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ABSTRACT

COOPERATIVE SENSING FOR TARGET ESTIMATION

AND TARGET LOCALIZATION

As a novel sensing scheme, cooperative sensing has drawn great interests in recent

years. By utilizing the concept of “cooperation”, which incorporates communications

and information exchanges among multiple sensing devices, e.g. radar transceivers in

radar systems, sensor nodes in wireless sensor networks, or mobile handsets in cellular

systems, the sensing capability can achieve significant improvement compared to the

conventional noncooperative mode in many aspects. For example, cooperative target

estimation is inspired by the benefits of MIMO in communications, where multiple

transmit and/or receive antennas can increase the diversity to combat channel fading

for enhanced transmission reliability and increase the degrees of freedom for improved

data rate. On the other hand, cooperative target localization is able to dramatically

increase localization performance in terms of both accuracy and coverage.

From the perspective of cooperative target estimation, in this dissertation, we

optimize waveforms from multiple cooperative transmitters to facilitate better tar-

get estimation in the presence of colored noise. We introduce the normalized MSE

(NMSE) minimizing criterion for radar waveform designs. Not only is it more mean-

ingful for parameter estimation problems, but it also exhibits more similar behaviors

with the MI criterion than its MMSE counterpart. We also study the robust designs

for both the probing waveforms at the transmitter and the estimator at the receiver
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to address one type of a priori information uncertainties, i.e., in-band target and

noise PSD uncertainties. The relationship between MI and MSEs is further investi-

gated through analysis of the sensitivity of the optimum design to the out-band PSD

uncertainties as known as the overestimation error.

From the perspective of cooperative target localization, in this dissertation, we

study the two phases that comprise a localization process, i.e., the distance mea-

surement phase and the location update phase. In the first distance measurement

phase, thanks to UWB signals’ many desirable features including high delay reso-

lution and obstacle penetration capabilities, we adopt UWB technology for TOA

estimation, and then translate the TOA estimate into distance given light propa-

gation speed. We develop a practical data-aided ML timing algorithm and obtain

its optimum training sequence. Based on this optimum sequence, the original ML

algorithm can be simplified without affecting its optimality. In the second location

update phase, we investigate secure cooperative target localization in the presence

of malicious attacks, which consists of a fundamental issue in localization problems.

We explicitly incorporate anchors’ misplacements into distance measurement model

and explore the pairwise sparse nature of the misplacements. We formulate the secure

localization problem as an ℓ1-regularized least squares (LS) problem and establish the

pairwise sparsity upper bound which defines the largest possible number of identifi-

able malicious anchors. Particularly, it is demonstrated that, with target cooperation,

the capability of secure localization is improved in terms of misplacement estimation

and target location estimation accuracy compared to the single target case.
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CHAPTER 1

INTRODUCTION

By utilizing the concept of “cooperation”, which incorporates communications

and information exchanges among multiple sensing devices, e.g. radar transceivers in

radar systems, sensor nodes in wireless sensor networks, or mobile handsets in cellular

systems, the sensing capability can achieve significant improvement compared to the

conventional noncooperative mode in many aspects. In this dissertation, we will

exploit the benefits of cooperative sensing from two perspectives, namely, cooperative

target estimation and cooperative target localization.

1.1 Optimum and Robust Waveform Designs for Cooperative Target

Estimation

In multi-input multi-output (MIMO) communication systems, multiple transmit

and/or receive antennas can increase the diversity to combat channel fading for en-

hanced transmission reliability and increase the degrees of freedom for improved data

rate. Partly inspired by these benefits, MIMO sensing has drawn great interests in

recent years (see e.g., [2, 6, 4, 10, 11, 17, 20, 21, 25]). In such systems, a particularly

critical issue is the waveform optimization. Bell’s 1993 paper first used the mutual

information (MI) to design radar waveforms for the estimation of an extended target

[4]. His MI-based water-filling approach has been extended by several recent works.

The MI is an essential measure in the field of communications. However, its

role in sensing is not yet clear. In an attempt to link the MI criterion with more
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direct performance indicators in sensing, and particularly target parameter estimation

applications, Yang and Blum studied the extended target estimation problem in a

widely separated MIMO radar scenario. In [65], it is shown that the MI and the

minimum mean square error (MMSE) criteria lead to the same optimum water-filling

strategy, assuming perfectly known target and white noise power spectral densities

(PSDs). These waveform designs were then extended in [66] to account for bounded

uncertainty in the target PSD. In contrast to [65], [66] shows that the MI and MMSE

criteria result in distinct waveform designs.

Though the results in [65] and [66] shed some light on the possible connection

between the MI and MMSE measures, they are based on limiting assumptions such

as white noise and perfectly known noise PSD. In this disseration, we will further

these existing works and reveal more intrinsic connections between the MI and MSE

measures in a sensing setup.

Our contributions are three-fold. First, we take into consideration the more gen-

eral and practical colored Gaussian noise that can emerge in various situations. For

example, the received signal may be affected by unwanted interferences including

jammers. The noise spectrum might also be shaped by the antenna and RF filters

[55]. It turns out that in the presence of colored Gaussian noise, the equivalence

between the MI and MMSE design criteria established in [65] does not hold, even

when the target and noise PSDs are both perfectly known. Secondly, we introduce

the normalized MSE (NMSE) minimizing criterion for radar waveform designs. Not

only is it more meaningful for parameter estimation problems, but it also exhibits

more similar behaviors with the MI criterion than its MMSE counterpart, especially

in robust designs. Last but not least, we provide joint robust designs for both the

probing waveforms at the transmitter and the estimator at the receiver under various

uncertainty models. Compared with [66], our improvements include: i) we consider
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colored noise instead of white noise; ii) we jointly optimize both the transmitter

(waveforms) and the receiver (estimator) instead of limiting only to the transmitter

side; and iii) we account for the uncertainty for both target and noise PSDs instead

of assuming perfectly known noise PSD. Results show that the MI- and NMSE-based

robust designs are built on an identical least favorable set (LFS), which differs from

the LFS of the MMSE-based designs.

Since the optimum waveform design relies on an ideal assumption of known target

and noise PSDs, a small PSD estimation error might introduce considerable impact

on the designed waveform. Besides the target and noise’s in-band PSD uncertainty

addressed in joint robust designs, there is another type of PSD uncertainty, namely

the overestimation error. In case that additional error modes appear, the original

optimum waveform solution for the nominal modes may be altered, which will in-

duce estimation performance degradation. Therefore, the sensitivity analysis of the

optimum designs consists of an intriguing task. Furthermore, the study of the sen-

sitivity comparison among the MI, MMSE and NMSE criteria can help further our

understanding on the relationship linking the three criteria.

To focus on our main objective, only a single error mode will be considered in

this dissertation. We perform the sensitivity analysis not only at the transmitter, but

also at the receiver. At the transmitter side, for each criterion we derive the explicit

formula of the error mode strength threshold. When the error mode strength exceeds

the threshold, it will consume nonzero transmit power and the original optimum so-

lution for the nominal modes will be inevitably altered. The design scheme which has

the highest strength threshold is the least sensitive to the overestimation error. At

the receiver side, the normalized NMSE indicator of the estimation performance vari-

ation is calculated and then compared among the three criteria. Both analytical and

numerical results show that all three criteria do not exhibit significant performance
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deterioration. Particularly, the NMSE-based design has lower strength threshold,

experiences worse performance variation, and therefore is more vulnerable than the

MI-based design. Due to their very different strength structures, however, there does

not exist a universal relationship between the former two criteria and MMSE.

1.2 ML TOA Estimation of IR UWB Signals for Target Localization

UWB technology exhibits prominent features in many wireless communications,

networking and localization applications. Since the ultrashort pulse waveform is

transmitted at very low power in UWB systems [63, 58], accurate and rapid tim-

ing estimation becomes one of the most critical challenges.

Without invoking impractical assumptions as in several UWB timing research (see

e.g., [22, 29, 38]) such as known multipath propagation, timing with dirty templates

(TDT) algorithms developed in [64] are feasible for realistic UWB settings. The most

attractive merits of TDT include its low complexity and applicability in narrowband

and wideband systems with a single user or multiple ones as long as the intersymbol

interference (ISI) is absent or avoided. The training sequence used in [64] for data-

aided TDT has a repeated pattern {+1, +1,−1,−1}, with which the data-aided TDT

can achieve very rapid acquisition by using as few as four training symbols. More

recently, its digital counterparts are investigated in [61], which shows that the digital

TDT algorithms remain effective even with very-low-resolution digital UWB receivers.

Despite all these appealing advantages, the optimality issue of TDT has never been

thoroughly explored.

To address this issue, we establish a data-aided maximum likelihood (ML) timing

algorithm. Based on the ML criterion, the estimation of all multipath gains and

delays was pursued in [43] and the estimation performance was analyzed in [13].

However, [43] is based on an unrealistic multipath channel model which assumes no
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inter-path overlapping. The real channel with a large number of dense taps would

make this method impossible to implement. Unlike [43], we focus on the estimation of

a single parameter, namely, the delay of the first arriving path, without invoking any

unrealistic channel model assumption. We will show that although our ML estimator

does not explicitly involve the channel information, it is able to collect multipath

energy without channel estimation.

Considering the ML acquisition performance in terms of the probability of detec-

tion, we obtain the unique optimum training pattern in the sense of acquisition speed

and consistency. By using this optimum training sequence, the ML algorithm can

be simplified. Interestingly, we will show that the simplified ML (SML) and TDT

estimators share the identical optimum training sequence and estimation operations.

Furthermore, it can be proved that the criterion and performance of the TDT al-

gorithm are essentially the same as those of the SML algorithm. These lead to the

conclusion that the data-aided TDT algorithm is ML optimum.

Fine timing with high accuracy is not only desired in communications [54], but

also critical to localization with UWB technology [27, 28, 16]. While the data-aided

SML and TDT estimators can theoretically achieve any resolution level, from the

consideration of practical environment, they may suffer from the ambiguity induced

by the weak tail of the multipath channel and the extent of the noise-only region

between consecutive symbols. To circumvent the ambiguity, we complement the SML

and TDT algorithms with one more step by searching the peak of the first-order

difference of the objective functions, which facilitates the SML and TDT comparison

at the chip-level fine timing.
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1.3 The ℓ1-Regularized LS Formulation for Cooperative Target

Localization and Malicious Anchor Identification

Secure target localization in the presence of malicious anchors is a fundamental

and intriguing problem in wireless sensor networks (WSNs) [45]. When targets are

deployed in hostile environments, attackers may disturb the localization process and

make the location estimation unreliable. Unreliable target locations lead to severe

consequences, e.g., wrong military decisions on the battlefield or mistakenly granting

access rights to people [67]. Localization attacks can be launched in either the net-

work layer or the physical layer. We focuse on the physical layer attack which can

be classified into simple attacks and complicated attacks [67]. In a simple attack,

an attacker may fake the distance measurement between the target and a compro-

mised anchor by reporting fake self location or manipulating the transmission power

[68]. A complicated attack involves multiple compromised anchors which can either

independently broadcast fake information or collaborate to mislead the target to the

same false location [67]. The former is referred to as an uncoordinated attack and

the latter is often termed as a collusion attack. A collusion attack is usually much

more powerful than an uncoordinated one.

The presence of malicious anchors induces discrepancy, or inconsistency, between

the measured distance obtained from the first phase and the calculated distance from

second phase target location estimate. Based on this, malicious anchors can be fil-

tered out such that the remaining anchors yield more consistent estimate [40, 41, 35].

Reference [35] starts from a randomly picked subset of size 3 and make an LS es-

timation of the target location. It then accumulates the number of the remaining

anchors which have the consistent distance measurements with this estimate. If the

consistency number is beyond a certain predetermined threshold, then the estimate
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is regarded as correct and the algorithm stops; otherwise, it randomly picks another

subset to repeat the consistency check procedure until a correct estimate can be ob-

tained. The problem with this method is that, without knowledge of the number

of malicious anchors, it is hard to choose the consistency threshold. Reference [41]

adopts a suboptimal searching method. Unlike [35], it starts from the entire available

anchor set and deletes one malicious anchor which induces the largest inconsistency

at each stage, until all malicious anchors are removed. Reference [40] tries to identify

the outliers by minimizing the median of the squared distance measurement errors.

These methods are straightforward and easy to implement. However, they do not

directly tackle the false location information. The optimal estimation can only be

achieved by enumerating all possible attack scenarios.

To address this problem, we explicitly incorporate anchors’ misplacements, i.e.,

location errors, into the distance measurement model to locate the target and identify

malicious anchors simultaneously. By exploring the pairwise sparse nature inherent

in the misplacements, we are able to formulate secure target localization as an ℓ1-

regularized LS problem. Under this problem formulation, we establish the pairwise

sparsity threshold, which defines the largest possible number of identifiable malicious

anchors. We then propose a simple projected gradient search algorithm to solve the

ℓ1-regularized LS problem in WSNs.

Particularly, we consider two scenarios for the secure localization problem, namely,

a single target noncooperative localization and two-target cooperative localization.

While single target localization is a typical scenario in the field of secure localization

as in [45, 68, 41, 37, 40, 41], to the authors’ knowledge, we are the first to incorporate

target cooperation into this area. With the proposed ℓ1-regularized LS formulation,

we recognize the misplacement estimation limitation in the single target case; that is,

solving the ℓ1-regularized LS problem can only identify the malicious anchors but fails
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to yield correct misplacement estimates. It is demonstrated that the misplacement

estimation can be enhanced by incorporating target cooperation. Certainly, due to

cooperation, target location estimation accuracy can be improved as well.

1.4 Dissertation Organization

The organization of this dissertation is as follows. The optimum and robust wave-

form designs for cooperative target estimation are introduced in Chapter 2. Chapter

2 also performs the sensitivity analysis for the optimum designs to the overestima-

tion errors. In Chapter 3, TOA estimation of IR UWB signals is investigated for the

first phase of distance measurement in a localization process. Provided the distance

measurements, in Chapter 4, secure localization with target cooperation is studied in

the presence of malicious anchors. Summarizing remarks and future works are given

in Chapter 5.
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CHAPTER 2

OPTIMUM AND ROBUST WAVEFORM DESIGNS FOR

COOPERATIVE TARGET ESTIMATION

Information theory, and particularly the mutual information (MI), has provided

fundamental guidance for communications research. In Bell’s 1993 paper, the MI was

first applied to radar waveform design. Similar to its communications counterpart,

the solution comes in a water-filling form. However, the practical meaning of MI in

the sensing context remains unclear to date. Recently, Yang and Blum’s 2007 paper

shows that under the white noise assumption, the optimum water-filling scheme si-

multaneously maximizes the MI and minimizes the estimation minimum mean square

error (MMSE). Such an equivalence, however, does not hold when the target parame-

ter statistics are not perfectly known as shown in Yang and Blum’s subsequent work.

To further the understanding of the practical meaning of MI and to establish a con-

nection between the MI and commonly adopted MSE measures for sensing, we take

a fresh look at the target estimation problem. We consider the general colored noise,

incorporate the normalized MSE (NMSE), and develop joint robust designs for both

the transmitter (waveforms) and the receiver (estimator) under various target and

noise uncertainty models. Our results show that: i) the optimum waveform designs

resulted from the MI, MMSE and NMSE criteria are all different; and ii) compared

to MMSE, the NMSE-based designs share more similarities with the MI-based ones,

especially when the target and noise statistics are not perfectly known.

We then further investigate this relationship by analyzing the sensitivity of the
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optimum design to the overestimation error. For each of the three criteria, we derive

the explicit formula for the error mode strength threshold, above which the error

mode would consume nonzero transmit power and the original waveform design will

be inevitably altered. We also develop a normalized NMSE indicator to measure the

estimation performance variation induced by the error mode. Both analytical and

numerical results confirm that the optimum waveform designs based on the three

criteria do not show significant performance deterioration. While the NMSE-based

optimum solution is always more sensitive to the overestimation error than the MI-

based one, there is no universal relationship between these two criteria and MMSE.

2.1 Motivation

In multi-input multi-output (MIMO) communication systems, multiple transmit

and/or receive antennas can increase the diversity to combat channel fading for en-

hanced transmission reliability and increase the degrees of freedom for improved data

rate. Partly inspired by these benefits, MIMO sensing has drawn great interests in

recent years (see e.g., [2, 6, 4, 10, 11, 17, 20, 21, 25]). In such systems, a particularly

critical issue is the waveform optimization. Solutions to this problem mainly fall into

two categories, the space-time correlation optimization of the transmitted waveforms

(see e.g., [4, 39, 44]), and the specific time-domain signal design given the desired

space-time correlation properties (see e.g., [17]). In this chapter, we focus on the

former. Bell’s 1993 paper first used the mutual information (MI) to design radar

waveforms for the estimation of an extended target [4]. His MI-based water-filling

approach has been extended by several recent works. In particular, [39] deals with

multiple extended targets using a large coherent phased array, and [44] considers the

detection of an extended target. Both of them adopt the MI as the optimization

criterion.
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The MI is an essential measure in the field of communications. However, its

role in sensing is not yet clear. In an attempt to link the MI criterion with more

direct performance indicators in sensing, and particularly target parameter estimation

applications, Yang and Blum studied the extended target estimation problem in a

widely separated MIMO radar scenario. In [65], it is shown that the MI and the

minimum mean square error (MMSE) criteria lead to the same optimum water-filling

strategy, assuming perfectly known target and white noise power spectral densities

(PSDs). These waveform designs were then extended in [66] to account for bounded

uncertainty in the target PSD. In contrast to [65], [66] shows that the MI and MMSE

criteria result in distinct waveform designs.

Though the results in [65] and [66] shed some light on the possible connection be-

tween the MI and MMSE measures, they are based on limiting assumptions such as

white noise and perfectly known noise PSD. In this chapter, we will further these ex-

isting works and reveal more intrinsic connections between the MI and MSE measures

in a sensing setup.

For comparison convenience, we will consider a MIMO radar setup as in [65] and

[66]. However, rather than the widely separated MIMO radar, we employ a mixed

MIMO structure with widely separated transmit array elements and closely spaced

receive array elements. This is due to the inherent identifiability issue associated with

the former setup as will be detailed in Section 2.2.

Our contributions are three-fold. First, we take into consideration the more gen-

eral and practical colored Gaussian noise that can emerge in various situations. For

example, the received signal may be affected by unwanted interferences including

jammers. The noise spectrum might also be shaped by the antenna and RF filters

[55]. It turns out that in the presence of colored Gaussian noise, the equivalence

between the MI and MMSE design criteria established in [65] does not hold, even
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when the target and noise PSDs are both perfectly known. Secondly, we introduce

the normalized MSE (NMSE) minimizing criterion for radar waveform designs. Not

only is it more meaningful for parameter estimation problems, but it also exhibits

more similar behaviors with the MI criterion than its MMSE counterpart, especially

in robust designs. Last but not least, we provide joint robust designs for both the

probing waveforms at the transmitter and the estimator at the receiver under various

uncertainty models. Compared with [66], our improvements include: i) we consider

colored noise instead of white noise; ii) we jointly optimize both the transmitter

(waveforms) and the receiver (estimator) instead of limiting only to the transmitter

side; and iii) we account for the uncertainty for both target and noise PSDs instead

of assuming perfectly known noise PSD. Results show that the MI- and NMSE-based

robust designs are built on an identical least favorable set (LFS), which differs from

the LFS of the MMSE-based designs.

Since the optimum waveform design relies on an ideal assumption of known target

and noise PSDs, a small PSD estimation error might introduce considerable impact

on the designed waveform. Besides the target and noise’s in-band PSD uncertainty

addressed in joint robust designs, there is another type of PSD uncertainty, namely

the overestimation error. In case that additional error modes appear, the original

optimum waveform solution for the nominal modes may be altered, which will in-

duce estimation performance degradation. Therefore, the sensitivity analysis of the

optimum designs consists of an intriguing task. Furthermore, the study of the sen-

sitivity comparison among the MI, MMSE and NMSE criteria can help further our

understanding on the relationship linking the three criteria.

To focus on our main objective, only a single error mode will be considered in this

chapter. We perform the sensitivity analysis not only at the transmitter, but also at

the receiver. At the transmitter side, for each criterion we derive the explicit formula

12



of the error mode strength threshold. When the error mode strength exceeds the

threshold, it will consume nonzero transmit power and the original optimum solution

for the nominal modes will be inevitably altered. The design scheme which has the

highest strength threshold is the least sensitive to the overestimation error. At the

receiver side, the normalized NMSE indicator of the estimation performance varia-

tion is calculated and then compared among the three criteria. Both analytical and

numerical results show that all three criteria do not exhibit significant performance

deterioration. Particularly, the NMSE-based design has lower strength threshold,

experiences worse performance variation, and therefore is more vulnerable than the

MI-based design. Due to their very different strength structures, however, there does

not exist a universal relationship between the former two criteria and MMSE.

The organization of this chapter is as follows. The system model is given in Section

2.2. Three design criteria (MI, MMSE and NMSE) and their corresponding optimum

waveform designs in the presence of colored noise are introduced in Section 2.3. The

joint estimator and power loading robust designs are discussed in Section 2.4 for all

three criteria. Further analysis for the sensitivity of the optimum waveform design to

the overestimation error for all three criteria is performed in Section 2.5. Numerical

results are given in Section 2.6, followed by the concluding remarks in Section 2.7.

2.2 Mixed MIMO Signal Model

Despite the many similarities between MIMO communications and MIMO radar,

they have some fundamental differences. Take the transmitted signal optimization

as an example, where we consider a simple setup of M = 2 transmit antennas and

N = 2 receive antennas.

In communications, the objective is to optimize the transmitted signals for better

estimation of themselves. Assume that the duration of the transmitted signals is
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L, length of the channel delay is K, and the white noise ξ is zero-mean Gaussian

distributed. The system representation can be expressed as:



r1

r2


 = H



x1

x2


+ ξ =



H1,1 H1,2

H2,1 H2,2







x1

x2


+ ξ (2.1)

where xi is the L× 1 transmitted signal vector emitted from the ith transmitter, rj

is the L× 1 received signal vector at the jth receiver, and the L×L Toeplitz matrix

Hj,i represents the channel response from the ith transmitter to the jth receiver.

Denote the covariance matrices as Σx for the transmitted signals, and Σξ = σ2
ξI for

the white noise. Then the mutual information (MI) between the transmitted and

received signals is:

MI = log
∣∣σ−2

ξ ΣxH
HH + I2L

∣∣ (2.2)

and the resultant MMSE after the MMSE estimator is

MMSE = tr
{
(σ−2

ξ HHH + Σ−1
x )−1

}
. (2.3)

In communications, the classical optimum transmitted signal design maximizing the

MI or minimizing the MMSE is achieved when
(
σ−2

ξ ΣxH
HH + I2L

)
or (σ−2

ξ HHH +

Σ−1
x ) is a diagonal matrix (see e.g., [48, 49, 50, 53]). The 2L eigenvalues of Σx

are allocated according to the strength of the corresponding channel eigenvalues of

HHH .

On the other hand, for a 2× 2 radar system with widely separated transmit and

receive array elements, the total M × N = 4 viewing aspects of the target can be
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acquired, and the signal model is given by [65]:



r1

r2


 =




X 0L×2K

0L×2K X







g1

g2


+ ξ (2.4)

where X = [X1 X2] and X i is the L ×K Toeplitz signal matrix emitted from the

ith transmit antenna, rj is the L × 1 signal vector at the jth receive antenna, and

gj = [gT
j,1 gT

j,2]
T with gj,i being the K×1 target viewing aspect from the ith transmit

antenna to the jth receive antenna. Accordingly, the MI between the target response

and the received signal is:

MI = log
∣∣σ−2

ξ Σg(I2 ⊗XHX) + I4K

∣∣ (2.5)

where Σg is the covariance matrix of the target response, and the resulting MMSE

after the MMSE estimator is:

MMSE = tr
{(

σ−2
ξ (I2 ⊗XHX) + Σ−1

g

)−1
}

. (2.6)

In order to maximize the MI or minimize the MMSE, the optimum strategy again

requires
(
σ−2

ξ Σg(I2 ⊗XHX) + I4K

)
or
(
σ−2

ξ (I2 ⊗XHX) + Σ−1
g

)
to be an optimum

diagonal matrix, as detailed in [65]. However, unlike the communications case, the

special repeated structure of I2⊗XHX makes such a condition impossible. In other

words, one cannot design the 2 transmitted signals such that the estimation of 4

viewing aspects (namely g11, g12, g21 and g22) are optimized simultaneously – there is

simply a lack of sufficient degrees of freedom.

This simple comparison suggests that the transmitted signal optimization problem

is ill-formulated for the widely separated MIMO radar setup in [65]. To avoid this
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Transmit Array

Scatters

Receive Array

Figure 2.1: Illustration of the mixed MIMO structure.

problem, we consider a mixed MIMO structure (see Fig. 2.1), which is equipped

with a widely separated M-element transmit array and a closely spaced N -element

receive array. For an extended target of interest, the M transmitted waveforms can

impinge distinct scatterers from different angles. On the other hand, for each of the M

reflected signals, the receiver acquires N coherent returns, the only difference among

which is a phase shift. One can then combine them coherently to obtain a processing

gain of N . As a result, the target response is captured by the mixed MIMO setup

from totally M viewing aspects. Having M transmitted signals to design, this mixed

MIMO setup provides sufficient degrees of freedom for the signal design optimizing

the estimation of all M viewing aspects.

Bearing the goal of comparing the MI- and MSE-based radar waveform designs, we

will borrow the “mode” space signal model from [65]. Though originally developed for

the widely separated MIMO radar, it can be readily modified for our mixed MIMO

setup. The coherent combining of the arrival signals at the closely spaced receive

array is rather straightforward. Hence we set N = 1 here without loss of generality.
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As a result, the received waveform can be expressed as

r1 = Xg + ξ (2.7)

where X = [X1, · · · , XM ], g = [gT
1 , · · · , gT

M ]T , r1 is the L × 1 signal vector at the

receive antenna, and ξ the L× 1 zero-mean Gaussian noise vector. To facilitate the

target response estimation, it is required that L cannot be less than MK. We set

L = MK in our signal model.

While the target response is assumed to be Gaussian distributed with full rank

covariance matrix Σg [65], the zero-mean non-white Gaussian noise has covariance

matrix Σξ. Through eigenvalue decomposition, Σg and Σξ can be diagonalized as

Σg = U gΛgU
H
g , Σξ = U ξΛξU

H
ξ

where the entries of the diagonal matrices Λg and Λξ can be regarded as their cor-

responding PSD samples [65], respectively. In [65], the maximum MI or minimum

MMSE is achieved when X = ΨD
1

2 UH
g , with Ψ being an L × MK matrix with

orthonormal columns and D a diagonal matrix. Having L = MK, we can generalize

this result to the colored noise case by constraining the arbitrary matrix Ψ as U ξ,

namely X = U ξD
1

2 UH
g , which gives rise to the “mode” space system representation:

y = D
1

2 h + η (2.8)

where y
.
= UH

ξ r1 is defined as the MK × 1 observed signal in the mode space,

h
.
= UH

g g is the MK × 1 “mode” vector capturing the response of the extended

target, and η
.
= UH

ξ ξ the MK × 1 Gaussian noise vector in the mode space. Clearly,

the covariance matrices for h and η are Λ = Λg and Ση = Λξ diagonal matrices,
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respectively. D = diag{d1, · · · , dMK} is the power allocation matrix with transmit

power di allocated to the corresponding mode space waveform, subject to the total

transmit power constraint
∑MK

i=1 di = P0.

With this representation, the waveform design problem simplifies to a power allo-

cation problem, where the total power will be optimally assigned to MK orthogonal

waveforms in the mode space. It is worth noting that, though we adopt the mode

space representation in [65] for comparison with the results therein, this model is ac-

tually very general. Our model and the results hereafter can be readily generalized to

cover “MIMO” radar systems resulted not only from multiple spatial viewing aspects,

but also by alternative means such as frequency agility. Additionally, various receiver

beamforming techniques (conventional [36], minimum variance distortionless response

(MVDR) [15], and other adaptive algorithms [56]) can also be readily accommodated.

2.3 Optimum Waveform Designs In Colored Noise

The optimum power allocation problem has been studied in [65], under the white

Gaussian noise assumption for which Ση = σ2
ηIMK . In a sensing scenario, however,

unwanted interferences including jammers and antenna effects are often inevitable,

suggesting the necessity of incorporating more general colored noise. Throughout

our analysis, we will consider colored Gaussian noise with zero-mean and covariance

matrix Ση = diag
{
σ2

η1
, · · · , σ2

ηMK

}
, where the diagonal elements can be different.

In this section, we assume that both the target and noise PSDs are known exactly

at both the transmitter and the receiver. This assumption will be relaxed in the next

section, where uncertainty of such knowledge will be taken into account.
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2.3.1 MI and MMSE Criteria

The MI between the observed signal y and the target mode response h given

power allocation matrix D is:

I(y; h|D) = log
∣∣ΛDΣ−1

η + IMK

∣∣ =

MK∑

i=1

log
(
σ−2

ηi
λidi + 1

)
. (2.9)

The logarithm is base-2 unless otherwise indicated, and the unit for MI is bit. Note

that, instead of the white noise with a flat PSD in [65], we consider non-flat colored

noise here.

Proposition 2.1 (MI-based Optimum Power Allocation): The optimum power

allocation maximizing the MI in the presence of colored Gaussian noise has the fol-

lowing water-filling form:

di|MI =

[
γMI −

σ2
ηi

λi

]+

, for i = 1, · · · , MK (2.10)

where γMI is a constant satisfying the total power constraint
∑MK

i=1 di|MI = P0.

Proof. The problem of optimum power allocation for maximizing the MI in (2.9)

subject to the total power constraint can be formulated as:

max
{di}

MK∑

i=1

log
(
σ−2

ηi
λidi + 1

)
,

subject to

MK∑

i=1

di = P0, and di ≥ 0, for i = 1, · · · , MK . (2.11)

This constrained optimization problem can be solved by the Lagrange multiplier
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method. Specifically, we first construct the objective function:

JMI =

MK∑

i=1

log
(
σ−2

ηi
λidi + 1

)
+ γ′

MI

(
MK∑

i=1

di −P0

)
(2.12)

and then differentiate it with respect to di and set it to zero. As a result, we get:

di|MI =

[
γMI −

σ2
ηi

λi

]+

, for i = 1, · · · , MK (2.13)

where the notation [a]+
.
= max{0, a}, and the water level

γMI = −1/γ′
MI =

P0 +
∑

i∈SMI

σ2
ηi

λi

‖SMI‖
(2.14)

is a constant determined by the total power constraint
∑MK

i=1 di|MI = P0. The mode

index set SMI
.
= {i : di|MI > 0}, and the set length ‖ · ‖ is defined as the number of

elements belonging to the set.

In the MI-based water-filling scheme, the mode strength is described by the target-

to-noise power ratio. Note that the MI-based scheme inclines to discard the weakest

modes.

For the MSE-based designs, one needs to first specify the MMSE estimator, de-

noted by Φ, as follows:

ĥ = Φy =
(
DΣ−1

η + Λ−1
)−1

D
1

2 Σ−1
η y . (2.15)

Accordingly, the MMSE is given by

MMSE = tr

{
E

{(
h− ĥ

)(
h− ĥ

)H}}
= tr

{(
Σ−1

η D + Λ−1
)−1
}

=
MK∑

i=1

λi

σ−2
ηi

λidi + 1
.

(2.16)
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Proposition 2.2 (MMSE-based Optimum Power Allocation): The optimum

power allocation minimizing the MMSE in the presence of colored Gaussian noise has

the following form:

di|MMSE = λi

[
γMMSE

√
σ2

ηi

λ2
i

−
σ2

ηi

λ2
i

]+

, for i = 1, · · · , MK (2.17)

where γMMSE is a constant ensuring the total power constraint.

Proof. The problem of optimum power allocation for minimizing the MMSE in (2.16)

subject to the total power constraint can be formulated as:

min
{di}

MK∑

i=1

λi

σ−2
ηi

λidi + 1
,

subject to
MK∑

i=1

di = P0, and di ≥ 0, for i = 1, · · · , MK . (2.18)

Using the Lagrange multiplier method, by differentiating the following cost func-

tion with respect to di:

JMMSE =
MK∑

i=1

λi

σ−2
ηi

λidi + 1
+ γ′

MMSE

(
MK∑

i=1

di −P0

)
(2.19)

and then setting it to zero, we get:

di|MMSE =

[
γMMSE

√
σ2

ηi
−

σ2
ηi

λi

]+

= λi

[
γMMSE

√
σ2

ηi

λ2
i

−
σ2

ηi

λ2
i

]+

, ∀i (2.20)

where

γMMSE =

√
1

γ′
MMSE

=
P0 +

∑
i∈SMMSE

σ2
ηi

λi∑
i∈SMMSE

√
σ2

ηi

(2.21)

is a constant ensuring the total power constraint and the mode index set SMMSE
.
=
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{i : di|MMSE > 0}.

To facilitate a water-filling interpretation, we can rewrite the allocation solution

in a weighted form [42] as:

di|MMSE√
σ2

ηi

=

[
γMMSE −

√
σ2

ηi

λi

]+

, for i = 1, · · · , MK (2.22)

where γMMSE can be regarded as the water level. The mode strength here is measured

by the target-to-square-root-of-noise ratio. If a mode is weaker than the water level,

it will be simply ignored.

From Propositions 2.1 and 2.2, we see that in the presence of colored Gaussian

noise, the MMSE criterion does not lead to the water-filling solution as in [65]. In

other words, the MI and MMSE criteria now are not equivalent as observed in [65],

when the additive noise is colored.

2.3.2 NMSE Criterion

While the MMSE design minimizes the sum of the target mode estimation errors,

there is no guarantee on the MSEs of individual modes. Additionally, it is possible

for the weakest modes to be discarded due to the total power constraint. In a radar

problem, however, these weak modes may assume significant information useful in

describing the target [4]. A natural amendment to this problem is to introduce the

normalized MSE (NMSE) criterion, which is a common exercise in various estimation

problems (see e.g., [30, 46, 57]).

Specifically, normalizing the individual MSEs with respect to their average strength,

22



we obtain the following expression:

NMSE
.
= tr

{
E

{
Λ− 1

2

(
h− ĥ

)(
h− ĥ

)H
Λ− 1

2

}}
= tr

{(
Σ−1

η ΛD + IMK

)−1
}

=
MK∑

i=1

1

σ−2
ηi

λidi + 1
. (2.23)

Proposition 2.3 (NMSE-based Optimum Power Allocation): The optimum

power allocation minimizing the NMSE in the presence of colored Gaussian noise has

the following form:

di|NMSE =


γNMSE

√
σ2

ηi

λi
−

σ2
ηi

λi




+

, for i = 1, · · · , MK (2.24)

where γNMSE is a constant ensuring the total power constraint.

Proof. The problem of optimum power allocation based on the NMSE criterion under

a total power constraint can be formulated as:

min
{di}

MK∑

i=1

1

σ−2
ηi

λidi + 1
,

subject to

MK∑

i=1

di = P0, and di ≥ 0, for i = 1, · · · , MK . (2.25)

As in proofs of Propositions 2.1 and 2.2, we construct the cost function:

JNMSE =

MK∑

i=1

1

σ−2
ηi

λidi + 1
+ γ′

NMSE

(
MK∑

i=1

di − P0

)
(2.26)

and differentiate it to obtain:

di|NMSE =


γNMSE

√
σ2

ηi

λi
−

σ2
ηi

λi




+

, ∀i (2.27)
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where

γNMSE =

√
1

γ′
NMSE

=
P0 +

∑
i∈SNMSE

σ2
ηi

λi

∑
i∈SNMSE

√
σ2

ηi

λi

(2.28)

is a constant ensuring the total power constraint and SNMSE
.
= {i : di|NMSE > 0}.

We re-express the solution as

di|NMSE√
σ2

ηi
/λi

=


γNMSE−

√
σ2

ηi

λi




+

, for i = 1, · · · , MK (2.29)

where γNMSE is the water level, and the mode strength is subject to the target-to-noise

power ratio, as in the MI-based scheme.

Results summarized in Propositions 2.1–2.3 show that the optimum power alloca-

tion obtained via maximizing the MI differs from those by minimizing the MMSE or

NMSE, when colored noise is taken into account. While the MI-based water-filling

solution tends to ignore the weakest modes, the MMSE- and NMSE-based solutions

put more weights on the relatively weak modes which may assume significant infor-

mation in describing/characterizing the target [4]. The three mode index sets SMI,

SMMSE and SNMSE may be different from each other. Clearly, these index sets differ

only in a few weakest modes and the difference vanishes when the total power P0 is

sufficiently high.

These results are based on the exact knowledge of both the target and noise PSDs.

In practice, however, this knowledge can only be acquired with some uncertainty. In

the subsequent sections, we will investigate behaviors of the MI-, MMSE- and NMSE-

based designs under in-band and out-band uncertainty models, respectively.

24



2.4 Robust Joint Transceiver Designs

We first consider in-band PSD uncertainty in the section. When the PSDs of

the target and the colored noise are not precisely available, some robust approaches

need to be utilized to design the probing waveforms at the transmitter, as well as the

estimator at the receiver. [66] adopted the minimax approach to address the bounded

target PSD uncertainty, while assuming that the white noise PSD is perfectly known.

Here, we not only consider a colored noise PSD which includes unwanted interferences

such as jamming signals often encountered by a sensing system, but also allow for

various uncertainty levels in the noise PSD. Another significant difference from [66] is:

[66] focuses only on the robust design for the transmitted waveforms while assuming

that the exact target PSD is available at the receiver; whereas we jointly design the

transmitted waveforms and the MMSE estimator via a robust procedure.

2.4.1 Robust Minimax Design Criteria

In our minimax problem formulation, the estimator and the power allocation are

jointly designed to: i) provide the optimum performance for the least favorable set

(LFS) of the target and noise PSDs; and ii) provide equivalent or better performance

for all other possible sets within the uncertainty regions. Mathematically, we jointly

design the MMSE estimator matrix Φ and the power allocation matrix D such that

[31, 32]:

max
D

{
inf
Λ,Ση

MI(Λ,Ση; D)

}
, MI-based ,

min
Φ,D

{
sup
Λ,Ση

MMSE(Λ,Ση;Φ, D)

}
, MMSE-based ,

min
Φ,D

{
sup
Λ,Ση

NMSE(Λ,Ση;Φ, D)

}
, NMSE-based .

(2.30)
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To solve the above problems, we will look for a saddle point for each criterion by

finding the LFS
(
ΛR = diag{λR

1 , · · · , λR
MK},ΣR

η = diag{σ2R
η1

, · · · , σ2R
ηMK
}
)
, the robust

estimator ΦR and the robust power allocation matrix DR = diag{dR
1 , · · · , dR

MK}

satisfying:

min
Λ,Ση

MI(Λ,Ση; D
R) = MI(ΛR,ΣR

η ; DR) = max
D

MI(ΛR,ΣR
η ; D) ,

max
Λ,Ση

MMSE(Λ,Ση;Φ
R, DR) = MMSE(ΛR,ΣR

η ;ΦR, DR) = min
Φ,D

MMSE(ΛR,ΣR
η ;Φ, D) ,

max
Λ,Ση

NMSE(Λ,Ση;Φ
R, DR) = NMSE(ΛR,ΣR

η ;ΦR, DR) = min
Φ,D

NMSE(ΛR,ΣR
η ;Φ, D) .

Note that once the LFSs ΛR and ΣR
η are determined, the second equalities in the

above saddle point condition can be easily achieved through the optimum design that

has been introduced in Section 2.3. So the minimax robust procedure will focus on

the first equalities only, resulting in an equivalent saddle point condition:

MI(Λ,Ση; D
R)−MI(ΛR,ΣR

η ; DR) ≥ 0 ,

MMSE(Λ,Ση;Φ
R, DR)−MMSE(ΛR,ΣR

η ;ΦR, DR) ≤ 0 , (2.31)

NMSE(Λ,Ση;Φ
R, DR)− NMSE(ΛR,ΣR

η ;ΦR, DR) ≤ 0 .

Next, the explicit expressions of the differences on the left hand sides of (2.31) will be

derived for the MI, MMSE and NMSE criteria to facilitate the identification of their

respective LFSs.

MI-based:

As defined in (2.9), the MI formula has nothing to do with the receiver design.
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To calculate the MI difference in (2.31), one can substitute with (2.9) as follows:

MI(Λ,Ση; D
R)−MI(ΛR,ΣR

η ; DR)

=

MK∑

i=1

log
(
σ−2

ηi
λid

R
i + 1

)
−

MK∑

i=1

log
(
σ−2R

ηi
λR

i dR
i + 1

)

=
MK∑

i=1

log

λi

σ2
ηi

dR
i + 1

λR
i

σ2R
ηi

dR
i + 1

(2.32)

where the robust power allocation DR is simply the optimum one for the LFS [c.f.

(2.10)]:

dR
i =

[
γR

MI −
σ2R

ηi

λR
i

]+

, ∀i . (2.33)

In Section 2.4.2, we will find the LFS for MI using (2.32) and (2.33).

MMSE-based:

Calculation of the MMSE difference is more complicated than the MI case, because

one now needs to jointly consider the power allocation DR and the estimator ΦR.

As mentioned before, the robust power allocation matrix DR is optimum for the

LFS; that is [c.f. (2.17)]:

dR
i = λR

i

[
γR

MMSE

√
σ2R

ηi

(λR
i )

2 −
σ2R

ηi

(λR
i )

2

]+

, ∀i . (2.34)

Likewise, the robust estimator ΦR is also optimum (MSE-minimizing) for the LFS.

From (2.15), we have:

ΦR =
(
DR

(
ΣR

η

)−1
+
(
ΛR
)−1
)−1 (

DR
) 1

2
(
ΣR

η

)−1
(2.35)
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which results in the MMSE for the LFS [c.f. (2.16)]:

MMSE(ΛR,ΣR
η ;ΦR, DR)

=

MK∑

i=1

λR
i

σ−2R
ηi

λR
i dR

i + 1

=
MK∑

i=1

(
1

(
σ−2R

ηi
λR

i dR
i + 1

)2λR
i +

(
σ−2R

ηi
λR

i

)2
dR

i(
σ−2R

ηi
λR

i dR
i + 1

)2σ2R
ηi

)
(2.36)

where the last equality seems redundant but will make our later computations easier.

In the lack of exact knowledge of the true target and noise PSDs, one should

always use the robust power allocation design DR at the transmitter, and the robust

estimator design ΦR at the receiver. Accordingly, for target response h with arbitrary

PSD Λ and noise η with Ση, we have:

MMSE(Λ,Ση;Φ
R, DR)

= tr

{
E

{(
h− ĥ

)(
h− ĥ

)H}}

= tr
{

E
{(

h−ΦR(DRh + η)
) (

h−ΦR(DRh + η)
)H}}

=
MK∑

i=1

(
1

(
σ−2R

ηi
λR

i dR
i + 1

)2λi +

(
σ−2R

ηi
λR

i

)2
dR

i(
σ−2R

ηi
λR

i dR
i + 1

)2 σ2
ηi

)
. (2.37)

Subtracting (2.36) from (2.37), we obtain the MMSE difference in (2.31) as:

MMSE(Λ,Ση;Φ
R, DR)−MMSE(ΛR,ΣR

η ;ΦR, DR)

=

MK∑

i=1

(
1

(
σ−2R

ηi
λR

i dR
i + 1

)2
(
λi − λR

i

)
+

(
σ−2R

ηi
λR

i

)2
dR

i(
σ−2R

ηi
λR

i dR
i + 1

)2
(
σ2

ηi
− σ2R

ηi

)
)

.(2.38)

NMSE-based:

Using the robust MMSE estimator ΦR, we obtain the NMSE for the LFS as [c.f.
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(2.23)]:

NMSE(ΛR,ΣR
η ;ΦR, DR)

= tr

{
E

{(
ΛR
)− 1

2

(
h− ĥ

)(
h− ĥ

)H (
ΛR
)− 1

2

}}

=

MK∑

i=1

1

σ−2R
ηi

λR
i dR

i + 1

=
MK∑

i=1

(
1

(
σ−2R

ηi
λR

i dR
i + 1

)2 +

(
σ−2R

ηi
λR

i

)2
dR

i(
σ−2R

ηi
λR

i dR
i + 1

)2
σ2R

ηi

λR
i

)
(2.39)

where dR
i s come from the optimum NMSE-based power allocation matrix DR for the

LFS [c.f. (2.24)]:

dR
i =


γR

NMSE

√
σ2R

ηi

λR
i

−
σ2R

ηi

λR
i




+

, ∀i . (2.40)

For target response and noise with arbitrary PSDs, we have:

NMSE(Λ,Ση;Φ
R, DR)

= tr

{
E

{
Λ− 1

2

(
h− ĥ

)(
h− ĥ

)H
Λ− 1

2

}}

=

MK∑

i=1

(
1

(
σ−2R

ηi
λR

i dR
i + 1

)2 +

(
σ−2R

ηi
λR

i

)2
dR

i(
σ−2R

ηi
λR

i dR
i + 1

)2
σ2

ηi

λi

)
. (2.41)

As a result, the NMSE difference is given by:

NMSE(Λ,Ση;Φ
R, DR)− NMSE(ΛR,ΣR

η ;ΦR, DR)

=

MK∑

i=1

(
σ−2R

ηi
λR

i

)2
dR

i(
σ−2R

ηi
λR

i dR
i + 1

)2

(
σ2

ηi

λi
−

σ2R
ηi

λR
i

)
. (2.42)

Recall that our robust minimax designs based on MI, MMSE and NMSE criteria

are described by the three inequalities in (2.31), respectively. Now with the specific

expressions available in (2.32), (2.38) and (2.56), we will next find the LFS (ΛR, ΣR
η )
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satisfying these inequalities.

2.4.2 Joint Robust Designs

We have seen in the preceding subsection that the robust transmitter and receiver

designs DR and ΦR will be uniquely specified once the LFS is determined. The LFS

is not only determined by the inequalities in (2.31), but also heavily dependent on

the uncertainty model. In this subsection, we will consider separately two models

allowing for uncertainty in both target and noise PSDs.

Uncertainty Model I:

In [66], a banded uncertainty model for the target PSD is considered: the exact

target PSD is unknown, but lies within a band whose upper and lower bounds are

known. Here, we adopt this model for both the target and noise; that is,

λL
i ≤ λi ≤ λU

i , σ2L
ηi
≤ σ2

ηi
≤ σ2U

ηi
, ∀i . (2.43)

Proposition 2.4 (LFS for Uncertainty Model I): When the uncertain target and

noise PSDs fall within the banded regions with known upper and lower limits and with

no other constraint, the LFS for the joint robust designs consists of:

•
({

λL
i

}MK

i=1
,
{
σ2U

ηi

}MK

i=1

)
for MI criterion;

•
({

λU
i

}MK

i=1
,
{
σ2U

ηi

}MK

i=1

)
for MMSE criterion; and

•
({

λL
i

}MK

i=1
,
{
σ2U

ηi

}MK

i=1

)
for NMSE criterion.

Proof. See Appendix 2-I.

We notice that the LFS for MI- and NMSE-based designs is identical, but differs

from that of the MMSE-based design.
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Uncertainty Model II:

In this model, we assume that the target PSD is known for simplicity and incor-

porate an average power ratio constraint on the noise PSD uncertainty; that is,

σ2L
ηi
≤ σ2

ηi
≤ σ2U

ηi
, ∀i , and

1

MK

∑

i

σ2
ηi

λi
= ρ . (2.44)

Proposition 2.5 (LFS for Uncertainty Model II): When the uncertain noise

PSD falls within the banded region with known upper and lower limits under the

average power ratio constraint, the LFS is given as follows:

σ2R
ηi

=





σ2L
ηi

, if σ2L
ηi

> knλi

σ2U
ηi

, if σ2U
ηi

< knλi

knλi, otherwise

(2.45)

for MI and NMSE criteria, and

σ2R
ηi

=





σ2L
ηi

, if σ2L
ηi

> kmλ2
i

σ2U
ηi

, if σ2U
ηi

< kmλ2
i

kmλ2
i , otherwise

(2.46)

for MMSE criterion, where kn and km (typically kn 6= km) are constants ensuring the

average power ratio constraint and the target PSD is assumed to be known.

Proof. See Appendix 2-II.

Proposition 2.5 is illustrated in Fig. 2.2. Under the average power ratio constraint,

the MI and NMSE criteria again give rise to the same LFS. In fact, the LFS given by

(2.45) is one where {σ2
ηi
/λi}i is made as flat as possible. This result is very intuitive

since the worst interference PSD is the one that perfectly matches the target PSD.
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Figure 2.2: Illustration of the band model for noise PSD: (a) normalized by target
PSD; and (b) normalized by target PSD square.

On the other hand, MMSE-based design suggests a different LFS where the noise

PSD is maximumly matched to the target PSD square. This result is consistent with

the NMSE-based one, considering that the latter is obtained by normalizing the MSE

with respect to the target PSD.

2.5 Sensitivity Analysis of the Optimum Designs

Since the optimum waveform solutions rely on the perfect target and noise PSD

knowledge assumption, a small target overestimation error may introduce consider-

able impact to the optimum designs. In order to address the robustness issue, the

error sensitivity analysis needs to be performed not only at the transmitter in terms

of the waveform design sensitivity, but also at the receiver in terms of the estimation

performance sensitivity.

2.5.1 Waveform Design Sensitivity at the Transmitter

A single error mode accounting for the small overestimation error is considered

in addition to the nominal modes. We have learnt from the Section 2.3 that the
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weakest modes will be discarded due to the total power limit. Therefore, the strength

ratio λe/σ
2
ηe

(for MI and NMSE) or λe/
√

σ2
ηe

(for MMSE) of the overestimation error

mode is a key parameter in the sensitivity analysis. If the error mode is so weak

that the original optimum power allocation solution is not altered at all, then the

estimation performance would not be affected either; otherwise, the performance will

be degraded. We define the strength ratio (λe/σ
2
ηe

)t or (λe/
√

σ2
ηe

)t as the error mode

strength threshold, above which the error mode is allocated certain transmit power.

The power associated with the error mode is denoted as de.

Problem 2.1 Suppose that an overestimation error mode with target strength λe and

noise strength σ2
ηe

appears in addition to the nominal modes. The waveform design

sensitivity is measured by the strength threshold (λe/σ
2
ηe

)t (for MI and NMSE) or

(λe/
√

σ2
ηe

)t (for MMSE), above which the original optimum power allocation solution

for the nominal modes will be altered and de > 0. Then, for each criterion, one needs

to find the highest tolerable strength of the error mode; that is, (λe/σ
2
ηe

)t = maxλe/σ
2
ηe

or (λe/
√

σ2
ηe

)t = maxλe/
√

σ2
ηe

, subject to de = 0.

Next, the strength threshold will be computed for the MI, MMSE, and NMSE

criteria, respectively, followed by the sensitivity comparison among the three criteria

in terms of their strength thresholds.

2.5.1.1 Strength Threshold Calculation

MI-based: Suppose that the target is overestimated by an error mode with strength

λe/σ
2
ηe

. The transmit power allocated to the error mode can be attemptedly expressed

as de|MI = γe
MI −

σ2
ηe

λe
(c.f. (2.10)) with the altered water level (c.f. (2.14)):

γe
MI =

P0 +
∑

i∈SMI

σ2
ηi

λi
+

σ2
ηe

λe

‖SMI‖+ 1
. (2.47)
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According to Problem 2.1, one needs to find the largest power ratio λe/σ
2
ηe

such that

de = 0, which gives rise to the condition

P0 +
∑

i∈SMI

σ2
ηi

λi
+

σ2
ηe

λe

‖SMI‖+ 1
−

σ2
ηe

λe
≤ 0 .

After calculation, one can easily obtain λe/σ
2
ηe
≤ 1/γMI and therefore the strength

threshold:

(
λe/σ

2
ηe

)
t

∣∣∣
MI

=
1

γMI
(2.48)

where γMI is the water level of the original optimum design given in (2.14).

MMSE-based: Likewise, the transmit power potentially allocated to the error mode

based on the MMSE criterion can be written as de|MMSE = γe
MMSE

√
σ2

ηe
− σ2

ηe

λe
(c.f.

(2.17)) with its altered water level (c.f. (2.21)):

γe
MMSE =

P0 +
∑

i∈SMMSE

σ2
ηi

λi
+

σ2
ηe

λe∑
i∈SMMSE

√
σ2

ηi
+
√

σ2
ηe

. (2.49)

To ensure the requirement in Problem 2.1, i.e.,
P0+

∑
i∈SMMSE

σ2
ηi

λi
+

σ2
ηe

λe∑
i∈SMMSE

√
σ2

ηi
+
√

σ2
ηe

√
σ2

ηe
− σ2

ηe

λe
≤ 0,

the error mode strength should satisfy the condition of λe/
√

σ2
ηe
≤ 1/γMMSE with the

strength threshold

(
λe/
√

σ2
ηe

)
t

∣∣∣
MMSE

=
1

γMMSE

(2.50)

where γMMSE is the water level of the original optimum design given in (2.21).

NMSE-based: The allocated power to the error mode based on the NMSE criterion

follows the structure de|NMSE = γe
NMSE

√
σ2

ηe

λe
− σ2

ηe

λe
(c.f. (2.24)) where the altered power

allocation level can be expressed as (c.f. (2.28)):
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γe
NMSE =

P0 +
∑

i∈SNMSE

σ2
ηi

λi
+

σ2
ηe

λe

∑
i∈SNMSE

√
σ2

ηi

λi
+
√

σ2
ηe

λe

. (2.51)

Then the error mode strength that is not sufficiently strong to acquire positive power

allocation, i.e.,
P0+

∑
i∈SNMSE

σ2
ηi

λi
+

σ2
ηe

λe

∑
i∈SNMSE

√
σ2

ηi
λi

+

√
σ2

ηe
λe

√
σ2

ηe

λe
− σ2

ηe

λe
≤ 0, falls into the range λe/σ

2
ηe
≤

1/γ2
NMSE with the error mode strength threshold:

(
λe/σ

2
ηe

)
t

∣∣∣
NMSE

=
1

γ2
NMSE

(2.52)

where γNMSE is the water level of the original NMSE-based optimum design given in

(2.28) for the nominal modes.

Remarks: The error mode strength thresholds for the three criteria are all ex-

clusively associated with their corresponding optimum water levels, which is quite

reasonable. The physical interpretation of the water level is a means to prevent

wasting power on the weakest modes given the total power constraint. As a result,

only the error mode which is stronger than the original allocation level will be allo-

cated nonzero power and change the original solution (and therefore the estimation

performance for sure).

2.5.1.2 Strength Threshold Comparison

The relative magnitude of the error mode strength thresholds suggests the sen-

sitivity comparison among the three criteria. The criterion which has the largest

threshold is the one least sensitive to the overestimation error. Clearly, the three

criteria exhibit different levels of sensitivity. In order to make a comparison, let us

revisit the NMSE-based strength threshold, which can be explicitly written as:
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(
λe

σ2
ηe

)

t

∣∣∣∣∣
NMSE

=
1

γ2
NMSE

=




∑
i∈SNMSE

√
σ2

ηi

λi

P0 +
∑

i∈SNMSE

σ2
ηi

λi




2

<

∑
i∈SNMSE

√
σ2

ηi

λi

P0 +
∑

i∈SNMSE

σ2
ηi

λi

≤ ‖SNMSE‖
P0 +

∑
i∈SNMSE

σ2
ηi

λi

≈
(

λe

σ2
ηe

)

t

∣∣∣∣∣
MI

(2.53)

where the first inequality follows the straightforward fact that

∑
i∈SNMSE

√
σ2

ηi
λi

P0+
∑

i∈SNMSE

σ2
ηi

λi

< 1,

and the second inequality comes from that the average target-to-noise power ratio is

typically no less than 1. As detailed in Section 2.3, although the power allocation

solutions are implemented in distinct fashions, the difference of the mode index sets

for the three criteria can be negligible, especially when the total available power is

sufficiently high. Specifically, SMI and SNMSE are almost the same except that SNMSE

may contain a few more weak modes, which establishes the last approximation in

(2.53). Then, it can be easily deduced from (2.53) that in general the NMSE-based

strength threshold is lower than the MI-based threshold, and therefore the NMSE-

based optimum design is more vulnerable to the overestimation error compared to the

MI-based one. This conclusion can also be appreciated from the optimization ideas

behind these criteria. Since the NMSE criterion puts more effort (weights) than the

MI to those weak modes, it is intuitively more apt to be affected by the weak error

mode than the MI.

Since the MMSE-based strength threshold is expressed in a ratio form different

from the MI- and NMSE-based thresholds, one cannot directly compare the ratios

unless the specific error mode strength is known. A special case of interest can be

obtained by normalizing the error noise mode to 1, and then compare the error target

mode thresholds. Moreover, in the white noise case, it can be readily verified that

the MMSE-based target strength threshold is the same as the MI-based one. Further
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numerical comparison will be given in Section 2.6.

2.5.2 Estimation Performance Sensitivity at the Receiver

The explicit strength threshold formulae for the waveform design at the transmit-

ter have been derived in the preceding subsection. A natural question now is how

the estimation performance at the receiver would be affected once the error mode

strength exceeds the threshold.

For comparison convenience and fairness, here we select the NMSE, denoted by ε,

as the common performance indicator for all three criteria. One could also resort to

MI or MMSE as the common indicator which will lead to the same results. We have

the original NMSE performance (c.f. (2.23)):

εMI =

MK∑

i=1

1

σ−2
ηi

λi[γMI −
σ2

ηi

λi
]+ + 1

=
1

γMI

∑

i∈SMI

σ2
ηi

λi
+ ‖S̄MI‖,

εMMSE =
1

γMMSE

∑

i∈SMMSE

√
σ2

ηi

λi

+ ‖S̄MMSE‖ , (2.54)

εNMSE =
1

γNMSE

∑

i∈SNMSE

√
σ2

ηi

λi

+ ‖S̄NMSE‖ ,

and the corresponding altered NMSE due to the error mode:

εe
MI =

1

γe
MI

∑

i∈SMI

σ2
ηi

λi

+ ‖S̄MI‖ ,

εe
MMSE =

1

γe
MMSE

∑

i∈SMMSE

√
σ2

ηi

λi
+ ‖S̄MMSE‖ , (2.55)

εe
NMSE =

1

γe
NMSE

∑

i∈SNMSE

√
σ2

ηi

λi
+ ‖S̄NMSE‖ .

It should be stressed that we are interested in the small overestimation disturbance

to the optimum waveform design and it is thus sufficient to take into account only the
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weak error mode which cannot alter the mode index sets. As a result, for a particular

criterion, the original and altered NMSEs are only different in the water level terms.

Remarks: Consider the altered water levels given in (2.47), (2.49) and (2.51) for

the MI, MMSE and NMSE criteria, respectively. We notice that the water levels

are affected the most around the strength thresholds, and interestingly, the effect

is diminishing along with the increase of the error mode strength. Accordingly, the

NMSE variation, namely the difference between the altered and original NMSEs, will

be reduced in the presence of relatively strong error mode.

As the second terms in (2.54) and (2.55) are the same for a specific criterion, it

is convenient to measure the variation of the NMSE performance by the normalized

difference of the first terms in (2.55) and (2.54), i.e,

∆εi =
εe

i (1)−εi(1)

εi(1)
=

γi−γe
i

γe
i

, i ∈ {MI, MMSE, NMSE}. (2.56)

In simulations we will still use both terms in (2.55) for the NMSE performance com-

parison to corroborate the validity of the ∆εi measure.

Problem 2.2 Suppose that there is an error mode whose strength exceeds the strength

threshold given either in (2.48), (2.50) or (2.52), for the MI, MMSE, or NMSE crite-

rion, respectively. The problem is to calculate ∆εi defined in (2.56) for each criterion

and use this measure to compare the performance sensitivity among the three criteria.

2.5.2.1 NMSE Performance Variation Calculation

MI-based: With γMI given in (2.14) and γe
MI given in (2.47), we can evaluate (2.56) for

the MI criterion:

∆εMI =

1
‖SMI‖

(
P0 +

∑
i∈SMI

σ2
ηi

λi

)
− σ2

ηe

λe

P0 +
∑

i∈SMI

σ2
ηi

λi
+

σ2
ηe

λe

. (2.57)
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MMSE-based: With γMMSE given in (2.21) and γe
MMSE given in (2.49), the MMSE-

based NMSE variation measure is:

∆εMMSE =

1∑
i∈SMMSE

√
σ2

ηi
/σ2

ηe

(
P0+

∑
i∈SMMSE

σ2
ηi

λi

)
− σ2

ηe

λe

P0 +
∑

i∈SMMSE

σ2
ηi

λi
+

σ2
ηe

λe

. (2.58)

NMSE-based: Likewise, the NMSE variation measure for the NMSE criterion given

γNMSE in (2.28) and γe
NMSE in (2.51) has the following form:

∆εNMSE =

1

∑
i∈SNMSE

√
λe

σ2
ηe

/
λi

σ2
ηi

(
P0+

∑
i∈SNMSE

σ2
ηi

λi

)
− σ2

ηe

λe

P0 +
∑

i∈SNMSE

σ2
ηi

λi
+

σ2
ηe

λe

. (2.59)

2.5.2.2 NMSE Performance Variation Comparison

Now we are ready to compare the NMSE performance sensitivity in terms of ∆εi

among the three criteria. Again, the mode index set difference is negligible. The major

difference among (2.57), (2.58) and (2.59) lies in the first fractions in the numerators.

Therefore, the performance sensitivity analysis amounts to the comparison of these

fractions.

The three fractions are all different, suggesting that the sensitivity levels of the

three criteria are different. The fraction for the MI is a constant irrelevant to the error

mode strength, whereas the NMSE-based fraction is decided by the average strength

ratio between the error mode and the nominal modes. Specifically, since we only

care about small disturbances, the error mode strength λe/σ
2
ηe

for NMSE is typically

smaller than the average nominal mode strength. Therefore, the denominator of the

first fraction in the numerator of (2.59) satisfies
∑

i∈SNMSE

√
λe

σ2
ηe

/
λi

σ2
ηi

< ‖SNMSE‖ ≈

‖SMI‖, resulting in ∆εNMSE > ∆εMI. This means that the NMSE-based design would

experience more performance variation than the MI-based one. As the error mode
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Figure 2.3: (a) Target mode PSD; and (b) noise PSD.

grows, however,
∑

i∈SNMSE

√
λe

σ2
ηe

/
λi

σ2
ηi

approaches ‖SNMSE‖ and the variation differ-

ence shrinks. The MMSE-based performance variation relies on the average ratio of

the error to nominal noise modes. Some special cases may provide more insights of

the comparison. For instance, in the white noise case, the MI and MMSE would have

the same sensitivity level, and the NMSE is relatively more sensitive to the error.

2.6 Simulations

In this section, we provide simulation results to verify our analytical conclusions

and to provide further comparisons among the MI, MMSE and NMSE criteria.

2.6.1 Optimum Power Allocation in Colored Noise

In this simulation, we consider an extended target described by five modes. Fig.

2.3 gives the target and noise PSDs {λi} and {σ2
ηi
}, for i = 1, · · · , 5. The total power

constraint is P0 = 10 dB. Fig. 2.4 shows the optimum power allocation schemes for

all three criteria in the presence of colored noise. Recall that under the assumption of

white Gaussian noise, the MMSE and MI criteria lead to the same water-filling power
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Figure 2.5: MI performance of the optimum power allocation schemes.
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Figure 2.7: NMSE performance of the optimum power allocation schemes.
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allocation [65]. In colored noise, however, we can see from the figure that while the

MI-based solution remains water-filling, the MMSE-based is not. In addition, they

are both different from the NMSE-based solution. In terms of the optimum power

allocation under the colored noise, no connection between the MSEs and the MI is

observed.

The performance curves are plotted in Figs. 2.5, 2.6 and 2.7 for the three merits

(MI, MMSE, and NMSE) based on the three criteria. Evidently, in terms of MI

performance, the MI-based design is optimum, while the MMSE- and NMSE- based

designs both exhibit performance losses. Similar observations can be made for the

MMSE and NMSE performance. These results agree well with our analysis that all

the criteria are different in the presence of colored noise.

2.6.2 Joint Estimator and Power Allocation Robust Design

Since the LFS for the robust design with uncertainty model I is straightforward,

here we will only verify the case with uncertainty model II. The target PSD is assumed

to be available as shown in Fig. 2.3(a). Uncertainty in the colored noise normalized by

target PSD {λi}i is modeled as in Fig. 2.8(a), which has upper bound {σ2U
ηi

/λi}i and

lower bound {σ2L
ηi

/λi}i subject to the average power ratio constraint ρ = 1. The same

noise uncertainty normalized by target PSD square {λ2
i }i is given in Fig. 2.8(b). A

set of arbitrary nominal values is randomly chosen to make performance comparisons.

The MI and NMSE criteria share the identical normalized noise LFS, which is

supposed to be as flat as possible. In Fig. 2.8(a), when the constant kn = 1, the

straight line lies between the upper and lower bounds. According to the MI and

NMSE criteria, the normalized noise LFS which satisfies the average power ratio

constraint should be σ2R
ηi

/λi = 1, ∀i. For MMSE criterion, on the other hand, the

straight line km = 5ρ
∑

i λi = 1.0101 is lying between its corresponding upper and
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Figure 2.8: Noise PSD uncertainty band model: (a) normalized by target PSD for
the MI and NMSE criteria; and (b) normalized by target PSD square for the MMSE
criterion.

lower bounds in Fig. 2.8(b). Therefore the noise LFS for the MMSE criterion is

σ2R
ηi

/λ2
i = 1.0101, ∀i.

We plot the MMSE, NMSE and MI curves in Figs. 2.9, 2.10 and 2.11, respectively,

to show how the robust design optimizes the worst case scenario. There are four curves

for each case: A) nominal PSD with nominal design, which is the best achievable

performance if there is no uncertainty; B) LFS PSD with nominal design, which

is the case when one assumes the nominal PSD in design but encounters the LFS

scenario; C) LFS PSD with robust design, which indicates the worst-case performance

for the robust design; and D) nominal PSD with robust design, which corresponds

to the actual performance when the nominal PSD is applied but the robust design is

used. For MMSE and NMSE criteria, large gaps between B (LFS PSD with nominal
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Figure 2.11: MI performance for the robust designs.

design) curves and C (LFS PSD with robust design) curves illustrate the significant

improvement provided by the robust design for the worst case. This “best worst case”

performance provides a performance lower bound. That is, for any PSD within the

uncertainty region, the performance cannot be worse than this lower bound. This

is evidenced by the D (nominal PSD with robust design) curves, which are bounded

by C (LFS PSD with robust design) curves. For the MI-based design, we see that

the performance is mainly determined by the actual PSD (nominal or LFS) but

hardly affected by the power allocation design (nominal or robust), especially at high

SNR. To find an explanation for this, let us go back to the power allocation scheme

di =
[
γMI −

σ2
ηi

λi

]+
[c.f. (2.10)]. Subject to the average power ratio constraint ρ, the

water-filling level γMI = P0+MKρ
MK

is the same for any possible PSD. Especially when P0

is large, di is dominated by γMI and remains pretty much the same for both nominal

and robust designs. That is the reason why the difference of the MI performance

comes mainly from the different PSDs, but not from the different designs. We can

remark that the robust design does not help much in this case. Despite the small
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quantitative improvement, Fig. 2.11 confirms that the robust design does improve

the LFS performance as well as push up the MI lower bound.

2.6.3 Comparison of Sensitivity to the Overestimation Errors

In this section, we provide the numerical results to verify our sensitivity analysis

and to provide further comparisons among the MI, MMSE and NMSE criteria.

We consider the same extended target described by five modes as Section 2.6.1,

with the nominal target PSD {λi}i ={0.5, 0.8, 1.8, 1.5, 0.35} and noise PSD {σ2
ηi
}i =

{0.2, 1, 2.3, 0.1, 1.7}. The total power constraint is P0 = 10 dB. Fig. 2.4 shows

the optimum power allocation solutions for all three criteria. It can be observed

that the 5th mode is discarded by the MI-based scheme, preserved by the MMSE-

based scheme, but emphasized by the NMSE-based one. The mode index sets SMI =

{1, 2, 3, 4} and SMMSE = SNMSE = {1, 2, 3, 4, 5}. If the error noise mode strength

is normalized to 1, we can calculate the error target mode strength thresholds from

(2.48), (2.50) and (2.52) for the MI, MMSE and NMSE criteria, respectively; that is,

λet
|MI = 1/γMI = 0.3078, λet

|MMSE = 1/γMMSE = 0.2568, and λet
|NMSE = 1/γ2

NMSE =

0.0896. Obviously, the NMSE-based threshold is much lower than the MI-based

one, which confirms that the NMSE-based waveform design is more sensitive to the

overestimation error. In this example, the MMSE-based design is less sensitive than

NMSE but not as robust as the MI. The validity of the strength thresholds can be

further verified in Fig. 2.12, where the error target mode strength is 0.2 within the

range of (λet
|NMSE, λet

|MMSE) in (a) and 0.32 larger than λet
|MI in (b). As a result,

only the most sensitive NMSE-based solution allocates nonzero power to the error

mode in (a), while all three solutions allocate nonzero power to the error mode in (b).

The NMSE performance variation is also compared among the three criteria in

Figs. 2.13 – 2.15, where the error noise mode strength is normalized to 1. For
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Figure 2.12: Altered power allocation solutions: (a) λe = 0.2; and (b) λe = 0.32.

each criterion, three curves are plotted, namely the blue solid curve for the original

NMSE performance, the red dash-dot curve for the altered NMSE performance in the

presence of weak error mode λe = 0.032, and the green dashed curve for a stronger

error mode λe = 0.32. For the weak error strength λe = 0.032 satisfying the average

strength ratio
∑

i∈SNMSE

√
λe

σ2
ηe

/
λi

σ2
ηi

= 0.9558 < ‖SMI‖ (see (2.57) and (2.59)), a larger

NMSE variation of the NMSE-based system than that of the MI-based system can

be clearly observed from the red dash-dot curves in Figs. 2.13 and 2.14. On the

other hand, we have
∑

i∈SMMSE

√
σ2

ηi
/σ2

ηe
= 4.5839 close to ‖SMI‖ (see (2.58)), which

explains why the MI- and MMSE-based designs have the similar red dash-dot curves

shown in Figs. 2.14 and 2.15. Additionally, with a larger error target mode λe = 0.32,

the green dashed curves confirm that all three criteria do not exhibit significant NMSE

performance deterioration, as predicted by our theoretical analysis. Notice also that

the increasing total power does not help reduce the NMSE performance variation. It

is the error mode strength itself that does matter.
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Figure 2.13: The NMSE-based NMSE performance variation.
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Figure 2.14: The MI-based NMSE performance variation.
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Figure 2.15: The MMSE-based NMSE performance variation.

2.7 Conclusions

In this chapter, we studied the optimum waveform design problem for target

parameter estimation. Different from existing works, we considered a mixed MIMO

radar setup for which the waveform optimization problem is meaningful, took into

account the colored noise, incorporated the NMSE as a design criterion in addition

to the MI and MMSE, and derived joint robust designs for both the transmitter

(waveforms) and the receiver (estimator) under various uncertainty models. The

analytical and numerical results suggest that: i) the equivalence between the MI

and MMSE criteria does not hold when the noise is colored; and ii) compared to

MMSE criterion, the NMSE criterion seems to share more similarities with the MI. In

particular, they lead to identical LFS in the robust designs under various uncertainty

models, while the MMSE criterion always suggests otherwise.

Additionally, we analyzed the sensitivity of the optimum designs based all three
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criteria, at both the transmitter side (in terms of the waveform optimization solution)

and the receiver side (in terms of the estimation NMSE performance). We derived

the explicit formulae for the strength thresholds of the single error mode and made

the performance variation comparison among the three criteria. The analysis shows

that: i) all three criteria do not show significant performance deterioration; ii) the

NMSE-based design is more sensitive to the overestimation error than the MI-based

design around the error mode strength threshold; and iii) in the special white noise

case, the MI- and MMSE-based optimum designs result in identical sensitivity level

and both are less sensitive than the NMSE-based design.

Appendix 2-I: Proof of Proposition 2.4

For MI-based robust designs, (2.32) is non-negative if λi

σ2
ηi

≥ λR
i

σ2R
ηi

, ∀i. This suggests

that the LFS should consist of λR
i = λL

i and σ2R
ηi

= σ2U
ηi

, ∀i; For MMSE-based robust

designs, (2.38) is non-positive as long as λi ≤ λR
i and σ2

ηi
≤ σ2R

ηi
, ∀i. Hence the LFS

contains λR
i = λU

i and σ2R
ηi

= σ2U
ηi

, ∀i. For NMSE-based robust designs, (2.56) will be

non-positive if
σ2

ηi

λi
≤ σ2R

ηi

λR
i

, ∀i. That is, the LFS is λR
i = λL

i and σ2R
ηi

= σ2U
ηi

, ∀i.

Appendix 2-II: Proof of Proposition 2.5

To prove Proposition 2.5, we will validate that the given LFSs in (2.45) for the

MI and NMSE criteria or in (2.46) for the MMSE criterion satisfy the inequality

conditions in (2.31).

We first define the following sets of the mode index i for convenience, as marked
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in Fig. 2.2(a): 



θ0
.
=
{
i ∈ {1, · · · , MK} :

σ2L
ηi

λi
≤ kn ≤

σ2U
ηi

λi

}

θ+
.
=
{

i ∈ {1, · · · , MK} :
σ2L

ηi

λi
> kn

}

θ−
.
=
{

i ∈ {1, · · · , MK} :
σ2U

ηi

λi
< kn

}
(2.60)

where θ0, θ+ and θ− form a partition of the whole set of index i. Particularly, on the θ+

set σ2R
ηi

= σ2L
ηi

, and therefore
σ2

ηi

λi
≥ σ2R

ηi

λi
; on the θ− set σ2R

ηi
= σ2U

ηi
and therefore

σ2
ηi

λi
≤

σ2R
ηi

λi
; and the set θ0 can be further divided into two subsets θ+

0 =
{
i ∈ θ0 :

σ2
ηi

λi
≥ σ2R

ηi

λi

}

and θ−0 =
{

i ∈ θ0 :
σ2

ηi

λi
<

σ2R
ηi

λi

}
.

NMSE-based: We substitute (2.40) into (2.56) and let λR
i = λi (due to the known

target PSD assumption):

NMSE(Λ,Ση;Φ
R, DR)−NMSE(Λ,ΣR

η ;ΦR, DR)

=
MK∑

i=1

(
λi

σ2R
ηi

)2
[
γR

NMSE

√
σ2R

ηi

λi
− σ2R

ηi

λi

]+

(
λi

σ2R
ηi

[
γR

NMSE

√
σ2R

ηi

λi
− σ2R

ηi

λi

]+

+ 1

)2

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
. (2.61)

Next, we will evaluate (2.61) in three different cases.

Case 1: dR
i > 0, ∀i. This means that we can remove the “+” sign in (2.61) and

simplify it to:

NMSE(Λ,Ση;Φ
R, DR)− NMSE(Λ,ΣR

η ;ΦR, DR)

=
MK∑

i=1

γR
NMSE

√
λi

σ2R
ηi

− 1

(γR
NMSE)

2

(
σ2

ηi

λi

−
σ2R

ηi

λi

)
(2.62)

Define ∆ =
γR
NMSE

√
λi

σ2R
ηi

−1

(γR
NMSE)

2 . As observed in Fig. 2.2(a), for all i ∈ θ0,
σ2R

ηi

λi
= kn, and

thus ∆ =
γR
NMSE

√
1

kn
−1

(γR
NMSE)

2

.
= c remains a constant. Hence the summation in (2.62) over
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set θ0 is:

∑

i∈θ0

γR
NMSE

√
λi

σ2R
ηi

− 1

(γR
NMSE)

2

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
= c

∑

i∈θ0

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
. (2.63)

For all i ∈ θ+,
σ2

ηi

λi
− σ2R

ηi

λi
≥ 0,

σ2R
ηi

λi
> kn, and thus ∆ < c. So the summation in (2.62)

over set θ+ satisfies

∑

i∈θ+

γR
NMSE

√
λi

σ2R
ηi

− 1

(γR
NMSE)

2

(
σ2

ηi

λi

−
σ2R

ηi

λi

)
≤ c

∑

i∈θ+

(
σ2

ηi

λi

−
σ2R

ηi

λi

)
. (2.64)

For all i ∈ θ−,
σ2

ηi

λi
− σ2R

ηi

λi
≤ 0,

σ2R
ηi

λi
< kn, and hence ∆ > c. We can obtain the

summation over set θ− as:

∑

i∈θ−

γR
NMSE

√
λi

σ2R
ηi

− 1

(γR
NMSE)

2

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
≤ c

∑

i∈θ−

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
. (2.65)

Adding up (2.63), (2.64) and (2.65) will give us the right hand side of (2.62) as the

following:

MK∑

i=1

γR
NMSE

√
λi

σ2R
ηi

− 1

(γR
NMSE)

2

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
≤ c

MK∑

i=1

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
= 0

where the last equality holds due to the average power ratio constraint. In other

words, (2.62) becomes:

NMSE(Λ,Ση;Φ
R, DR)−NMSE(Λ,ΣR

η ;ΦR, DR)≤0. (2.66)

Case 2: Some dR
i = 0 on part of the θ+ set where the weakest modes reside. This

happens when the weakest modes are discarded due to the total power constraint.

Proof for this case is the same as Case 1 for i ∈ θ0 and i ∈ θ−. The only difference
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occurs for those i ∈ θ+, where (2.64) become

∑

i∈{θ+&dR
i >0}

γR
NMSE

√
λi

σ2R
ηi

− 1

(γR
NMSE)

2

(
σ2

ηi

λi

−
σ2R

ηi

λi

)

≤ c
∑

i∈{θ+&dR
i >0}

(
σ2

ηi

λi

−
σ2R

ηi

λi

)
≤ c

∑

i∈θ+

(
σ2

ηi

λi

−
σ2R

ηi

λi

)
. (2.67)

This case can be easily extended to dR
i = 0 on the whole θ+ set and part of the θ+

0

subset.

Case 3: The total power is very limited so that dR
i = 0, for all i ∈ θ+ ∪ θ+

0 and for

some i ∈ θ−0 or even i ∈ θ−. In this case, (2.61) becomes:

NMSE(Λ,Ση;Φ
R, DR)− NMSE(Λ,ΣR

η ;ΦR, DR)

=
∑

i∈{(θ−
0
∪θ−)&dR

i >0}

(
λi

σ2R
ηi

)2

dR
i

(
λi

σ2R
ηi

dR
i + 1

)2

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
≤ 0. (2.68)

Summarizing all three cases, we have verified that the LFS for NMSE criterion in

(2.45) satisfies the inequality condition in (2.31).

MI-based: Substitute (2.33) into (2.32), let λR
i = λi due to the known target PSD
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assumption, and exchange the order of the difference. Then (2.32) becomes:

MI(Λ,ΣR
η ; DR)−MI(Λ,Ση; D

R)

=

MK∑

i=1

log

λi

σ2R
ηi

dR
i + 1

λi

σ2
ηi

dR
i + 1

=
1

ln2

MK∑

i=1

loge

σ2
ηi

λi
dR

i +
σ2

ηi

λi

σ2R
ηi

λi

σ2R
ηi

λi
dR

i +
σ2

ηi

λi

σ2R
ηi

λi

≤ 1

ln2

MK∑

i=1




σ2
ηi

λi
dR

i +
σ2

ηi

λi

σ2R
ηi

λi

σ2R
ηi

λi
dR

i +
σ2

ηi

λi

σ2R
ηi

λi

− 1




=
1

ln2

MK∑

i=1

(
σ2

ηi

λi
− σ2R

ηi

λi

) [
γR

MI
λi

σ2R
ηi

− 1
]+

[
γR

MI −
σ2R

ηi

λi

]+
+

σ2
ηi

λi

. (2.69)

Similar to the NMSE-based proof, on the set partition θ0, θ+ and θ−, we need to

evaluate (2.69) for LFS in three different cases.

Case 1: dR
i > 0, ∀i. This means that we can remove the “+” sign in (2.69):

MI(Λ,ΣR
η ; DR)−MI(Λ,Ση; D

R)

=
1

ln2

MK∑

i=1

(
σ2

ηi

λi
− σ2R

ηi

λi

)(
γR

MI
λi

σ2R
ηi

− 1
)

γR
MI +

(
σ2

ηi

λi
− σ2R

ηi

λi

) . (2.70)

Define ∆ =
γR
MI

λi

σ2R
ηi

−1

γR
MI

. As observed in Fig. 2.2(a), for all i ∈ θ0,
σ2R

ηi

λi
= kn, and thus

∆ =
γR
MI

1

kn
−1

γR
MI

.
= c remains a constant. Hence the summation in (2.70) over set θ0 is

1

ln2

∑

i∈θ0

(
σ2

ηi

λi
− σ2R

ηi

λi

)(
γR

MI
λi

σ2R
ηi

− 1
)

γR
MI +

(
σ2

ηi

λi
− σ2R

ηi

λi

)

≤ 1

ln2

∑

i∈θ0

(
σ2

ηi

λi
− σ2R

ηi

λi

)(
γR

MI
λi

σ2R
ηi

− 1
)

γR
MI

=
c

ln2

∑

i∈θ0

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
. (2.71)
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For all i ∈ θ+,
σ2

ηi

λi
− σ2R

ηi

λi
≥ 0,

σ2R
ηi

λi
> kn, and thus ∆ < c. So the summation in (2.62)

over set θ+ satisfies

1

ln2

∑

i∈θ+

(
σ2

ηi

λi
− σ2R

ηi

λi

)(
γR

MI
λi

σ2R
ηi

− 1
)

γR
MI +

(
σ2

ηi

λi
− σ2R

ηi

λi

)

≤ 1

ln2

∑

i∈θ+

(
σ2

ηi

λi
− σ2R

ηi

λi

)(
γR

MI
λi

σ2R
ηi

− 1
)

γR
MI

≤ c

ln2

∑

i∈θ+

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
. (2.72)

For all i ∈ θ−,
σ2

ηi

λi
− σ2R

ηi

λi
≤ 0,

σ2R
ηi

λi
< kn, and hence ∆ > c. We can obtain the

summation over set θ− as:

1

ln2

∑

i∈θ−

(
σ2

ηi

λi
− σ2R

ηi

λi

)(
γR

MI
λi

σ2R
ηi

− 1
)

γR
MI +

(
σ2

ηi

λi
− σ2R

ηi

λi

)

≤ 1

ln2

∑

i∈θ−

(
σ2

ηi

λi
− σ2R

ηi

λi

)(
γR

MI
λi

σ2R
ηi

− 1
)

γR
MI

≤ c

ln2

∑

i∈θ−

(
σ2

ηi

λi
−

σ2R
ηi

λi

)
. (2.73)

Adding up (2.71), (2.72) and (2.73) will give us the right hand side of (2.70) as the

following:

1

ln2

MK∑

i=1

(
σ2

ηi

λi
− σ2R

ηi

λi

)(
γR

MI
λi

σ2R
ηi

− 1
)

γR
MI +

(
σ2

ηi

λi
− σ2R

ηi

λi

) ≤ c

ln2

MK∑

i=1

(
σ2

ηi

λi

−
σ2R

ηi

λi

)
= 0,

where the last equality holds due to the average power ratio constraint. In other

56



words, (2.70) becomes:

MI(Λ,ΣR
η ; DR)−MI(Λ,Ση; D

R) ≤ 0 . (2.74)

Due to the space limit, here we only give the simple but tedious proof for Case

1 to illustrate the similarity and difference from the NMSE-based proof. Case 2 and

Case 3 can be readily derived by analogy, which all result in the inequality condition

MI(Λ,ΣR
η ; DR)−MI(Λ,Ση; D

R) ≤ 0.

MMSE-based: A new partition should be defined for the mode index i based on the

MMSE criterion, as marked in Fig. 2.2(b):





ϑ0
.
=
{
i ∈ {1, · · · , MK} :

σ2L
ηi

λ2
i

≤ km ≤
σ2U

ηi

λ2
i

}

ϑ+
.
=
{
i ∈ {1, · · · , MK} :

σ2L
ηi

λ2
i

> km

}

ϑ−
.
=
{
i ∈ {1, · · · , MK} :

σ2U
ηi

λ2
i

< km

}
. (2.75)

Similar to the NMSE- and MI- based cases, this new partition has the following

property: ∀i ∈ ϑ+, σ2R
ηi

= σ2L
ηi

, and therefore
σ2

ηi

λ2
i

≥ σ2R
ηi

λ2
i

; ∀i ∈ ϑ−, σ2R
ηi

= σ2U
ηi

and therefore
σ2

ηi

λ2
i

≤ σ2R
ηi

λ2
i

; and the set ϑ0 can be further divided into two subsets

ϑ+
0 =

{
i ∈ ϑ0 :

σ2
ηi

λ2
i

≥ σ2R
ηi

λ2
i

}
and ϑ−

0 =
{
i ∈ ϑ0 :

σ2
ηi

λ2
i

<
σ2R

ηi

λ2
i

}
.
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Substituting (2.34) into (2.38) and letting λR
i = λi, we will obtain:

MMSE(Λ,Ση;Φ
R, DR)−MMSE(Λ,ΣR

η ;ΦR, DR)

=
MK∑

i=1

(
λi

σ2R
ηi

)2

λi

[
γR

MMSE

√
σ2R

ηi

λ2
i

− σ2R
ηi

λ2
i

]+

(
λi

σ2R
ηi

[
γR

MMSE

√
σ2R

ηi
− σ2R

ηi

λi

]+
+ 1

)2

(
σ2

ηi
− σ2R

ηi

)

=
MK∑

i=1

(
λi

σ2R
ηi

)2

λ2
i

[
γR

MMSE

√
σ2R

ηi

λ2
i

− σ2R
ηi

λ2
i

]+

(
λi

σ2R
ηi

[
γR

MMSE

√
σ2R

ηi
− σ2R

ηi

λi

]+
+ 1

)2

(
σ2

ηi

λi

−
σ2R

ηi

λi

)
. (2.76)

On analogy of the NMSE proof, for MMSE-based LFS to be (2.46), the proof amounts

to bounding (2.76) on the three sets ϑ0, ϑ+ and ϑ−. The procedure is similar to the

one used for the NMSE proof and will be omitted here.
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CHAPTER 3

ML TOA ESTIMATION OF IR UWB SIGNALS FOR TARGET

LOCALIZATION

Rapid and accurate timing synchronization is the first and foremost task in ultra-

wideband (UWB) systems. The data-aided timing with dirty templates (TDT) al-

gorithm introduced in [64] is a promising method with low complexity and relaxed

operation conditions in the presence of unknown time hopping and multipath channel.

Its optimality, however, remains unexplored. In this chapter, we develop the prac-

tical maximum-likelihood (ML) timing algorithm and obtain its optimum training

sequence. We show that the optimum training sequence of the ML timing estimator

coincides with that of the TDT algorithm. In addition, we prove that, using this

training sequence, the ML algorithm can be simplified, and that the simplified ML

(SML) is equivalent to TDT.

3.1 Motivation

Location awareness is rapidly becoming an essential feature of many commercial,

public service, and military wireless networks. Information collected or communi-

cated by a wireless node is often meaningful only in conjunction with knowledge of

the node’s location [60]. Location-aware wireless networks have broad applications

covering from 911 emergency services [8] to asset tracking [24], from health monitoring

[7] to intelligent transportation.

For a large scale sensor network, it is impossible to include a global position-
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ing system (GPS) receiver on each device, as it is cost and energy prohibitive, not

sufficiently robust to jamming for military applications, and limited to outdoor appli-

cations. Instead, we consider the localization problem in which some small number

of sensors, referred to as base stations/anchors/beacons/reference nodes, can obtain

their coordinates through GPS and the rest unknown-location nodes, referred to as

mobiles/agents/targets, must determine their own coordinates.

The localization process typically consists of two phases: measurement phase and

location update phase. During the first phase, targets obtain signal measurements

based on direct communication with neighboring anchors and/or targets. In the sec-

ond phase, the targets can infer their locations based on the signal measurements and

the location information of the neighboring nodes. For distanced-based localization

schemes, if a target node can obtain at least three measurements from its neighbors,

its location can be estimated through trilateration.

The most popular distance measurement methods are based on Received Signal

Strength (RSS) and Time-Of-Arrival (TOA) metrics [51]. RSS based techniques

measure the power of the signal at the receiver. Based on the known transmit power,

the effective propagation loss can be calculated. Theoretical and empirical models

are used to translate this loss into a distance estimate. On the other hand, TOA

based methods can translate the propagation time directly into distance, given the

signal propagation speed. RSS and TOA give the range information that is used by

the trilateration technique. For the time based localization, in the absence of the

common time base, Time-Difference-Of-Arrival (TDOA) is used instead of TOA and

leads to the hyperbolic localization.

The underlying transmission technology is a critical factor in the estimate accu-

racy for various distance measurement methods. Ultrawide bandwidth (UWB) sig-

nals exhibit prominent features, enabling the UWB systems inherently well suited for
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localization. UWB can access Giga Hertz (GHz) level bandwidth by either trans-

mitting nanosecond-wide pulses or the aggregation of subband signals each with

bandwidth over 500MHz. These correspond to two UWB transmission approaches,

namely impulse radio (IR) and multi-band orthogonal frequency division multiplexing

(MB-OFDM). The desired capabilities of UWB resulted from utilization of ultrawide

bandwidth include fine delay resolution, simple implementation for multiple-access

communications, and obstacle penetration capabilities [60].

RSS is not very suitable for UWB localization, because the RSS approach does

not benefit from the huge bandwidth of UWB [26]. Therefore, time based localization

is the most widely adopted solution for UWB systems such as the IEEE 802.15.4a

low rate WPAN [1].

Traditionally, the targets are only allowed to communicate with the anchors. In

the second location update phase, once the target obtain sufficient distance measure-

ments, i.e., three for two-dimensional and four for three-dimensional setup, from the

anchors within transmission range, its location can be estimated. An emerging lo-

calization mode allows communications between the unknown-location target nodes,

which is known as cooperative localization. In general, cooperative localization can

dramatically increase localization performance in terms of both accuracy and coverage

[60, 51, 47].

In this chapter, we focus on the first distance measurement phase based on TOA

estimation using UWB signals. UWB technology exhibits prominent features in many

wireless communications, networking and localization applications. Since the ultra-

short pulse waveform is transmitted at very low power in UWB systems [63, 58],

accurate and rapid timing estimation becomes one of the most critical challenges.

Without invoking impractical assumptions as in several UWB timing research

(see e.g., [22, 29, 38]) such as known multipath propagation, timing with dirty tem-
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plates (TDT) algorithms developed in [64] are feasible for realistic UWB settings.

The most attractive merits of TDT include its low complexity and applicability in

narrowband and wideband systems with a single user or multiple ones as long as the

intersymbol interference (ISI) is absent or avoided. In [64], both the non-data-aided

and data-aided modes are investigated by searching the maximum cross correlation

of successive symbol-long received segments. The training sequence used in [64] for

data-aided TDT has a repeated pattern {+1, +1,−1,−1}, with which the data-aided

TDT can achieve very rapid acquisition by using as few as four training symbols.

More recently, its digital counterparts are investigated in [61], which shows that the

digital TDT algorithms remain effective even with very-low-resolution digital UWB

receivers. Despite all these appealing advantages, the optimality issue of TDT has

never been thoroughly explored.

In this chapter, we address this issue via the establishment of a data-aided max-

imum likelihood (ML) timing algorithm. Based on the ML criterion, the estimation

of all multipath gains and delays was pursued in [43] and the estimation performance

was analyzed in [13]. However, [43] is based on an unrealistic multipath channel

model which assumes no inter-path overlapping. The real channel with a large num-

ber of dense taps would make this method impossible to implement. Unlike [43], we

focus on the estimation of a single parameter, namely, the delay of the first arriving

path, without invoking any unrealistic channel model assumption. We will show that

although our ML estimator does not explicitly involve the channel information, it is

able to collect multipath energy without channel estimation.

Considering the ML acquisition performance in terms of the probability of detec-

tion, we obtain the unique optimum training pattern in the sense of acquisition speed

and consistency. By using this optimum training sequence, the ML algorithm can

be simplified. Interestingly, we will show that the simplified ML (SML) and TDT
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estimators share the identical optimum training sequence and estimation operations.

Furthermore, it can be proved that the criterion and performance of the TDT al-

gorithm are essentially the same as those of the SML algorithm. These lead to the

conclusion that the data-aided TDT algorithm is ML optimum.

Fine timing with high accuracy is not only desired in communications [54], but

also critical to localization with UWB technology [27, 28, 16]. While the data-aided

SML and TDT estimators can theoretically achieve any resolution level, from the

consideration of practical environment, they may suffer from the ambiguity induced

by the weak tail of the multipath channel and the extent of the noise-only region

between consecutive symbols. To circumvent the ambiguity, we complement the SML

and TDT algorithms with one more step by searching the peak of the first-order

difference of the objective functions, which facilitates the SML and TDT comparison

at the chip-level fine timing.

The rest of the chapter is organized as follows. Section 3.2 outlines the signal

model for impulse radio UWB systems. In Section 3.3, we will develop the ML timing

algorithm and its acquisition performance in terms of probability of detection. In

Section 3.4, the optimum training sequence pattern is derived and the SML algorithm

is obtained. We prove the optimality of the data-aided TDT algorithm in Section 3.5

and discuss the implementation issue in Section 3.6. Simulation results and concluding

remarks are provided in Section 3.7 and 3.8, respectively.

3.2 Impulse-Radio (IR) UWB Signal Model

In impulse-radio UWB systems, every information symbol is transmitted over a

duration of Ts consisting of Nf frames. During each frame of Tf seconds, a data-

modulated ultra-short pulse p(t) with duration Tp ≪ Tf is transmitted. With binary
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pulse amplitude modulation (PAM), the training symbols are drawn from the binary

alphabet {±1}. Then the transmitted waveform for a single user is modeled as [64, 59]:

v(t) =
√
E

+∞∑

n=0

snpT (t− nTs) (3.1)

where E is the energy per pulse and pT (t) represents the symbol-long transmitted

waveform composed of Nf pulses:

pT (t) =

Nf−1∑

j=0

p(t− jTf − cjTc) . (3.2)

The pulse during the jth frame is shifted by the time-hopping code cj, which takes

integer values in the range of [0, Nc − 1]. The chip duration is Tc = Tf/Nc.

After propagating through a multipath channel with Lc taps, the received wave-

form can be written as:

r(t) =
Lc−1∑

l=0

αlv(t− τl) + η(t) (3.3)

where αl and τl denote the attenuation and delay of the lth channel tap, and η(t) is the

zero-mean additive white Gaussian noise (AWGN) with power spectral density (PSD)

N0/2. In (3.3), the channel is assumed to be either deterministic or quasi-static over

one transmission burst. We decouple the propagation delay τ0 from the dispersive

effects of the multipath channel by defining a new set of relative delays with respect

to τ0, namely τl|0
.
= τl − τ0, ∀l. Without loss of generality (WLOG), τ0 ∈ [0, Ts) is

assumed throughout this chapter. Then the symbol-long received waveform capturing
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the multipath channel effects is given by:

pR(t) =

Lc−1∑

l=0

αlpT (t− τl|0) (3.4)

and the received waveform can be rewritten as:

r(t) =
√
E

+∞∑

n=0

snpR(t− nTs − τ0) + η(t) . (3.5)

To develop the ML timing algorithm and compare it with the TDT ones, we assume

that ISI is absent, but inter-frame interference may be present, as in [64]. This

condition can be easily satisfied by constraining the last frame of each symbol such

that the nonzero support of pR(t) does not extend beyond the range [0, Ts). Note

that this setup can also accommodate high-rate transmissions since the inter-frame

interference is allowed.

For convenient manipulation, we divide the received signal into K consecutive

symbol-long segments and shift them so that they all lie in the range t ∈ [0, Ts).

Then each shifted segment can be expressed as:

rk(t)
.
= r(t + kTs)rect(t), k = 1, 2, · · · , K (3.6)

where rect(t) = 1, t ∈ [0, Ts), is the window function. Substituting (3.5) into (3.6)

and defining ηk(t)
.
= η(t + kTs)rect(t), we have the received segments:

rk(t) =
√
E

+∞∑

n=0

snpR(t + kTs − nTs − τ0)rect(t) + ηk(t), ∀k . (3.7)

Since pR(t) and rect(t) are confined within a finite support [0, Ts), both 0 ≤ t+kTs−

nTs − τ0 < Ts and 0 ≤ t < Ts should be satisfied. Then it can be easily induced that
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for a certain segment k only n = k − 1 and n = k can contribute nonzero summands

to rk(t), and (3.7) can be explicitly expressed as ∀k:

rk(t) =
√
E (sk−1pR(t + Ts − τ0) + skpR(t− τ0)) rect(t) + ηk(t). (3.8)

Stack the total K received segments into a vector, and define r(t)
.
= [r1(t), · · · , rK(t)]T ,

s1
.
= [s0, · · · , sK−1]

T , s2
.
= [s1, · · · , sK ]T and η(t)

.
= [η1(t), · · · , ηK(t)]T . Then the sig-

nal model can be rewritten in the following compact vector form:

r(t) =
√
Es1p

(a)
R (t; τ0) +

√
Es2p

(b)
R (t; τ0) + η(t) (3.9)

where p
(a)
R (t; τ0)

.
= pR(t + Ts − τ0)rect(t) and p

(b)
R (t; τ0)

.
= pR(t − τ0)rect(t) consist

of the circularly shifted version of the symbol-long received waveform pR(t). It is

noteworthy that p
(a)
R (t; τ0) and p

(b)
R (t; τ0) are not overlapping in time; that is, for any

time instance during [0, Ts), only one of the two can be nonzero. Specifically, the

former is strictly zero for t ∈ [τ0, Ts); and the latter for t ∈ [0, τ0).

3.3 The ML Timing Algorithm

In this section, we will first develop the ML algorithm to estimate τ0 for arbi-

trary known transmitted symbol sequences, and then evaluate the timing acquisition

performance of the algorithm.

Under the signal model in (3.9), the deterministic but unknown parameters are:

i) the overall received symbol-long waveform pR(t) (or equivalently, its circularly

shifted version p
(a)
R (t; τ0) and p

(b)
R (t; τ0)) which carries the dispersive multipath channel

information; and ii) the propagation delay τ0. Given pR(t) and τ0, the log-likelihood
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function for (3.9) bears the form [33]:

ln Λ (r(t); pR(t), τ0) ∝
∫ Ts

0

− ‖ r(t)−
√
Es1p

(a)
R (t; τ0)−

√
Es2p

(b)
R (t; τ0) ‖2 dt

∝
∫ Ts

0

2
√
ErT (t)

(
s1p

(a)
R (t; τ0) + s2p

(b)
R (t; τ0)

)

− E ‖ s1p
(a)
R (t; τ0) + s2p

(b)
R (t; τ0) ‖2 dt . (3.10)

Our task is to obtain the ML estimates for pR(t) and τ0 by maximizing (3.10). We use

the notation x̃ to indicate a conjecture of unknown parameter x. The ML estimation

will be accomplished in two stages: based on a fixed conjecture τ̃0, we first obtain

p̂R(t; τ̃0) as a function of τ̃0; then we replace pR(t) with p̂R(t; τ̃0) in (3.10) to find the

ML estimate of τ̂0.

At the first stage, the integral can be removed without affecting the optimality,

since the ML estimate of pR(t) is to be obtained in an instantaneous manner; that

is, keeping a guess τ̃0 unchanged, the ML estimate p̂R(t; τ̃0) will be obtained by max-

imizing the integrand in (3.10). As emphasized before, with any given trial value τ̃0,

p
(a)
R (t; τ̃0) and p

(b)
R (t; τ̃0) are non-overlapping in time. Accordingly, we can divide r(t)

into two disjoint parts in time: r(t)rect(t + Ts− τ̃0) for t ∈ [0, τ̃0) and r(t)rect(t− τ̃0)

for t ∈ [τ̃0, Ts). The circularly shifted waveforms p
(a)
R (t; τ̃0) and p

(b)
R (t; τ̃0) can thus be

estimated separately. Specifically, the objective function for p
(a)
R (t; τ̃0) is [c.f. (3.10)]:

Ja(t; τ̃0) = 2
√
ErT (t)s1p

(a)
R (t; τ̃0)− E ‖ s1p

(a)
R (t; τ̃0) ‖2, t ∈ [0, τ̃0) .

Taking the derivative of Ja(t; τ̃0) with respect to the instantaneous p
(a)
R (t; τ̃0), and

setting it to zero, we have the ML estimate of p
(a)
R (t; τ̃0):

p̂
(a)
R (t; τ̃0) =

1

K
√
E

K∑

k=1

sk−1rk(t)rect(t + Ts − τ̃0), t ∈ [0, τ̃0) . (3.11)
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Likewise, the ML estimate of p
(b)
R (t; τ̃0) can be obtained by maximizing the following

objective function [c.f. (3.10)]:

Jb(t; τ̃0) = 2
√
ErT (t)s2p

(b)
R (t; τ̃0)− E ‖ s2p

(b)
R (t; τ̃0) ‖2, t ∈ [τ̃0, Ts)

and the resultant estimate is:

p̂
(b)
R (t; τ̃0) =

1

K
√
E

K∑

k=1

skrk(t)rect(t− τ̃0), t ∈ [τ̃0, Ts) . (3.12)

At the second stage, we plug (3.11) and (3.12) back into (3.10), and discard the

norm square term whose integral is not affected by the delay candidate τ̃0. It turns

out that the new ML objective function for τ̃0 becomes:

JML(τ̃0) =
1

K2

∫ Ts

0

(
rT (t)s1

K∑

k=1

sk−1rk(t)rect(t + Ts − τ̃0)

+ rT (t)s2

K∑

k=1

skrk(t)rect(t− τ̃0)

)
dt

=
1

K2

K∑

m=1

K∑

k=1

∫ Ts

0

(rm(t)rk(t)sm−1sk−1rect(t + Ts − τ̃0)

+ rm(t)rk(t)smskrect(t− τ̃0)) dt (3.13)

and the ML estimation of τ0 reduces to a maximization problem:

τ̂0 = arg max
τ̃0

JML(τ̃0) . (3.14)

Proposition 3.1 (ML Timing Estimation): The ML timing estimator can be

implemented in four steps:

• Step 1: Take K received segments rk(t), k = 1, 2, · · · , K, as in (3.8);
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0

Tx:

Rx:

Tf Ts = NfTf

τ0

τ0

τ̃0

r1(t) r2(t)

ML estimation:

s0 s1 s2

EA2(τ̃0) EA1EB(τ̃0)

r1(t)s0 r1(t)s1 r2(t)s1 r2(t)s2

Figure 3.1: Illustration of the ML timing algorithm, Ts = 3Tf , K = 2.

• Step 2: For each candidate τ̃0 calculate the K2 cross (and auto) correlations

among all pairs of the segments as in (3.13);

• Step 3: Average the K2 correlations as suggested by (3.13);

• Step 4: Choose the τ̃0 which maximizes JML(τ̃0) as the ML estimate τ̂0 according

to (3.14).

From Proposition 3.1 one should be aware that the computational complexity of

the ML timing estimator is very high. For each τ̃0 evaluation, one need to calculate

K2 correlations and K2 summations. The high complexity is expected to be reduced

for practical implementation.

The ML timing estimation is illustrated in Fig. 3.1, where Ts = 3Tf and K =

2. While the thick solid boxes bound the received segments rk(t), the dashed lines

indicate two windows within a received segment based on the shift candidate τ̃0:

rect(t + Ts− τ̃0) and rect(t− τ̃0). When searching across τ̃0, the segments themselves

do not change, but the window functions rect(t + Ts − τ̃0) and rect(t− τ̃0) shift with
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τ̃0; that is, the solid boxes in the figure do not move, but the dashed windows shift.

In order to evaluate the performance of the ML estimator, we need to find the

statistical properties of the objective function. Re-express JML(τ̃0) as the sum of its

noise-free part JML
0 (τ̃0) and noise term ξML(τ̃0):

JML(τ̃0) = JML
0 (τ̃0) + ξML(τ̃0) . (3.15)

Let us first consider the noise-free part:

JML
0 (τ̃0) =

1

K2

K∑

m,k=1

∫ Ts

0

(ρm(t)ρk(t)sm−1sk−1rect(t + Ts − τ̃0)

+ρm(t)ρk(t)smskrect(t− τ̃0)) dt (3.16)

where ρk(t) denotes the signal part of rk(t). Assuming that the trial propaga-

tion delay τ̃0 < τ0 WLOG, we further define EA1
.
=
√
E
∫ Ts−τ0
0

p2
R(t)dt, EA2(τ̃0)

.
=

√
E
∫ Ts−τ0+τ̃0

Ts−τ0
p2

R(t)dt, and EB(τ̃0)
.
=
√
E
∫ Ts

Ts−τ0+τ̃0
p2

R(t)dt. Then (3.16) becomes

JML
0 (τ̃0) =

1

K2

K∑

m,k=1

(s2
ms2

kEA1 + s2
m−1s

2
k−1EA2(τ̃0) + sm−1smsk−1skEB(τ̃0))

=
1

K2

K∑

m,k=1

(EA(τ̃0) + sm−1smsk−1skEB(τ̃0)) (3.17)

where EA(τ̃0)
.
= EA1 + EA2(τ̃0). Notice that EA(τ̃0) + EB(τ̃0) = E

∫ Ts

0
p2

R(t)dt = ER is

the unknown but constant energy of a received segment independent of the trial value

τ̃0. The noise-free part of the objective function can thus be simplified as

JML
0 (τ̃0) = ER −

∆K

K2
EB(τ̃0) (3.18)

where ∆K
.
=
∑K

m,k=1(1−sm−1smsk−1sk) is a positive (as long as not all sm−1smsk−1sk =
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1, ∀m, k, which can be easily avoided.) parameter determined by the transmitted pilot

sequence. By definition, the condition of correct timing τ̃0 = τ0 ensures that EB(τ̃0)

vanishes and JML
0 (τ̃0) achieves its unique maximum ER. Indeed, in Fig. 3.1, the corre-

lation between the two segments at the ML stage is essentially EA1 +EA2(τ̃0)−EB(τ̃0),

which clearly achieves its maximum when EB(τ̃0) = 0 iff τ̃0 = τ0. It is necessary

to point out that since ∆K is a sum of K2 constants, its value is on the order of

K2, or can be explicitly written as αK2, where α is a constant. As K increases,

JML
0 (τ̃0) = ER − αEB(τ̃0) will not converge to a constant ER; that is, the effectiveness

of JML
0 (τ̃0) does not deteriorate at large K, as implied by (3.18).

We now go to the noise term ξML(τ̃0) in (3.15). As shown in Appendix 3-I, ξML(τ̃0)

is Gaussian distributed with mean and variance:

E{ξML(τ̃0)} =
N0Ts

2K
,

var{ξML(τ̃0)} =
2N0J

ML
0 (τ̃0)

K
+

N2
0 BTs

K2
. (3.19)

Then, one can obtain the mean and variance of the overall Gaussian distributed ML

objective function:

E{JML(τ̃0)} = JML
0 (τ̃0) + E{ξML(τ̃0)} = JML

0 (τ̃0) +
N0Ts

2K
,

var{JML(τ̃0)} = var{ξML(τ̃0)} =
2N0J

ML
0 (τ̃0)

K
+

N2
0 BTs

K2
. (3.20)

As one can see from (3.20), JML(τ̃0) asymptotically converges to JML
0 (τ̃0) as K →∞,

suggesting the optimality of the ML estimator.

We adopt the probability of detection lower bound P d as in [64] to evaluate the

coarse timing (acquisition) performance of the ML algorithm. Instead of estimating

the true τ0, coarse timing aims at finding n0 such that |n0Ti−τ0| < Ti, where Ti is the
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searching step size in the ML algorithm. Correspondingly, the maximization problem

in (3.14) becomes:

n̂0 = arg max
ñ0

JML(ñ0Ti) , (3.21)

and the probability of detection is given by

PML
d = Pr{n̂0 = n0} = Pr{max

ñ0

JML(ñ0Ti) = JML(n0Ti)} . (3.22)

Since JML(n0Ti) is Gaussian distributed, according to [64], the lower bound of (3.22)

is

PML
d =

∏

ñ0 6=n0

F

(
E{JML(n0Ti)} − E{JML(ñ0Ti)}√
var{JML(n0Ti)}+ var{JML(ñ0Ti)}

)
, (3.23)

where F (·) is the cumulative distribution function (cdf) of Gaussian distribution with

zero mean and unit variance.

Substituting the mean and variance of the objective function given in (3.20), we

can obtain the probability of detection lower bound:

PML
d =

∏

ñ0 6=n0

F

(
∆K(EB(ñ0Ti)− EB(n0Ti))√

4N0ERK3−2N0∆K(EB(ñ0Ti)− EB(n0Ti))K + 2N2
0BTsK2

)
.(3.24)

Remarks: i) As K increases the variance of the objective function decreases and

the probability of detection lower bound increases. This suggests that the timing

performance would benefit from more correlation averaging; and ii) As ∆K increases

the variance of the objective function is reduced and the probability of detection lower

bound increases. Intuitively, (3.18) provides another evidence that the objective

function becomes sharper along with the increase of ∆K , making n0 easier to be
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detected. Since ∆K is determined by the transmitted symbol sequence, one can

imagine that the acquisition performance would be markedly improved by optimizing

the training sequence such that ∆K is maximized.

3.4 Training Sequence Design and The SML Algorithm

3.4.1 The Optimum Training Sequence Pattern

Keeping in mind our goal of maximizing ∆K =
∑K

m,k=1(1−sm−1smsk−1sk), we find

that the value of ∆K is determined by the signs of the consecutive symbols. Define

ck
.
= sk−1sk ∈ {±1}, k = 1, · · · , K, as the product of two consecutive symbols, which

must belong to one and only one of the two groups: one is denoted by Γ+
.
= {ck, ∀k :

ck = 1} with cardinality K+; the other is Γ−
.
= {ck, ∀k : ck = −1} with cardinality

K−. Evidently, K+ + K− = K.

Lemma 3.1 For a specific K, max{∆K} = K2 is achieved when K+ = K− = K/2;

that is, half of the {ck}k elements belong to Γ+ and the other half belong to Γ−.

Proof. Substituted with cm and ck, ∆K =
∑K

m,k=1(1 − cmck). Only those (m, k)

pairs which satisfy the condition cmck = −1 can contribute positive values to ∆K .

Evidently, cmck = −1 holds only when cm and ck come from different groups Γ+

or Γ−. In other words, ∆K can be simplified to ∆K =
∑

{cm∈Γ+,ck∈Γ−}(1 − cmck) +

∑
{cm∈Γ−,ck∈Γ+}(1−cmck) = 4K+K−. Together with the sum constraint K++K− = K,

the ∆K maximization problem is essentially equivalent to

max 4K+(K −K+), for 0 ≤ K+ ≤ K . (3.25)

It can be easily verified that the quadratic function of K+ achieves its unique max-
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imum K2 when K+ = K/2 and correspondingly K− = K/2. This completes the

proof.

Notice that we only considered even K WLOG, since odd K has the same maxi-

mization result with its even neighbor K−1. Indeed, for odd K, max{∆K} = (K−1)2

when K+ = ⌊K/2⌋ and K− = ⌊K/2⌋+ 1, or K+ = ⌊K/2⌋+ 1 and K− = ⌊K/2⌋.

Lemma 3.1 gives the condition that maximizes ∆K for a particular K. How-

ever, the optimum training sequence should also be consistent; that is, applicable

to arbitrary K. To this end, we first notice that the ML timing estimator re-

quires K ≥ 2, since when K = 1, JML
0 (τ̃0) = ER [c.f. (3.17)] is simply a constant

and gives no information about τ0. Following Lemma 3.1, the consistency prop-

erty can be ensured ∀K ≥ 2 by: i) partitioning the {ck}k sequence into doublets

{c2n−1 c2n}, n = 1, 2, · · · , K/2; and ii) designing the training sequence such that

each {c2n−1 c2n} doublet contains a “+1” and a “−1”, i.e., each doublet should be

either {+1,−1} or {−1, +1}. With this condition, the {ck}k sequence always has

K+ = K− regardless of K. Note that, the special K = 2 case which ensures rapid

acquisition using as few as 2 segments (3 symbols) is a natural corollary of the con-

sistency property.

In addition, to guarantee that the “+1”, “−1” pairing condition holds for any

doublet starting from odd- and even-indexed symbols, all the doublets should be the

same. In other words, they are either all {+1,−1} or all {−1, +1}. As a result,

this gives rise to a unique training sequence {sk}k consisting of the repeated pattern

{+1, +1,−1,−1} (or its circularly shifted versions). We summarize the analysis in

the following result:
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Proposition 3.2 (Optimum Training Sequence): The unique optimum training

sequence for the ML estimator has the structure

sk = (−1)⌊k/2⌋ (3.26)

which ensures rapid acquisition using as few as 3 symbols and is applicable to arbitrary

K(≥ 2).

Interestingly, this optimum training sequence for the ML estimator is identical to

that for the TDT estimator [64]. We will discuss more about the relationship between

the ML and TDT estimators in Section 3.5.

3.4.2 Simplified ML (SML) Algorithm

For simplicity, denote the integrals in the objective function for τ̃0 (3.13) as jm,k.

Considering the partition of the training sequence by groups Γ+ and Γ−, (3.13) can

be rewritten as

JML(τ̃0) =
1

K2





∑

{(m,k):cm,ck∈Γ+}

jm,k +
∑

{(m,k):cm,ck∈Γ−}

jm,k (3.27)

+
∑

{(m,k):cm∈Γ+,ck∈Γ−}

jm,k +
∑

{(m,k):cm∈Γ−,ck∈Γ+}

jm,k



 .

Consider the first two summations. Since cm and cn are chosen from the same group

(namely Γ+ in the first summation and Γ− in the second summation), the noise-free

parts of the summands are exclusively EA(τ̃0)+EB(τ̃0) = ER [c.f.(3.17)]. Furthermore,

it is not difficult to verify that the noise terms in the first two summations do not

change with the shift candidate τ̃0. Therefore, the first two summations are nothing
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but constants, which provide no information on τ0. If one knows which (cm, ck) pairs

give rise to these summands, one can avoid calculating their corresponding cross

correlations.

The optimum training sequence given by (3.26) precisely allows one to achieve this.

The repeated pattern {+1, +1,−1,−1} indicates that the received K symbol-long

segments can be divided into two groups by simply checking their indices. Specifically,

if the symbol-long received segment with odd index r2k−1(t) carries two successive

symbols satisfying c2k−1 = s2k−2s2k−1 ∈ Γ+ (or Γ−), then the symbol-long received

segment with even index r2k must carry two successive symbols satisfying c2k =

s2k−1s2k ∈ Γ− (or Γ+). Retaining only the cross correlations between the two groups,

and assuming an even K WLOG, we can obtain the simplified ML (SML) objective

function as

JSML(τ̃0) =
2

K2

K/2∑

m,k=1

jSML
m,k ,

jSML
m,k =

∫ Ts

0

r2m−1(t)r2k(t)(−1)⌊
2m−2

2
⌋(−1)⌊

2k−1

2
⌋rect(t + Ts − τ̃0)

+ r2m−1(t)r2k(t)(−1)⌊
2m−1

2
⌋(−1)⌊

2k
2
⌋rect(t− τ̃0) dt. (3.28)

Note that the last two summation terms in (3.27) are exactly the same, which explains

the reason why coefficient 2 shows up as a scaling factor in (3.28).

We can rewrite JSML(τ̃0) by putting the double summations into the integral and

simplify it to:

JSML(τ̃0) =
1

2

∫ Ts

0


 2

K

K/2∑

m=1

(−1)mr2m−1(t)




 2

K

K/2∑

k=1

(−1)kr2k(t)




· (rect(t + Ts − τ̃0)− rect(t− τ̃0)) dt . (3.29)
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The above integrand includes the product of three terms. The first is the average of

the odd indexed received segments which satisfies the condition for the group Γ+; the

second is the average of those even indexed received segments falling into the group

Γ−; and the last term is the window function accounting for the guess shift τ̃0. Rather

than the operations of K2 correlations and then averaging for the ML estimator, the

operation order would be different for the SML estimator.

Proposition 3.3 (SML Timing Estimation): By employing the optimum train-

ing sequence given in Proposition 3.2, the SML estimator can be implemented with

much lower complexity than the ML estimator:

• Step 1: Take K received segments rk(t), ∀k, as in (3.8);

• Step 2: Average the odd and even indexed segments respectively as suggested by

(3.29);

• Step 3: For each candidate τ̃0, form the window functions rect(t + Ts − τ̃0) and

−rect(t− τ̃0), and calculate JSML(τ̃0) as (3.29);

• Step 4: Choose the τ̃0 which maximizes JSML(τ̃0) as the SML estimate τ̂0; that

is, τ̂0 = arg maxτ̃0 JSML(τ̃0).

It is important to note that the complexity of the SML timing estimator is signif-

icantly reduced; that is, one only needs to evaluate K summations and 1 correlation

for each τ̃0 candidate. Moreover, in a digital implementation, it is not necessary to

compute the correlation for every new τ̃0 value. Note that most of the correlation

is identical from the current τ̃0 value to the next. Therefore, additional computing

saving can be obtained by only updating the difference instead of calculating every

correlation anew.
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Like the ML estimator, we are also interested in the acquisition performance of

the SML estimator. Inherited from (3.17) with s2m−2s2m−1s2k−1s2k = −1, ∀m, k, the

noise-free part of the SML objective function in (3.28) can be expressed as:

JSML
0 (τ̃0) =

EA(τ̃0)− EB(τ̃0)

2
=
ER − 2EB(τ̃0)

2
. (3.30)

The noise term ξSML(τ̃0) is Gaussian distributed with zero mean and variance (the

proof is similar to that for the ML, thus omitted here):

var{ξSML(τ̃0)} =
N0ER

2K
+

N2
0 BTs

2K2
. (3.31)

After calculating the mean and variance for JSML(τ̃0):

E{JSML(τ̃0)} =
EA(τ̃0)− EB(τ̃0)

2
,

var{JSML(τ̃0)} =
N0ER

2K
+

N2
0 BTs

2K2
, (3.32)

we obtain the probability of detection lower bound for the SML algorithm as:

P SML
d =

∏

ñ0 6=n0

F

(
K(EB(ñ0Ti)− EB(n0Ti))√

KN0ER + N2
0 BTs

)
. (3.33)

3.5 The Optimality of Data-Aided TDT in the ML Sense

As mentioned in Section 3.4.1, the SML and TDT estimators share the

identical optimum training sequence. In this section, we will investigate the

relationship between the two estimators.

For comparison convenience, we briefly review the TDT estimator under our nota-
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tion system. In principle, TDT algorithm estimates τ0 by finding the maximum of the

average cross correlation of successive symbol-long segments. Specifically, under our

signal model developed in Section 3.2, we obtain the kth symbol-long shifted received

segment yk(t; τ̃0)
.
= r(t + kTs + τ̃0)rect(t), ∀k, which can be expressed as

yk(t; τ̃0) =
√
E (sk−1pR(t + Ts − τ0 + τ̃0) + skpR(t− τ0 + τ̃0)) rect(t) + ηk(t; τ̃0), ∀k

(3.34)

where ηk(t; τ̃0)
.
= η(t + kTs + τ̃0)rect(t). Then the TDT objective function employing

the optimum training sequence is formed as [64, Proposition 4]

JTDT(τ̃0) =
1

2

∫ Ts

0

ȳo(t; τ̃0)ȳe(t; τ̃0)dt , (3.35)

where ȳo
.
= 2

K

∑K/2
k=1(−1)k−1y2k−1(t; τ̃0) is the average of the odd indexed shifted re-

ceived segments, and ȳe
.
= 2

K

∑K/2
k=1(−1)k−1y2k(t; τ̃0) is the average of the even indexed

shifted received segments. The cross correlation is scaled by 1/2 for comparison with

the SML algorithm while maintaining TDT’s original criterion.

Proposition 3.4 (TDT Timing Estimation [64, Proposition 4] ): There are

four steps to implement the TDT algorithm:

• Step 1: Take K shifted received segment yk(t; τ̃0), ∀k, for each candidate τ̃0 as

in (3.34);

• Step 2: Average the odd and even indexed segments respectively as in (3.35);

• Step 3: Calculate the correlation between the two averaged segments as in (3.35);

• Step 4: Choose the τ̃0 which maximizes JTDT(τ̃0) as the TDT estimate τ̂0; that

is, τ̂0 = arg maxτ̃0 JTDT(τ̃0).
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Figure 3.2: Illustration of the TDT timing algorithm, Ts = 3Tf , K = 2.

The TDT algorithm is illustrated in Fig. 3.2. At first glance, it appears that SML

and TDT are two different schemes. In the SML algorithm, the received symbol-long

segments do not change. What is changing is the time shift candidate τ̃0 in the window

functions (see Fig. 3.1). In the data-aided TDT algorithm, on the other hand, the

received symbol-long segments are shifted with the trial value τ̃0 (see Fig. 3.2). In

the meantime, however, one can also find that the SML and TDT estimators

are implemented in the same operation order, namely, averaging and then

correlation, at low computational complexity.

In order to gain more insights about the TDT estimator, we treat JTDT(τ̃0) as the

summation of the noise-free part JTDT
0 (τ̃0) and the noise term ξTDT(τ̃0). JTDT

0 (τ̃0)

can be explicitly expressed as

JTDT
0 (τ̃0) =

1

2

∫ Ts

0

p2
R(t + Ts − τ0 + τ̃0)dt−1

2

∫ Ts

0

p2
R(t− τ0 + τ̃0)dt

=
1

2
(EA(τ̃0)− EB(τ̃0)) (3.36)
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and ξTDT(τ̃0) is zero-mean Gaussian distributed with variance

var{ξTDT(τ̃0)} =
N0ER

2K
+

N2
0 BTs

2K2
. (3.37)

Compared with SML, the TDT objective function provides the same noise-free part

(i.e., (3.36) for TDT and (3.30) for SML) and the same noise statistics (i.e., (3.37) for

TDT and (3.31) for SML), which demonstrates that the objective function (and

therefore the estimation criterion) of the TDT is essentially equivalent to

that of the SML in (3.29) except for the explicit noise elements. One can therefore

calculate the expression of the probability of detection bound for the data-aided TDT

algorithm, and the result will with no doubt show that the TDT’s probability of

detection performance is the same as that of the SML algorithm.

Now we are ready to make a conclusion of the relationship of the data-aided SML

and TDT estimators. Although they use different approaches, the SML and TDT

estimators are equivalent in the sense that they share the same optimum training

sequence, operation order (computational complexity), estimation criterion and the

same performance. Their equivalence will be further illustrated by simulations in

Section 3.7.

3.6 Implementation Consideration

Theoretically, the SML and TDT algorithms can always detect n0 such that

|n0Ti − τ0| < Ti on any resolution level Ti as long as the complexity of the receiver is

allowed. One expects that EB(ñ0Ti) in the objective function [c.f.(3.30)] can provide

noticeable change along with the shift candidate ñ0, especially when ñ0 is shifted in

the neighborhood of n0. In practical implementation, however, the significant atten-
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Figure 3.3: The noise-free part of the SML (TDT) objective function, K = 8 and
n0 = 534.

uation at the tail of a multipath channel and the extent of noise-only region between

consecutive symbols can make things more complicated. The unique peak (ñ0 = n0)

of the objective function tends to be comparable with its left neighbors (namely

ñ0 < n0) even when the noise is absent as illustrated in Fig. 3.3, which plots the

noise-free part of the SML objective function around the peak. Therefore, the correct

timing of ñ0 = n0 with fine (e.g., chip-level) resolution is not easily distinguishable

as the peak. On the other hand, we notice that the value of the objective function

decreases dramatically for ñ0 > n0, as a result of the first few strong taps of the

channel. Thanks to the different behavior of the regions ñ0 < n0 and ñ0 > n0, one

can resort to the first-order difference of the objective function in aid of finding n0 at

the chip level.

Suppose the frame-level acquisition has already been achieved. After obtaining

the values of J(ñ0Tc) in the right frame where n0 is located, take the difference
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∆J(ñ0Tc) = J(ñ0Tc) − J(ñ0Tc − wTc), where w ∈ [1, Nc] and wTc denotes the step

size. Then the candidate ñ0 which maximizes ∆J(ñ0Tc) will be regarded as the

estimate of n0.

The performance of this approach clearly depends on the step size wTc and SNR,

and the optimum wTc will vary according to the statistical characteristics of the chan-

nel. Additionally, the SML and TDT algorithms, together with the complementary

differential operation, essentially turns out to be an energy detection method using a

sliding window with length wTc and sliding step size Tc. The difference is that, in our

schemes, the noise is averaged out in the first place of the SML and TDT correlations,

which gives better performance than directly employing the energy detection method.

3.7 Simulations

In the simulations, we will compare their frame-level acquisition performance of

ML and TDT estimators, followed by the chip-level fine timing performance.

We use the channel model IEEE 802.15.3a CM1 [23] to generate the multipath

channel. The UWB pulse is the second derivative of the Gaussian function with unit

energy and duration Tp ≈ 1 ns. The frame duration is Tf = 35 ns, and each symbol

contains Nf = 32 frames. A random time hopping code cj is uniformly distributed

over [0, Nc − 1], with Nc = 35 and Tc = 1 ns. To avoid ISI, the time hopping

code for the last frame of each symbol is set to cNf−1 = 0. Since [61] has already

illustrated that the digital TDT algorithms remain effective and their performance is

only slightly altered by the resolution of ADC, we will use the digital counterparts

with sampling duration 1 ns and assume ADC has infinite resolution to exclude the

error from quantization.

Test 1 illustrates the optimality of the training sequence given in (3.26) for the

83



0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

K

P
ro

b
a

b
ili

ty
 o

f 
d

e
te

c
ti
o

n

Optimum training

Random training1

Random training2

Random training3

Random training4

Figure 3.4: Pd for various sequences, E/N0 = 1dB.

0 200 400 600 800 1000
−0.5

0

0.5

1

1.5

2
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ML estimator. Fig. 3.4 compares our optimum training pattern with four randomly

chosen sequences. We can observe that for K = 2 only our optimum training sequence

works. With K > 2, although the other four can also work, the optimum training

sequence provides the best performance consistently for any K. Notice that even

though some random training sequences could accidently comply with Lemma 3.1

for a certain K, it only performs as well as our optimum training sequence with

that specific K. We will employ the optimum training sequence in the following

simulations.

Test 2 plots the objective functions of the ML, SML and TDT algorithms in one

realization at the frame level in Fig. 3.5. For comparison, the corresponding noise-

free part of the SML (and TDT) algorithm is also provided. Fig. 3.5 shows that

the objective functions of the ML and SML algorithms have identical shape. The

difference between them remains the same for all candidates ñ0. Furthermore, the

shapes of the objective functions of SML and TDT are very close except for the effect

of the noise part.

Test 3 compares the acquisition performance of the SML and TDT algorithms to

demonstrate the optimality of the data-aided TDT algorithm in the ML sense. Their

probabilities of detection, together with the analytical lower bounds (3.33) are plotted

in Fig. 3.6. Their normalized mean square errors (MSE), which are normalized with

respect to T 2
s , are also compared in Fig. 3.7. Firstly, it is observed that the probability

of detection (and its lower bound) increases and the normalized MSE decreases as K

increases for each algorithm, which suggests that the performance of both algorithms

can be improved by choosing a larger K. Secondly, when K is small, TDT performs

slightly worse than the SML algorithm; with increasing K, TDT can achieve the

same performance as SML. This phenomena is reasonable. For the SML algorithm,

the received segments do not change with the time shift candidate ñ0, which means
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Figure 3.6: Pd and the lower bounds for the SML and TDT algorithms, coarse timing.

that the noise components contained in the segment correlations do not change with

ñ0. For the TDT algorithm, however, the received segments are shifted based on

ñ0, and the noise components in the correlation operation are changed accordingly,

which is not in favor of peak searching for the objective function. When K increases,

the noise will be better averaged out, and the different effects from the noise part

can be further reduced. Thus the TDT and SML algorithms would achieve the same

performance with a large K.

Test 4 further investigates the effect of timing acquisition to BER performance in

Fig. 3.8 while isolating the error from channel estimation. Same as the synchroniza-

tion performance, BER decreases monotonically as K increases for both the SML and

TDT algorithms. Again, SML outperforms TDT when K is small, and the superiority

disappears as K increases.

Test 5 is designed for chip-level fine timing comparison. The frame-level acquisi-

tion is assumed to be achieved beforehand. As illustrated in Fig. 3.9, the performance
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of the difference operation depends on the step size wTc. Accordingly, we choose the

optimum value for CM1 in our simulation as: wTc = 3ns at low SNR and wTc = 8ns

at high SNR. The normalized MSE for the SML and TDT algorithms with various K

are plotted in Fig. 3.10. Similar to the performance shown in frame-level acquisition,

the SML estimator enjoys a slightly better performance than TDT when K is small,

while their difference disappears with increasing K. Notice that all curves also reach

an error floor since the timing with chip-level resolution is performed.

3.8 Conclusions

In this chapter, we developed the practical data-aided ML timing algorithm, and

designed an optimum training sequence for the ML algorithm. This training sequence

turned out to be identical to the one used in TDT. Based on this optimum sequence,

the original ML algorithm can be simplified without affecting its optimality. We

proved that the resultant SML algorithm is equivalent to the TDT timing algorithm,
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Figure 3.10: Normalized MSE for the SML and TDT algorithms, fine timing.

demonstrating the optimality of the data-aided TDT in the ML sense. Extensive

simulations have been performed to corroborate our theoretical analysis.

Appendix 3-I: Proof of Equation (3.19)

It turns out that the noise term ξML(τ̃0) is the superposition of the following three

terms:

ξ(1)(τ̃0)=
1

K2

K∑

m,k=1

ζ
(1)
m,k(τ̃0),

ξ(2)(τ̃0)=
1

K2

K∑

m,k=1

ζ
(2)
m,k(τ̃0), (3.38)
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ξ(3)(τ̃0)=
1

K2

K∑

m,k=1

ζ
(3)
m,k(τ̃0),

with the corresponding noise elements that constitute the above equations:

ζ
(1)
m,k(τ̃0)

.
=

∫ Ts

0

(ηm(t)ρk(t)sm−1sk−1rect(t + Ts − τ̃0)

+ηm(t)ρk(t)smskrect(t− τ̃0)) dt,

ζ
(2)
m,k(τ̃0)

.
=

∫ Ts

0

(ρm(t)ηk(t)sm−1sk−1rect(t + Ts − τ̃0)

+ρm(t)ηk(t)smskrect(t− τ̃0)) dt, (3.39)

ζ
(3)
m,k(τ̃0)

.
=

∫ Ts

0

(ηm(t)ηk(t)sm−1sk−1rect(t + Ts − τ̃0)

+ηm(t)ηk(t)smskrect(t− τ̃0)) dt.

In order to calculate the mean and variance of ξML(τ̃0), we will first derive the sta-

tistical properties of the noise elements in (3.39) respectively. Note that essentially

ξ(1)(τ̃0) = ξ(2)(τ̃0) so that we only consider ξ(1)(τ̃0) and ξ(3)(τ̃0).

The receiver frontend can be modeled as an ideal bandpass filter with double-

sided bandwidth B (B ≫ 1/Ts) and center frequency f0, thus we have {ηm(t)}m
being bandpass-filtered AWGN with zero mean and double-sided PSD N0/2. The

autocorrelation function for ηm(t), ∀m, is [[62], eq. (2)]:

E{ηm(t1)ηm(t2)} = N0Bsinc(B(t2 − t1))cos(2πf0(t2 − t1))

where sinc(t)
.
= sin(πt)/(πt). Since the bandwidth of the receiver frontend satisfies

B ≫ 1/Ts, the noises in different symbol-long received segments (i.e. ηm(t) and ηn(t),

∀m 6= n) are assumed to be uncorrelated. As a consequence, ζ
(1)
m,k(τ̃0) is Gaussian

distributed and ζ
(3)
m,k(τ̃0) can be approximated as Gaussian distributed due to the
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central limit theorem. In the following, we will derive the means and correlations of

the noise elements to describe their distribution.

Clearly, ζ
(1)
m,k(τ̃0) has zero mean. The mean of ζ

(3)
m,k(τ̃0) can be calculated as [62,

eqs. (37)-(38)]:

E{ζ (3)
m,k(τ̃0)} = δm,k

∫ Ts

0

E{ηm(t)ηk(t)}dt =

(
N0Ts

2

)
δm,k . (3.40)

Next, let us exploit the correlation functions of ζ
(1)
m,k(τ̃0) and ζ

(3)
m,k(τ̃0). The corre-

lation function of ζ
(1)
m,k(τ̃0), ∀m, k, is defined as:

E{ζ (1)
m,k(τ̃0), ζ

(1)
n,l (τ̃0)}

=

∫ Ts

0

∫ Ts

0

E {(ηm(t1)ρk(t1)sm−1sk−1rect(t1 + Ts − τ̃0)+ηm(t1)ρk(t1)smskrect(t1 − τ̃0))

· (ηn(t2)ρl(t2)sn−1sl−1rect(t2 + Ts − τ̃0)+ηn(t2)ρl(t2)snslrect(t2 − τ̃0))} dt1dt2

= δm,n
N0

2

∫ Ts

0

(ρk(t)ρl(t)sk−1sl−1rect(t + Ts − τ̃0) + ρk(t)ρl(t)skslrect(t− τ̃0)) dt

=
N0

2
(EA(τ̃0) + sm−1smsk−1skEB(τ̃0))δm,n (3.41)

where the second equality refers to [62, eqs. (37)-(38)].

For the double-noise term ζ
(3)
m,k(τ̃0), ∀m, k, with correlation

E{ζ (3)
m,k(τ̃0), ζ

(3)
n,l (τ̃0)}

=

∫ Ts

0

∫ Ts

0

E {(ηm(t1)ηk(t1)sm−1sk−1rect(t1 + Ts − τ̃0)

+ηm(t1)ηk(t1)smskrect(t1 − τ̃0))

· (ηn(t2)ηl(t2)sn−1sl−1rect(t2 + Ts − τ̃0)

+ηn(t2)ηl(t2)snslrect(t2 − τ̃0))} dt1dt2 (3.42)

taking into account the correlation relationships among ηk(t), ∀k, we further group
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the subscripts m, n, k, l in (3.42) into three sets: Θ1
.
= {{m, n, k, l} : δm,n,k,l = 1},

Θ2
.
= {{m, n, k, l} : (δm,nδk,l + δm,lδk,n)(1 − δm,k) = 1}, and Θ3

.
= {{m, n, k, l} :

δm,kδn,l(1 − δm,n) = 1}. Therefore, E{ζ (3)
m,k(τ̃0), ζ

(3)
n,l (τ̃0)} can be calculated in three

cases correspondingly:

E{ζ (3)
m,k(τ̃0), ζ

(3)
n,l (τ̃0)}=





∫ Ts

0

∫ Ts

0
E {η2

m(t1)η
2
m(t2)} dt1dt2 , Θ1

∫ Ts

0

∫ Ts

0
E {ηm(t1)ηk(t1)ηm(t2)ηk(t2)} dt1dt2 , Θ2

∫ Ts

0

∫ Ts

0
E {η2

m(t1)η
2
n(t2)} dt1dt2 , Θ3 .

(3.43)

For set Θ1, the expectation in the integral can be decomposed as [3]:

E{η2
m(t1)η

2
m(t2)}

= E{η2
m(t1)}E{η2

m(t2)}+ E{ηm(t1)ηm(t2)}E{ηm(t1)ηm(t2)}

+E{ηm(t1)ηm(t2)}E{ηm(t1)ηm(t2)}−2E{ηm(t1)}E{ηm(t1)}E{ηm(t2)}E{ηm(t2)}

= E{η2
m(t1)}E{η2

m(t2)}+ 2E{ηm(t1)ηm(t2)}E{ηm(t1)ηm(t2)} .

Accordingly, the correlation for set Θ1 in (3.43) becomes:

∫ Ts

0

∫ Ts

0

E
{
η2

m(t1)η
2
m(t2)

}
dt1dt2

=

∫ Ts

0

E{η2
m(t1)}dt1

∫ Ts

0

E{η2
m(t2)}dt2 + 2

∫ Ts

0

∫ Ts

0

E2{ηm(t1)ηm(t2)}dt1dt2

=

(
N0Ts

2

)2

+ 2N2
0

∫ Ts

0

∫ Ts

0

(Bsinc(B(t2 − t1))cos(2πf0(t2 − t1)))
2dt1dt2

=

(
N0Ts

2

)2

+ N2
0 BTs

where the integral of the first summand is calculated using [62, eqs. (37)-(38)], and

the second one using [62, eqs. (42)-(43)].
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For set Θ2, noticing that the noise in different received segments are independent,

we obtain:

∫ Ts

0

∫ Ts

0

E {ηm(t1)ηk(t1)ηm(t2)ηk(t2)} dt1dt2

=

∫ Ts

0

∫ Ts

0

E{ηm(t1)ηm(t2)}E{ηk(t1)ηk(t2)}dt1dt2 = N2
0 BTs/2

and for set Θ3, the following holds:

∫ Ts

0

∫ Ts

0

E
{
η2

m(t1)η
2
n(t2)

}
dt1dt2 =

∫ Ts

0

E{η2
m(t1)}dt1 ·

∫ Ts

0

E{η2
n(t2)}dt2 = (N0Ts/2)2 .

As a result, the correlation function for ζ
(3)
m,k(τ̃0) can be obtained:

E{ζ (3)
m,k(τ̃0), ζ

(3)
n,l (τ̃0)}

=

((
N0Ts

2

)2

+ N2
0 BTs

)
δm,n,k,l +

N2
0

2
BTs (δm,nδk,l + δm,lδk,n)(1− δm,k))

+

(
N0Ts

2

)2

(δm,kδn,l(1− δm,n))

=
N2

0

2
BTs (δm,nδk,l + δm,lδk,n) +

(
N0Ts

2

)2

δm,kδn,l .

At last, we define the correlation between ζ
(1)
m,k(τ̃0) and ζ

(3)
m,k(τ̃0) as

E{ζ (1)
m,k(τ̃0), ζ

(3)
n,l (τ̃0)}

=

∫ Ts

0

∫ Ts

0

E {(ηm(t1)ρk(t1)sm−1sk−1rect(t1 + Ts − τ̃0)+ηm(t1)ρk(t1)smskrect(t1 − τ̃0))

· (ηn(t2)ηl(t2)sn−1sl−1rect(t2 + Ts − τ̃0)+ηn(t2)ηl(t2)snslrect(t2 − τ̃0))} dt1dt2

= δm,nδm,l

∫ Ts

0

∫ Ts

0

(
E{ηm(t1)η

2
m(t2)}ρk(t1)sm−1sk−1rect(t1 + Ts − τ̃0)

+E{ηm(t1)η
2
m(t2)}ρk(t1)smskrect(t1 − τ̃0)

)
dt1dt2

= 0
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where the last equality comes from the fact that E{ηm(t1)η
2
m(t2)} = 0 [3]. Therefore,

ζ
(1)
m,k(τ̃0) and ζ

(3)
m,k(τ̃0) are mutually uncorrelated.

Since the noise terms of (3.38) are the superpositions of ζ
(1)
m,k(τ̃0) and ζ

(3)
m,k(τ̃0), they

are also Gaussian distributed with means

E{ξ(1)(τ̃0)} = 0 ,

E{ξ(3)(τ̃0)} =
E{ζ (3)

m,k(τ̃0)}
K

=
N0Ts

2K
.

Their variances can be computed by adding E{ζ (1)
m,k(τ̃0), ζ

(1)
n,l (τ̃0)} and E{ζ (3)

m,k(τ̃0), ζ
(3)
n,l (τ̃0)}

with appropriate weights respectively:

var{ξ(1)(τ̃0)} =
N0J

ML
0 (τ̃0)

2K
,

var{ξ(3)(τ̃0)} =
N2

0 BTs

K2
.

Combining the uncorrelated noise term together, we can obtain the mean and variance

of the overall Gaussian noise ξML(τ̃0):

E{ξML(τ̃0)} = E{ξ(3)(τ̃0)} =
N0Ts

2K
,

var{ξML(τ̃0)} = 4× var{ξ(1)(τ̃0)}+ var{ξ(3)(τ̃0)} =
2N0J

ML
0 (τ̃0)

K
+

N2
0 BTs

K2
.
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CHAPTER 4

THE ℓ1-REGULARIZED LEAST SQUARES FORMULATION FOR

COOPERATIVE TARGET LOCALIZATION AND MALICIOUS

ANCHOR IDENTIFICATION

Secure target localization in the presence of malicious anchors is a critical issue

in wireless sensor networks (WSNs), where compromised anchors attempt to mislead

the target to a false position by broadcasting incorrect self location information.

In this chapter, we explicitly incorporate anchors’ misplacements into the distance

measurement model and explore the pairwise sparse nature of the misplacements. We

formulate the secure target localization problem as an ℓ1-regularized least squares (LS)

problem, whose objective is to simultaneously locate the targets as well as identify the

compromised anchors. We establish the pairwise sparsity threshold which defines the

upper bound for the number of identifiable malicious anchors, and propose a simple

projected gradient search algorithm to solve this novel ℓ1-regularized LS problem in

WSNs. Particularly, we consider two localization situations, namely, a single target

noncooperative scenario and two-target cooperative scenario. It is demonstrated that

with target cooperation, the capability of target location estimation is enhanced in

terms of estimation accuracy, and the capability of malicious anchor identification is

also improved in the sense of misplacement estimation. Simulations are provided to

corroborate the results.
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4.1 Motivation

A localization process is accomplished in two phases, i.e., the distance measure-

ment phase and the location update phase. While the first phase, by the means of

TOA estimation for IR UWB signals, is the topic of the preceding chapter, we will

move on to the second phase in this chapter.

Secure target localization in the presence of malicious anchors is a fundamental

and intriguing problem in wireless sensor networks (WSNs) [45]. When targets are

deployed in hostile environments, attackers may disturb the localization process and

make the location estimation unreliable. Unreliable target locations lead to severe

consequences, e.g., wrong military decisions on the battlefield or mistakenly granting

access rights to people [67]. Localization attacks can be launched in either the net-

work layer or the physical layer. This chapter focuses on the physical layer attack

which can be classified into simple attacks and complicated attacks [67]. In a simple

attack, an attacker may fake the distance measurement between the target and a

compromised anchor by reporting fake self location or manipulating the transmission

power [68]. A complicated attack involves multiple compromised anchors which can

either independently broadcast fake information or collaborate to mislead the target

to the same false location [67]. The former is referred to as an uncoordinated attack

and the latter is often termed as a collusion attack. A collusion attack is usually

much more powerful than an uncoordinated one.

The presence of malicious anchors induces discrepancy, or inconsistency, between

the measured distance obtained from the first phase and the calculated distance from

second phase target location estimate. Based on this, malicious anchors can be fil-

tered out such that the remaining anchors yield more consistent estimate [40, 41, 35].

Reference [35] starts from a randomly picked subset of size 3 and make an LS es-
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timation of the target location. It then accumulates the number of the remaining

anchors which have the consistent distance measurements with this estimate. If the

consistency number is beyond a certain predetermined threshold, then the estimate

is regarded as correct and the algorithm stops; otherwise, it randomly picks another

subset to repeat the consistency check procedure until a correct estimate can be ob-

tained. The problem with this method is that, without knowledge of the number

of malicious anchors, it is hard to choose the consistency threshold. Reference [41]

adopts a suboptimal searching method. Unlike [35], it starts from the entire available

anchor set and deletes one malicious anchor which induces the largest inconsistency

at each stage, until all malicious anchors are removed. Reference [40] tries to identify

the outliers by minimizing the median of the squared distance measurement errors.

These methods are straightforward and easy to implement. However, they do not

directly tackle the false location information. The optimal estimation can only be

achieved by enumerating all possible attack scenarios.

To address this problem, we explicitly incorporate anchors’ misplacements, i.e.,

location errors, into the distance measurement model to locate the target and identify

malicious anchors simultaneously. By exploring the pairwise sparse nature inherent

in the misplacements, we are able to formulate secure target localization as an ℓ1-

regularized LS problem. Under this problem formulation, we establish the pairwise

sparsity threshold, which defines the largest possible number of identifiable malicious

anchors. We then propose a simple projected gradient search algorithm to solve the

ℓ1-regularized LS problem in WSNs.

Particularly, we consider two scenarios for the secure localization problem, namely,

a single target noncooperative localization and two-target cooperative localization.

While single target localization is a typical scenario in the field of secure localization

as in [45, 68, 41, 37, 40, 41], to the authors’ knowledge, we are the first to incorporate
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target cooperation into this area. With the proposed ℓ1-regularized LS formulation,

we recognize the misplacement estimation limitation in the single target case; that is,

solving the ℓ1-regularized LS problem can only identify the malicious anchors but fails

to yield correct misplacement estimates. It is demonstrated that the misplacement

estimation can be enhanced by incorporating target cooperation. Certainly, due to

cooperation, target location estimation accuracy can be improved as well.

The organization of this chapter is as follows. We first provide preliminary knowl-

edge on sparse reconstruction in Section 4.2, and describe the secure localization

problem in the presence of malicious anchors in Section 4.3. In Section 4.4, we pro-

pose the novel ℓ1-regularized LS formulation, derive the upper bound for the number

of identifiable malicious anchors, and discuss the misplacement estimation capability

for both single target and cooperative targets scenarios. A simple projected gradient

search algorithm is developed in Section 4.5 to solve the ℓ1-regularized LS problem.

Simulation results are provided in Section 4.6, followed by conclusions in Section 4.7.

4.2 Sparse Reconstruction Preliminaries

Many problems in signal processing and statistics involve finding sparse solutions

to underdetermined, or ill-conditioned, linear equations in the absence of noise

y = Ax

where x ∈ RN is the unknown vector, y ∈ RM is the observation vector, and A ∈

RM×N is a fat matrix with M < N . The sparsest solution is given by [9]

min
x
‖x‖0 subject to Ax = y (4.1)
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where ‖u‖0 denotes the ℓ0 norm of u which is the number of nonzero components.

Solving this problem requires exhaustive searches over all subsets of columns of A

looking for the smallest subset representing the signal. This is clearly combinatorial

in nature and has exponential complexity [9].

An alternative method is to use the ℓ1 norm suggested by Basis Pursuit [12]:

min
x
‖x‖1 subject to Ax = y (4.2)

where ‖u‖1 =
∑

i |ui| denotes the ℓ1 norm of u. It is well known that the ℓ1 norm is

convex and the problem in (4.2) can be recast as a linear program [12].

The tractable ℓ1 norm problem in (4.2) always has a solution. However, this

solution is not necessarily unique. It is also not necessarily equivalent to the ℓ0

norm minimization solution of (4.1). Among a handful of works which discussed

uniqueness of the sparsest solution and equivalence between (4.1) and (4.2), [18]

derived inspiring results without invoking limited assumptions on the data matrix A,

such as concatenation of two orthobases. Instead, it studied the threshold for sparsity

reconstruction given a general non-orthogonal data matrix A.

[18] defines the Spark of a matrix as the size of the smallest linearly dependent sub-

set, and shows that whenever the unknown vector x has less than Spark(A)/2 nonze-

ros, the sparsest reconstruction can be uniquely determined. Additionally, µ1/2(G) of

a symmetric matrix G with normalized diagonal elements is defined as the smallest

number m such that some collection of m off-diagonal magnitudes arising in a single

row or column of G sums at least to 1
2
. [18] proves that when the unknown vector

x has less than µ1/2(A
HA) nonzeros, the solutions to (4.1) and (4.2) are equivalent.

Since 1
2
Spark(A)> µ1/2(A

HA), the latter is a more strict condition.

With the uniqueness and equivalence condition satisfied, one easily knows that a
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highly sparse solution, if it exists, to the ℓ0 norm problem in (4.1) is identical to the

solution of the ℓ1 norm problem in (4.2). Also, if the ℓ1 solution is sparse beyond a

certain specific threshold, then the solution is known (without checking) to be solution

of the ℓ0 problem.

For realistic noisy data, the measurement has the form

y = Ax + n

where n ∈ RM is the Gaussian noise. Instead of an exact sparse reconstruction from

y, an ℓ1-regularized LS problem [12] is preferable here:

min
x

1

2
‖y −Ax‖22 + λ‖x‖1 (4.3)

where ‖u‖2 = (
∑

i u
2
i )

1/2 denotes the ℓ2 norm of u, and λ is the nonnegative regu-

larization parameter. The use of ℓ1 regularization yields decomposition of y to signal

plus residue, and λ is an important parameter for signal and residue tradeoff: as

λ → 0, the solution behaves exactly like BP applied to y; as λ → ∞, the residue

dominates. Recently, the idea of ℓ1 regularization has been receiving a lot of inter-

est. BP denoising, the least absolute shrinkage and selection operator (Lasso), and

compressed sensing are well-known examples of this approach.

The objective function of the ℓ1-regularized linear LS problem in (4.3) is convex

but not differentiable. Therefore, there is no analytic formula for the optimal solution.

In the literature, several optimization algorithms and codes have been proposed to

solve this problem. For a detailed review of these algorithms, the readers are referred

to [34, 19] and references therein. For example, generic methods for nondifferentiable

convex problem such as subgradient methods [5] can be used. The ℓ1 regularized
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problem in (4.3) can be transformed to a convex quadratic problem with linear in-

equality constraints, which can be solved by various interior-point methods [34]. A

gradient projection algorithm in [19] is shown to be able to handle large problems

efficiently.

4.3 Distance Measurement Model and Misplacement Sparsity

The compromised anchors may cheat by reporting fake self locations or distance

measurements. In this chapter, we focus on the former case, which has been much

less studied.

The structure of a sensor network in the presence of cheating anchors is illustrated

in Fig. 4.1. On the two-dimensional (2-D) plane, suppose that we have Nt targets,

each with unknown location tj = [tjx
, tjy

]T , j = 1, · · · , Nt, and Ns anchors, each

with true location s̄i = [s̄ix , s̄iy ]
T , i = 1, · · · , Ns. The sub-subscripts x and y stand

for the 2-D Cartesian coordinates. In the presence of malicious attack, some of the

anchors may broadcast incorrect self locations. Denote the claimed anchor locations

as si = [six , siy ]
T , i = 1, · · · , Ns, and the misplacements, i.e., the differences between

the true and claimed locations, as ∆si = [∆six , ∆siy ]
T .

= s̄i − si, i = 1, · · · , Ns. Of

course, for honest anchors, si = s̄i and ∆si = 0. Generally, the targets have no idea

about which anchors are honest and which are malicious. Without malicious anchor

identification, the targets can be misled to false locations.

In this chapter, we consider two cases, namely the Nt = 1 single target case and

the Nt = 2 cooperative targets case. While single target localization is the common

scenario in the existing secure localization work, secure localization capability can be

further improved by allowing target cooperation.
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s1 = s̄1 −∆s1

s̄1

t1

s2 = s̄2 s3 = s̄3

t2

Figure 4.1: Illustration of a wireless sensor network in the presence of malicious
anchors.

4.3.1 The Nt = 1 Single Target Case

We first consider the single target case with Nt = 1 following the literature [40,

41, 68, 45]. Although the system can have multiple targets, Nt = 1 means that

these targets only communicate with anchors and do not communicate with each

other. Additionally, the central unit processes the location information for each target

separately. This corresponds to a noncooperative scenario.

Let dj,i denote the distance measurement from the ith anchor to the jth target,

which can be obtained by RSS or TOA based ranging. Without loss of generality,

we consider localization of the first target in the single target scenario. Then the

distance measurement model accounting for anchor misplacements can be written as

d1,i = ‖si + ∆si − t1‖2 + n1,i, ∀i = 1, · · · , Ns (4.4)

where the n1,is are i.i.d. zero-mean Gaussian distributed measurement noise with

variance σ2. Note that we incorporate the misplacement ∆si into (4.4) to explicitly

explore the influence of misplacement on the target location estimation.

Based on the distance measurement model (4.4), the traditional LS approach looks

102



for the best estimates via minimizing the sum of squared errors

Ns∑

i=1

(d1,i − ‖si + ∆si − t1‖2)2 (4.5)

over all possible t1 and ∆sis. This is obviously an underdetermined problem as there

are (2Ns + 2) unknowns but only Ns observations. As a result, it is hard to obtain

the desired solution from traditional LS, unless we have more restrictions on the

unknowns.

In secure localization, in order to successfully combat the attack of malicious

anchors, we must have sufficient honest ones. This means that out of the total Ns

misplacements, only a few ∆sis corresponding to the malicious anchors can take

nonzero values. In other words, the stacked misplacement vector

∆s = [∆sT
1 , · · · , ∆sT

Ns
]T

is a sparse vector. Besides, since a 2-D location is represented by a pair of x- and

y-coordinates, the nonzero values of ∆s must appear in pairs corresponding to the

associated malicious anchors.

Definition 4.1 (Pairwise Sparse): A vector u ∈ R2N is said to be pairwise sparse,

if it has only a few pairs of nonzero components {u2i−1, u2i}, for some i ∈ [1, N ], and

zero components elsewhere.

The underdetermined LS problem has a unique solution only if the number of

nonzero pairs in the pairwise sparse ∆s is below a threshold, which will be established

in the next section.
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4.3.2 The Nt = 2 Cooperative Targets Case

In this chapter, two-target cooperative localization means that the central unit

processes the location information from both targets together and the targets can

communicate with each other to obtain an additional target-target distance measure-

ment. The signal model for two cooperative targets can be adapted from the single

target case of (4.4) with slight modification. In addition to anchor-target distances

dj,is, target cooperation provides target-target distance measurement, denoted by dc.

Therefore, the overall distance measurement model can be written as

dj,i = ‖si + ∆si − tj‖2 + nj,i, ∀j = 1, 2, i = 1, ..., Ns (4.6)

and

dc = ‖t1 − t2‖2 + nc (4.7)

where the subscript c denotes the “cooperative” measurement. The objective for the

traditional LS location estimation is to minimize the sum of squared errors accounting

for both anchor-target measurements in (4.6) and target-target measurement in (4.7):

2∑

j=1

Ns∑

i=1

(dj,i − ‖si + ∆si − tj‖2)2 + (dc − ‖t1 − t2‖2)2 . (4.8)

This is, again, an underdetermined LS problem with (2Ns + 4) unknowns and

(2Ns +1) observations. It can be uniquely solved only if the number of nonzero pairs

in the pairwise sparse ∆s does not exceed the upper bound established next. Note

that, compared with the single target case, target cooperation enables twice as many

observations but adds only two more unknowns. Therefore, we have reasons to expect
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improved secure localization capability with target cooperation.

4.4 The Novel ℓ1-Regularized LS Formulation

Given the pairwise sparse nature of the misplacement vector ∆s, our goal is to

simultaneously estimate the target location and identify the nonzero pairs in ∆s.

The ℓ1 norm minimization technique is well known to solve underdetermined or ill-

conditioned linear sparse problems. Inspired by this idea, we start from the ℓ1 norm

minimization problem formulation in the single target case, assuming that the dis-

tance measurement is noise-free and only affected by the misplacement

min
∆s, t1

‖∆s‖1 (4.9)

s. t. d1,i = ‖si + ∆si − t1‖2, ∀i=1, · · ·, Ns .

Compared to the linear problem in (4.2), the above problem is more difficult due to

its nonlinear and nonconvex form. In addition, instead of the simple component-wise

sparsity, our misplacement vector possesses a pairwise sparse property. Furthermore,

unlike (4.2), our problem does not require the entire unknown vector x = [∆sT , tT
1 ]T

to be sparse. While the misplacement ∆s is pairwise sparse, the target location t1 is

generally not. Despite these differences and difficulties, we will establish the rationale

for (4.9) from two aspects. The first one is the pairwise sparsity upper bound below

which the desired misplacement estimate is the sparsest solution together with correct

target location estimate. The other is the equivalence condition which makes sure that

the desired misplacement estimate and the target location estimate can be obtained

via solving the ℓ1 norm minimization problem in (4.9).
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4.4.1 Pairwise Sparsity Upper Bound

An underdetermined problem can have infinitely many solutions satisfying the

observations. Among all the possible solutions, if we are looking for the sparsest one,

then a unique solution can be determined. Therefore, to uniquely identify nonzero

misplacements and obtain target location estimate in (4.9), we need to develop a con-

dition under which the desired solution is sparsest in terms of misplacement estimate

∆̂s and correct in terms of target location estimate t̂1.

To this end, we first present three basic assumptions on the network structure and

malicious attack scenarios. In these assumptions and the following analysis, consis-

tency between target location and anchor location means that the calculated distance

between the two locations satisfies the corresponding noiseless distance measurement.

AS(i): We assume that no three anchors are located on a straight line. This is a

common assumption made for wireless sensor networks. It guarantees that the target

location can be uniquely determined by any three anchors in the absence of malicious

attack. It also implies that the image of the target’s true location with respect to

straight line connecting any two anchors is distinct.

AS(ii): It is assumed that each malicious anchor’s claimed location is not consistent

with the target’s true location. Otherwise, this anchor is obviously not harmful

to target localization and will not be labeled as malicious from the perspective of

infrastructure. Therefore, it is safe to assume that the distance ‖si − t1‖2 6= ‖s̄i −

t1‖2 = d1,i and the malicious anchor’s claimed location is not on the circle centered

at the target with radius of being measurement d1,i.

AS(iii): The target’s misled location is assumed to be consistent with at most one

honest anchor. Target’s misled location is defined as the location which is consistent

with one or some malicious anchors’ claimed locations in an uncoordinated attack, or

consistent with all malicious anchors’ claimed locations in a collusion attack. Firstly,

106



the possibility that the misled location is consistent with more than two honest an-

chors is eliminated by AS(ii), since consistency with more than two honest anchors

implies that the misled location is nothing but the target’s true location. Secondly,

it is not practical for the misled location to be consistent with two honest anchors.

This amounts to moving the target to its image position with respect to straight

line connecting two honest anchors. Without location information of the target and

honest anchors, malicious attack is not able to accomplish this task. However, it is

still possible for the target’s misled location to coincidentally be consistent with one

honest anchor.

With these assumptions, all the possible solutions satisfying observations in (4.9)

can be divided into three groups. Suppose that the number of malicious anchors is

Nm.

In the first group, the target location estimate is consistent with all honest anchors;

that is, the target is correctly located at its true position. According to AS(ii), none of

the malicious anchors’ claimed locations is consistent with the target’s true location.

Therefore, we have nonzero misplacement estimates for all malicious anchors and the

number of nonzero misplacement estimates is Nm. This is our desired solution which

identifies all the malicious anchors and obtains the target’s location. The honest

anchors may have nonzero misplacement estimates, which will definitely result in

more nonzero misplacement estimates than the desired solution.

In the second group, the target location estimate is consistent with some or all

malicious anchors’ claimed locations. In this group, the target is consistent with

at most Nm malicious anchors. According to AS(iii), the misled location is also

consistent with at most one honest anchor. Therefore, the total number of nonzero

misplacement estimates in this group is no less than Ns − Nm − 1. Of course, if

the target’s misled location turns out to be inconsistent with any honest anchor, the
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nonzero misplacement estimates can be Ns −Nm.

In the third group, the target location estimate can be arbitrarily anywhere on

the field other than positions in the first and second groups. According to AS(i),

the target is at most consistent with two honest anchors. As a result, the number of

nonzero misplacement estimates is no less than Ns − 2.

The desired solution in the first group identifies all the malicious anchors and

obtains the target’s location. In order to make sure that the desired solution is the

sparsest one, we need the following conditions:

Nm < Ns −Nm − 1, and Nm < Ns − 2

which are equivalent to Nm < (Ns − 1)/2 for Ns > 3. In other words, given the

total anchor number Ns > 3, the largest number of malicious anchors with which the

desired solution is sparsest is

Nm =

⌊
Ns − 2

2

⌋
. (4.10)

This is the pairwise sparsity upper bound for the single target case. As long as the

number of malicious anchors does not exceed this upper bound, unique identification

of the malicious anchors as well as target location estimation can be achieved simulta-

neously. Note that, for some malicious attack where the target’s misled location turns

out to be not consistent with any honest anchor, we can have Nm < Ns/2 tolerable

malicious anchors.

Given the cooperative distance measurement models in (4.6) and (4.7), in the ab-

sence of measurement noise, the ℓ1 norm minimization problem for Nt = 2 cooperative
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targets case can be formulated as

min
∆s, t1, t2

‖∆s‖1 (4.11)

s. t. dj,i = ‖si + ∆si − tj‖2, ∀ j = 1, 2, i = 1, ..., Ns

dc = ‖t1 − t2‖2 .

The pairwise sparsity upper bound in (4.10) for the single target case can be di-

rectly applied to the two-target cooperative case, except for a slightly relaxed AS(ii).

With two cooperative targets, we assume that each malicious anchor’s claimed loca-

tion is not consistent with both targets’ true locations simultaneously. This essentially

eliminates the possibility that a malicious anchor’s claimed location falls at the image

of its own true location with respect to the two targets.

The pairwise sparsity upper bound accounting for both the single target case and

the two cooperative targets case is summarized in the following.

Proposition 4.1 In secure target localization in the presence of malicious anchors,

suppose that there are Ns anchors and Nt = 1 single target or Nt = 2 cooperative

targets. The largest tolerable number of malicious anchors such that unique identifi-

cation of malicious anchors and estimation of the target location can be simultaneously

achieved is ⌊(Ns − 2)/2⌋.

4.4.2 Misplacement Estimation Capability

We learned from the preceding subsection that the single target case and two-

target cooperative case have the same identification upper bound with slightly dif-

ferent AS(ii). This means that, below the upper bound, both cases can identify the

nonzero misplacements associated to the malicious anchors. However, in terms of

estimating the x- and y-coordinates within each misplacement estimate, they exhibit
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(a) A single target:

circle

(b) Two targets:

One ambiguous 

image point

Figure 4.2: Illustration of anchor location estimation ambiguity regions for (a) a single
target case and (b) two cooperative targets case.

different capability.

Anchor misplacement estimation can essentially be interpreted as a reverse prob-

lem of target localization. In a pure localization problem, unknown target location

is inferred from known anchors’ locations and distance measurements. On a 2-D

plane, one needs at least three anchors to uniquely determine the location of a target.

Likewise, in a pure misplacement estimation problem, unknown anchor location is

estimated from known targets’ locations and distance measurements. One needs at

least three targets to uniquely determine the location of an anchor.

With the problem of anchor misplacement estimation, each target provides one

observation for each misplacement. Therefore, in both the single target and two tar-

gets cases, insufficient observations result in misplacement ambiguity, and eventually

anchor location estimation ambiguity. As illuminated in Fig. 4.2, in the single target

case, the ambiguity region of the estimated anchor location, defined as ̂̄si = si +∆̂si,

includes the entire circle centered at the target with radius equal to the measured

distance between the target and the anchor. This inevitably causes misplacement

estimation limitation in the single target case.

In the two-target case, however, the ambiguity region is greatly reduced to two

points as shown in Fig. 4.2. One is the anchor’s true location, and the other is the

image of the true location with respect to the straight line connecting both targets.

The reduced ambiguity region means enhanced misplacement estimation capability.
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By allowing target cooperation, it is more likely that misplacement estimates will be

correct. Certainly, the enhanced misplacement estimation capability resulted from

target cooperation is not limited to the proposed approach. It can be appropriately

generalized to any other secure localization technique to improve that technique’s

capability.

4.4.3 Equivalence Condition

In order to simultaneously identify the malicious anchors as well as estimate the

target locations via solving the ℓ1 norm minimization problem, we need to address

the other issue; whether the desired sparsest solution has the smallest ℓ1 norm among

all possible solutions. This issue is even more complicated due to nonlinearity, non-

convexity and the misplacement estimation limitation in the single target case. To

simplify the analysis, we only consider the two-target cooperative case here. We will

calculate ℓ1 norms of the misplacement estimates for the alternative solutions satis-

fying observations in (4.11) and compare those with ‖∆̂s‖1 of the desired sparsest

solution x̂c, where xc
.
= [∆sT , tT

1 , tT
2 ]T .

The alternative solutions satisfying the observations, other than the expected

sparsest x̂c, are comprised of solutions which preserve the relative structure of the

original network but allow the entire network rotation and/or parallel shift. With

rotation and parallel shift, all the anchors can have nonzero misplacement values.

Note that it is unnecessary to consider rotation and shift over the entire field, but

only the local area around the true network position. Suppose that the rotation

angle is θ ∈ (−π, π], and the parallel shift is e = [ex, ey]
T , for a particular alternative

solution. Then, the resultant location for the ith anchor with true location s̄i becomes
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s̄
(a)
i with x- and y-coordinates:

s̄
(a)
ix

= s̄ix cos θ − s̄iy sin θ − ex,

s̄
(a)
iy

= s̄ix sin θ + s̄iy cos θ − ey

and the alternative misplacement estimate is the difference between the resultant

location s̄
(a)
i and the claimed location si with ℓ1 norm Li = ‖s̄(a)

i − si‖1. Denote

the set of honest anchors as Γh with cardinality Nh, and the set of malicious anchors

as Γm with cardinality Nm. Clearly, Nh + Nm = Ns. For the honest anchor whose

claimed location is si = s̄i, we have the ℓ1 norm of the misplacement estimate as

Li = ‖s̄(r)
i − e‖1, i ∈ Γh

where s̄
(r)
i

.
= [s̄ix cos θ − s̄iy sin θ, s̄ix sin θ + s̄iy cos θ]T − s̄i is the anchor location

change resulted from rotation. For the malicious anchor whose claimed location is

si = s̄i −∆si, we have

Li = ‖s̄(r)
i − e + ∆si‖1, i ∈ Γm .

Then the ℓ1 norm of the overall misplacement estimate for the alternative solution

can be calculated as L =
∑

i∈Γh
Li+

∑
i∈Γm

Li. Subtract ‖∆̂s‖1 =
∑

i∈Γm
‖∆si‖1 from

L, and the difference of the ℓ1 norm between the alternative solution and the sparsest
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solution can be written as

L− ‖∆̂s‖1

=
∑

i∈Γh

‖s̄(r)
i −e‖1 +

∑

i∈Γm

‖s̄(r)
i −e+∆si‖1−

∑

i∈Γm

‖∆si‖1

≥
∑

i∈Γh

‖s̄(r)
i −e‖1+

∑

i∈Γm

max{‖s̄(r)
i −e‖1−‖∆si‖1, ‖∆si‖1−‖s̄(r)

i −e‖1}−
∑

i∈Γm

‖∆si‖1

=
∑

i∈Γh

‖s̄(r)
i −e‖1+

∑

i∈Γ+
m

(‖s̄(r)
i −e‖1 − ‖∆si‖1)+

∑

i∈Γ−
m

(‖∆si‖1−‖s̄(r)
i −e‖1)−

∑

i∈Γm

‖∆si‖1

=
∑

i∈Γh

‖s̄(r)
i −e‖1+

∑

i∈Γ+
m

‖s̄(r)
i −e‖1−

∑

i∈Γ−
m

‖s̄(r)
i −e‖1−2

∑

i∈Γ+
m

‖∆si‖1 (4.12)

≥
∑

i∈Γh

‖s̄(r)
i −e‖1+

∑

i∈Γm

(‖∆si‖1−‖s̄(r)
i −e‖1)−

∑

i∈Γm

‖∆si‖1

=
∑

i∈Γh

‖s̄(r)
i −e‖1−

∑

i∈Γm

‖s̄(r)
i −e‖1 (4.13)

The difference lower bound in (4.13) is an interesting one. It only depends on the

true locations of the anchors. Ideally, suppose that both the honest and malicious an-

chors are densely and uniformly deployed on the entire field of interest. Then after any

rotation and parallel shift location change, the average norm for the honest anchors is

identical to the average norm for the malicious anchors. Therefore, if the number of

honest anchors is greater than that of malicious anchors, the lower bound is strictly

greater than zero, and the sparsest solution indeed has the smallest ℓ1 norm. (4.13)

confirms the fact that, even in the ideal scenario, the number of identifiable malicious

anchors cannot be larger than the number of honest anchors. In a practical network,

however, there are only a finite number of anchors residing at certain locations. In

this case, as indicated by a tighter bound given in (4.12), the ℓ1 norm difference de-

pends on the anchor locations as well as the malicious anchors’ misplacements. To

ensure the difference greater than zero, the overall ℓ1 norm increase from the honest

anchors and part of the malicious anchors should be able to compensate the ℓ1 norm
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decrease from the other malicious anchors and the misplacements. Depending on

the real network structure and attack scenario, one may need more than (Ns − 1)/2

honest anchors to meet the positive difference condition. In other words, Proposition

4.1 provides an upper bound for the number of identifiable malicious anchors, but to

guarantee that the equivalence condition holds locally, the upper bound may not be

achieved.

Recall that in the two-target cooperative case, two observations for each misplace-

ment result in an additional ambiguous location which is the image of the true anchor

location with respect to the straight line connecting both targets. Whenever the ma-

licious anchor is determined to be at the image position, its ℓ1 norm change should be

accounted for accordingly. For those alternative solutions, honest anchors also have

their images. But due to the all-zero misplacement initial point, it is less likely to

end up with an image estimate for an honest anchor.

To refine the ℓ1 norm difference addressing possible image location estimates,

define the image of the ith malicious anchor’s true location with respect to the straight

line connecting two targets as s̄
(im)
i . Then the ℓ1 norm of the misplacement estimate

for the ith malicious anchor in the sparsest solution is

‖s̄(im)
i − s̄i + ∆si‖1 ≤ ‖∆si‖1 + ‖s̄i − s̄

(im)
i ‖1 . (4.14)

Also define the image of the ith malicious anchor’s location in the alternative solution

as s̄
(a,im)
i . Then the ℓ1 norm of the misplacement estimate for the ith malicious anchor
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in the alternative solution can be written as

‖s̄(a,im)
i − s̄i + ∆si‖1 = ‖s̄(a,im)

i − s̄
(a)
i + s̄

(a)
i − s̄i + ∆si‖1

≥ ‖s̄(a)
i − s̄i + ∆si‖1 − ‖s̄(a)

i − s̄
(a,im)
i ‖1

= ‖s̄(r)
i − e + ∆si‖1 − ‖s̄(a)

i − s̄
(a,im)
i ‖1 . (4.15)

(4.14) and (4.15) provide the worst case bounds; that is, the image ambiguity may

introduce at most the amount of ‖s̄i − s̄
(im)
i ‖1 increase to the sparsest solution, and

the amount of ‖s̄(a)
i − s̄

(a,im)
i ‖1 decrease to the alternative solution. These changes

should be involved in (4.12) and (4.13) to get a refined lower bound. Note that for

the sparsest solution and any alternative solution, not all of the malicious anchors

end up with image location estimates, and not all ℓ1 norm changes achieve the worst

case bound.

At the end of this section, it is time to incorporate measurement noise. Similar

to the BP denoising in (4.3), the measurement noise can be taken into account via

minimizing the ℓ1-regularized LS objective function for a single target

min
x

f =

Ns∑

i=1

(d1,i − ‖si + ∆si − t1‖2)2 + λ‖∆s‖1 (4.16)

and the ℓ1-regularized LS objective function for cooperative targets

min
x

f =
2∑

j=1

Ns∑

i=1

(dj,i − ‖si + ∆si − tj‖2)2 + (dc − ‖t1 − t2‖2)2 + λ‖∆s‖1 (4.17)

where λ is the regularization parameter whose value is related to the noise level. Note

that the ℓ1 norm regularization is only induced to ∆s, but not to targets t1 and t2. By

solving (4.16) and (4.17) respectively, secure target localization and malicious anchor

identification can be obtained simultaneously, avoiding the exhaustive consistency
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verification in [35, 40, 41].

4.5 The Projected Gradient Search Algorithm

In preceding sections, we explored the pairwise sparsity of the misplacement

vector, formulated the target localization and misplacement identification as an ℓ1-

regularized LS problem, and studied the pairwise sparsity upper bound and equiv-

alence condition. In this section, we discuss the algorithm to solve the general ℓ1-

regularized LS problems in the presence of misplacements and measurement noise.

Here, we use the problem in (4.16) for the single target localization as an example to

illustrate the proposed algorithm, which can be readily generalized to the cooperative

target localization problem given in (4.17).

In the literature, several algorithms have been proposed to solve the linear ℓ1-

regularized LS problems, e.g., [34, 19]. Our problem in (4.16) is more difficult, since

it is nonlinear and nonconvex. According to [5], it is better to use simple approach in

difficult problem because sophisticated methods typically rely on assumptions that

are likely to be violated. We adopt the projected gradient search algorithm with

constant stepsize to solve our problem in (4.16).

Since the ℓ1 norm is nondifferentiable, we introduce two nonnegative vectors u =

[uT
1 , · · · , uT

Ns
]T and v = [vT

1 , · · · , vT
Ns

]T to split ∆s to its positive and negative parts

as in [12, 19]. Particularly, let ui = max(0, ∆si) and vi = max(0,−∆si), where

max(·, ·) is an element-wise operator. Then we can make the substitution

∆s = u− v, u ≥ 0, v ≥ 0 (4.18)
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and rewrite the constrained ℓ1-regularized LS problem as

min
z

f =

Ns∑

i=1

(d1,i−‖si+ui−vi−t1‖2)2+λ1T
2Ns

u+λ1T
2Ns

v

s. t. u ≥ 0, v ≥ 0

where z = [uT , vT , tT
1 ]T ∈ R4Ns+2 is the entire unknown vector to estimate and

12Ns
= [1, · · · , 1]T is the all-one vector of length 2Ns.

In the simple projected gradient search algorithm with constant stepsize α, we

search the unknown vector z(k) along the negative gradient direction −∇f(z(k)) and

project the first 4Ns components onto the nonnegative orthant. Specifically,

z(k+1) = z(k) − α∇f(z(k)), and

z(k+1)(1 : 4Ns) = max
(
0, z(k+1)(1 : 4Ns)

)
.

After the algorithm terminates at the Kth iteration, we can obtain the estimates

t̂1 = t
(K)
1 , ∆̂s = u(K) − v(K)

where u(K) = z(K)(1 : 2Ns), v(K) = z(K)(2Ns + 1 : 4Ns), and t
(K)
1 = z(K)(4Ns + 1 :

4Ns + 2). Notice that the algorithm is able to simultaneously obtain the target

location estimate t̂1 and the misplacement estimate ∆̂s, which suggests that the

proposed ℓ1-regularized LS approach is computationally efficient.

The complete projected gradient search algorithm with constant stepsize is sum-

marized as follows.

Step 0 (initialization): choose the initial point z(0), the ℓ1 regularization parameter

λ, the constant stepsize α, and the iteration stopping criterion; set k = 0.

Step 1 (projected gradient search): update z(k+1) as z(k+1) = z(k) − α∇f(z(k)),
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and project z(k+1)(1 : 4Ns) = max(0, z(k+1)(1 : 4Ns)) to the nonnegative orthant.

Step 2 (termination check): terminate with the solution z(k+1) if the stopping

criterion is satisfied; otherwise set k ← k + 1 and go to Step 1.

To solve the ℓ1-regularized LS problem using the above projected gradient search

algorithm, one should carefully choose the parameters, including regularization pa-

rameter λ, constant stepsize α and the stopping criterion. These parameters can

significantly affect the optimization performance.

Due to the presence of measurement noise, the algorithm may produce spurious

nonzero values which are supposed to be zero. The selection of nonnegative λ can

trade off the LS error for a higher degree of sparsity; as λ increases, it typically yields

a sparser solution [19]. Judicious selection of λ tends to locate the nonzero pairs in

z and sacrifice true value estimates. One can remove those malicious anchors after

successful identification and improve the target location estimation using only the

honest anchors.

The constant stepsize α should be chosen carefully, as too small stepsizes result in

slow convergence, and excessively large stepsizes may cause the iteration to become

divergent. There are some other options in choosing the stepsize. For example, one

can adaptively change the stepsize α(k) at each iteration to assure that the objective

function is descendent.

Selection of the stopping criterion is also crucial. An appropriate stopping criterion

renders the solution reasonably close to the optimal point and avoids computational

waste. According to [14], a good stopping criterion is ‖z(k+1) − z(k)‖2 < ǫ, or its

relative version ‖z(k+1)−z(k)‖2/‖z(k)‖2 <ǫ.

Like all other nonconvex optimization problems, we need a good starting point

near the minimizer. Otherwise the iteration might be trapped in a local minima

other than the global minimum. For the target locations, we employ the linearized
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LS method [52], assuming that all anchors are honest, to obtain the initial points.

For the misplacement, it is reasonable to set the initial point to all zeros.

4.6 Simulations

In the simulations, we consider an L × L square target field, where L = 6 and

the unit is 10 meters. The total number of anchors is Ns = 8. According to Propo-

sition 4.1, the largest possible number of the identifiable malicious anchors via the

ℓ1-regularized LS approach is ⌊(Ns − 2)/2⌋ = 3. Therefore, we consider two attack

cases, namely the two colluding malicious anchors case and the three colluding mali-

cious anchors case. In the simulation figures, true locations of the first target t1 and

the second target t2 are represented by red and green circles, respectively. For the ith

anchor, the cross, square and diamond denote its true location s̄i, claimed location

si and estimated location defined as ̂̄si = si + ∆̂si, respectively. While black anchors

are honest, the colored ones are malicious. Moreover, in the following simulations,

we set the constant stepsize to α = 0.05, use linearized LS estimates as target initial

points, and use an all-zero misplacement initial point. For simplicity, fixed iteration

number K = 1000 is adopted for low noise levels and K = 2000 for high noise levels.

We first test the validity of the proposed ℓ1-regularized LS formulation in the ab-

sence of measurement noise. Fig. 4.3 depicts the noiseless convergence path for the

single target location estimation in the presence of two colluding malicious anchors.

Both of the malicious anchors, in pink and blue respectively, cheat their locations by

reporting their own y-coordinate four units larger than it actually is. This essentially

misleads the target to be four units away in the y-direction from its true location. A

small regularization parameter λ = 0.03 is set empirically in this case, which results

in the best performance in terms of target location estimation and malicious anchor

identification. First, it can be observed that the target can be located precisely. The
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Figure 4.3: Noiseless convergence path for the single target location estimation in the
presence of two malicious anchors.

convergence path is not the shortest path from the initial point to the true target lo-

cation. This is a consequence of the nonconvexity of the objective function. Second,

the malicious anchors are successfully identified, which is illustrated by zero mis-

placement estimates for all the honest anchors and nonzero misplacement estimates

for the malicious anchors. Third, as expected, the nonzero misplacement estimates

are incorrect, evidenced by the non-overlapped colored diamonds and crosses. These

observations conform with our analysis on the malicious anchor identification capa-

bility and the misplacement estimation limitation for the single target case in Section

4.4.2.

Considering measurement noise, Table 4.1 summarizes the malicious anchor identi-

fication probability for the single target case in the presence of two colluding malicious

anchors under various noise levels. The measurement noise is modeled as truncated

zero-mean Gaussian noise with variance σ2 as in [68]. The noise is truncated to
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Table 4.1: Identification probability and target location mean absolute error, a single
target, two colluding malicious anchors

Noise σ λ
Identification Mean target Mean target location

probability location error error (AR-MMSE)

0.3 1.0 98.8% 0.2315 0.2275

0.2 1.0 99.4% 0.1517 0.1519

0.1 0.8 99.9% 0.0757 0.0749

0.05 0.8 100% 0.0380 0.0376

have maximum absolute value of 2σ. For each noise level, we run 1000 realizations

to obtain the convincible probability. The regularization parameter λ varies with

noise level. Since its optimal value is data dependent, with a given λ, there may

appear spurious small nonzero misplacement estimate which is supposed to be zero

for some noise realization. We complement the estimation with a thresholding oper-

ation and choose the maximum noise 2σ as the threshold of the norm of individual

misplacement estimate. It can be seen that, as the noise level increases, the iden-

tification probability decreases slightly. However, even when σ = 0.3 which means

roughly 2σ/(L/2) = 20% maximum distance measurement error, the probability is

still very high. The 20% maximum distance measurement error level is also adopted

by [40, 41, 35].

Table 4.1 also provides comparison of the mean absolute error for target location

estimation between our ℓ1-regularized LS and the attack-resistant MMSE [40]. While

they have comparable localization accuracy, our improvement is mainly in efficiency.

To find a malicious anchor, the suboptimal attack-resistant MMSE needs to test

consistency for every available anchor. In detail, when there are 2 malicious anchors
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Figure 4.4: Noiseless convergence path for the single target location estimation in the
presence of three malicious anchors.

out of 8, it implements the nonlinear MMSE optimization procedure 8 times to find

the first inconsistent malicious anchor, and another 7 times to find the second one.

This means that the complexity of this method is O(N2
s ). As the total number of

anchors increases, the complexity grows rapidly. In contrast, our ℓ1-regularized LS

approach is able to find all malicious anchors and locate the target with complexity

O(Ns).

The noiseless convergence path for the single target in the presence of three col-

luding malicious anchors is illustrated in Fig. 4.4. Similar to the previous case,

the target can be located with incorrect misplacement estimates. The corresponding

comparisons between the proposed approach and the attack-resistant MMSE are pro-

vided in Table 4.2. They still have comparable target location estimation accuracy.

Note that, as the number of malicious anchors increases, the attack-resistant MMSE

needs a third round of consistency checks and therefore requires more computation,
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Table 4.2: Identification probability and target location mean absolute error, a single
target, three colluding malicious anchors

Noise σ λ
Identification Mean target Mean target location

probability location error error (AR-MMSE)

0.3 1.0 99.2% 0.2375 0.2356

0.2 1.0 100% 0.1534 0.1539

0.1 0.8 100% 0.0790 0.0798

0.05 0.8 100% 0.0404 0.0395

whereas the complexity of the proposed approach remains the same.

The misplacement estimates for the malicious anchors can be enhanced by allowing

target cooperation. This is illustrated by the noiseless convergence paths for the two

cooperative targets in the presence of two and three malicious anchors in Figs. 4.5

and 4.6, respectively. The regularization parameter λ = 0.01 is set in both figures.

By executing the projected gradient algorithm once, we immediately obtain three

outcomes: cooperative target location estimates, malicious anchor identification, and

misplacement estimates. In Fig. 4.5, both malicious anchors are correctly located. In

Fig. 4.6, the first two malicious anchors are successfully located, while the estimate

of the third one turns out to be the image of its true location with respect to the

straight line connecting two targets.

Comparisons between the single-target scenario and the two-target cooperative

scenario, in terms of malicious anchor identification probability and target location

estimation accuracy, are summarized in Tables 4.3 and 4.4. Obviously, in both two

and three malicious anchor cases, incorporating target cooperation leads to higher

identification probability and improved target location estimation accuracy compared
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Figure 4.5: Noiseless convergence paths for two cooperative targets location estima-
tion in the presence of two malicious anchors.
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Figure 4.6: Noiseless convergence paths for two cooperative targets location estima-
tion in the presence of three malicious anchors.
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Table 4.3: Identification probability and target location mean absolute error, two
colluding malicious anchors

Noise σ λ

Identification Identification Mean target Mean target

probability probability location error location error

(single-target) (cooperative) (single-target) (cooperative)

0.3 1.0 98.8% 99.8% 0.2315 0.2211/0.2172

0.2 1.0 99.4% 100% 0.1517 0.1476/0.1392

0.1 0.8 99.9% 100% 0.0757 0.0712/0.0685

0.05 0.8 100% 100% 0.0380 0.0359/0.0344

Table 4.4: Identification probability and target location mean absolute error, three
colluding malicious anchors

Noise σ λ

Identification Identification Mean target Mean target

probability probability location error location error

(single-target) (cooperative) (single-target) (cooperative)

0.3 1.0 99.2% 99.7% 0.2375 0.2290/0.2275

0.2 1.0 100% 100% 0.1534 0.1487/0.1436

0.1 0.8 100% 100% 0.0790 0.0731/0.0729

0.05 0.8 100% 100% 0.0404 0.0363/0.0362
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to the single target case. These results illustrate the advantages of target cooperation.

4.7 Conclusions

In this chapter, we explicitly incorporate anchors’ misplacements into the distance

measurement model and explore the pairwise sparse nature of the misplacements. We

formulate the secure target localization issue as an ℓ1-regularized LS problem and es-

tablish the pairwise sparsity upper bound for the number of identifiable malicious

anchors. A simple projected gradient search algorithm is proposed to solve this prob-

lem in WSNs. Unlike the existing methods, which rely on enumerative consistency

verification, the proposed approach is able to identify malicious anchors and locate the

targets simultaneously. Particularly, we consider two localization situations, namely,

a single target scenario and two-target cooperative scenario. It is demonstrated that,

with target cooperation, the capability of target location estimation is enhanced in

terms of estimation accuracy, and the capability of malicious anchor identification is

also improved in the sense of misplacement estimation. Simulations are provided to

corroborate the results.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this dissertation, we have considered two important issues in cooperative sens-

ing, namely, cooperative target estimation and cooperative target localization. By

utilizing the concept of “cooperation”, which incorporates communications and in-

formation exchange among multiple sensing devices, e.g. radar transceivers in radar

systems, sensor nodes in wireless sensor networks, or mobile handsets in cellular sys-

tems, the sensing capability can achieve significant improvement compared to the

conventional noncooperative mode in many aspects. For example, cooperative target

estimation is inspired by the concept of MIMO in communications, where multiple

transmit and/or receive antennas can increase the diversity to combat channel fading

for enhanced transmission reliability and increase the degrees of freedom for improved

data rate. On the other hand, cooperative target localization is able to dramatically

increase localization performance in terms of both accuracy and coverage.

From the perspective of cooperative target estimation, we studied the optimum

waveform designs to facilitate better target estimation in the presence of colored noise,

and the robust joint waveform and estimator designs to address the a priori informa-

tion uncertainties. Different from existing works, we considered a mixed MIMO radar

setup for which the waveform optimization problem is meaningful, took into account

the colored noise, incorporated the NMSE as a design criterion in addition to the MI
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and MMSE, and derived joint robust designs for both the transmitter (waveforms)

and the receiver (estimator) under various uncertainty models. The analytical and

numerical results suggest that: i) the equivalence between the MI and MMSE criteria

does not hold when the noise is colored; and ii) compared to MMSE criterion, the

NMSE criterion seems to share more similarities with the MI. In particular, they lead

to identical LFS in the robust designs under various uncertainty models, while the

MMSE criterion always suggests otherwise. Additionally, we analyzed the sensitivity

of the optimum waveform designs to the overestimation errors for all three criteria,

at both the transmitter side (in terms of the waveform optimization solution) and

the receiver side (in terms of the estimation NMSE performance). We derived the

explicit formulae for the strength thresholds of the single error mode and made the

performance variation comparison among the three criteria. The analysis shows that:

i) all three criteria do not show significant performance deterioration; ii) the NMSE-

based design is more sensitive to the overestimation error than the MI-based design

around the error mode strength threshold; and iii) in the special white noise case, the

MI- and MMSE-based optimum designs result in identical sensitivity level and both

are less sensitive than the NMSE-based design.

From the perspective of cooperative target localization, we studied two phases of

a localization process, i.e., the distance measurement phase and the location update

phase. In the first phase, thanks to UWB signals’ many desirable features including

high delay resolution and obstacle penetration capabilities, we adopt UWB technology

for TOA estimation, and then translate the TOA estimate into distance given light

propagation speed. We developed a practical data-aided ML timing algorithm, and

designed an optimum training sequence for the ML algorithm. This training sequence

turned out to be identical to the one used in TDT. Based on this optimum sequence,

the original ML algorithm can be simplified without affecting its optimality. We
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proved that the resultant SML algorithm is equivalent to the TDT timing algorithm,

demonstrating the optimality of the data-aided TDT in the ML sense. Extensive

simulations have been performed to corroborate our theoretical analysis. In the sec-

ond phase, we considered the challenging issue of target localization in the presence

of malicious anchors in WSNs. We explicitly incorporated anchors’ misplacements

into distance measurement model and explored the pairwise sparse nature of the mis-

placements. We formulated the secure target localization issue as an ℓ1-regularized

LS problem and established the sparsity upper bound for the number of identifiable

malicious anchors. A simple projected gradient search algorithm was proposed to

solve this problem in WSNs. Unlike the existing methods, which rely on enumerative

consistency verification, the proposed approach is able to identify malicious anchors

and locate the targets simultaneously. Particularly, we considered two localization

situations, namely, a single target scenario and two-target cooperative scenario. It

is demonstrated that, with target cooperation, the capability of target location esti-

mation is enhanced in terms of estimation accuracy, and the capability of malicious

anchor identification is also improved in the sense of misplacement estimation. Sim-

ulations are provided to corroborate the results.

5.2 Future Works

In Chapter 4, we proposed the novel ℓ1-regularized LS formulation to tackle the

secure localization problem in WSNs. The solving algorithm of projected gradient

search is relatively simple. We use this simple algorithm, with constant stepsize,

empirically chosen regularization parameter and fixed iteration number, to illustrate

that the problem formulation is valid and efficient. There is still a huge space to

improve by developing new algorithms for this problem, as we can observe clearly
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from the simulations that the identification and estimation performance heavily rely

on the parameter selection, especially the regularization parameter λ. The method of

intelligently choosing parameter values is a critical issue worth of further discussion.

Secondly, in this work we use linearized LS approach, assuming that all anchors are

honest, to calculate initial points of targets’ locations. Reference anchor selection in

linearized LS is important. Inappropriate reference can result in large target location

deviation even without malicious anchors. For this reason, we assume that there is at

least one authenticated anchor and choose this one as reference. In real environment,

however, one may not be able to acquire such information. Therefore, reference

selection in the compromised environment is also a necessary and interesting task.

Another possible future extension includes developing algorithms applicable to

large-scale network. As any localization method or secure localization method, it is

not quite straightforward to extend the algorithm which works well for small-scale

network to a larger one, because the network becomes more complicated, but the

complexity requirement is still stringent.
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