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Calculation of Repeatable Control Strategies
for Kinematically Redundant Manipulators

Abstract. A kinematically redundant manipulator is a robotic system lhal has more thnn 1111'

minimum number of degrees of freedom that are required for a specified task. Due to 1111'

additional freedom, control strategies may yield solutions which are not repealable in (he SCI1 I
; ( '

that the manipulator may not return to its initial joint configuration for closed cnd-cllccu»
paths. This paper compares two methods for choosing repeatable control strategies \\ hi.l:
minimize their distance [rom a nonrepeatable inverse with desirable properties. Tlu- Iii </

method minimizes the integral norm of the difference of the desired inverse and a repl'alald f '

inverse while the second method minimizes the distance of the null vectors associated wit l:

the desired and the repeatable inverses. H is then shown how the two techniques run h

combined in order to obtain the advantages of both methods. As an illustrative cxnmplr Ill,

pseudoinvcrse is approximated in it region of the joint space for a scvcn-dcgrcc-ol fll'l'dlllll

manipulator.

A' robotic system can be described by its kinematic equation which relates 1111'

set of joint values of the manipulator to the position and orientation of the (\Ild

effector in the workspace. If the location of the end-effector is specified as ;1I1

rn-dimensional vector x then the kinematic equation can be written as

where f is a smooth vector function and where () is an n-dimensional vector (II
the joint variables. One of the popular techniques for controlling a munipul.uo:
is resolved motion rate control which calculates the joint velocities from ll)lt

joint configuration and desired end-effector velocity. The underlying cqu.u iUII

is the Jacobian equation which, for the positional component, can he found Ilv
differentiating (1) to obtain
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where X is the desired end-effector velocity. The chief advantage of using the
Jacohian for the motion control of a manipulator is that the Jacobian is a linear
relationship between the joint velocities and the end-effector velocities. At each
point f), J is an m x 11 matrix.

Kinematically redundant manipulators are robotic systems which possess more
degrees of freedom than are required for a specified task so that ni < n. This work
will only consider the case of one degree of redundancy, i.e. when ti == '01- -t- l .
There are an infinite number of control strategies for redundant manipulators so
that one can take advantage of this freedom by choosing a control strategy which
will optimize some particular criterion. This work will consider generalized
inverse strategies of the Conn

consider inverse kinematics and not the dynamic aspects of the complete conl u d

problem [5]. The remainder of this article is arranged as follows. In Sectioll .'.
two optimal repeatable strategies are presented. A comparison of these 1\\1'

strategies is discussed in Section 3 using a simple manipulator as an illustrari. ('
example. Section 4 illustrates how the t\VO techniques can be combined by lIsin,p

information obtained from one technique to guide the calculation of an optirunl

repeatable strategy by the other technique. This procedure is demonstrated f (11

both a sirnpJe exarnple as well as for a seven-degree-of-freedom manipul.uoi
Simulation results illustrating the efficacy of these techniques are prescuud III

Section 5 followed by the conclusions of this work in the final section.

where Ci satisfies .JG == I for nonsingular configurations. The elements of G
are functions of the joint configuration, This strategy may be chosen to locally
minimize a given criterion function such as the least-squares minimum norm
criterion on the joint velocities as in the case of the pseudoinverse solution

(j == c«

() == J+x

(3)

(4)

2. 1\"0 Optimal Repeatable Control Strategies

In order to choose an optimal repeatable control strategy it is necessary to ch.u

acterize those strategies which are repeatable in terms of the desired genera] i /t't!
inverse Cd and a null space component. This will be done by considering III I

corresponding augmented Jacobian as was done in (9]. Al nonsingular cOIlII,1",U
rations any generalized inverse G can be calculated by inverting an augIlH~llt(,1

Jacobian of the form

where J + is the Moore-Penrose pseudoinverse of J. This control strategy lo­
cally minimizes the joint velocities of the manipulator subject to moving the
end-effector along a specified trajectory. Also popular in the robotics literature
are weighted pseudoinverse solutions which locally minimize iJTQO for some
positive definite weighting matrix Q. Since this work only considers manipu­
lators with a single degree of redundancy, the generalized inverses G have the
form

where v is a null vect.or of CiT. The corresponding control strategy is found h,

taking the first 11 - 1 columns of the inverse of J; I which is given by

G == .J+ -1- i1.1 \V 7' (5)

s, = [:,:]

J- I [ !+ ,. 11

• il] ]
tv == t + IlJ\" : -,.--

nJ . v

((II

(II

Choosing an augmenting row that is a gradient results in a repeatable cOIlI/,,1

strategy [12]. Thus the augmented task-space approach is one of a numbc: (II

commonly used techniques for resolving manipulator redundancy [I, 4, 6, I II
For the extended Jacobian [2], the augmenting vector is given by the gnHfit'1I1

of \19 . IlJ where 9 is sorne criterion function of 0, By including this additionn]

function the manipulator acts 'mathematically' like a nonredundant manipularo:
assuming that the rows of J and v are linearly independent. A set of thc:«:
gradients can be used to define a class of control strategies which are repcCltahl1

. in simply-connected, singularity-free domains (11.

where once again fiJ is a unit length null vector of J andwhere OJ is a unit length Bull vector of J and where w uniquely determines G.
This follows from the fact that J(C~ - J+) == 0 [9].

Due to the additional freedom afforded to kinematically redundant manipula­
tors, control strategies such as (3) may not be repeatable in the sense that closed
trajectories in the work space are not necessarily rnapped to closed trajectories
in the joint space so that for cyclic tasks the manipulator will not necessarily
return to its starting configuration. Klein and Huang [7] give a mathematical
proof of this for the pseudoinverse control of a planar 3R manipulator, An el­
egunt method of identifying control strategies which are repeatable is presented
in a paper by Shamir and Yomdin [13]. This method determines repeatability
by checking whether the Lie bracket of any two columns of the inverse is in the
column space of CJ.

This work focuses Oil the generation of repeatable control strategies that are
as close as possible to some desirable, but not repeatable, control. It will only

J

j

lV ==
_«J+)7'y
----

ilJ'Y
~ ~: !
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SOBle optimal configuration at which one would like the manipulator to (lllt'\

ale. Frain (5) it follows that the induced 2-nonn of the difference between till
inverses G7, and Gd is

One chortcoming of applying augmenting techniques is the possible introduc­

rion of artificial singularities, called algorithmic singularities [2]. These singu­
larities are distinct from the kinematic singularities of the manipulator and are
a function of the augmenting vector v. The configurations corresponding to an
algorithmic singularity are characterized by Y II.... (1' 1') IIlI(x,. - G,I1h = n, WI' - Wli 2 = IIW,. - w,db (II \

n) . V == o. (9) where the vectors w; and \Vd uniquely determine G\. and (ill, respectively. '11111

the measure given in (10) for a repeatable inverse and a desired inverse heelllll '

where lill is the VOIUll1e of ,(1 c: J~H, II . 112 is the induced 2-nonn for a matrix,
and .f~2 dO is an n-dimensional integral over a simply-connected, singularity-free
subset fl of the joint space. Equation (10) provides a measure of the closeness
of two inverses on SOBle important subset !l of the joint space. The nearest
repeatable control strategy to the desired inverse G'd is defined to be the repeat­
able inverse C, which minimizes (10). The subset fl may be chosen based on

The presence of algorithmic singularities can seriously restrict the workspace
ill which the manipulator can operate as desired. A further discussion of this
problem will he presented later.

This paper considers the problem of choosing an optimal control strategy from
a set of repealable strategies which have been characterized by their augment­
ing vectors. An. example of a set of augmenting vectors which yield repeat­
able control strategies is the span of N linearly independent gradient functions
{v I, "2, . , . , V N }. For this case the augmenting vectors would have the form

v ==-= L~J (J.iVi where each (J.i is a real constant. Several considerations should
he Blade in choosing such a basis. One should be careful to select the gradient
functions to be linearly independent from the row space of the Jacobian since
failure to do so will result in a singular augmented Jacobian. Secondly it should
he noted that all nonzero multiples of an augmenting vector result in the same
control. Thus choosing an optimal augmenting vector becomes a constrained
optimization problem in which each augmenting vector is normalized. Such a
uominlization can be done for example by requiring that L~ I Q} == 1.

Now that a procedure for generating repeatable strategies has been given, it is
possible to consider optimal strategies, In this work, optimality will be in terms
or nearness to a desired nonrepeatable strategy. The nearest optimal repeatable
cuntro] strategy (N()I~(~S) is defined as the repealable control strategy which
is nearest to SOIHC desired nonrepeatuble strategy in some region of the joint
space. In general, this optimization will be performed over a set of prescribed
repeatable strategies. The measure of the distance between a desired inverse Cirl
and a rcpcatublc inverse (:,. is defined by

( I ~ I

(, '

min IIv - nlill = min r IIv - nll~dO
vEV vEV I!~
nEN nEN ·

t An associated null vector no is also commonly referred to as a left null vector oj t :

IIC,. - Gdllfl = rIIw,. - w,Lih dO.If}.
where w is given by (8).

Optimizing (12) can be rather difficult since it will, in general, be a higld ',

nonlinear equation. Even when a minimum is obtained, it is difficult to dctcnuin.
whether it is in fact a global minimum. A more computationally efficient npl i
mization can be developed by considering a slightly different problem. Hatht'l
than directly minimizing the difference or the inverses themselves, it is p()s,\ildt

to minimize the difference of their associated null spaces. Before proceedill\1
further, a discussion of the notion of the associated null space is in order.

All associated null vector! H(; of Ci is defined to be a null vector or (/1'. '1'11 1

associated null space of G is simply the null space of a". The pseudoinver:«: II:)'·

IlJ as its associated null vector so that the null space of J and the associated null
space of the pseudoinverse of J are identical. For the case of a single degree f d

redundancy, the associated null space is determined by the augmenting vccuu ,
as given in (6). In this case the associated null space is a vector-function Sp;1f I

which, when evaluated at nonsingular configurations, is characterized by a Sill}',I·

vector. Thus the space can be characterized by a single vector field. If this veef f "

field is HJ for example, then the resulting inverse is the pseudoinvcrsc. If Ihl

vector field is a gradient, the resulting inverse "viii have the desirable pn)lll'll \

of being repeatable in certain regions of the joint space. 'Thus certain propcl (if '>

of G can be identified by examining HC.

An additional method of quantifying the distance between t\VO control slr;,lf'

gies, as opposed to (10), is to define a measure bet ween their associated Ill" I
vectors. The null space approximation method (NUSAl'vl) chooses u repe.uahlr
inverse C; to approximate Gd by selecting the augmenting vector v, once ugaill

from a space of gradients, which is closest to the set of associated null vecl( q',

Il(jd which have been normalized in the sense that .r!21In(}clll~ dO == I. Thus Ih,
NUSAM criterion is

(10)_I 1101' - Cdlill = ..' r IIG,. - Gdll~ dO
1~11 lill ./!l



where V is the space of allowable augmenting vectors and N is the set of
continuous associated null vectors of Gd satisfying .r!lllnll~ dO == I. For the case
of the pseudoinverse, the elements of N have the form
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Since each 0: is normalized, it follows that

N N

[ (y2dO= L L Mi,jbibj.
· 12 i::::I i> I

III

( If})

( i5)

and that ,,(o~) is the orthogonal projection of n'll.) onto )), one has that Ilu: ,I

which minimizes (13) satisfies

where a == [0.1 (1.2 •.. aN rl', b == [bl b2 ... bN]'1', and the Gramian matrix 1\ I j.

1\1 == [J\1i j ] .

By noting that lIo~I1J 1I!1 == I,

where (\1 is in ..A, the set of continuous real functions on rl satisfying .ffl (~2 dO == 1.
For the remainder of this paper, the pseudoinverse will be used as an example
of a desired nonrepeatable inverse, Cd. All of the results developed apply to any
other generalized inverse Gd by replacing IlJ with nOd'

Calculating the NlJSAM solution requires several steps. The presentation that
follows summarizes the key points. Additional details are available in [10]. First,
note that to do actual calculations, the set of allowable augmenting vectors V
will be taken to be the linear span of 'an orthonormal set {vJ,"') VN} of N
gradients where orthogonality will be determined by the inner product.

(u, v)n = l u . vdO.
.J~J

Note that it has been implicity assumed that 1) is contained in £2(Q), the space
of Lebesgue measurable n-vector functions satisfying J{lilull~d(} < 00.

Next, the optimization is reduced to a search over the scalar functions 0'. This
is done by noting that for any fixed n == (lIft.!, the allowable augmenting vector
minimiz.ing (13) is simply the orthogonal projection of n onto V

j

I.
I

I
I
I

I
I
I

t

In matrix-vector notation (18) and (20) become

a == AJb

hT'l\Jb == I

N
2 '" 2 rrIIv(n~)lIn == Z:: ai == a a,

i=J

" {\,al.J - ,,( (y) Illl == II 0 'fi.J IIl2 - II v ( (\I ) Illl
'r== 1 - a a.

( ) II

r .' 1\

( . '. ~ )

I. I I,

N

V(l¥') == L (t-iVi

i=l

(16) 'rhus the optimization problem becomes to minimize I - arl'a subject to hT J' I h
J, or equivalently,

where ti; == (0'11.1, Vi)n. The optimal v will have this form for SOBle C~ and the
minimization of (13) can therefore be performed over the set of possible o.'s.
lJsing a Calculus of Variations argument, it call be shown [10] that an optimal
(\' has the form

Maximize aJ'a

Subject to hT.l\Jh == I.
I ..)!"\I

It can be shown that this is maximized when a and h are appropriately scalt'll

singular vectors associated with the largest singular value or /\1 (see the i\ jl

pendix).
As well as providing a tool for calculating the opt imal solution for a gi \'t'll

basis the Gramian formulation also provides a measure for comparing any ()( 111..'1

augmenting vector. For an augmenting vector v the Gramian matrix with ICS(H'{ I

to the normalized vector function v == v/lIvlk~ is a scalar given by

N,---
n: == ~b.ifi.1. v.i'

j=1

One then has that the Fourier coefficients of (16) are

I' N
IIi = If (\·il.J· Vi dO = L 1I1ij lJj

\ {2 j=1

where

(17)

( 18)

m'(v) = l (11.1 . v)(fi.l . v) dO = -~ l (il.] . v)(il.l . v) dO.
i; Ilvlln t.

( .1()\

1\{. := j' (J1 J . v.) (il J . V'.) d().l.J . t . • .J
, !2

( 19) Note that maximizing (26) over ~) is equivalent to (I J). If" is in the spun of tl«:
basis {VI, ... ," N} then the Gramian matrix M can be directly used to dctcnuim
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IH)\V close a match v is to the null space. The vector function v has the form
" == Lt~ I CiVi for some set of real constant scalars cj , C2, ... , eN. Representing
v in the vector fonn c == [el ... eNfr one obtains that

rl'
'In' == ~\ 1\1c

eTc
(27)

in the sense of equation () 0). This will be done for three different rcgill!ll~ ,II

interest ranging from 03 intervals of [-1f, 1f] to [-1f /4, 1f/4].
The rnanipulator in this example is simple enough to analytically cahul.u.

the nearest repeatable inverses for infinite dimensional augmenting spaces. III
particular, for the set of all repeatable inverses which are functions of ()J onlj , il
has been shown [9] that the nearest optimal repeatable inverse ()r is charactcriJ,'d
by

( ~ ( "-kff

V'2(k 2 +- I)

k cos (}3 -t- sin 03
\V == [I

'The closer 111,' is to its maximum value of one, the closer v is to approximating
a null vector of the desired inverse.

Symmetric regions of interest that are between the ranges of [-7f /2) 7f /.~ I ;1111 1

r. -1r, 7fJ are optimized by k == 00 which results in

where w satisfies G; == J+ + fiJ\v~r. This solution is parameterized by the sCid;" '

k which is determined by the limits of integration. For (}3 regions of inn«: I

that are symmetric around ()3 == 0 and smaller than [-IT /2) 7f /21, It: is idcllli(':dl

zero so that the optimal augmenting row is given by

3. A Comparison of the 1\"0 Methods

This section compares the behaviour of the two methods presented above by
illust rating their comparati ve advantages and disadvantages on a very simple
manipulutor. An understanding of the characteristics of these two methods will
then be used to develop a combined technique, which is suitable for more general
manipulators, in the following section. In all cases, the pseudoinverse will be
used as a representative desired but nonrepeatable control strategy. First, consider
the planar manipulator shown in Figure 1 which consists of two orthogonal
prismatic joints and a third revolute joint of unit length (a PPR manipulator),
'This manipulator has as its Jacobian

T 2
V == [0 - cos (}3 1 -t- sin e3].

V'T == [sin.tJ3 0 I + cos 2 83f

I. ld I'

( \ Ii

rig. 1. Geometry of a planar three-link manipulator whose first two joints are prismatic and
whose. last joint is revolute and of unit link length.

and a unit length null vector n.J== 1/V'2[sin03 - COS()3 11'1'. It is desired to
find a repeatable inverse as a function of 03 which is close to the pseudoinverse

.....- X I
( ttl

BJ == {CI,C2,C3}

B5 == B3 U {cos 03C3, sin 03C)}

13~ == B) U {cos 203e3: sin 203e3}

B~ == 83 U {cos4B3c3,sin4B3e 3}

B7 == B5 U {cos 283e3, sin 283e3}

B~ == B~ U {cos4B3e3,sin403e3}

.Bq ==B~U{cos803e3,sin883e3}

The repeatable strategies resulting from (30) and (31) match the pseudoiuv.'r I

at 03 values of 0 and ±1f /2, respectively. Also, note that the resulting inverse I'

very well behaved since the norm of the vector w is bounded by 1/ v12.. , so 11,:1 1

there are no algorithmic singularities. The properties of these optimal invel ~\(.

are discussed in greater detail in [9].
In general, it is not possible to analytically calculate the nearest rcpcntuhb

control strategy. However, as discussed above, one can consider control ~(ra(c~! jl "

which are obtained by augmenting the Jacobian with a gradient row tlln! I"

calculated fro III some finite basis of gradient vectors. For this exnmplc it i

sufficient to consider augmenting rows which are gradients and functions pi I)

only. To illustrate the effects of using different sets of allowable auglllt'I\III I '

vectors the following bases will be considered,

(28)

T
rI

"0

~ ..

I

--- sin 03 ]

cos OJ .
o
J

x 2

[
I

J == 0

I d I •
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which is in the space spanned byB~. 'The first three terms of the Fourier series
expansion for the third element of this augmenting vector are given by

where e I, C2 and C3 are the standard basis elements for IR.3. The simplest of
these bases is 133 which corresponds to constant terms for each elernent of the
augmenting vector, or the 'I)C' components. The next set of bases, i.e. 8 5,

l)~ and B~, correspond to the addition of the fundamental frequency for the
three different 11 regions under consideration, i.e. [-1T, 1T], [-1f /2, 1T /2J and
I. --7f /4, 1f /4]. Likewise the bases B7 , B~ and B~ include an additional harmonic
to the I)(~ terms and the fundamental frequency for the three regions under
consideration.

Before considering the performance of the two methods using the proposed
finite bases presented, it is instructive to consider how much information is being
lost by going from an infinite dimensional basis to one of such relatively small
dimension. This can be done by calculating the Fourier series representation
for the analytically optimal augmenting vector given by (29). As an example,
consider the region [-1f /4., 7T/4] for which (30) gives an optimal augmenting
vector, Since all scalar multiples result in the same control one can divide by
--- cos OJ to obtain the optimal augmenting vector

v1'= [0 I -I- :~jIl2 (}3 ]

- cos OJ
(33)

integrand in this case is simply given by (8) since J+ is the desired inverse, O\TI

the N - I dimensional space of normalized coefficients for the basis functions
The results of performing this optimization for the various different integral !Pll

intervals and augmenting bases is summarized in Table 1. The data ill 'ratlit' I

validates, for the most part, the hypothesis concerning the ability of a Siltidl

number of basis functions to approximate the analytically optimal solutiou. III

fact, using only the DC terms, i.e., those represented by the basis 13), provicl.:« ;1

very reasonable approximation of the analytical optimal for both of the small.':

fl intervals. Even in the largest n interval the DC terms tend to dominate tl«:
higher harmonics. The fact that the NORCS solutions in the largest interv.rl

do not represent a particularly good approximation to the analytically Optilll;1!

solution is due to its different form in this region which results in a singul.u il \
in its representation as a gradient, i.e. dividing through by sin OJ results ill ,I

singularity at (}3 == 0, the center of the fl integration interval. Unlike the C;I~;"

where fl == [-1f /4, 1r /4] the infinite augmenting basis that would result frUlll

expanding B7 would not include the analytically optimal solution.
The additional effect of the size of the integration interval, as would be ex

peered, is that the resulting repeatable inverses more closely resemble the desiled
pseudoinverse as the desired region of operation becomes smaller and smaller.

This is graphically illustrated in Figs 2-4. Note, however, that while redlH';IIP

NORCS for n =[-n,n)
0.9. I I I I I I I --~'''l

These numbers indicate that one would expect the optimal inverses calculated
using the two methods described to be able (0 reasonably approximate the ana­
lytically optimal inverse even when using a small number of basis functions.

To determine the actual nearest optimal repeatable control strategy (NORC~S)

for the finite bases of (32), one must evaluate the integral given in (12), where the

which would correspond to its approximate representation in the basis Bq. Clearly,
the coefficients for the basis functions are rapidly decreasing for higher harmonics
indicating that the vast majority of the energy is contained in the lower frequen­
cies. This statement can be quantified by integrating over the entire region of
interest to obtain

32

.. - ~3

'-'--- 8 5
-- 7-- -- ~

-1-2-3

\
'\
"

.,

'\
\
\
'1

1
\
\
\

", .,.....
\ I

\1

0.3

0.1 h

0.2

0.6

0.7

~ 0.4--

C\J
~ 0.5'-
J

o
°3

rig. 2. A plot of IIGT, - J+ \Il for the four nearest optimal repeatable control stra{('t.!il"~ \
a function of 83 for the PPR manipulator shown in Fig. I. This quantity represents till' ('l" ,

of requiring the control strategy to be repeatable. Each opumal stuucgy was calculatrd I," I

03 region of r-7f, n ],

0.8'-(34)
I -~- sin 2 03

-- ~ -1.3341 -l- 0.3061 12 cos 483 - 0.090012 cos 803
cos (}3

2 j'1f/4 [ I +- sin
2
(Oj ) ] 2

- ----.-- d03 == 1.9113
If.- IT/ 4 _ -cos({}J} ~

~ 1.3341 2 -t- 0.3061 2 -l- 0.09002 (35)

== 1.7798 -j-- 0.0937 -1- 0.0081

== 1.8816.
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NORCS for n = (--1tI2,1tI2)
O.9 r-~·___y---_.--·------r------r- iii I

NORCS for n = (-nJ4 Irr/4)

0.6. I I I ,-----r-·-----T-----------,.---..--

0.8

.J'f,
·f

0.60.40.2

1
h

.......... 83
8".-.-.- 5
B"- - - - 7--_.._._-~

:-.... ..'/,',". ..'/'

«:»
-0.2-0.4-0.6-8~8

0.5

0.4--

~
+
-; 0.3--

"-

~

0.2

0.1

o

°3
Fig. 4. A plot of IIGT• - .rt Ib for the four nearest optimal repealable control strategies ;1',

a function of (}3 for the PPR manipulator shown in Fig. I. This time each optimal Sll:lh'}'\

was calculated for a 03 region of [-1f /4, n /4].

21.5
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0.5

.......... 83
B''-'-'- 5
BO- - - - 7
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-0.5-1

:-,. ..

\. "

::c,. , '.

-1.5
Ql. -1__----..1 ----l-.-----X-. I I I I

-2

0.3

0.1

0.2"

0.6'-

0.7'-

0.8

~ 0.4--

N
~ 0.5
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o
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Fig. 3. A plot of IIGr - J 1-112 for the four nearest optimal repeatable control strategies as
a function of 0] for the PPR manipulator shown in Fig. 1. This time each optimal strategy
was calculated for a 01 region of I-rr/2, 1f /2).

432-1
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NORCS using 83

n = 1-1t/4,lt/41
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'.'. .'./
........ ..J-'

...~.-._.~:.~.

I I i

-2

5

4.5~-

4'-

3.5--

3ss
+
-; 2.5~-

1..-

CJ
- 2

1.5'-

1'-

0.5

?4 -3 o
°3

Fig. 5. A plot of 11(;'1' _.•.,-1-112 for the nearest optimal repeatable coutrol stralegies uxin« :\
basis of. 13] for the OJ regions of [--rr,1fL [--1f/2,7f,2) and (-rr/4, rr/41.

the r! integration interval results in better performance within that interval it also
tends to correspond with markedly poorer perfonnance just outside of the interval
as is clearly evident 'in Fig. 5. Thus even though higher-dimensional augment­
illg bases do not dramatically improve the performance of the resulting inverse
within the specified region fl (particularly if this region is small), it still may be
useful to retain SOBle of the higher harmonics in order to maintain reasonable
behaviour outside of the region ft Finally, it is important to note that inverses
with similar figures of merit may provide radically different performance over

the desired region of operation.
As the 11 integration interval beC0111eS smaller and smaller, its limiting value

is a single point in the joint space at which the optimal augmenting row clearly
becomes the transpose of the null vector of the Jacobian nJ evaluated at that par­
I icular value of O. This can be clearly seen in Table I for the smallest n integration
interval where the augmenting row is approaching Il}'(O) == [0 -0.7071 0.7071].
This is one of the fundamental observations about which the null space approx­
imation method (Nl.JSAM) is based. This technique attempts to retain the char­
acteristics of the N()R(~S inverse by performing the much simpler optimization
represented by (13). The results of applying this optimization using the same
Hugillellting bases and ~~ iutervalsus in the NORCS case are summarized in
Table II. Note that since the goat of this optimization is the approximation of the
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Basis (I 11!2plI(i,. - .J-. IIl1 Optimal augmenting row

n =03 E [-1f.1f]

Table l. Optimal augmentig rows using the nearest optimal repeatable control strategy
(N(JRCS)

B,~ 0..5000
B5 0.4690

fh 0.4111

e.; 0,2500

io.oooo 0.0000 1.0(0)

f0.1392 -0.0507 - 0.8399 - 0.15()4 Vi cos 03 - O.5(}(){)V2 sinO]]

(0.0649 -0.0222 -0.7846 - O.2110V2coS03 - O.5709v'2sinth

+ O.0677V2 cos 2fl] - O.0678V2 sin 203]
(sin OJ 0.0000 I.OOOO-f·cos2 03 )

n == 0) E [-1f/2, ?f/2l

Table H. Optimal augmentig rows using the null-space approximation method (Nl IS/\r, \ I

~·l =03 E ['-?f,rr)

Basis tn' ::= 0. (lH) r Optimal augmenting row

B.l 0.5000 [0.0000 O.()()OO 1.00001

8 5 0.7500 [0.5774 ().OO()O 0.8165.j2 sin OJI
8 7 0.7500 [0.5774 0.0000 0.8165 V2 sin 03

0.3750 [0.0000 -0.7071 0.7071] = fl}'<O)

fl == °3 E 1.-1£/21 n12)

Basis 111,'::= a I (AI) Optimal augmenting row

Basis (I /1{lDIICr\ - J+ Ill} Optimal augmenting row

Ii]

B~

H7
Boo

0.3170
0.2665

0.2540

0.2500

(o.nooo -0.3238

(0.0000 -0.3214

[0.0000 -0.2283

[o.nooo - cos 0]

0.9461J

0.8830 - O.3420yi2 cos2fhl

O.7905-0.5412V2 cos 203 + O.1796 V2 cos 403]

1.0000 + sin2 03]

8]
8'5
8'7

0.7170

0.7484

0.7496

0.6933

[0.0000
[0.0000

[0.0000

[0.0000

-0.5632
-0.5767

-0.5772

-0.7071

0.8263J

0.7389 + 0.3483 V2 cos 20.~ I
0.7360 + O.3469v'2 cos 203 - O,069J\/2 ellS·It!: 1

0.7071 J = i(5'(0)

Optimal augmenting row

1'1 == 03 E I-:11'/4. rr/4J
n == 03 E [--1f/4,1f/4]

Basis (I /1!}I>II(i,. - ]+ IIfl Optimal augmenting row

Hl 0.0985 io.oooo -0.5971 0.8021]

B~' 0.09]6 (O.O()()O -0.6330 0.7544 - 0.1736V2 cos 403]

n~' 0.0932 rO.OOO{) -0.5874 O.7890-0.1734-!2cos40]-O.0485V2cos8(}3]

e: 0.0908 io.oooo - cos 03 1.0000 + sin2 03J

Basis rn'::= 01 (/\1)

13) 0.9070

8 5' 0.9090

B~' 0.9091

0.9048

[0.0000

[0.0000

(0.0000

(0.0000

-0.6707

-0.6708

-0.6708

--0.7071

0.7418J

0.7383 + O.0696V2 cos 40~)

0.7381 +0.0(96)2 cos 403 - 0.0 16()\.l5. t'\l~; ~:I), I

0.7071 J = flS'(O)

Augmenting bases

B.1 = {k I e I ' A: I e2, ~: Ie) }

155 = B;\U{A:2 COS O]C)I k 2 sill O]C3}

135= B)U{ A:2 cos 283ej , k 2 sin 203e 3}

B~ = B]U{k2 cos4B)e3' k2 sin483e3}

fh == BsU{k2 cos 203e3, k2 sin 203e3}
B~ = BsU{k2 cos403 e ] t A:2 sin483c,3}
Bij = B~U{ k2 cos S83e3, k2 sin S83e3}

k l = 1/ /iTII and k2 == ,mlOI

desired null vector, the accuracy of this approximation is quantified by In.', which
in this case is the maximum singular value of M, i.e., aJ (Aif). Table III provides
a direct comparison between the two techniques by comparing both figures of
merit, i.e. the error in approximating the desired inverse, I /1!lIIlGl' - J+ lib,
which is the true minimization criteria, as well as the error in approximating the
null vector of the desired inverse, Ininllv - IlJllfl == 1 - Tn'(v).

Augmenting bases

B) = {klel,kle2,kte]}

8 5 == 13]U{A;2COS()3c],k2sin()]c]}
B~ = B)U{k2 cos 2fJ3ej , k2 sin20 j e3}
B~ == B3U{k2 cos 483ej, k2 sin 40:\eJ}

B7 == BsU{ A:2 cos 20j c] , k2 siIl20]e)}
B~ = B~U{k2 cos 483e3, k2 sin40JcJ}
Bij == B~U{ k2 cos SO]e]. k2 sin 8t93c]}

k J == 1/ /iTII and k2 == J27i!21

When analyzing the results of the NUSAlvl optimization, the general cllcct \,
due to varying the augmenting bases and the 11 intervals are quite similar to tlH lSI'

observed in the N()RCS results. Overall, the DC terms tend to dominate Clild

more accurate approximations of the null vector are obtained with smaller i>.. ill
tervals. However, it is important to point out that more accurately npproxima: ill!

the null vector does not correspond to 1110re accurately approx imaring the IH'II {ll
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Table 111. A comparison of the two techniques

* Denotes an algorithmic singularity.

f2 == 03 E [-- tt , 7f ]

f! == °3 E I-»/2, tt12]

.......... NUSAM.

._._.- nJ{O)
- _ _ _ Combined
___ NORCS

Cornparison for 8'5 and {) =(-n/2,rr/2)
3.5

3

2.5

.ss 2+-,

~ 1.5

1--

0.5--

~2

vectors obtained using the NUSAM optimization with a basis of 133 possess illl \

algorithmic singularities. This singularity, even if it is not located in the dC.4.; i,1" I

region Q, results in significantly poorer performance, e.g. a value of 0.6221 '(1 1

I /IQIIlG1· -- J+ IIh in the region [-1T/2, 1f/2].
It Illay at first appear anomalous that the NlJSAM optunization will «'Sldl

in augmenting vectors that remove potential algorithmic singularities, as ill tIll­

case of the basis B) for the region [-1f, 1T], while at the same time it introdu«r:
algorithmic singularities when the basis is expanded to either 135 or Li7 . 'Ihi
apparent anomaly can be resolved by examining how the NIJSAM optimiv.uio»
treats algorithmic singularities. Clearly, vectors which produce algorithmic sill

gularities within the desired region n are discouraged due to the fact that th(
integrand in (26) becomes zero thus explaining why the augmentiug vector ()1 \
tained when using B) is able to eliminate the singularity that occurs when simpl.
using 11)'(0). However, if the integrand is relatively large over most of the (.>

region, it rnay be able to overcome the fact that it is zero at a single point. '1 hi,

accounts for the fact that the optimal solutions for the bases B5 and 137 cOlllill"

algorithmic singularities. Note that this treatment of algorithmic singular if it

represents a fundamental difference between the NUSAIVI optimization and ill!

NOI~CS method. In particular, a NO}<CS augmenting vector may Hot n'.I.;\J II ill

an algorithmic singularity within fl since this causes the integrand ill (2) to g( I It.

infinity. This is also more effective in preventing algorithmic singular irics 11(1(\i

\ '. I
\ . /

\ , /

'\. ". .: .1

" ". .: _r',', : /

------------ .-.- .:.: .i->
~, ~

~'~' ~--_l-__

-1.5 -1 -0.5 0 0.5 1 1.5 2

°3
Fig. 6. A plot of \IG1• - .1+ 112 for the nearest optimal repeatable method. the null sl';1\ I

approximation method, the combined technique, and the matched Hull vector tor a OJ Il'!!.illll

[-1r /2,11" /2] and an augmenting basis B~.

l·

0.3312 0.2830
0.3782 0.2516
0.4378 0.2504

min II v - IlJ IIfl = I - 'tn' (v)

NORCS NUSAI\1

fl == 03 E [-1T/4, 11"/41

0.3170 0.4146
n.2665 1.4786
0.2540 2.5474

(1/1!2\)lIqJ" - J+ II~

NORCS NlJSAM

(1/1121>11(:1' -- .rlllfl Juiu II" - IlJlIll = 1- 1n'(v)

Basis N()RCS NUSAM N()RCS NUSAM
_."---~._-------~--------

BJ 0.0985 0.1045 0.101 J 0.0930
B~' 0.0936 0.1142 O.115? 0.0910
B~ 0.0932 0.1153 0.1221 0.0909

Basis

B3
H'5
H~

(1/I11\)IIG 1' -- .Ft-lIl) Illin II" - IlJ IIh = I - rn' (v)

Basis NORCS NlJSAt\1 NORCS NlJSAl\1

B] 0.5000 0.5000 0.5000 0.5000
Bs 0.4690 * 0.5601 0.2500
B7 0.4111 * 0.5307 0.2500

mance of the desired inverse. In particular, consider the data for the case where
the 5.2 region is [-1f /2, 1f /2] in Table Ill. Note that despite the fact that a larger
basis (from 133 to B~) in the optimization decreases the error in the approximation
of the null vector (from 0.2830 to 0.2504) the error in approximating the desired
inverse actually increases dramatically (from 0.4146 to 2.5474). Similar, though
less dramatic, behaviour is apparent in the n interval from [--7f /4, 1r/4] and in
the worst case, when fl is from [-1f, 7f], the larger basis actually results in an

augmenting vector with an algorithmic singularity within the desired operating
region. From this data it would at first appear that there is no point in applying
the NlJSAivl optimization for larger bases. In fact, one Blight argue that since
only the [)(~ terms are significant, why not forgo the NUSAM optimization and
simply use the actual null vector evaluated at the middle of the desired inter­
val? Indeed the vectors obtained when applying the NUSAM optimization do
1ie close to this value of fl:)'(O) == [0 - 0.7071 0.7071] as expected. However,
it is important to remember that similar augmenting vectors do not necessarily
represent similar inverses, In particular, the matched null vector i(~'(O) results
in an algorithmic singularity when cos (}3 == -1 while none of the augmenting
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where the singular values are ordered from largest to smallest. Since tJ)t'II' I

a gross correlation between matching the associated null space of the dcsil(··1
inverse and matching the inverse itself, the NOI{CS solution should be Ilt';11

the space spanned by the (Ii associated with the large singular values, and III d

necessarily strictly along fi I as shown from the data in the previous secl jc III

Exactly what constitutes 'large' singular values is somewhat arbitrary, how.: \/('(

the singular values range from 0 to J and are typically clustered so tllfll 1111'11

will be one or more values of i for which a, ~ ai-l-I. If this is not the ca,'~(' ;\11' i

all of the 0i are approximately equal then there is no infomuuion th.u I ;111 I

exploited to guide the NOH.CS optimization.
To illustrate the procedure for combining these techniques and (0 evalu.u.: II

efficacy, consider the simple example in the previous section for the case', \'.11I'1

the fl. region is given by [-1f /2, 7f 12]. Assume that one would like inlm In;11 I, "

from the NIJSAM optimization using the basis B~ to perform a lowcr-dimcnsiou.'
NOI{CS optimization, From Table II one can see that OJ == 0.7484 and III;!!

UI == [0.000 0.5767 -0.7389 -0.3483 0.0001'1"', however, the complete S\ I '

of A1' is given by

(36)

The measure of difference between the inverse that corresponds to this ;1I1~'

menting row and the desired inverse is given by J Ili2.IIICir - J1IIll ::-~ n, .~q /~

which is markedly better than that obtained using a two-dimensional f'H )I{( '(:

optimization with the basis B] (I 11!11IlG1· - .J~·lIl2 == 0.3170) which J'l'qllil ~ "

From these singular values it is clear that many other Huglllcnling l'O\'.,./S \', (lid I

have been nearly as good an approximation to the desired null vec(ol ~:i'll

the first three singular values arc on the same order of magnitude. '1'1111'; :11'

augmenting vector in the space spanned by fl l "2 and tlJ can he retlSelfL"d

considered as a candidate for resulting in a nearest optimal rcpcutahlc ('(JlIII .

strategy. One can therefore run the N()RCS algorithm evaluating only ('1)1 I

ficients which are normalized linear combinations of fI l il 2 and tlJ, thus nul

requiring a two-dimensional optimization. This optimization results in the ('I){' I

Iicients 0.6428111 + O.OOOOU2 -~- 0.766011J which corresponds to the tlllgllll'llf jl"

row

even approaching the region fl, as is clearly illustrated in Fig. 6 by comparing
the values of (I Ilf!j)IIGl' - J+ lib for the NUSAM and NORCS solutions.

While the inverses obtained using the NORCS technique are inherently su­
perior in performance to those obtained, through the NUSAM optimization, the
NlJSAM optimization has an unquestionable advantage in terms of computa­
tional efficiency. The algorithms for computing the optimal augmenting vectors
both require repented n-dimensional integrations. In the NORCS case (see (8)),
the integrand requires a matrix vector product of the desired inverse with the
augmenting vector, a dot product with the basis vector (a function of N) and the
Hull vector, and a scalar division (which prevents the selection of augmenting
vectors that result in algorithmic singularities). In the NUSAM case (see (19»,
the integrand only requires t\VO n-dimensional dot products using the basis vector
(a function of N) and the null vector us well as a scalar multiplication. While
the simpler integrand for the NlJSAM case results is some cornputational advan­
tage, the overwhelrning savings in computation comes from the number of times
this integration must be performed. In the NUSAM case, this n-dimensional
integration 1l1USt be performed exactly N(N -I- 1)/2 times, once for every unique,
element of 1\1 (which is then followed by a singular value decomposition of M).
III the NORCS case, the number of n-dirnensional integrations is essentially un­
known. In the simplest case one could form a grid in the (N - 1j-dimensional
space of normalized coefficient vectors which would result in an exponential
number of n-dimeusional integrations. Thus the NORCS approach quickly be­
COUles intractable. For example, for N == 3 the NORCS algorithm required an
order of magnitude more computation time as opposed to the NlJSAM algorithm
whereas for N ::::: 7 N()RC~S required [our orders of magnitude more computation
t ime.

4. Combining N()I{(~S and NIJSAM

FrUIH the preceding section it is clear thal neither NOI~(~S or NlJSAM are com­
pletcly satisfactory by themselves for calculating augmenting vectors for systems
with large numbers of degrees of freedom. While the nearest optimal repeat­
able criterion represents a better measure of closeness to the desired inverse)
it rapidly beC0l11eS computationally intractable, whereas the null-space approx­
imation method results in poorer performance primarily due to its treatment of
algorithmic singularities. II is, however, possible to combine the two methods
by using information from the null-space approximation method for determining
optimal subspaces in which to perform a lower-dimensional search for the near-

_est optimal repeatable inverse. This information is contained in the complete
S\'I) of 1\-1 as opposed to simply the singular vector associated with the largest
singular value. In particular, the SVl) of 1\1{ may be written as

N,,-, '}'

1\1 == LJ (Jiilif1i

i=1

S == diag(O.7484 0.7001 0.5000 0.0499 0.0(16)

and

0.0000 -0.5548 0.0000 -0.8320 0.0000
0.5767 -0.0000 -0.0000 -n.oooo 0.8169

(/:-.:: I .- 0.7389 0.0000 -,,0.4264 ~~o.OO()() 0.5217
--0.3483 0.0000 0.9045 -0.0000 0.2459

o.oooo -0.8320 0.0000 ,O.554R 0.0000

vT == [0.0000 0.3707 - 0.8016 -f-0.4690)2 cos 20.d.

ill

( \:'

1','/;
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approximately the same amount of computation time. This markedly improved
performance is graphically illustrated in Fig. 6. Note that the four-dimensional
NC)RCS optimization using the basis B; resulted in 1/IQIIIGl' - J+ II~ == 0.2665
which is the true optimal in the space spanned by B~ but which required an
order of magnitude more computation time. One can identify the component of
this vector that lies outside of the lower-dimensional search space by multiplying
by if to obtain

ancl results in an inverse that has an algorithmic singularity within 12. Perfouuiuu
the NUSAM optimization results in a matrix M that has the following singul:lI

values

/3 == diag(O.8154, 0.0653, 0.0515, 0.0417) 0.0232, 0.()029, 0.0000) (1·11

where fi I which corresponds to the optimal augrnenting row is given by

aT(B~)fJ == [0.7187 a 0.6859 0 - 0.1140] (40)

T ...
v == [0.0000 - 0.4581 - 0.5196 0.0000 0.5106 0.0000 - 0.5094]. (:1 SI

which 'shows that there exists a small component strictly along Us.
As a final more realistic example of applying the combination of these tech­

niques, consider the typical 7-I)OF anthropomorphic manipulator described in
detail in l8J. The Jacobian for this particular manipulator is given by

S'2(;)(~4 + C 2S'4 -83C4 8 4 0 0 85 -C55'6

-.':hS" -C3 0 -I o -Cs -5'55'6

.1=1
-S2(}]5'4 + C'2 C4 5'3 84 ()4 0 1 0 06 I (4 J)

--S2·(h(~49 - 8 283 h -(h("J4g - C3 h 0 -t. 0 0 0

--·."'2(;1!J -- 8 2C']C:,.h - G').84h 8]9 + ,'he..", -h84 0 0 () 0

8 2 .'>'] .)49 ()3 84g 0 0 0 () ()

where S, and (~i denote sin Oi and cos Oi and the parameters 9 and h are the
nonzero lengths of the upper and lower arms, respectively. The null vector for
this .mauipulator can also be written analytically and is given by

The acuracy to which the resulting inverse approximates the pseudoin vel Sl' i ';
given by l/IQIIIGr - J+II~ == 0.4523 which clearly indicates that there is 11(1

algorithrnic singularity despite the fact that this vector is quite close lo llt;l/

given by (43). Analysis of the singular values given in (44) indicates that (lilt'

would not expect to identify a significantly better inverse since there is all OHII'I

of magnitude separation between the first and second singular values. III filC!.

running the NORCS algorithm in these lower-dimensional subspaces docs nul

significantly alter the optimal vector from that given by (45). As a final indica,
tion of the intractability of the NOI{CS optimization for the entire range or 1~7 I

despite several days of computation time the algorithm eventually terminated ill
a local minima that resulted in a vector with significantly poorer pcrfouuuur.:
than (45).

5. Simulations

'The link lengths 9 and h will be taken to be 1 meter. It is important to point
nut that while such an analytic expression for the null vector is desirable, it is
not required. One can always numerically determine the null vector for a given
configuration.

For the purposes of illustration the region of interest .n will consist of ()i E

r7f /4, 31f/4] except for 05 which is in the range [-1f /4, 1f /4]. The set of augment­
ing basis functions will consist of only the I)C terms, i.e. 8 7 == {el,e2,e3,e4,es,
c6, e7}' As n point of reference, the null vector (42) evaluated at the center of
£2 is given by

(~-'3S4S6h

-k)2r; 3S4 S6 h
--(S2.lJ -t- S2 C4h -t- C12G13S4h)S6

IlJ == I 0
tJ2(}4S69 -+- S'2 S4CSC69 + S2S6h

S21..)4 S 5869
-/32S4( ;S.lJ

T".1 == [O.D - 0.) -- O.S 0.0 0.5 0.0 - 0.5]

(42)

(43)

'The previous t\VO sections have concentrated on comparing various rcpcarul.l.

inverses with a desired nonrepeatable inverse, in this case the pseudoin vcr:«\.
using the somewhat nonintuitive metric IIGl' - (}d\l1I, i.e., the norm of the <Iii
ference between the repeatable inverse and the desired inverse over the design
region of the joint space, Q. While this metric is arguably the B10St appropl ial'.'.

it is instructive to consider the behavior of the repeatable inverses with respect
to the properties of the desired inverse. This section considers the perfonuano:
of the various repeatable inverses discussed previously in a simulation of llll'

PPI( manipulator following a specific desired end-effector trajectory. It Blust hI'
emphasized, however, that no single trajectory 'can satisfactorily represent lhe

behaviour of an inverse over the entire range of end-effector trajectories alld
manipulator configurations in il) which is the motivation for relying Oil the Bonn

IIGr - Celll!"l as the primary measure of performance,
The desired end-effector trajectory selected for the simulation studies is gi\'l'll

in Fig. 7. The PPR manipulator depicted in Fig. I is commanded to {"olio,.. '

the -l-meter square trajectory labeled ABCI)E. The initial configuration of fill'

manipulator is set to the origin of joint space which corresponds to the point ,\
in the workspace. Since all of the repeatable inverses calculated in the pre viou.
sections have used symmetric design regions centered around 0,1 == 0, this Il\ll'
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Fig. 7. The desired cud-effector trajectory used in the simulation of the PPR manipulutor
shown in Fig. J. The -l-mcter square path starts and ends at A. which corresponds to the
origin in joint space. The manipulator is commanded to traverse the trajectory in a clockwise
manner with a constant speed,

x2

E(-l,OJ 1[o,oJ .AI1,0)

D 1-1,·4}

~ [3,0) __xl

C [3,-4}

83

o

the initial configuration in the center of the desired region of operation. The
desired trajectory was then selected to travel away from this center region at a
constant speed. The path is intentionally discontinuous in direction at the corners
of the square to help distinguish points along the trajectory and to emphasize the
directional nature of the inverses.

Figure 8 illustrates a view of the three-dimensional joint-space trajectory,
shown in bold, that corresponds to the use of pseudoinverse control. to follow
the square end-effector trajectory labeled ABCDE. The other lines in this fig­
ure represent the integral surface resulting from the optimal repeatable inverse,
i.e., that obtained with the basis Boo. Note that the repeatable surface initially
contains the pseudoinverse trajectory but that they start to diverge as the pseu­
.loinverse trajectory leaves the design region at point C. It is at this point that
the global repeatability requirement forces the repeatable inverse to abandon the
desired pseudoinverse solution. The drift resulting from thepseudoinverse so­
lut ion is clearly identified by the distance of the final manipulator configuration
from the origin, which was the initial configuration. The spiral on which both
the initial and final pseudoinverse solutions lie represents the fiber of all points
corresponding to the point A in the workspace.

1\ quant itative comparison of the joint angle velocity required to achieve the
desired end-effector trajectory is given in Fig. 9. The norm of the pseudoinverse
solution and that of the optimal repeatable inverse are identical up to the point C
since they follow exactly the same joint trajectory as was shown in Fig. 8. 'The
inirial divergence of these l\VO trajectories in the region from C to I) results ,in a

Fig. 8. A 3-D view of the joint-space trajectory resulting from using pseudoinverse conl I (d

shown in bold. to follow the square end-effector trajectory given in Fig. 6, as COllljl;\I\.'c1

to the repeatable surface obtained [ruin the optimal repeatable control using the basis n, '<

Note that the repeatable surface initially contains the pseudoinverse trajectory but thai tilt'"

start 10 diverge as the pseudoinverse trajectory leaves the design region. It is at this IHli111

that the global repeatability requirement forces the repealable inverse to abandon the desill'd

pseudoinverse solution.

larger joint-velocity norm for the repeatable inverse due to the pseudoiuvcrs.: '.

local optimality. However, note that immediately preceding the point I~, the (\p

tunal repealable inverse actually outperforms the pseudoinverse solution. Thi
is not entirely unexpected since the manipulators are now at different cOllflg\ll;1

lions.
'Three other repeatable inverses are also compared in Fig. 9. These all' (/\'

NORCS inverse, the NUSAM inverse, and the' combined NlJSAM/NOH.C'S ill

verse discussed in Section 4 for the basis B~ and a design region or !J
l-7T /2, 1T/2]. As expected. the performance of the pure NORCS technique. i
best, the pure NUSAM technique is tho poorest, and the combined N l.JS 1\r', ,
NORCS technique lies in between the two. First, consider the perfonnanrv III

the NlJSAM technique. 'The NUSAM inverse performs well over large !l0lti(Hl

of the trajectory, however, it results in relatively large joint velocities Ileal til'

points C and D. This behavior is due to the fact that. as discussed in Section ~

the NlJSAM technique is susceptible to the influence of algorithmic siuuul:« i
ties .. While this particular inverse does not result in an algorithmic singular it \
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PlzOPOSITION. Let .1\1 be an N x N real symmetric positive semi-definite nu!

trix. Suppose a == Mi». A solution of the constrained optimization problem

Appendix

. over a subset n. This directly solves the desired problem but the nlgorithm i~

computationally intractable for all but the simplest manipulators due to the high
dimension of the search space. The second technique attempts to maintain tilt'
characteristics of the desired inverse by approximating its Hull vector. Whil«
this algorithm is relatively computationally efficient, it suffers frOI11 a pOOlel ;'1'

proximation of the desired inverse, primarily due to the effects of algOl itluu«
singularities. While neither of these techniques is practical by itself, it has IWI'II

shown that information gleaned from the Bull-space appruximatiou lechllil!"1
can be used to guide the first technique in a lower-dimensional search sp;t< I

This results in a computationally efficient approach for determining ncurly opt i

mal repeatable inverses that can approximate the properties of any given desilld

generalized inverse-control strategy.

AE

.......... NUSAM
___ Combined

____ NORCS

, _ . _ ,_ Optimal Repeatable

___ Pseudoinverse

·~~L/1·~~~··~··.. :/ .7~\~,,- ...~./ ~,,--.,. -
"----' -

8
Ol. I , , I I I I J

A

0.01

Comparison of Repeatable Controls to the Pseudoinverse
0.06r " I , Iii i ,

0.02

0.05

0.041 i

'~003

C 0
Desired End-Effector Trajectory

Fig. 9. A plot of the joint-velocity norm as a function of the position of the end-effector
ill the workspace for the trajectory shown in Fig. 7. Note that the trajectory obtained Irom
the NUSArvl inverse results in very high joint rates near the points C and D while all of
the other repealable inverses are comparable to the performance obtained when using the
pseudoinverse.

maximize aJ'a

subject to b7
1

1\4b == I

is obtained when b is an appropriately scaled multiple ojLhe singular \'('( 'If 'I

associated witli the largest singular value of /\1.
Proof First, note that aTa == bT l\12b. Suppose the rank of M is '1'. Since 1\ Ii:"

a real symmetric positive semi-definite matrix, its singular value decomposition
is USU1' where U is orthogonal and S == diag(olt0'2)""O,.,O) ... )O) \\'itll

a I ~ o z ~ ... ~ o ; > O. Any vector h can be written as

the augmented Jacobian is ill-conditioned) indicating proximity to an algorith­
uric singularity. It is this very behavior that makes the pure NUSAM technique
unsatisfnctory despite its computational advantages. However, using Nl)SAM as
(\ precursor to the NC)RCS optimization results in the combined inverse which
results ill performance that compares ..nore favorably with that of the pseudoin­
verse. In fact, a direct comparison of the combined inverse with that of the pure
NC)RCS optimization over the entire basis B~ shows that the combined technique
approaches optimal perfonnance at a fraction of the computational expense. Fi­
nally, note that the lise of a truncated basis for the optimization is justified by
directly comparing the NOI<CS optimization with that of the Opti01C.11 repeatable
inverse over the infinite basis Boo. ' b == oqu} .+.. 0'2 U2 -j- ... -l- ['{NUN (/\ I)

II is easy to verify that h1 1

1\12b) == bT J\I[ 2h and hfA1h 1 == hT1\/h so thnl 011/'

only needs to check vectors of the fonn (A2). Such vectors are given hy f.1",

whereU, == [UI,U2···Ur.J and w is all r-vector. The problem then bccomr: I"

6. Conclusion

.lhis work discusses techniques that make it practical to calculate repeatable gen­
ci alized inverses which are close to S0I11e arbitrary desired generalized inverse.
'l\v() different types of optimizations are discussed. The first minimizes the inte­
gral norm of the difference between the repeatable inverse and the desired inverse

where u, is the ith column of U. Let

hi == o~ )U I -I- O~2 U2 -1- ... -I- (v'l' u; (,\.! I
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(A3)

maximize \v'l'lJr Ai 2lJ, \" subject to \vT ll r l\l f] 1w == 1 which is now rewritten
as

maximize \V'I'l.)f\V

subject to \,,7'51
J \V ==

where SI == diag(al, G2, ... ,Gl')' Applying the method of Lagrange multipliers

..!!.-.- [wTSfW+ >.(wTS1W - I)] = 0
O\V

one finds that the optimal w satisfies Sf\V == -AS, w. Since SI is invertible,
5',\v == -'x\v. Thus the optimal w is an eigenvector of the diagonal matrix S,­
Suppose that the eigenvalue is c. Then \V

rr S1f\V == C\V
T 8, w == C, which im­

plies that the llH1Xil1l11111 is given by choosing the largest singular value al. This
corresponds to choosing b == U I .
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