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A Multiscale Assembly
Inspection Algorithm

An important aspectofrobust automatedassembly is an accurate and effi­
cient method for the inspection offinished assemblies. This novel
algorithm is trained on synthetic images generatedusing the CAD
modelof the different components of the assembly. Once trained on
synthetic images, the algorithm can detect assembly errors by exam­
ining real images of the assembled product.
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A t a time when quality and cost are becoming even more
important in the manufacturing process, accurate and

efficient inspection is critical. However, the complexity of
electrical and mechanical assemblies has reached a point
where human inspection can be fatiguing, unreliable, and
expensive. This has prompted many manufacturers to imple­
ment automated inspection systems, particularly for the
inspection of two-dimensional components such as printed
circuit boards [1]. These systems are typically driven by the
information available in the CAD model of the circuit to be
implemented.

Unfortunately, efforts to achieve the advantages of CAD­
driven inspection systems for three-dimensional assemblies
have been largely unrealized. While a large body of research
exists in the area of CAD-driven vision [2], this work has been
primarily focused on the recognition of three-dimensional
objects as opposed to their inspection. For object recognition
tasks, one typically needs to index into a large or complex
database of possible object models. Discrete object features,
such as edges and corners, have been widely used in these
recognition approaches because they allow for efficient index­
ing into the model database [3].

In contrast to feature-based techniques, template-based
approaches directly compare gray-scale image data to a prede­
fined model, or template. For inspection, the additional infor­
mation present in gray-scale
data makes template-based
approaches potentially more
sensitive. In fact, direct com­
parisons have shown that
template-based methods can
outperform feature-based

methods in some applications [4]. Traditionally, template
matching has been viewed as being computationally expen­
sive; however multiresolution processing can make these
approaches computationally efficient [5].

Our approach to automated inspection is grounded in
multiresolution template matching, however, the templates
are stochastic models of the expected gray-scale variations in
the image [6, 7]. These models are built by examining com­
puter-generated images that exhibit the allowable variations
in a correct assembly. The process of obtaining a model is
conceptually illustrated in Figure 1 using the example assem­
bly shown in Figure 2. The process starts by using informa­
tion from the CAD model to generate multiple ray-traced
images of the assembly within the range of acceptable toler­
ances [8, 9]. Connectivity information calculated from the
CAD model is used to create an object tree that describes how
assembly errors can manifest themselves in the image [10,
11]. The synthetic images and object tree are then used by the
training algorithm to determine a stochastic model of the
acceptable gray-scale and positional variations in an image of
a real assembly. The training is performed using the Expecta­
tion Maximization (EM) algorithm [12] with the resulting
parameters normalized using a single real image.

A key feature of our approach is the utilization of comput­
er-generated synthetic images in the training process. This

approach has the advantages
of avoiding the manufacture
of physical prototypes while
providing a wider variety of
acceptable variations. This not
only results in a more robust
inspection algorithm but also
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MULT/SCALE OBJECT DETECTION
We approach automated inspection as a problem in object
detection, where we assume the inspection algorithm must
make decisions based on a monochrome image of the object.

facilitates concurrent design of the assembly and its inspec­
tion system. Since each step in the inspection design process
is automated, inspection becomes feasible for small batches.
In the next section we present an overview of the multiscale
inspection. We will next describe the CAD database and its
role in guiding the inspection algorithm and address the syn­
thetic image generation process. We will then present an
example with our experimental results and summarize our
conclusions.

Our multiscale detection algorithm is based on a stochastic
object model, which is tailored to a specific object by adjust­
ing the model structure and changing model parameters. The
model generation and parameter estimation is driven by a
CAD model of the object as described in the following sec­
tions.

Our inspection algorithm models an object as a stochastic
tree, where the nodes of the tree represent various compo­
nents, or subassemblies, of the object. These subassemblies
contain the key features for discrimination and error detec­
tion. Nodes near the root of the tree typically model larger
structures that aid in locating the object while nodes further
down "zoom in" on the critical areas where assembly errors
are likely to occur. We represent the two-dimensional posi­
tion and orientation of each subassembly as a state vector X.
Since the position of a subassembly varies from image to
image we model it as a random vector. The state density func­
tion for a node depends only on the state of its parent node in
the object tree and on a set of node specific parameters <1>.

Thus, the states form a Markovchain along any path from the
root of the object tree.to a leaf node.

Figure 3 shows an object tree, where the superscript (i) is
used to denote quantities specific to node i. The image data Y
associated with each node is modeled as a set of random vari­
ables with density functions parameterized by a template 8
that indicates the expected appearance of the subassembly as
well as the expected data variability. The data values will also
depend on the position of the subassembly in an image, so the
overall object model is as shown in Figure 3, with the arrows
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Figure 1. Toobtaina model ofwhat a correctlyassembledproductlooks
like, the system firstdeterminesoptimalviewingparameters. It then
generates numeroussynthetic imagesof the assemblywhich include
acceptable variations that donot affectits function. Thelocationsof
potentialerrorsareautomaticallyidentifiedfrom the CAD modeland
passedto the trainingprocedure using a datastructure referredto asan
objecttree. Themodelparameterswhichdescribe the statisticalgray
scaleand positionalvariations areobtainedusing maximum likelihood
estimation. A singlerealimage is used to adjust forthe lightingcondi­
tions in the testingenvironment.

Figure 2. A videoimageof a pat­
tern wheelassemblythat is usedas
a representative exampleof a typi­
calmechanicalassembly forwhich
the inspection algorithmwas
implemented.

Figure 3. An example ofan object tree that identifies the significant loca­

tions within a trainingimageas wellas their relationship to eachother.
ThestateX of eachnode is modeledas a randomvectorwith density
functionsthat dependon the state of the parentnode and a set ofnode
specificparameters<p. Theimagedata Y of eachnode consistsof the
wavelettransformof the imageand is modeledas a randommultiscale
fieldwith density functionsparameterizedby a template e.
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from the root to the leaves, performing a sequential MAP
(SMAP) estimate of the state at each node [6] and passing this
estimated state to the child nodes. The object passes inspec­
tion only if all subassemblies are located and found to match
the model. This procedure hinges on our ability to compute a
log likelihood ratio at each state and resolution, which in turn
relies upon a knowledge of the parameters 8 and <jl for each
node. These parameters, as well as the structure of the object
tree, are determined using the CAD model of the object.
These parameters are adjusted at the actual inspection site by
using a single real image to compensate for variations in
lighting environments.

We first use the CAD model to identify the important sub­
assemblies and generate the object tree. The CAD model then
generates a series of training images, each of which contains a
properly assembled object, with all subassemblies and viewing
conditions within their allowed tolerances. The object tree is
"overlaid" on one of the training images, identifying the loca­
tion and orientation of each subassembly in that image. This
information is used to initialize the model parameters, which
are then determined from the full set of training images via
the iterative expectation maximization (EM) algorithm [6, 12].

Variation
Parameters

Horizontal
Band Data

Horizontal
Band Means

Vertical
Band Data

Vertical
Band Means

Image
Data

Figure5. Thesinglemonochrome imageof the assemblyunder inspec­
tion is processedusing the multiple resolution Haartransformillustrat­
ed in Figure4.An exampleof the resultsof this procedure is providedin
the upperhalf of the figure. In this example the nodeof the objecttree
that correspond,to the shaft of the pattern wheel is shownat maximum
resolution. This transformedversion of the inspection image is com­
paredto the statisticalmodelof what we expect to seeat this node fora
correctlyassembledpattern wheel. Thestatisticalmodelshown in the
lowerhalf of the figure is automaticallycalculatedfrom the training
imagescreatedfrom the CAD model of the assembly. Thedarkregions in
the model representa mask whichexcludesextraneousinformation
from the identification process.

Figure4. An illustrationof the Haartransformappliedrecursively to the
videoimage of the pattern wheelshown in Figure2. Theupperportion
of the figure showsthe actual transformedimage at three differentreso­
lutions. The lowerportionof the figure illustratesthe pixel calculations
that are recursively appliedto createthe multiresolutiontransformed
image.

indicating conditional dependence.
We use the multiresolution Haar transform of each image

as our data (see Figure 4) and use a corresponding multireso­
lution template at each node of the object tree (see Figure 5).
This allows us to model each node at resolutions appropriate
to the important features in the subassembly. It also permits
us to search for the subassemblies via a fast multiscale search
technique. We use recent results from the theory of multi­
scale random processes to aid in the analysis and construction
of the model [13,6].

The search for the most likely position X of a subassembly
begins at a coarse resolution and progresses to finer resolu­
tions. For a given resolution and candidate state we use the
image data and templates at that and coarser resolutions to
compute the log likelihood ratio between the hypothesis that
the subassembly is present and the hypothesis that it is not.
The states with the largest log likelihood ratio are investigated
at the next finer resolution. The search continues in this fash­
ion until the largest log likelihood ratio exceeds a predefined
decision threshold B, at which point the search returns the
associated state as the position of the subassembly. The search
will terminate in a "no match" condition if it reaches a point
where all remaining candidate states have log likelihood
ratios less than a rejection threshold a. Thus, the search takes
the form of a sequential likelihood ratio test, where the search
progresses in scale rather than time. A more detailed discus­
sion of the algorithm can be found in [7].

The inspection algorithm searches for the object in an
image by using this fast multiscale search technique at each
node of the object tree. The search traverses the object tree
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Figure 6. This figure presentsan illustration of tolerance zones fora
simplecomponentdepicted in (a). Any instanceof this componentthat
lieswithin the shadedregion boundedby the MMC andLMCsurfacesis
within tolerance and will function as designed. Instancesofcomponents
within the tolerance zone arecreatedby traversing the CSCtreesof the
MMC andLMCmodelsof the component, as illustratedin (b), where
eachprimitiveis selectedfromwithin its tolerance zone.

MMC

(b)

(a)

Figure7.An explodedviewof
the pattern wheelassembly
generatedfrom the informa­
tion in the CAD model. This
viewillustrates the orderof
assemblyas wellas the sin­

nment pin 1 gle common insertionaxis
forall of the pins.Individual
surfacecontactsbetweendif-

L~~i~g ferentcomponentsareused
to createthe liaison diagram
shown in Figure8.

Shaft

LMC

liaison diagram [I1J and it shows the interaction among the
different components of the assembly. This process is demon­
strated using Figure 7 which shows an exploded view of the
pattern wheel assembly. This figure illustrates the order of
operations required to complete the assembly and highlights
the single common axis of insertion for the pins and the shaft.
Using this information along with the correct final state of the
assembly, the system determines which surfaces will be in
contact. For example, the single cylinder pins (the high densi­
ty and the unlatch pins) are inserted only into wheel-a1 and
wheel-a2 and therefore form a close relationship with the
wheels through their side surfaces. The shaft is only inserted
into the center hole of the gear. The multi-cylinder pins (the
alignment pins), however, are in contact with the holes in the
gear, the locking ring, and the wheels and functionally are
required to maintain a precise separation between the two
wheels as well as between wheel-a1 and the locking ring
which rests on the gear. This last piece of information can not

CAD DATABASE ANALYSIS
As discussed in the preceding section, data obtained from an
analysis of the CAD model of the assembly is used to guide the
inspection algorithm in the training process by addressing the
different variations possible and identifying an appropriate
object tree in the training images. To be able to produce a
large number of synthetic images with the required varia­
tions, a suitable CAD model has to be generated for the
desired assembly and its components. The relationship among
the different components of the assembly must be known to
provide the inspection algorithm with an appropriate object
tree.

For purposes of illustration, the pattern wheel assembly
pictured in Figure 2 is used as a simple example of a realistic
assembly used in a small batch manufacturing environment.
For each component of the pattern wheel assembly, a CAD
model was created using the TWIN Solid Modeling Package
developed by the CADLAB of Purdue University. TWIN is a
boundary representation solid modeler but also accepts Con­
structive Solid Ceometry (CSC) models as input. Therefore,
components are created in the CSC format and then convert­
ed to boundary representation for internal calculations [8].

Three CSC models are created for every component to
account for component variations that naturally occur in a
manufacturing environment. One model represents the com­
ponent at its maximum tolerance limit while another repre­
sents it at its minimum tolerance limit. Both models are
created by using the maximum and minimum dimensions
that allow the component to function as designed. These are
the Maximum Material Condition (MMC) and Least Material
Condition (LMC) of the component, with the region in
between forming the component's tolerance zone [9]. Creat­
ing a CAD model of the component that lies within its toler­
ance zone generates an instance of the component that is
within its allowed tolerance. Figure 6 shows an example of the
tolerance zone of a component. A new random instance of the
component is generated by tracing the CSC tree of the LMC
and the CSC tree of the MMC models of the component and
selecting from a uniform distribution of the geometric para­
meters of the primitives in the CSC trees. The third CSC
model represents the component at its optimal dimensions
which can then be used, along with the other two CSC mod­
els, for generating a nonuniform distribution of random com­
ponents that are within tolerance.

The locations of all components within the nominal
assembly are specified by homogeneous transformation
matrices that are used to accomplish two tasks. First, the vari­
ations between the relative locations of different components
is specified in terms of a tolerance zone for these homoge­
neous matrices [10] so that different instances of properly
functioning assemblies can be created. Second, when the
components are transformed as specified by these homoge­
neous matrices, the contact relationship between any two
components can be found by querying the modeler. The iden­
tification of the bounding faces between any components that
are mated is used to form a graph in which the vertices repre­
sent the different components of the assembly and the edges
between the vertices represent liaisons between the compo­
nents, as connections or as contacts. This graph is called the
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Figure 8.A liaison diagram forthe patternwheelassemblyshowingthe
contactrelationships amongthe different components. Eachcircle rep­
resentsthe structureof a particular component. Thedouble arrows indi­
catea contactbetween somesurfaces within twocomponents.

visible in the templates depicted in Figure 5.
The second rendering technique is used to create more

physically realistic synthetic images that are required to build
the statistical model of what a correctly assembled product
should look like (see Figure 1). To obtain sufficiently realistic

Figure 9. Theerrortree forthe
HighDensityPinthat isgenerat­
ed fromthe liaison diagram. This
treeillustrates the possible prop­
agation ofmisalignedsurfaces
within the assembly. Thecircles
represent different surfaces of a
component. (For simplicitythe
threealignmentpinsareconsid­
eredtogetherand the unlatch
pin isnot shown.)Thedashed
arrow represents an edgethat
existsin the liaison diagram but
that is not includedin the error
tree. Thisallows severalerror
treesto be combinedto formthe
objecttreeusedby the rnultiscale
detection algorithm.

G

Hi D-Pin

Shaft

SYNTHETIC IMAGE GENERATION
There are two image generation algorithms used to create
synthetic images from the CAD model of the assembly. The
first is a fast rendering technique that uses only a simple local
illumination model and takes advantage of special purpose
VLSI hardware for performing geometrical calculations.
These draft images are used to identify an optimal camera
location and to further refine the object trees used by the
inspection algorithm [14]. The location of the camera relative
to the assembly under inspection will greatly affect the sensi­
tivity of identifying possiblle errors. Our approach to comput­
ing an optimal camera location is to try and maximize the
amount of information in the resulting image that is relevant
to evaluating contacts between components. To do this we tag
each of the contact surfaces in the error trees with a unique
ambient color, with all other surfaces set to black. We then
render the assembly using a graphics workstation equipped
with a Z-buffer using only the ambient intensity of the poly­
gons. The resulting image contains the number of visible pix­
els for each surface of interest. Since with hardware support
this procedure takes only a fraction of a second, it can be
repeated for a large number of potential camera locations.
The optimal camera location is selected as that which maxi­
mizes the number of visible pixels and surfaces. The informa­
tion from this image created from the optimal camera
location is also used to identify the location and size of the
object nodes required by the inspection algorithm. To simpli­
fy processing, all object nodes are rectangular, however, a
mask is used to identify the regions within the node that cor­
respond to error tree surfaces. Only this region is used in
building the statistical model of the node. This prevents irrel­
evant background information from affecting the sensitivity
of the inspection process. An illustration of creating this mask
information is provided in Figure 10. These masks are also

be clearly deduced from the exploded view but is clear in the
resulting liaison diagram shown in Figure 8 which is formed
from the contact information explained above. Each circle in
the diagram represents a surface on an individual component
with the arrows indicating a contact between surfaces of dif­
ferent components.

The liaison diagram forms the basis from which the object
tree is generated. Contacts between different components
imply that they were brought together by the assembly
process and that errors in that process would result in mis­
aligned or missing contacts. Thus, to check for errors in the
insertion of an individual component, the liaison diagram is
traversed starting with the vertex associated with that compo­
nent. This process is illustrated for the high density pin in
Figure 9, resulting in a data structure that we refer to as an
error tree. The error trees for all components of interest can
then be combined to create the complete object tree (see Fig­
ure 3) that guides the inspection process.

All relevant information needed by the inspection algo­
rithm that can be gleaned from the CAD model is now avail­
able. The remaining step in the training process is the actual
creation of realistic images that include the object tree and
the different environmental variations that may occur in the
actual assembly workcell. This is the topic of the next section.
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Extent of the alignment pin in image plane

Masking information of the alignment pin

Figure10. Theouter rectanglerepresents the boundingbox of the pro­
jection of an alignment pin onto the imageplane.The inner rectangleis
the boundingbox of the visibleportionofthis alignment pin. This
boundingbox is passedto the inspectionalgorithmas an objectnode
alongwith the mask that identifies the regionwhich corresponds to the
alignment pin. Thisallowsthe inspection algorithmto ignoregray-scale
variations fromsurfacesthat areunrelatedto the assemblyprocess. This
mask informationis obtainedusingZ-bufferhardware.

images, light-object interaction must be modeled. Although
graphics workstations available today can generate shaded
images at video rates, the illumination models used to gener­
ate these images typically only deal with the very first reflec­
tion from an object's surface. These so called first-order or
local models do not include the effects of light reflecting from
several objects or being transmitted through objects. These
global models need to be considered in order to obtain more
realistic images that can model different types of materials,
particularly those that are highly reflective such as polished
metals [15]. The only established rendering techniques that
attempt to model global lighting effects are ray tracing and
radiosity. Because specular effects are very hard to model
with radiosity, metallic parts are hard to simulate in images
that are rendered using radiosity techniques. As a result, we
selected ray tracing as the rendering technique for this
application.

AN EXAMPLE
We will now illustrate the implementation of the entire
assembly error inspection system for the simple example of
the pattern wheel presented in Figure 2. First, the CAD model
of the assembly is used to create instances of the different
components that have simple variations within their allowed
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tolerances. This is required in order to produce training
images that include acceptable levels of variations. Next, as
explained in our discussion of CAD database analysis, the liai­
son diagram of the pattern wheel assembly is generated auto­
matically from surface contact information (see Figure 8).
The exploded view of Figure 7 suggests that the pattern wheel
assembly can be completely assembled with only a single
common axis of insertion. This identifies the pins as potential
sources of errors that can occur due to misalignment. From
the liaison diagram the system automatically generates the
error trees of the pins. These error trees, like the example in
Figure 9, are used as the object trees (see Figure 3) which
identify the important locations in the images for various
types of assembly errors. The number of levels included in the
tree is determined by the visibility of the root node, i.e., if the
single view used by the inspection algorithm results in the
root node being partially occluded then evidence of misas­
sembly should be corroborated by its child nodes to which the
error may be propagated.

Ray tracing is then used to generate a group of synthetic
images from the assembly CAD model. Determining the opti­
mal number of images to use is the subject of ongoing
research, however, for this particular example six images were
used. Parameters for the illumination model are specified
from the material types of the different pattern wheel assem­
bly components. Light and camera placements are automati­
cally evaluated to provide maximum visibility of contact
surfaces representing potential locations of assembly errors.
The synthetic images along with the information from the
object trees are then passed to the multi scale inspection algo­
rithm for training. Figure 11 illustrates one such synthetic
image where the wheel-a2 error tree is shown superimposed
onto the image (see Figure 8). The object tree consists of the
"boxed in" areas. The upper left corners of the nodes are con­
nected to one another to indicate the connectivity of the tree,
and the number of boxes around each node indicates that
node's level in the tree. Note that up to this point no real
images of the assembly are required so that this system can
also be used to evaluate prospective designs for their
inspectability without even building a prototype. Once the
system has been trained it is ready to perform its function of
inspecting real assemblies. Prior to automated inspection, a
single real image of a correctly assembled product must be
obtained from the actual inspection station to compensate for

Figure11. A synthetic image of the
pattern wheelassemblywith the
wheel-a2errortreedenotedby the
connectedboxes.Thistree is used
as the objecttreerequiredby the
inspectionalgorithm to guide its
analysisof the image. Thenumber
of boxesaroundeach objectrepre-

. ~~~_~~ J sents the object'slevelin the tree.
Theboxesare automaticallygen­
eratedby calculatingthe visible
portionsof the componentsin the
errortreewith the first levelbox
includingthe entireassembly.
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Figure 12. A realvideo imageof
a defective assembly with the
errorcorrectly identifiedby the
inspection algorithm. The "X" in
the box identifies the location in
the imagein whicha mismatch
with the trainingimageswas
foundthus indicating the miss­
ing alignmentpin.Note that the
slightlydifferent position, orien­
tation,andscaleof the real
imageas opposed to the syn­
thetic trainingimagesas indi­
catedby the largeboundingbox
doesnot adversely affectthe
robustness of the algorithm.

Figure 13. A realvideo imageof
a defective assemblyresulting
frommisplacing the top wheel
(wheel-a2). Thealgorithm
detectedno errors in trying to
locatethe assemblyand the first
levelof the wheel-a2 errortree
as indicatedby the singleand
double linesquares. A defective
assemblywasidentified when
the inspection algorithm
descended to the secondlevelof
the errortree

variations in lighting environments.
The system was tested on numerous real video images of

correctly assembled pattern wheels, which can be safely
assumed to comprise the vast majority of manufactured
pieces, in various positions, orientations, and lighting condi­
tions uniformly distributed in the range specified by the train­
ing set. In all cases the inspection algorithm produced no
false negatives, despite the large variations in the resulting
image, thus illustrating the robustness of the technique. The
algorithm consumed an average CPU-time of 12 seconds on a
Sun SPARC-I0 workstation to identify a correct assembly.
Next the system was tested with real assemblies that were
misassembled due to missing or misaligned pins. Figure 12
shows an example of a video image of one such defective
assembly in which the alignment pin is missing. The perfor­
mance of the algorithm is graphically illustrated in the figure
by the boxes that are superimposed on the image. The algo­
rithm first identifies the gross location of the assembly within
the image. The box around the entire assembly indicates
where the algorithm located the part. Note that the tilt of the
box indicates that the algorithm was able to adapt to the dif­
ferent orientation of the part in the real image as compared to
the training images, once again illustrating its robustness.
The algorithm then "zooms in" to look for the pin, guided by
the information in the error trees. At this point it detects a
mismatch which is indicated in the image by an "X" in the
area where it last checked to find the pin.

Figure 13 shows an example of a more subtle error result-

June 1996

ing from wheeI-a2 being misplaced on the pins. Note that the
error can not be detected from just considering wheel-a2.
However, once the algorithm descends to the second level of
the wheel-a2 error tree, which includes all the pins (see Fig­
ure 8), it detects an error in the node associated with one of
the alignment pins. This is again indicated in the image by an
"X"in the area where a problem was detected.

CONCLUSIONS
This article has discussed the implementation of an assembly
inspection system that uses a multi scale algorithm to detect
errors in assemblies after being trained on images of correctly
assembled products. It has been shown that synthetic images
generated by using the CAD models of the assembly and com­
puter graphics ray tracing rendering techniques can be effec­
tively used to train the algorithm. The use of synthetic images
has the advantages of simplifying the training process and
automating the image selection and the object tree allocation
procedure. In addition, the problem of addressing the differ­
ent variations that can occur in the assembly workcell is sim­
plified. The use of synthetic images generated directly from
CAD models also allows the fine tuning of the inspection algo­
rithm early in the design process thus allowing the assembly
and inspection processes to be designed concurrently.
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