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Abstract

The singular value decomposition has been extensivelv used
for the analysis ofthe kinematic and dynamic characteristics
ofrobotic manipulators. Due to a reputation for being nu­
mericallyexpensive to compute, however, it has nul been
usedfor real-time applications. This work illustrates a for­
mulation for the singular value decomposition that takes
advantage ofthe nature ofrobotics matrix calculations to ob­
tain a computationally feasible algorithm, Several applica­
tions, including the control ojredundant manipulators and
the optimization ofdexterity, are discussed. A detailed illus­
tration ofthe use ofthe singular value decomposition to deal
with the general problem ofsingularities is also presented.

.1. Introduction

In recent years the singular value decomposition
(SYD) has become a popular tool for analyzing the
kinematic and dynamic properties of robotic manipu­
lators (Yoshikawa 1985a; Yoshikawa 1985b). It plays
a particularly prominent role with regard to redundant
manipulators, both in terms of analyzing thesignifi­
cance of the extra degrees of freedom (Klein and
Huang 1983) and in specifying a side criterion that
can be optimized using these redundant degrees of
freedom. In many cases, these side criteria are some
quantitative measure of the qualitative concept of
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dexterity. Most of the dexterity measures proposed are
some function of the singular values of the Jacobian
matrix. The most common of these is perhaps the
manipulability measure proposed by Yoshikawa
( 1984) that is defined as the square root of the deter­
minant of the matrix Ji T, which is simply the product
of the singular values of J. Other proposed measures
include the trace of the above matrix (Baillieul 1987),
the minimum singular value of the Jacobian (Klein
and Blaho 1987), the compatibility index (Chiu 1987),
and isotropy (all equal singular values; Salisbury and
Craig 1982).

While all of the above measures have a physical
significance and justification for their use, the key
point here is that they are all closely linked to the
SVD. Yet in spite of this fact, the full decomposition
is usually limited to the analysis of manipulator con­
figurations and is not considered for implementation
in on-line control. This is exemplified by the popular­
ity of the manipulability measure, since its major jus­
tifications are that it is numerically simple to compute
and that its zeros coincide with the singularities of the
Jacobian. The implication is that one would really like
information about singularities; however, that would
require calculation of the SVD, which has a reputation
for being numerically expensive to compute. Unfortu­
nately, the determinant gives no information about
the absolute proximity to singularities, since the mini­
mum singular value is the only reliable measure of
this quantity. In addition, the calculation of the matrix
product JJ T squares the condition number, which
reduces the accuracy of the result

This work is concerned with demonstrating that,
with the right formulation, the SVD is computation­
ally feasible for use in real-time control. Traditionally,
the computation of the SVD of an arbitrary matrix is
an iterative procedure, so that the exact number of
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computations cannot be known a priori. However, the
control of robotic systems is not based on the solution
of arbitrary matrix equations but quite frequently
involves the solution of equations based on the Jaco­
bian matrix. The current Jacobian for a system can be
regarded as a perturbation of a previously known ma­
trix for which perturbation bounds on the singular
values and singular vectors can be established. It will
be shown how this knowledge of the previous state can
be exploited during the current computation of the
SVD in order to reduce the overall computational
burden. The above point will be emphasized in this
work, which illustrates a computational scheme capa­
ble of calculating the SVD of the Jacobian for use in
real-time control "ofmanipulators. The implications of
such an algorithm for several applications, including
the utilization of redundancy and the optimization of
manipulator dexterity, are then discussed. A detailed
examination of the advantages of using the SVD for
dealing with manipulator singularities is illustrated
through computer simulations of a PUMA robot,
using both rate and acceleration control.

2. Overview of SVD Algorithms

The Golub-Reinsch algorithm is generally regarded
as the most efficient and numerically stable technique
for computing the SVD of an arbitrary matrix. How­
ever, there are two aspects of the algorithm that make
it less attractive for the problem at hand. The first
relates to the fact that the first step in the algorithm
requires a fixed computation to bidiagonalize the given
matrix so that a slightly perturbed matrix must still
undergo this operation. The second aspect relates to
the relatively serial nature of the technique, thus mak­
ing it difficult to utilize parallel computing structures.
For these reasons, the Golub-Reinsch algorithm will
not be considered as the basis for implementing a
real-time SVD algorithm. The following algorithm,
based exclusively on Givens rotations, is more suited
to take advantage of incremental perturbations and
parallel architectures.

2.2. Algorithms Based on Givens Rotations

Gi vens rotations are orthogonal transformations of the
form

where all other elements not shown are zero. This
transformation can be geometrically interpreted as a
plane rotation of () in the i-j plane. These transforma­
tions are also known as Jacobi rotations since they
were first described by Jacobi (1846). In contrast to
Householder reflections, Givens rotations only affect
two rows or columns of the matrix with which they

2.1. The Golub-Reinsch Algorithm

The most popular technique for computing the SVD
was first proposed in Golub and Kahan (1965) with
source code published in Businger and Golub (1969).
It is now commonly referred to as the Golub-Reinsch
algorithm (Golub and Reinsch 1970) and is available
in many linear algebra software packages such as
EISPACK, LINPACK, and IMSL. This algorithm is
composed of two distinct steps, namely, transforming
the given matrix into bidiagonal form using a series of
Householder transformations and then applying an
iterative procedure designed to use orthogonal trans­
formations to produce bidiagonal matrices that are
successively more diagonal. The procedure used is a
variant of the QR algorithm (Watkins 1982), with
origin shifts designed to improve the convergence
properties (Stewart 1970).

Q=

cos (8)

sin (8)

-sin (8)

cos (0)

j

j

(1)
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The terms in the Givens rotation matrix to achieve
orthogonality can be computed by using the formulas
given in Nash (1979), which are based on the quantities

each of which is designed to orthogonalize two col­
umns. Considering the current ith andjth columns of
A, multiplication by a Givens rotation results in the
new columns, a. and s; given by

The constraint that these columns be orthogonal re­
sults in

are multiplied, a property that is useful when designing
parallel computing structures based on this transfor­
mation. One popular application of Givens rotations is

.for the computation of the QR decomposition. While
this requires 2mn 2 - 2n 3/3 floating-point operations
as compared to mn 2 - n3/3 floating point operations
for the Householder version of the QR decomposition
(Golub and Van Loan 1983), the Givens rotations can
bedone in parallel and can therefore be computed in
O(ln) units of time with an appropriately connected
array of O(n 2) processors (Luk 1986a).

The most important property of Givens rotations
for the problem at hand is their ability to orthogonalize
the two rows or col umns on which they operate. This
forms the basis of an SVD algorithm that relies solely
on Givens rotations (Hestenes 1958; Nash 1975). In
particular, consider an orthogonal matrix V, composed
of successive Givens rotations, such that

a( = 8. cos (0) + 8J sin (fJ)

a; = aj cos (0) - a, sin (0).

aiTa; = 0 = alaj[cos2 (0) - sin2(8)]
-l- (a;a j - ara.) sin (8) cos (8).

(7)

(8)

(9)

AV=B (2) (10)

where the columns of B are orthogonal. If the columns
of B are orthogonal, then it can be written as the prod- .
uct of an orthogonal matrix U and a diagonal matrix D

(11)

(12)

B=UD

by letting the columns of U be equal to normalized
versions of the columns of B,

(3) so that for q ~ 0

COS(O)=~v+q and sin(O)= p(O) (13)
2v v cos

(4)

and defining the diagonal elements of D to be equal to
the norm of the columns of B

and for q > 0

Sin(O)=Sgn(p)~V~q and COS(O)=vsi:(O) (14)

where

(5)

By substituting (3) into (2) and solving for A, one obtains

if p2=:O

if p < O·
( 15)

which is the SVD ofA.
The critical step in the above procedure for calculat­

ing the SVD is determining the orthogonal mtrix V
that will orthogonalize the columns of A. This matrix
is usually formed as' a product of Givens rotations,

A = UDVT (6) The two sets of formulas are given so that ill-condi­
tioned equations resulting from the subtraction of
nearly equal numbers can always be avoided.

The preceding discussion shows how to determine a
single Givens rotation that will orthogonalize two
columns of a given matrix. It still needs to be shown
how the matrix V can be computed from these ele-
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mentary rotations. If the Givens rotation to orthogo­
nalize columns i and j is denoted by Vi), then the
product of a set of n(n - 1)/2 rotations denoted by

2.3. Pertubation Bounds on the Singular Value
Decomposition

The algorithm for computing the SVD using Givens
rotations outlined above uses successive sweeps in
order to make the columns of a matrix more orthogo­
nal. The more orthogonal the columns are to begin
with, the fewer the number of sweeps required for
convergence. If one considers the current manipulator
Jacobian to be a pertubation of the previous Jacobian

( 16)

is referred to as a sweep (Golub and Van Loan 1983).
Unfortunately, a single sweep will not, in general,
orthogonalize all of the columns of a matrix, since
subsequent rotations can destroy the orthogonality
produced by previous ones. However, the procedure
can be shown to converge (Nash 1975) so that V can
be obtained from

J(t + Llt) = J(t) + M(t),

the SVD of which is known and given by

(19)

where the number of sweeps I is not known a priori.
Convergence (}~ the algorithm is based on completing
an entire sweep with all of the columns being orthogo­
nal. Orthogonality is measured by the parameter a
defined as

then the matrix J(l + L1t)V(t) will have nearly ortho­
gonal columns, provided the perturbation M(t) is
small relative to J(t). The foundation of the above lies
in the fundamentally well-behaved nature of the SVD
of a matrix. The perturbation bounds on singular
values are very well known and easy to show (For­
sythe, Malcolm, and Moler 1977):

I

V= Il VA
k-l

(a Ta )2a= j j

(ara,)(aTaJ)

( 17)

( 18)

J(t) = U(t)D(t)VT(t), (20)

(21)

dropping below a preset threshold. If for two columns
a is below the threshold, then the rotation is not per­
formed.

The above algorithm, by virtue of being composed
exclusively of Givens rotations, can be highly parallel­
ized, a task that has already been performed for imple­
mentation on the ILLIAC·IV (Luk 1980). Architec­
tures specifically designed for this algorithm. have also
been proposed (Luk 1986b, Schimmel andLuk 1986)
and can operate at about 2fn2 units of time per sweep
for an n X n matrix wherefis the time required for a
floating-point multiply and add. It has been shown
that the number of sweeps required in the above algo­
rithm is approximately log, n. In the following sec­
tions it will be shown how perturbation bounds on the
singular values and vectors of the Jacobian can be
incorporated into this algorithm in order to reduce the
number of sweeps required as well as the computa­
tional complexity of each sweep.

66

The perturbation bounds on the rotation of subspaces
defined by singular vectors are not as widely known
but are also well behaved (Davis and Kahan 1970;
Wedin 1972).

3. Implementation of a Real-Time
SVD Algorithm

The implementation of the SVD algorithm using
Givens rotations and the subsequent refinements were
all done in PASCAL on a VAX 785. Substantial test­
ing for a variety of trajectories using a simulation of
the PUMA robot have been conducted. Three repre­
sentative examples are given in Figures 1, 2, and 3,
illustrating the starting configuration of the PUMA
robot, the desired end-effector trajectory, and the sin-
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Fig. 1. Initial configuration
and desired end-effector
positions for trajectory A,
along with the singular
values ofthe Jacobian for
each point along this trajec­
tory.

Fig. 2. Initial configuration
and desired end-effector
positions for trajectory B
along with the singular
values ofthe Jacobian for
each point along this trajec­
tory.

Trajectory B

Singular Values

L-- ...-;:II........... ~ 0.0

,.-- -., 2.2

Singular Values

'_____----------.- --' 0.0

p==='---=::::::::=------==============1 2.3

Trajectory A

gular values of the Jacobian computed for each point
along the trajectory. As can be seen from the singular
value plots, these examples all pass near singularities
at the midpoint of their trajectories. These singularities
are the well-known wrist, shoulder, and elbow singu­
larities that occur in trajectories A, B, and C, respec­
tively. Trajectory C is unique in that it approaches a
triple singularity at its midpoint. These examples have
been chosen to illustrate the advantages of having the
SVD available during the control of a manipulator,
since conventional algorithms provide unsatisfactory
performance near singular configurations.

In order to illustrate the computational require­
ments of the basic algorithm, which does not use pre­
vious information, and to provide a basis for compari­
son with the modified algorithm, data on the number
of sweeps and plane rotations required to reach con­
vergence is presented in Table 1. Figure 4 shows a plot
of these quantities for trajectory B as a representative
example. The number of sweeps is the actual number
of sweeps in which rotations are performed and does
not include the final sweep in which all the columns
are checked and determined to be orthogonal. The
maximum number of rotations per sweep is 15 since
the Jacobian in this case is a 6 X 6 matrix. Note that
the computational expense is fairly uniform over var­
ious configurations of the manipulator, with the slight
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Fig. 3. Initial configuration
and desired end-effector
positionsfor trajectoryC
along with the singular
valuesofthe Jacobianfor
each point along this trajec­
tory.

Singular Values

r------------------------" 2.7

~
~__~;.;;....._. ----' 0.0

Trajectory C

variation in the total number of rotations primarily
introduced by the final sweep before convergence.

3.1. Incorporating the Previous SVD

The above experimental data backed by the analytical
results pertaining to the perturbation bounds on the

68

Table 1. Summary of the Computational Requirements
for Computing the SVD Using Givens Rotations and
No Previous Information

Rotations Sweeps

Trajectory Min. Max. Avg. Min. Max. Avg.

A~ 39 52 45.7 3 4 3.63
B 35 56 44.9 3 4 3.24
C 32 45 40.2 3 3 3.00

Total 32 56 43.6 3 4 3.29

rotation of singular vectors seems to indicate that the
majority of the computation involved in calculating
the SVD is redundant over a given trajectory. Each
time the SVD is computed, the columns are orthogo­
nalized by building the matrix V from scratch. If, on
the other hand, the value of V(t + ~t) is initialized to
V(t), then a substantial portion ofthe work required
to compute the current SVD can be eliminated. The
results of using this past information in the SVD cal­
culation are presented in Table 2, which illustrates the
dramatic reduction in computational expense. The
number of rotations is down by about a factor of three
to approximately 15, with convergence obtained in
virtually one sweep. The nearly uniform requirement
of one sweep for convergence suggests removing tL..~
iterative nature of the algorithm by fixing the number
of sweeps at one. This provides the additional compu­
tational advantage of removing convergence tests.

There will still exist cases where a single sweep will
not result in convergence, thus introducing error into
the calculated SYD. A graph of this error for SVD
calculations along trajectory B is presented in Figure
5. Only data for trajectory B is plotted, since the S\'r;
calculations along both trajectories A and Conly rc
quire a maximum of one sweep for convergence. Sev­
eral error measures have been computed in order to
differentiate the type of error and its source. The sin­
gular value error, denoted here by aerr , is a measure of
the error between the calculated singular values, a.;
and the actual singular values, a; (computed using the
Golub-Reinsch algorithm in the IMSL package), de-
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Fig. 4. The number ofsweeps
and rotations required to
compute the SVD ofthe Ja­
cobian along trajectory B.

SVO Computations Table 2. Computational Requirements for Computing
7 the SVD Using the Previous Estimate of the Matrix VNumber of Sweeps

Rotations Sweeps

Trajectory Min. Max. Avg. Min. Max. Avg.

A 14 15 ~'14.975 1 1.00
0 B 14 17 14.970 2 1.07100

Total Rotations C 13 15 14.831 1 1.00

which is the normalized error in using the computed
SVD as a representation for the Jacobian.

where the spectral norm is used (Lawson and Hanson
1974). Finally, the error in the Jacobian, denoted by
Je" , is computed using

The first point to note about the error terms plotted
in Figure 5 isthat they are all very small in magni­
tude, with a maximum on the order 0£0.01%. The
second important characteristic is the fundamental
difference between the monotonically increasing error
of the input singular vectors, singular values, and the
Jacobian, as compared to the error plot of the output
singular vectors. The monotonically increasing error in
the input singular vectors is a result of compounding
the roundoff error of previous computations by initial­
izing V to its value from the previous computation
interval. This error in V is in turn responsible for the
error in the singular values and the Jacobian. This
error, however, is not carried over into the output sin­
gular vectors due to the fundamental difference in the
way that they are computed. While V is computed as a
product of successive plane rotations, U is computed
by normalization of the orthogonal columns of B (see
eq. (4)). Therefore, since the compounded error in V
does not affect the orthogonality of the columns of B,
the error in U is not monotonically increasing, but
results from the additional sweep that would be re­
quired for convergence. Analysis of the sweep data
shows that the two peaks in the output singular vector
error correspond to those Jacobians that required two
sweeps in order to orthogonalize their columns. It is
important to note, however, that this error is subse­
quently reduced to its previous small value.

The monotonically increasing error due to using the
previous V matrix is still of some concern. While the
magnitude of this error is small for this trajectory, it
will grow without bound. Note that for repetitive tasks
in conservative systems this is not a problem; when
the manipulator returns to its initial starting configu­
ration, the true SVD is assumed to be known, and V

(25)

(22)

TrajeCtory B

J =IIJ-UDVTII
err 11/11 '

L-- ~-_--------'0

6

aerr = L (aa; - Gc)2.
i-I

and

fined by the equation

The error in the input and output singular vectors,
denoted by Ve" and VerT' respectively, is computed
using the equations
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Fig. 5. Error in computation
ofthe SVD introducedfrom
incorporatingthe previous V
matrix and using 'a single
sweep.

Fig. 6. The singular values
ofthe Jacobianfor each
point along trajectory B
along with the maximum
magnitude ofthe plane rota­
tion requiredduring the
computation ofthe SVD.

SVO Error Singular Values

.... ..... L-- --.;:;;",---=:::;~ ~~_ ___' 0.0

,.- --, 10.71

,....--__-'--- -, 2.2
Singular Values

Output Singular Vectors

Using V only
- Alternating U and V

.....

Input Singular Vectors

....
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"..-- ---, 0.020/0

~ ----, 0.01%

Maximum Plana Rotation (sine)

Jacobian

.....
........

...........

....
~ ....oIoIIiIIIoaI- O

Trajec10ry B Trajectory B

can be reset. For arbitrary open trajectories,. however,
this will not be the case. A simple solution would be to
periodically recompute the SVD with V reset to I;
however, this will take between three and four sweeps
and result in a nonuniform computation time inter­
val. Fortunately, there is an alternative technique that
takes advantage of the contrast between the error in
computing Vand U. Since U is not corrupted by com­
pounded error, it can be used to reset V by carrying
out the plane rotations on the rows instead of the col­
umns of J. Thus if U TJ = B where the rows ofBare
orthogonal, then B = D V T where the rows of V Tare
normalized rows of B, so that once again J = UDV T.

Since V has now been computed by the normalization

of orthogonal rows, it is not affected by the com­
pounded error in the previous V. By alternating this
procedure each interval, applying plane rotations first
from the right on the columns of J and the next time
from the left on the rows, one can effectively eliminate
the buildup of error along the trajectory. A plot of the
SVD error terms for trajectory B using this technique
is given in Figure 5. As expected, the monotonically
increasing error in the input singular vectors has been
eliminated and is therefore also no longer reflected in
the computed singular values or in Jerr. The error
terms are now all of the same form, with peaks at those
configurations where two sweeps would be required to
orthogonalize the rows or columns of the Jacobian.
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3.2. Small Angle Approximations

A further reduction in the computational complexity
of the equations for computing the SVD can be gained
by examining the nature of the plane rotations re­
quired. A plot of the maximum rotation angle required
during the computation of the SVD of the Jacobian
for each point along trajectory B is presented in Figure
6. Note that for the majority of the trajectory the max­
imum rotation angle is very small; however, there
exist three peaks, two of which are very sharp. From
comparing the position of these peaks to the spacing of
the singular values also presented in Figure 6, it is
clear that very large rotations are required when there
is a crossing of adjacent singular values. By comparing
the position of the second two peaks in Figure 6 with
those in the error plots of the singular vectors in Figure
5, one can see that they coincide. Thus the large angles
in the plane rotations result in an extra sweep being
required for the algorithm to converge, thus introduc­
ing the error. It may at first seem curious that the
largest of the peaks, the first, does not produce any
peak in the error plot. The reason for this apparent
anomaly is that a large rotation angle is a necessary but
not a sufficient condition to require an additional
sweep. From examining the spacing of the singular
values at the position of the first peak, one can see that
the two equal singular values, a4 and as, are separated
from the remaining singular values. This implies that
the large rotation required is restricted to the plane
defined by their associated singular vectors and can
therefore be successfully completed within a single
sweep. In contrast, the final two peaks that result from
the crossing of singular values a3 with a4 and as with
a6' respectively, occur at a point where these four
singular values are closely spaced. This results in a
greater interaction between plane rotations, therefore
creating the necessity of an additional sweep for con­
vergence and introducing error into the single sweep
approximation.

Since the maximum plane rotations required during
the algorithm are very small in magnitude outside of a
few isolated peaks, a small angle approximation is
useful in reducing the computational effort required in
computing the SVD. The plane rotation required to
orthogonalize two vectors a, and QJ is obtained by

Fig. 7. .A graph ofthe plane
rotation angle required to
orthogonalize t}VO vectors
versus the relative length of
the vectors. This function is
plotted for various values of
the angle between the two
vectors.

Rotation Angle to Orthogonalize Vectors

r-----------------.....""".,._ 45

0.5

Degrees

~::::::._--===========-----~=::::::=---.J0
1.0

Vector Norm Ratio

satisfying eq. (9). By applying the double angle for­
muIas, the above equation can be solved for lJ resulting
in

Dividing both the numerator and the denominator of
the right hand side of eq. (26) by lIajl12 results in the
still exact equation

(27)

where ¢ is the angle between 3. and a j • This form of
the equation makes.explicit the dependence of the
plane rotation angle on both the non-orthogonality
of the two vectors involved as well as their relative
length. A plot of the required plane rotation to ortho­
gonalize two vectors versus their relative lengths for
various values of cos (¢) is given in Figure 7.

One interesting point about the graph in Figure 7 is
that when the two vectors are of equal length they will
be orthogonalized by a rotation of 45 degrees regard­
less of the angle between them. The most important
point in terms of using a small angle approximation,
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however, is that for nearly orthogonal vectors the rota­
tion angle will be small, except when there are nearly
equal singular values. Using the previous estimate of
the Sy'D to pre-orthogonalize the current Jacobian
guarantees that this will be true. Therefore, if the two
vectors 8. and 8j are not equal in length, then () will be
small. For small () the approximations

cos (8) = 1 and sin (8) = 8 (28)

are valid. The advantages of using this approximation
are two-fold. First, the solution of eq. (26) is vastly
simplified to

Fig. 8. Error in computation
ofthe SVD introducedfrom
using a small angle approxi­
mation.

SVD Error

.--- ----, 1%

Singular Values

1
Input Singular Vectors

(29)

1 1

so that the expensive computations of eqs. (12) - ( 14)
are no longer required. Second, the calculations to
compute the results of this plane rotation previously
required two floating point multiplies and one addition
per element. By using this small angle approximation,
eqs. (7) and (8) now become

Output Singular Vectors

which still only require one floating point multiply
and addition per element.

Simulation results showing the error in the com-

so that the number of floating point multiplies re­
quired has been cut in half. One must still consider,
however, the case where the two vectors are of nearly
equal length (i.e., nearly equal singular values). As
discussed above, under these circumstances not only is
the small angle approximation not valid, but the angle
of rotation is at its maximum value of 45 0 • Fortu­
nately, the cosine and the sine of 45 0 are equal, so that
the reduction in floating point multiplies can still be
achieved. Therefore, ifll8,11 = lIajll then

cos (0) = sin (8) = 12/2

and eqs. (7) and (8) become

72

(30)

(31)

(32)

"- -....- ~O

r---------------------, 10/0
Jacobian

'--- ..-....010...- .....-..-- ---....0

Trajectory B

puted SVD using the small angle approximations dis­
cussed above are presented for trajectory B in Figure
8. Trajectory B is presented as an example, since it
represents the worst case of the three trajectories. The
form of the error terms now more closely reflects the
plot of Figure 6, since approximations for large rota­
tions will always introduce error regardless of whether
they are restricted to a single plane. The peak errors
are all well within 1%, with nominal values at around
0.001%. The peak values simply reflect the inherently
ill-conditioned nature of trying to define singular vec­
tors for nearly equal singular values. The small angle
approximation primarily introduces error to the norm
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of the rows and columns of the rotation matrix but
not to their orthogonality. Thus a renormalization of
the resultant rotation matrix significantly reduces the
errors introduced by the small angle approximation.
While this degree of accuracy should be sufficient for
most applications, it is important to note that manipu­
lator configurations that produce peaks in the error
terms are easily identified by examining the spacing of
the singular values. Therefore, the small angle approx­
imations can be abandoned when there are closely
spaced singular values, thus obtaining an even higher
degree of accuracy while retaining the computational
advantages of the approximation throughout the rest
of the trajectory.

3.3. Numerical Evaluation

tions. As mentioned above, several proposed dexterity
measures are closely linked to the singular values and
vectors of the Jacobian. Thus the kinematic and static
force capabilities of the current manipulator configu­
ration can be compared to the requirements of an
assigned task. Inconsistencies between the physical ca­
pabilities of the manipulator and the assigned task can
be addressed by the manipulator itself by determining
a more suitable configuration. This results in more
autonomous behavior, which can be utilized for both
automated motion planning and work-cell design as
well as for the operation of robotic manipulators in
unstructured environments.

Real-time computation of the SVD also enhances
the utilization of redundancy in robotic systems. In
terms of the resolved motion rate control formulation
(Whitney 1969),

one of the most common techniques for using the
redundant degrees of freedom within the system is to
use the projection operator formulation proposed in
Liegeois (1977)

where J+ is the pseudoinverse ofJ and z is an arbitrary
vector in iJ space. This formulation has been used to
optimize a number of secondary criteria under the
constraint of a specified end-effector trajectory includ­
ing joint availability, torque minimization (Holler­
bach and Suh 1987), and obstacle avoidance (Macie­
jewski and Klein 1985; Nakamura, Hanafusa, and
Yoshikawa 1987). With the complete SVD available,
the projection operation becomes trivial, since the
singular vectors VI for r > i ~ n specify an orthonormal
basis for the null space. Thus the relative advantages
of using the homogeneous solution for alternate sec­
ondary criteria can be easily evaluated.

The remainder of this work will consider the appli­
cation of the real-time SVD algorithm to the funda­
mental problem of singular configurations. With the
exception of Cartesian positioning robots, all articu­
lated manipulators can be shown to possess singular
configurations that limit the effective number of inde­
pendent degrees of freedom (Baker and Wampler

A test was performed to evaluate the actual CPU time
needed to compute the SVD of the Jacobian matrix
for a six-degree-of-freedom manipulator. The algo­
rithm using small angle approximations and the pre­
vious estimate of the singular vectors, coded in
PASCAL and executed on a VAX785 computer, re­
quired 5.13 ms. In comparison, the execution time for
the unmodified algorithm (without small angle ap­
proximations or the use of previous estimates) required
an average of 27.2 ms for a typical Jacobian. This
figure is comparable to the time required by the
Golub-Reinsch algorithm in the IMSL package
(32.3 ms). These figures, however, do not reflect the
advantage of the algorithm in terms of its parallelism,
since they are coded and executed on a serial machine.
By using a simple mesh connection of processing ele­
ments capable of executing an addition or multiplica­
tion, the planerotations can be computed in parallel.
Such architectures suggest that a computation time of
well within I ms are easily achievable (Luk 1986b;
Schimmel and Luk 1986).

4. Applications

The ability to calculate the SVD of the Jacobian in
real time has a. number of possible different applica-
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Equation (38) is the nonlinear equation in it that must
be solved in order to find the optimal solution when
118(A)1I = Bmax • An efficient technique for doing so is to
use Newton's method, which requires the derivative of
eq. (38) with respect to the damping factor, as dis­
cussed in Lawson and Hanson (1974).

The above technique was implemented in a simu­
lation of the PUMA robot for the three trajectories
presented in Figures 1, 2, and 3. As mentioned pre­
viously, these trajectories are chosen to go through
singular configuration in order to illustrate the proper­
ties of the damped least-squares solution. The results

which defines the end-effector tracking accuracy under
the constraint 11011 ~ 8max where Omax is the physical
limit on the manipulator's joint velocity. The desired
solution can therefore be obtained by using the
damped least-squares solution for an appropriate value
of the damping factor. Intuitively, if the value ofll811
for which the residual is equal to zero is less than 8max ,

then A= 0; otherwise it would take on the value that
results in 11011 = Bmax • In physical terms, if the joint
velocity that exactly tracks the desired end-effector tra­
jectory is physically achievable, then it should be used;
otherwise the optimal solution requires that the joint
velocity norm be at its limit.

Thedamped least-squares solution of eq. (33), which
will be denoted by 8(A) in order to denote its explicit
dependence on the damping factor, is given by

(39)

(38)

(37)

(36)

. T·
Xj=Ui X •

n

J= L GjU1V(
i-I

where

where

is the SVD of the Jacobian. The solution norm is,
therefore, given by

(35)

This solution is guaranteed to be the minimal residual
solution over all solutions of equal or smaller norms.
Unfortunately, the norm of the solution cannot be
determined a priori for a given damping factor.

The specification of the problem one would like to
solve is the minimization of the residual IIi - J811,

4.1. Damped Least-Squares Solutions

The effects of singularities are frequently presented
with respect to the resolved motion rate control for­
mulation given in eq. (33). Singularities are identified
bya mathematical change of rank in J, which physi­
cally represents the inability of the manipulator to
achieve an arbitrary end-effector velocity. For these
cases, inverses are not defined, and even pseudoinverse
solutions such as eq. (34) are unsatisfactory since there
is an undesirable discontinuity at the singularity that
can result in oscillations and unacceptably high joint
velocities. These difficulties are not unique to the re­
solved motion rate formulation but are an inherent
part of the transformation between Cartesian and joint
space.

A general approach to resolving the discontinuity
at singular configurations and maintaining a well­
conditioned formulation that results in physically
meaningful joint velocities is to use the damped least..
squares formulation independently proposed in Naka­
muraand Hanafusa (1986) and Wampler (1986). The
damped least-squares solution of eq. (33) is the solu­
tion that minimizes the sum IIi - JOII + AIIOII so that
the end-effector tracking error is weighted against the
norm of the joint velocity by using A, also known as
the damping factor. This solution is typically obtained
by solving an equation of the form

)987). A considerable amount of effort (Asada and
Cro Granito 1985; Aboaf and Paul 1987; Dubey and
Luh 1987; Mayorga and Wong 1987; Sampei and
Furuta 1987) has been devoted to either avoiding or
dealing with operations at singularities due to the high
joint velocities and spurious motions that can result.
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Fig. 9. The norm ofthe
end-effector velocity tracking
error and the joint angle
velocity for trajectory A and
C using the damped least­
squares solution.

Trajectory C

the maximum allowable value. This prevents the spur­
ious motions that are typical of manipulators passing
through singular configurations using other methods of
inverse kinematics. Thus the solutions are physically
meaningful even near singular configurations, and,
in fact, they result in the minimum amount of end­
effector tracking error. This error can actually be zero
if the commanded end-effector velocity does not have
a component in the direction of the singular vectors
associated with the small singular values (notice the
notch in Fig. 9). This, in fact, is the advantage of hav­
ing the complete SVD available instead of only lim­
ited information on singularities. It should be noted
that.. as a result of passing through a singular configu­
ration.. it is possible for the manipulator to switch
solution branches (for example, going from an elbow­
up to an elbow-down configuration).

Norm of
End effector velocity error

~ --:- ....., 1.5

Damped Least Squares

~ --'- .-Io- ....I 0.0
,.....- __. 0.01

~------- ....l 0.00

Norm of
Joint angle velocity .

,.....- __. 2.0

Trajectory A

~ ....I 0.00

4.2. A Continuous Version of the Truncated SVD
Solution

The use of damped least squares provides the optimal
solution for tracking a given end-effector trajectory
under the physical constraints on the joint motions.
While this solution is optimal, it may be undesirable to
implement due to the iterative nature of calculating
the appropriate damping factor A. It can be shown that
the characteristics of the damped least-squares solu­
tion are very similar to those obtained using the trun­
cated SVD solution. The truncated SVD solution ofa
linear system of equations described by eq. (33), de­
noted here by 11k), is defined as

Norm of
Joint angle vejocity

Norm of
End effector velocity error

'-- --ol~_ ___Io.. ....l 0.0
,.....- __. 0.01

of the simulation, both the end-effector velocity track­
ing error and joint angle velocity norm, are plotted for
the three trajectories in Figures 9 and 10. The maxi­
mum joint velocity norm 0m.ax was set at 0.009 radians
per computation interval for all three trajectories. The
end-effector tracking error is zero at all points along
the trajectory, except where the Jacobian becomes
nearly singular and the desired end-effector velocity
has a component in the direction of the lost degrees of
freedom..At these points the characteristic jump in the
joint velocity is observed but is effectively clamped at

(40)

where k is an integer less than or equal to the rank r.
The truncated SVD reduces the solution norm by
removing all components of the solution that corre­
spond to small singular values while retaining all of
those associated with larger singular values. The pa­
rameter k is used to define small and large such that a,
for i ~ k are large, and a, for i > k are considered
small. It can be shown that iJ<k) is the minimum resid-
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Fig. 10. The norm ofthe
end-effector velocity tracking
error, joint velocity, and joint
accelerations for trajectory B
using the damped least­
squares solution at the veloc­
ity level.

Norm of
Joint angle velocity

since singular vectors are mutually orthogonal unit
vectors.

The advantages of using this form of a solution are
that, when the SVD is available, it is extremely easy to
compute. The norms of the truncated singular value
solutions I/0<i)1I, obtained from eq. (40), are computed
as i is incremented until either i is equal to the rank or
the norm is greater than Omax. The latter case is the
one of interest since it represents reaching the physical
constraint on the joint velocity. In this case k is now
known namely i-I, and the desired quantity (c - k)
for whi~h II 8<C)Iiis equal to «: can be easily obtained
from (42). This value is then used to obtain the con­
tinuous truncated singular value solution defined by
(41). An implementation of this algorithm was use~ to
simulate control of a PUMA robot for the three trajec­
tories presented above. In all three cases the resultant
joint trajectories were within 1% of those obtained
using the damped least-squares solution. A detailed
error analysis of the difference between the continuous
truncated ·SVD solution and the damped least-squares

, solution can be found in Maciejewski (1987).

Norm of
End effector velocity error

_----------------:----, 0.5

L g:~o

Damped Least Squares

Norm 01
Joint angle acceleration

IA
Trajectory B

4.3. Resolved Acceleration Control

The above sections have discussed howto deal with
hard constraints on the joint angle velocities in the
presence of singularities by removing those compo­
nents associated with small singular values. In many
practical cases, however, the joint accelerations will be
the limiting factor. The same techniques are equally
applicable, since resolved acceleration control (Luh,
Walker, and Paul 1980) still requires a solution based
on some sort of inverse of the Jacobian. This is easily
seen by differentiating eq. (33) to obtain

ual solution for all (} in the k-dimensional subspace
spanned by VI for i ~ k (Marquardt 1970). For cases
where (Jk ~ O'k+l and Afalls between the two largely
separated singular values Uk and ak+l, the results for
the two types of solutions will be approximately the
same. By modifying the truncated SVD to be continu­
ous instead of a stepwise function of k, a solution that
is virtually identical to the damped least-squares solu­
tion can be obtained. This type of solution will be
denoted 8<c) and is defined by .

• k Xi (c - k)Xk+l (41)
(J(c) = L - VI + Vk+l

i-I ai Gk+l Jjj + jiJ = i. (43)

where c is a real number less than or equal to the rank,
and k is the greatest integer less than or equal to c.
The norm of this type of solution is given by

(42)

Thus for a given state of the manipulator, the joint
accelerations required to achieve a desired end-effector
acceleration can be computed. These joint accelera­
tions can become infinite in the presence of singular­
ities so that once again a practical solution is to mini­
mize the residual IIi - (J8 + j8~1 under the constraint

76 The International Journal ofRobotics Research



Fig. 11. The norm ofthe
end-effector velocity and ac­
celeration tracking error and
joint angle velocity and
acceleration norms for tra­
jectory B using the damped
least-squares solution for
resolved acceleration control.
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Trajectory B

5. Conclusions

The conclusions of the work presented here can be
divided into those relating to calculation of the SVD
in real time and those pertaining to the advantages of
having the SVD of the Jacobian available for the con­
trol of robotic manipulators. With regard to the first

Damped Least Squares

minimum achievable for the given physical limit on
the acceleration of the manipulator.

~ ____'O

Norm of end effector
Acceleration error

,..- ---, 2.0

~ ~L...Io- ___....___O___L..J....--IO

r----------------------, 1.0

of physically achievable accelerations defined by 11811 ~
8max • As an example, consider the use of velocity con­
trol for tracking trajectory B given in Figure 10. A plot
of the joint accelerations required to maintain the
desired velocities is also given in this figure. The form
of the joint acceleration norm is typical in that a very
large spike is located at the singularity, with two
smaller peaks on either side. Note that this type of
behavior is not immediately apparent if one considers
simply differentiating the norm of the joint velocities,
but it becomes clear after considering the effect of
passing through a singularity..In particular, the first
acceleration peak is a result of the joints accelerating
to match the large velocity required due to the compo­
nent that is in the direction associated with the small
singular value. The acceleration then goes to zero
since the hard constraint on the velocities limits the
effect of this singular component. As the manipulator
passes through the singularity, however, the compo­
nent along the small singular value switches sign so
that those joints required to match it must decelerate
to zero and then accelerate in the opposite direction,
thus resulting in the large spike in the acceleration
curve. There is no spike in the velocity curve at this
point, since the velocity constraint is still in effect, but
it is now limiting the velocity in the other direction.
The final peak in the acceleration is then the result of
leaving the singular region so that the joints deceler­
ate, since large velocities are not required outside of
singular regions.

In order to obtain an optimum solution in the pres­
ence of hard constraints on the joint accelerations, the
continuous truncated SVD technique was applied to
the solution of eq. (43). The resulting joint velocities
and accelerations along with the end-effector tracking
errors are presented in Figure 11. As expected, the
end-effector acceleration tracking error is zero, except
near the singularities, where the hard constraint on the
acceleration is encountered. This constant limit on the
acceleration results in the triangular shape of the joint
velocity curves, which alternate between acceleration
and deceleration. Imposing such an acceleration con­
straint effectively increases the region in which the
effect of the singularity is felt. This results in an end­
effector velocity tracking error that is non-zero for a
larger portion of the trajectory around the two singular
configurations. This tracking error, however, is the
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point, the major advantage of the implementation of
the SVD algorithm presented here is that by using the
known SVD ofa previous Jacobian, the computa­
tional" effort of calculating the SVD of the current Ja­
cobian can be greatly reduced. By applying the rota­
tion implied by the previously known singular vectors,
a nearly orthogonal matrix results, which will typically
converge in a single sweep. This fact alone reduces the
computation time by greater than a factor of three,
since it has been shown that the original algorithm will
require between three and four sweeps to converge. In
addition, the computation time is now known a priori,
also removing the need for convergence tests. The
potential difficulty of accumulating the error of pre­
vious computations is removed by alternating the use
of the input and output singular vectors with which to
apply the rotations. This modification, while improv­
ing the error characteristics, does not affect the com­
putational requirements. Finally, by taking advantage
of small angle approximations, the number of floating
point multiplications required in the plane rotations is
cut in half, with the total number of floating point
operations cut by athird,

The availability of a computationally efficient algo­
rithm for computing the SVD of the Jacobian results
in a large number of potential applications, including
the real-time evaluation of dexterity and utilization of
redundant degrees of freedom. This work illustrates
the application of the SVD to the fundamental prob­
lem of dealing with singularities. The optimal solution
to the damped least-squares formulation can be easily
and efficiently obtained when the SVD is available.
Furthermore, it has been shown how a continuous
form of the truncated SVD solution can be used in
place of the damped least-squares solution. The use of
this formulation at either the velocity or acceleration
level allows operation through singular configurations
without violating physical constraints or generating
spurious motions.
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