

In summary, this study has provided the opportunity to re-examine the importance of

perception as a key parameter in modeling for economic decisions. The possible fmding that

nonmetered water users appear to respond to changes in cost even though in fact their marginal
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price is zero, is noteworthy in describing a subset of consumers and their economic decisions

that challenges traditional economic theory. Billing periods also affect perceptions in ways that

changes perception are important in water demand. The weather variables also rely heavily on

perception, both in the sense of perceiving the actual weather phenomenon and how that

assessment will affect the demand for water.

So much of our dealing with water is rather different from other consumer goods. For

example, a metered customer never knows exactly what the fmal water bill will be until at least

several weeks after the consumption period. In addition, the quantities by which water is

normally sold (1000 gallons or 100 cubic feet) is not typical of other consumer purchases. How

many consumers really know what 1000 gallons of water can do? Translating those quantities

into descriptions that consumers can more easily identify would allow for the development of

a more accurate feel for the value of water. For example, informing people that 1000 gallons

of water is comparable to x number C?f hours of lawn watermg or x number of dishwashing

cycles would provide a meaSU!e of consumption that is more easily comparable. Again, this

relates to perception and one's ability to perceive the value of water by identifiable actions and

decisions.

It is one thing to understand the importance of perception in economic decisions, and it is

another to realize it. It appears that the value of perception and water demand has not been fully

realized by the water industry. Hopefully, some of the fmdings presented in this study will

stimulate that realization and its influence on water demand.
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APPENDIX I

QUESTIONNAIRE PACKET

This appendix presents a copy of the questionnaire packet. This includes a six page

survey (front and back on three pages on legal sized paper in the original) and two cover letters.

The frrst cover letter was signed by the author and provided a brief description of the purpose

of the project, the intended goals, and the requested information from the contacted water

manager. The second cover letter was signed by the Department Chairman and encouraged

provider participation in the survey. Department letterhead was used for the (second) cover

letter signed by the Department Chairman to convey formal department support for the project.
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Dear Water Manager,

I am conducting a study of the factors affecting residential water use in the southwestern United

States to satisfy requirements for a graduate degree in natural resource economics. In particular,

I wish to establish a clearer understanding of the diffences between metered and non-

metered water demand.

Your name and address was drawn from the American Water Works Association's mailing list

which does not distinguish between job titles within the management category. I wish to contact

the manager or director of each water dis-tributing agency of residential and nonresidential

water. If you are not that individual, would you please forward this questionnaire to him or her.

In addition, I have tried to ensure that each organization receive only one survey, however, if

you do receive any auplications, disregard them and please accept my apologies.

Due to the unavailability of timely and quality data, I feel it necessary to contact water compan­

ies and utilities directly. I am seeking information regarding the quantity of water consumed,

rate (billing) structures, population served and conservation programs for 1984 and 1985.

Individual responses will be kept confidential and results will consist of aggregated data only.

A summary of this study will be made available to interested participants.

My goal is to secure as large a sample of complete data as possible. Therefore, I have tried to

structure this survey so that the questions are clear and unambiguous. I have also tried to allow
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for personal modifications on your part in case your information does not easily conform to the

structure of the question. Please feel free to add comments where they would help remove

ambiguity.

I am fully aware of your own busy schedule and hope that this will place a minimum of

requirements on your resources. However, if tradeoffs must be made, I would prefer to

receive as complete a data as possible for 1985 rather than semi-complete data for the two years

requested. If you have any questions, please contact me. Thank you.

Sincerely,

Laurie Walters, Research Assistant
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Date

Dear Water Manager,

-This letter is to indicate my support for Laurie

Walters's research effort and to strongly encourage you to participate in this s1!rvey.

I am confident that the inform~tion derived from this study will help to improve the

understanding of the economic_factors affecting water consumption. We expect the results will

be useful to water utilities and their managers in planning for the future. Of course, a high

participation rate will ensure a valid statistical analysis which will allow for more precise conclu­

sions. Therefore, your participation is, once again, strongly encouraged and appreciated.

Thank you for your assistance in this matter.

Sincerely,

Ken C. Nobe, Chairman



6. BOW IS !HE SEWER CHARGE DETERMINED?

7. IF THE CHAIGE Foa WATn IS COMBINED WITH 0THE1l CHARGES ON THE BILL. IS IT IDENTIFIED
SEPAlAtELY?

YES

8. How WERE THE POPULATION FIGtmES LISTED IN QUESTION 14 DETElIHINED?

dey's ut:1aate

otber

9. WATEJl CONSnVATION PRDGlWtS

U.s. casus - if so. what year?

A. DO YOU HAVE A alNSElVATION PIOClWf IN EFFECT?

B. &OW LONG BAS tBtS PIOGUH BEEN IN EFFECT?

YES NO

C. DOES IT OPEllAn allfTINDOUSLY Olt ONLY DUItINC SHORTAGES?

D. WAT FORK DOES THIS PRDGUK TA1CE? (Circle .. uay optiou .. apply)

outdoor use sc:heciuling

voluntary ....ure.

educatloaal

ratio11i.ng

1Ddoor coaservatioD device.

E. PLEASE DESClllBE YOUR CONSERVATION PIOGL\M IN A FEll WIDS:

10. WOULD YOU OBJECT TO BEING CON'l'ACTED BY TELEPHONE FOR CLAJlIF1CATIONS?

11. IF YOU HAVE NO OBJECTIONS. PLEASE PBOVIDE A lAKE. TITLE AND n:LEPBONE NUMBER OF
tHE PElSON(S) TO CONTACT.

12. WOULD YOU LIlCE TO RECEIVE A SUMMAltY OF tHE COHPLETEJ) STUDY? YES NO

13. ANY ADDITIONAL COHHENtS? (PLEASE ATTACH ADDITIONAL SHEET(S) IF NECESSARY)

14. PLEASE DETACH THE TWO COVER LETTEllS WHEN YOU lETURN THIS QUESTIONNAIRE.
THANK YOU FOR YOUR TIME AND CONSIDERATION!
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5.'. 1985 RATES AND CHAlGES FOA WATEl CONSUHPTION

'1•••• Id.ntlfYI (I) the u••r cl••••• (If they .r. dlff.rent fro. the one. ll.ted here). (2) the u.ual blilln, period (e.R••onthly. bl.onthly,
.tc.). (3) the .lntau••ervlc. char•• for v.ter p.r billin. p.riod; (4) th••Ini.u•••llon••• allowed p.r btllina p.rlod vlthout .ddltlonal char•• ;
(5) the type of rat••cructure pre.ent (con.tant, Incre••ln. or decllnln,), (6) the char.e p.r unlta con.u.ed of w.ter and the ran,e of ,allona.e
to which that prlc. appll.a (•••• 65~/IOOO ,.1a. for 3500-7500 ••1•• conau••d); (7) the la.t block .o.t con.u••ra fAil into when faeinA an lncrea.­
lnl or dec1lnln, block rate .tructur. (•••• vlnter uae-block 2/au...r ua.-block ), and (8) .ny other char.ea that ara pr•••nt on the wat.r bill
(••• lesend at the bot to. of the ch.rt). Pl•••• attach a copy of your rat••chedule(e) If It will h.lp to cl.rlfy the Infor••tlon beln, aousht
.apectal1y for lnacance. where dlffer.nt rate••re .pplled at dlff.rent tl.e. of the y•• r.

Uau.1
bUlln.

Hlnl.u.
.ervice

Hlnl.u.
.aUona,.

Type of
rate

Price ln let
block .nd

Price In 2nd
block .nd

Prlu in lrd
block and

Prlce In 4th
block and

Lut block
faced .o.t

Other charRe••
pre.ent on

Lelend for other charge.1 .everl.~la.l&)••iectr!c(eJ. tra.h cotlect!~n(~). none(n) and other(o)-pl.a•••pectf,

...._-_... ----- ....... --- _...-- - ------- --- ----- -_.._-- -- --- - ..- - _... - -_.._- -
a. Single f ••tly
v/ln dty Ulatta

b. Hulttfa.tly
v/ln city ll.tt.

c. Other
(r.. ldenttd

d. Co_erclal

e. Indu.trtel

f. Inultutton.1
, Other Gov't

A. Hunlclpal

h. Irrl.at Ion

1. Other

.

~

S.B.Z. 1985 NONMETERED
RATES' CHARGES

.tngle f_l1y
vlln city It.ltl

."lUfa..Uy
v/tn ctty ll.ltl

I

other(re.ldenttal) other(nonreatdentJal)

If non~elered charlel are IJlted, ple••e deacrlbe how these rate. are determJned (for example, chArRes ~A 3 function of lot Alze, persona per
huu.ehold, nUlllber of vat.r uslnl device., .he of connection, etc.). It lIlIIy be ea.ler to Include a copy of the rate schedule/charges for your
nonmetered custo••ra.



5.A. 1984 RATES AND CI~RGf.S FOR WATER CONSUMPTION

rle••e ident1fyl (I) the u.er cl••••• (If th.y ar. different fro. the on.a Itated h.r.): (2) the uau.l btllin. p.rlod (•••••onthly. biMonthly •

• tc.): () the .Inl.uM ••rvic. charle for vater p.r blilin. p.rlod: (4) the .1nl.u•••llon••••llowed p.r bll11nl period vltho~t additional charAe:

(5) the type of rate .tructur. preaent (con.t.nt. Incr••• lnl or declinlnA): (6) the char•• per unit. con.u.ed of vat.r and the r.nle of ••110nale

to vhlch that prlc••ppl1ea (•••• 6Se/lOOO la1•• for 3500-7500 .ala con.u.ed): (7) the la.t block ~at con.u..r. fall Into wh.n f.clns an Incr.aaln.

or decllnin8 block rate .tructure (e ••• vlnter u••-block 2/au..er u.e-block 3): and (8) any other ch.rs•• th.t .re preaent on the water btll (••e

lelend at the botto. of the chart). Plea.e attach. copy of your rate .chedule(a) If It will h.lp to clarify the lnfor.ation beln8 .0Ulht e.peci.lly

for 1natance. where different rate. are applied at different tl.e. of the year.

U.ual
bUlInl

Hln1.u.
a.rvlc.

H1ni.u.
.allona.e

Type of
rat.

(fill in a•••ny block. a••pply)

Prlc. In lat Prlc. in 2nd Price In Jrd
block and block .nd block .nd

Prlc. In 4th
block and

Laat block
fac.d MO.t

Other clllirle••
preaent on

eaend for oth.r charae.: .ever(.), a.a(jJ~ electrlc(.), tr.~h_~~!l~~tl~p(t). none(n) .nd oth.r(o)-pl•••••p.clfy

............-..., "" ........~ p ......uu '-".&11.- _.&&uw'C'u _"'IIU,,",,"U". "IU."I.&'"'l" "I........ J .... u ••••••• ...--..... :.
• ~ - .. __•••• J ---- ----

a.Stngle fa.Uy
wlln city 11.lt.

b. Hult ifalii11,
vlln city lS.1t.

c.Other
(realdent Ial)

<l.Co_erclal

a.lndu.trlal ,

f.ln.titutlonel
-

" Other Gov't

8. Municipal I

h.Irr18ation

LOther

·L

00
00

5.A.2. 1984 NONMETERED
RATES " CHARCES

alnll. ,..l1y
v/ln city li.it.

.ultU••Uy
'flln dty U.iu

oth.r(r•• ldentlal) other(nonr•• tdentl~l)

If non.etered charae. are 11.ted. pl •••• de.cribe hov th.ae rate. ar. deter.ined (for axa~pl., ch.rgea •• a function of lot .1ae, peraon. per

hou.ehold. nu~er of water u.lna devlc•• , .1&. of connection, etc.). It .ay be ea.l.r to Include a copy of the rate .chedule/charge. for your

nonmetered cuato~er••



cueto.er. eal.t In the •••• u.er c1•••••• pl•••••pllt the box with. dlaaon.l p1aclnl ••tared u•• in the top 1.ft and non•• tered in the bot to.

POPULATION
St;RVED

NUHBER OF
SERVICE
CONNECTIONS

TOTAL
ANNUALDECNOVOCTSEPTAUGJULYJUNEHAYAPItWtFEIJAN_..-. ._- --...- -_... -_...- - _. -- -_.. -- ... --- ..-......_._-

•• H.tered
1. alnlle ,..l1y
w/ln city 11.1t.

U ••ultU••Uy
wHo city 11.1u

111.other(de.crlbe)

tv.TOTAL METERED
RESIDENTIAL

b.Non.etered
1. dnlle ,..l1y
vlln city 11.1U

11..uhU..Uy
vlln city 11.1t.

Hl.oth.r-{d..cl"lb.) ,

iv. TOTAL NOHHETEUD
"RESIDENTIAL

-- , - . . ~ .. .. .. J! • _ ~.a ,. I •• _..... L _ .. __ ." . - _.JI , ..... " .- _ --II , .....~ • ~ L __ L .- .. . . .

'", RESIDENTIAL

4.8. 1985 WATER DELIVERY DATA (IN HILLION CALLONS)

00
\0

- .!!i••• -.-- --_._--- ...- --- ---.. - ..
2. COHHERCIAL

(reetauranta.
off lcea etc. )

1. INDUSTRIAL

4. INSTITUTIONAL
, OTIlER COV'T

(churche. .choo1. etc)
5. HUNICIPAL

(.treet cle.nlna, 101f I I
cour••• Dark. etc.)
6. IRRICATION

(co_erchl hI''' crop•
, Ireenhuu8•• • tc. )

7. TOTAl. HETERED
FOR ALL CLASSES I I_ ......

I8. TOTAL NONMETERED
FOR ALL CLASSES

9. TOTAL FOR ALL
USER CLASSES

(metered+nonaetered)



POPULATION
SERVED

NUMBER OF
SERVICE
CONNECTIONS

TOTAL
ANNUALDECNOVOCTSEPTAUGJULYJUNEHAYAPRMARFEBJAN

1984 WATER DELIVERY DATA (IN HILLION GALLONS)

RESIDENTIAL-- ----- - -- -_.. --- -- -- - - - -- - - . -.--- ---

a.Hetered
i.dnlb b.Uy
wlin city U.iU

11. ..ultU...Uy
w/ln city U.1U

iii.other(de.crlbe)

Iv. TOTAL HETERED
RESIDENTIAL

b.Nonmetered
1.81ngle f ...Uy
w/ln city U.iU

i1.lIIultifslIl1ly
wi in city U.IU

iil.other(deacribe)

Iv. TOTAL NONHETERED
RESIDENTIAL

4.A.

Pleas. Identify whether u.er cla'.ee otheith~re.idential (II.ted below) ai."ieiea (lOI-or Ilon;.terttd-(NH): If both .etar.d and nonaetered

cuatolllers .xist In the .allle u.er cl•••••• pla••• split the box with. dia.onal placina .etered use In the top left snd non.etered In the botto.

I_ ...... _ ••w .'WI............__• -'-"'"-LU •••.II.A7.

2. COHHERCIAL
(reataurant••
offices. etc. )

1. INDUSTRIAL

4. INSTITUTIONAL
, OTItER GOV'T

(~hurche •• achooh .etc
S. HUNICIPAL

(atreet cleanlng,lolt
couraes,parka etc.)

-
6. IRRICATION

(commercial fsr. cropf
, greenhou•••••tc.)

7. TOTAL HETERED
FOR ALL
CLASSES

8.- TOTAL NONMETERED
FOR ALL CLASSES

9. 1'O'fAL FOR AI.L
USER CLASSES

(metered + unmetered)
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WATEIl USE SURVEY

Pl.a•• read through the quest10Dulre before act..,tinc to cOliltlete it siDce avareDes.
of cer~aln questions ..y help you to better UDder.taod the objective and .cope of otber
questlons. If you canaot aasver a que.clan. ple.a••t&te the rea.on vhy (for ax-aple.
"DOC appllc.ble" or "WorutlOD DOt available") racher thaD leaving it blank. Also.
pl.a.e DOce that unic. of ....ure..nC y vary between quescions (for exa.ple. la11OD.
v•• a111ioQ ••llon.). If tbe unic of ur...ac .pecified for. particular que.tlOD
1. not appropriate for your daca. staply cross lc out &ad legibly 1DIert your OVQ.

TbaDk. you.

1. OIGARUATION _

MAtLINC ADDlESS _

TELEPBOHE _

1. AHlRW. WATEJl TO DIsnIlUTION SYSTEK

Vat.r to DistributlOD Sy.t..

(aiDua) 10•••• and unaccounted
for wacer

Total Water Accouated lor

3. 1IOHKEtE1ED (WIDENTUL) BOUSEHOLDS SEJlVED

a. S1ql. faa11y v/ia city l1a1ts

b. IIultifa.lly w/ia city l1a1ts

c. Other (describe)

d. Total aoaaet.recl householda
serv.d

1984

1984

1985

u1l10a
--------- lala.

u11ion
--------- lal••
_________ 1I11110a

.ala.

1985

4. 1984 AND 1985 !fOtmlLl' AND ARNUAL WATEJl DELIVERY

The DeXC two pales uk for data OD vater uae (by IIOIltb) for 1984 and 1985 for the dif­
ferent uur class.. dODC with que.t1ou relat1D& to population .ened and the DUMer of
.ervice coaectiou per user da... If your data is DOt of a IIOIlthly fOmAt (for ex.aaple.
quarterly). si8ply ~1fy the ,rld formac to fit your data.

In order to accurately _ ••ure r ..ident1.al wac.r uae. 1 Med to mow the .lllDUDt of weter
that il used in each user cla.. that fac.. a ..parace rate structure. (bte structures
and chars.. are CD9uecl in question '5.) If your ova accOUDtinc ..thods do Dot ideatify
u••r clu... exactly eoaparable to the OD.. listed beret asaiD••taply ~ify the ques­
tion foraat co acca.odaee your OVD catesories. but pleueidentify or bri.fly de.cribe
what those catelories are. It you have re.ideatial users broken down lato additioaal
catesori.e. (otber thaD tho•• listed here). list tho.e alao. If data lousbt by a pareic­
~lar question are Dot available, pl..se e.timate thea aDd ideDtlfy thea as est1aates.

Below are sa.e eza.ple. 11luseratlDs how qU.stiOD '4 ulht be eo.pleted aDd/or .edified
by a pro.pective participant.
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APPENDIX II
RAW DATA

Annual data collected with the survey and used in the analysis is presented below. Utilities are

not identified to ensure promised confidentiality (see Appendix 1, cover letter). The variables

for which the data are presented are defmed below:

CITY. This is a seven digit number assigned to each separate reporting entity. The fIrst

two digits identify the year, 1984 or 1985 (84 or 85, resPectively). The next

three digits represent the assigned identification number. The last two digits

indicate that this is annual data rather than monthly or quarterly, etc.

BILUNG. This value indicates the number of months between the billing of water bills (1,

2, or 3 months).

CONSERV. This is a dummy variable indicating whether a conservation p~ogram was in

existence at the time of tJte survey (1 = yes, 0 = no).

INCOME.

AVGBIL.

MARGPR.

AVGPRC.

This is the avet:.age yearly income Per household as calculated by the 1980 U.S.

Census (dollars).

This is the average, monthly bill for water consumption for customers (dollars).

This is the (average) marginal price paid for water by consumers for water

demanded ($/1000 gallons).

This is the average price paid for water by consumers. This value was

calculated by dividing the average water bill (AVGBIL) by the average monthly

demand for water (DEMAND) Per household ($/1000 gallons).

MINGAL. The value for MINGAL reflects the quantity of water allowed for consumption

before a marginal price for water is charged. The value of "50,000" was used to
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TIME.

POP.

TEMP.

represent nonmetered systems and was arbitrarily chosen as a sufficiently high

number (gallons).

This is the number of years a conservation program had been in existence at the

time the survey was completed (years).

These numbers are population figures for the area serviced by the water providing

entity (number of persons).

This is an average value of the maximum temperature for June, July, and

August (degrees Fahrenheit).

PRECIP. This is the total precipitation for June, July, and August (inches of rainfall).

DENSITY. Density indicates the number of Persons Per (water consuming) household

(number of persons per household).

DEMAND. This is the average quantity of water demanded by residential household per

month {gallons).
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CITY BILLING CONSERV INCOME

8402012 1 1 15158
8406012 1 0 14633
8411012 1 1 16423
8412012 2 1 16423
8414012 2 1 15509
8415012 1 0 12842
8415112 1 0 12842
8417012 2 1 15509
8430012 1 0 11591
8430112 1 0 11591
8431012 1 1 11591
8431112 1 1 11591
8433012 1 1 11591
8433112 1 1 11591
8436012 1 0 11501
8437012 3 1 11501
8437112 3 1 11501
8440012 1 1 12323
8444012 1 0 10112
8449012 1 0 10186
8452012 1 1 10650
8453012 1 1 9421
8458012 1 0 12846
8463012 1 0 9961
8463112 1 0 9961
8416512 1 0 11591
8416912 1 0 10149
8502012 1 1 16143
8506012 1 0 15584
8511012 1 1 17573
8512012 2 1 17573
8514012 2 1 16409
8515012 1 0 12842
8515112 1 0 12842
8517012 2 1 16409
8530012 1 0 12402
8530112 1 0 12402
8531012 1 1 12402
8531112 1 1 12402
8533012 1 1 12402
8533112 1 1 12402
8536012 1 0 12157
8537012 3 1 12157
8537112 3 1 12157
8540012 1 1 13358
8544012 1 0 10800
8549012 1 0 10807
8552012 1 1 11001
8553012 1 1 9958
8558012 1 0 12885
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CITY BILLING CONSERV INCOME

8563012 1 0 10140
8563112 1 0 10140

"' 8516512 1 0 12402~

8516912 1 0 10484
8417212 2 0 15509
8427012 3 0 14685
8428012 3 0 14685
8431212 1 1 11591
8437212 3 1 11501
8458212 1 0 12846
8517212 2 1 16409
8527012 6 15707
8528012 3 0 15707
8531212 1 1 12402
8537212 3 1 12157
8558212 1 0 12885

CITY AVGBIL MARGPR AVGPRC

8402012 15.43 1.22 1.49
8406012 11.19 1.44 1.21
8411012 24.35 1.50 2.19
8412012 17.90 1.30 1.71
8414012 21.65 1.28 1.29
8415012 17.59 1.57 1.82
8415112 27.81 2.12 2.38
8417012 12.56 0.67 0.87
8430012 11.17 1.29 2.36
8430112 14.96 2.09 4.83
8431012 17.40 0.67 1.86
8431112 15.34 0.67 1.20
8433012 23.36 1.72 1.98
8433112 40.94 2.56 2.91
8436012 28.03 1.73 2.84
8437012 30.61 0.74 1.16
8437112 48.64 1.51 2.77
8440012 18.18 1.63 1.89
8444012 14.82 0.59 0.80
8449012 14.50 2.00 2.15
8452012 22.97 2.60 4.22
8453012 18.75 1.80 3.15
8458012 11.94 0.97 1.10
8463012 17.98 1.35 2.27
8463112 59.87 3.40 4.06
8416512 43.63 1.75 4.66
8416912 20.67 1.10 1.68
8502012 17.45 1.27 1.56
8506012 13.19 1.54 1.26
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CITY AVGBIL MARGPR AVGPRC

8511012 26.93 1.60 2.29
8512012 18.77 1.30 1.68
8514012 22.51 1.28 1.27 ~

8515012 19.89 1.76 1.94 -
8515112 33.44 2.38 2.56
8517012 12.99 0.67 0.85
8530012 12.35 1.29 2.11
8530112 16.18 2.09 4.46
8531012 19.58 0.74 1.77
8531112 17.77 0.74 1.28
8533012 24.44 1.79 2.02
8533112 46.27 2.68 2.94
8536012 28.21 1.73 2.85
8537012 31.91 0.74 1.27
8537112 49.01 1.66 2.70
8540012 19.98 1.75 2.05
8544012 15.31 0.56 0.79
8549012 14.50 2.33 2.12
8552012 22.75 2.60 4.25
8553012 18.75 1.80 3.11
8558012 12.59 0.97 1.12
8563012 19.02 1.35 2.15
8563112 53.07 3.40 4.23
8516512 44.31 1.75 4.57
8516912 21.06 1.13 1.74
8417212 12.74 0.00 0.77
8427012 19.83 0.00 1.22
8428012 8.00 0.00 0.20
8431212 15.14 0.00 1.00
8437212 19.10 0.00 0.62
8458212 22.28 0.00 0.59
8517212 12.74 0.00 0.70
8527012 19.83 0.00 1.15
8528012 8.00 0.00 0.21
8531212 16.65 0.00 0.95
8537212 19.10 0.00 0.59
8558212 22.28 0.00 0.48

CITY MINGAL TIME POP

8402012 0 4 116597
8406012 0 0 41425
8411012 325CY 8 63171
8412012 5000 8 2527
8414012 2000 8 29800
8415012 0 0 34477
8415112 0 0 10240
8417012 0 1 113226
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CITY MINGAL TIME POP

8430012 2500 0 4601...
8430112 2500 0 1990
8431012 2000 7 2576

~ 8431112 2000 7 588
8433012 1000 1 34000
8433112 1000 1 2877
8436012 3740 0 4954
8437012 0 1 24780
8437112 0 1 3322
8440012 0 45 166636
8444012 2000 0 7000
8449012 2000 0 2365
8452012 3000 16 5889
8453012 3000 18 2500
8458012 10000 0 1437
8463012 0 0 2434
8463112 0 0 90
8416512 4000 0 1284
8416912 3000 0 10318
8502012 0 5 121619
8506012 0 0 42177
8511012 3250 9 63459
8512012 5000 9 2531
8514012 2000 8 - 30100
8515012 0 0 37716
8515112 0 0 10240
8517012 0 0 115990
8530012 2500 0 5096
8530112 2500 0 2268
8531012 2000 8 2607
8531112 2000 8 610
8533012 1000 2 35000
8533112 1000 2 2864
8536012 3740 0 5046
8537012 0 2 29057
8537112 0 2 2892
8540012 0 46 172356
8544012 2000 0 7000
8549012 2000 0 2484
8552012 3000 17 6045
8553012 3000 19 2500
8558012 10000 0 1667
8563012 0 0 2541
8563112 0 0 63
8516512 4000 0 1284
8516912 3000 0 10469
8417212 50000 0 323212
8427012 50000 0 4200
8428012 50000 0 5000
8431212 50000 7 44097
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CITY MINGAL TIME POP

8437212 50000 1 33148
8458212 50000 0 3511 ",

8517212 50000 1 321631
8527012 50000 6 4200

'",

8528012 50000 0 5000
8531212 50000 8 45522
8537212 50000 2 31256
8558212 50000 0 3280

CITY TEMP PRECIP

8402012 87.50 7.37
8406012 83.80 5.12
8411012 80.87 7.29
8412012 80.87 7.29
8414012 84.60 6.57
8415012 83.80 5.12
8415112 83.80 5.12
8417012 84.60 6.57
8430012 74.73 8.66
8430112 74.73 8.66
8431012 82.73 4.76
8431112 82.73 4.76
8433012 86.07 5.04
8433112 86.07 5.04
8436012 82.73 4.76
8437012 86.17 4.59
8437112 86.17 4.59
8440012 81.70 9.54
8444012 79.17 2.36
8449012 86.50 7.18
8452012 83.97 4.94
8453012 84.47 4.00
8458012 83.73 6.70
8463012 77.50 6.16
8463112 77.50 6.16
8416512 86.07 5.04
8416912 90.13 8.93
8502012 86.37 7.37
8506012 83.93 4.97
8511012 83.43 4.69
8512012 83.43 4.69
8514012 85.33 5.45
8515012 83.93 4.97
8515112 83.93 4.97
8517012 85.33 5.45
8530012 77.20 4.88
8530112 77.20 4.88
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CITY TEMP PRECIP

8531012 83.57 6.72
• 8531112 83.57 6.72

8533012 84.63 3.16
..., 8533112 84.63 3.16

8536012 83.57 7.23
8537012 86.40 4.74
8537112 86.40 4.74
8540012 82.73 7.26
8544012 80.30 3.06
8549012 85.73 2.63
8552012 85.30 3.77
8553012 88.27 1.23
8558012 85.83 2.61
8563012 85.83 2.61
8563112 85.83 2.61
8516512 84.63 3.16
8516912 90.60 5.87
8417212 84.60 6.57
8427012 77.33 6.72
8428012 77.33 6.72
8431212 82.73 4.76
8437212 86.17 4.59
8458212 83.73 6.70
8517212 85.33 5.45
8527012 80.43 3.62
8528012 80.43 3.62

- 8531212 83.57 6.72
8537212 86.40 4.74
8558212 85.83 Z.61

CITY DENSTY DEMAND

8402012 2.60 10360
8406012 2.58 9251
8411012 4.50 11097
8412012 3.50 10471
8414012 4.12 16767
8415012 3.28 9674
8415112 3.79 11661
8417012 3.72 14427
8430012 3.13 4740
8430112 3.13 3098
8431012 2.80 9357
8431112 2.80 12817
8433012 3.33 11816
8433112 3.33 14053
8436012 3.79 9881
8437012 4.38 26396
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CITY DENSTY DEMAND

8437112 4.38 17579
8440012 2.51 9640
8444012 3.04 18609
8449012 2.37 6729
8452012 3.00 5438 'i

8453012 3.33 5949
8458012 2.89 10899
8463012 2.48 7935
8463112 2.50 14743
8416512 4.01 9359
8416912 3.50 12299
8502012 2.60 11191
8506012 2.53 10464
8511012 4.50 11776
8512012 3.50 11176
8514012 4.05 17782
8515012 3.35 10258
8515112 3.78 .13085
8517012 3.81 15308
8530012 3.13 5851
8530112 3.13 '3632
8531012 2.80 11061
8531112 2.80 13891
8533012 3.33 12068
8533112 3.33 15727
8536012 3.76 9907
853701-2 4.46 25185
8537112 4.47 18153
8540012 2.50 9737
8544012 3.04 19330
8549012 2.37 6853
8552012 3.00 5357
8553012 3.29 6020
8558012 2.82 11280
8563012 2.53 8833
8563112 2.63 12559
8516512 4.00 9694
8516912 3.50 12095
8417212 3.72 16465
8427012 3.65 16213
8428012 4.00 40064
8431212 2.80 15182
8437212 4.38 30832
8458212 2.89 37562
8517212 3.72 18295
8527012 3.61 17318
8528012 9.19 38633
8531212 2.80 17460
8537212 4.46 32106
8558212 2.82 45982
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