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PREFACE

Theoretical mathematical treatments of water storage problems in the application of the basic storage
differential equation, in which realistic, complex periodic-stochastic processes of inputs and/or outputs and
stochastic changes of storage characteristics are taken into consideration, either have not been successful or
have been beyond the power of presently available analytical stochastic methods. The usual theoretical treat-
ment has been carried out for relatively simple conditions for storage reservoirs and their inputs and outputs.
Simplifications deviate so much from the real world and practical problems, that the planners of and the
decision makers related to storage reservoirs have shied away from using the generalized mathematical
solutions under these grossly idealized conditions,

The thesis by Jose D. Salas-La Cruz relates to the range analysis of water storage reservoirs with a relatively
complex periodic-stochastic input and a simple output. It represents an attempt and successful accomplishment
for increasing the power of theoretical treatment of complex hydrologic and water resource storage problems.
This piece of work is a continuation of several previous efforts in the analysis of range as the major random
variable of storage problems, which have been undertaken within the research project: “Stochastic Processes in
Hydrology and Water Resources”, sponsored by the U. S. National Science Foundation at Colorado State
University, Department of Civil Engineering, Graduate and Research Hydrology and Water Resources Program
The continuous analysis of the range, and other random variables related to water storage problems, promise
some very significant contributions in the theoretical treatment of water reservoir systems.

When the treatment of storage problems with complex inputs and outputs becomes analytically intractible,
the only approach left at present is the use of the experimental statistical (Monte Carlo) method in generating
new samples of given sizes for inputs and outputs, with realistic representation of all processes involved. The
simulation method permits an assessment of effects of various hydrologic complexities in solving storage
problems, at least within the limits of sampling reproduction of the basic processes.

This Hydrology Paper makes a use of both methods, mathematical analytical and data generation, in
determining the properties of range when inputs are complex periodic-stochastic processes. A huge gap exists
at present between the mathematical theoretical solutions of water storage problems, derived under over-
simplifying assumptions, and the solutions which would be obtained with realistic physical conditions of
inputs, outputs, and stochastic changes inside the storage capacities. Continuous attempts are needed to make
bridges between the mathematical analysis of storage problems with realistic assumptions and true solutions
which would be obtained under these realistic physical conditions. The progress in finding theoretical solutions
for reservoir problems may be fastest by combining the use of all methods available in obtaining the probabilistic
properties of range and other random variable related to storage problems.

The results presented in this paper explain how the realistic inputs affect:the key parameters of the range,
with the range conceived as the needed storage capacity for regulating the inputs (given in the form of various
generated samples) to produce given simple outputs for given regulating time intervals, Particularly, it is shown
how the periodicity in the mean, in the standard deviation and in the autocorrelation coefficients of stochastic
components of runoff input series with intervals smaller than the year, affect the expected range and the variance
of the range. The data generation method can be a very useful procedure for showing planners and operators of
reservoirs that the theoretical analyses of storage problems have a realistic relationship with current practical
problems of design and operation of storage capacities.

September 1972 Vujica Yevjevich
Professor-in-charge of
Hydrology and Water Resources
Program, Department of
Civil Engineering
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ABSTRACT

The storage problem of within-the-year water fluctuations is the main topic of this paper. The storage
difference equation which relates inputs, outputs and storage is used for formulating the mathematical problem.
This leads to the problem of determining the expected values and variances of the range or adjusted range of
cumulative departures from the population and sample mean, respectively.

Using the univariate, bivariate and trivariate normal distribution functions for the marginal and joint
distributions of the partial sums, the exact expressions of the expected range are derived for n = 1,2 and 3.
From these general expressions, particular cases of the expected range of independent and linearly dependent
variables are derived. Based on these derived exact equations of the expected range, approximate equations are
derived for higher values of n .

The expected value of the adjusted range of inputs equally dependent (exchangeable variables) and outputs
equal to a percentage of the mean inflow, is shown to be expressed in the same way as the expected value of the
unadjusted range of exchangeable random variables. This result is relevant in hydrology because when one is
interested on overyear storage design and the assumption of independence of streamflow events is sufficiently
accurate and the regulation or development is expressed as a fraction of the sample mean inflow, then the
expected value of the storage for a given number of years is given by the expected adjusted range which now may
be computed exactly by the derived equation.

The variance of the range was derived mathematically for the case of Markov first-order linearly dependent
normal random variables for the case of n = 1 and 2. For the case of higher values n and periodic standard
deviation, approximate equations are obtained by using the data generation method.

Based on mathematical approximations derived for the expected range and assuming a Markov first-order
linear dependence structure of the stochastic part of monthly streamflows, a design method is developed by
which the total storage is made up of two parts: (a) a deterministic storage which is a function of the standard
deviation of the periodic monthly mean u_ and on the mean and standard deviation of the periodic monthly
standard-deviation o, ; and (b) a stochastic storage which is a function of the mean and standard deviation of
the periodic monthly standard deviation . and of the first serial correlation coefficient p .

Jose D. Salas-La Cruz

Civil Engineering Department
Colorado State University
Fort Collins, Colorado 80521
May, 1972
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CHAPTER I

INTRODUCTION

1.1 General Concepts

Water is always controlled and regulated by a
water resource system to serve a wide variety of uses.
For example, water is regulated for urban use,
irrigation, hydropower, navigation, recreation, water
quality control, flood control, and so on. These uses
may be either competitive or complementary to
various degrees. This does not make the problem of
design and operation of a water resource system with
reservoirs a simple task.

As one example of competition, release of
water for irrigation or municipal supply may impair
recreational uses at the reservoir and power pro-
duction. An example of complementary use may be
the case of flood control with low flow augmenta-
tion. Water conflicts usually are compromised in
project design. That is, trade-offs are considered in
allocating the supply for different uses, which in turn
require an estimate of alternative designs of a water
resource system.

One of the most importants aspects of water
resource systems is water regulation by reservoirs. It
basically represents man’s interference with the
hydrologic cycle in an attempt to “balance” supply
and demand. In other words, one often needs to
smooth out the peaks and lows of streamflow so as to
obtain a greater beneficial use of water resources.

The design of a water resource system must be
viewed within the context of hydrologic risk and
hydrologic and economic uncertainties. The
stochastic nature of inputs and outputs of a water
resource system is the reason for considering the
hydrologic risk and uncertainties. The economic
uncertainties are also present because the discount
rate and other economic parameters are subject to
uncertain changes over time. This risk and all
uncertainties make it necessary to consider alternative
designs to achieve developments that are optimal.

Within the past two decades, the methods for
planning, design and operation of water resource
systems have been changing from the use of “rules of
thumb” and “engineering judgment” to a more
formal type of analysis based on mathematical
models. Approaches to be used in design of storage
capacities may be classified into three

methods: empirical, experimental (simulation or data
generation), and analytical (mathematical),
(Yevjevich, 1972)*.

The empirical method, known as the Rippl’s
diagram or mass curve is still the most commonly
used method for analyzing the relationship between
reservoir input, output and storage capacity. This
method assumes that both input and output are
known functions of time and produce the storage
capacity required for no water shortage to occur
during the period considered for analysis. However,
the reliability of results of this analysis, based on a
single sequence of hydrologic events or historical
record, is limited, because it is unlikely that the same
flow sequence will occur again during the life of a
reservoir. In other words, another sequence of
hydrologic events will require a storage capacity dif-
ferent from that found by using the historical record.
Another disadvantage of this empirical method is in
the length of historical records, which is likely to be
quite different from the economic life of a dam.
Since the required storage capacity for a given regula-
tion rule increases with an increase of the length of
record, the estimated capacity based on a historical
record will be different from that based on the eco-
nomic life of the project.

Because of the stochastic nature of streamflows
and water uses, one cannot speak of the storage
capacity of a reservoir in a deterministic sense. In
reality, the needed capacity for a given sample size is
a random variable, and it is therefore necessary to
consider statistical measures such as the expected
values and variances of the distribution of this
variable in the design of the finite capacity of a
reservoir. The data generation method approaches
this problem by generating either a large number of
samples of the project life size or large samples of
data, This method is called, in mathematical statistics
and probability theory, the Monte Carlo method. It
uses independent random numbers of empirical or
theoretical probability distribution functions, the
time dependence structure and adds the periodic

*Name and date in parenthesis refer to the author’s
name and date of publication given in the biblio-

graphy.



components when they are present in a series. This
method enables one to determine approximately the
moments and probability distribution functions of
random variables related to storage problems.

The mathematical method consists of finding
by exact, asymptotic or approximate derivations the
properties of various variables related to storage
capacity design, such as the mean, variance and other
parameters of surplus, deficit and range. Exact
general expressions for some of these properties of
the range, with the range definition based on the
cumulative departures from the mean, have been
derived in the past only for the case of independent
and identically distributed normal random variables.
Similar properties are not known when the random
variables are dependent and have non-stationarities.

The complexity of reservoir capacity designs
depends on the type of required or proposed
regulation. For example, if the regulation is of the
overyear storage type, the analysis is based on annual
streamflows and a given degree of river development
or draft, which are usually given as a percentage of
the mean inflow. In dealing with annual streamflows,
the assumption of independence of events is in many
cases sufficiently accurate. However, in other cases,
the serial correlation between the values is significant,
with Markov or linear autoregression models widely
used for describing the dependence, (Yevjevich, 1964;
Fiering, 1967). In many cases, annual streamflows are
stationary stochastic processes; therefore the pro-
perties of the random variable of storage capacity
may be derived either from exact or from approxi-
mate equations.

If the within-the-year water fluctuations are
considered in the design of the reservoir storage
capacity, then the analysis is usually made either with
monthly, weekly or daily streamflows, or with
monthly, weekly or daily outflows. In dealing with
monthly values of streamflows, a non-stationary
stochastic process must be considered, since time
series show periodicities in the mean, standard
deviation and often also in autocorrelation coef-
ficients, besides the time dependence structure of
stationary stochastic components, (Thomas and
Fiering, 1962; Roesner and Yevjevich, 1966;
Yevjevich, 1971). Time series of monthly outflows of
reservoirs, as water use time series, also show some
characteristics similar to the monthly streamflows,
(Salas-LaCruz and Yevjevich, 1972). The need to deal
with non-stationary series of inflows and outflows

o8]

makes the general mathematical treatment of storage
problems extremely complex.

1.2 Objective and General Approach in this Investiga-
tion

The storage problem of within-the-year water
fluctuations is the topic of this paper. There-
fore, mathematical models of monthly streamflow
series are used. The main objective of this investiga-
tion is to determine mathematical equations for the
expected value and variance of storage capacity
needed, measured by the range values, which can be
used in the design of a reservoir.

The storage difference equation which relates
inputs, outputs and storage is used for formulating
the mathematical problem. This leads to the problem
of determining the expected values and variances of
the range or adjusted range of cumulative departures
from the population mean and sample mean, res-
pectively.

Using the univariate, bivariate and trivariate
normal distribution functions for the marginal and
joint distributions of the partial sums, the exact
expressions of the expected range are derived
for n = 1,2 and 3. Based on these exact expressions,
approximate equations are derived for the expected
range for higher values of n.

The variance of the range was derived
mathematically for the case of Markov first-order
linearly dependent normal random variables for the
case of n = 1 and 2. For the case of higher values of
n and the standard deviation periodic, approximate
equations are obtained by using the data generation
method.

Based on mathematical approximations derived
for the expected range and assuming a Markov first-
order linear dependence structure of the stochastic
part of monthly streamflows, a design method is
developed by which the total storage capacity is made
up of two parts: (a) a deterministic storage which is a
function of the standard deviation of the periodic
monthly mean and of the mean and standard
deviation of the periodic monthly standard deviation;
and (b) a stochastic storage which is a function of the
mean and standard deviation of the periodic standard
deviation and of the first serial correlation coef-
ficient.



CHAPTER Il

REVIEW OF LITERATURE

Empirical, simulation (experimental) and
analytical methods have been used in the past in
dealing with the analysis of reservoir storage design
and operation. The empirical method proposed by W.
Rippl, (1883), and somewhat modified later by many
other authors, has been the most commonly used.
With the development of the digital computer in the
past 15 years, experimental simulation or data
generation methods became attractive. Finally,
mathematical analytical methods using the pro-
bability theory, mathematical statistics and stochastic
process analysis have also been attempted by many
authors during the last two decades, in efforts to
solve the water storage differential equations under
various conditions,

From a theoretical point of view, previous
investigations of water storage problems may be
broadly classified into two categories:

(1) Studies of reservoirs by assuming an infinite
storage capacity. A great deal of research has been
done along this line, and the concepts of the surplus,
deficit and range of cumulative or partial sums were
mainly analyzed under this assumption. The problem
is, given the inflow and outflow characteristics, to
find the moments and distribution of the storage
capacity of a reservoir which, starting with any initial
water level, would not run either empty or full in the
following n years.

(2) Studies of reservoirs by assuming a finite
storage capacity. The finite size of the storage
capacity of the reservoir is given, and by assuming the
inflow characteristics and the operating rules which
determine the outflows, the problem is to find the
time dependent probability function of storage levels,
their limiting distribution, probabilities of water over-
flow and probabilities of emptiness of the finite
1eservoir,

Since this study considers the reservoir storage
problem by assuming an infinite storage, a detailed
review of previous research concerning the statistical
properties of the range and adjusted range comprises
the first part of this chapter. The second part presents
only a review of the investigations followed mainly
by P. A, P. Moran, N. U. Prabu, W. B. Langbein, E. H.
Lloyd, and R. Jeng.

2.1 Analysis of Water Storage Problems by Range

Let x. be a sequence of random variables and
assume that E(xi) = 0,and

S A S N SR i PRl m
M, =max (0,8, ,S,,..... 'S, )

m. =0, 8, 8w o s »S,)

R, =M, -m, 2.1

The random variable S, is called the cumulative or
partial sum, M the maximum partial sum or sur-
plus, m_ the minimum partial sum or deficit and
R, the range of the partial sums.

In many applications, especially for small values
of n, it is necessary to modify the above definitions;
that is, each component of the partial sum is cor-
rected for the estimated sample mean X_. There-
fore, the above random variables will take the form

S*=§ - §

i i N "n

* *
M, =max(0,S,,87,..... S%)
m, =min (0,S},83,...-.,S%)

*

Ry = M} - m} ’s
where S.* is called the adjusted partial sum, MY the
adjusted maximum partial sum or adjusted surplus,
m}* the adjusted minimum partial sum or adjusted
deficit and R* the adjusted range. Both types of
the above random variables, unadjusted and adjusted,
are graphically shown in Figs. 2.1 and 2.2, respec-
tively.

The distributions of M_,M*, m ,m: R,
and R* are of interest in the theory of water
storage and reservoir design. Assume a reservoir is of
an infinite capacity which receives during every year a
random streamflow input either of a symmetric or a
skewed probability density function and releases the



population mean discharge p or the sample mean
X, . The probability that, starting with an initial
water level, the reservoir will not run dry in the fol-
lowing n years is given by the distribution function
of R or R* . In general, finding these exact dis-
tribution functions is a difficult mathematical pro-
blem even for cases of independent normal random
inputs. Therefore, one tries to approximate these
distributions by finding either their exact expected
values for finite values of n or their asymptotic
expected values.

After Rippl (1883) introduced the mass curve
method for analyzing the relationship between the
inputs, outputs, and storage capacity of a reservoir,
several engineers tried to improve it. A. Hazen
(1914), realizing the shortcomings of Rippl’s
approach, used standardized streamflow values of
several rivers in order to increase the length of the
historical records. He was able to test different
reservoir storage capacities and evaluate the number
of periods of water shortage occurring with each size.
Subsequently, C. E. Sudler (1927) for the first time
generated synthetic sequences by writing historical
records on cards, shuffling them and then drawing a
series of cards to represent a sequence of flows.
Sudler’s attempts were the first to use an
experimental approach to approximate the stochastic
nature of reservoir design and thus replaced the
Rippl’s and Hazen’s empirical approach.

H. E. Hurst (1951), in computing the storage
required for the Great Lakes of the Nile River Basin,
was the first to apply more formally the concepts of
probability theory to the storage problem. His
method made a statistical interpretation of Rippl’s
approach by estimating the mean adjusted range of
cumulative departures of streamflow records. He
specifically used the binomial expansion for approxi-
mating the normal probability density function, and,
with some concepts of combinatorial analysis, he
derived the asymptotic expected adjusted range as

E{R;}=a\/-n?. 23

in which o is the standard deviation and n is the
length of record.

Hurst also analyzed a large number of records
of annual values of natural phenomena such as rain-
fall, temperature, water levels, riverflows and so on.
From the plots of the rescaled mean adjusted range
E“fon against the observation length n , Hurst

concluded that the observed adjusted ranges do not
increase as the square root of n , but as a higher
power n°,with a mean value of ¢ of 0.729 and a
standard deviation of 0.092.

Hurst’s findings led many hydrologists to pro-
pose stochastic models to account for high and low
frequency effects in order to reproduce the depar-
tures from the square root law, usually called the
Hurst phenomenon. However, even though Hurst
analyzed a large number of records, these departures
from the square root law, to the understanding of the
writer, do not represent a conclusive characteristic of
streamflow processes. Fiering (1967) clearly says
Hurst’s results are the outcome of “a jumble of dis-
tributions, record lengths, correlations and
processes.” Another weakness of Hurst’s findings is
that his slopes are based on estimated mean adjusted
ranges which are highly uncertain, especially for
values of n = 100. For example, for the records of
around 1000 years, the mean adjusted range
for n = 100 was computed by averaging 10 values,
for n = 500 by averaging 2 values, and for
n = 1,000 there is only one value. How can his
slopes be the evidence of low frequency effects if the
mean values were estimated over such small samples?
The writer considers that the Hurst’s results should be
accepted with caution before trying to reproduce
slopes which may not really represent natural charac-
teristic of streamflow. If in the future, with more
available records, Hurst’s findings are substantiated,
then the use of stochastic models which could repro-
duce slopes higher than 0.5 for n very large may be
necessary, particularly if one is interested in designing
reservoirs for periods of time greater than 100 years
(Fiering, 1967).

W. Feller (1951) found the general expression
of the probability density function of the range
R(t) in continuous time. Feller assumed independ-
ent normal random variables and approximated the
discrete random variables S. with a continuously
changing normal variable S(t), with mean zero and
variance t . Thus, the moments of R(t) constitute
the asymptotic moments of the discrete vari-
able R — particular, he obtained the asymptotic
mean and asymptotic variance of the range as

E(R, 122 /28 ~ 15958 n* 24
and

Var {Rn }=4n(log 2-2/m)=0.218In . 735
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By approximating the discrete random variables S*
with a continuously changing variable S*(t) , Feller
also found the expression of the exact distribution of
the adjusted range R*(T) in continuous time. In
particular, the asymptotic mean and asymptotic
variance of R¥ are given as

ER*} = /-5 ~12533n% | 26

and
m m
Var{R:}é 5— (5 ~1) = 00741 n. 2.7

These theoretical results also apply for cases in which
the underlying distribution of the original random
variables are not normal, since for large values
of n the partial sums S or S¥ are asymptotically
normally distributed.

A. A. Anis and E. H. Lloyd (1953) gave the
exact expected value of the maximum of the partial
sums S, .8, ,..8  of independent normal variables
with mean zero and variance unity, in the form

1 n-1
¥ ik
Var =l 48

which leads to the expected value of the range

EM,} =

n-1

2
ER }=/F 2 1%, @
1=

Equation 2.9 gives the asymptotic expected value
of 2+/2n/7 in agreement with Feller’s results.

Subsequently, A. A. Anis (1955) published the
exact second moment of the maximum of the partial

sums 8 .S, ,... S , for independent standard nor-

mal random variables. His equation for n 2 2 is

EM:}= 5 (a+D)

n2 i
tw B [iG-j+1))"%, 210

which gives an asymptotic second moment equal to
2442 "

n

EM2 1= n- 2.11

A. A. Anis (1956) presented a recurrence rela-
tionship for obtaining the numerical evaluation of all
the moments of the maximum of the partial
sums, S, ,52 —"1 , of independent standard nor-
mal variables as

n-1

|
R - S,
B0l = N = EML, )
1 n-1
FE-DnEMIEY- S (=D 2 EMET
1 212

for n 2 2 and r = 3. Therefore, by using the first
two moments as given by Eqs. 2.8 and 2.10, higher
order moments may be obtained from Eq. 2.12.

F. Spitzer (1956), using combinatorial analysis,
published a more general result than previously
obtained. Considering a sequence of independent and
identically distributed random variables and S, = x,
+ Xyt X and ]!\dlj = max(0,S, .S Sj), and

gy
S, =max (0,5;), 2.13
Spitzer derived the identity

oo oo

| = j
jED <bj(t) ? =exp [ jzl il v; w2]. 214

where @.(t) and I,Uj(t) are the characteristic func-
tions of Idij a{}d S;, respectively, that is

¢j(t)= E{exp (i th)} 2.15
\Lrj (1) = E{exp(its‘j')} 2.16

Spitzer’s equation (Eq. 2.14) is general and
valid for independent and identically distributed ran-
dom variables of any distribution function. From this
identity, the moments of the surplus M may be



directly obtained. For the first moment, differen-
tiating Eq. 2.14 with respect to t,and
setting t = 0, then

jgl'¢;(0)£={ & 7O

exp [ I i 4017,

and
e OZ2=[ T Y07 U-27".
]=] ) ]=1 )

Since from Eqgs. 2.15 and 2.16

® (0)=iE(M,) and ¥;(0)=iE(§")

then the first moment of the surplus is

=

EM,} = Z

il E{S'}. 2:17
i=1 '

Similarly, differentiating Eq. 2.14 twice with respect
to t and setting t = 0, then

i'es 8

'O =(1-2 { = Yl

#

it 21 ),

T 8

1

Since  ®(0) = - E(MJ?) and 3(0) = - E( Sj'z),
then the second moment of the maximum for
n = 2 is

n
EM} = Z, it EGS*?)
i

1
G- ESDESL) - 2.8

2 j=

+
i =

—_

Equations 2.17 and 2.18 are generally valid for
independent and identically distributed random
variables of any distribution function. Specifically,
for the case of normal random variables with mean

-~

zero and variance o7 , the partial sums S, arealso

normally distributed with mean zero and vari-
ance Var §; = io® . The expected value of S, is

E(S}=E( [S,+18,11}= [ S, () s,
0
1
E{S:}= \,T/T [Var S; ]1”2 ; 2.19

Similarly, the second moment of S/ is

E{S7}= 3 B{S}) +5 E{S, 15, 1)

Since for a symmetric distribution
E(S;IS;/) = 0 , then

& 1
E{Siz} :"'i' Var{Si} 4 2.20

Substitution of Eqs. 2.19 and 2.20 into 2.17 and 2.18
leads to the expected value and second moment of
the maximum of partial sums for the case of
independent normal random variables. This sub-
stitution then results in:

| 2w %
EM }= 2 it [Var (S, )
M, } T & [Var {8, }] 2.21
and
I n
Y. -1 17,
E{Mi}—z igli Vdr{Si}
n il

+ ——

T 2 j'G-j)! [Var{S}Var{S  }]*
@m =2 1! R i H

2:22

Therefore the expected value of the range may be
written as

E{Rn}z/—? iéi i [Var(s, }]% . 2.23

For the particular case of standard normal random
variables, the Egs. 2.21 and 2.22 are in agreement
with Eqs. 2.8 and 2.10 derived by A. A. Anis.



M. E. Solari and A. A. Anis (1957) derived the
exact expected value and the second moment of the
maximum of the adjusted partial sums for
independent and standard normal random variables as

n

_I_]_ 5 i-'a": (n_i)% . 2.24

_ 1
E{M:}_E 2m i=1

and

n’-|

1
EM*2}=-—
{M? 6!

v % i@i-n)

+
M E2 FEVF - ))

2.25

which lead to asymptotic values of

Vm/2/2 and  n/2 -/ respectively.

N. U. Prabu (1965), reviewing Moran’s model
for the storage, gave a non-explicit solution of the
probability generating function of the maximum
partial sum M for independent random variables,

in both discrete and continuous time. Mn is defined
as

Mn+l = max (0, M, +x, -m) ,

n=0‘1.2....‘ 2.26

with x_ the random input m the constant out-
flow.

For the case of input x_~of a discrete distribu-
tion function, with the probability generating func-
tion

X
K@) =E{0 "}.101<1,

Prabu gives
; o Efg nye—1 ﬁ(——gte's )
0 T M oK) =1 &

(IR R | BIRL) 2.27

where EI, gy e k., are the roots of the functional
equation £™ = tK({) , such that [£| <1 .
If m>m, =E(x ), then the limiting distribution
of M~ as n — e exists, and its probability
generating function becomes

- (m-m)1-0) ™ 6-o

U(0)= K{Q)—ﬂm r_[_ll (.[_ar ) ] 228

where a, Qa0 o are the roots of the equation
o™ = K(a) within the unit circle.

For the case of input x_ having a continuous
distribution  K(x) = P{x | < x} and the partial
sum, defined as § = x_  + x, +.+ x_, the dis
tribution function K (x) = P{S <x },
K, (x) = K(x); the probability generating function
of M_ is

o0 n

(= =]
St EEIMa) =mexp[ £+ K (nm)
0 1 n

oo (teﬁm)n &6

> — 7 & 4K ()]
1 n! il
(1t1<1,R, (8)>0). 229

Furthermore, if m > m = E(xn), the limiting
storage function is

E{e? Mq}=
o o
exp |- %‘, n! [ (1-e9% dK (x + nm)] ,
0
[Rew) >0 . 230

V. Yevjevich (1965) gives a detailed analysis of
applications of surplus, deficit and range in
hydrology. He made a comparison of the empirical,
data generation and analytical methods of obtaining
statistical properties of surplus, deficit and range for
values of n =2 and n= 3. Using the data
generation approach, he found the mean, variance,
skewness coefficient and the distribution of the
unadjusted and adjusted surplus and range for a first-
order Markov process for values of n up to 50 and
various values of p.

M. J. Melentijevich (1965) investigated the case
of the range when the output is linearly dependent on
storage. Using the data generation method, he gives
approximate equations for the expected value and
variance of the range. Approximating the storage dif-



ference equation in discrete time by the continuity
equation in continuous time, and using S.
Chandrasekhar’s (1954) method and the Fokker-
Planck partial differential equations, he also found
the probability density function of the cumulative
sums.

P. Sutabutra (1967) investigated the reservoir
design problem for within-the-year regulation
assuming a constant standard deviation for variables
at various positions during the year and the first-order
Markov linear model for the stochastic part of the
monthly streamflow data. He separated the total
storage into a deterministic storage, as a function of
the periodic means of the inflow and outflow series
only, and a stochastic storage, as the expected value
of the range for the first order Markov model. Based
on his simulation, he suggested that the expected
range for the first-order Markov model may be
expressed as an approximation by

n
ER =/ z i [Var (S, )%, 231

which is the ssme as E { R |} given by Eq. 2.23.

V. Yevjevich (1967) using the data generation
approach, also suggested that the expected range of
linearly dependent normal variables may be expressed
by Eq. 2.31. He specifically analyzed the cases of the
first and second-order Markov models and the simple
moving average scheme. The expected values of the
range computed by Eq. 2.31 gave a close approxi-
mation to the values obtained by his simulation.

0. Ditlevsen (1969) found the asymptotic dis-
tribution function of the maximum of a stationary
stochastic process in continuous time by considering
the partial sums in continuous time as

S(t) = (‘{t [ x(t) - E(x) ]dt , 2.32

and the maximum of the process S(t) in continuous
time defined as

n (T) = sup

t
S ox(t) dt . 2.33
ost<r ©

Assuming the case of a standard normal process,
Ditlevsen found that asymptotically as Tzee,

4 2.34

F sge—U .
ncry @) {[var w(T)]) £

where T
w(T) =_(|‘; x(t) dt .

J. M. Mejia (1971), using the asymptotic dis-
tribution of n(T) as given by Ditlevsen, derived the
asymptotic expected value of n(T) or the
asymptotic expected value of the range

E{ R(T) }= 2E{n(T) }as

4

2w

ER(T)} = [Var o(T) % 235

where the variance of w(T) is given by

Var w(T) =2A(T) [T-G(T)] 236
with
T
A(T)=[ p (u)du 2.37
8]
and
T
G(T)= AT) J; u p (u)du, 2.38

where p(u) is the autocorrelation function of the
continuous stationary process x(t).

2.2 Water Storage Analyzed by Other Methods

P. A. P. Moran (1954) applied the probability
theory to the problem of finite water storage.
Moran’s model was formulated in discrete time, so
that the process occurs at discrete series of time inter-
vals. The following assumptions are made:

(1) The water input X, is a continuous,
independent and identically distributed random
variable. This input is assumed to occur during the
“wet season” and is stored until the “dry season”
when it is released.

2) The reservoir has a finite capacity
K , and the storage at time n before the input



x flows into the reservoiris Z, IZ +x >K,
an amount Z + x, - K will overflow, but
if Z, + x, X K, there will be no overflow. The
reservoir now contains a quantity min(K,Z, + x,).

(3) At time n + 1, an amount of water
m(<K) if Z+x2morZ +x, if Z +x <m
is released from the reservoir. The release is thus
Y, = min(m, Z, + x) .

From these assumptions, the storage function
Z, satisfies the recurrence relation

Z,,, =min (K,Z +x )-min(m,Z +x ) 239

so that the random variable
geneous Markov chain.

Zt forms a homo-

Considering the case in which the inputs have a
discrete probability distribution with P{x, = j}

, = 0,1,2,..), the Markov chain Z  has a
finite number of states 0, 1, 2, .., K-m. Let its
transition probabilities be denoted by

¥ o - - 2.40
P{;‘ = P{Z,=j1Z, =i}

2K-m,n=21);

furthermore, let PO =1 or 0 depend on whether
i=j or i#j,and also denote } =P.. .From
the recurrence relation of Eq. 2.39, Moran found
that the transition probability matrix P = (Pij) may
be written as

241
i
i 0 | 2 k-m-1 k-m
0 Gl‘l'l ;In!l ;l!-‘-l .- gk-l hk
1 Gu-l sm 'l'fllul s gk-z |"lp|
pe :
m (] sI g2 gt-lll I hl m

3
+
L)
”
B L]
=
3

where G, =g +g +..+g ,h =g +g.  +.,
(i=0), and it is assumed that m <Ki2 From the
above transition probability matrix, it follows

z P(")z w2t Q@ ~zF)' R, 242
n=2
where Q, = (Plo’Pil""’PiK m).I-irs the identity
matrix and Rj = (Po, KmJ) h

The distribution of the stationary storage was
also obtained by Moran while N. U. Prabhu (1958)
derived the exact solution when the inputs have
geometric, negative binomial and Poisson distribu-
tions. Subsequently, A. Ghosal (1960), following
Moran’s storage theory, analyzed the problem of
emptiness with overflow and before overflow, finding
the expected values of the wet periods.

W. B. Langbein (1958) presented an application
of queuing theory to the storage problem. The
analogy of queuing theory with the storage problem
is as follows. The inflow to the reservoir represents
the arrivals, the impounded water is the queue, and
the regulated outflows represent the departures.
Langbein developed a procedure for determining the
frequency distribution of storage, the frequency of
spills, the frequency that the reservoir may be empty
and the frequency distribution of reservoir outflows.
He presented two kinds of solutions. The first solu-
tion was algebraic, applicable only to a linear service
function and normal inflows, and the second solution
gave a method termed “probability routing” when
service functions are non-linear and inflows are non-
normal. His procedure also allows the analysis con-
sidering monthly inflows and outflow demands.

E. H. Lloyd (1963) extended Moran’s model of
finite reservoirs so as to take into account the serial
correlation of inflows. The assumption is made that
the dependence structure of this sequence may be
approximated by a homogeneous Markov chain.
Using bivariate Markov processes as the joint distribu-
tion of storage and inflows, he derived the limiting
distribution of storage. In another study (1963),
Lloyd obtained the explicit expressions for the distri-
bution of reservoir levels in terms of the correlation
coefficient between consecutive inflows. The
probabilities of emptiness and spill-over are also
given. Subsequently, E. H. Lloyd and S. Odoom
(1964) analyzed the case of seasonal inflows. A
simple case, a two-seasonal year with three-valued



input distributions, is given. The main modification
they made to the non-seasonal model was to assume
different distribution of inflows in each season.

R. Jeng (1967) found the probability density
function of water levels in a finite storage for inflows
with independent increments and outflow equal to
the mean of inflow. He assumed that the inflow
process was independent of storage and that the
inflow varies extremely rapidly compared to

§

Definition of the maximum partial sum,
M, (surplus), the minimum partial sum,
m,_ (deficit), and the range, R .

Fig. 2.1

10

variations of the storage. Under the above assump-
tions the storage process is a case of a one-
dimensional diffusion process with zero drift, in the
presence of two reflecting barriers at 0 and
K with K the finite storage capacity. Using the
method of image points, Jeng derived the time
dependent probability density function of the water
levels or storage, and also found its limiting distrib-

ution function as t»ee,

o
P
. Rn
»
val S| I
- | \ Tm; i
== I . I i
EEE i ‘
n L—
—_— - — !
Fig. 2.2 Definition of adjusted partial sum, 53

the adjusted maximum partial sum, MY
(adjusted surplus), the adjusted minimum
partial sum, m¥* (adjusted deficit), and
the adjusted range R* .
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CHAPTER 111

GENERAL THEORETICAL FORMULATION
FOR RANGE OF PERIODIC-STOCHASTIC SERIES

A general mathematical formulation is
presented in this chapter for analyzing the range
problem of periodic-stochastic inputs and outputs.
General characteristics of inputs and outputs com-
monly used in hydrology are reviewed, and some
autocovariance and/or autocorrelation functions are
derived for use in the following chapters. Sub-
sequently, the general characteristics, moments and
distributions of partial sums, surplus, deficit and
range are reviewed,

3.1 Stochastic Storage Difference Equation

The basic relationship between inflow, outflow
and storage is expressed by the difference equation

x —y = e— 3-1

where x and 'y are the inflow and outflow
respectively, and S is the storage of the reservoir.
Considering the time increment of t equal to one,
the above equation may be expressed as
X =Y =S - S,
or
S, =8, * (xt = yl) 5 32
Equation 3.2 constitutes the general stochastic
storage difference equation whose solution is
expressed in terms of moments and probability distri-
bution, since X, and y, are in general random
variables. The solut:on of the Eq. 3.2 depends in
general on the complexity of input and output,
X, and Y, respectively. They may be independent
identically distributed random variables, independent
but not identically distributed, dependent stationary
and dependent non-stationary random variables.

A. Characteristics of inputs and outputs. In
general, inputs and outputs show periodic and
stochastic components and may be described by
mathematical models of the form,

xp. =k, L pr : 3.3

m
= s .tk €.y
zp.r i§l uJ.f-J ZP.T-I m,T p.,T 34

and
m m

=[1-2 I «
i=1 j=1

[ = max(ij)] ,

%
i %rd Pliglree )

3.5

where 7 = 1,2,...,w, with w the annual cycle (of 12
months, 52 weeks, or 365 days),
p = 1,2,..n, with n the number of yearsof
record, X, . Tepresents the input or output
series, . and o, are the periodic mean and stand-
ard deviation,a. . are the periodic autoregression
coefficients which are functions of the periodic auto
correlation coefficients p. 2 is a m-th order

T

non-stationary Markov process, and € , 18 a
second-order stationary and independent stochastic

component.

By Fourier analysis, the periodicities in the
mean, standard deviation and autocorrelation coef-
ficients may be represented by

m
v =v_+ jEI [Aj cos(2nf;r) + B, sin (2n fjr)] 3.6

where v_ may represent p_,0_ or p 5V is
the mean of »_, m is the number of s:gmflcant
harmonics, Aj. and B. the Fourier coefficients
and f. is the frequency of the harmonic j . The
estlmatlon from the sample of the periodicities
B 40, and [ and the estimation of Fourier
coefficients are gwen elsewhere (Yevjevich, 1972).

The periodic autoregression coefficients
& . of the m-th order Markov model z of
q. 3.4 may be obtained by taking the expectauon
of the product of z and 2, rx 3

m
Elzy iZpract = & %G 2 rp,ri )
tk, Elz, €. .3
Since Birik and €, are mutually inde-

pendent, with means zero and variances unity, it

" follows that

11

m
P k.1 @ j§1 l:”i.r-i‘o likl,r-2 3.7



with € = max(j.k)k = 1,2,..,m, the first subscript
of p denoting the lag and the second the position in
time. This expression is a system of m equations
with m unknowns, aj,r‘jj = 1,2,...,m, which may
be solved as a function of autocorrelation coef-
ficients, p, ke As may be noted, Eq. 3.7 is general
and may be simplified to the well known recursive
equation for the m-th order stationary Markov model,
or with constant autoregression coefficients.

Since the first, second and third-order Markov
models are most commonly used in hydrology, the
autoregression coefficients for these non-stationary
models can be derived from 3.7 and are

(1) For the first-order Markov model,
m=]

I L T 3.8

(2) For the second-order Markov
model, m = 2

Piga " PLraPara 3.9
" 2 '
i k% ‘al ,T-2
and
Prr2™ Py P2
a’ =
2,72 2
! o pl,r—z 3.10
and

(3) For the third-order Markov
model, m = 3,

2 - _
pl,r-l(l =P 2.3) PPy r3PriraPar3” Py 2.2Ps 10 T Py r3P3 ra

1,7-1

pl .r-3p2 .r~2p2 ,T-3

2 2 2
L+ 20) 2P 7.3P1 03 = Pl s = Piga ~Paga

+

; ) " 311
1+20) 40P 3.3P1 0.3 " P13 ~Pira ~ P23
2 -
Py 12l =P3,3) ¥ Py 19Ps 1.3P3 1.3 =Py 22Py gy ~ Prr3Pars "
a =
2,72 2 _ .2 . a2
; 1420 4.2P3 1-3P1 0.3 ~Prr-3 ~Piga ™ Pags
Pi.r-3P2,r-3P1 21
¥ R R 4 ; 3.12
1+20, +2P2 +.3P1 7.3 ~Plr3 ™ Piga " Pars
and
2 »
Py (1 =07 2) ¥ Py 3Py 22P1 1t ~ Prr-3P2 2 ™ P2,5.3P1 1t 5
a 3
3,7-3 2 2 2
1+ 2pl.r-lpl,r-3pl,f-3 ik p!.r-3 - pl'r-l = pl,r-B
P r2P2 72P2 1.3
+
3.13

2 _ a1
1420, 2P 43P 1 7.3~ Pir3 ~Prga

2
P23

12



B. Autocorrelation and lag cross-correlation
functions of non-stationary Markov models. Since
the m-th order Markov model, as given by Eq. 34, is
non-stationary, its covariance structure depends on
the lag k and the time position t. With the sub-
script  (pr) of z and e variables changed to
t for simplicity of notation and assuming E{z, }=0,
then

covl 2, 42, = Blz, 20 |
Taking the expectation of the product z, z  , Wwith
z, given by Eq. 3.4, it follows
m
OV {2 v Zyyge 3 = El a]ijcov{? Hk,} .

Since Var z, is constant and equal to unity
the autocorrelation function for the positive lags
becomes

m

p (k,t) = 1 %y PR-1D k>m), 3.4

where p(k,t) and p(k-,t) are the two-dimensional
autocorrelation functions of the lags and the posi-
tions. Similarly, the autocorrelation function for the
negative lags becomes

m

3.15
p k)= :I %P (~k=j,t+k)
k <-m),
with p(o,t) = 1, and p(k.t) for |k| < m estimated
directly from data.

Equations 3.14 and 3.15 may be used
recursively to obtain the autocorrelation function of
the m-th order non-stationary Markov process z, for
any lag |k| > m and at any time t. In particular,
for the first-order Markov model, Eqs. 3.14 and 3.15
may be simplified as

k

p(k)t) = ll;ll p_'[‘t-i-k.[ (k > 1) ]

3.16
and

p (k) = (k<-1),

Foges

with p(o,t) = 1. In the case of the stationary first-
order Markov model with the coefficient of correla-

13

tion p_ . a constant for every t, the above equa-
tions mmphfy to the well known expression

pk,t) = 91-

For higher-order Markov models, say m = 2,
the autocorrelation function may be obtained from
the following iteration equations:

For the second-order Markov model, m = 2,

p k1) = %)t k-1 pk-L1t)

tay e, pk= 2) (k> ?2)

3.17

with p(l,t) and p(2,t) replaced by p, and p, 4
respectively, and

p(k9t)=al,t_lp(_k_1’t+k)

+ta (-k-2,t+k) (k<-2) 3.8

2,42 P

with  p(-1,t+4k) and  p(-2,t+k)
and

replaced by

respectively.

Pyt Py trk2

For the third-order Markov model, m =3 ,

p(k:t) = al Jt+k-1 P (k =, l,[)
oy k2 P (k=2,0)+ @3 t1+k-3 P (k=3,t)
k>3) 3.19

with p(L,t) , p(2.t) , and p(3,t) replaced by
By sB5 and Py respectively, and

,o(k,t)zcc“_1 p(-k-1,t+k)
ta,,, P (~k=-2,t+k)
aa‘t_ap(wk—S,Hk) k<-3) 320

with p(-1,t+k) , p(-2,t+k) and p(-3,t+k) replaced
bY Py pak1 2 P2 ek 304 Py oy 5 Tespectively.



3.2 Partial Sums

A. General characteristics. By using Eq. 3.2
and assuming S = 0, the following sequence of
partial sums is formed.

& =0 ' 0
5,0 - S, (y)
=8,(x)-8,(y)

S

e T = ¥

52 = (xl = yl)+(x2_y2)

= 0y < ¥)H Gy Y) = 560-50)

n -

5,() -5, ()

3.21

S, = (&%, - ¥) *.. b, - )

where S;(x) and S,(y) denote the partial sums
X, +%, ..+x and y +y, +..+y., respectively.
Equation 3.21 is a general representation of the
partial sums, and according to the characteristics
of th_e output vy, , for instance Vo = JL. lor
Y, =X_ , it may represent a sequence of unadjusted
or adjusted partial sums, respectively, as are defined
in Eqs. 2.1 and 2.2 of Chapter I

Considering the general model for periodic-
stochastic inputs and outputs as in Eqs. 3.3, 3.4
and 3.5, and replacing the subscript (p,7) by t,
then

X, = 1(x) + 0,(x) z,(x) 3.22

and

Y, = () + 0,(y) 2,(¥) 33

with the periodic ¢ and ¢ and the z variable as
defined previously. Therefore, the general term S, of
the partial sum of Eq. 3.21 may be represented by

i
S, = 2, (1,09 - K]
i
+ 2 07000 20 . 324

For subsequent use related to the expected val-
ues and variance of the range, it will be necessary to
know the moments, and marginal and joint distribu-
tion functions of the partial sums 88,88
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B. Moments of partial sums. Equation 3.24 has
the expected value of Sl

i
E{§ 1= 2 ke -uol . 3P

For inputs and outputs stationary in the mean, Eq.
3.25 simplifies to E{Si}= 0.

The variance of S;(x) = x; + x, +...+ x,
is
i i
Var §. = Z 2 covix,x,1,
boFlLwE 326

in which the general covariance of x, is
covi{x,x }=E x, x,}
- E{x }E{x }= E{[p (%) + 0,(x) z,(x)]

[, (x) + 0, (%) 2, ()]} = w1, (%) 1, (%)

which simplifies to
cov {x,, x, }= 0,(x) 0,(x) E{ z,(x) z,(x)}

=0,(x) 0,(X)p, ) (u-t1), 3.27

where p, \(u-t,t) is the autocorrelation function of
the Markov process z,(x) given in general by Egs.
3.14 and 3.15. Substitution of Eq. 3.27 into 3.26
leads to

Var Si(x)
i

= E 2, 9 0,0 0, -t). 328
Similarly,

Var S.(y)

i
S50 0,(y) 0,0) Py -t . 329

The covariance function be-

tween Si(x) and S/(y) is

ii
Z 2

t=1 u=

cov {5,(x), §,(y)}= L eovixe b a3



with the general covariance of x, and y,
cov{x,y,} =E{x, y, FE{x }E{y, !}

=E{[u,(x) + 0,(x) z, ¥)] [1,(¥) + 0, () z,(1]}
- p,(x) 1, ()

which simplifies to

cov{x,y,}

=0,(x)o,(y) Pax) .z(n(u —t,t); 331

with p, )(utt) the lag cross-correlation func-
tion o i’ne two non-stationary Markov pro-
cesses z,(x) and z (y). Substitution of Eq. 3.31 into
Eq. 3.30 leads to

cov {Si(x), Si(y)}
i

1
= '_E-l E’"l ot(x) au(y) pz(x)_ z(y)(u - t’t) 3.32

Since the variance of the partial
sum S, = §,(x) - S,(y) may be expressed by

Var S, =Var §/(x) + Var S(y)

- 2 cov{ 8;(x) , S0},

and using Eqs. 3.28, 3.29 and 3.32 then
i
Var §, = t§l E—él [o,(x) 0,(x) pz(x)(u - t,t)

+0,(y) 0,(¥) £,y (u = 1)

-2 al(x) o, (y) [ !(y)(u - t,t)] 3.33

Equation 3.33 represents the general expression
for the variance of the partial sums S, for the general
case of stochastic difference equations of inputs and
outputs. For subsequent applications, simplified in-
puts and outputs are used, so that Eq. 3.33 simplifies
as

(1) For x, independent and y, = u

X 3
with p  the general mean of x, , then

1
Var S, = £ o) ; 334
1 l=l 4

15

(2) For x, an independent identically dis-
tributed variable with the variance o® and Y, = M,
Var §, =i o ; 3.35

(3) For x, with 0x) the variance of

x,; the first-order non- statlonary Markov model

and Y = K,

i
Var §, = tzl 03 (x)
i-1 it u
+2 tzl u§1 0,(x) 0y,,(X) k"=1 Py trux > 3.36

4) For x, the ﬁrst-order Markov model
with constant vanance o® but the periodic first
autocorrelation coefficientand y, = p_

Var Si
i-] it u
=gd [i+2 Z 2 ;337
[ t=1 u=1 k= 1p'-‘+“"‘]
(5) For x, the first-order stationary

Markovmodel and y, = p

x!

Var §,
[(1-p)1-2p(1—p)} 3.38
T(-er
(6) For x, the m-th order non-stationary
Markov model and y, =
Var Si
i-l it
= EI o (x)+2 E E o(x)onu( x)
m
j§1 % tau Pogy(8 = 3t) 5 3.39

with pz(x)(u-t,t) given by Eq. 3.14;

(7) For x, equally correlated (p p),
with a periodic standa:rd deviation and y, = ux.

Var S
-1 it

E a x)+2p E E 0, (x) o, ,x) :3.40



(8) For X
and y, = X (*)

independent

Var Si‘

n-—

i
2ia 2 ia,, D .
W — tél o? (x) + (4)? tEI oi(x) ; 3.41

(9) For x, second-order stationary and
independent,and y, = oX_

2 iza
Var 8¢ =0° [i- - 2-a)] ;: 342
(10) For x, the first-order stationary
Markov model and y, = ox,
-2i
Var % = (=) Var S,
£ (22 v 2iao?
_ﬁ_) at Sn - n

(1 - p+Y) (1 - p™)
(1-p) .

) 3.43

with Var{§, } and Var{S_} given by Eq. 3.38, and

(11) For x, equally correlated with a per-
iodic standard deviationand y, = oX_
Var S¥ =(n—§1a) Var S,

+ ('i?ng“: Var §,

ni i
_ 2iap
n 5 & W 34
*) In the case when y, = oX  with X the

sample mean and « the level of development, the
partial sum:s are called the adjusted partial sums and
are denoted by SF*
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C. Marginal and joint distribution of partial
sums.  The distribution function of the random
variable S, depends on distributions of x, and
¥, » Which in turn depend on distributions of
z,(x) and z,(y) . respectively. If z(x) and
z(y) are normally distributed with mean zero and
variance unity, then x, ~ N[u(x), 0,(x)] and
Y, ~ Nlu(y), o(y)] . Since the sum of normal
variables is also normal, the distribution of S, s
normal, with the expected value and variance given
by Egs. 3.25 and 3.33, respectively. In case the
input X is an independent non-normal random
variable and the output is Y, = M , the distribution
of S, is asymptotically normal for large values of i .

Since the distribution of the partial sum S, is
normal, then the joint distribution function of the
sequence of partial sums S, §,,...,S, is multivariate
normal, with means and variances given by Egs. 3.25
and 3.33, respectively, and the autocovariance struc-
ture dependent on the means, variances and auto-
covariances of the components of the partial sums

(xl o Yl)'

For example, in the case of independent
identically distributed (i.i.d.) inputs
and y, = p_, S, has zero mean and variance equal
to io® . It is easy to show for this case that the auto-
correlation function of the sequence Sl,S2 ..‘.,Si is

1
pt'.k,i)=f.H—k“)%, for k =20,

and

i +
P(k.i)=(i*l—k")y“ , for k<0, 345

where k denotes the lag, and i refers to the partial
sum considered.

For the case of a stationary input of the first-
order Markov model and the out-
put y, =u ,S. has zero mean and variance given
by Eq. 3.38. Then the autocorrelation function of the
sequence S, , S, , ..., S, is



et e e

[(1-pMi-p(1-p)(14+p5)]

plk,i) =

[(-p")i=2p(1-p)]1R[(1-p?)(i+k)-2p(1-p

and

, for k 20
I+k)]’fi

3.46

[C1=-p)(i+k)=p(1-p"*)(1+p%)]

pki) =

sfor k<0

[(1-p)GE+K)-2p(1=-p"*) 1R [(1-p)i-2p(1-pY)%

The sequence of random vari
ables S1 ,S2 iy Si, constitutes a non-stationary
process, even for the simplest case of independent
identically distributed (i.i.d.), inputs, and outputs
Y, = M - Although the mean is zero for all i’s, the
variance depends on i, and the autocorrelation func-
tion depends not only on the lag k , but also on i.
This makes it difficult, in general, to find the pro-
perties of the maximum, minimum or the range of
this sequence of partial sums for a sample of size n.

3.3 Surplus, Deficit and Range

A. General characteristics. The maximum
(surplus), minimum (deficit) and range are defined
in Chapter II as

Mn=max(0,Sl,Sz,...,S“),
m, =min (0,8,,8,,...,8,) ,
Rl'l = Mﬂ B ml'l
with M _~ defined as above as always positive

increasing and m_  as always negative decreasing
functions, while R, is a non-decreasing function
of n.

In some cases, (A. A. Anis and E. H. Lloyd,
1953; A. A. Anis, 1955 and A. A. Anis, 1956),
the maximum and minimum are defined as

M, =max (S,,8,,...,85)
m’ -—mm(SI, -

and the range as

| - ' '
R =M -m
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In this case, M ,m and R may take on either
positive or negatwe values although M and R are
the increasing functions and m a decreasmg func-
tion as n increases.

Following E. H. Lloyd (1967), the relations be-
tween M_ and M ,m_ and mt: ,and R and

R’ may be derived as follows :

¢

M may be written as
M, = max (S,,S,,...,S,)
=max (0,8, -8,,8,-8,,

Sp =S +5,
or
M; = max {0‘ (xg = YQ) » (Xz i yz)
+(x3_Y3)‘---:(x2 _yZ)
o hx, = yn)]- +8;
Let w, = X,,, - ¥,  then the above expression
may be written as
Mn=max[0,w],wl+w2, ..... » W,
tw, +__.-|-\.\|r“}+Sl s
and let Si =W, + WA W, t wi,then
o ' ' 1
M =max{0,S ,S,,...,8 ]'+S1

At this point the assumption of the pro-
cess w, = X, -V, being statmnary is
neoessary In this case, the distribution of S is the
same as the d.lstnbutmn of §;. Therefore, the distri-
bution of M will depend on the distribution

of M, sndS



Assuming that E{S, }= 0, the expected value
and variance of Ml; become

E{M }=E{M_,}, 3.47
and
Var (M. }=Var{(M,  }
+ Var{Sl 2 Cov {S, My b 348
Similarly, it may be shown that
Efm }=E{m_, } 3.49
and
Var{m/ }=Var{m_ }
+Var{§,}+2Cov{S, ,m__ }. 3.50
The range R) may also be written as
' =max(0,8,,8,,...,8 )
-0l S5 w0580 Y5
therefore
E{R‘n }= l:‘{Rn—l }’ 351
and
Var{R| }= Var{R__ }. 352

These final equations make it possible to compare the
results obtained by A. A. Anis based on the
sequence S, ,S,,..,S8 with other results, for
example those of Spitzer, based on the sequence
Sy 4S8, 4 S, with 8=

Fe) ]

B.  Distribution and moments of surplus,
deficit and range. Consider F(M ) and F(m ) to
be the cumulative distribution functions of the
surplus M and deficit m_ , respectively, that is

FM,)=P{M <s}and F(m )=P{m <s}

Consider furthermore that Mn and m_~ are de-
fined as M, = max(s,, S,y iy S.) and m, =
min(S .8,, .., 8 ).

Therefore,

F(M_)=P{S, <s,S,<s,...,8, <s}

or 3

£(8, 585 52052 8,)08,45,... 48, 43

The joint density function of S ,S

i 2,...,Sn may be
expressed as

B8 50u482)

=(S,)£(S,18,) (S, IS, ,S,)
P 3 (R A

' n-1
Therefore Eq. 3.53 becomes
S 8
F(Mn)= {m :fm f(Sl)
f(S2 !SI)F(53 IS1 ’Sz)

. £(8,18,,8,,...,8,,)ds, ds, ...dS_

3.54

This equation constitutes a general expression for the
distribution function of the maximum of the partial
sums Sl ,Sz, Sn. However, unless the distribution
function of S, and their respective conditional dis-
tributions are very simple, an explicit solution
for F(M_) is not possible. The best result obtained
regarding the distribution of M~ was that of Spitzer
(1956) which relates the characteristic functions
of M_ and S/ = max(0,S,), for the case of i.id.
variables.

Similarly, the distribution function of, m_~ may
in general be expressed as

F(m )=P{m_ <s}=1-P{m_>s}

or
F(m,)=1-P{S, >s,8,>s,...,8 >s}. 355
Let Y = - m_,then

P{Y<s}=P{-m_ <s}=P{m_ >-s}



or
F(-mn)‘-= P{S, Q—S,Szé—s,...,snb-s]
F(-m)

o0 oo

=L £08,,8, 0,848, 85, .48,

Let us consider the change of vari

ables s, = - w;ithen F(m_ ) may be expressed as
F(-m)=J..... sj
=8 w8y wowns= B A8, JHUB, ). J=8)
or
F(-m)= [ .oue ¥
f(-8S; s=8, ,...,=8,) d§; ds, ...ds 3.56

Let us further consider at this point that the input
random variables are i.i.d. with a symmetrical density
function, and that the output is y, = u_. The joint
distribution function of the sequence Sl 5 Sz""’sn is
also symmetric,

£(S, .8, ...-.8)=f(=8, ,=8,,...,-S)

n

in which case Eq. 3.56 takes the form

S S
F(-=) * o J.

B8, 0 Bynen B, )8, A8y oo B, 3.57

Finally, comparing Eqs. 3.53 and 3.57, then

F(M_) =F(-m_) 3.58

This result is useful because the moments of the
maximum and the minimum of partial sums may be
shown to be related as

EMI}=(-D" E{m}}, 3.59

and in particular the mean and variances are related as

E(M, }=-E{m,) 3.60
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and

Var{M }=Var{m_ } . 3.61

The distribution function of the
range R ~depends on the joint distribution
of M, and mn.That is

FR,) =P(R_ <r}=P{M, -m <r},

or

FR,) = [ PM, -m <rIM,} fM)dM,

or &
FR,) = f_P{m, >M, ~rIM, } M) M, ;

since P{m_ > M 1M }= I-P{m < M_rM_1},
then F(R ) may be expressed as

[= =]

FR,) =1- [ _P{m <M,
~rIM) fM)dM, 362

The problem is that finding explicitly the joint
distribution of M_and m_ is very difficult,
because even the marginal distributions
of M, and m_ cannot be represented in explicit
form. V. Yevjevich (1965) found by numerical
integration the distribution functions of the sur-
plus,M_,deficit m and range R for the case of
inputs i.i.d. normal variables and output
i =K for valuesof n of 1,2, and 3.

The moments of the range, surplus and deficit
are related as follows;

E{R,}=EM,}-E{m,} 3.63

For the particular case in which the distribution of
components of the partial sums is symmetrical, Eq.
3.60 applies, so that

E{R,}=2EMM_}. 3.64

Similarly, the variance of the range is

Var{R }=Var{M_ }+ Var{m_}-2 CoviM,_ ,m_}



or

Var{R }=Var{M_}+Var{m_ } 3.65
-2 Var% {Mrl }Varl’é {m“ 1 p(M, , mn)

where p(Mn,mn) is the correlation between

M_ and m_ as functions of n . For the particular
case of symmetric distribution of the components of
partial sums, Eq. 3.61 applies; therefore, Eq. 3.65 is

simplified to

Var(R }=2Var{M_}[1-pM, ,m )] 366

20



CHAPTER 1V

EXACT EXPECTED VALUE OF THE RANGE

The theoretical expected values of the range for
= 1,2, and 3 are developed in this chapter, con-
sidering in general that the joint distribution function
of the sequence of partial sums is multivariate nor-
mal. In particular, the univariate, bivariate and
trivariate normal distributions are used to derive the
expected values of the maxima M, ,M, and M,
which in turn lead to the expected values of the range
R1 ; R2 , and R, . Some of the characteristics of
these distributions are reviewed, derived and sub-
sequently used in this chapter.

4.1 Properties of Multivariate Normal Distribution
Function

Following A. M. Mood and F. A. Graybill
(1963), let W, ,W,,.., W be an n-dimensional
random variable which is designated as elements of an
nx 1 random vector W by

This random vector is distributed as an n-variate
normal if the joint probability density of
W, oW W, s

n

f(W) =f(W, ,W,,....W)

1

g(zar)“?2 ICI% a1

where C is a positive definite symmetric matrix. Its
elements are constants and is the covariance matrix,
M isan n x 1 vector whose elements u, are the
expected values of the random variables W , which
are constants, and C' denoting the mverse matrix
of C and (W-u)T representing the transpose of the
matrix (W-p) . The covariance matrix C is
explicitly given as

p{- ‘;‘(W-#)C'I(W' w'}

% Oig: swmw Oy
924 Oaa »oo Daq

C= 42
Ul'll an ann

in which the element o.. represents the covariance
of random variables W, and Wj , equal to

oij = '\/aii G” pij L] 4.3

with o, and o., the variances of W, and W. res-
pectwely and p,; their correlation coefﬁc:ent it may
be shown for the n-variate normal random
vector W that the marginal distribution of any W, is
normal with mean I and variance 0y

Another important point concerns the con-
ditional distributions. Let the nx 1 random vector
W ,the nx 1 vector u and the matrix C be
partitioned as follows:

W U ICll C12
W = : J|u'= ; L] and C =
w3 Y, Cai Cys
44
with
xl My
- ol
wi=t .2 U, = 2
Wk My

%21, 922,,.., %k
and Gy = . - . 4.5
k1, %%2,..., Kk



The conditional distribution of W§ given W} is the
k-variate normal with the mean

= <1
UT"Ul"'CtzCn(w;_Uz)' 4.6

and the covariance matrix

- < -1
Cn.z Cn C”CnC“ ’ 41

in which C, denotes the covariance matrix of
W* given W.*. The partial correlation of W, and
W.(Gj < k), given W, ,..W_, is defined by

Oi5.(k+1)......n

Py = 3
ij.(k+1)...... n \/oii_(k'l»l)....n gjj.(k+l)....n 438

For the particular cases of n=1,2, and 3, the
joint and conditional density functions are given in
explicit forms:

(a) For n = 1, the univariate density

function is

1 X-u,
ﬂxp{"f ( UX )2}: 4.9

1
(0= =

with 1 and o, the mean and standard deviation

respectively.

(b) For n = 2, the bivariate normal density
function is

fX,Y)= & ot
(2mo, 0, (1 -p%,)
1 X-u,

[( 4
2A1-p%,) Oy

exp{ -

X-p Y- Y-
AN DY 40

while the conditional density function
of X given Y is

fXI1Y)=
2r ox(l—piy)
exp { - ———— [X-u
205(1-0%) )
pxyox
“=F (V=p)* 3 4.11
(c) For n = 3, and assuming

that Bl S = 0, the trivariate normal density
function is

1 1
fX,Y,2) = —— o expl-——
(mP/%c | 2iC|
fe,X? +¢,Y* +¢,2% + 2 XY +2¢,XZ+2¢,YZ] },
4.12
where
c, =00 _=0° c,=0_0 _~-0_0
1 Yy 2z vz ’ 4 Xz ¥z xy zz?
- — 2 =
c: xxazz sz ! cs nyurz ayraxz‘
— 2 = s
03 Uxx Yy axy r cé oxyaxz oxxcyz'
4.13
and
g _,0..,0 0’ .o
xx?xy ' xz X77xy * xz
- = 2 4
C Oyyr0yy s Ty, Oy y + 0y .0, 4.1

X 0
W=l Y u=10
Z 0

and C of Eq. 4.14, and the partition

i

=
"

W3 where W:‘= and W; = (Z) .



From Eq. 4.6 and since U, = U, = 0, the con-
ditional distribution of X and Y given Z has the

_ -1 .
mean Ul‘ = CHC22 Wz“. Since
ey sz = 2
€ = & €= (Gz )
yz
then o5
. - "ux-z - [} pxz
U1 = U”_;" My, - " 4.15
g pyzz

Similarly, since the matrices C, | and C,  are given
by

2
" Opy
= 2
11 Oyy a,

and using Eq. 4.7, the covariance matrix,C,  ,,
denoted now as C“'z,is

C

+Cyy = (0

0,,)

X2 ¥ ye

o SRS YN G, =i 2
ax sz’faz 5 axy axzayz‘faz
- - 2 2 _ 2 j.2 :
ny axzayzioz ’ Uy Uyz"‘az 16
which may also be expressed as
2
ox.z x oxy.z
ny.x - 2
ayx.z * Uy.z
a2(1-p2) 0.0 (b, =P .P,.)
X X2z P Ux yYxy Xz yz
2 2
0,0, (Pyy =Py Py,) s 0y (1=07))
4,17

where the p’s denote the correlation coefficients
between the indicated random variables. Therefore,
by using Eq. 4.10, the conditional distribution
of X,,and,Y given Z,is

1
f(X,Y|2) = T
2 xXy.z
{ | [{x_"x.z)z 5

e - -

B Tl R

Xol. Tt b i’ S
: )+ : 4.18
( . ) ( 7. )+ ( 5. ¥ 1%

23

and o 0 and

G ¥
xy.z" x.z

wlth px}‘ b 4 i UXY.ZIUX.Z Y.z

o, , given by Eq. 4.17.

Similarly, the conditional distribution function
of X and Z given Y is

1
f(X,2lY)= h_\/_C_-_——

1 X-u
I

X.¥Y

xX.y

exp { - )2 - 20,,.,

201 -63,,)

Zhuz.

M5 S

Z-—uz
Y13, 419
B

o, and the matrices of

with Pyyy = oxz.y;ox.y z.y
Y

mean and covariance given

and

2 - ne
Ox(l _pxy) ’axat(pxz_pxypyz)

2 2
gxaz(pxzi pxypyz) A az (1 - pyz)

4.2]

Finally, the conditional distribution function
of Y and Z given X is

1

f(Y,Z]|X)= mde—
217 Xy.z
b S
1 ¥Y.X 2
exp {_ 2( 1 —piy-z) [( ay.x ) Zpyz;‘
Y-u Z-u Z-p,
( a)'.,:(.; oz.:x )+( oz.x ' )3] Far 4

with Bos ™ an‘x;‘ay_xaz_* and the matrices of

mean and covariance given by

0
¥
(A p”X\
4.23

o
T z
=) e o)



and 2

2 2
oy (1-p,,) 20,040 = PyoPis)

2
cryurz(pyz - pwp“), a;(l ~03.)
424

4.2 Expected Value of Surplus of Random Vari-
ables with General Covariance Structure

The following mathematical derivations deal
with the expected value of the maximum of partial
sums for n =1, 2, and 3. They are performed in
general so that the expected values obtained may be
used for both the unadjusted and adjusted partial
sums. The assumption is made that the departures
(x, - y,) are normally distributed with mean zero
so that the distribution of the partial sums is also
normal with mean zero. In order to simplify the
mathematical derivations the following notation is
introduced:

X=8, =(x,-y)
Y=52 =(x1 —yl)-!'(x2 -yz), and
Z=8;=(x, =y ) *+(x,-y,)*(x;3=y;) . 425

A. The case n = 1. According to the above
notation the maximum M, is defined as

M, = max(0,X)

Then
(1) M =0 if X<O0

(2) M, =X if X>0
The expected value of M, is

EM, }=E{X}= gm Xf(X)dX

Since X is normally distributed, f(X) is defined
by Eq. 4.9, so that

4.26

E{M, }= o

1
fAa X

Since for a symmetric distribution, Eq. 3.64 applies,
then the expected value of the range is

E{R, }= \/;2(—_[\/“ X]*

4.27

24

B. The case n =
imum Mz is defined as
M, = max(0. X, Y)

2. In this case the max-

Then
(1) M2=0 for X<0 , Y<O

2 M,=X for X>0 , Y<X
(3) M2=Y for X<Y , Y>0..

The expected value of M2 is

E{M, }=E{X}+E{Y}, 4.28
where
i o
E(X}= [/ [ Xf(XY)dYdX, 429
O -
and Y
1=
E{Y} {) _J;DYf(X,Y)dXdY. 430

Since the above two integrals are symmetric, the
solution of only one is necessary. Therefore, for
solving E{X} let us use the conditional distribu-
tion of X given,Y , so that

PR,

E{X}= [ [ Xf(X|Y)f(Y)dydX ,
(4] -0

which, separated into two integrals, gives

0 o

E{X}=_J;° f(Y) g XI(X[Y)dXdy

(=] (=]

+ [ f(Y) [ Xf(X]Y)dxay ,
0 Y

4.31

where f(Y) and f(X|Y) are given by Egs. 4.9 and
4.11 respectively, with,u and p_equal to zero.
For convenience, the conditional density function
is expressed by

1
fX1Y)= exp{—'z-;‘(x-'bY)’}

1
V2n a
where

o

= —p2 =
a=o, (1 pxy) and b Pyy 90,



With the above expression for f(X|Y), the inside

integrals of Eq. 4.31, denoted from nowon by 1,
are

o0

1= J Xf(X|Y)dX

4

- 1

= [ X ex - bY)? }dX
£ V2T a pi 2a* o
whose solution is equal to
Q- bY

[=—— ex
T pi= 2‘( }
+bY [1- Q'abY , 4.32

with ®(.) denoting the univariate normal cumula-
tive distribution function.

For the first inside integral of Eq. 4.31,
denoted by I, & =0, so that Eq. 4.32 gives

a
l =

L \ow

For the second inside integral of Eq. 4.31,

i
exp (-7 OF Y J+bY (1Y), 433

¢ =Y, so that Eq. 4.32 produces
_a
2 \/277
(1- b)
+bY® [ - Y] .
expl -7 oY Q| .

Substitution of Egs. 4.33 and 4.34 into Eq.
4.3] leads to

0
E{X}= \/—_—_ [ f(Y)exp

a [+ =]
~§ (3_)2 Y? }dY+7 {{ f(Y)exp

Y? JdY +

1
{ =
o bY oo
+bf Yf(Y)¢(a—)dY+b({ Yf(Y)D
_a-b) ?
e L
0

1 b 2 2
(-3 @YY JY+ [ £(Y)

1 1-b, , -
expl-5 (= P Y2 HY]+b [ [ Y{(Y)
0 ( - )
(—_)dY [ YE)® {—— Y HY] .
4.35

The above expression basically contains the
following two types of integrals

o
1
I, = wa f(Yexp {-5 ¢ Y2 }dY
0
and 1, = [ Yf(Y)®(cY)dY

with ¢ = bfa for the first and third integrals
and, ¢ = (1-b)/a for the second and fourth integrals
of Eq. 4.35. The solutions of these integrals are:

0
1
I, = [ f(Y)exp{-5 ¢ Y* }Y
1
- — ) 436
2(czcr§+l)l"&
and .

= [ Y{(Y)®(cY)dY
i [~1% -] 37
24/ 2m 4.

(c* 0; +1)%

Substitution of Eqgs. 4.36 and 4.37 into Eq. 4.35
leads to

2
1
E{X}=
2~/ 27 [a2+b202 1%
¥

2

2 1 & b 9
{az +(1_b)2 0;]'/2 24/ 27
b (1-b)

[ +b%0})*  [a® +(1-b) o}]"
Finally, replacing the constants a and b by
cx(l-piy) and p”ox;’o respectively, the above
equation becomes

a

X

E{X}=

VI (var(y - X)) %

{0, =pey0, +[Var(Y-X)]%}. 438

Since the integral E{Y} of Eq. 4.30 is of the
same type as E{X} of Eq. 4.29, Eq. 4.38 by making
the corresponding replacements becomes



_p [ R

439

Substitution of Eqgs. 4.38 and 4.39 into Eq.
4.28 leads to

1 1
EM, }= o= (7 VarX]*

by Var Y 1% 4 3 [Var (V=20 1%} . 440

Consequently, the expected value of the range is
2
E(R,}= /;_ {7 [Varx)*
1 1
+oy [Var Y%+ 5 Var(Y-X)1%}. 441

C. The case n = 3. The maximum M, is de-
fined as M, = max(0S§,.S,.S,) = max(0.X.Y.Z),

or

(1) M,=0, for X<0, Y<0, Z<0
(2 M,=X, for X>0, Y<X, Z<X
() My=Y, for X<Y, Y>0, Z<Y
(4) M=z, for X<Z, Y<Z,Z>0

Therefore, the expected value of M, may be written
as

E{M, }=E{X}+E{Y}+E{Z}, 442

where

E{X}= S

P

X f(X,Y,Z)dYdZ dX, 443

L

E{Y)= Y f(X,Y,Z) dX dz dy *#4

and

Y
E{Z}=

| =

Z f(X,Y,Z) dX dY dZ .445

26

Using the conditional density functions, the
above integrals become

X X
X0 f(Y,Z|X)dYdZdX,

E{X}= f
0 4.46

4y

w Y
E{Y}= [
8]

Y
Y (YY) f(XZ|Y)dXdZdY,
- 447

’

and

w Z Z
E{Z}= [ Z£(Z) f(X,Y|Z)dX dY dZ
0 o 4.

48

where f(X,Y|Z), f(X,ZIY) and f(Y,ZIX) are given
by Eqgs. 4.18, 4.19 and 4.22 respectively.

L

Solution of the integral E{X } of Eq. 4.46. By
making the following change in the conditional den-
sity function f(Y,Z|X) of Eq.4.22,

Z O = -1
kl 1 p}'z.x’kx Qﬂoy.xaz.x‘/ﬁl_) 4.49

and

Y—aypxyx,’ax
P e l———

f(Y,ZIX) becomes
f(Y,Z1X)
1
=k_exp {-—m (u? - 25 uv+v?)},

and the integral E{X } of Eq. 4.46 is expressed as

QX Clx
EX}=k o, 0 [ S T X
) ~00  —00

X ¥.X 21X

(=-]

1
exp{- TE (u® - 20, WVt V') }du dvdX 451

in which



The constants ¢, and ¢, are usually negative for
the linear dependence between the components of
the partial sums. They are equal to zero for the case

of independence (see Appendix). Therefore, the solu-
tion that follows is for ¢, <0 and ¢,<0.

Replacing -¢, by b ,and -, by b, the
triple integral of Eq. 4.51 is graphically shown in Fig.
4.1.

In order to integrate first in X, Eq. 451 is
separated into two integrals as

o o
E{X}zkxoy.xoz.x [_L, _-fm
1 g 5 ~v/b,
exp{—;;]—(u '2*°yz_x“"+" )}Of
Xf(X)dXdudv - f [ exp{-—
= b, v/b, 2k,
—v}b2
(v? —'Zp“xuv+vz)} i X f (X) dX du dv]
' b, 4.53

$-u /imegmrion region

| /

u=-b X

+ X —V=‘b2x

Integration region for the triple integral
of Eq. 4.51.

Fig. 4.1

The integration of inside integrals of Eq. 4.53 leads to

o, o
=L

1 2
—(u-p .xv) }
2k, £

E{X}=k_ o, _o

X ¥Y.X 2.X

1 0

exp{-5v'} | exp{-
—00

1
exp{ - 75

0 1 0
dudv+ [ exp{-3k, v 1 J
—00 bl\f -

/b

0 1 0
(u=p,. V)P Hudv- [ exp{-5k,v*} [

yz.x

27

1
exp{ - 7K, (u- ,cayz_xw)2 }du dv -

1 o 1
- IO cxp{—f k3v2} I exp{—f(w‘ﬁql u
= blvsz
I g idy)
= —— udv
kVE, 454

in which the constants k, and k_ are given by Eq.
449and k, ,k,,and k, are

1+(b, ) 1+(b,0)
k8 ———— [l =
2 z ' 3 2
(b,0,) k, +(b,0.)
2
" k, +(blox) "
ol a.
kl(blax)
Integrals of Eq. 4.54 have the general form
8] 1 o
I=__Lexp{—'2-a1v2}f exp
32\'
—— - 2
{ e (a, u=a,v)* }dudv 4.56

3

and their solution depends on the lower limit of the
inside integral. Therefore, in order to find E{X},
and subsequently E{Y } and E{Z} , the following
cases of Eq. 4.56 were first solved:

(a) For 0 <a, <

\Va 1 B, 8472
= —_3 [ R e—e—
| (2#)\/‘;‘_ i [21r arctan(\/?@)
o arctan (Wm ; 4.57
(b) For a, = %,
Vi, 1
I1=(2m) W [-Z
. TR N 4.58
5 arctan \/?\/_3'3_ Y %



(c) For 007< iy <0

1

1=(2nm) —\/5_3___ [-2_

Va, a,
arct (“ﬁ’%*%) :
an (————)+
Va, Vi, n

a5

Va; Vi,

arctan  ( ) 459

and

Foraz=-°°

(@

_Va,

Va, 3,

| 1
[ + 7 arctan (—5—

Va, Vg

in which the angles are reduced to the first quadrant
and measured counter-clockwise.

I=(2n)

)1, 460

The first integral of Eq. 4.54, denoted by L

with a, = 1, a, = =0, a =k| 5 A i) and
a5 =p,, \ » is obtained from Eq. 4.60 as
ll=(2ﬂr)\/[2l
b i ()
7 + A7 arctan . 4.
4 m \,El— 61

The second integral of Eq. 4.54, denoted

by I, with a, = k,, a, = b /b,
a; =k, ,a, =1 and a5=p“_*,is0btained from
Eq 457 as
L =@ )VT{ b Pyzx
, =(2n 35~ arctan (

vk, \/F\/_

yzx

+2— arctan (\/’k_\/'k_

The third integral of Eq. 4.54, denoted by

4.62

I, ,with a, =.lc2 ,a.2 =-‘=-=',a_,'=lci »a, =1 and
A =Py, 0 18 obtained from Eq. 4.60, as
vk 1 1 pyzx
I.=2n) — [s+3=— arctan (————
3 ( )\/E- [4 2 \,/E"' \ﬂ(—
4.63

Finally, the fourth integral of Eq. 4.54, denoted

by I,,with Ay * BN, = by fb » 83 = 1,
Pys. xfk \ﬁ; is obtained

a, =\/k_4 and a; =

from Eq. 4.57 as

L= (ex) \ﬂq [T' arctan
\/k_\/k_\/k_
bkk ~b pY“
( \/R_\/’E_ + 55 arctan
pyzx
TW 4.64

Substituting Eqs. 4.61 through 4.64 into Eq.
4.54, and since Eq. 4.49 gives k_o vk, =1/

(2m) , it follows that: x%y.x%2xV5s
E{x}= Gx {i—"’-zl— arctan
V21 T
(\/%x) \/k_ ["-—-'arct:m
(W)] _\fk—\/F\/T A5 arctan
b k k,-Db
(blklgf\?;”‘x)'*ll?m‘ﬂ“
271 3 4
(i)}
k, VK, VK, AgE

Solution of the integral E{Y} of Eq.
4.47. Following a similar change of variables as in the
case of the integral E{X}, Eq. 4.47 becomes

o oY &Y
E(Y}=ko 0. [ f |

Y X¥Y"2.¥

1
Yf(Y)exp{—Zkr (?* =2p,, ,w+v*)}dudvdY
1 4.66
in which
k' =1 —p:z_y 3 ky =(2n LN \ff']' y! 4.67
b’ ' O'Y"Ox p”"
=C = —— -
B e 9,0,
o -0,p
and b; =-c = }0 ; s
= v 1.¥ 4-68



+Y,

integration region

Y=u/b,

I
l ’
(S ’
S L
Fig. 4.2

Integration region for the triple integral
of Eq. 4.66.

with the constants c¢; > 0 and,c, < 0 (see
Appendix). The integration region of E{Y} of Eq.
4.66 is graphically shown in Fig. 4.2.

In order to integrate first in Y, Eq. 4.66 is
separated into two integrals, see Fig. 4.2, as

0o 0
E{Y}-ky - T [ f
{ : W -2 +77) }
exp {-——(u® -
P % Pyzy WY v?)

1
—v;"l;"2

[ CYE(Y)dY dudv+
0

0 b V,!b 1
+ j‘_mér exp{—ﬁ-l— (u? —prz.yuv+v2)}
~v/b,,
., Yf(Y)dYdudv] . 4.69
ufb1

The integration of the inside integrals of Eq.
4.69 leads to the following four integrals:

= % v 1 5
E{Y}=k,0, 0, ?[_{o exp{-5v'}
Y 1
__‘['m exp{-—;k—(u pxz.yv)2 }du dv +
k v
t f exp{ - }I b vjb!

2

29

2
exp{ - 2K {u—pmyv) }du dv -

0
~f exp{— kv}irm

v)? }du dv -

1
expl- 3 (-0,

1

0 1 0
_{mexp{—fk;vz}irb’ !,exp{ f(\/’lc_u
1

XZY

Tk vk

v)? }dudv] , 470

where the constants k', and k, are given by Eq.
467 and k ,k and k are

1+ (b0 )

2

K alp
(b, 0,)

1+ (0,
K otbey °
] k; -!-(b’lcry)2
Nt ey
1*"17y

Since the four integrals of Eq. 4.70 are of the
same type as those of Eq. 4.56, their solutions, given
by Eqgs. 4.57 to 4.60 will also be used here.

The first integral of Eq. 4.70, denoted by

I, with g, * 1 8, =04, R 8, =1 Jand
ag =p,,, »is obtained by using Eq. 4.60 as

, Py,

[ =@V [ + grarctan (— 1

1 4m2

The second integral of Eq. 4.70, denoted

by I..;, with 31 = k" 2 = . blr{'bzr’ 33 - klp,
a, = 1,and a;, =p_, y o 18 obtained from Eq. 4.60
as

‘\/k’

; 1 1
I, =(2m) :f- [ - 57 arctan
2

+b, p

(TTL)** 55 arctan (W]



: The third i'ntegral of Eq. 4.70, denoted by
13 , with a =k2 iy B g =k1 ,a4=1,and
e Mg is obtained from Eq. 4.60 as

arctan (W) | 48 4.74

Finally, the fourth integral of Eq. 4.70, denoted
by I, with a =k;, a, =-b/ba, =1,
a; = \/E;,and By = pleyjk;\/k-;, is obtained
from Eq. 4.59 as

. vk} !

; (bl klk:l+br2 pxz.y ]
arcian
o VR K,

Py

z.y
KV,

1
+a arctan (

4.75

Substituting Egs. 4.72 through 4.75 into Eq.

4.70, and since Eq. 4.67 gives ky"x.y“,.yv’k',' =1/
(2m), it follows that:
9y 1 1 Byscs 1

E{Y}=ﬁ {Z"—?.TT_ arctan (\/_ET__;)_\(?:{I

[} L)
bl * b2 px z.y
+ 55 arctan  (

RS Al

1 1
+
KK,
b’l k’l k’4 T b; pxz.y

aretan (———
by K, VK v,

1 tan ( i )]}
- arctan T =
n K vk vk

g Vg Ny 4.76

Solution of the integral E{Z} of Eq.
4.48. Following a similar change of variables as in the
case of the integral E{X}, Eq. 4.48 becomes

A ¢\ Z
E{Z}= kzox.zay.z 6f -_aJ; .'[ou Zt@

1

2
exp {-2k" (u? <20 VY )}dudvdZ |
1
4.77
where
K"=1- piy_z , k,=(n Oy 0y, \/'k_; )1
478
. Oy~ Og Pys b = g, a ’Oyz
! i r:Izcrxz ! :_Cz GZUY‘
4.79

with the constants ¢, > 0 and,c, > 0 (see
Appendix).

The integration region of E{Z} of Eq. 4.77 is
graphically shown in Fig. 4.3.

Fig. 4.3

Integration region for the triple integral
of Eq. 4.77.

In order to integrate first in Z , Eq. 4.66 is
separated into five integrals, see Fig, 4.3, as follows:



0o o 1 oo
E{Z}=kzaxzoyz[:!‘w{m cxp{-'ﬁ,l,—(u’-:!pﬂ_:uv-l-v’) }of Zf(Z)dZ dudv+

[==] oo

0
+ ex 2. +v? Z{(Z)dZ dudv+
{ch’J p{ 1% o v)}ﬁfb’l' (Z) dZ du dv

-
+ J'o Lfm 2k,l, 2, uv+v?)} {')'b; Z f(Z)dZ dudv+
+ [ f 20, .. uw+v))} [ Zf(Z)dZdudv-
o o u/b’
oo b:\'fb: 1 w'b
o 2
of J(; exp{-2k,, (u -2p,, 15u\r+v.r )} J'/b Zf(Z)dZdudv] . 480

1 1

The integration of the inside integrals of Eq. 4.80
leads to

g
z

o 1 9 1
E{Z}=k, 0,,9, 7 L L expl-7V} [ exp{=—5(=p,, v Hudv=
1

0 o pxy

o exp{-%“kg"’}n{ exp{-lf(\/if u- k’f\/;';: v)? }dudv -

0 1 "2 o 1 2
- _Lmexr.a{--fl-c2 }Lexp{-;—k—;,—(u—p”_zv) Jdudv+

+{:exp{—é~k;v’}_{:exp{-%(vﬁ§:u= v)? }dudv +

pxy.z

ki VAG
0 V2 1 3

+ f exp{ - -2-k }f “XP{‘E‘T(“'P,,,,;") }dudv -

b" v/b k1

o -~ 0
__fmexp{—'z-ksvz}{;” exp{ - 2—(\/l?ru k"\/E_ v)? }Jdudv] . 481

1v/b;

31



where the constants k' and k,
Eq.4.78,and k; ,kJ ,and kj are

are given by

B2 Ry

o) 4.82
L+ha) k] + (b} 0,)?

; B " " ? and k: =% "
ki +(b] 0,)? k| (b 0,)?

Since all the integrals of Eq. 4.81 are of the
same type as those of Eq. 4.56, their solutions as
given by Eqs. 4.57 through 4.60 are used here.

The first integral of Eq. 4.81, denoted by I';,
=1

with a, =1 , a, = - a, =k;',a
and a, = . is obtained from Eq. 4.60 as
1 1 pxy.z
I =2m) VK" [+5— arctan ( ). 483
1 1 Y47 2n
N

The second integral of Eq. 4.81, denoted by

=1 =1,a =\;}?

Iz,wﬂh a y8, =50, a, i - and
a —p“_sz"\/ks" is obtained from Eq. 4.58 as
, . @Gm VAT R
arctan (—pii—)] : 4.84
R

The third integral of Eq. 4.81, denoted by 17,

with a, =k;,a2=°°,a3 =k/ 8, =1,and
ag = p,, , is obtained from Eq. 4.58 as
e .
—REE, w LTF TIm
vk
tan ( hjn )] 485
arcian \—— —~ . .
VK VY
The fourth integral of Eq 4.81, denoted
by[",wnh al=k =08y By ™ |
gy = \/k4, and a5 = Py, sz"\/ is obtzuned
from Eq. 4.60 as
(2m) \r’x]?lr 1 1
Il ® e [ 35—
4 0 it 4 27
NN
pX -2
arctan ( 4.86

Al

32

The fifth integral of Eq. 4.81, denoted by I

with a = k2 R R TV R k;' v, = ancl
By is obtamed from Eq. 4.57 as
In = (211) \/F [T
: ( =iHg pxy z I
arctan o \/1?7 \/1(7
xy z
4.87

arctan (———=r \/l?r \/?r

Finally the sixth integral of Eq. 4.81, denoted
‘ : o ! &
by Iﬁrl with. %, & k% 8, = blifpl.a, = 1,
a, =+vk, and a, =p“_sz';\/k_‘; is obtained from
Eq. 4.57 as

o @m) VET I
b: k: k: - b; pxy.z 1
arctan ( b; k'; \/E: \/ET 2o =

arctan ( 488

o )]
VR K

Substituting Eqs. 4.83 through 4.88 into 4.81,

and since Eq. 4.78 gives k 0, 0 = 1/(27) ,
then
M7 i= UZ I I l
E-LZ}— = By + T
b L xy z 1 [ 1 1
arctan t+— B
\J"E \KE2
(b'l’ 'b:p)cy.z )] "
arctan (= =
VIR,
% 1 [ 1 _I
a’k’: :'k’; \/E: 2" 2n
i ( Pxy.z ATy
arctan (—;
k' \/"rr\/'rr 'f_
bl';.' k!; k" _ b"
arctan ( dec )] ). 4.89
by k VA VA :



Substituting the derived expected val-
ues E{X}, E{Y} and E{Z} as given by Egs. 4.65,
4.76 and 4.89, respectively, into Eq. 4.42 gives the
expected value of the maximum M, and con-
sequently the expected value of the range R,.

4.3 Expected Value of Range of Independent
Random Variables with Changing Standard Deviation

The expected value of ranges R, , R2 p
and R, for independent components of partial sums
are derived here based on the above derived general
expressions.

For n = 1],
modification.

Eq. 4.27 holds without any

For n = 2, the difference Y - X of Eq. 4.25
S X, -Y,; therefore, Var{Y-X}= \f'ar(x2 5 L 0’22 A
Furthermore, Eqgs. (7) and (8) of the Appendix give
Var X = 0,2 and Var Y =02+ O’; , so that Eq. 4.41

1
gives the expected value of the range R, as

E{R,}
2 1 1 1 ;
=\/r?_l7°1 +30,+7(0] +03)*]
For the particular case of ii.d. random vari-

ables, [Var X]” = o, =o0,, so that Eq. 4.90
becomes

2 L1 »
E{R1}=\/ﬂ:{ [ Var X] %+~ [Var Y]* }.

By using the notation §, = X and S, = Y, finally

Z L1
E{R, }=\/;{[Var S, j%+ x[Vars,]*} 491

which is in agreement with Spitzer’s formula given by
Eq. 2.23. For the particular case of the standard nor-
mal variable, Eq. 4.91 further simplifies to

2 I
E{R2}=\/;_[I+$1 w BN

in agreement with Anis’ and Lloyd’s formula given by
Eq. 29.

For n = 3, the expected values
of X, Y, and Z are first evaluated as given by Egs.
4.65,4.76, and 4.89, respectively.

Evaluation of E{X} of Eq. 4.65: Substitution
of p of Eq. (17), and constants k, and k,,

and k, of Eqs. (19) and (20) of the Appendix leads
to
1 0 1 0 d pyz.x az
—_—= 5 —_— = an = — 5
\/ﬁ vk, v"El 3

which substituted into Eq. 4.65 give

g

1 1 0
E{X} = \/z'ﬂ_ 3+ 77 arctan (2)] - 4.93

Evaluation of E{Y} of Eq. 4.76: Substitution of

Pyypy ©Of Eq.(17), and constants b, and b, , k]
and k, , and k and k of Egs. (21), (22), and
(23) of thc Appendix leads to

1 Pyzy

1
Vi VA VG

2 . 24
(01+°z)

and
bl kl 1(4 » bz pxz.y

bl K, Vs Vi

which, substituted into Eq. 4.76, gives

= oo

% 1 9

BT 5 Gy

Since Eq. (8) of Appendix,
gives 0 = (o2 + ai)"&,then

S, 12402 4
E{Y}—E[zoﬂz(ﬂ,w,) . 494

Evaluation of E{Z} of Eq. 4.89: Substitution of
of Eq. (17) and constants b and b

o i k2 ,and k! and k! of Eqs. (24), (25), s and
(26) of the Appendlx leads to
pxy.z ol 03

T 2 4 .32 24V
\/l? arz(uI to) + 03)

1 a

VS

3
(0% +0? +0%)"




b’l’._b; pxy.z_az 1

by VETVAT % AT VGV
A

s (0; * U;) ’Oxy.z

2 2 234 "
(0} +05 +03) kl\/E:Van

2 2414 My MW o_
+ =
y 0,04(0; *03) bk kg =b; 0y
ez 2 2 2414 3 "an " "
0,(0] + 03 +03) b, k] Vkj vk

2 2 2
a2(01 to3+ 03)

2 2
9103(02 + 03y
Substituting the above expressions into Eq.

4 .89, then

g, 1 1

Vo

E{Z}=

010'3

2 4 2 2 2\V
oz(al il +03) J
o

)+

arctan (
3 [ 1 . 1 %
T oo L3 moaretan’ (7)) +
(03 + 0} +03)" % (01 )]

2, vk
(03 +03) 11

PR B M S S R 5T
(0} + 0% +02)* (77

2 4 23%
0103(02 + 03)

arctan ( e
2 2 2 w

0,(0] + 03 +07)
0,(0% + 0} +03)

2
=1 }.

arctan (———————
T
0,05(05 + 03)

Since Eq. (9) of the Appendix
gives 0, = (02 + 0,2+ ag)%, the above equation
simplifies to

1 1 Lo

E{Z}= —‘g[zos+z(oz+03)
1 1 a

+ (04 + 0 +a2) +o, 5 arct )+
zloit o] +a3) , ¥ arctan 01)

ag. g

173

1
2 2 2y%

+(o] +03 +03)" a-arctan (0- @ el v oh)

g\t Ty T g

4.95

Substituting Egs. 4.93, 4.94, and 4.95 into Eq.

4.42, the expected value of the maxi-
mum M, becomes

31 .

34

1 1
E{M, Fﬁ i (o to, +0,)

1
- Y A Y
g [0} #o)" + (0] +03)" +(o] 0] ¥0)"] +

1 9, 1 9
+0, 5 arctan (T;;) +0, ;7 arctan (—orl-)

%4 %

—) ).

i fol +u ¥y Y 7:7 arctan (————;
0,(0} + 03 +03)

Consequently, the expected value of the range R is
given by

2 1
E{R,}= \/;,-_{I(al ta, +0,)
1

1
A CATAEICRL G R
g

1 o, 1 2
+0, 5;-arctan (?3") +0, 5 arctan (7.-,1—)

g a
+(af+o;+o‘;)%%arctan( = - : =) b
0,(0] + 05 +03)
4,96

For the particular case of ii.d. random vari-

ables, or b = 0y = 0y =0,

[Var X]* = [Var S, | % =0,

[Var Y]" = [Var 8,]" = (02 +02)" = (o2 + 02)*

[Var Y]" = [Var S,]* =(0? + 02 +0%)*

Eq. 4.96 takes the form

2 )
ER, }=\/;{ [Var s, 1%

1 o .
+ 5 [Var Sz]’s+§~[\/ar53]”‘ by 497
which is in agreement with Spitzer’s formula given by
Eq. 2.23. For the particular case of the standard nor-
mal variable, Eq. 4.97 simplifies to

498

3 11
15{1{3}=\/7;—.[1+\72_+\/—j

which is in agreement with Anis” and Lloyd’s formula
given by Eq. 2.9.



4.4 Expected Values of Range of Equally Dependent
Random Variables (Exchangeable Variables)

Exchangeable random variables have the pro-
perty that the variances are the same, and the
correlation between any two variables is also the
same (M. Loeve, 1960). The expected range of this
type of variables is of importance, especially when
deriving the expected adjusted range as given in
section 4.6 of this chapter.

Following D. B. Owen and G. P. Steck (1962),
exchangeable variables may be generated by

xf\/ﬁ €0+\/l-p € ,

0<p<1l, 499

in which ¢ and e _are independent normal random
variables with mean zero and variance unity,
with E{xt =0, Var{xt}= 1, and E.{xt xl+u}=p "

For n = 1, Eq. 4.27 holds without modifica-
tion. For n = 2 the difference Y-X of Eq. 4.25 is
equal to X,-y,. Since an equal variance is assumed,

then
Var {Y - X} =Var {x, =y, }=0’

Because Eq. (29) of Append;x gives Var X = ¢?
Eq. 4.41 becomes

E{R, }=\/;{[Var X} +% [Var Y]*}.

With the notation S, = X and 82 =Y, finally,

2 I
E{R,}= \/ﬂ—_{[\f’ar S,1%+x[Vars,1*}. 4.100

By using Egs. (29) and (30) of the Appendix,
the explicit equation for the expected value
of R, becomes

/2 ;
ER,}=V 7 0[”;’; (1+p)*] . 4101

For n = 3, the expected values
of X, Y and Z are first evaluated as given by Eqgs.
4,65, 4,76 and 4.89, respectively. Evaluation

of E{X } of Eq. 4.65: Substitution of py x of Eq.
(39), and constants b, and b,, k, and
k, and k, of Egs. (40) (41) and (4") of the

Appendix, Ieads to

35

Py, 1
sz(]_‘_zp)% R "__g._ﬁL% i
vk~ vk, (1+p)
b, =b, Py, 4 G
b, VK, vk, ’

1

=P ,

VR VR VR,
bIklktl bzpyz.x _(1—,0)(1'1'2,0)]‘\"3
bZkI‘Jq e’ Zp

pyz.x
d —————=p(1+20)" .
an eV p(1+2p)

By substituting these expressions into Eq. 4.65,
it becomes

1
E{X}=\;2ﬂ— 7+ 5
vZI o
1 - A A D,
arctan [(1+20)*] -—3 (1+p)"
1-p)(1 e
_9[2:’— arctan (( p)( 13k 320) )

2p
+2:rlr_ arctan (o (1+20)%)] 1.

After simplifying, we finally have

o \/2- P
E{X}l= — - —————
X} ,.z_ﬂ{x KXY

1
+a-arctan [(1+ 2p)"%]

1+2p)%
(1+2p) 13,

1
-p — arctan
b [ 4.102

Evaluation of E{Y} of Eq. 4.76: Substitution
of p, girs of Eq. (39) and constants b and b
k, and kz' and k3 and k of Egs. (43), (44) and
(45) of the Appendix, lead to

pxz.af:o 1 _ VZop

VA - TP

b b,o*”
—_—=(1+2 ,



1 _ (1+p)”

\/kT\'ks vk, vz
bl k; k:t +b; Pya.y _ (1 +2,o)yz
b ki vk, "154 P '
q P xz.y i
an T e e R G
R,

By substituting these expressions into Eq. 4.76,
it becomes

o
y
E{Y}=
{Y} =
1 VZop ;
{g~ (l_+p_)"'& [4 -—arctan(l+29)"{‘]+
(1+p)* 1 1 +20)*
+——\/—7p—) 7 arctan[(—;—ﬂ] i
Since Eq. (30) of the Appendix gives o = V2
¢ (1 + p)”% , then
VvZ 1
E(Y}=—= (Y5 (1+p)f -5
{}\/’fﬁ" (1+p) p
+(1+0) p)
p 7— arctan [ ]-2p
1 i
57 arctan (1 +20)"} . 4.103

Evaluation of E{Z} of Eq. 4.89: Substitution
of p,, , of Eq. (39) and constants b/ and b, k/

and k; , and k; and k: of Eqgs. (46), (47), and
(48) of the Appendix, leads to

(1+2p)"
-

1 1

f;

1 _ V2 (1+20)*
VK VG VK /3 (14 )"

36

bik}k}, ~ b, Pasin 3(1+p)”

bk V&G Vi TVZ(1t2)%
Brgn VZ(1+20)"

SRV T 31+

By substituting these expressions into Eq. 4.89,
it becomes

o

z {]+1
A 42

1
arctan (—)

E{Z}=
{z} 7

1+2p)" 1
(\/_3_9)[4 é—arctan(1+2p)"3 ]+
L YZ(1+20)% 1]
" VE(1ey o
V2 (1+2p)*
arctan ( ——————)
3(1+p)”
3(1+p)”
g aIctan(m)]}
Since Eq. (31) of Appendix
gives 0, = V3 o(1 + 2p)*, the above equation

simplifies to

a

MES B
Vil

1 1
{(1+20) [g + 7 arctan (1+420)% 1+

+\/7 (1+2p)

(1+p)*

¥ — (125" 1.4.104
V3

Substituting Eqgs. 4.102, 4.103, and 4.104 into
Eq. 442 gives the expected value of the maxi-
mum M3 as

EM,}= —

Vo

1
C1enits —

V3

1
[1+ —

V2

(1+20)"*] .



Consequently the expected value of the
range R, becomes

E{R3}=ﬁ o1

1

NG €1+20)%] .

1
+— (1+p)*+
> (1+0)

4.105
\/—

Equations (29), (30), and (31) of the Appendix
give [Var X]% = o,[Var Y]% = /201 + p)%,
and [Var Z]% = o/3(1 + 2p)%, and a sub-
stitution of S5, =X, 8, = Y, and S; =Z, as
indicated by Eq. 4.25, leads to

2
E{R3}=‘/;{[Varsl]%

1 %, 1
tx [VarS,]®+5 [VarS; 1% 1. 4.106

In summary, the expected value of the range
for n = 1,2 and 3 of exchangeable random vari-
ables are:

2
E{RI}=\/;[Vars]]*ﬁ "

2 g . b
E{R,}= ‘/;[{varﬁ.l]'a + 5 [Vars,]* },

2 )
E{R,}= j; {[Var 8, 1%

1 1
+ 5 [VarS,1% + 3 [Var§,]* } .

As a conclusion, the general expression for the
expected range of exchangeable random variables can
be written as

n
E{R}=ﬁ T i' [varS]® , 4.107
n m .i=1 i ® 2

in agreement with Spitzer’s formula (Eq. 2.23).

4.5 Expected Values of the Range of First-Order
Markov Linearly Dependent Variables

The exact expected values of the range
for n = 1,2, and 3 are given here for the case of a
stationary first-order Markov model.
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For n =1, Eq. 4.27 holds also without
modification. For n = 2, Eqs. 4.100 and 4.101,
valid for exchangeable random variables, are also valid
in this case because only two random variables are
considered.

For n = 3 the expected values of XY,
and Z given by Egs. 4.65, 4.76 and 4.89, res-
pectively, are first evaluated.

Evaluation of E{ X} of Eq.4.65: Substitution
of Pys of Eq. (59), and constants b, and b, ,
k, and k, ,and k, and k, of Egs. (60), (61), and
(62) of the Appendix, leads to

P 2.% =(l+p) L = Q!l'}'g]lﬁ
V& ' w5 v
b! = b2 p}’z.x p

b,V VK, V()"

1
SV
blklk‘%_bz pyz.x == 1
+, 7
b, k, Vi, v, P
pyz X
———— = p(1%p)
kl \/E k4

By substituting these expressions into Eq. 4.65,
it becomes

E{X}= \;.21;? {7‘1‘- + Ql;arctan (1+p)
p(1+p)* 1 1 p
"_(\7_2_L [4 - 35 arctan (\/2_(l+p)%)] -

- p[ﬁ arctan (H}—Jr—ﬁj)+% arctan (p(1+p))] }

which simplifies further to
%
EX}= & i} (1-p)-§ &Lt2)
X}= = @ (-n-5 222
+ 2117— arctan (1+p) +
14p)* 1 arctan [——p—-—
v F O e 4



Evaluation of E{Y} of Eq. 4.76: Substitution of
Bisy of Eq. (59), and constants b; and b'2 ,k'1 i
and "k, , and ki and k, of Egs. (63), (64), and
(65) of the Appendix, leads to

’oxz.y = P ) 1 - p(l“'“p)yz
Vi VaE VR Ve
by 5 Przny 1 _ (14p)*

R A R VAV AN

b1klk4 h b2 ’oxz.y

by ki ViG vAG

)

XZ.¥

| ©

2
P

By substituting these expressions into Eq. 4.76,
it becomes
% 1

y 1 2
{-4—1- In arctan [—

BixF V2 (1 +p)"

]

§|

1+p)% 1 1
_E_(\/?__p) [ +37 arctan(1+p)] +

+(l+p)"" 1 2.1
**\—/5:"—- [iﬂ.— arctan(;)-ﬁ.—

o ©

1) 3

arctan (-

Since Eq. (50) of the Appendix
gives 0, = ov/2 (1 + p)”%, this expression further
simplifies to

E{Y}= 7=

& (1-p*)

+\_/2“;, (I+p)* - P(HP)'ZL{ arctan (1+p) -

e w1 Y - [
V2 (14p)* 5 arctan [\ﬁ_(l'l'p)]ﬁl} 4.109

Evaluation of E{Z} of Eq. 4.89: Substitution of
o of Eq. (59), and constants by and b, , k]

Xy.zZ

and k7 ,and kj and kj of Eqgs. (66), (67) and
(68) of the Appendix, leads to

Peva _  (p) L (+p+p?)
Vk] (3+4p+20%)* VK] (3t4p+20*)*
bl “bz pxy.z _(l+ )
b;\/k_r:\/}?; 0 s

1 _ (1+p)” (2+p)

VKIVKTVE, V2 (3440 +20)"

" " " "
b1k1k4 _bz B yin B

"y i
by Vi3V

(1+p)"*(3+2p+p?)

VZ(tptp?)

‘ny.z

_ (14p)°2(24p)
VI (3+apr2pt)

By substituting these expressions into Eq. 4.89,
it becomes

g, (14p)?
|
L}=—7= (gt 27 (3+4p+20%)"*
E{Z} \/z_ﬂ' {i’ A5 arctan [{_'3+4p+2;02)é]
Ut )
(3+4p+2p*)" *
(14p)"(2t0) 1
+_il11— arctan (1+p)] + V2 (3+4p+2p%)% 2
L s UL )
>q arctan V2 (3+4p+20?)

(1+p)"*(3+2p+p)
- j‘}r—arctan (

V2 (I+p+p®) a

After further simplification and since Eq. (5.1)
of the Appendix gives g, - 0-(3 + dp + 2p2)r":’
then

E(Z) = —2=(( 1p#o?) [ + h-arctan (149)]
\/51; pPTo 4 o1 rctan 4]

L@t g [\/5(:]1‘9)1”"

VT 5 arct ]
L (1+,O)2
+(3+4p+2p2)"% [L + 7‘— dretin
A b ((3+4p+2p?)’;)}1}o



Substituting Eqs. 4.108, 4.109, and 4.110 into
Eq. 4.42 gives the expected wvalue of the maxi-
mum M, as

EM }=—0—{[‘3"+2 L arctan (14p)]
3 V21 4 2

%ol 242p-p
+VZ ()" [ + J arctan 5 o]

+(3+4p+2p%)"% [‘L + 1]_ arctan (*m)] }
4" 2n (3+4p+2p?)”

Consequently, the expected value of the range R, is

E{R,}= \/g 0 {[:} + 2 -211; arctan (1+p)]

. 2+2p-p?
+v/2 (14p)* [3;- + ‘2].; arctan (m

; (1+p)
+(3+4p+2p%)” [L + »L- arctan (—————;
(3+4p+20)% [§ + o arc "((3+4n+29’)*1)f“

4l *

Equations (49), (50), and (51) of the Appendix
give [Var X]* = o, [Var Y]” = o201 + p)%,
and [Var Z]% = o(3 + 4p + 20%)%. A sub
stitution of S; ® Xy 8, =Y ad, 8, =Z, a8
indicated by Eq. 4.25, leads to

7 3 2
E{R3}=\/;{lzr+§;;

arctan( 1 +p) ] [Var Sl] o

+[I+ 1 - 2+20-p° s

b 1 AL darcian

L 2vZ p(1+p)*
(1+p)?

1 1
Ya
[VarS,] ™ + [ 7 + 57 arctan (WH

[VarS,1% },
or
2 %
ER 1=/ 7 {¢(p) [Var 8,1

1 m 1 i
toy(p) 7 [VarS,1% +¢,(0) 7 [Var$,1™ 1,
4.112
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) 3 2
with ¢,(P)=[7+ 77 arctan (1+p) ] ,
g l_ 1 2+2.0"'92
cz(p) 2[4+’Er?-arcmn(2\[fp(l+p)% ¥ .
and
(1+p)

1 1
¢,(p)=3 [z + 77 arctan (W)] .

For the particular case of p = 0, ¢, (p) =
c,(p) = c,(p) = 1, then Eq. 4.112 simplifies to

2 ,
E{R,}= \/; {.[Vars,]”

1 1
+ 5 [Var Sz]"“+ T [VarS3]""2 }

in agreement with Spitzer’s equation (Eq. 2.23).

4.6 A Note on the Expected Value of Adjusted Range

The expected values of adjusted range of
exchangeable random variables are shown to be given
by the same formula as for the expected values of the
range of a transformed variable which also shows the
property of exchangeability.

Let us assume the inputs are exchangeable vari-
ables, as defined in Section 4.4, while the outputs are
equal to ox_, with 0<a <1 and X the
sample mean. Then the adjusted partial sums, as given
in general by Eq. 3.2 are

§¥=0,

Sr=S*+(x, -ax,),

3= S} +(x,-ax), 4.113
= 8, # (x, —ax_n) ;
By using the transformation
Wy "Ry =Xy 4.114
this new process, W, has the expected value
E{w, }=E{x }-aE{x_}=0, 4.115



and the variance, using Eq. 4.114, is

Var {w, }= Var {xt}
+a? Var % 3- 2acov {x,,X_ }. 4116

Because the variance of the sample, X, is

i 1 5
Var{xn}= nT Var{Sn}— ;,: [no
n-1 n-i
+ 2 iE jEI cov{x, , xiﬂ.}] <

and since the original process x. has equal auto-
correlation coefficients, with Cov {xi,xiﬂ. }= d%p,
the above equation becomes

2

_ g
Var{x_}=— [1+(n-1)p] . 4.117
The covariance of x, and "f“ is
1 n
Cov{x, ,x }= g7 E{x, _El X, }
l=
0_2
= —[1+(n=-1)p] . 4.118

Substituting Egs. 4.117 and 4.118 into Eq.
4.116 leads to

Var {wt 1
2

% (n+a(a=2)[1+(n=-1)p]}. 4.119

The covariance of the process w, is

=2
Coviw,, W, } = E{x, x,,, }+ o® EX_ }

= aE{xt:?n}u aE{kafn}.

Substituting Eqgs. 4.117 and 4.118 into the above
expression leads to

Coviw, ,w, }

2
=i:_{np +a(a=2)[1+(n-1)p]}. 4.120

Therefore, the autocorrelation function of, W, is

npta(a-2)[1+(n-1)p]
nta(a=-2)[1+(n-=1)p]

p(w)= 4.121
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Equations 4.115, 4.119, and 4.121 show the
process W, to be second-order stationary and to
have equal autocorrelation coefficients, independent
of the lag k , that is, w,is a sequence of exchange-
able random variables. This property shown by the
components of the adjusted partial sums is important,
because, as shown in section 4.4, the expected value
of the range of a sequence of partial sums whose
components are exchangeable random variables may
be obtained by using Eq. 4.107.

For the sequence of adjusted partial sums
Sc“‘ y Sl* g Sz*, Sn* , the expected value of the
adjusted range is '

n
ER*}= /> = i [Vars¥*
Ry} 7 20 Varsl® . 4122
1=

In the case of independent standard normal
variables and a = 1, Eq. 4.1 simplifies to the
equation given by Solari and Anis (1957). For com-
puting the variance of S, for this case, Eq. 2.2 gives
the general terms S.*, expressed by S*=§, - i8S /n/
so that

Var(S; }= Var (S} + ()

Var {S_}-2 = Covis,,S_}.

For i.i.d. and standard normal variables, Var {Si}=
i, Var{S }=n, and Cov{S;, S }=1i, so that
S

n

i,so that
1
Var {Si*} W = (n-1i) . 4.123

Substituting Eq. 4.123 into Eq. 4.122 gives

_ /2 n (i*
ERIVT 5w o
- /=% 2An)*
2 =1 i]/z ¢ 4.124

From Eq. 2.24, the expected value of the
adjusted range, given by Solari and Anis, is

n 1 ;
ERY}= /17 2 i (n=-i" . 4125



To show that the summations in both Eqs. 4.124 and
4.125 are the same, write

n A% n
» 2(n-=1i) .3

W (o o
i” (n=1)" .
=  ni* =1

Changing variables n - i = j on the left-hand side,
then

n 2 1] n
: = T % (n-)%.

=1 n(n=j)* i=1

Separating the left-hand summation into two parts
and passing one to the right-hand side gives

n iyx n 1
: —— = I
=1 n(n-i)* il *@m-i)*
n ]
1
=l n(n-i)%* "’
n i'ﬁ n
T — = 3
=1 n(n-i)” i=1
1 {4 |
[i“‘*(n-i)* n(n=i)* "~
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and n 4

=l n(-i%
; (n- )% n i
=l n i i1 n(n-i* °

which proves that Egs. 4.124 and 4.125 are identical.

The conclusion of this analysis is that the ex-
pected values of adjusted range of exchangeable
random variables may be expressed in the same way
as the formula for the expected value of unadjusted
range. Equation 4.122 is, therefore, valid when input
is either independent, or dependent with equal auto-
correlation coefficients (exchangeables), while the
output is equal to a percentage of the mean inflow,
that is, vy, = oX ,with a being the level of
development.

The above result is relevant in hydrology
because when one is interested in overyear storage
design, and the assumption of independence of
streamflow events is sufficiently accurate and the
degree of regulation or development is expressed asa
fraction of the sample mean inflow, the expected
value of the storage in a given number of years is
given by the expected adjusted range which now can
be computed exactly by Eq. 4.122. This equation is
of mathematical interest as well, because it also gives
the expected adjusted range when the original
variables have the property of exchangeability.



CHAPTER V

APPROXIMATE EXPECTED VALUES OF RANGE

The exact expected values of range
for n = 1,2, and 3 are derived in Chapter IV, con-
sidering the univariate, bivariate, and trivariate nor-
mal distribution functions for the partial sums
S, .8, and S, . Based on the exact expected
values of range for n = 1,2, and 3, the computer
simulation or the data generation method is used in
this chapter to obtain the approximated equations of
the expected values of range for large values of n .
In particular, the following cases are studied: the
Markov models with periodic autoregression coef-
ficients, the non-stationary exchangeable random
variables, and the Markov models with periodic
standard deviation.

5.1 Expected Values of Range of Markovian Linear
Models with Periodic Autoregression Coefficients

Considering the general model given by Eq. 3.3,
it is assumed that u =0 and 0 =0 = a con-
stant. The Markovian models considered in this sec-
tion are of the form

- m
—azp‘r—o[jz a

X AR ) €
PaT =] 1 T=) PaT) m,7 pIT]

with km,r given by Eq. 3.5.

V. Yevjevich (1967) gives an approximate
equation for the expected values of ranges of linearly
dependent normal variables. In particular, he uses the
first and second-order Markov models with constant
autoregression coefficients and moving average
schemes. The same equation was used by P. Sutabutra
(1967) for the first-order Markov model.

The same equation is used in this section for
approximating the expected value of ranges of
Markovian models with periodic autoregression coef-
ficients, or

ER )= /2 E:l ! [Var§]% &

The approximation of the above proposed
equation is checked in general by the data generation
method, for various values of n . For the particular
case of n = 3 and the first-order Markov model, a
comparison is made between the expected values of
range given by the exact Eq. 4.112 and by the
approximate Eq. 5.1, The results of this comparison
are given in Table 5.1. This table shows a high
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closeness of expected values obtained by both equa-
tions where the percentage relative differences are less
than 0.09 for all cases of p analyzed.

TABLE 5.1  COMPARISON OF THE EXPECTED VALUE OF RANGE

FOR n=3 , GIVEN BY THE LEXACT LQ., 4.112
AND THE APPROXIMATED k0. 5.1, FOR THE
FIRST-ORDER MARKOV MODEL.
Lxpected range for n=3
Exact
Lgquation | Approximated Relative
[} 4.112 tauation 5.1 | ifference Error in
| (1) {21 (2)-(1] Percentage
0.0 1.822728 1.822728 . 0a0o00 0. 0000
0.1 1.881283 1.481455 0.000172 0.0092
0.2 1.939242 )i 0.000559 0.0288
0.3 1 63 1.4 0.001007 1.0504
0.4 2.0535957 20553067 0.001310 0.0687
0.5 2.110908 20112601 0001693 00,0802
0.6 2. 167675 2. 1689480 0, 1001805 U. 18535
0.7 2.224303 2.22a013 0,0M1710 0.0769
0.8 2.280826 2.282211 0.001385 0.0607
0.9 2.537268 2.3380858 0, 000817 0.0349

Equation 3.39 gives the general expression of
the variance of the partial sum S, for the m-th order
Markov linear model with a periodic standard devia-
tion and periodic autoregression coefficients. In the
case of a constant standard deviation, Eq. 3.39
simplifies to

Vir (§,)=c? [i+2 T, .
=U -
ol : t=1 u=1 j

=

il 14

1

aj.t'ﬂ.l-] pI(K] (u_]|l)] 9

where a. _ are the periodic autoregression coef-
ficients which may be computed by the solution of a
system of m linear equations as given by Eq. 3.7.
For the particular cases of the first, second, and
third-order Markov models, these coefficients can be
computed directly from Egs. 3.8 to 3.13. The
periodic autocorrelation function pz(x)[u-j.t) be
computed by using the recursive Eq. 3.14.

Substituting the above equation
for Var S; into Eq. 5.1 the expected value of range
of the m-th order Markov model with a constant
variance and periodic autoregression coefficients
becomes



i-1 i-
il [i+2 b z )
t=1 v=1 j=I

E{R“}ﬁﬁ 2

: ¥
a].t'*u-j p:(x)l(u'.l!t)] 5.2

For the particular case of the constant auto-
regression coefficients, Eq. 5.2 simplifies to

ER }=[2 2 Z i i+2 21

m
(i-u)jz | % Page (@-D1* s

which is identical to the equation given by V.
Yevjevich (1967).

An explicit expression of E{R_} for the case
of the first-order Markov model with periodic auto-
correlation coefficients may be obtained by using the
variance of S, given in Eq. 3.37, so that Eq. 5.2
becomes

n
E{Rn}éﬁ: o 2 il
i=1
255 h # 5.4
e & v=1 k=1 Py v
where p, _ isthe first periodic autocorrelation coef-

ficient, wluch may in general be represented by the
harmonic function as given by Eq. 3.6.

In the case of a constant first autocorrelation
coefficient, that is, Piv ™ Bs Eq. 5.4 simplifies to

E{R,} é\/?;o(l-p)‘z 2 i

[(1-p?)i-2p(1-pY)] % 5.5

which is in agreement with the equation given by P.

Sutabutra (1967). It may also be shown that, for the
case of p, =0, Eqgs. 5.2 through 5.5 simplify to
Eq. 2.9 for "ii.d. normal random variables given by
Anis and Lloyd (1953).

The validity of the Eqgs. 5.2 through 5.5 were
tested by the data generation method. The first,
second, and third-order Markov models were the only
models tested since they are the most commonly used
in hydrology. In all cases, 2000 sequences of normal
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independent random numbers were generated, and
the respective Markov dependence was then
introduced. The mean ranges for values of n up to
60 were obtained by averaging the computed ranges
of 2000 samples.

For the first-order Markov model, the following
cases were analyzed:

(a) p,, =060 . s(p, ;) = 0.00

(b) p,, =060 ; 5(91,7) = 0.102
(0 »p,, =060 . s(p, ) = 0.207
where 7. Py . and s(p, 1,) represent the mean and

standard de\flatlon of the periodic first auto-
correlation coefficient, respectively. The results
obtained are presented in Figs. 5.1 through 5.5
showing the mean ranges of simulated samples and
the values obtained by Eq. 5.4 or Eq. 5.5 for values
of n up to 60. In all cases, the agreement between
the mean ranges of simulated samples and those com-
puted by Eq. 5.4 or Eq. 5.5 are very good. Figure 5.5
gives a comparison of the cases studied. It shows that
after a transition period, which is around one cycle or
12 units, the expected ranges of n increase with the
increase of the standard deviation of Py

For the second-order Markov model, the cases
analyzed are given in Table 5.2

TABLE 5.2  CASES ANALYZED FOR THE SECOND-
ORDER MARKOV MODELS.

Lag Mean Standard Deviation s (Dk T}

k Ek J

» T
(a) (b)
1 0.60 0.0 0.102
2 0.45 0.0 0.102

The results for the mean ranges of simulated samples
and those obtained from Eq. 5.2 are shown in Figs.
5.6 and 5.7 for values of n up to 60. In both cases,
the agreements are very good.

For the third-order Markov model, the cases
analyzed are given in Table 5.3.



TABLE 5.3  CASES ANALYZED FOR THE THIRD-
ORDER MARKOV MODELS.
Lag Mean Standard Deviation s(ok ]
; :Ih !T
Kk, 1
(&) (b)

1 0.60 0.00 0.102

2 0.45 0.00 0.102

& 0.30 0.00 0.102

Figures 5.8 and 5.9 show the results for the mean
ranges of simulated samples and those computed by
Eq. 5.2 for values of n up to 60. In both cases the
agreement is very good.

e{R)

Computed by Eq. 5.5
20k ®  Computed from Simulated
Samples (m=2C00C}
| 6
2
8 -
4 -
O Il L 1 ] 1 L L n
o} 10 20 30 40 50 80
Fig. 5.1 Mean range obtained from simulated
samples and the expected values of range
computed by Eq. 5.5, for the first-order
Markov model with a constant autocor-
relation coefficient.
E{Rq}
Computed by Eq. 5.2
20k *  Computed from Simulated
Samples [ m = 2000
16+
Fir LE 2080, s(p 10102
121 0 2 RE W
ud A
08 /l/\
g aak
[l
L mozasamm
o] i 1 1 i L L 3
0 10 20 30 40 50 &0
Fig. 5.2  Mean range obtained from simulated

samples and the expected values of range
computed by Eq. 5.4, for the first-order
Markov model with the periodic autocor-
relation coefficient.
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E{Rn}

o Computed by Eq. 5.4
e Computed from Simulated
Samplestm=2000}
| 6F
e P, = 0:60
ler 1o s(p_) =0.207
& P 3
0.8 W
8 E 0.6
0.4
0.2
4F o TR DT S Yo taweL
0 10 20 30 40 50 60
n
QO I | 1 1 1 1
0O 10 20 30 40 50 60
Fig. 5.3  Mean range obtained from simulated
samples and the expected values of range
computed by Eq. 5.4, for the first-order
Markov model with the periodic autocor-
relation coefficient.
£{r
{Ra} Computed by £q.5.4
o Computed from Simulated
20F Samples { m=2000)
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range computed by Eq. 5.2, for the
second-order Markov model with peri-
odic autocorrelation coefficients.
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Fig. 59  Mean range obtained from simulated

samples and the Expected values of range
computed by Eq. 5.2, for the third-order
Markov model with (1) 31 L =060 and
s(pl'f) = 0102, (2) p,, = 045 and
s(p, ;) = 0.102, and (3) 7, = 030
and 5(*03,7) = (.102.

The results obtained above lead to the con-
clusion that Eq. 5.1 and the derived Eqgs. 5.2 through
5.5 are very good approximations of the true
expected value of the range for Markov models with
periodic autoregression coefficients.

5.2 Expected Values of Range of Non-stationary
Exchangeable Random Variables

Non-stationary exchangeable random variables
are defined for the purposes of this study as variables
which have standard deviation changing with t, but
which have equal autocorrelation coefficients. For
example, o, may be an increasing, a decreasing or a
periodic function of t , while the correlation
Pi; between x, and X; for t=1i and t=j is
constant and equal to p forany i and j . This kind
of variable may be generated by

x,=0,(Vo e, +\Tp €),0<p<1

where ¢, and ¢, are independent normal variables
with mean zero and variance one, both uncorrelated.
It follows that E{x } =0, Var{x } = atz,and
Cov{xt,xﬁu 1= 0, 0,,,P - For the particular case

of p = 0, Eq. 5.6 leads to independent variables
with changing standard deviations with t .

5.6

An approximate equation is proposed in this
study for the expected range of the above defined
non-stationary exchangeable random variables, as

- jga il ©
1

& [Var {5, 1% ,

5.7



where (Si)11 in this case denotes the j-th sum of size
i outof ({) possible sums. In other words, for given
values of n and i, there are (:') possible ways in
which S, may be formed. For example, for the case
of n = 3,Eq. 5.7 takes the form

E{R3}=\/%_- {(Var$,)% + & [(Vars,)"

+ (VarS,)% + (Var$,)%] + & (Vars,)*}

which, in terms of the components of,the partial
sums, becomes

=
E{R3}= e

= {(Varx,)"

+ 1;[ (Var {xl+xz})” + (Var {x,+x, D
+ (Var {x,+x, %] + 5 (Var {x, #x,+x, )% } .

For the particular case of iid. random
variables, Eq. 5.7 simplifies to

E{R“}=ﬁ ii;l i"! [Vars]*

which is in agreement with Spitzer’s equation given as
Eq. 2.23 in Chapter II.

The degree of approximation by Eq. 5.7 to the
exact expected values of range is checked by the data
generation method for various values of p and n.
For the particular case of p = 0 and n = 3, a
comparison is made between the exact expected value
of range given by Eq. 4.96 and expected values com-
puted by Eq. 5.7. The results of this comparison are
given in Table 5.4 for various combinations of

TABLE 5.4.

COMPARISON OF EXACT EXPECTED VALUES OF RANGE FOR

@ 20y 4 and 0, This table shows that Eq. 5.7
gives a good approximation to the exact expected
values of range. The differences relative to the exact
values are less than 0.75 percent in all cases analyzed.

The validity of Eq. 5.7 is also tested for in-
creasing, decreasing and periodic functions of the
standard deviation o, for various values of n . For

the first case, o, was made increasing from 1 to 12,
and for the second case it was made decreasing from
12 to 1. The results of the comparison of the mean
ranges obtained from simulated samples and those
given by Eq. 5.7 are shown in Figs. 5.10 and 5.11 for
values of n up to 12. They are also given in Table
55,

For the case of periodic standard deviation
o, . several cases were analyzed by using the model

of Eq. 5.6. These cases are given in Table 5.6.

For cases shown in Table 5.6, the mean ranges
obtained from simulated samples and those computed
by Eqg. 5.7 are shown in Figs. 5.12,5.13 and 5.14.
They are also shown in Tables 5.7, 5.8 and 5.9. These
results lead to the conclusion that Eq. 5.7 gives a high
degree of approximation to the expected values of
range of non-stationary exchangeable random vari-
ables.

Figure 5.15 shows a comparison of the
expected values of range of i.i.d. random variables
(with ¢ = 10) and independent variables with
periodic standard deviation (with G_= 10 and
s(0.) = 6.87). The basic characteristic of this com-
parison is that the mean ranges of variables with

n=3 ,

GIVEN BY EQ. 4.96 AND THE APPROXIMATE VALUES COMPUTED

BY EN. 5.7 FOR TIHE CASE OF TNDEPENDENT VARIABLES WITH
STANDARD DEVIATIONS VARYING WITH t .
Standard Deviations Expected Range n=3 Rela¥ive
Test : - R Eq. 1.96 Ea. 5.7 Difference Error in
_No. “1 2 3 (1) (2) (2)-(1) Percentage
1 1.0 1.0 1.0 1.822728 1.822728 0.000000 0.000
2 1.0 1.0 10.0 8.705911 8.758561 +0.032650 +0.375
3 1.0 10.0 1.0 8.803861 8.738561 -0.065300 -0.740
4 10.0 1.0 1.0 8.705911 8.738561 +0.032650 +0.375
5 10.0 10.0 1.0 13.937151 15.909359 -0.027792 -0.200
5] 10.0 1.0 10.0 15.853776 13.909559 +0.055583 +0.401
7 1.0 10.0 10.0 13.937151 13.909359 -0.027792 -0.200
8 1.0 10.0 100.0 84,199965 §4.251436 +0.051471 +0.061
9 1.0 100.0 10.0 84.565150 84.251436 -0.113694 -0.135
10 100.0 10.0 1.0 84.199965 84.251436 +0.051471 +0.061

46




TABLE 5.5 COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF
EQ. 5.7 FOR INDEPENDENT RANDOM VARIABLES WITH INCREASING AND DECREAS-
ING STANDARD DEVIATION.
Mean Range
n For Increasing o, For Decreasing o,
Simulated By Equation Difference | Simulated By Equation Difference
m=2000 5.7 in % m=2000 57 in %
1 0.775 0.798 2.88 9.296 9.575 2.92
2 2.052 2.089 0.48 15.294 15.670 2.40
3 3.743 3.788 1.19 19.625 20.077 2.25
4 5.858 5.840 0.31 23.100 23,398 1.27
5 8.276 8.207 0.84 25.677 25.931 0.98
6 10.948 10.861 0.80 27.674 27.855 0.65
7 13.976 13.779 1.43 29,158 29.290 0.45
8 17.087 16.944 0.84 30.244 30.327 0.27
9 20.510 20.343 0.82 30.997 31.038 0.13
10 24,403 23.961 1.84 31.496 31.486 0.03
11 28.069 27.791 1.00 31.732 31.729 0.01
12 32.272 31.821 1.42 31.820 31.821 0.003

TABLE 5.6 CASES ANALYZED FOR
RANDOM VARIABLES.

THE NON-STATIONARY EXCHANGEABLE

Corrélﬁtion Periodic Standard Deviation oT
Coefficient a3 ®) )
p Period ET s(oT] Per104 61 S(UT) Period| G_ s(ot)
w w w
0.0 12 5.0] 2.79 12 {10.0 | 6.87 6 5.0 3.28
0.3 12 5.0 2.79 12 [10.0 | 6.87 6 5.0 3.28
0.6 12 5.0 2.79 12 (10.0 ] 6.87
0.9 12 5.0 2.79 12 |10.0 | 6.87

periodic standard deviation is higher than those with
a constant standard deviation. The differences
between them increases as n increases.

The plot of the mean range against n for the
case of a periodic o_ shows that it is an increasing
periodic function with the same period as that of
0, , but with a shift in phase. The maximum
amplitude of the mean range is located three units
forward with respect to the position of maximum
amplitude of the periodic o_. This characteristic is
valid only for the particular case analyzed here, that

is, with symmetric periodic function o_ .For cases of
asymmetric or more complex functions o_,the
characteristics of the periodic mean range vary
accordingly.

The use of Eq. 5.7 in approximating the mean
range obtained from simulated samples of non-
stationary exchangeable random variables is very
good. For large values of n,say n > 20, however,
the computation takes too much computer time.
Therefore, two ways of solving this problem have
been developed as described below.



Equation 5.7 requires that, for given values of
n and i, the average of the standard deviation of
all the possible sums of size i must be computed.
Instead of following that route, one can take a ran-
dom sample of size, say 100, out of all the possible
sums of size i and then take the average over the
sample size. This can be done easily in a digital com-
puter. For practical use of this procedure, a com-

promise should be made between the accuracy of
results and the amount of computer time required,
both of which depend on the size of the sample
considered. Figure 5.16 shows an example of
application of this procedure for the case of
independent random variables with @_ = 5.00 and
s(ar) = 2.79. The number of sums, as the sample
size, in this case was selected as m = 50.

TABLE 5.7  COMPARISON OF STMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF EQ, 5.7 FOR NON-STATIONARY
EXCHANGEABLE RANDOM VARIABLES. CASE OF 3_ = 5.0 AND s(o.) = 2.79 .
Correlation Coefficient
n 2%0.0 Ta0.30 ~=0.60 20,90
Simulated By Equutinn Difference | Simulated By Equatmn lifference | Simulated Bv Equation Difference | Simulated By Equation Difference
m=2000 in % me 2000 57 in % m= 2000 LR in % m=2000 ' in %
) | 1.530 1.596 4.13 1.579 1.596 1.06 1.584 1.596 0.75 1.594 1.5946 0.12
2 21.991 3.072 2.64 3.2 3.247 0.62 3.408 3.403 0.15 3.564 3.545 0.53
3 4.855 4.923 1.719 5.474 5.433 0.75 5.907 5.871 0.95 6.302 6.261 0.65
4 7,489 7.448 0.58 8.518 8.492 0,31 9.403 9,366 0.39 10.156 10.134 0.22
5 | 10,897 10,873 0.22 12,625 12,719 0.74 14,207 14.231 047 15.586 15.550 0,23
& 15.733 15.725 0.05 1B.587 1B.737 0.80 21.144 21.173 0.14 23387 23.285 0.18
7| 19.942 19.886 0.28 24 . 288 24.378 0.37 I7.945 27.930 0.05 31.082 30.978 0.33
R | 22.286 22.053 1.06 27.97% 27.932 Li.l‘.’v 32.5%7 32.458 0.27 36.461 36.321 0.38
9| 25.553 23.256 1.19 30,462 30,298 0,54 35,762 35.626 0.38 40.284 40.119 0,41
10| 24,236 23.019 1.32 11,946 31.867 0.25 37.858 37.794 0.17 42,893 42.768 0.29
Il | M.0l4 24,302 1.28 33.008 32.944 0.18 39.383 39.323 0.15 44.777 44.655 0.27
I 24.878 £4.568 1.26 33.824 33.788 0.11 40.594 40.537 D.14 46.281 46.164 0.5
15 | 25007 24827 1.13 3M.577 34,632 0.16 41.745 41.752 0,01 47.760 47.072 0,20
114 25,41 25.182 .91 35.676 35.709 0.09 43.317 43.282 .08 449,683 19,5060 w27
6| eang 35.773 1,46 37.286 .08 D.03 45.553 45.453 0. 521,585 582211 .33
TABLE 5.8 COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF EQ. 5.7 FOR NON-STATIONARY
EXCHANGEABLE RANDOM VARIABLES. CASE OF § = 10.0 AND s{o ) = 6.87 .
Correlation Coefficient
o%0.0 2=0.3 o=0.6 o=0.9
Simulated By Equ.lt.ioll Difference | Simulated By Equnum Difference | Simulated By quutlun Difference | Simulated By Equatwn 04 fferencel
n w1000 5.7 in % w1000 5.7 in % »= 1000 in % == 1000 in %
1 1.530 1.596 4.13 1.578 1.596 1.13 1.589 1.5%6 0.44 1,600 1.596 +35
H 3.732 3,802 1.84 3.930 3.998 1.70 4,156 4,175 0.9% 4,331 4,337 0.14
3 7.226 7.282 0.77 7.931 7.933 Q.02 8.526 8.502 0.28 9.069 9.015 .60
4| 12.997 12.852 1.13 14,275 14,359 0.58 15.696 15.648 0.31 16.946 16.796 0.89
5| 22.296 22.216 0.3 25.195 25.24 0.11 27.861 27.767 0.34 . 287 30.017 0.90
| 33,108 32.900 0.63 18,253 36.208 0.12 42.926 42.758 0.39 47.029 46,663 n.78
7| 42.298 42,004 0.70 50.544 50.496 0.09 57.498 57.317 0.31 63.722 63.211 .81
K| AN.351 47,700 1.15 59,437 59,341 0.16 68,636 68.438 0,29 76.741 Tt 208 w70
v 50,735 50,050 1.37 63.980 64.019 0.06 74.811 T74.724 0.12 B4.350 B3. 700 (e
| 51862 51.088 1.51 66.794 66.635 0.24 78.742 78.402 0.43 89.034 8,328 LW
1] sz 51.545 1.50 68,245 68.085 0.23 80.847 80.510 0.42 91.686 90,963 0.7
i 52.524 51,748 1.50 69,048 68,883 0.24 B2.018 81.699 0.39 93.168 03465 0.76
13| 52.687 G1.145 1.453 69,812 69.680 0.19 83.181 42.888 0,35 94.679 93,968 0.76
I 53.056 52.371 1.51 71.278 71,128 0.21 85.303 84.998 0,36 a7.352 96 . 6114 0.77
I%] s3.80 $3.02 0.93 73.846 73.743 0.14 88.955 88.684 u.30 101 .8064 141.138 0.72
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TABLE 5.9

COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF

EQ. 5.7 FOR NON-STATIONARY EXCHANGEABLE RANDOM VARIABLES. CASE OF
6_=5.0 AND s(o_ ) = 3.28 .
T T
Correlation Coefficient

n p=0.00 p=0.30

Simulated By Equation Difference | Simulated By Equation Difference

m=1000 5.7 in % m=1000 5.7 in %
1 0.788 0.798 1.25 0.779 0.798 2.58
2 4.369 4,428 1:.33 4,565 4.542 0.51
3 9.900 9,992 0.92 10.593 10.656 0.59
4 14.576 14.415 1.12 16.244 16.077 1.04
5 16.407 16.076 2.06 18.906 18.627 1.50
6 16.610 16.253 2.20 19.307 19.043 1.39
7 16.799 16.417 285 19.713 19.455 1.33
8 18.291 17.894 2.22 22.181 21.937 1,11
9 21.260 21.226 0.16 26.696 26.802 0.39
10 24.060 24,255 0.80 31.424 31.520 0.30
11 25.237 25.377 0.55 33.605 33.856 0.74
12 25.405 25.480 0.29 33.997 34,257 0.76
13 25.526 25.580 0.21 34,388 34,657 0.78
14 26.563 26.642 0.30 36.635 36.981 0.93
15 28.852 29.259 1.39 41.252 41.531 0.66
16 31.070 31.722 2.05 45.606 46.014 0.89
17 32.101 32.619 1.59 47,885 48,284 0.83
18 32.200 -—— - 48.239 - --

In using the procedure just outlined, Eq. 5.7
takes the form

. Z e ita

where m denotes the sample size of the sums com-
puted, and the subscript j denotes a particular
realization of the sum of size i, taken at random.

[Var {S;};] = . 58

Another procedure has been developed in this
study for obtaining the approximate mean range of
independent variables with standard deviation varying
with t. This procedure is based on the exact
expected range of ii.d. random wvariables and an
equivalent standard deviation En of the n variables
considered.

The proposed equation is

8 T T
ER }= (25 Z i 5.9
with G defined by
R il
¢ = [L z o 5.10
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The idea behind this procedure is that by
multiplying the function §_ ,as given by Eq. 5.10,
by the exact mean range of i.i.d. random variables,
the effect of the changing standard deviation may be
accounted for.

In the particular case of a periodic standard
deviation o_, with 7 = 12,0, with w the
main cycle (for example, one year) and con-
sidering p the number of cycles (for example, the
number of years), then Egs. 5.9 and 5.10 are com-
bined as

o) n ,
E{Rn}éﬁ /L I 2% s

which is valid only for values of n = pw , say for
n =12, 24, 36,..., 12p , with p an integer, and
w equal to 12 months. Notice that, for the
particular case of i.i.d. random variables with o_=a,
the above equations simplify to Eq. 2.23.

The validity of this procedure for obtaining the
approximate mean range of independent random
variables with standard deviations varying with t



was tested by comparing the mean ranges obtained
directly by simulation with those computed by
Eq. 5.9. The first two tests considered the cases of
standard deviations increasing and decreasing with
t . For this, 250 sequences of random numbers, each
of size 600, were generated by increasing or decreas-
ing (according to the case) their standard deviation
every 50 generated numbers. These standard devia-
tions varied from 1 to 12 and from 12 to 1 for the
increasing and decreasing cases, respectively. The
results of these tests are shown in Fig. 5.17 for
values of n up to 600 .

Two cases of periodic standard deviations with
cycles of 12 months were also tested. The results of
these tests are shown in Fig. 5.18 for the mean ranges
of nup to 600. For all cases analyzed, the
agreement between the mean ranges obtained by
simulation and those computed by Eq. 5.9 are very
good for both small and large values of n. It is
interesting to observe in Fig. 5.18 that the increasing
periodic mean range may be reproduced by con-
sidering the equivalent periodic function En ,as given
by Eq. 5.10.

E{R
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= 201 o
20 64,
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L 1 L 1
! %z 4 68 1012
CI L L L [l L L 1 L |0ﬂ_ 0 1 1 1 1 1 1 1 | 1 1 1 J_rl_
01 2 3 45 67 8 0 1 12 01 234 5 &7 8 9 1012
Fig. 5.10 Comparison of mean ranges obtained Fig. 5.11 Comparison of mean ranges obtained
from simulated samples and the Ex- from simulated samples and the Expect-
pected values of range computed by Eq. ed values of range computed by Eq. 5.7,
5.7, for independent random variables for independent random variables with
with standard deviation increasing with t. standard deviation decreasing with t .
(e
501
—— Computed by Eq 57 p =060
e Computed from Simuloted
40 Samples 22030
30F
p=0.0
20r
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Fig. 5.12 Comparison of mean ranges obtained from simulated samples and the Expected values of
range computed by Eq. 5.7 for non-stationary exchangeable random variables of Eq. 5.6.
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Fig. 5.13 Comparison of mean ranges obtained from simulated samples and the Expected values of range
computed by Eq. 5.7, for non-stationary exchangeable random variables of Eq. 5.6.
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Fig. 5.14 Comparison of mean ranges obtained from simulated samples and the Expected values of range
computed by Eq. 5.7, for non-stationary exchangeable random variables of Eq. 5.6.
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deviation with 3_=10and s(o)=6.87.  Fig.5.17
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Comparison of mean ranges obtained
from simulated samples and the Expect-
ed values of range computed by Eq. 5.9,
for two cases of independent variables
with periodic standard deviation. (1)
6, =5 and s(¢) = 279, and (2)
'drr = 10 and s(ar) = 6.87 .
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5.3 Expected Values of Range of Markov Dependent
Random Variables With Periodic Standard Deviation
The use of Egs. 5.7 and 5.9 for approximating
the expected values of range of Markov dependent
random variables with a periodic standard deviation
did not give satisfactory results. Another procedure
was developed for the particular case of Markov
models with the constant autoregression coefficients.
Let us first discuss some characteristics related to the
expected values of range of this kind of models.

Figure 5.19 shows the plot of mean ranges
obtained from simulated samples of the first-order
Markov model with a periodic standard deviation for
n up to 60. These mean ranges are increasing
periodic functions, with the same period as that of
0, and maximum amplitudes which are three units
out of phase with respect to ¢_ . This last character-
istic refers to the particular case of o_ considered.
Figure 5.19 shows the mean ranges for the case of
Er =5.0,s(0,) =279, and p values of 0.0, 0.3,
0.6, and 0.9. It also shows the mean range for the
case of a constant o = 5. As in the case of
stationary Markov models, the mean range for a
particular n increases as p increases, for Markov
models with periodic standard deviation.

The expected values of range of Markov models

with a periodic standard deviation are expressed as
E{R,}=1(,,5(0,), p) 5.12
where 'Er and s(o ) denote the mean and standard
deviation of the periodic standard deviation and p is
the first autocorrelation coefficient which defines the

dependence. With the above notation, four functions
are defined as follows,

_ _JR B %
f=f,0,00=/2 2 i* |

5.13

n
- . J2 & Y Vees)® .
fz-fz (lso.ﬂ)= T =l [ 11 5.14

=1, @, s0)0) = [%5

5.15
and

fq. = f4 ((Tr’ S(ar), P) 5.16
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That is, f, denotes the expected values of range of
iid. random variables with variance unity and is
exactly that given by Eq. 2.23; f, denotes the
expected values of range of Markov models with
variance unity and the first autocorrelation coef-
ficient p , which, as described in section 5.1, may be
approximated by Eq.5.5; f, denotes the expected
values of range of independent variables with a
periodic standard deviation, which, as described in
section 5.2, may be approximated by Eqgs. 5.7,5.8, or
5.9, (in Eq. 5.15, f, is approximated by Eq. 5.9);
finally, f, denotes the expected values of range of
the Markov model with a periodic standard deviation.

The basic hypothesis in approximating the
expected values of range of Markov models with
periodic standard deviation, denoted by f 4 »may be
expressed mathematically as

;. 4
fz (I,O,P)-fl (la0|0) =-6T

[f, @, 50)0)~ £, @,.50,), 0] 5.17

which is also shown schematically in Fig. 5.20.

The idea behind the above hypothesis is that
the effects of dependence due to p and non-
stationarity due to a periodic o0_ may be separated.
In other words, one can go from the function
f,(1,00) to f,(@, s(0,),0) by using the pro-
cedures developed 1n the previous section 5.2. Then
the function f (7, (0, ).p) will be obtained by
superimposing the effect of p as in the stationary
case.

The validity of the above hypothesis of Eq.
5.17 was tested by computer simulation
for p = 0.60 and for two cases of periodic o :
7 =50,50,)=279,and T =100, 5(c,)=6.87.
The effect-of p = 0.60 for the stationary and non-
stationary cases, as expressed by Eq. 5.17, are
shown for the above two cases in Fig. 5.21 and
Tables 5.10 and 5.11 for n wup to 600. The
results obtained are very good, especially for n
greater than 10.

Based on the hypothesis expressed by Eq. 5.17,
the proposed approximation to the expected values
of range of Markov models with periodic standard
deviation is

ER, }=

2 a
xlo

n
2 TheT
i=1

n n
L2, i (VarS)% — 2 5.18
i= =

%
! 1}



where G . is given by Eq. 5.10 and Var S, by Eq.
3.38. It should be noted that the function
f,(G,, s(0,), 0) was approximated in Eq. 5.15 by
Eq. 5.9. However, better accuracy is obtained if

f, is approximated by Eq. 5.7 or Eq. 5.8.

Equation 5.18 was used for computing the
approximated mean ranges of the two cases of

Markov models: (a) p = 0.60, G_ = 5.0 , and
s(c,) =279 ,and (b) p =0.60,3_ =10.0,and
s(0,) = 6.87 . These mean ranges were compared
with those directly obtained by simulation, and
the agreement between them is very good, as shown
in Fig 5.22 and Tables 5.12 and 5.13.

A hypothesis similar to that expressed by
Eq. 5.17 may be extended to cases of higher order
Markov models or even to Markov models with
periodic autoregression coefficients. In such cases,
the equations developed in section 5.1 should be
useful.

p=090
|60-E{ﬂn}
140
120
p=060
100F
ik £=030
p=0
60 i
&i%0
40 7250, slop)=2.79
T
I
ol g /\
TR e S R S o
2 4 6 8B 1012
o s 1 i 1 1 i {1 Y
Q 10 20 30 40 50 le]

Fig. 5.19 Mean ranges obtained from simulated
samples for the Markov model B ™
a.(px, . * V102 EN_) with periodic
standard deviation o, and constant
first autocorrelation coefficient p .
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Fig. 5.20 Effect of dependence on the expected
values of range of Markov models with
both a constant and a periodic standard

deviation.
B -fit)
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Fig. 5.21 Comparison of the effect of dependence

on the mean range, for two cases of
Markov models with both a constant and
a periodic standard deviation.



TABLE 5.10 COMPARISON OF THE EFFECT OF DEPENDENCE ON THE MEAN RANGE, FOR MARKOV MODELS WITH
CONSTANT AND PERIODIC STANDARD DEVIATION. CASE OF ET =5, s(cr] = 2.79 AND
p = 0.60 .
Mean Range By Standardized
Simulation Difference Difference Difference
n o€ = £,6,,500),0) | £5 = £56_,500),00|  £,-% -—;:{frfs) £,(1,0,0)-£ (1,0,0)
6 20.157 15.733 4.424 0.885 1.002
10 34.682 24.236 10.447 2.089 1.843
14 37.734 25.411 12.323 2.464 2.606
18 46.928 31.225 15.703 3.140 3.300
22 57.241 37.321 19.920 3.984 3.939
26 59.681 38.267 21.414 4.282 4.534
30 66.757 42.347 24.410 4.882 5.092
34 75.196 47.091 28.105 5.621 5.619
38 77.224 47.905 29,319 5.864 6.120
42 83.736 51.967 31.769 6.354 6.598
46 91,313 56.430 34.883 6.976 7.056
50 92.958 57.062 35.896 7.179 7.497
100 138.197 80.926 57.271 11.454 12.031
150 177.602 102.776 74.826 14.965 15.556
200 213.196 121.759 91.437 18.287 18.541
250 240.101 135.943 104.158 20.832 21.180
300 264.541 148,922 115.619 23.124 23.570
350 288.376 162.417 125,959 25.192 25.770
400 313.256 175.542 137.714 27.543 27.819
450 336.302 188.450 147.852 29.570 29.746
500 356.882 198.909 157.973 31.595 31.569
550 374.815 209.233 165.582 33.116 33.303
FOO 392.443 218.893 173.550 34.710 34.961
TABLE 5.11  COMPARISON OF THE EFFECT OF DEPENDENCE ON THE MEAN RANGE, FOR MARKOV MODELS WITH
CONSTANT AND PERIODIC STANDARD DEVIATION. CASE OF 51 =10 , s(ct} = 6.87 AND
p = 0.60.
Simulated Mean Range Standardized
Difference Difference Difference
n [, E,500),0) £,2£,(3_,5(0,),0) £,-£, —é:(f4-f3) £,(1,0,0)-£, (1,0,0)
6 40.853 33.110 7.743 0.774 1.002
10 71.683 51.882 19.801 1.980 1.843
14 74,896 53.081 21.815 2.181 2.606
18 95.917 66.096 29.821 2.982 3.300
22 118.680 79.719 38.961 3.896 3.939
26 121.424 80.660 40.764 4.076 4,534
30 136.366 89.946 46.420 4.642 5.092
34 154,082 100.422 54.560 5.456 5.619
38 157.340 101.230 56,110 5.611 6.120
42 171.839 110.273 61.566 6.157 6.598
46 189.909 120,212 69.696 6.970 7.056
50 191.865 120.834 71.031 7.103 7.497
100 285.500 171.580 113.920 11.392 12.031
150 367.300 219.120 148.180 14.818 15.556
200 443.160 259.870 183.290 18.329 18,541
250 498.820 290.220 208.600 20.860 21.180
300 549.670 317.660 232.010 23.201 23.570
350 599.700 346.750 252,950 25,295 25.770
400 645,430 375.560 275.870 27.587 27.819
450 695.200 400.650 294,550 29.455 29.746
500 738.020 422,580 315,440 31.544 31.569
550 775.890 445.580 330.310 33.031 33.303
600 812.880 466.680 346.200 34.620 34.961
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Fig.5.22 Comparison of mean ranges obtained from simulated samples and the expected values of range
computed by Eq. 5.18, for two cases of Markov models with p = 0.60 and with periodic
standard deviation. (1) o =5 and s(0,)=2.79, and (2) G, =10 and s(0,) = 6.87 .

COMPARISON BUTNEEN TIDE MEAN RANGLS OBTAINED BY SIMULATION

TAplF 5.1  COMPARISON BCTWEEN THE MCAN RANGIS OBTATNED BY SIMULATION TABLE 5.13

AND TIOSE COMPUTED BY [0, 5.18, FOR MARKOV MOUELS WITH AN TIOSE COMPUTED BY 1Q. 5.18, FOR MARKOV MODELS WITH

PERIODIC STANDARD DEVIATION. CASENOF ¥ =5, s5(= ) = PFRIOUIC STANDARD DEVIATION. CASE OF o = 10, s(a,) =

2.79 AND o o= 0.0 T Y 6.87 AND o v 0.60. 4
Computed By Computed By
liquation 5.18 Simuleted Tyuation 5.18 Simulated
n £y 1‘rr:-fl] Fol® 0500 0,00 L F (8 87 Yuu) er'c".st-:r}.nl n ff) -*.'_I[f:-fl) fsf-\[.s{u!}'ol f‘{n'.nt-:r}.n] fd(ﬁ,.ﬁ[ﬁ,].u]

w747 2891 3.738 3.320 2 0.149 1.494 3.732 Fenal 4.015
2.809 7.489 10.298 9.0135 4| 0.561 5.617 13.007 15,624 15,372
5.011 15.753 20.744 20,157 6| l.002 10.023 35.110 43.133 40.853
T.nl 212.286 29,147 30.477 A 1.432 14,322 48.281 62.603 65.9497
9.215 24,256 33.451 34.082 | 1.843 18.430 51.882 T0.3)2 71.683
11.169 24.878 36.047 36.3927 12 2.234 42.337 32.546 74.883 73.463
16.500 31.22% 47.725 46.928 i8 3.300 33.000 [ 09,095 95.917
11.207 37.857 59.064 58.564 24 i 42.410 80.273 122.089 120.150
25.460 42,547 67.807 66.757 30| 5,092 50.920 £0.94s 140, 8o0 136, 306
37.484 57.062 94.546 92,958 50 | 7.497 74,970 120.834 195. 804 191.805
4. 155 RO.926 141.081 158,197 100 | 12,031 120,310 171.582 291.992 2B5.408
17,780 102,776 180,556 177,602 150 | 15.556 155, 5a0 419,123 374,683 367,504
§2.7058 121759 14,464 213,154 200 | 18.541 185,410 250,867 445,277 143.163
105,900 135.943 241,843 240. 101 250 | 21,180 | 211.300 90,217 502.017 498,825
117.850 148.5922 266.772 264.541 500 | 23.570 | 235.700 317.659 553.359 549,647
128.850 162.417 191.267 288.376 330 | X5.770 | 257.700 346,755 604,455 599.701
139,095 175.542 514,637 3513.256 Moo | 27.819 274,190 375.558 651.748 640,433
148.730 138,450 337.180 336.302 50 | 29.746 | 297.460 400.655 698,115 695, 196
157.345 196.909% 356.754 356.882 00 | 51.569 | 315.690 422.580 738.270 738.017
166,515 209.233 375.748 374,815 50 | 33,303 | 333,030 445.585 778.615 775.890
174805 218.8493 303.698 392.443 0 |33.961 | S44.610 166.682 #16.292 812,881
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CHAPTER VI

VARIANCES OF RANGE

The exact variance of the range for any finite
value of n is not known even for the case of i.i.d.
normal variables. The exact variance of the range for
the case of stationary Markov models is derived in the
first section of this chapter for n of 1 and 2. For
higher values of n, the mathematical derivation
becomes extremely cumbersome. Therefore, in these
cases, and for Markov models with periodic standard
deviation, approximate equations are obtained using
the data generation method.

6.1 Variance of the Range for Markov Models
The general type of the first-order Markov
model is used here,

Z,=pz,_,%te 6.1

-
where p is the first autocorrelation coefficient of
the process z, and € is an iid. variable uncor-
related with 2z It is assumed
that E {z‘ } = I-?.{fi }=0, and E{ztz} =1,
and E{e’} = (1 - o).

In this case, the partial
sums S .S1 ,and S,are
S, =0 =0
S, =12, X

S, =(14p)z, +e, =(1+p)X +Y 6.2
where for simplicity of derivation the new
symbols X =z and Y = ¢, are introduced.

For n = 1, R, = max(0,8,) - min(0,8,), so
that

R1=Sl for S, >0, and R1=—SI
for Sl <0, or Rl =IS|| for —'m(S1 < oo,

The second moment of R, is

E{R,?}=E{S,*}=E{S,*} =0} 6.3
where g, denotes the standard deviation

of S = X.

From Eq. 4.27, the expected value of R, is
E{Rl} = £/2/m g, Therefore, the variance of

FlI becomes

Var(R, }= E(R*} - E*{R, }

Var{R, } = o2(1 - %) 6.4
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For n=2, R2 = max(o.s, .Sz) . rm'n(fJ,S.1 ,52 ),
so that

R;=8,- §, for §, <0<s, ,
R,==¢(3,~58,) for s,<0<S§, ,
R, =§, for 0<8, <8, ,
R!=-S.2 for Sz<Sl<0 s
R, =9, for 0<S§,<§, ,
R, ==9 for §,<§,<0 |

which in terms of the variables X and Y , given by
Eq. 6.2, become

R, = [(1+p)X+Y] for X>0, pX+Y>0 ,
R2=—[(l+p)X+Y] for X<0, pX+Y<0
R, = (pX+Y)
R2=—(pX+Y) for

R, =X

and R, ==X for (1+p)X+Y <0, X+Y>0

A

for X<0, (14p)X+Y>0 ,

X>0, (14p)X+Y <0

for (1+p)X+Y> 0, pX+Y<0 ,

Because of symmetric regions of integration,
the second moment of R, is

E{R,? }= 2E{[(1+)X +Y]*}

+ 2E{(-pX-Y)*} + 2E{X?} 6.5
where the moments shown in Eq. 6.5 may be
expressed as

E{(14p)X+Y} = (14p)? [ f: X? £(X) f(Y) dYdX +
o -p
f2140) [ [ XY f(X)£(Y) dYdX
o -pX

+ 1LY 00 f(Y) dYdX 66
0 X

P
E{(-pX-Y)? } = p* £m.il+p Xy 5x) f(Y) avax +
-(Il+p)X

(==

+2p J(; XY f(X) f(Y) dYdX

(=]

WX 32 10 80Y) avax,

(8] ==

6.7



and

= 7 P x f(X) f(Y) dYdX 638
0 -({+,o)x '

with f(X) and f(Y) the density functions given by
Eq.4.9.

The integrals of Egs. 6.6, 6.7, and 6.8 are equal

to
[0S X f(Y) dYdX = Lo
(4] -
pad o a? g
___......_L

X
X —
=, arctan (p Ux) , 6.9

(er)(a tp*a?)

o _______JL_____
f f XY £(X) f(Y) dYdX = e

6.10
f Y? (X) f(Y) dYdX = § o?
0 -p
3
po, o, ] o,
—_—— } arctan P % i |
(211)(0; +p? 02) fﬁy_ (o U;-)

ém {i X v f(X) f(Y) dYdX =

(1+p) 02 a, g o
Ty e 2 e )
Y X 6.12

{)m {i X vy f(X) f(Y) dYdX =

o o’
x 'y

" @m0} +(1+p)* 02]

6.13

; E X2 0 i) avax =1 o2

0
(14p) o 0
(217)[ur ’r(l*ho)2 a;]

1+
jy— arctan [(*-3)—6—]

6.14

and oo .px

X2 f(X) f(Y) dYdX =
i {§+p)x (X) f(Y)

3
Ux 0}' (1+.0‘] i 4 }+
Cm o2+ (14p) 0?] (02 +p* 02)

{Z?r arctan (

) = Trr arctan [(—_I_aa—] }
6.15
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Substituting Egs. 6.9 through 6.11 into Eq. 6.6,
Egs. 6.12 through 6.14 into Eq. 6.7, and Eq. 6.15
into Eq. 6.8, gives

- 1 POy Ux
E{(1+p) X+ Y} =(14p)* 0? [5 +
x 7 (21'r)(ar$J +p? r.ri)
3
1 o, (2tp) o, a,
2¢ arctan (p ox)] 27 (0; +p? oi)
po
ta) [i— + 71?—7— arctan, (a—-x)] , 6.16
y
(14p) o, o,

X~ 21= A2,2 r_
E{pX-Y)"}= o0, § 2F[0:+(1+p)20i]

3
1 B (1-p) o, o
+ ctan |f7¥
2 et () el oo + eyt o7
£ ] (1) o,
+ 02 (g -=y @ctan [ s, 1t . 617
and 3

B lmat it
) 2 (rr:r +p? a2)
(1+p) o} a,

+
prs [':.rfr +(1+p)* 0]

1 g
~ 5 arctan [mﬁj—oz] N 6.18

Substituting Eqs. 6.16 through 6.18 into Eq.

6.5, and since a:=1,and02=l-pz,the

second moment of the range R, becomes
- 1-p2)*
ER } =2 (14p) + 30700
(1-p)*
(1+p)*

0
+02 {QIF arc tan (pjf—)
X

—(1+2,o)721; arctan [ | 6.19

Since the first moment of R, is given by Eq. 4.101,
the variance of R, becomes

Var{R k= 2(1+p)

14
20 LB tapni¥ wirsnglh

-2+/21 - (1 + 2p) arctan [ 2 -p))%

] . 620

6.2 Approximate Variance of the Range for Markov
Models with Constant Standard Deviation

In this section, the results of the simulation
approach are presented for obtaining the variance of
the range for Markov models with constant standard

e )



deviation. First, however, a sensitivity analysis was
performed to see the effect of the periodicity in
the autocorrelation coefficients on the magnitude
of the variance of the range.

For the first-order Markov model, as given by
Eq. 3.4 for m = 1, the variance of the range was
computed for n up to 60 and for a periodic first
autocorrelation coefficient. Figure 6.1 gives the plot
of  Var{R } against n for p, = 0.6 and for
three values of s(p, ,), 0.0, 0. 103" and 0.207. This
figure shows that the periodicity in Py increases
the variance of the range as the value
of s(p, ,) increases. It also shows that the increase
in Var {'R } is augmented as n increases. No
attempt was made to quantify these experienced
increases of Var{R_ } for particular values
of Fl,r and s(pl,r).

For the second and third-order Markov models,
no appreciable differences are found between the
variance of the range obtained with constant and
periodic autocorrelation coefficients. The results
obtained in these cases are shown in Figs. 6.2 and 6.3
for the second and third-order Markov models, res-
pectively.

Experimental curves are obtained by simulation
for the variance of the range of the first and second-
order Markov models with constant autoregression
coefficients. The plot of the values of Var {R,}
against n suggests that a straight line fit is good in
cases of n 2 6. Therefore, the variance of the
range was approximated by

\.far{Rn}=c=2 [A+Bn] , 6.21
where o is the constant standard deviation and the
linear regression coefficients A and B are func-
tions of the autoregression coefficients of the Markov
mode] considered.

For the first-order Markov model with o = 1,
Fig. 6.4 shows the plot of Var{R_} against n
for n up to 50 and for various values of p. The
straight line fit to values of Var{R 1} obtained from
simulated samples is shown to be a good approxima-
tion. Table 6.1 also gives the values of the simulated
and fitted variance of the range for various values
of n and p . The linear regression parameters of Eq.
6.21 are given in Table 6.2 for various values of p .
They are also shown in Fig. 6.5, which may be parti-
cularly useful for finding the A and B values for

£ not explicitly obtained.
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P. Sutabutra (1967) suggested another
empirical equation to approximate the variance of the
range of first-order Markov models, namely

n
Var{R_}= C(n,p) § i Var{Si} .

with 15
C(n,p)=0.2181(1+0.4p+0.4p%)(1 +—)
6.23
A comparison was made between the percentage rela-
tive errors obtained in using Egs. 6.21 and 6.22 for
approximating the variance of the range. The results
of this comparison are shown in Table 6.3 and
indicate that the Eq. 6.21 gives a better fit to the
simulated variances of the range, decreasing the errors

considerably with respect to those obtained by Eq.
6.22.

6.22

For the second-order Markov model, the
simulated and fitted Var{R } against n are
shown in Figs. 6.6, 6.7 and 6.8 for n up to 100 and
for various values of p, and p, ,the first and
second autocorrelation cuefficmnts, respectlvely The
straight line fit in this case is also very good, and the
respective linear regression coefficients A and
B of Eq. 6.21 are given in Table 6.4. .

6.3 Approximate Variances of the Range for Markov
Models with Periodic Mean and Periodic Standard
Deviation

In this section, the variance of the range is
obtained by computer simulation for the general case

Var { Rn}
B8O
(3,
3 o
60
i
40}
20F
n
0 i v | i L 5 1
¢} 10 20 30 40 50 6C
Fig. 6.1 Variance of the range for the first-order

Markov model with constant and peri-
odic first autocorrelation coefficient with
,751 = 0.60 and (1) s(p )— 0.0,
(2) S(P, r) = 0.102, and (3) s(pl r) =
0.207



of Markov models with periodic mean and periodic
standard deviation. From Eqs. 3.3,3.4 and 3.5

= ;-
Xow = B, to, [pz‘”'I +41=p ep'rl .
6.24
with _,0_,p, % and ep , defined as in Section

3. ln obtammg the variance of the range, it is
assumed that the output ¥ of Eq. 3.2 is ,uT

Vur{ﬂn}
80 e (N
°o (2

60K
40F
20F

o L 1 1 n i n

0 10 20 30 40 50 60
Fig. 6.2  Variance of the range for the second-

order Markov model with constant and
periodic first and second autooorre!ation

coefficients. (1) Py =0.60 and
Py, =P, =045, and(2)p = 0.60,
15“ -045 and s(pk )—0102 for
k=1 and 2.
Var { Rn}
BO
o ()
o (2)
60
40
204
L ® L 1 N i L | 5
0 i0 20 30 40 50 60
Fig. 6.3  Variance of the range for the third-order

Markov model with constant and peri-
odic first, second and third autocor-
relation coefficients (1) », - ;r:i1 =
0.60,p,, =p, =045, andpr py=
030, and (Z)p =0.60,p f—045
and 7, ,—030 “and s(p, ) = 0.102
for k=1,2,and 3.

60

Variance of the range obtained from
simulated samples and fitted linear func-
tion of Eq. 6.21, for the first-order
Markov model with constant first auto-
correlation coefficient p .
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1
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B
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Fig. 6.5  Regression coefficients of fitted linear

function (Eq. 6.21) to variance of the
range of the first-order Markov model.
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TABLE .1

MAREOV MODEL NP E. 3.4 WITH CONSTANT

. For

COMPARLISON OF VARIANCES OF THE RANGE OBTAINED FROM SIMULATED SAMPLES AND BY [0, #.21, FOR THE FiRST-ORUER
n UP TO 50 AND VARIOUS VALUES OF o .

] = 0.0 a = 0,100 o = 0.20(*) ¢ = 0,350 o= 0.400*) o= 0.60[") e = 0.80(*)
n ) Simulated bquation |Simuluted tquation |Simulated Eyuation | Simalated Lquation |Simulated Louation | Simulated Equation |Simulated Equation
b 1.4753 1.5096 1.8054 1.8566 2.1670 2.2503 PCEEL 8824 3.1857 3.53341 4.7701 §.1157 7.5608 7. 4800
4 1.9562 2:0672 2.3760 2.4001 2. B8R40 =.02%0 .57 37667 4.3250 44067 &, 7870 6.9964 11.011% 11,8037
In| 2.5070 I.5548 2.9779 2.9587 5.6300 3.e000 4.5914 4.6511 L5 ohd 54742 5.8479 &.8770 15.9342 16, 2455
5 5. 8849 3.7038 4,512% 4, 3360 5,2914 5.30%2 72030 &, 8620 3.0 BoI607 13,7085 13.5785 27.067Y 27,2023
24 1.0867 4.8728 5,713 5.714 7.0060 7.0055 9.5578 9.0729 | 10.8047 10,8421 15,4542 15,2800 38.1205 38.1591
W | 7.2892 7.2108 B.5608 B.4652 10,5305 1o.4p21 15,0038 134947 16,2204 in. 2049 28,0569 27.6830 60,5048 60.07 25
M| 9.5269 9. 5488 11,4259 11.2179 14.0707 15.7987 17.5100 17.9185 | 22.0510 21.5678 37,9329 37.0861 83.6533 Bl.9865
w0 | 11,752 11.88568 13.7626 13.9700 §6.91843 17.1952 22.1630 22,3383 | 26.4554 26.9306 | 45.5670 46,4891 | 102.4562 103. 9001
f*) lor these values of o ., the Varik | obtained by simulition were taken from P. Sutabutra [1967).
TABLE 6.2  PARAMETERS OF LINEAR REGRESSION FOR THE VARIANCE OF THE
RANGE OF THE FIRST-ORDER MARKOV MODEL OF EQ. 3.4,
Values of ¢
0.0 0.1 0.2 0.3 0.4 0.6 0.8
A .19676 0.20693 0.21238 0.22929 0.11639 -0.52607 -5.66821
B .23380 0.27527 0.33966 0.44218 0.53629 0.94030 2.19137
YeuxiAen Henbr 0.00285 | 0.00305 | 0.00202 | 0.00606 | 0.00696 | 0.01323 | 0.02190
0f Regr. Coeff,
Correlation
_ 190 0 3 g ,qt L9yt
tnefficlont 11, 994950 0.999653 0.99058 (.99944 0.99950 U, 99941 0.99970
TABLE 6.3 COMPARISON OF PERCENTAGE RELATIVE ERRORS OBTAINED IN USING EQS. 6.11 AND 6,22
FOR COMPUTING THE VARIANCES OF THE RANGE OF THE FIRST-ORDER MARKOV MODELS.
RELATIVE ERRORS IN PERCENTAGE
¢ =0.10 e =0.20 e = 0.40 e = 0.60 o= 0.80
n Equation Equation Equation Equation Equation Equation Equation Equation Equation Equation|
6.2 6.21 6.22 6.21 1 6.21 6.22 6.2 6.22 6.21
L] -6.088 -2.862 -4.677 =3.702 =2.006 -5.051 +1.682 -6.758 +1.220 +1.080
L] -3.745 -1.336 -2.690 -1.560 =0.864 ~1.854 +2.516 2.091 «1.485 =2.115
mn =1.321 +0.618 -0.750 «0.585 -0.006 +0.620 +2.562 =0.327 +14.901 -1.916
15 -1.824 =0.539 -Z2.147 -0.299 =2.853 +0,540 -1.657 +0, 965 «10.696 ~0,494
0 1,220 =0, 194 =2.246 0, 006 -4.542 =0.545 =5.140 0 R4L *5.438 =0,102
A 01, 352 «}.201 =1.611 +1.217 -5,870 +1,367 -8.653 »].351 -1.408 0. 718
1w ol «] . 854 -1.268 «1.971 -6.374 +2,148 =10.13% #2284 -4.950 « 103N
50 =128 =1.4R% -4.988 -1.610 =10.750 -1.765 -15.344 =1.498% -11.207 1.3
Average
Absolute
trror } 2.252 .2 2.547 1.369 4. 169 1.711 5.936 2188 6421 1.231
TABLE 6.4 REGRESSION COEFFICIENTS OF LINEAR FUNCTION FIT TO VARIANCES OF
THE RANGE OF THE SECOND-ORDER MARKOV MODEL.
plwﬂ.w Dx=0.60 91-0.80
nz-ﬂ.lo 92-0.20 nz-o.so nz'O.ZS 92-0.30 92-0140 02-0.40 DZ-O‘SU
A -0.33983 | -0.66148 | -1.21142 | -0.12678 | -0.51548 | -1,86086 | 3.98548 | 2.20953
B 0.47315 0.60505 0.77663 0.65861 0.77870 1.08101 | 0.38242 | 0.90797
Standard Error
Of Regr. Coeff. 0.00426 0.00519 0.00617 0.00609 0.00670 0.00860 | 0.00837 | 0.01021
Correlation
Coefficient 0.99931 0.99938 0.99946 0.99927 0.99937 0.99946 | 0.99595 | 0.99893
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Fig. 6.6 Variance of the range obtained from
simulated samples and fitted linear func-
tion of Eq. 6.21, for the second-order
Markov model with constant autocor-
relation coefficients. Cases of p, =0.40
and (1) p, =0.10,(2) p, =0.20,2and
(3) p,=0.30.
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In general, whenever periodicity exists in
parameters of the components of the models repre-
senting the inputs and outputs, the resulting variance
of the range is also a periodic function. The first
simulation was performed to see whether the char-
acteristics of Var{ R}, when p_and o_ are
periodic functions, (see Flg 6.9) depart sngmflcantly
from the stationary cases. These curves are shown in
Fig. 6.10, where the mean and standard deviation
of p, are ET =20 and s(pr) = 12.40, and the
mean and standard deviation of o, are a.=50
and (g ) = 2.79. For these cases, Fig. 6. 10' shows,
for p= ,0 0 and p = 0.60, the variance of the range
against n for values of n up to 60. This figure
shows also how complex, Var{R_} becomes when-
ever one uses models with periodic functions.

A general characteristic presented by Fig. 6.10
is that after a transition region the variance of the
range becomes a non-decreasing function of n,
because the effect of periodicities on Var{Rn}
decreases with n. This characteristics differs from
that of the expected range for which, as will be
shown in Chapter VII, the expected range is always a
non-decreasing function for all values of n . Figure
6.10 also shows that Var{R_} isa periodic function
with its phases and amplitudes dependent on the
periodic functions p_ and o_. The plot also shows
that the amplitudes of the periodic func-
tion Var {Rn} decrease as n becomes large. Simi-
larly, as in the case of the variance of range for
stationary Markov models, the effect of dependence,
in this case of periodic u_ and o_ , is considerable.

Strictly speaking, the variance of the range for
models of the type of Eq. 6.24 depends on
amplitudes and phases of periodic functions pu_
and o_ as well as on p . If one considers the Fourier
fitof u_and o ,assuggested by Eq. 3.6, the num-
ber of parameters to consider for determining the
variance of the range becomes excessive. Therefore,
the approach in this study is to look for other
parameters which are functions of u_ and o_, such
as the standard deviation s(u ) and the mean and
standard deviation T and s(g ). By choosing only
the parameters s(u ), 0 and s(o ) as representa-
tive of p_ and o , one mainly neglects the in-
fluence of their phases. In order to see how great this
influence is on the variance of the range, a sensitivity
analysis was performed W1th s(u.) = 12.40 and for
two phases, and with a 10 s(o,) = 6.87 and
for three phases. These functions, K, and o, , are
shown in Fig. 6.11.




Five different combinations of symmetric and
skewed p_ and o, , as shown in Fig, 6.11 were
considered, and in all cases the first autocorrelation
coefficients was p = 0.60. The variances of the
range obtained in these 5 cases are shown in Fig.
6.12. This figure shows that, basically, the influence
of the different phases of u_ and o_ is significant
only in the transition region. Beyond this region or
for n > 50, they all tend to converge to approxi-
mately the same variances. Therefore, for all practical
purposes, the influence of phasesin u_ and ¢_may
be neglected for larger n. Subsequently, all the
analysis is based on symmetric func-
tions pu_and o_, and the only parameters used to
define p_and o_are s(u ), and G and s(o.).
The different functions of p_and ¢_ considered
afterward are shown in Figs. 6.13 and 6.14.

Another characteristic observed from the
analysis of the computer simulated results is that, for
given values of @_,s(0.) and p , the influence of u_
is significant only in the transition region. For
n > 50, the variances of the range tend to converge
to approximately the same values. Table 6.5 gives a
comparison of variances obtained for values of n up
to 350 for the cases of FT =20, s(or) =0 and
1422 ,p=0,and s(u)=0 and s(u,) = 190.96.
Table 6.6 gives the comparison for the same case as
above except that p = 0.60 . These comparisons are
also shown in Figs. 6.15, 6.16, and 6.17. The results
of this analysis lead to the conclusion that for large
values of n , say n > 50, the variance of the range
for the general case of Markov models with a periodic
mean u_, and a periodic standard deviation o_ ,
depends only on T_, s(o) and p . That is,

Var{R }=f(o_,s(0.),p) - 6.25

The restriction on n for the validity of Eq.
6.25, for all practical purposes is not important,
because, whenever one considers models with
periodic components, one is dealing with, say, with
monthly or weekly values and so only the variances
of the range for large values of n are of interest.

The variances of the range for values of n up
to 350 and various values of T_, s(0,) and p are
obtained and are presented in Tables 6.7, 6.8, and
6.9. They are also shown in Figs. 6.18 through 6.26.
In all cases analyzed, the plot in arithmetic scale
of Var{ R 1} against n follows approximately a
straight line. For the particular cases
of s(of) =0 and p = 0, the values presented in
the respective tables and figures were obtained by
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using Feller’s asymptotic formula, given by Eq. 2.5.
For the cases of s(0,) = 0 and p #0, they were
obtained by using the empirical results of application
of Eq. 6.21.
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Fig. 6.9  Periodic mean u_, with p_ =20 and
s(u,) = 12.40 , and periodic standard
deviation ¢, , with T =5 and
S(O-r) = 2.79, considered when Var{R_}
of Fig. 6.10 are obtained by simulation.
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Variance of the range obtained from
simulated samples for first-order Markov
models with 71_=20 and s(u, )= 12.40,
and with 7_=5 and (1) s(or) =0.0
and p = 0.0, (2) s(0o,) = 2.79 and
p =0.0,(3) s(0,)=0.0 and p =0.60,
and (4) s(o.) =279 and p =0.60 .
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Fig. 6.11 Periodic mean p_ with i =20 and

s(u.) = 12.40 for two different phases
(upper graph) and periodic standard de-
viation o_ with 7 = 10 and s(o ) =
6.87 for three different phases (lower
graph). These p_ and o are used in
obtaining variances of Fig. 6.12.
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Fig. 6.12 Variance of the range obtained from
simulated samples for s(u ) = 12.40,
7 =10, s(0) = 6.87 and p = 0.60,
and five combinations of phases of M
and o_ . (*number in parenthesis refer
to types of p_ and o indicated in
in Fig. 6.11).
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Fig. 6.13 Four different periodic mean p_ used
in part of this chapter and Chapter VII.
They have 1_=250 and s(u ) equal to
(1) 0.0, (2) 73.03, (3) 134.04, and (4)
190.96.
TABLE 6.5 COMPARISON OF THE VARIANCE OF THE RANGE FOR
MODELS WITH s(u ) = 0 AND s(u) = 190.96
IN CASE OF p = 0 , AND BOTH A CONSTANT AND
A PERIODIC STANDARD DEVIATION.
7 =20, (s )=0,0%0.0 3 20,5 (0 )=14.22,0=0.0
n s(u )0 |s(2)=190.96 | ¢(u)=0 [s(s )<190.96
1 129.67 348.32 5.19 13.93
3 276.42 971.03 56,53 175.35
6 684.07 668.10 1285, 21 1217.20
10 1543.10- 2430.48 2305.41 7190.78
15 1857.27 1571.58 2346.62 2562.93
20 2132.30 1727.13 3183.43 3417.79
30 2705.41 2066.21 3905.72 3484 .86
40 3422.04 3399.94 4766.,91 5098.71
50 3845,00 5750.00 4827.00 5147.,00
|
75 6069.00 6329.00 8612.00 |  9325.00
100 8523.00 8513.00 13913.00 14648.00 |
150 [14340.00 14403.00 21683.00 23996.00
200 [20313.00 20572.00 28446.00 28852.00
250 26300.00 27188.00 [ 36832.00 36514.00
300  |29952.00 29944.00 | 43053.00 41357.00
350  [35259.00 34672.00 52066.00 51619.00
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Fig. 6.14 Different periodic standard deviation o_
used in part of this chapter and Chapter
VII. They have ©_= 20 and s(u )
equal to (1) 0.0, (2) 5.56 and (3) 14.22,
0, =40 and s(u ) equal to(4) 0.0_._(5)
14.22, (6) 30.37, and (7) 40, and o0, =
80 and s(u, ) equal to (8) 0.0, (9) 30.37
and (10) 64.50 .
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TABLE

6.6 CO
MO

I

MPARISON OF THE VARIANCC OF THE RANGE FOR
DELS WITH s(.) = 0 AND s(u_)} = 190.96

CASE OF o = 0.60 AND BOTH A CONSTANT

ANU & PERLODIC. STANDARD DEVIATION.
#.=20,8(z_1=0,070.60 | 5 =20, (0 )=14.22,0=0.60
n n[;Tjﬂﬂ 5fL‘}=190<9ﬁ !(u:}=ﬂ S{Lr]'IQG.Qb
1 129.67 348.32 5.19 13.93
3 589.00 1986.98 100.90 304.91
6 | 2014.22 i 1278.43 3012.91 2133.38
10 4581.92 i 6857.56 8279.99 20605.91
15 7358.97 | 4148.05 9146.76 6656.39
20 B835.53 ! 5868.06 12798.78 10805.38
a0 11188.38 | T159.14 14875, 94 11583.52
a0 14345.70 ! 11688.07 17908.69 16041.51
S0 16012, 00 | 14284.00 18215.00 16705.00
1
75 23970.00 | 24105.00 2R489.00 29655.00
1§ 353899.00 32673.00 44957.00 4509400
150 50693.00 55235.00 77096.00 77269.00
00 79857.00 §0796.00 L04280.00 106030.00
250 104991,00 106130.00 152695.00 132174.00
300 120052.00 118882.00 146796, 00 148425.00
350 159850.00 1538456.00 1689876.,00 171444.00
b
Vurﬁ?n}
3x10%
o slur)=0
e slugl=19096
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Fig. 6.15 Comparison of the variance of the range

for first-order Markov models with s(u)
=0 and s(u) # 0;and 0 =20,
s(c,) = 1422 and p = 0.60, with the
values of the variance converging for
values of n > 50.



TABLE 6.7  VARIANCE OF THE RANGE FOR MARKOV
STANDARD DEVIATION, CASES OF &

VALUES OF s(o ) .

MODELS WITH PERIODIC
= 20 AND THREE
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6098
9634
15469
21767
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4827
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28446
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TABLE 6.8

CASES

VALUES OF s(a ) .

VARIANCE OF THE RANGE FOR MARKOV

STANDARD DEVIATION, QF 31

= 40

MODELS WITH PERIODIC
AND THREE

var{Rnl

31'40. S(GTJID.

8,240, s(o )=14.22

7 %40, 5(_)=40.0

p=d.0

£=0.30

o=0.60

p=0.0

e=0.30

p=0.60

e=0.0

0=0.30

o=l .60

50

75
100
150
200
250
300

350

17440
26160
34880
52320
69760
B7200
104640
122080
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71119
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141871
177247
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375278
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525726
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40876
64529
89614
116904
135368

158209

27782
46089
74125
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169499
219562
250202

62526
94512
147997
256388
363897
463106

524378

290363

600772

26032
43687
70189
111187
142795
178178

215522
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45260

75815
122480
201578
260791
323102
370493
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85227
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368682
482370
599622
655538
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TABLE 6.9  VARIANCE OF THE RANGE FOR MARKOV MODELS
STANDARD DEVIATION. CASES OF E' = B0

VALUES OF s(g ) .

WITH PERIODIC
AND THREE

n

00

Fig. 6.17
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Comparison of variances of the range
for first-order Markov models with s(u,_)
=0 and s(u )+ 0. Cases of p=0.60,
and both constant ¢_ with (1) o_= 20,
and periodic ¢_ with (2) 0, =20 and

s(0,)=14.22
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Fig. 6.19 Variance of the range for first-order
Markov models with periodic standard
deviation. Cases of T_=20,5(0,) =5.56
p=0.0,0.3,and 0.6.
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Fig. 6.20 Variance of the range for first-order
Markov models with periodic standard
deivation. Cases of T = 20 , s(o) =
14.22 and p = 0.0, 0.3, and 0.6 .
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Fig. 6.21 Variance of the range for first-order

Markov models with constant standard
deviation. Cases of o_=40 and p=0.0,

0.3,and 0.6 .
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Fig. 6.22 Variance of the range for first-order

Markov models with periodic standard
deviation. Cases of T_= 40, s(0) =
1422 and p = 0.0, 0.3, and 0.6 .
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Fig. 6.23 Variance of the range for first-order
Markov models with periodic standard
deviation. Cases of G_=40, s(c_) = 40
and p=0.0,0.3,and 0.6 .
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Fig. 6.24 Variance of the range for first-order

Markov models with constand standard

deviation. Cases of o = 80 and p=0.0,
0.3,and 0.6.
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Fig. 6.25 Variance of the range for first-order
Markov models with periodic standard
deviation. Cases of ©_= 80 , s(0.) =
30.37 and p = 0.0, 0.3, and 0.6 .
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Fig. 6.26 Variance of the range for first-order
Markov models with periodic standard
deviation. Cases of 'ﬁ'; = 80 , s(or) =
64.50 and p = 0.0, 0.3, and 0.6 .
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CHAPTER VII

DESIGN OF DETERMINISTIC-STOCHASTIC STORAGE CAPACITIES

This chapter deals with determining the storage
capacity of a reservoir when the within-the-year
inflow fluctuations are considered. The analysis is
based on the approximate expected values of the
range developed in Chapter V and on some further
results described herein. The main assumption is that
the inputs are described by a Markov model with
periodic mean 4 and periodic standard deviation
o, as represented by Eq. 6.24, and the output is
equal to the mean input 7i_.

7.1 Deterministic and Stochastic Storage

First, a sensitivity analysis is performed to see
the effect of each component u_,0_ and p onthe
expected value of the range. The functions
u, and o used here are those previously shown in
Fig. 6.9. Figure 7.1 shows the expected range for the
following cases:

(1) i.i.d.variableswith ¢ =5.0,

(2) independent variables with o, = 5.0 and
s(0,)=2.79,

(3) periodic function u_ only, without ran-
domness,

(4) u, with s(u)=12.40,0_ with 3 =50
and s(or) =0.0,and p=0.0,

(5) n, with s(,uT} =12.40, 0 with ET =5.0
and s(0,)=2.79 ,and p=0.0,

(6) p, with s(u)=12.40,0_ with G =5.0
and s(ch) =0.0,and p=0.60,and

(7) w,  with s(u) = 1240 , o with

T

G,=50 and s(0,)=2.79 ,and p=0.60.

The results shown in Fig. 7.1 are important,
giving a good idea of the influence of each
component on the expected range. For the case of
i.i.d. random variables with ¢ = 5.0, a well-known
increasing smooth curve is shown. Then, for periodic
o, with 0 =5.0 and s(0,)=2.79 , the expected
range is a periodic non-decreasing function of n
with a period equal to the period of o¢_ and with
decreasing amplitudes as n becomes large. The
expected range after the transition region is greater
than the expected range of the case of a constant
standard deviation. For case (3) the function u_ has
no random part. The range in this case increases from
zero up to a maximum value of 64 at n = 8 and
remains constant for all greater values of n. Cases
(4) and (5) give for p = 0 the effect of the periodic
function 0, combined with the function u_.In
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these cases, the expected range is again greater when
o is periodic than when 0, is constant. The same
result is given for cases (6) and (7) for p = 0.60. A
general characteristic shown by cases (4) through (7)
is that they are all periodic functions with a period
equal to one half of the period of pu_. This result
defers from case (2) in which the period shown by
the expected range was the same as that of o .
Figure 7.1 also shows that the effect of dependence,
determined in this case by p , is considerable.

E{Rn}
160F

140+

e® 000

o®

n

~ “—
60

Il L 1
0 10 20 30 40 50

Expected range for first-order Markov
models with periodic mean p_ and
periodic standard deviation ¢, . Cases of

(1)sle)= 0, G, =5 s )=0, and p=0:
(2)s(u )= 0, 9, =5, s )=279, and p=0:
(3)su )= 1240, T =0, slo )=0, and p=0:
(4)slu,)= 1240, T =5, s(0,)=0, and p=0:
(5)slu,)=1240, T =5, o )=279, and p=0:
(6)s(u,)=12.40, T =5, s{0,)=0, and p=0.60;
(1) s(u,)= 1240, T =5, s(c)=2.79. and p=0.60.

The long term effect of the phases of p_ and
o, is analyzed with s(u,) = 1240 and two
phases, and O = 10, and with s(o,) = 6.87 and
three phases and p = 0.60. As in the case of the



variance of the range, five different combinations of
symmetric and skewed u_ and o, were used as
shown previously in Fig. 6.11. The expected ranges
obtained for the five cases considered are shown in
Fig. 7.2. These results lead to the conclusion that the
influence of the phases of u_ and o_ is significant
only in the transition region. Beyond "this region, or
say for n > 50, the expected ranges tend to con-
verge to approximately the same values. Therefore,
for all practical purposes, the effects of the phases of
k., and o_ are neglected, and, subsequently, the
analyses are made for symmetric functions of u,
and o, only.

1000} E{Rn}
L] '.
-.
-
-
.
[ ] * g
2’
1oo}- bt
A '.'i
“. o pl2),0002)*
s o pll,op(2)
4 ¢ pur(2),0¢(l)
¢ = w  pell),oe(3)
10k a  prllleel)
[ 3
L |
- n
| 1 L L
I 10 100 1000
Fig. 7.2 Expected range obtained from simulated

samples for first-order Markov models
with s(u ) = 1240, 3_ = 10, s(0,) =
6.87 and p = 0.60 for five different
combinations of phases of u_ and
0_ . (*numbers in parenthesis refer to
types of #, and o indicated in Fig.
6.11).

In determining the storage capacity of a
reservoir for within-the-year regulation on the mean
flow [_,and for inputs of the Markov models type
with periodic mean u_ and periodic standard devia-
tion o_, the expected storage, given by the expected
range of cumulatwe departures from the mean u , 18
divided into two parts: (1) A deterministic storage
which is a function of the standard deviation of
, and the mean and standard deviation of o, s
and (2) A stochastic storage which is a function of
the mean and standard deviation of o_,, the auto-
correlation coefficient p ,and n, That is,
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Sy (@ =8, [s,), 7, ,s(q)]
+S [o_,s(0,),p,n], 7.1

where S..(n) denotes the total storage required for
regulation in n units of time, and S 4(-) and
S,(.) denote the deterministic and stochastic storage
functions, respectively. Equation 7.1 is represented
graphically in Figs. 7.3 and 7 4.

The hypothesis that the deterministic storage
S4() depends only on s(u.) , 3, and s(o,) was
checked by comparing the expected ranges obtained
when p_ is considered and when it is not — that is,
when s(u ) # 0 and s(4,) = 0. For example, Fig.
7.3 gives the expected range when & = 10,
s(o,) = 687 ,and p =0 for both s(p)'1240
and s(u,) = 0 . The differences between the
expected ranges obtained for these two cases vary
around a constant value of 41.96 for n values
greater than 50. Figure 7.4 also shows the same case
as above except that p = 0.60. The constant value
obtained in this last case is 42.03. These results are
also given in Table 7.1. This analysis confirms the
postulate of an approximately constant deterministic
storage independent of p and n for given values of

sw,) , 0., and o) .

The deterministic storage funec-
tion S,[s(u ), T, s(o,)] is determined for various
values of s(u ), G_, and s(0,). The specific func-
tions I and o_ censidered here are shown in
Figs. 6.13 and 6.14. Figure 7.5, gives the function
S4[(1,), 7. , 5(a.)] for s(u) = 73.03, 134.04
and 190. 96 for -or' = 20, 40 and 80, and for
s(o,) ranging from 0 to 40. This figure shows that
a linear- function may be fitted between the values
of S,() and s(o) for particular values of G,
and (i ). It also shows that the effect of s(o.)
is very small so that the function S,[s(u) ,
0., 8(c,)] may be further approximated by a
function of only two parameters, namely s(u )
and O_ . In this case Figs. 7.6 and 7.7 give a relation-
ship between the deterministic storage function
84(-) against 0_ and s(u ), respectively.

The stochastic storage function S, [_ s(a Vi
p ,n] is determined previously in Chapter V as the
expected range of Markov models with periodic
standard deviation and is given by Eq. 5.18. There-
fore, the total storage Syp(n) of Eq. 7.1 may be
approximated by
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ST(n) = Sd [S ()U'.r)s E_f > 5 {'Uf) ]

2 n
¥ = ia, i>=:I et X
n

n
[ -21 i1 (Vars)” - '21 i*%] 3 7.2
= =

where & is given by Eq. 5.10 and Var 8, by Eq.
3.38.

7.2 Example of the Application of the Proposed
Method

Let us assume that a river has a monthly
streamflow which may be described by a Markov
model with periodic mean K, and periodic standard
deviation o_, with the following values:

Periodic mean: fi_ = 200 units, s(u ) = 150,
the periodic standard deviation:

771 2 3 4 5 6 7 8 9 101112
o4 7 12 20 34 43 43 34 20 12 7 4

with 0 = 20 and s(o,) = 14.22, and with the
first autocorrelation coefficient p = 0.60.

Assume further that one desires to find the
storage capacity for regulating the mean
flow ;.Tf = 200 units, which on the average will not

run dry or overflow in a period of 20 years — that is,
n = 240.

The deterministic storage may be found from
Figs. 7.5 through 7.7. Assuming the effect of s(g,) is
neglected, then Fig. 7.7 gives a value of S; = 724
units. The stochastic storage is obtained from Eq.
5.18 in which the function ¢ is computed by Eq.
5.10. This gives a value of S, = 970 units for the
stochastic storage. Therefore, from Eq. 7.1, the total
storage is equal to 1694 units. The variance of this
storage may be obtained from Fig. 6.20 which for
0, =20,s(c)=1422,p =060, and n =240
gives a value of 124,000 or a standard deviation
equal to 352.

It should be noted that the proposed method of
separating the total storage into a deterministic and a
stochastic part may be extended to higher order
Markov models. For these models the deterministic
storage function S,(.) remains the same, while the
stochastic storage function depends on several more
parameters; that is, in general it will be represented
by S0, .s(c,),B, .o, )],with k=12,..m
and m the order of the Markov model considered.

TABLE 7.1 COMPARISON OF THE EXPECTED RANGES FOR MARKOV
MODELS WITH ZERO AND PERIODIC MEAN e
(1) s{u_{]=12.40, BT=10, S(I:IT)=6.87, p=0. (1) s[u-r]=12.40, 5T=10, S[GT}=6.87, p=0.6
= o= = = 3 - ! % g = = =
(2) S[uT} 0.0, UT 10, SfoT) 6.87, p=0. (2) S(,JT} 0.0, g, 10, S(C‘T) 6.87, p=0.6
n
Expected Range Exrtected Range
1)-(2 1)-(2
@) ) (1)-(2) @8 2) 1)-(2)
50 157 .47 117.12 | 40.35 225,83 185.96 39.87
100 214.19 171.58 42.61 328.75 285.50 | 43.25
150 258.58 219.12 39.46 407 .54 367.30 40.24
200 301.25 259.87 41.38 484.38 | 445.16 | 41.22
250 331.09 290.22 40.87 539.87 | 498.82 | 41.05
300 359.76 | 317.66 42.10 593.00 549.67 43.33
350 389.83 346.75 43.08 6435.22 599.70 43.52
400 417.51 373.56 43.95 693.31 649.43 | 43.88
450 443.45 | 400.65 | 42.80 737.20 | 695.20 | 42.00
500 465.49 | 422.58 42.91 780.62 738.02 | 42.60
550 487.86 | 445.58 42.28 817.45 | 775.89 | 41.54
600 508.38 | 466.68 41.70 854.71 812.88 | 41.83
Average difference = 41.96 Average difference = 42.03
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CHAPTER VIII

CONCLUSIONS

The analysis of storage problem considering the
within-the-year fluctuations of inflows was the main
objective of this study; therefore, mathematical
models of monthly values of streamflow were used as
examples. The storage difference equation which
relates the inputs, outputs, and storage was used for
formulating the mathematical problem. This led to
the problem of determining the expected values and
variances of the range of cumulative departures from
the mean.

The main conclusions drawn from this investi-
gation are as follows: (1) Considering that the
sequence of partial sums S .S S,,..S follows the
general multivariate normal distribution function, the
exact expression of the expected value of the surplus
M, = max(S,.S,.S, w3,) becomes very complex
to derive when n is large. For small values of
n , namely for n = 1,2, and 3, the expected value
of the surplus M_ and consequently the expected
value of the range R~ were derived in this study.

(2) The derived general expression of the expected
value of the range for n = 1,2, and 3 permits
obtaining the exact expected ranges of stationary and
non-stationary inputs. The following cases were
derived:

a. Independent random variables with changing
standard deviation;

b. Equally dependent random variables, and

¢. Markov dependent random variables.

(3) The exact expected values of the range,
obtained mathematically, for small values of n such
as 1,2, and 3, and the computer simulation approach
for larger values of n ,can be used to determine the
degree of accuracy of approximate equations of the
expected range. In this study, approximate equations
were obtained for the following cases:

a. General Markov model with constant variance
and periodic autoregression coefficients,
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b. Non-stationary exchangeable random variables,
and

¢. Markov dependent random variables with per-
jodic standard deviation and constant auto-
regression coefficients.

(4) The expected values of the adjusted range of
exchangeable random inputs, and outputs equal to a
percentage of the mean inflow, may be expressed in
the same way as the formula 4.107, valid for the
expected range of exchangeable random variables.
This result is relevant in hydrology in cases of over-
year storage design.

(5) The exact variance of the range was possible to
derive for n = 1 and 2 for the case of stationary
first-order Markov model. The mathematical
derivation becomes complex for larger values of n.

(6) Empirical equations, derived by the computer
simulation approach, can be used for approximating
the variances of the range. In particular, in this study,
empirical equations were derived for the variance of
the range of the first and second-order Markov
models with constant autoregression coefficients.
Some empirical curves are also given for cases of non-
stationary Markov models.

(7) The total storage capacity required for regulat-
ing the mean inflow, when the within-the-year
fluctuation of the inflows is taken into account, can
be divided into two parts:

a. A deterministic storage which is a function
of the standard deviation of u_ and the mean
and standard deviation of o_ . (For these three
parameters it is shown that the deterministic
storage is practically constant for all n greater
than 50.)

b. A stochastic storage which is a function of the
mean and standard deviation of o, , of the
autocorrelation coefficients of the Markov
model considered, and of n .
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APPENDIX
EVALUATION OF CONSTANTS TO BE USED

IN EXPRESSIONS E{X}, E{Y} AND E{Z}

OF CHAPTER IV

Let us recall that the maximum M3 was de-
finedas M, = max(0,X,Y,Z) , where

§, =X =0(-vy,)

S, =¥ = =) ¥ (& ~X)

7]
i

g S Z =%, =¥ 00 = ¥) ¥ & =Y

and let us assume that the departures or components
of partial sums (x; - y;) are normally distributed
with mean zero, changing variance and are linearly
dependent.

Therefore the variances of X, Y and Z are
given in general as

Var(X}=0.? = 0,% , (1)

o - 2 2 )
Var{Y}= 0 =0* +0," +20,0,0,, @

. — 2 2
Var(Z} 0, =0," +0,° +a,

+2000,0,, *20,030,5 20,050, - (3)

The covariances of X and Y ,
X and Z ,and Y and Z may be shown to be
Cov{X,Y}=0,? + 0,0,0,, 4)

Cov{X,Z}= Ulz +0,0,01; ¥ 0,03P5 » (5)
Cov{Y,Z}= 0% + 0,® + 20,0,p,

+0,03p,3 F 0,03P,5 - (6)
where 0,,0, and o, denote the standard devia-
tion of the departures (xl - yl), (x, - Yz) and
(x5 -y,) respectively and p ,,p , and p,, are
the correlation coefficients between the indicated
components.
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A. FOR INDEPENDENT COMPONENTS. In

this case p,, = p,5 = Pp,, = 0, therefore Egs.
(1) to (6) simplify to
Var{X}= sz = 01: ; (7
i B e B 2
Var{Y}—oy =0 +0,°, (8)
Var{Z}=0,> =0 +0,’ + 0, , (9)

Cov{X,Y}= 0%, (10)
Cov{X,Z}= c:rl2 , (11)
Cov{YZ}=0,* + 0% . (12)

From the above equations, the correlation coef-
ficients Pyy Pys and Py, are given by

9
‘oxy =m 3
%
Py © (@ + 0,2 +0,5)% (13)
(al’z + Uzz)&&
and Py ™

2 2 2%
(0, +0,° +0,7)

Using the Eqgs. 4.17, 4.21 and 4.24, the con-
ditional standard deviations are

0,95
o S —
x.y rt 2% ?
(0, +0,%)

2 2%
0,(0," + 0,%)

g 3
X.Z (012 + 022 + 032)%

» (14)



o ; = ’ (15)

goafgl et . = . (15)

Applying Eq. 4.8 to the trivariate case, the
partial correlation coefficients p and

p)" Z.X are

Xy.Z ”oxz.y L

01 03

el =
Xy.z (012 + 022)‘& (022 B 032}%

%

= d = ——_—
0,and p (0, + 0,1y (17)

px:.y - VE.X

Substitution of above equations into Eqs. 4.49,
452, 4.55, 4.67, 4.68, 4.71, 4.78, 4.79, and 4.82
leads to the following constants:

b, ®.—~¢, =0 , b, =-¢, =0, (18

kZ = oo | (19)

Ky == . k==, (20)

b, =-c, =0, 1)

K, =1, K= =, (22)

G'9 o

k' =] . k' 2 e—— 23
3 4 U;
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" " (ai ¥ 023)%
b1=cl 30(0‘2+02+02)% :
I e | 2 3

o

3
by = = 2 4 .2 442V 24
2 (0 +0d) (0] + 0y +03) (

202, 2. 2
0, (o) + 03 +03)

k =
N (s 03) (05 +03)

k= o (08

@) ) @ o} o))

3 [03d3(0} + 03 +03) + (0} +03) (0] +03))

(6103003 + 03+ + @} + D) (0} + o)

"

o ACREAICRL AL

B. FOR COMPONENTS WITH EQUAL VAR-
IANCE AND EQUAL DEPENDENCE (exchangeable
random variables). In this case,

0,/ %0, =00 , (27)

and
Pya =P 13T P3=P - (28)

Therefore Egs. (1) to (6) simplify to

Var{X}= o} = ¢* , (29)
Var{Y}= o2 = 20°(1+p) , (30)
Var{Z}= o2 = 30® (1+2p) , (31)
Cov{X,Y}= 0 (1+p) , (32)
Covi{X,Z}= o® (1+2), (33)

e T —

= Sy T et

-

e e ———



and

Cov{Y.Z}= 20% (1+2p). (34)

From these equations, the correlation coefficients

'Oxy 'sz ,and pyz are

RRCLT) N R
Xy \/7 ¥ X2 \/3—
VZ(1+2p)*
, and B ™ “‘-‘———\/3.( 1+ p)" (35)

Using Eqs. 4.17,4.21, and 4.24, the conditional
standard deviations are

o

Ux_y \/i_ (l_p)Ié »
9%z = % o(1-p)* ., (36)

o, =0(1=p)

V2
%: = 5 a(1-p)*, (37)
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dependent (exchangeable variables) and outputs equal to a per-
centage of the mean inflow, is shown to be expressed in the
same way as the expected value of the unadjusted range of ex-
changeable random variables. This result is relevant in hydro-
Togy because when one is interested in overyear storage design
and the assumption of independence of streamflow events is
sufficiently accurate and the regulation or development is ex-
pressed as a fraction of the sample mean inflow, then the ex-
pected value of the storage for a given number of years is
given by the expected adjusted range which now may be comput-
ed exactly by the derived equation.
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