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Abstract. A kinemalically redundant manipulator is a robotic system thal has wore (han ihe
mininusn number of degrees of fieedom that are required for a specitied task. Due 1o the
additional freedom, control strategics may yield solutions which are pol repeatable i the senise
that the manipulalor may not return to its initial joint conliguration for closed end-clfectn
paths. This paper compares two methods for choosing repeatable control strategics wlhich
minimize their distance from a nonrepentable inverse with desitable propetics. The it
method minimizes the integral norm of the difference of the desired inverse and a repeatable
inverse while the second method minimizes e distance of the nulf vectors associated with
the desired and (he repeatable inverses. N is then shown how the two techniques can b
combined in order to oblain the advantages of both methods. As an illustrative example (b
pseudoinverse is approximated in a region of the joint space for a seven-degree-ol beedian
manipulator.
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1. Infroduciion

A robotic systemn can be described by ils kinematic equation which relates (I
set of joint values of the manipulator 1o the position and orientation of the end
effector in the workspace. If the location of the end-effector is specified as an
m-dimensional vector x then the kinematic equation can be writlen as

x = [(#) (h

where f is a siooth vector function and where 0 is an n-dimensional vector al
the joint variables. One of the popular techniques for controlling a manipulatos
is resolved moticn rate control which calculates the joint velocities [rom the
joint configuration and desired end-elfector velocity. The underlying cquation
is the Jacobian equation which, for the positional component, can be lound hy
differentiating (1) 10 obtain

x=J6 P
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where x is the desired end-effector velocity. The chief advantage of using the
Jacobian for the motion control of a manipulator is that the Jacobian is a linear
relationship between the joint velocilies and the end-effector velociiies. At each
point #, J is an m x n matrix.

Kinematically redundant manipulators are robotic systems which possess more
degrees of freedom than are required [or a specified task so that m < n. This work
will only consider the case of one degree of redundancy, i.e. when n = m + |.
There are an infinite number of control strategies for redundant manipulators so
that one can take advantage of this freedom by choosing a control strategy which
will optimize some particular criterion. This work will consider generalized
inverse strategies of the form

0= Gx . (3)

where (' satisfies JG = T for nonsingular configurations. The elements of G
are functions of the joint configuration. This stralegy may be chosen (o locally
minimize a given criterion funclion such as the least-squares minimum norm
criterion on the joint velocities as in the case of the pseudoinverse solution

0=J%x (4)

where J' is the Moore-Penrose pseudoinverse of J. This control stralegy lo-
cally minimizes the joint velocities of the manipulator subject to moving the
end-clfector along a specified trajectory. Also popular in the robotics literature
are weighted pseudoinverse solutions which locally minimize 87Q8 for some
positive definite weighting matrix (2. Since this work only considers manipu-
taitors with a single degree of redundancy, the generalized inverses G have the
form

G=0" 44w’ (5)
where iy 1s a unit length null vector of J and where w uniquely determines G
This follows from the fact that J(G — J*) =0 [9].

Due to the additional freedom afforded to kinematicaliy redundant manipula-
tors, control strategies such as (3} may not be repeatable in the sense that closed
trajectories in the work space are not necessarily mapped to closed trajectories
in the joint space so that for cyclic fasks the manipulator will not necessarily
refurn Lo its starting configuration.  Klein and Huang {7] give a mathematical
prool of this Tor the pseudoinverse control of a planar 3R manipulator. An el-
egant meihod of identifying control strategies which are repeatable is presented
in & paper by Shamir and Yomdin [13]. This method determines repeatability
by checking whether the Lie bracket of any two columns of the inverse is in the
column space of 5.

This work focuses on the generation of repeatable control strategies that are
as close as possible to some desirable, but not repeatable, control. It will only
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conskder inverse kinemalics and not the dynamic aspects of the complete continl
problem [5]. The remainder of this article is arranged as follows. Tn Section 2.
lwo optimal repeatable strategies are presented. A comparison of these wo
strategies is discussed in Section 3 using a simple manipulator as an illustrative
example. Section 4 iltusirates how Lhe two lechaiques can be combined by using
information obtained from one technique to guide the calculation of an optinl
repealable strategy by the other technique. This procedure is demonstrated fo
both a simple example as well as for a seven-degree-of-freedom maniputator
Simulation results illustrating the efficacy of these lechniques are presented in
Section 5 followed by the conclusions of this work in the final section.

2. Two Optimal Repeatable Control Strategies

In order 1o choose an oplimal repeatable control slrategy il is necessary (o ¢l

acterize those strategies which are repeatable in terms of the desired generalizol
inverse (¢ and a null space component. This will be done by considering Hu
corresponding augmented Jacobian as was done in |9]. At nonsingular confipn

rations any generalized inverse G can be calculated by inverling an augientod
Jacobian of the form

J

Jv: ' £
V’I

where v is a null vector of GT. The corresponding control strategy is found b
taking the first n — | columns of the inverse of J ! which is given by

R
J‘,‘1 = {JV 4 ﬁ_;wj Do i
ny-v

where once again fiy i1s a unit length null vector of J and

—{J"')TV
W= —— (i

ny-v
Choosing an augmenting row that is a gradient results in a repeatable conlil
strategy [12]. Thus the augmenled (ask-space approach is one of a number of
commonly used techniques for resolving manipulator redundancy [1, 4, 6, 11}
For the extended Jacobian [2], the angmenling vector is given by the gradicit
of Vg -ny where g is some criterion functlion of . By including this addition:l
function the manipulator acts ‘mathematically’ like a nonredundant manipulato
assuming that the rows of J and v are linearly independent. A set ol these
gradients can be used to define a class of control strategies which are repeatabl

“in simply-connected, singularity-free domains [3].
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One chortcoming of applying augimenting techniques is the possible introduc-
tion of atifictal singularities, called algorithmic singularities [2]. These singu-
larities are distinct from the kinematic singularities of the manipulalor and are
a function of the angmenting vector v. The configurations corresponding to an
algorithmic singularity are characlerized by

ny-v=1{. )]

The presence of algorithmic singularities can seriously restrict the workspace
in which the manipulator can operate as desired. A further discussion of this
problem will be presented later.

This paper considers the probiem ol choosing an optimal control stralegy [rom
a set of repeatable stralegies which have been characterized by their augment-
ing veclors. An example of a set of augmentling veclors which yield repeat-
able control strategies is the span of IV linearly independent gradient functions
{vi,va,...,vn}. Tor this case the augmenting vectors would have the form
v o= ZIN:J a;v; where each «u; is a real constant. Several considerations should
be made in choosiag such a basis. One should be careful to select the gradient
functions to be fincarly tixdependent from the row space of the Jacobian since
Liilure o do so will result in a singular augmented Jacobian. Secondly il should
be noted that all nonzero multiples of an augmenting vector result in the same
control. Thus choosing an optinal augmenting vector becomes a constrained
optimization problem in which each augmenting vector is normalized. Such a
normalization can be done for example by requiring that Z:L af = 1.

Now that a procedure for generating repeatable strategies has been given, it is
possible (o consider optimal strategies. In this work, optimality will be in terms
of nearness o a desired nonrepeatable strategy. The nearest oplimal repeatable
controb stritegy (NORCS) is defined as the repeatable controt strategy which
is nearest 1o sonie desired nonrepeatable strategy in some region of the joint
space. In general, this optimization will be performed over a set of prescribed
repeatable strategies. The measure of the distance between a desired inverse Gy
and a repeatabie inverse G)is defined by

S - Gl == [ 16 - Gk (10)
1Q |2] Ja

where €2} is the volume of £ ¢ R™, || - ||» is the induced 2-norm for a malrix,
and [, d0 is an n-dimensional integral over a simply-connected, singularity-free
subset Q of the joint space. Equation (10) provides a measure of the closeness
of two inverses on some important subset €2 of the joint space. The nearest
repeatable control strategy to the desired inverse Gy is defined to be the repeat-
able inverse (¢, which minimizes (10). The subset £ may be chosen based on
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some optimal configuration at which one would like the manipulator (o ope
ate. From (5} it follows that the induced 2-norm of the dilference between (s
inverses (7, and G is

1Gr = Galla = ||y (wF = W) = v, = wall (i

where the veclors w, and wg uniquely determiine G, and Gy, respectively, Tl
the measure given in (10) for a repeatable inverse and a desired inverse becom

G — Gdi]é = /2 Hwv, — wyll2 d6 it
Jg

where w is given by (8).

Optimizing (12) can be rather difficult since it will, in general, be a highis
nonlinear equation. Even when a minimum is obtained, it is difficult to determing
whether it is in fact a global minimum. A more computationally efficient oph
niization can be developed by considering a slightly different problem. Rathe:
than directly minimizing the difference of the inverses themselves, 1L is possibl
to minimize the difference of their associated null spaces. Before proceedine
further, a discussion of the notion of the associated null space s in order.

An associated null vector! ng of G is defined to be a null vector of 7. T
associated null space of G is simply the null space of G’ The pseudoinverse hae
ny as its associated null vector so that the aull space of J and the associated nill
space of the pseudoinverse of J are identical. Tor the case of a single degree o
redundancy, the associated null space is determined by the augmenting vector
as given in (6). In this case the associated null space is a vecltor-function spac:
which, when evaluated at nonsingular configurations, is characlerized by a st
vector. Thus the space can be characterized by a single vector field. 11 this vecte
fictd is ny for example, then the resulting inverse is the pscudoinverse. ol
vector field is a gradient, the resulting inverse will have the desirable propeits
of being repeatable in cerlain regions of the joint space. Thus certain propettic
of G can be identified by examining ng.

An additional method of quantifying the distance belween two control straie
gies, as opposed to (10), is o deline a measure between their associated null
vectors. The null space approximation method (NUSAM) chooses a repeatable
inverse (7, to approximate G by selecting the augmenting vector v, once agam
from a space of gradients, which is closest to the set ol assoctated null vector

ng, which have been normalized in the sense thal [Q ”n(,'d”%d{? = . Thus th
NUSAM criterion is

. 2 : 2
7 —_ -— il
min v —all = min /;) [lv — nij5d0 ARy
nEN nEN

! An associated null vector ng; is also commonly referred to as a left null vector of ¢/
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where V is the space of allowable augmenting vectors and N is the set of
continuous associated null vectors of Gy satisfying [, [|n]|3 d6 = 1. For the case
of the pseudoinverse, the elements of A/ have the form

iy (14)

where «vis in A, the set of continuous real functions on €2 salisfying 1o a?dd = 1.
lFor the remainder of this paper, the pseudoinverse will be used as an example
ol a desired nonrepeatable inverse, Gy. All of the results developed apply to any
other generalized inverse Gy by replacing ny with ng,.

Calculating the NUSAM solution requires several steps. The presentation that
follows summarizes the key points. Additional details are available in [10]. First,
note that to do actual calculations, the set of allowable augmenting vectors V
will be taken to be the linear span of an orthonormal set {vi,...,vn} of N
gradients where orthogonality will be determined by the inner product

{0, v)o = /ll u-vdf. (15) .
Jg

Note that it has been implicity assumed that V' is contained in £(€2), the space
of Lebesgue measurable ni-vector functions satisfying [, ]|uﬂ;‘_)df) < oo,

Nexi, the optimization is reduced to a search over the scalar functions . This
ts done by noting that for any fixed n = «iiy, the allowable augmenting vector
minimizing {13} is simply the orthogonal projection of n onto V

N

vie) = Z(Livi (16)

i=|

where a; = {any, v;)q. The optimal v will have this form for some « and the
minimization ol (13) can therefore be performed over the set of possible «'s.
tsing a Caleulus of Variations argument, it can be shown [10] that an optimal
ov has the form

N

= by vy (17
=1

One then has that the Fourier coefficients of (16) are

. N
ap = afiy - v;do = Myidrs (18)
R

7=l

where

f\ll‘_,' = / (i vy - v_,-)d(). (19)
JEY
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Since each « is normalized, it follows that

N N
| = / odo = " > Mijbiby. (fh
JQ

i=1 j=1
In matrix-vector notation (18) and (20) become
a=NMDb (M

bEAD = | [

where a = [ajas---ay]?, b = [biby - by}, and the Gramian matrix A4/ i
M = [My].
By noting that |jafislln =1,

N
vl = > af =a'a, ('

i=1

and that v{«) is the orthogonal projection of any onto V, one has (hat the -
which minimizes (13) satisfies

llevivs — v(eollfy = llerb gy = Iv(ellfy

=t—ala

Thus the optimization probie becomes to minimize | —a”a subject to b A1l
1, or equivalently, :

Maximize a’a

i)
Subject to b Mb = 1.
It can be shown that this is maximized when a and b are appropriately scaled
singular vectors associated with the largest singular value of A (sce the Ap
pendix). _

As well as providing a tool for calculating the optimal solution for a given
basis the Gramian formulation also provides a measure for comparing any othe
augmenting vector. For an augmenting vector v the Gramian matrix with sespe
to the normalized vector function ¥ = v/||v|l¢, is a scalar given by

] .
m/(v) = /(ﬁJ -V - V) A = = (i vi(iy - v)de (i)
JOQ livlle, /¢

Note thal maximizing {26) over V is equivalent to (13). 10 v is in the span of (he
basis {vy,..., vy} then the Gramian matrix M can be directly used to determin.:
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how close a match v is to the null space. The vector fanction v has the form

—~N . .
v=">".",¢v; for some set of real constant scalars ¢y, ca, . .., ¢y Representing
v in the vector form ¢ = [¢; - - ey]T one obtains that

, cIhe
m o= -—. 27)
cTe

The closer m' is to its maximum value of one, the closer v is to approximaling
a nult vector of Lhe desired inverse.

3. A Comparison of the Two Methods

This section compares the behaviour of the two methods presented above by
tHustrating their comparative advantages and disadvantages on a very simple
manipulator. An understanding of the characteristics of these two methods will
then be nsed to develop a combined lechnique, which is suilable for more general
maniputators, in the following section. In all cases, the pseudoinverse will be
used as a representative desived but nonrepeatable control strategy. First, consider
the planar manipulator shown in Figure 1 which consists of two orthogoaal
prisnmatic joints and a thitd revolule joint of unit length {(a PPR manipulator).
This manipulater has as its Jacobian

J =

Il 0 —«sin()}] (28}

0 1  costy

andd a unil length null veclor iy = l/\/i[sin 0y —cosfz 1]7. It is desired to
find a repeatable inverse as a function of @3 which is close (o Lhe pseudoinverse

L

Fig. 1. Geometry of a planar three-link manipolator whose first two joints are prismatic and
whose last joint is revolute and of unit link length.
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o the sense of equation (10). This will be done for three different regions o
interest ranging from 83 intervals of [—#, w} to {—n /4,7 /4].

The manipulator in this example is simple enough to analytically calculan
the nearest repeatable inverses for infinite dimensional augmenting spaces. in
patticular, for the set of all repeatable inverses which are functions of #y only. 1l

has been shown [9] that the nearest optimal repeatable inverse (). is characterized
by

k cos 8y -+ sinth

w = -7 g
V202 + 1)

where w satisfies G, = JV + fiyw?. This solution is parameterized by the scib
k which is determined by the limits of integration. For 83 regions of inteir
that are symmetric around 3 = 0 and smaller than [—n /2, 7 /2], k is identicall
zero so that the optimal augmenting row is given by

vl = [0 —cosf3 |+ sin? 04]. { e

Symmetric regions of interest that are between the ranges of {—a/2, 7/} vl
[—, w} are optimized by k = oo which resuits in

vI=[sind; O |4 cos®8s]. I

The repeatable strategies resulting {rom (30) and (31) match the pseudoinver
al 83 values of 0 and % /2, respectively. Also, note that the resulting inverse
very well behaved since ihe norm of the vector w is bounded by I/\/i, so 1l
there are no algorithmic singularities. The properties of these optimal inverse:
ate discussed in greater detail in [9].

In general, it is not possible to analytically ecalculate the nearest repentabl
control strategy. However, as discussed above, one can consider control stratcyi -
which are obtained by augmenting the Jacobian with a gradieal row that
calculated from some finile basis of gradient vectors. For this example i1
sufficient to consider augmenting rows which are gradients and Iunctions of '
only. To iltustrate the effects of using different sets of allowable angncntuy
veciors the following bases will be considered

By = {e|, ez, €31}

Bs = B3 U {cosfye;, sinlye;}

B§ = B3 U {cos 203e3,sin 2603e3}

Bf = B3 U {cos 403e3, sin403e3} (th
B; = Bs U {cos 203e3, sin 263e3}

B = BS U {cos40se3, sin463e3)
BY = B{ U {cos 8053, sin 863e3}
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where e, e; and ey are the standard basis elements for R3. The stmplest of
these bases is B3 which corresponds to constant terms for each element of the
augmenting vector, or the ‘DC’ components. The nexl set of bases, i.e. Bs,
By and BY, comrespond to the addition of the fundamental frequency for the
ihree different ) regions under consideration, ie. [—w, 7}, [—7/2,7/2] and
L-m/4,7/4]. Likewise the bases By, B3} and BY include an additional harmonic
(o the DC terms and the fundamental frequency for the three regions under
constderation.

Belore considering the pecformance of the two methods using the proposed
linite bases presented, it is instructive to consider how much information is being
fost by going from an infinite dimensional basis to one of such relatively small
dimension. This can be done by calculating the Fourier series representation
for the analytically optimal augmenting vector given by (29). As an example,
consider the region [—w /4,7 /4] for which (30) gives an optimal augmenting
vector. Since alf scalar multiples result in the same control one can divide by
- cos fly 1o obtain the optimal augmenting vector

| -+ sin? 6

vi=|(0 | & —— 33
—cos 33)

which is in the space spanned by BY . The first three terms of the Fourier series
expansion {or the third element of this augmenting vector are given by
[ -+ sin 03

G 13341 403061 V2 cos 483 — 0.0900v/2 cos 864 (34)
= COSHy

which would correspond to its approximate representation in the basis BY. Clearly,
the coefficients for the basis functions are rapidly decreasing for higher harmonics
mdicating that the vast majority of the energy is contained in the lower frequen-
cies. This statement can be quantified by integrating over the entire region of
wterest o obtain

2 m/A T R sind(03) 12

—/ { ___] diy = 1.9113

T wpa L —cos(Oy)
2 1.3341% ++ 0.30612 - 0.09002 (35)
= 1.7798 4 0.0937 4 0.0081
= 1.8816.

These munbers indicate that one would expect the optimal inverses calculated
using the two methods described to be able fo reasonably approximale the ana-
fytically optimal inverse even when using a small number of basis functions.
To deteriine the actaal nearest optimal repeatabie control steategy (NORCS)
for the finite bases of (32), one mwust evaluate the integral given in (§2), where the
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integrand in this case is simply given by (8) since J ! is (he desired inverse, ove
the N — 1 dimensional space of normalized coefficients for the basis functions
The results of performing this optimization for the various different inlegration
intervals and augmenting bases is summarized in Table 1. The data in Table 1
validates, for the most part, the hypothesis concerning the ability of a st
number of basis functions o approximate the analytically oplimal solution. o
lact, using only the DC terms, i.e., those represented by the basis 33, provides o
very reasonable approximation of the analytical optimal for both of the smalle
€ intervals. Even in the largest Q interval the DC terms tend 10 dominate the
higher harmonics. The fact that the NORCS solutions in the largest inlerval
do not represent a particularly good approximation to the analyticaily optimal
solution is due to its different form in this region which results in a singularity
in ils representation as a gradient, i.e. dividing through by sinf3 results m
singularity at 83 = 0, the center of the Q integration interval. Unlike the case
where Q = [—n /4,7 /4] (he infinite augmenting basis that would result from
expanding B; would not include the analytically optimal solution.

The additiona! effect of the size of the integration interval, as would be cx
pected, is that the resulling repeatable inverses more closely resemble the desired
pseudoinverse as the desired region of operation becomes smaller and smaller
This is graphically llustrated in Figs 2-4. Note, however, that while reducing

NORCS for 2 = [-x,x]
0.9 T T T T v 7 v

0.8;

0.7r

Q.61

0.51

0.4

lIGr - iz

0.3r

0.2F

0.1}

0
-4

Fig. 2. A plol of |Gy — J T2 for the four nearest optimal repeatable control strategics
a function ol 83 for the PPR manipulator shown in Fig. [ This quantity represents the co
of requiring the control strategy (o be repeatable. tach optimal stialegy was caleulated 1o s
#y region of [—=n, 7]
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NORCS for 2 = [-n/2,n/2]
Ug ¥ L] T T r T T

0.8r _ ]
0.7} N ' .-"':;-’; I
0.6}
05}

0.4}

G, - J*li2

0.3f

0.2}

01r

i.5 2

Fig. 3. A plot of |Gy — J " |2 for the four nearest optimal repeatable control strategies as
a function of 83 for the PPR manipulator shown in Fig. 1. This time each optimal strategy
was calculated for a 94 region of {—w/2,7/2].

the € integration interval results in better performance within that interval it also
tends to correspond with markedly poorer performance just outside of the interval
as is clearly evident'in Fig. 5. Thus even though higher-dimensional augment-
ing bases do not dramalicaily improve the performance of the resulting inverse
within the specified region € (particularly il this region is small), it still may be
useful o retain some of the higher harmonics in order to maintain reasonable
behaviour outside of the region €. Finally, it is important to note that inverses
wilh similar figures of merit may provide radically different performance over
the desired region of operation.

As the Q integration interval becomes smaller and smaller, its limiting value
is a single point in the joint space al which the optimal augmenting row clearly
becomes the transpose of the null vector of the Jacobian n, evaluated at that par-
ticular value of #. Uhis can be clearly seen in Table I for the smallest Q integration
interval where the augimenting row is approaching Al(0) = [0 —0.7071 0.7071).
This is one of the fundamental observations about which the null space approx-
imation method (NUSAM) is based. This technique aitempts (o retain the char-
acteristics of the NORCS inverse by performing the much simpler optimization
represented by (13). The results of applying this optimization using the same
augenting bases and € intervals as in the NORCS case are summarized in
Table 11. Note that since the goal of this optimization is the approximation of the
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MORGS for Q = (-4, x/d]
0.6 v Y T T

IGr - o¥ll2

]

~8.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8

Fig. 4. A plot of || — JF|l; for the Tour nearest vptimal repeatable control strategics o
a function of &3 lor the PPR maanipulator shown in Fig. 1. This time each optimial strateys
was calculated for a 8y region of [ /4, 7 /4).

NORCS using By
5 T T T T ] T ¥

4.5} : -

Q= |~r/d,wd}
..... = Q= -w/2,m2)
Q=[-nrn]

3.51

iIGy - J*li2

-

Fig. 5. A plot of || — .7l for the nearest optimal repeatable conlrol strategics using
basis of By for the 83 regions of [—m, w], |~=/2.m,2) and |- /4, w /4]
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Table {1. Optimal augmentig rows using the null-space approximation method (NUSARN
f Q=0 €l—n,nr]

Table I Optimal augmentig rows using (he nearest optimal repeatable controf strategy
(NORCS}

Q=0;€l—nn]

Basis m' = o (M)~ Optimal augmenting row

Basis  (1/[QD)C, — JH I3, Optimal augmenting row

By 0.5000 [0.0000 0.0000  1.0000]
By 0.5000 [0.0000  0.0000  1.000] ' Bs 0.7500 10.5774 0.0000  0.8165vZsin04]
By 04690 {0.1392 —0.0507 —0.8399 - 0.1504+/Z cos @5 — 0.5000+/2 sin 04 ] By 0.7500 [0.5774 0.0000  0.8165V2 sin 6y
B; 0411 [0.0649 —0.0222 —0.7846 — 0.2110v2 cos 6 — 0.5709/7 sin 6, !
+0.0677v/2cos 205 — 0.0678v/3 5in 263 - 03750 {00000 -0.7071  0.7071) = @%@ ]
Lo, 02500 [siny  0.0000 1.00004-cos? f;) ‘

l flE()]E[*”ﬂ/?,ﬁle

Q=0y€|-n/2n/} Basis ' = o (M) Opttmal auginenling row

Basis  (1/|QDC, — JH 3 Optimal augmenting row B, 0.7170 [0.0000 —0.5632 0.8263}
By 03170 [0.0000 —0D3238  0.9461] i ij 0.7484 [0.0000 —-0.5767  0.7389 4 0.3483\/?.(;03 20,1 o
B; 0).2665 lOO()()O —0.3214 0.8830) — 0,3420\/5COS 233] | 37 (0.7496 [00()00 -0.5772 ()736()!’()3469\/2 €os 203 — QUOGYIv 2 cos-ld ]
B 2541 ) - -
4 02540 [0.0000 —-0.2283  0.7905 0.;412@ cos 203+0.1796v/2 cos 46y ) _ 0.6933 00000 —0.7071  0.7071) = AL
Boo  0.2500 [0.0000 —cosfy 10000 + sin? 8] , |
Q=04 € [-n/4, /4] ' el
= Uy — N
. Basis ! = M Optimal auginenting row
Basis  (1/[QDG - J“‘H%) Optimal augmenting row ! = 21{M) ! ¢ &
i 0.0989 00000 —0 5971 By 0.9070 10.0000 —-0.6707 0.7418})
oo loiuooo “’0?;;0 gggzl 011363 . BY 09090 [0.0000  —0.6708  0.7383 + 0.0696v2 cos 40|
S (6.0000"~0.6 7394 = 01736 2 cos 46, B/ 09091 (00000 —0.6708  0.7381 +0.0696v/2 cos 3 ~ 0.0166v/2 com 540§
By 0.0932 0000 —0.5874  0.7890-0.1734v/Z cos 404 - 0.0485v2 cos 863 | )
B., 0.0908 {00000 — cos 0y 1.0000 + sin? 05] - 0.9048 [.0000 —-0G.7070 0.7071) = .‘1’}'(0)
Augmenting bases ' Augmenting bases
- i
By = {kye, kiey, kyes) By = (kiej. kiey, kyes}
. |
li? = BU{k; cos Oyey, ky sinfyeq ) Bs = BalU{k, cos ey, ky sinljeq)
Ii?l = ByU{k; cos 20e3, k; sin 205e3} | Bi = ByU({ky cos 203 ey, ky sin 2034}
BY = B30{k; cos 406y, k; sin 467e4} BY = ByU{ky cos 483 ey, ky sin 40184}
. ¢
B;’ = B?U{ir.z c0s 2034, k3 sin 20ye4) i By = BsU{k) cos 285eq, ko sin204e4}
B;’: = B_ju{k2 cos 46yeq, by sin403e3) | By = Byu{ky cos483e3, ky sindlyey}
7 . Ny .
By = B{U{k; cos 884e3, k; sin 883e3) BY = BYU{ky cos 83ey, k) sin803e3}
i N
k= 1/ and ky = /2/10) ‘ ky = 1//1Q] and ky = /2/]0Y
desired null vector, the accurac i imation i ifi / i ‘ : IS '
' uracy of this approximation is quantified by 7', which | When analyzing the results of the NUSAM optimization, the general cflect

i this case is the maximuin singular value of M, i.e., o (M). Table HI provides
a direct comparison between the two techniques by comparing both figures of i
merit, ie. the error in approximating the desired inverse, 1/jQ (|G, — J*|j3,
which is the trne minimization criteria, as well as the error in approximating the
null vector of the desired inverse, min ||v — nJr“(z2 =1 - m'(v).

due to varying the augmenting bases and the £ intervals are quile similar to those
observed in the NORCS results. Overall, the DC terms tend to dominate anl
. more accurate approximations of the null vector are obtained with smaller €2 1
tervals. Iowever, it is important to point oul that more accurately approximatin
¢« the null vector does not correspond to more accurately approximating the perfor
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Table HI. A comparison of the two techniques

Q= 03 € [—-'n’,Tf}
azepia: - 213

minly — llJ”%z =1 —m!(v)

Basis NORCS NUSAM NORCS NUSAM
By - 0.5000 0.5600 0.5006 0.56000
85 0.46%0 * 0.5601 0.2560
13 04111 * 0.5307 0.2500

Q=6y¢[-n/2,7/2
A/1DGy - TG

minj|v — nyliy =1 —m'(¥)

Basis NORCS  NUSAM - NORCS NUSAM
By 0.3170 0.4146 0.3312 0.2830
B 0.2665 1.4786 (13782 0.2516
i 0.2540 2.5474 0.4378 0.2504

Q=0y€[-n/d,7/4]
Q/IQDEG - I 1iG

min fjv — 0,5 = 1 - w(v)

Rasis NORCS NUSAM NORCS NUSAM
By 0.0985 0.1045 0.1011 0.0930
BY 0.0936 0.1142 0.1157 0.0910
B%’ 0.0932 0.1153 0.1221 0.0909

* Denotes an algorithmic singularity.

mance of the desired inverse. In particular, consider the data for the case where
the € region is [~ /2, w/2] in Table 1il. Note that despite the fact that a larger
basis (from B3 to 13) in the optimization decreases the error in the approximation
of the nuli vector (from 0.2830 to 0.2504) the error in approximating the desired
inverse actually increases dramatically (from 0.4146 to 2.5474). Similar, though
less dramatic, behaviour is apparent in the € interval from [—w/4,7r/4] and in
the worst case, when €2 is rom [—m, @], the larger basis actually results in an
angmenting veclor wiih an algorithmic singularity within the desired operating
region. From this data it would at first appear that there is no point in applying
the NUSAM optimization for larger bases. In fact, one might argue that since
only the DC terms are significant, why not forgo the NUSAM optimizalion and
simply use (he actual nufl vector evaluated at the middle of the desired inter-
val? Tndeed the vectors obtained when applying the NUSAM optimization do
lie close to this value of A%(0) = [0 — 0.7071 0.7071] as expected. However,
it is timportant to remember that similar augmenting vectors de not necessarily
represent similar inverses. In particalar, the matched null veclor ﬁ’_I,'(‘()) results
in an algorithmic singularity when cosf3 = —1 while none of the augmenting
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vectors obtained using the NUSAM optimization with a basis of B3 possess ane
algorithmic singularities. This singularity, even if it is nol focated in the desire
region €2, results in significantly poorer performance, e.g. a value of 0.6221 to
QG — JH|IZ in the region {—7/2,m/2).

It may at first appear anomalous that the NUSAM optimization will yesudb
in augmenting vectors that remove potential algorithmic singularities, as in the
case of the basis B3 for the region [~ w], while at the same time it introduce
algorithmic singularities when the basis is expanded to either Bs or 8. Thi:
apparent anomaly can be resolved by examining how the NUSAM oplimization
treats algorithmic singularities. Clearly, vectors which produce algorithmic sin
gularities within the desired region € are discouraged due to the fact that the
integrand in (26) becomes zero thus explaining why the augmenting vector ol
tained when using By is able (o eliminate the singularity that occurs when sinpls
using ﬁ_’,(O). However, il the integrand is relatively large over most of the €
region, it may be able to overcome the (act that it is zero al a single point. 't hi-
accounts for the fact that the optimal solutions for the bases Bs and By continn
atgorithinic singularities. Nole that this treatment of algorithmic singulariti
represents a fundamental difference between the NUSAM optimization and il-
NORCS method. In particular, a NORCS augmenting vector may not resubt i
an algorithmic singularity within  since this causes the integrand in (2} 1o po v
infinity. This is also more elfective in preventing algorithiic singularitics tiom:

Comparison for B's and Q = (-w2,12)

35 T T T ¥ ¥ ¥ e
3 i
.......... NUSAM
. mmm YO}
25} _ — _ . Combined
B NORCS
& o
¥
1
9 15t N P |
L R
hY g /
AN /‘
1 -
0.5}
1]
2

Fig. 6. A plat of |Gy ~ Jt]||; for the nearest optimal repeatable method, the auhspivo
approximation inethod, the combined technique, and the matched null vector for a 0y 1egion
[—/2,7/2] and an augmenting basis B
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even approaching the region €, as is clearly illustrated in Fig. 6 by comparing
the values of (1/|QD}|Gy — JH||3 for the NUSAM and NORCS solutions.
While the inverses obtained using the NORCS technigue are inherently su-
perior in performance to those obtained through the NUSAM optimization, the
NUSAM optimization has an unquestionable advanlage in terms of compula-
tional efficiency. The algorithms for computing the oplimal augmenting vectors
bath require repeated n-dimensional integrations. In the NORCS case (see (8)),
the integrand requires a matrix vector product of the desired inverse with the
augmenting vector, a dot product with the basis veclor (a function of N) and the
null veclor, and a scalar division (which prevents the selection of augmenting
vectars that result in algorithmic singularities). In the NUSAM case (see (19)),
the integrand only requires lwo n-dimensional dot products using the basis vector
(a [unction of ) and the null vector as well as a scalar multiplication. While
the simpler integrand for the NUSAM case resulls is some computational advan-
tage, the overwhelming savings in computation comes from the number of times
this integration must be performed. In the NUSAM case, this n-dimensional

integration mwst be performed exactly N(N - 1)/2 times, once for every unique.

element of A (which is then followed by a singular value decomposition of A).
In the NORCS case, the number of n-dimensional integrations is essentially un-
known. In the simplest case one could form a grid in the (N — I)-dimensional
space ol normalized coefficient vectors which would result in an exponential
nimber of n-dimensional integrations. Thus the NORCS approach quickly be-
comes intraclable. For example, for N = 3 the NORCS algorithm required an
order of magnitude more computation ime as opposed to the NUSAM algorithm
whereas [or N = 7 NORCS required four orders of magnitude more computation
time.

4. Combining NORCS and NUSAM

[Frony the preceding section it is clear that neither NORCS or NUSAM are com-
pletety satisfactory by themselves for calculating augmenting vectors for systems
with large numbers of degrees of fieedom. While the nearest optimal repeat-
able criterion represents a belter measuie of closeness to the desired inverse,
it rapidly becomes computationally intractable, whereas the null-space approx-
imation method results in poorer performance primarily due to its treatment of
algorithmic singularities. It is, however, possible 1o combine the two methods
by using information from the null-space approximation method for determining
optimal subspaces in which to perform a lower-dimensional search for the near-
est optimal repeatable inverse. This information is contained in the complete
SVD of M as opposed to simply the singular vector associated with the targest
singular value. In particular, the SVD of M may be writlen as

N
M= Zniﬁ,ﬂ;“ (36)

7=
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where the singular values are ordered from largest lo smallest. Since twre
a gross correlation between matching the associated null space of the desiiod
inverse and matching the inverse itself, the NORCS solution should be nem
the space spanned by the 4; associated with the farge singular values, and o
necessarily strictly along @) as shown from the data in the previous section
Exactly whal constitutes ‘large’ singular values is somewhat arbitrary, howeve
the singular values range from 0 to | and are typically clustered so that they
will be one or more values of i for which a7 > a; . I this is not the case sael
all of the o; are approximately equal then there is no information that can 1
exploited to guide the NORCS optimization.

To illustrate the procedure for combining these lechnigues and to evahian:
efficacy, consider the simple example in the previous section for the case whin
the £ region is given by [—n/2, 7 /2]. Assume that one would like inlointico
from the NUSAM oplimization using the basis B to perform a lower-dimensicn i
NORCS optimization. From Table Il one can see that ag; = 0.7484 and i
i) = [0.000 0.5767 —0.7389 —0.3483 0.000]7, however, the compleie S\
of M is given by

S = diag(0.7484 0.7001 0.5000 0.0499 0.0016) Pt

and

0.0000 —0.5548 0.0000 —-06.8320 0.0000
0.5767 —0.0000 —-0.0000 —0.0000 08169
{7 = | -0.7389 0.0000  —-04264 --0.0000 0.5217] . (i
--0.3483 0.0000 0.9045 —-0.0000 0.2459
0.0000 —0.8320 0.0000 0.5548  0.0000

From these singular values it is elear that many other augmenting, rows wonl!
have been nearly as good an approximation to the desired null vector s

the first three singular values are on the same order of magnitude. Thus oo
angmenling vecior in the space spanned by G Gy and Gy can be reasonah!
considered as a candidate for resulting in a nearest optimal repeatable coni
strategy. One can therefore run the NORCS algorithin evaluating only vned
ficients which are normalized linear combinations of @ @i, and i3, thus oul
requiring a two-dimensional optimization. This optimization results in the vocd
ficients 0.6428{ + 0.0000i1, -+ 0.76600y which corresponds (o the augmentin
row

v = (00000 03707 — 0.8016 - 0.4690v/2 cos 20;).

The measure of difference belween the inverse that corresponds (o this ang
menting row and the desired inverse is given by H/|Q]|G, — J' {7, = 0.0
which is markedly better than that obtained using a two-dimensional NOJ¢
optimization with the basis By (1/|Q |G, — JH[2, = 0.3170) which requii !
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approximalely the same amount of compultation time. This markedly improved
performance is graphically illustrated in Fig. 6. Note that the four-dimensional
NORCS optimization using the basis B% resulted in 1/|Q} |G, — J*{|, = 0.2665
which is the true optimal in the space spanned by B§ but which required an
order of magnitude more computation time. One can identify the component of
this vector that lies outside of the lower-dimensional search space by multiplying
by U7 to obtain

al(BOU =[0.7187 0 0.6859 0 —0.1140] (40)

which shows that there exists a small component strictly along 5.

As a final more realistic example of applying the combination of these tech-
niques, consider the typical 7-DOF anthropomorphic manipulator described in
detail in [8). The Jacobian for this particular maniputator is given by

5030 -+ Sy ~S51Cy Sy 0 0 S ~ (58
—525 ~Chy 0 -1 0 —Cs —855
g ~ 830384 4- (50 5454 Cy 0 1 )] Cs (41
= 853851C — 83530 —-(1Cyg - Cih 0 -h 0 0
=839 - Sy — S Sye+ 593G —hSy 0 0 0 0
52531549 CyS49 0 0 0 0 0

where S; and (; denote sin#; and cos#; and the parameters g and h are the
nonzero lengths of the upper and lower arms, respectively. The nuli vector for
this manipulator can also be wrillen analytically and is given by

: 354 56h .
—853.535456h
(829 + SoCyh 4 CHC3S4h)Sg
n;= 0 . (42)
S Seg + §254C5Csy 4 S2Seh
525455569
L —525405{]

The link lengths g and h will be taken to be | meler. it is important (o point
aut that while such an analytic expression for the null vector is desirable, it is
not required. One can always numerically determine the nuil vector for a given
configuration.

For the purposes of iltustration the region of interest £ will consist of #; €
[7/4, 37 /4] except for fs which is in the range [ /4, 7 /4]. The set of angmemt-
ing basis functions will consist of only the DC terms, i.e. By = {e|, ez, e3, €4, €5,
e;,€7)- As a point of reference, the null vector (42) evaluated at the center of
€2 18 given by

Al ={00 -05 -05 00 05 00 —05] @3)
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and results in an inverse that has an algorithmic singularity within €. Perfornning
the NUSAM optimization results in a matrix M (hat has the following singua
values

S = diag(0.8154, 0.0653, 0.0515, 0.0417, (0.0232, 0.0029, 0.0000) (1h
where {i; which corresponds (o the optimal augmenting row is given hy
vl =[0.0000 — 0.4581 — 0.5196 0.0000 0.5106 0.0000 — 0.5094].(45)

The acuracy to which the resulting inverse approximaltes the pseudoinverse v
given by 1/|Q| |G, — J*|l4 = 0.4523 which clearly indicates that there is v
algorithmic singularity despite the lacl that this vector is quite close to tha
given by (43). Analysis of the singular values given in (44) indicates that one
would not expect to identify a significantly beiter inverse since there is an vidi
of magnitude separation between the first and second singular values. In fact,
running the NORCS algorithin in these lower-dimensional subspaces does nal
significantly alter the optimal vector from that given by (45). As a (inal indica-
tion of the intractability of the NORCS optimization for the entire range ol 137,
despite several days of computation time the algorithim eventually terminated in
a local minima that resulted in a vector with significantly poorer perlormasce
than (45).

5. Simulations

The previous wo sections have concentraled on comparing various repeatabil
inverses with a desired nonrepeatable inverse, in this case the pseudoinverse.
using the somewhat nonintuitive metric ||G, — Gyllq. i.e., the norm of the dit
ference between Lhe repeatable inverse and the desired inverse over the desipn
region of the joint space, €. While this metric is arguably the most appropiale.
it is instructive to consider the behavior of the repeatable inverses with respect
to the properties of the desired inverse. This section considers the performance
of the various repeatable inverses discussed previously in a simulation of the
PPR manipulator following a specific desired end-effector frajectory. It must be
emphasized, however, that no single trajectory can salisfactorily represent the
behaviour of an inverse over the entire range of end-effector trajectories and
manipulator configurations in €, which is the motivation for relying on the nonn
|Gy — Gallo as the primary measure of performance.

The desired end-effector trajectory selected for the simulation studies is given
in Fig. 7. The PPR manipulator depicted in Fig. [ is comunanded (o follow
the 4-meler square trajectory labeled ABCDE. The initial configuration of the
manipulator is set to the origin of joint space which corresponds to the point A
in the workspace. Since all of the repeatable inverses calculated in the previon-
sections have used symmetric design regions centered around 3 = 0, this pat
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X2

E[-1,0] |[6.0] Af1.0] B(30] _ xy

D{-1.-4] C{s,-al

Fig. 7. 1he desired end-eifector trajectory used in the simulalion of the PPR manipulator
shown in Fig. 1. The 4-meter square path starls and ends at A, which corresponds to the
origin in joint space. The manipuiator is commanded to traverse the trajectory in a clockwise
manner with a constant speed.

the initial configuration in the center of the desired region of operation. The
desired trajectory was then selected to travel away from this center region at a
constant speed. The path is intentionally discontinuous in direction at the corners
of the square 1o help distinguish points along the trajectory and to emphasize the
directional nature of the inverses.

Figure 8 illustrales a view of the three-dimensional joint-space (rajectory,
shown in bold, that corresponds to the use of pseudoinverse coatrol to follow
the square end-elfeclor trajectory labeled ABCDE. The other lines in this fig-
ure represent the integral surface resulting from the optimal repeatable inverse,
i.e., that obtained with the basis B,. Note that the repeatable surface initially
contains the pseudoinverse trajectory but that they start to diverge as the pseu-
doinverse trajectory leaves the design region at point C. It is at this poiat that
the global repeatability requirement forces the repeatable inverse 1o abandon the
desived pseudoinverse selution. The drift resulting from the pseudoinverse so-
fution is clearly identified by the distance of the final manipulator configuration
from the origin, which was the initial configuration. The spiral en which both
the initial and final pseudoinverse solutions lie represents the fiber of all points
corresponding o the point A in the workspace,

A quantitative comparison of the joint angle velocity required to achieve the
desired end-effector trajectory is given in Fig. 9. The norm of the pseudoinverse
solution and that of the optimal repeatable, inverse are identical up to the point C
since they follow exactly the same joint trajectory as was shown in Fig. 8 The
initial divergence of these \wo (rajectories in the region from C to D results in a
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Fig. 8. A 3-D view of (he joint-space Irajeclory resulting from using pseudoinverse contr!
shown in bold, fo follow the square end-effector trajectory given in Fig. 6, as compaied
to the repealable surface oblained from the oplimal repeatable control using the basis IR,

Nole that the repeatable surface initiaily contains the pscudoinverse trajectory but that the
start to diverge as the pseudoinverse trajectory leaves the design region. U is at this poin
that the global repeatability requirement forces the repeatable inverse to abandon the desised
pseudoinverse solution.

larger joint-velocity norm for the repeatable inverse due to the pseudoinverse’
local optimality. However, note that immediately preceding the point I, the op
timal repeatable inverse actually outperforms the pseudoinverse solution. "Thi
is not entirely unexpected since the manipulators are now at different confipnii
tions.

Three other repeatable inverses are also compared in Fig. 9. These we th
NORCS inverse, the NUSAM inverse, and the combined NUSAM/NORCS iy
verse discussed in Section 4 for the basis Bg and a design region ol )
[—n/2,7/2]). As expected, the performance of the pure NORCS technique
best, the pure NUSAM technique is the poorest, and the combined NUSARI
NORCS technique lies in between the two. First, consider the performance o
the NUSAM technique. The NUSAM inverse peiforins well over large poition
of the trajectory, however, it results in relatively large joint velocitics near e
points C and D. This behavior is due to the fact that, as discussed in Section ¢
the NUSAM technique is susceplible to the influence of algorithmic singuian
ties. While this particular inverse does not result in an algorithmic singulanis
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Comparison of Repeatable Conlrols to the Pseudoinvarse
0.06 T — v T T T

.05} : : ]
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0.01F —___ . Pseudoinverse ]
0 1 'l 1 1 L 1 i
A B C D E A

Dasired End-Effector Trajectory

Fig. 9. A plot of the joint-velocity norm as a function of the position of the end-effector
in the workspace for the trajectory shown in Fig. 7. Note that the trajectory obtained from
the NUSAM inverse resuits in very high joinl rales near the points C and D while all of
Ihe other repeatable inverses are comparable to the performance obtained when using the
psendoinverse.

the augmented Jacobian is ill-conditioned, indicating proximily to an algorith-
mic singularity. It is this very behavior that makes the pure NUSAM technique
unsatislactory despite its compulational advantages. However, using NUSAM as
i precursor (o the NORCS optimization resulls in the combined inverse which
results in performance that compares more favorably with that of the pseudoin-
verse. In fact, a direct comparison of the combined inverse with that of the pure
NORCS optimization over the entire basis 85 shows that the combined technique
approaches optimal perfonmance at a fraction of the computational expense. Fi-
nally, note that the use of a truncated basis for the optimization is justified by
directly comparing the NORCS optimization with that of the optimal repeatable
mverse over the infinite hasis By, '

6. Conclusion

This work discusses techniques that make it practical {o calculate repeatable gen-
cralized inverses which are close to some arbitrary desired generalized inverse.
Twao different types of optimizations are discussed. The ficst minimizes the inte-
pral norm of the dilfesence between the repeatable inverse and the desired inverse
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over a subset €. This directly solives the desired problem but the algorithny ix
computationally intractable for all but the simplest manipulators due 1o the high
dimension of the search space. The second lechnique atiempts to maintain the
characteristics of the desired inverse by approximaling its nuli vector. While
this algorithm is refatively computationally efficient, it suifers from a poorer ap

proximation of the desired inverse, primarily due to (he effects of algovithuw
singularities. While neither of these techniques is practical by itself, it has heen
shown that information gleaned [rom the null-space approximation technipy
can be used to guide the first technique in a lower-dimensional scarch spic

This results in a computationally efficient approach for determining nearly opti

mal repeatable inverses that can approximale the properties of any given desicd
generalized inverse-control strategy.
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Appendix

PROPOSITION. Let M be an N x N real symumnetric positive semi-definite i
trix. Suppose a = MD. A solution of the constrained optimization prolilen

)

maximize a’ a

subject o T Mb =t

is obtained when b is an appropriately scaled multiple of the singular vecio:
associated with the largest singular value of M.

Proof. First, note that a”a = bT M2b. Suppose the rank of M is r. Since Al i
a real symimetric positive semi-definite matrix, its singular value decomposition
is USUT where U is orthogonal and § = diag(oy,o9,...,0,,0,...,0) with
gy 2 a9 2 - 2 a, > 0. Any veclor b can be wrilten as

b =ojuy +azuy+ -+ ayupy (Ah
where u; is the ith column of U. Let

by = ayuy + opuy - - - - b oogu,g. (A
It is easy to verify that l)?]\lzl)l = bT M and I)'i"Ml)I = b7 AMDb so hat one

only needs o check veclors of the form (A2). Such vectors are given by 17w
whete (/] = [u},uz - w, ] and w is an r-vector. The problem then become oo
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maximize \v"'l_f;j'/'\'lzl/,\v subject to wTUirMU| w = | which is now rewritten
as

maximize w! Stw
subject to w! S\ w =1

where S| = diag(a,07,-..,0,). Applying the method of Lagrange multipliers

& g
— [\\'7 Slzw + /\(w’ Siw — 1)] =) (A3)
aw
one finds that the optimal w satisfies .S'lzw = —AS)w. Since 5y is invertible,
51w = —Xw. Thus the opiimal w is an eigenvector of the diagonal matrix Sy.

Suppose that the eigenvalue is ¢. Then w"S'lzw = ew!'S,w = ¢, which im-
plies that the maximwm is given by choosing the largest singular value oy. This
corresponds to choosing b = uy.
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Calendar of Events

August 22-24, 1995

BICSC *95: 3rd Beijing Intl. Conf. on System Simulation and Scientific Compnifiny:
Location: Beijing, P.R. China. Contact: Prof. Zhang, Minglian, Chinese Association [
System Simuiation (CASS), 37, Xueyuan LU (College Road), Beijing 100083, I' 1
China. Tel. 01-2026677-5477, 01-2026 677-4471, Fax: 86-1-201 5347, Telex: 2.2 iiv-
BUAA CN.

August 28-30, 1995

IMACS European Simul. Meeting on Simulation Tools and Applications. .ocan,
Gyer, Hungary. Contact: IMACS Euwrop. Simul. Meeting, c/o Prof. Dr. A, ©Lu
Scientific Society of Measurement and Automation, H-1372 Budapest, P.03, Bow |
Hungary. Fax: +36-1-1531406, e-mail: h7024vig@ella.hu

September 1113, 1995

ICAM’G5: tutl. Conf. on Advanced Manufacturing. Location: Sunderland, UK. ¢ v
ICAM’Y95 Secretary, The Industry Center, The University of Sunderland, Ficli.
Riverside West, Wessington Way, Sunderland SR53XB, UK., Tel.: +44-191--515 2w
Fax: +44-191-515-2669

September 1214, 1995

Ethnicity & Nationalism in the New Europe Conf. Location: Univ. of Lancashie, 111
Contact: Dr. Christopher Williams or Dr. Thanasis Sfikas, Universily of Central 1 an
cashire, Dept. of European Studies, Harris Building, Corporation Strect, Peston
PRIZ2HE, UK., Tel.: (01772) 893920, Fax: (01772) 892919 _

September 18-22, 1995

ISATA'95: 28th Intl. Symp. on Automotive Technology and Automation: Manufactun.
and Transportation. Locatiom: Stutigart, Germany. Contact: The ISATA'95 Secretmin
42, Lloyd Park Avenue, Croydon CRO3SB, England, Tel.: +44-181-6813064, 1
+44-181-6861490, e-mail: 100270.1263@compuserve.com

September 19-20, 1995

DARS’95: IFAC Workshop on Human-Oriénted Design of Advanced Robolic Syt
Location: Vienna, Austria. Contact: IFAC-DARS’95, Instituie for Iandling Deyice
Robotics (E318), University of Technology, Florgasse 7A, A-1040 Vienna. !
+43-1-504 1835, Fax: +43-1-504 18359, e-mail: dars@ihril.ihrt.tuwicn.ac.al

Sepiember 25-28, 1995

IFAC Symp. on Automated Systesns Based on Human Skills — ‘Joint Design of Techol
ogy and Organization’. Location: Berlin, Germany. Contact: VDUVDLE GNMA.
Recke Strasse 84, D-40239 Dusseldorf, Germany. Fax: +49-211-6214-161



