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ABSTRACT

GLOBAL OMEGA EQUATION: DERIVATION AND APPLICATION TO TROPICAL
CYCLOGENESIS IN THE NORTH ATLANTIC OCEAN

The quasi-geostrophic omega equation has been used extensively to examine the large-scale vertical

velocity patterns of atmospheric systems. It is derived from the quasi-geostrophic equations, a balanced

set of equations based on the partitioning of the horizontal wind into a geostrophic and an ageostrophic

component. Its use is limited to higher latitudes, however, as the geostrophic balance is undefined at the

equator. In order to derive an omega equation which can be used at low latitudes, a new balanced set of

equations is developed. Three key steps are used in the formulation. First, the horizontal wind is decomposed

into a nondivergent and an irrotational component. Second, the Coriolis parameter is assumed to be slowly

varying, such that it may be moved in and out of horizontal derivative operators as necessary to simplify the

derivation. Finally, the mass field is formulated from the nondivergent wind field. The resulting balanced

set of equations and the omega equation derived from them are valid over the whole sphere. In addition,

they take a similar form to the quasi-geostrophic equations.

The global omega equation is applied to the problem of tropical cyclogenesis in the Atlantic Ocean.

The omega fields are used to compare those disturbances that eventually undergo cyclogenesis with those

that dissipate. Composite analysis is employed and, in order to account for the different regional behavior

of tropical cyclogenesis, the Atlantic is divided into three subbasins: the Tropics, the Subtropics, and the

Gulf of Mexico. It is found that the large-scale omega is not strong enough to account for the magnitude

of vertical velocities found in tropical cyclones, but acts to provide a favorable environment for convection

to develop. The greatest difference between the developing composite and dissipating composite is seen

in the Tropics, where the large-scale ascent at low levels on the leading edge of the disturbance due to

frictional forcing in the developing composite is significantly greater than the ascent at the leading edge of

the dissipating disturbance. The other two subbasins do not exhibit such large statistical differences, but

examining the omega fields and the dominant forcing terms do lend insight into the physical differences

between those distubances which develop and those that do not.

As an additional application, the 850-hPa omega is used as a predictor in an operational tropical cy-
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clogenesis probability product. Overall, the inclusion of the omega field improves the performance of the

product, as measured in terms of the Brier skill score. Due to a difficulty in interpreting how the linear

discriminant analysis handles the omega field however, it may be that the large-scale omega may be of more

value in the genesis product’s screening step than in its prediction step.
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“Who then is this, that even the wind and the sea obey Him?”

-Mark 4:41 (NASB)
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Chapter 1

INTRODUCTION

1.1 Vertical Motions in the Atmosphere

It has long been known that most high impact weather events occur in areas of upward vertical mo-

tion. Besides a few notable exceptions such as droughts and downslope windstorms, potentially destructive

weather – severe thunderstorms, blizzards, monsoonal rains, hurricanes – all occur where the air is rising. As

such, much thought has gone into developing methods to determine the vertical motions of the atmosphere.

On the synoptic scale, horizontal winds are relatively easy to measure. Anemometers reliably mea-

sure surface winds, and GPS tracking of radiosondes gives accurate measurements of wind speeds aloft.

Accurate measurements of vertical velocities, however, are more difficult. A scale analysis such as per-

formed by Bluestein (1992) demonstrates the difficulty. Typical vertical wind speeds in synoptic-scale

systems (10−2 m s−1) are three orders of magnitude smaller than the speeds normally seen in horizontal

winds (10 m s−1). Certainly instrumented aircraft can measure vertical motions, but the coverage is limited.

What is needed is a method to measure vertical motions over vast distances, such as the surface stations and

radiosonde network can with the horizontal wind. Various techniques have been developed, therefore, to use

those quantities which are more accurately measured, such as horizontal wind speed, to arrive at a measure-

ment of the vertical wind speed. Miller and Panofsky (1958) review many of these techniques, but the two

methods most commonly found in today’s literature are the kinematic method and the omega equation.

In the kinematic method, vertical velocities are computed using the mass continuity equation in pres-

sure coordinates. The vertical velocity at any pressure level is equal to the integral of the divergence above

it. Because divergences in the atmosphere are generally small, errors in the measurment of the horizontal
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wind components can result in considerable uncertainty in the divergence, and ultimately in the resulting

omega computed from the kinematic method. These errors are typically mitigated by applying a correction

scheme such as the one developed by O’Brien (1970).

Although the kinematic method is still in use today, the method most often used to calculate large-

scale vertical velocities is the quasi-geostrophic omega equation. This method has an advantage in that it

is accurate for large-scale flows, and it gives insight into the processes which force the rising or sinking

motions. As the name implies, the quasi-geostrophic omega equation is derived from the quasi-geostrophic

equations, a set of equations approximating the primitive equations for large-scale flows. Before discussing

the quasi-geostrophic omega equation itself, therefore, an overview of the quasi-geostrophic equations is

given. Also, in discussing the omega equation, the issue of scale arises. In this paper, the term large scale

will be used synonomously with synoptic scale to mean flows with Rossby number much less than one. The

terms small scale and mesoscale will be used interchangably to mean flows with Rossby number greater

than one. The definition of the Rossby number as used here is given in Section 2.2.

1.2 The Development of Quasi-geostrophic Theory

In the mid-twentieth century, meteorologists watched with interest as the first computers were un-

dergoing development. The computer’s ability to quickly perform mathematical calculations would be nec-

essary to integrate the equations of motion forward in time in order to produce a numerical forecast of the

atmosphere. Meteorologists recognized however, that the first numerical weather forecast would not be

realized by the sole efforts of the computer engineers. The basic set of equations governing the flow of

the atmosphere (the so-called primitive equations) were still too complex for the new technology to handle.

It was necessary, therefore, to simplify the primitive equations in order to be used by the computer. As

with any complex system, the simplification process is one of compromise. The goal is to produce a new

set of equations which retains the most important aspects of the problem, but which discards those aspects

which are secondary and do not contribute to the general understanding of the system, but merely make the

manipulations of the equations cumbersome.

In addressing this problem, Charney (1948) began with the observations of the synoptic meteorolo-
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gists that the atmospheric flow is approximately hydrostatic and adiabatic. In addition, the horizontal mo-

tions are larger than the vertical motions, and the flow of air is in approximate geostrophic balance. Charney

used these characteristics to perform a scale analysis on the primitive equations of motion. The result was

the development of what is now known as quasi-geostrophic theory. Building upon this work, Charney and

other researchers were able to produce the first numerical weather forecast (Charney et al., 1950).

The utility of the quasi-geostrophic system of equations extends well beyond numerical weather

prediction. The year after his work on quasi-geostrophic theory was published, Charney noted that the

quasi-geostrophic system permits a simplified treatment of certain theoretical problems (Charney, 1949).

The equations are simple enough to often be treated analytically, yet still contain enough of the physics of

the motion of the atmosphere to allow an understanding of many phenomena in geophysical fluid dynamics.

In his own work, Charney used the quasi-geostrophic equations to investigate such topics as the vertical

propagation of planetary waves (Charney and Drazin, 1961), geostrophic turbulence (Charney, 1971), and

the stability of jet streams (Charney and Stern, 1962).

Because it is such a powerful tool, the use of the quasi-geostrophic system naturally extended well

beyond Charney’s own research. For example, it has been used in the study of mid-latitude cyclones, se-

vere weather, stratospheric dynamics, and ocean dynamics, as covered by modern textbooks (e.g. Andrews

et al., 1987; Bluestein, 1993; Carlson, 1998; Gill, 1982; Holton, 1992; Pedlosky, 1987; Vallis, 2006). In

fact, because of its usefulness in reducing the complexity of many atmospheric flows without entirely re-

moving the essential features, the quasi-geostrophic approximation to the primitive equations is covered in

virtually every modern textbook on the dynamics of the atmosphere or ocean. Arakawa (2000) notes “I was

particularly inspired by the concept of quasi-geostrophy and then fascinated by the fact that even highly sim-

plified dynamical models such as the quasi-geostrophic barotropic model have some relevance to extremely

complicated day-to-day weather changes.” The application of quasi-geostrophic theory is so widespread in

atmospheric science, that it has been called the cornerstone of modern dynamic meteorology (Hoskins et al.,

1978).
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1.3 Introduction to the Omega Equation

The quasi-geostrophic omega equation is a second order, linear, partial differential equation derived

from the quasi-geostrophic approximations to the vorticity equation and to the thermodynamic equation.

The equation may be written as

RΓ̄

p2
∇2ω + f2

0

∂2ω

∂p2
= f0

{

∂

∂p
[vg · ∇(ζg + f)] − 1

f0
∇2

[

vg · ∇
(

∂Φ

∂p

)]}

, (1.1)

where ω is the vertical pressure (p) velocity, vg = 1
f0

k ×∇Φ is the geostrophic wind, and ζg is the vertical

component of the geostrophic vorticity (i.e. ζg = k · ∇ × vg). In this form, which will be called the

traditional form, two terms are responsible for forcing the vertical motion. The left hand side is of a form

resembling a three-dimensional Laplacian. For the purpose of qualitative interpretation of the equation, it is

often assumed that omega is sinusoidal in both the horizontal and the vertical. This assumption leads to the

result that the left hand side is proportional to −ω (Holton, 1992). Looking at the forcing terms, it is seen

that the first term on the right hand side involves the absolute vorticity of the flow. In particular, advection

of cyclonic vorticity which increases with height forces rising motion. The second term relates the thickness

field to the vertical motion. The thickness field is related to the temperature field by the hydrostatic equation

such that ∂Φ
∂p

= −RT
p

, so the term can be written − 1
f0
∇2
[

−vg · ∇
(

RT
p

)]

, meaning that the horizontal

Laplacian of the temperature advection forces vertical motions. If, as in the case of ω, a sinusoidal form of

the advection is assumed, then operating with the Laplacian results in a value which is proportional to the

negative of the temperature advection, resulting in an approximate form of the forcing 1
f0

[

−vg · ∇
(

RT
p

)]

.

The advection of warm air is associated with rising motion, and the advection of cold air is associated with

sinking motion. A more complicated form of this equation was developed by Krishnamurti (1968a) and

used in the analysis of a midlatitude cyclone (Krishnamurti, 1968b) and in a study of a tropical easterly

wave (Baumhefner, 1968). In both of these studies, the total omega, as well as the omega resulting from the

individual components was examined for relative importance.

Despite the relative ease in the interpretation of the forcing terms, there are drawbacks to using (1.1).

Bluestein (1992) summarizes these issues. First, the two forcing functions can both be written entirely in

terms of the height field so they never really act independently of one another. Second, there can be large
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cancellation between the two forcing terms. This cancellation involves a term of the form vg · ∇∂ζg
∂p

, or the

geostrophic advection of the thermal vorticity. Third, two pressure levels are needed to specify the vorticity

forcing term. Finally, the two forcing terms are not Galilean invariant, although their sum is.

To address these issues, Trenberth (1978) approximated the forcing for the omega equation by the

advection of vorticity by the thermal wind. His forcing is an approximation, however, in that he neglected a

term involving the geostrophic deformation of the flow. Hoskins et al. (1978) devised an alternative to the

traditional form of the omega equation which retains the deformation terms neglected by Trenberth. In their

formulation, the omega equation is forced by the divergence of a vector, Q:

RΓ̄

p2
∇2ω + f2

0

∂2ω

∂p2
= −2∇ · Q. (1.2)

As seen in Holton (1992), Q is typically written in one of two equivalent forms:

Q =

(

−R
p

∂vg

∂x
· ∇T,−R

p

∂vg

∂y
· ∇T

)

(1.3)

or

Q =
Dg

Dt

(

R

p
∇T
)

(1.4)

In (1.4), it can be seen that Q is proportional to the horizontal frontogenesis following the geostrophic flow.

1.4 Vertical Motion and Tropical Cyclogenesis

Convection is the primary source for vertical motions in tropical cyclones, whereas most omega

equations (including the omega equations discussed here) assume adiabatic conditions. In that sense the

study of a mature tropical cyclone should be undertaken using an omega equation which includes latent

heating. But given that tropical cyclones are characterized by intense upward motion, it is reasonable to

expect that an environment of large-scale rising motion would be favorable to the development of any nascent

disturbances. Clearly tropical cyclones do have surrounding regions of subsidence which compensate the

vigorous rising motions produced by the convection (Frank, 1977), and the eye of a hurricane is a well-

known area of sinking motion (Shea and Gray, 1973; Willoughby, 1998). But it is the upward motions

due to convection which drives the system, so any help in creating convection would benefit a pre-cyclone

5



disturbance. The focus in this paper, then, will be on the environmental conditions a disturbance experiences

before either development or dissipation. In this sense, the relationship between omega and the development

of a tropical cyclone will be similar to the relationship between omega and the development of severe

convective storms proposed by Doswell (1987). In his view, rising motion created by synoptic-scale systems

aids in removing any capping inversion which may be present, in addition to reducing the stability of the

sounding overall. For this purpose the adiabatic omega equation is an appropriate tool.

The use of either (1.1) or (1.2) is well suited for midlatitude applications, but at low latitudes, the

geostrophic wind becomes a less-valid approximation to the actual wind. At the equator, it is undefined

altogether. In addition, tropical cyclones can form at a wide range of latitudes, especially in the Atlantic

and West Pacific basins, so an omega equation which includes a variable Coriolis parameter is desirable.

This paper introduces an omega equation which is based on a balanced set of equations valid for the whole

sphere, therefore making it suitable for use in the Tropics. The derivation of the system relies on three key

steps. First, the horizontal wind field is not decomposed into a geostrophic component and an ageostrophic

component, but rather into a nondivergent component and an irrotational component. Second, the Coriolis

parameter is allowed to vary with latitude, but this variation is assumed to be small compared to the variation

of the streamfuction. As will be seen, this approximation allows the Coriolis parameter to be moved in and

out of the del or Laplacian operators, ultimately creating an omega equation which has the same general

appearance as the quasi-geostrophic omega equation. Finally, in creating the balanced mass and momentum

fields, the mass field is computed from the nondivergent wind field, as opposed to the typical definition of

the geostrophic balance, which gives the wind field as a function of the mass field. With the global omega

equation, the large-scale vertical motions associated with Atlantic disturbances may be studied in much the

same way as the quasi-geostrophic omega equation has been used to study extratropical weather systems.

1.5 Structure of the Paper

The remainder of this work is divided into 5 chapters. In Chapter 2, the primitive equations in

spherical coordinates are used to derive the balanced system valid for the whole sphere. The derivation

follows similar steps as are used to derive the quasi-geostrophic equations for midlatitudes. Not surprisingly,
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the equations governing this balanced system appear very similar to the quasi-geostrophic equations. In the

development of the quasi-geostrophic system, friction is often neglected; in this work, it will be retained. In

Chapter 3, the global balanced system is used to derive a global omega equation and boundary conditions

for its solution on the sphere. Both the traditional and the Q form are derived. The details of the method of

solution of the omega equation, which includes a normal mode decomposition in the vertical and a spherical

harmonic decomposition in the horizontal, are given. In Chapter 4, the global omega equation is applied to

the problem of tropical cyclogenesis in the Atlantic Ocean in conjunction with the more traditional measures

of tropical cyclogenesis likelihood such as vertical wind shear and sea-surface temperature. Here composite

systems composed of disturbances which eventually became tropical cyclones are compared with composite

systems composed of distrubances which dissipated before becoming tropical cyclones. The variations in

the mechanisms of cyclogenesis are attempted to be captured by creating composite systems according to the

subbasin of genesis or dissipation—the Tropical Atlantic, the Subtropical Atlantic, and the Gulf of Mexico.

In Chapter 5, the predictive potential of the global omega is tested by including it in a statistical model

which predicts the probability of cyclogenesis within 24 hours for each 5◦ latitude x 5◦ longitude box in

the Atlantic Ocean. Chapter 6 concludes the paper by summarizing the findings and suggesting avenues of

further research.
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Chapter 2

BALANCE THEORY ON THE SPHERE

2.1 Considerations in Extending Quasi-geostrophic Theory to the Sphere

In order to develop an omega equation applicable to the entire sphere, a set of equations governing a

balanced flow on the sphere must be derived. Quasi-geostrophic theory, which has seen such extensive use in

mid-latitudes, relies on the decomposition of the horizontal velocity into a geostrophic and an ageostrophic

component. In this decomposition, there are two ways to define the geostrophic wind (Blackburn, 1985).

The first is to replace the Coriolis parameter, f , with a constant, f0, associated with a particular latitude.

While such an assumption is often used in mid-latitude studies, it is hardly appropriate to consider one value

for the Coriolis parameter as applicable to the entire Earth. The second option is to retain the latitudinal

variation in f in the definition of the geostrophic wind. This option cannot be applied to low latitudes,

however, as the geostrophic balance breaks down due to the decrease in magnitude of the Coriolis parameter,

resulting in a singularity at the equator where f = 0 (Daley, 1983). Therefore, an approach alternate to

geostrophic balance is needed.

Bluestein (1992) notes that, for large-scale mid-latitude flows, the divergence can be up to an order

of magnitude smaller than the relative vorticity. In his analysis, Charney (1963), reports that large-scale

flows in the Tropics are also characterized by a small value of divergence. A balance theory relying on

the assumption of the approximate nondivergence of the horizontal wind is therefore better suited to global

motions than a theory based on geostrophic balance of the horizontal winds. This approach to obtaining

a global balance theory was used by Kuo (1959) and Charney (1960). Schubert et al. (2009) and Verkley

(2009) recently revisited the topic, examining the behavior of balanced, shallow-water Rossby waves on the
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sphere. Although the theory uses similar scaling arguments applied to the derivation of mid-latitude quasi-

geostrophic theory (Charney, 1948; Phillips, 1963), the horizontal wind is decomposed into a nondivergent

and an irrotational component rather than a geostrophic and an ageostrophic component.

2.2 From the Primitive Equations to the Balanced System

In order to derive the equations governing a balance theory on the sphere, approximations to the

primitive equations will be made which isolate the features characterized by a vertical scale which is small

compared to the horizontal scale and having a small Rossby number. The Rossby number is typically

defined as Ro= U
2ΩµL , where U is a characteristic velocity, Ω is the angular rotation rate of the earth, µ is the

sine of the latitude, and L is a characteristic length. This form of the Rossby number presents a problem

for global applications, however, as it is unbounded at the equator. For this work the Rossby number will

take the form used by Charney and Drazin (1961) and Charney and Stern (1962), namely, Ro= U
2ΩL . This

form remains finite at the equator. With pressure as the vertical coordinate, the dry, adiabatic, hydrostatic,

primitive equations obeying the ideal gas law may be written as

D3v

Dt
+ 2Ωµk× v + ∇Φ = F (2.1)

∂Φ

∂p
+
RT

p
= 0 (2.2)

∇ · v +
∂ω

∂p
= 0 (2.3)

∂T

∂t
+ v · ∇T − Γ

p
ω = 0 (2.4)

Γ =

(

RT

cp
− p

∂T

∂p

)

(2.5)

with the following definitions:

λ longitude
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µ sine of the latitude

p pressure

t time

2Ωµ Coriolis parameter

R gas constant for dry air

cp specific heat of dry air at constant pressure

T temperature

Φ geopotential

v horizontal velocity

ω vertical p-velocity

k vertical unit vector

∇ gradient operator at constant p

D3

Dt
total derivative ≡ ∂

∂t
+ v · ∇ + ω ∂

∂p

The above six equations (the momentum equation (2.1) has two components) constitute a closed system in

the six variables v, ω, Φ, T , and Γ, which are all functions of the independent variables r, p, and t, where

r = (λi, µj) is a horizontal position vector.

A vector representing the effects of boundary layer friction, F, has been included in the horizontal

momentum equation. In mid-latitude studies, this term is often neglected because of the strength of the

quasi-geostrophic forcing. In the Tropics, however, the quasi-geostrophic effects are much weaker, even to

the point of being equaled or surpassed in magnitude by the frictional contribution (Krishnamurti, 1968a;

Baumhefner, 1968). The frictional term has therefore been retained in the equations of motion in the layer
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1000-900 hPa. The atmosphere above 900 hPa is considered to be frictionless. The description of its

representation will be given in Chapter 3.

Before applying the necessary approximations to the primitive equations to arrive at the balanced

system, it is convenient to replace the horizontal momentum equation (2.1) with equations governing the

divergence and the vertical component of the vorticity of the flow. These equations are derived, respectively,

by taking ∇· and k · ∇× of the momentum equation (2.1):

∂δ

∂t
+ ∇2

(

Φ +
1

2
v · v

)

− ζ (ζ + 2Ωµ) + v · ∇ (ζ + 2Ωµ) × k + ω
∂δ

∂p
+ ∇ω · ∂v

∂p
= ∇ · F,

D3 (ζ + 2Ωµ)

Dt
− (ζ + 2Ωµ)

∂ω

∂p
+ k ·

(

∇ω × ∂v

∂p

)

= ∇× F,

where δ = ∇ · v is the divergence of the horizontal wind field, and ζ = k · ∇× v is the vertical component

of the isobaric relative vorticity.

Decomposing the horizontal wind field into nondivergent and irrotational components allows the

horizontal wind vector to be written as v = vψ + vχ. The nondivergent wind is given by vψ = k ×∇ψ,

where ψ is the streamfunction, and the irrotational wind is given by vχ = ∇χ, where χ is the velocity

potential. The vertical component of the relative vorticity may then be written as:

ζ = k · ∇ × v = k · ∇ × (vψ + vχ) = k · ∇ × (k×∇ψ) = ∇2ψ

and the divergence of the horizontal wind may be written as:

δ = ∇ · v = ∇ · (vψ + vχ) = ∇ · ∇χ = ∇2χ,

where by definition ∇ · vψ = 0 and ∇× vχ = 0.

The system of equations from which the balance theory on the sphere are derived can now be written:

∂
(

∇2χ
)

∂t
+ ∇2

(

Φ +
1

2
v · v

)

−∇2ψ
(

∇2ψ + 2Ωµ
)

+ v · ∇
(

∇2ψ + 2Ωµ
)

× k + ω
∂
(

∇2χ
)

∂p
+ ∇ω · ∂v

∂p
= ∇ · F (2.6)

D3

(

∇2ψ + 2Ωµ
)

Dt
−
(

∇2ψ + 2Ωµ
) ∂ω

∂p
+ k ·

(

∇ω × ∂v

∂p

)

= ∇× F (2.7)
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∂Φ

∂p
+
RT

p
= 0 (2.8)

∇2χ+
∂ω

∂p
= 0 (2.9)

∂T

∂t
+ v · ∇T − Γ

p
ω = 0 (2.10)

Γ =

(

RT

cp
− p

∂T

∂p

)

(2.11)

v = k×∇ψ + ∇χ (2.12)

The system now consists of eight scalar equations in eight scalar variables: v, ω, Φ, T , Γ, ψ, and χ.

Although this system of equations is larger than the system introduced at the beginning of this section, it

lends itself to the application of the approximations necessary to derive the balanced system. Approxima-

tions will be made to: the divergence equation, the vorticity equation, the thermodynamic equation, and the

static stability parameter, Γ.

2.2.1 Approximations to the Divergence Equation

The approximate form of the divergence equation ultimately defines the balance assumed by the

system. By neglecting the terms involving the divergent part of the wind, the term ∇ω · ∂v
∂p

, and the friction

term, the divergence equation becomes

∇2

(

Φ +
1

2
vψ · vψ

)

− ζa∇2ψ + vψ · ∇ζa × k = 0, (2.13)

where ζa =
(

∇2ψ + 2Ωµ
)

is the absolute vorticity. The third term can be rewritten as

(k×∇ψ) · (∇ζa × k) = −k×∇ψ · k×∇ζa = −∇ψ · ∇ζa,

which, when used in (2.13), gives the following:

∇2

(

Φ +
1

2
vψ · vψ

)

− ζa∇2ψ −∇ψ · ∇ζa =
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∇2

(

Φ +
1

2
vψ · vψ

)

−∇ · (ζa∇ψ) =

∇2Φ + ∇2

(

1

2
vψ · vψ

)

−∇ ·
[(

∇2ψ + 2Ωµ
)

∇ψ
]

=

∇2Φ −∇ · (f∇ψ) + ∇2

(

1

2
vψ · vψ

)

−∇ ·
(

∇2ψ∇ψ
)

= 0. (2.14)

Equation (2.14) is known as the nonlinear balance equation (Charney, 1955). If futher approximation is

made by neglecting the nonlinear terms, the result is the linear balance equation,

∇2Φ −∇ · (2Ωµ∇ψ) = 0. (2.15)

The final approximation to the balance equation follows the arguments of Charney and Stern (1962).

The variable µ will be considered a slowly-varying function of latitude in comparison to ψ. This approxima-

tion allows the factor 2Ωµ, to be moved into the gradient operator in (2.15). Thus the balance equation can

be written as ∇2 (Φ − 2Ωµψ) = 0. The solution to this equation on a sphere is Φ− 2Ωµψ = C , where C is

a constant. This equation holds for each isobaric surface, and C will be chosen to be equal to the base-state

geopotential of the isobaric surface. The final version of the balance equation becomes

2Ωµψ (λ, µ, p) = Φ (λ, µ, p) − Φ̄ (p) , (2.16)

where Φ̄ (p) is the base-state geopotential which is related to the base-state temperature profile through the

hydrostatic equation. Thus, the Coriolis parameter maintains its full latitudinal variation, but the balance

condition will not be valid for motions with large meridional extent. The results of this approximation are

shown by Schubert et al. (2009). In comparing the Rossby-Haurwitz wave frequencies of the shallow water

version of the global balance theory with those derived from the primitive equations, they found excellent

agreement in all cases but the sectoral harmonics, i.e. harmonics with low meridional wavenumber.

Equation (2.16) describes the relationship between the temperature, or mass, field (Φ) and the wind,

or momentum, field (ψ). It does not in general require that one of the fields be derived from the other; one

may choose which field is conformed to the other in order to satisfy the balance condition. Phillips (1958)

explored this choice in the context of numerical weather prediction, using a mid-latitude cyclone over the
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eastern United States as an example. He came to the conclusion that it is more important to have an estimate

of the wind field, and from that derive the associated temperature field through the balance relationship,

than it is to have an estimate of the temperature field, and from that derive the wind field from the balance

relationship. Although his domain covered only a portion of the midlatitudes, one might consider a verifi-

cation of his conclusion to be borne out for the global balance theory by examining (2.16). If the balance is

constructed by determining the streamfunction from the geopotential field, then ψ = Φ(λ,µ,p)−Φ̄(p)
2Ωµ , which

is indeterminate or singular at the equator, depending on how Φ̄ (p) is defined. If, on the other hand, the bal-

ance is constructed by determining the geopotential field from the streamfunction, no such problem exists.

It does require that, along the equator, the geopotential field is equal to the base-state geopotential for each

pressure level, so that the geopotential perturbations are identically zero. This requirement will result in er-

rors at very low latitudes, but should not effect the study of tropical cyclogenesis, as Gray (1968) shows that

although most tropical cyclones form equatorward of 20◦, formation is essentially nonexistent equatorward

of 5◦.

2.2.2 Approximations to the Vorticity Equation

The vorticity equation (2.7) will be approximated by neglecting the following (Kuo, 1959):

(1) the horizontal advection of absolute vorticity by the irrotational component of the wind

(2) the vertical advection of absolute vorticity

(3) the stretching of the relative vorticity

(4) the twisting term k ·
(

∇ω × ∂v
∂p

)

.

In addition, the vertical component of the relative vorticity ζ should now be understood to be an approxima-

tion to the actual vertical component of the relative vorticity. The approximation comes from the use of vψ

as the balanced approximation to the actual nondivergent wind. The new vorticity equation is then given by

D
(

∇2ψ + 2Ωµ
)

Dt
− 2Ωµ

∂ω

∂p
= k · ∇ ×F,
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where D
Dt

= ∂
∂t

+vψ · ∇ is the time derivative following the nondivergent component of the balanced wind.

This form of the vorticity equation is consistent with Cases I and II of Charney (1960), only he includes the

advection of the planetary vorticity by the irrotational wind and neglects friction.

2.2.3 Approximations to the Thermodynamic Equation and the Static Stability

Again following the arguments listed in Kuo (1959), a new version of the thermodynamic equation

(2.10) is derived by:

(1) neglecting the horizontal advection of T by the irrotational component of the flow

(2) replacing the actual static stability Γ with a base-state static stability which is a function of pressure

only Γ̄ =
(

RT̄
cp

− pdT̄
dp

)

With these changes the thermodynamic equation becomes

DT

Dt
− Γ̄

p
ω = 0

2.3 The Balanced System of Equations

The set of balanced equations on the sphere relates 7 equations to 7 variables: vψ, ω, Φ, T , ψ, and χ.
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Balance Theory on the Sphere

2Ωµψ = Φ − Φ̄ (2.17)

D
(

∇2ψ + 2Ωµ
)

Dt
− 2Ωµ

∂ω

∂p
= k · ∇ × F (2.18)

∂Φ

∂p
+
RT

p
= 0 (2.19)

∇2χ+
∂ω

∂p
= 0 (2.20)

DT

Dt
− Γ̄

p
ω = 0 (2.21)

vψ = k ×∇ψ (2.22)

The derivation of the associated thermal wind relation, which will be used in the construction of the

global omega equation, begins with the balance condition

2Ωµψ = Φ − Φ̄.

Operating with ∂/∂p and using ∂Φ/∂p = −α and dΦ̄/dp = −ᾱ gives

2Ωµ
∂ψ

∂p
= − (α− ᾱ) . (2.23)

Applying the assumption of a slowly-varying µ, operating with k ×∇ on the above equation results in the

thermal wind equation for the balance theory on the sphere:

2Ωµ
∂vψ
∂p

= −k×∇α. (2.24)

For comparison, the common frictionless, constant-f quasi-geostrophic system of equations is given

in (2.25)-(2.30).
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Quasi-geostrophic Theory on an f -Plane

f0ψ = Φ − Φ̄ (2.25)

Dg

(

∇2ψ + f
)

Dt
− f0

∂ω

∂p
= 0 (2.26)

∂Φ

∂p
+
RT

p
= 0 (2.27)

∇2χ+
∂ω

∂p
= 0 (2.28)

DgT

Dt
− Γ̄

p
ω = 0 (2.29)

vg = k×∇ψ (2.30)

In the derivation of the quasi-geostrophic system, such as given by Holton (1992), the same or similar

approximations are made as in the derivation of the global balance equations:

(1) the divergence equation is approximated by the geostrophic balance

(2) the horizontal wind is decomposed into a geostrophic (vg) and an ageostrophic component (va)

with |vg| >> |va|

(3) the three-dimensional total derivative is replaced with the two-dimensional total derivative Dg
Dt

=

∂
∂t

+ vg · ∇

(4) the stretching and twisting term in the vorticity equation are neglected

(5) the static stability, Γ is replaced by Γ̄, which is a function of pressure only.

Further analysis of balanced systems typically involves the vorticity equation and the thermodynamic

equation, and proceeds down one of two paths. The first is to combine the two equations in such a way as
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to eliminate the streamfunction tendency. This operation leads to a partial differential equation in ω which

governs the large-scale ascent and descent of air. This equation and its solution is the focus of this work.

For completeness, however, the second option will be briefly discussed. In this case ω is eliminated between

the two equations, which results in an equation governing the streamfunction tendency, analogous to the

height tendency of the mid-latitude quasi-geostrophic theory. Following Holton (1992) use the hydrostatic

equation along with the balance condition (2.17) to rewrite the thermodynamic equation as

∂

∂t

(

2Ωµ
∂ψ

∂p

)

+
RΓ̄

p2
ω = −vψ · ∇

(

2Ωµ
∂ψ

∂p

)

. (2.31)

If this result is multiplied by 2Ωµ
RΓ̄

p2

and subsequently differentiated with respect to pressure, the result is

∂

∂t

[

∂

∂p

(

4Ω2µ2

RΓ̄
p2

∂ψ

∂p

)]

=
∂

∂p

[

−vψ · ∇
(

4Ω2µ2

RΓ̄
p2

∂ψ

∂p

)]

− 2Ωµ
∂ω

∂p
,

where the term 2Ωµ
RΓ̄

p2

was moved inside the gradient operator using the slowly-varying µ approximation.

Adding this alteration of the thermodynamic equation to the vorticity equation gives

∇2

(

∂ψ

∂t

)

+
∂

∂t

[

∂

∂p

(

4Ω2µ2

RΓ̄
p2

∂ψ

∂p

)]

= −vψ ·∇
(

∇2ψ + 2Ωµ
)

− ∂

∂p

[

vψ · ∇
(

4Ω2µ2

RΓ̄
p2

∂ψ

∂p

)]

+k·∇×F.

The second to the last term on the right may be written as

−vψ · ∇ ∂

∂p

(

4Ω2µ2

RΓ̄
p2

∂ψ

∂p

)

− 2Ωµ
∂vψ
∂p

· ∇
(

2Ωµ
RΓ̄
p2

∂ψ

∂p

)

.

Using the balance relation and the thermal wind equation, it can be seen that the second term above is

k×∇α · 2Ωµ
RΓ̄
p2

∇α = 0.

Gathering the remaining terms gives Dqψ
Dt

= k · ∇ × F, or Dqψ
Dt

= 0 for inviscid systems, where

qψ = ∇2ψ + 2Ωµ+
∂

∂p

(

4Ω2µ2

RΓ̄
p2

∂ψ

∂p

)

is conserved following vψ on an isobaric surface. As explained by Holton (1992), it is often referred to as

the pseudo-potential vorticity. This name is used in order to distinguish qψ from Ertel’s potential vorticity,

which is materially conserved on an isentropic surface. In any event, qψ performs the role of the potential
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vorticity for this set of equations. The essence of balanced systems is contained in the material conservation

of potential vorticity and its invertibility. These properties are discussed at length in Hoskins et al. (1985). It

is truly remarkable that all of the dynamics for adiabatic, frictionless, large-scale flows can be described by

one variable. In fact Lorenz (2006) remarks of quasi-geostrophic theory “I personally regard the successful

reduction of the dynamic equations to a single prognostic equation by means of the geostrophic relationship

as the greatest single achievement of twentieth-century dynamic meteorology”.
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Chapter 3

THE QUASI-GESTROPHIC OMEGA EQUATION ON THE SPHERE

3.1 Derivation of the omega equation and its boundary conditions

Although much insight into large-scale dynamics can be gained by examining the concepts of poten-

tial vorticity conservation and its invertibility, the focus of this work is on the global omega equation, its

solution in spherical coordinates, and its application to the problem of tropical cyclogenesis. The omega

equation is a diagnostic equation describing the large-scale vertical motion of the atmosphere. Whereas

the streamfunction tendency, and subsequently the potential vorticity was derived in the previous chapter

by eliminating omega from the vorticity and thermodynamic equations, the omega equation is derived by

eliminating the streamfunction tendency term from the vorticity and thermodynamic equations. Just as with

the mid-latitude omega equation, the global omega equation can be written in two ways, depending on the

form of the forcing. The first – or traditional – form has the forcing divided into a vorticity component

and a thermal component. In the second form, the forcing is written in terms of the the vector Q. In this

section, the derivation of both forms of the omega is presented, followed by the derivation of the boundary

conditions.

3.1.1 The Traditional Form of the Omega Equation

In order to eliminate the streamfunction tendency from the balanced vorticity equation and the bal-

anced thermodynamic equation, operate on (2.18) with ∂
∂p

after multiplying by −2Ωµ, then add to ∇2 of
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(2.31). The result is

RΓ̄

p2
∇2ω + 4Ω2µ2∂

2ω

∂p2
=

∂

∂p
[2Ωµvψ · ∇ (ζ + 2Ωµ)]

−∇2

[

2Ωµvψ · ∇
(

∂ψ

∂p

)]

− ∂

∂p
(2Ωµk · ∇ × F) . (3.1)

Equation (3.1) shows that the forcing of the vertical velocity for the balance theory on the sphere is related to

the vertical derivative of the vorticity advection by the balanced wind and to the Laplacian of the advection

of ∂ψ
∂p

, which by (2.23) is essentially the Laplacian of the thermal advection.

Equation (3.1) is analagous to the mid-latitude quasi-geostrophic omega equation, given here in its

frictionless form:

RΓ̄

p2
∇2ω + f2

0

∂2ω

∂p2
= f0

{

∂

∂p
[vg · ∇(ζg + f)] − 1

f0
∇2

[

vg · ∇
(

∂Φ

∂p

)]}

. (3.2)

The quasi-geostrophic omega is derived in the same manner as the global omega equation, only using the

quasi-geostrophic vorticity equation (2.26) and the quasi-geostrophic thermodynamic equation (2.29).

In comparing (3.1) with (3.2), it can be seen that the forms of the two omega equations are identical

– with a three-dimensional, Laplacian-type operator on the left-hand side, forced on the right-hand side by

two terms. The first is the vertical derivative of the advection of the absolute vorticity. The second is the

Laplacian of the advection of the vertical derivative of either the geopotential (3.2), or the streamfunction

(3.1). By the hydrostatic equation, these derivatives are proportional to the temperature. Large-scale vertical

motions on the sphere, then, are forced by the same mechanisms by which large-scale vertical motions

at mid-latitudes are forced – by differential cyclonic vorticity advection and the Laplacian of the thermal

advection.

In addition to the similarities, two differences can be seen. The advections are accomplished in

(3.11) by the geostrophic wind, and by the nondivergent wind component in (??). In the mid-latitude form,

the Coriolis parameter assumes a constant value, f0, except in the vorticity advection term. In the global

omega equation, the Coriolis parameter has its full variability in each term in which it exists. The complete

range of values, however, includes 2Ωµ = 0 at the equator, in which case (3.1) indicates that the forcing

vanishes. Finally, the mid-latitude form contains the factor 1
f0

in the thermal advection term. This inclusion
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is necessary as Φ
f0

has the proper units (m2s−1), i.e. that of a streamfunction. The term in fact could be

written as −∇2
[

vg · ∇
(

∂ψg
∂p

)]

, where ψg = Φ
f0

is the geostrophic streamfunction.

3.1.2 Q vector form of the omega equation

Similar to the quasi-geostrophic omega equation, the forcing of the omega equation derived here may

also be written in the form of a vector, Q. Using the slowly-varying µ approximation, the first two terms on

the right-hand side of (3.1) can be written as:

2Ωµ

{

∂

∂p
[vψ · ∇ (ζ + 2Ωµ)] −∇2

[

vψ · ∇
(

∂ψ

∂p

)]}

.

Since vψ is nondivergent, the advection by vψ of the absolute vorticity is equal to the divergence of the

vorticity flux, that is, vψ · ∇ (ζ + 2Ωµ) = ∇ · [vψ (ζ + 2Ωµ)]. Making this substitution and reversing the

vertical derivative and the inner product and gradient operations, the forcing term becomes

2Ωµ∇ ·
{

∂

∂p
[vψ (ζ + 2Ωµ)] −∇

[

vψ · ∂
∂p

(∇ψ)

]}

.

The term inside the second set of brackets can be rewritten as vψ · ∂
∂p

(∇ψ) = ∂
∂p

(vψ · ∇ψ) − ∂vψ
∂p

· ∇ψ.

Because vψ = k ×∇ψ is perpendicular to ∇ψ, vψ · ∇ψ = 0, from which it follows that vψ · ∂
∂p

(∇ψ) =

−∂vψ
∂p

· ∇ψ. The forcing term for the omega equation can then be written as:

2Ωµ∇ ·
{

∂

∂p
[vψ (ζ + 2Ωµ)] + ∇

(

∂vψ
∂p

· ∇ψ
)}

.

Using the identity ∇ (A ·B) = (A · ∇)B + (B · ∇)A + A × (∇×B) + B × (∇×A) on the second

term and noting that ∇ψ ×
(

∇× ∂vψ
∂p

)

= ∇ψ × ∂ζ
∂p

k = −∂ζ
∂p

vψ gives

2Ωµ∇ ·
{

∂

∂p
[vψ( ζ + 2Ωµ )] +

(

∂vψ
∂p

· ∇
)

∇ψ + (∇ψ · ∇)
∂vψ
∂p

− ∂ζ

∂p
vψ

}

.

Expanding the first term and adding
(

∂vψ
∂p

· ∇
)

∇ψ −
(

∂vψ
∂p

· ∇
)

∇ψ = 0 gives

2Ωµ∇ ·
[

2

(

∂vψ
∂p

· ∇
)

∇ψ + (2Ωµ)
∂vψ
∂p

+ ζ
∂vψ
∂p

+ (∇ψ · ∇)
∂vψ
∂p

−
(

∂vψ
∂p

· ∇
)

∇ψ
]

.

Using the idendity ∇× (A×B) = A∇ ·B−B∇ ·A + (B · ∇)A− (A · ∇)B, the last three terms can

be combined to give ∇×
(

∂vψ
∂p

×∇ψ
)

. Using this in the forcing term gives

2Ωµ∇ ·
[

2

(

∂vψ
∂p

· ∇
)

∇ψ + 2Ωµ
∂vψ
∂p

+ ∇×
(

∂vψ
∂p

×∇ψ
)]

.
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The last term, ∇ ·
[

∇×
(

∂vψ
∂p

×∇ψ
)]

= 0 because it is the divergence of a curl. Using this result, the

forcing takes the form

2Ωµ∇ ·
[

2

(

∂vψ
∂p

· ∇
)

∇ψ + 2Ωµ
∂vψ
∂p

]

,

or

2Ωµ∇ ·
[

2

(

∂vψ
∂p

· ∇
)

∇ψ
]

+ 2Ωµ∇ ·
(

2Ωµ
∂vψ
∂p

)

.

Up to this point, the derivation has been independent of any coordinate system. To continue the derivation,

however, it is necessary to begin using spherical coordinates. Therefore, expanding ∇ψ in spherical coor-

dinates and using the assumption of a slowly-varying µ, the first term of the above equation may be written

as

2∇ ·
[(

2Ωµ
∂vψ
∂p

· ∇
)

(vψi− uψj)

]

.

If the product ∂vψ
∂p

· ∇ is expanded and operates on vψi − uψj, the result is

Q = (Q1, Q2, Q3) = 2Ωµ

[(

∂uψ
∂p

)(

∂vψ
a cosφ∂λ

+
uψ tanφ

a

)

+

(

∂vψ
∂p

)(

∂vψ
a∂φ

)]

i

+2Ωµ

[(

∂uψ
∂p

)(

− ∂uψ
a cosφ∂λ

+
vψ tanφ

a

)

−
(

∂vψ
∂p

)(

∂uψ
a∂φ

)]

j

+2Ωµ

[

−
(

∂uψ
∂p

)

(vψ
a

)

+

(

∂vψ
∂p

)

(uψ
a

)

]

k. (3.3)

Here the variation with latitude and longitude of the unit vectors i and j has been taken into account, that

is, ∂i
a cosφ∂λ = tan φ

a
j − 1

a
k, ∂i
a∂φ

= 0, ∂j
a cosφ∂λ = − tan φ

a
i, ∂j
a∂φ

= − 1
a
k (Holton, 1992). In addition, because

∇ has been defined to be a horizontal operator, equation (3.3) implies that the component of Q in the k

direction may be neglected.

Q may be written in terms of variables at a single level by eliminating the terms involving vertical

derivatives through the use of the components of the thermal wind equation 2Ωµ
∂uψ
∂p

= ∂α
a∂φ

and 2Ωµ
∂vψ
∂p

=

− ∂α
a cosφ∂λ . Using these relations in (3.3) gives

Q1 =

(

∂α

a∂φ

)(

∂vψ
a cos φ∂λ

+
uψ tanφ

a

)

−
(

∂α

a cos φ∂λ

)(

∂vψ
a∂φ

)

(3.4)

and

Q2 =

(

∂α

a∂φ

)(

− ∂uψ
a cosφ∂λ

+
vψ tanφ

a

)

+

(

∂α

a cosφ∂λ

)(

∂uψ
a∂φ

)

. (3.5)
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Q1 and Q2 may now be computed using variables at only one level. The terms uψ tan φ
a

and vψ tanφ
a

,

however, present a difficulty as tanφ is unbounded at the poles. To avoid singularities at the poles, the

definition of vorticity and divergence will be used to eliminate these terms in the definitions of Q1 and Q2,

respectively.

The equation for the vertical component of the relative vorticity may be written as

ζ =
∂vψ

a cosφ∂λ
− ∂ (uψ cosφ)

a cosφ∂φ
=

∂vψ
a cosφ∂λ

− ∂uψ
a∂φ

+
uψ tanφ

a
.

Using this result in (3.4) gives

Q1 =

(

∂α

a∂φ

)(

∂uψ
a∂φ

+ ζ

)

−
(

∂α

a cosφ∂λ

)(

∂vψ
a∂φ

)

. (3.6)

The two-dimensional divergence of vψis

δ =
∂u

a cosφ∂λ
+
∂ (v cosφ)

a cosφ∂φ
= 0.

Expanding the second term, the above equation becomes

0 =
∂uψ

a cosφ∂λ
+
∂vψ
a∂φ

− vψ tanφ

a
.

Using this result in (3.5) gives

Q2 =

(

∂α

a∂φ

)(

∂vψ
a∂φ

)

+

(

∂α

a cosφ∂λ

)(

∂uψ
a∂φ

)

. (3.7)

The Q form of the omega equation can now be written as

RΓ̄

p2
∇2ω + 4Ω2µ2∂

2ω

∂p2
= −2∇ ·Q + 2Ωµ∇ ·

(

2Ωµ
∂vψ
∂p

)

.

Note that the Q forcing has been written as a convergence rather than a divergence. The forcing

expressed in this way is consistent with what is found in the literature, and requires multiplying (3.6) and

(3.7) by −1. Also, the second term is typically of the same order of magnitude as −2∇ · Q, and so will be

retained (Blackburn, 1985). This term may also be written in terms of variables on a single level through

the use of the thermal wind equation (2.24):

2Ωµ∇ ·
(

2Ωµ
∂vψ
∂p

)

= 2Ωµ∇ · (−k ×∇α) .
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Returning friction to the forcing, the Q form of the omega equation can then be written as

RΓ̄

p2
∇2ω + 4Ω2µ2∂

2ω

∂p2
= −2∇ ·Q− 2Ωµ∇ · (k×∇α) − ∂

∂p
(2Ωµk · ∇ × F) . (3.8)

3.1.3 Boundary Conditions on the Omega Equation

In order to solve a partial differential equation, the boundary conditions must be stated. To solve the

omega equation (3.1) or (3.8), the atmosphere is considered to be bounded by two isobaric surfaces, p = pB

and p = pT . It is assumed that parcels do not cross the upper boundary, so that ω = 0 at p = pT . At the

lower boundary it is assumed that parcels do not cross physical height surfaces, that is, D3z
Dt

= 0 at p = pB .

In practice, the condition on the lower boundary will be written in terms of the geopotential Φ = gz, so that

gD3z
Dt

= D3Φ
Dt

= 0, where g is the acceleration due to gravity, which is assumed to be constant. Writing the

geopotential in terms of the balance condition (2.17), as well as expanding the material derivative gives

ω
dΦ̄

dp
+
∂(2Ωµψ)

∂t
+ vψ · ∇ (2Ωµψ) = 0 at p = pB

where the horizontal advection of Φ̄ is zero because Φ̄ = Φ̄(p), the horizontal advection of 2Ωµψ is ac-

complished by vψ only, and the vertical advection of 2Ωµψ has been neglected. These approximations are

consistent with the approximations used to develop the balance theory on the sphere. Using the approxima-

tion of slowly-varying µ, the third term of the above equation can be rewritten as vψ · 2Ωµ∇ψ. Because

vψ = k×∇ψ is perpendicular to ∇ψ, vψ · 2Ωµ∇ψ = 0. The lower boundary condition becomes

ω
dΦ̄

dp
+
∂(2Ωµψ)

∂t
= 0. (3.9)

In order to apply the lower boundary condition, it will be convenient to rewrite it using the balanced

vorticity equation (2.18). This equation applies at all levels, including the lower boundary, and can be written

as
∂ζ

∂t
+ vψ · ∇(ζ + 2Ωµ) − 2Ωµ

∂ω

∂p
− k · ∇ × F = 0. (3.10)

Multiplying (3.10) by −2Ωµ, adding it to ∇2 of (3.9) and recognizing that dΦ̄
dp

= −RT̄
p

, the lower boundary

condition can be written as

4Ω2µ2∂ω

∂p
− RT̄

p
∇2ω = 2Ωµvψ · ∇ (ζ + 2Ωµ) − 2Ωµk · ∇ × F,
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or by noting that vψ is nondivergent,

4Ω2µ2∂ω

∂p
− RT̄

p
∇2ω = 2Ωµ∇ · [vψ (ζ + 2Ωµ)] − 2Ωµk · ∇ × F.

The omega equation and its boundary conditions have now been defined and are repeated here.

Omega equation and its boundary conditions

RΓ̄

p2
∇2ω + 4Ω2µ2∂

2ω

∂p2
=

∂

∂p
[2Ωµvψ · ∇ (ζ + 2Ωµ)]

−∇2

[

2Ωµvψ · ∇
(

∂ψ

∂p

)]

− ∂

∂p
(2Ωµk · ∇ × F)

or

RΓ̄

p2
∇2ω + 4Ω2µ2∂

2ω

∂p2
= −2∇ · Q− 2Ωµ∇ · (k×∇α) − ∂

∂p
(2Ωµk · ∇ × F) (3.11)

ω = 0 at p = pT (3.12a)

4Ω2µ2∂ω

∂p
− RT̄

p
∇2ω = 2Ωµ∇ · [vψ (ζ + 2Ωµ)] − 2Ωµk · ∇ × F at p = pB (3.12b)

3.2 Solution of the Omega Equation

Equation (3.11) with boundary conditions (3.12a)–(3.12b) will be solved using transform techniques

— a normal mode transform in the vertical and a spherical harmonic transform in the horizontal. As this

equation will be solved on the sphere, only vertical boundary conditions are needed, as there are no lateral

boundaries.

3.2.1 Vertical Normal Mode Transform

A vertical normal mode transform is used to separate the vertical structure of the atmosphere from

the horizontal structure. The procedure used here follows that developed by Fulton and Schubert (1985), al-

though they performed the transform on equations involving u, v, and Φ. The forward and inverse transforms
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on ω are, respectively,

ω`(λ, µ) =

∫ pB

pT

ω (λ, µ, p)
dV` (p)

dp
dp+

[

ω
pT̄

Γ̄

dV` (p)

dp

]

pB

, (3.13a)

and

ω(λ, µ, p) =

∞
∑

`=0

ω` (λ, µ)
c2`p

2

RΓ̄ (pB − pT )

dV` (p)

dp
. (3.13b)

These two equations are derived in the Appendix. The vertical structure function V`(p) is determined by

solving the Sturm-Liouville equation

d

dp

(

p2

RΓ̄

dV`
dp

)

+
V`
c2`

= 0, (3.14)

with boundary conditions
dV`
dp

= 0 at p = pT (3.15a)

and

p
dV`
dp

+
Γ̄

T̄
V` = 0 at p = pB, (3.15b)

where c−2
` is the eigenvalue. The vertical structure functions obey the orthonormality condition

1

pB − pT

∫ pB

pT

V`V`′dp =



















1 `′ = `

0 `′ 6= `.

The kernel of the vertical normal mode transform for ω, however, is dV`
dp

, which obeys the orthonormality

condition:

c2`
pB − pT

[

∫ pB

pT

dV`
dp

dV`′

dp

p2

RΓ̄
dp+

(

p3T̄

RΓ̄2

dV`
dp

dV`′

dp

)

pB

]

=



















1 `′ = `

0 `′ 6= `.

(3.16)

The vertical transform of the omega equation begins by multiplying (3.11) by p2

RΓ̄
dV`
dp

and integrating

from pT to pB :

∫ pB

pT

∇2ω
dV`
dp

dp+ 4Ω2µ2

∫ pB

pT

∂2ω

∂p2

p2

RΓ̄

dV`
dp

dp =

∫ pB

pT

p2

RΓ̄

dV`
dp

Fdp, (3.17)

27



where F = F (λ, µ, p) is one of the forms of the forcing (rhs) of (3.11). Evaluate each term on the left-hand

side, beginning with the first term
∫ pB

pT

∇2ω
dV`
dp

dp.

If ∇2
(

ω pT̄
Γ̄
dV`
dp

)

pB
−∇2

(

ω pT̄
Γ̄
dV`
dp

)

pB
= 0 is added, the result is

∇2

[

∫ pB

pT

ω
dV`
dp

dp+

(

ω
pT̄

Γ̄

dV`
dp

)

pB

]

−∇2

(

ω
pT̄

Γ̄

dV`
dp

)

pB

.

Use (3.13a) and the fact that in the second term only ω is dependent on λ and φ to get

∇2ω` −
(

dV`
dp

pT̄

Γ̄
∇2ω

)

pB

. (3.18)

Using integration by parts, the second term on the left-hand side of (3.17) becomes

4Ω2µ2

[∫ pB

pT

∂

∂p

(

∂ω

∂p

p2

RΓ̄

dV`
dp

)

dp−
∫ pB

pT

∂ω

∂p

d

dp

(

p2

RΓ̄

dV`
dp

)

dp

]

.

Evaluating the first integral and using (3.14) on the second gives

4Ω2µ2

(

[

∂ω

∂p

p2

RΓ̄

dV`
dp

]pB

pT

+

∫ pB

pT

∂ω

∂p

V`
c2`
dp

)

.

Using the boundary condition (3.15a) on the first term and integrating by parts on the second term gives

4Ω2µ2

[

(

∂ω

∂p

p2

RΓ̄

dV`
dp

)

pB

+

∫ pB

pT

∂

∂p

(

ω
V`
c2`

)

dp−
∫ pB

pT

ω
d

dp

(

V`
c2`

)

dp

]

= 4Ω2µ2

[

(

∂ω

∂p

p2

RΓ̄

dV`
dp

)

pB

+

(

ω
V`
c2`

)pB

pT

−
∫ pB

pT

ω
1

c2`

dV`
dp

dp

]

.

Using the boundary conditions (3.12a) and (3.15b) gives

4Ω2µ2

[

(

∂ω

∂p

p2

RΓ̄

dV`
dp

)

pB

−
(

ω
pT̄

Γ̄

1

c2`

dV`
dp

)

pB

− 1

c2`

∫ pB

pT

ω
dV`
dp

dp

]

= 4Ω2µ2

{

(

∂ω

∂p

p2

RΓ̄

dV`
dp

)

pB

− 1

c2`

[

∫ pB

pT

ω
dV`
dp

dp+

(

ω
pT̄

Γ̄

dV`
dp

)

pB

]}

.

Finally, use (3.13a) to get

4Ω2µ2

(

∂ω

∂p

p2

RΓ̄

dV`
dp

)

pB

− 4Ω2µ2ω`
c2`
. (3.19)
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Combining (3.18) and (3.19) with the right-hand side of (3.17) gives

∇2ω` − 4Ω2µ2ω`
c2`

+ 4Ω2µ2

(

∂ω

∂p

p2

RΓ̄

dV`
dp

)

pB

−
(

dV`
dp

pT̄

Γ̄
∇2ω

)

pB

=

∫ pB

pT

p2

RΓ̄

dV`
dp

Fdp.

Factoring out p2

RΓ̄
dV`
dp

from the terms evaluated at the lower boundary gives

∇2ω` − 4Ω2µ2ω`
c2`

+

[

p2

RΓ̄

dV`
dp

(

4Ω2µ2∂ω

∂p
− RT̄

p
∇2ω

)]

pB

=

∫ pB

pT

p2

RΓ̄

dV`
dp

Fdp.

Using the lower boundary condition 4Ω2µ2 ∂ω
∂p

− RT̄
p
∇2ω = G (λ, µ, p) at p = pB (3.12b) and

rearranging gives

∇2ω` −
4Ω2µ2

c2`
ω` =

∫ pB

pT

p2

RΓ̄

dV`
dp

Fdp−
(

p2

RΓ̄

dV`
dp

G

)

pB

.

If the Laplacian operator is expanded in terms of λ and µ and the right-hand side is multiplied by 1 =
(

pB−pT
c`

)2 (
c`

pB−pT

)2
the result is

∂2ω`
(1 − µ2)∂λ2

+
∂

∂µ

[

(1 − µ2)
∂ω`
∂µ

]

− ε`µ
2ω` =

[

a (pB − pT )

c`

]2

F`(λ, µ), (3.20)

where ε` = 4Ω2a2/c2` is Lamb’s parameter and

F`(λ, µ) =

(

c`
pB − pT

)2
[

∫ pB

pT

p2

RΓ̄

dV`
dp

Fdp−
(

p2

RΓ̄

dV`
dp

G

)

pB

]

.

In the next section, the spherical harmonic transform will be used to convert the partial differential equation

(3.20) into an algebraic system.

3.2.2 Spherical Harmonic Transform

The spherical harmonic transform consists of a Fourier transform in λ and an associated Legendre

transform in µ. Because of the variety in notations and normalizations used in the literature in conjuction

with spherical harmonics, before proceeding with the derivation of the omega equation, the notations and

normalizations used in this paper will be presented. The spherical harmonic transform pair will be given by

ω`mn =

∫ 1

−1

∫ 2π

0
ω` (λ, µ) [Y m

n (λ, µ)]∗ dλdµ
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and

ω` (λ, µ) =

∞
∑

m=−∞

∞
∑

n=|m|

ω`mnY
m
n (λ, µ) ,

where ∗ denotes complex conjugation. The spherical harmonics, Y m
n (λ, µ), are given by

Y m
n (λ, µ) =

√

2n+ 1

4π

(n−m)!

(n+m)!
Pmn (µ) Φm (λ) ,

where Φm (λ) = eimλ is the Fourier component, and Pm
n (µ) =

(

1 − µ2
)
m
2 dm

dµm

{

1
2nn!

dn

dµn

[(

µ2 − 1
)n]
}

are the associated Legendre functions, with the term in the braces the Legendre polynomials. The value m

is the zonal wavenumber and the value n is obtained by adding to m the number of meridional nodal lines,

thus −∞ < m < ∞ and n ≥ |m|. The term
√

2n+1
4π

(n−m)!
(n+m)! is a normalization factor and can be divided

between the Fourier and associated Legendre components such that

Φ̄m (λ) =
1√
2π

Φm (λ) (3.21a)

and

P̄mn (µ) =

√

2n+ 1

2

(n−m)!

(n+m)!
Pmn (µ) . (3.21b)

This normalization for the associated Legendre functions is used by Belousov (1962) and also in SPHEREPACK

(Adams and Swarztrauber, 1999), the software package which is used in the numerical computations. With

these definitions, the following normalizations hold:
∫ 1

−1

∫ 2π

0
[Y m
n (λ, µ)]

[

Y m′

n′ (λ, µ)
]∗
dλdµ = δmm′δnn′

∫ 2π

0

[

Φ̄m (λ)
] [

Φ̄m′ (λ)
]∗
dλ = δmm′

∫ 1

−1
P̄mn (µ) P̄mn′ (µ) dµ = δnn′ .

Using these normalizations, the Fourier transform pair and the associated Legendre transform pair

are respectively given by

ω`m (µ) =

∫ 2π

0
ω` (λ, µ)

[

Φ̄m (λ)
]∗
dλ (3.22a)

ω` (λ, µ) =
∞
∑

m=−∞

ω`m (µ) Φ̄m (λ) (3.22b)
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and

ω`mn =

∫ 1

−1
ω`m (µ) P̄mn (µ) dµ (3.23a)

ω`m (µ) =

∞
∑

n=|m|

ω`mnP̄
m
n (µ) . (3.23b)

Because ω` (λ, µ) is real valued, the spherical harmonic coefficients for m < 0 are the complex conjugates

of the spherical harmonic coefficients for m > 0. Thus it is necessary to only consider the Fourier and

associated Legendre transformations for m ≥ 0. SPHEREPACK also assumes that the variable being

transformed is real valued, so only considering the case m ≥ 0 for the theoretical development transfers

well to the numerical computations.

With the notation and normalizations defined, the derivation of the omega equation continues with

the application of the forward Fourier transform (3.22a) to (3.20). The result is

d

dµ

[

(

1 − µ2
) dω`m
dµ

]

−
(

ε`µ
2 +

m2

1 − µ2

)

ω`m =

[

a (pB − pT )

c`

]2

F`m. (3.24)

Applying the forward associated Legendre transform (3.23a) to the first term on the left-hand side of

(3.24) gives
∫ 1

−1

{

d

dµ

[

(

1 − µ2
) dω`m (µ)

dµ

]}

P̄mn (µ) dµ

=

∫ 1

−1

d

dµ

[

(

1 − µ2
) dω`m (µ)

dµ
P̄mn (µ)

]

dµ−
∫ 1

−1

(

1 − µ2
) dω`m (µ)

dµ

dP̄mn (µ)

dµ
dµ

=

[

(

1 − µ2
) dω`m (µ)

dµ
P̄mn (µ)

]1

−1

−
∫ 1

−1

(

1 − µ2
) dω`m (µ)

dµ

dP̄mn (µ)

dµ
dµ

= −
∫ 1

−1

(

1 − µ2
) dω`m (µ)

dµ

dP̄mn (µ)

dµ
dµ

= −
∫ 1

−1

d

dµ

[

ω`m (µ)
(

1 − µ2
) dP̄mn (µ)

dµ

]

dµ+

∫ 1

−1
ω`m (µ)

d

dµ

[

(

1 − µ2
) dP̄mn (µ)

dµ

]

dµ

= −
[

ω`m (µ)
(

1 − µ2
) dP̄mn (µ)

dµ

]1

−1

+

∫ 1

−1
ω`m (µ)

d

dµ

[

(

1 − µ2
) dP̄mn (µ)

dµ

]

dµ

=

∫ 1

−1
ω`m (µ)

d

dµ

[

(

1 − µ2
) dP̄mn (µ)

dµ

]

dµ.

The normalized associated Legendre functions (as well as the associated Legendre functions) are solutions
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in the interval −1 ≤ µ ≤ 1 to the differential equation

d

dµ

[

(

1 − µ2
) dP̄mn (µ)

dµ

]

+

[

n (n+ 1) − m2

1 − µ2

]

P̄mn (µ) = 0.

Using this result the derivation continues with
∫ 1

−1
ω`m (µ)

d

dµ

[

(

1 − µ2
) dP̄mn (µ)

dµ

]

dµ = −
∫ 1

−1
ω`m (µ)

[

n (n+ 1) − m2

1 − µ2

]

P̄mn (µ) dµ

= −n (n+ 1)

∫ 1

−1
ω`m (µ) P̄mn (µ) dµ+

∫ 1

−1
ω`m (µ)

m2

1 − µ2
P̄mn (µ) dµ.

Applying (3.23a) to the first integral on the right-hand side gives

−n (n+ 1)ω`mn +

∫ 1

−1
ω`m (µ)

m2

1 − µ2
P̄mn (µ) dµ. (3.25)

The forward associated Legendre transform of the second term on the left-hand side of (3.24) is

−ε`
∫ 1

−1
ω`m (µ)µ2P̄mn (µ) dµ−

∫ 1

−1
ω`m (µ)

m2

1 − µ2
P̄mn (µ) dµ. (3.26)

Finally, transforming the right-hand side of (3.24) gives
[

a (pB − pT )

c`

]2

F`mn. (3.27)

Combining (3.25), (3.26), and (3.27) gives the omega equation which has been transformed using vertical

normal modes and spherical harmonics:

n (n+ 1)ω`mn + ε`

∫ 1

−1
ω`m (µ)µ2P̄mn (µ) dµ = −

[

a (pB − pT )

c`

]2

F`mn. (3.28)

To get the integral
∫ 1
−1 ω`m (µ)µ2P̄mn (µ) dµ into a more workable form, use the following recurrence

relation for the normalized associated Legendre functions (Belousov, 1962):

P̄mn (µ) = 2amn µP̄
m
n−1 (µ) − bmn P̄

m
n−2 (µ) , (3.29)

where

amn =

√

n2 − 1
4

n2 −m2

and

bmn =

√

(2n+ 1) (n−m− 1) (n+m− 1)

(2n− 3) (n2 −m2)
.
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By substituting n+ 1 for n, equation (3.29) can be written as

µP̄mn (µ) =

(

1

2amn+1

)

P̄mn+1 (µ) +

(

bmn+1

2amn+1

)

P̄mn−1 (µ) . (3.30)

Multiplying by µ gives

µ2P̄mn (µ) =

(

1

2amn+1

)

µP̄mn+1 (µ) +

(

bmn+1

2amn+1

)

µP̄mn−1 (µ) . (3.31)

Using (3.30) with n first replaced by n + 1 and then with n replaced by n − 1, the factor of µ outside the

normalized associated Legendre functions may be eliminated from the right-hand side of (3.31), giving

µ2P̄mn (µ) =

(

1

2amn+1

)[

1

2amn+2

P̄mn+2 (µ) +
bmn+2

2amn+2

P̄mn (µ)

]

+

(

bmn+1

2amn+1

)[

1

2amn
P̄mn (µ) +

bmn
2amn

P̄mn−2 (µ)

]

.

Combining the P̄mn (µ) terms gives

µ2P̄mn (µ) =

(

bmn b
m
n+1

4amn a
m
n+1

)

P̄mn−2 (µ) +

(

amn b
m
n+2 + amn+2b

m
n+1

4amn a
m
n+1a

m
n+2

)

P̄mn (µ) +

(

1

4amn+1a
m
n+2

)

P̄mn+2 (µ) .

(3.32)

Mathematica, developed by Wolfram Research, can be used to simplify complicated coefficients such as

those on the right-hand side of (3.32). It found that with the introduction of three new variables, Amn, Bmn,

and Cmn, the coefficients can be greatly simplified. Define:

Amn = n2 −m2

Bmn = 4n2 − 1

Cmn =

(

Amn
Bmn

) 1

2

.

then
bmn b

m
n+1

4amn a
m
n+1

= CmnCmn−1 = αmn.

amn b
m
n+2 + amn+2b

m
n+1

4amn a
m
n+1a

m
n+2

= C2
mn+1 + C2

mn = βmn,

and
1

4amn+1a
m
n+2

= Cmn+2Cmn+1 = γmn.
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Equation (3.32) can now be written as

µ2P̄mn (µ) = αmnP̄
m
n−2 (µ) + βmnP̄

m
n (µ) + γmnP̄

m
n+2 (µ) ,

which can be used in (3.28) to give

n (n+ 1)ω`,m,n + ε`

∫ 1

−1
ω`,m (µ)

[

αmnP̄
m
n−2 (µ) + βmnP̄

m
n (µ) + γmnP̄

m
n+2 (µ)

]

dµ

= −
[

a (pB − pT )

c`

]2

F`,m,n.

Applying (3.23a) to the integral results in

n (n+ 1)ω`,m,n + ε`αmnω`,m,n−2 + ε`βmnω`,m,n + ε`γmnω`,m,n+2 = −
[

a (pB − pT )

c`

]2

F`,m,n.

This equation can also be written as

A`,m,nω`,m,n−2 +B`,m,nω`,m,n +C`,m,nω`,m,n+2 = −
[

a (pB − pT )

c`

]2

F`,m,n, (3.33)

where A`,m,n = ε`αmn, B`,m,n = n (n+ 1) + ε`βmn, and C`,m,n = ε`γmn.

According to (3.33), the spherical harmonic coefficients of the quasi-geostrophic omega for each

vertical mode ω`,m,n are related to the spherical harmonic coefficients of the corresponding vertical mode

of the forcing F`,m,n, and are also coupled to the spherical harmonic coefficients ω`,m,n+2 and ω`,m,n−2,

resulting in a system of equations for each vertical mode ` and each zonal mode m. The indices m and n

take on the respective values of 0 ≤ m < ∞ and n ≥ m. For computational purposes, however, an upper

limit to the spherical harmonic coefficients must be defined. Here triangular truncation at n = N is used.

For a given vertical mode ` and zonal mode m, the system of equations for obtaining the spherical

harmonic coefficients of the global omega equation is given by:










































B`,m,m 0 C`,m,m 0 0 0 · · · 0

0 B`,m,m+1 0 C`,m,m+1 0 0 · · · 0

A`,m,m+2 0 B`,m,m+2 0 C`,m,m+2 0 · · · 0

...
...

...
...

...
...

...
...

0 · · · 0 A`,m,N−2 0 B`,m,N−2 0 C`,m,N−2

0 · · · 0 0 A`,m,N−1 0 B`,m,N−1 0

0 · · · 0 0 0 A`,m,N 0 B`,m,N





















































































ω`,m,m

ω`,m,m+1

ω`,m,m+2

...

ω`,m,N−2

ω`,m,N−1

ω`,m,N










































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= −
[

a (pB − pT )

c`

]2











































F`,m,m

F`,m,m+1

F`,m,m+2

...

F`,m,N−2

F`,m,N−1

F`,m,N











































. (3.34)

Note that the number of equations in the system depends on m. As m increases from 0 to N , the number of

equations in the system decreases from N + 1 to 1.

The reconstruction of ω (λ, µ, p) from the spherical harmonic coefficients ω`,m,n is a three-step pro-

cess. First, the inverse associated Legendre transform (3.23b) is used to compute ω`m (µ). Next, the inverse

Fourier transform (3.22b) is used to get ω` (λ, µ). Finally, ω` (λ, µ) is summed over ` according to the

inverse vertical normal mode transfer (3.13b) to achieve the solution ω (λ, µ, p).

3.3 The Form of the Frictional Forcing

In the solution of the omega equation, frictional effects appear not only in the omega equation itself

(− ∂
∂p

(2Ωµk · ∇ × F)), but also in the lower boundary condition (−2Ωµk · ∇ × F). F is given by the

standard bulk formula (Haltiner, 1971) involving the vertical derivative of the wind stress:

F = −g∂τ (λ, µ, p)

∂p
.

The wind stress itself is given by a surface wind stress multiplied by a function of pressure which describes

the decay of the stress away from the surface:

τ (λ, µ, p) = τ s (λ, µ) g (p) .

The surface wind stress is given by the formula:

τ s (λ, µ) =
CD [U (λ, µ)]

α (λ, µ, p0)
|vψ (λ, µ, p0)| [uψ (λ, µ, p0) i + vψ (λ, µ, p0) j] ,
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where p0=1000hPa, α is the specific volume associated with the balanced flow, and CD [U (λ, µ)] is the drag

coefficient given by (Williams et al., 2012):

CD [U (λ, µ)] =



















2.70
U

+ 0.142 + 0.0764U if U ≤ 25

2.16 + 0.5406
{

1 − exp
[

−(U−25)
7.5

]}

if U ≥ 25

with

U (λ, µ) = 0.78
{

[ūψ,PBL (λ, µ)]2 + [v̄ψ,PBL (λ, µ)]2
}

1

2

.

The planetary boundary layer is assumed to be from 1000 hPa to 900 hPa.

The function g(p) governs the decrease of the effect of surface friction with height through the bound-

ary layer. Since the effects of friction are often discussed in terms of physical height and not pressure, − ln p

will be used instead of p. The decay was chosen to be quadratic in − ln p:

g (p) = a

[

ln

(

p0

p

)]2

+ b

[

ln

(

p0

p

)]

+ c.

This form is convenient because the coefficients a, b, and c can be uniquely determined by enforcing the

following boundary conditions: g (p) = 1 at 1000 hPa, g (p) = 0 at 900 hPa, and g′ (p) = 0 at 900 hPa. The

last condition assures a smooth transition of g (p) from the boundary layer to the free atmosphere, where

friction is assumed to vanish. Using these boundary conditions, a = 90.08, b = −18.98, and c = 1.00. A

plot of g (p) is shown in (Fig. 3.1).

There is still another benefit from using the quadratic decay of g (p). For this function, g (p) is pos-

itive, which give the correct sign for frictionally-induced vertical motion in low pressure and high pressure

regions. Consider the omega equation forced only by friction:

RΓ̄

p2
∇2ω + 4Ω2µ2 ∂

2ω

∂p2
= − ∂

∂p
(2Ωµk · ∇ × F) = g

d2g

dp2
2Ωµk · ∇ × τ s (λ, µ) .

For a low (cyclonic) weather system, k · ∇ × τ s (λ, µ) > 0, and with g′′ (p) > 0 the right-hand (forcing)

side is positive, so that
RΓ̄

p2
∇2ω + 4Ω2µ2∂

2ω

∂p2
> 0.

Holton (1992) shows that for sinusoidal motion RΓ̄
p2

∇2ω + 4Ω2µ2 ∂2ω
∂p2

∝ −ω, which results in ω < 0 , or

rising motion, for low pressure systems. In high pressure (anticyclonic systems), k · ∇× τ s (λ, µ) < 0, but
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Figure 3.1: Plot the function g, which describes the decay of the effects of the surface wind stress through
the boundary layer (1000 hPa-900 hPa), and into the free atmosphere (above 900 hPa), where the effects of
surface friction vanish.

g′′ (p) remains positive, resulting in ω < 0, or sinking motion. Thus, the positive curvature of the chosen

g (p) creates the proper sign of the Ekman pumping in both low and high pressure systems.

3.4 A Mid-Latitude Example

Before applying the global omega equation to the low-latitude problem of tropical cyclogenesis,

a mid-latitude example will be given. The quasi-geostrophic omega equation is used extensively in the

analysis of extratropical cyclones, and applying the global omega equation to such a system provides a

means by which the performance of the technique can be judged. Martin (2006) examined two extratropical

cyclones using an f -plane version of the quasi-geostrophic omega equation. One of the cases was a rapidly-

deepening cyclone which occurred in the northeast Pacific Ocean on 6-8 October 2004. Using data from
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the Global Forecast System (GFS) model on a 1◦ × 1◦ grid, the quasi-geostrophic omega was calculated

from the divergence of the geostrophic Q using successive over-relaxation (SOR) over a domain covering

the local region. The results from his 0000 UTC 7 October analysis are shown in Figure 3.2. A pronounced

couplet of upward and downward vertical motion associated with the system can be seen south of Alaska,

with the downward motion behind the low pressure extending to the northwest, past the Aleutian Islands.

The maximum magnitudes of omega in the ascending air (9 dPa s−1) were almost twice the magnitudes of

the descending air (5 dPa s−1). The solution to the global omega equation, also using 1◦ × 1◦ GFS data for

0000 UTC 7 October (Fig. 3.3), was calculated according to the method presented in this chapter, with the

forcing represented by the divergence of Q, and without friction. The omega from the global balanced theory

matches up remarkably well with that generated from the mid-latitude, quasi-geostrophic equations. The

same pattern of upward and downward vertical motions is evident, with the maximum magnitudes of each

matching those from Martin’s calculations. The similarity of the two patterns of omega in this mid-latitude

example lends credence to the quality of the solutions to the global omega equation, giving confidence to

the results of the study of large-scale vertical motion as relating to tropical cyclogenesis, to be presented in

the following chapter.
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Figure 3.2: a) 700-mb ω calculated from the mid-latitude quasi-geostrophic equations using SOR, from
Martin (2006). The ’L’ marks the position of the surface low, and the fronts are drawn according to con-
vention. ω is contoured every 2 dPa s−1, starting at 1 and -1 dPa s−1, with upward motions shaded in dark
gray and downward motion shaded in light gray. The unshaded solid lines are the 900-500 hPa thickness,
contoured every 4 dam. Courtesy of the American Meteorological Society. Copyright 2006.
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Figure 3.3: 700-mb ω calculated from the global balance equations using the technique described in Chapter
3. The units of ω are dPa s−1, with upward motions shaded in dark gray and downward motion shaded in
light gray. Contour interval is 2 dPa s−1, starting at 1 and -1 dPa s−1.
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Chapter 4

APPLICATION OF THE GLOBAL OMEGA EQUATION TO TROPICAL
CYCLOGENESIS IN THE ATLANTIC OCEAN

4.1 Environmental Influences on Tropical Cyclogenesis

As a result of decades of study, various environmental conditions have emerged as conducive to

tropical cyclogenesis. For example, warm sea surfaces were cited by Palmén (1948) as necessary for the

development of tropical cyclones. Subsequent studies (e.g. Gray, 1968; Landsea et al., 1998; Gray, 2000)

have confirmed this observation. The placement of the official Atlantic hurricane season within the year

(June 1 to November 30, with the most active portion beginning in late August) also supports the need for

ocean waters to be warmed throughout the summer before most tropical cyclones can form. In general, sea-

surface temperatures warmer than 26 ◦C are required for the development and maintainance of a tropical

cyclone.

Although warm sea-surfaces are critical to provide the sensible and latent heating required of tropical

cyclones, the atmosphere also needs to be able to support the deep convection associated with these systems.

In this regard, the low and middle troposphere needs to be sufficiently moist (Bister and Emanuel, 1997).

The tropical atmosphere is usually associated with abundant moisture, but dry air can at times enter the

lower latitudes, negatively impacting the development of tropical systems. Examples of sources of dry air

include the Saharan air layer (Dunion and Velden, 2004) and intrusions of dry, mid-latitude air (Dunion,

2011).

In order for a tropical cyclone to develop within a moist airmass above a warm ocean surface, an initial

disturbance is needed to provide the necessary vorticity upon which the vertical motions associated with
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the deep convection act to stretch and intensify. Bracken and Bosart (2000) mention four initial disturbance

types found in the Atlantic: African easterly waves, upper-level lows in the subtropics which develop toward

the surface, the remnants of mesoscale convective systems, or old mid-latitude frontal boundaries which

make their way into lower latitudes. Although these antecedents provide most of the vorticity, the vorticity

of the Earth is also a factor, as tropical cyclones do not form equatorward of about 5◦ (Gray, 1968, 2000).

Excessive vertical shear hinders the formation of tropical cyclones, as it prevents the accumulation of

heat and moisture in the core of the system. Measured as the vector difference of the winds at 850 and 200

hPa, vertical shear values above 10–15 ms−1 are generally regarded as disruptive to the development of a

tropical cyclone (Musgrave et al., 2008). Although too much shear prohibits cyclogenesis, it is not necessar-

ily true that an environment with zero shear provides a disturbance with the best chance of developing into

a cyclone. In numerical simulations of Hurricane Gabrielle (2001), Musgrave et al. (2008) found that some

vertical shear was beneficial to development. Bracken and Bosart (2000) also suggest that weak shear may

in fact be necessary during the formation of a tropical cyclone, as it aids in the forcing of large-scale ascent.

4.2 Effects of Large-Scale Vertical Motion on Tropical Cyclogenesis

In this section, the large-scale vertical motion in the vicinity of a tropical disturbance will be con-

sidered as an additional environmental factor determining whether a disturbance will develop or dissipate.

Perhaps the most common tool used to measure the large-scale vertical motion is the omega equation. Al-

though usually applied in the midlatitudes, the results of the last chapter show that a global omega equation

exists. Bracken and Bosart (2000) investigated the role of large-scale vertical motion on tropical cyclo-

genesis, but used a simplified version of the Sutcliffe-Trenberth (Sutcliffe, 1947; Trenberth, 1978) omega

equation. In that version, omega is forced by the advection of vorticity by the thermal wind. Additionally,

Bracken and Bosart (2000) did not solve the omega equation, but considered only the forcing for the omega.

In the present work, omega itself will be computed according to the method discussed in Chapter 3.

In order to evaluate the usefulness of large-scale vertical motion in the forecasting of tropical cyclo-

genesis, composite disturbances will be created from developing disturbances and dissipating disturbances

tracked over the Atlantic during the 2001-2009 hurricane seasons. Composite fields of height, wind, temper-
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ature, relative humidity, and omega, will be created for 24, 18, 12, and 6 hours before either development or

dissipation. In addition to compositing the disturbances according to whether they developed or dissipated,

a stratification will be made according to the location within the Atlantic, as developing systems can exhibit

differences according to where they form. Storms will be grouped according to whether they were located

in the tropical Atlantic, the subtropical Atlantic, or the Gulf of Mexico. Thus six types of composites will

be created: tropical Atlantic developing systems, tropical Atlantic dissipating systems, subtropical Atlantic

developing systems, subtropical Atlantic dissipating systems, Gulf of Mexico developing systems, and Gulf

of Mexico dissipating systems.

Dataset for Developing Systems

Information on the disturbances which developed into a tropical cyclone comes from the“decks”

of the Automated Tropical Cyclone Forecasting System (ATCF) as described by Miller et al. (1990) and

Sampson and Schrader (2000). During the 2001-2009 seasons, there were 154 tropical cyclones reported

in the Atlantic Ocean. This number includes those cyclones with a subtropical designation (i.e. subtropical

depressions and subtropical storms). Once a system becomes a depression or storm, its location and strength

are closely monitored by the National Hurricane Center (NHC). Information about the system is ultimately

recorded in the best track, or b deck of the ATCF, with information about the cyclone provided at 00, 06, 12,

and 18 UTC. The focus of this work, however, is on systems before they underwent genesis. The locations

of the systems are therefore needed at 24, 18, 12, and 6 hours before genesis.

For many tropical cyclones, the b deck contains information about the cyclone before the NHC des-

ignated it as a depression or storm, but the information is not as regular as the information available after

cyclogenesis has occurred. For those cases for which best track data are not available, the a deck fixes are

used, specifically the CARQ line. This line contains the location chosen by the NHC in order to run the

numerical guidance for the disturbance. If the location of a system is not available on the a deck, the f deck

of the ATCF is used. The f deck contains system location as determined by a variety of sources, such as

satellite, aircraft, and radar. If gaps in a system’s location still exist, an attempt was made to fill in those

points by interpolation or extrapolation using a least-squares fit to the known locations. In two cases, Tropi-
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Figure 4.1: Tracks of the 154 tropical cyclones of the 2001-2009 seasons at 6, 12, 18, and 24 hours before
genesis.

cal Storm Peter of 2003, and Tropical Depression 10 of 2004, none of the above methods was able to provide

the necessary location information. The locations of the pre-cyclone disturbances were located using data

from the National Centers for Environmental Prediction’s Global Forecast System (GFS) analyses. The

tracks of all 154 developing systems from 24 hours before development to 6 hours before development are

plotted in Figure 4.1. The location of the tracks display the favored regions of development in the Atlantic,

namely, the low latitudes west of Africa, the region extending northeast from the Bahamas, and the western

Caribbean into the Gulf of Mexico. A similar grouping was found by Bracken and Bosart (2000).
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Dataset for Dissipating Systems

For the disturbances which did not develop into a tropical cyclone, the locations come from a data

set compiled by Cossuth et al. (2010). This data set contains all of the Dvorak satellite fixes recorded

by the Tropical Analysis and Forecast Branch at the National Hurricane Center and the Central Pacific

Hurricane Center in the 2001-2009 seasons, including the fixes for systems which did not develop into

tropical cyclones. During those seasons, information on 100 non-developing systems was gathered. Only

those disturbances lasting at least 24 hours were included. In preparing the data set, the first step was to

determine a dissipation time. Analogous to the genesis time of the developing systems, the dissipation

time was the point at which a disturbance would be considered to have begun the process of decay. The

dissipation time is defined as 6 hours after the maximum current intensity (CI) number (Dvorak, 1975,

1984). If no single maximum CI number exists, the maximum which was latest in time was used. As with

the developing systems, locations of the dissipating disturbances were found at 24, 18, 12, and 6 hours

prior to dissipation. Gaps in the fixes were more frequent with this data set than with the data set for the

developing systems. Unlike the three options for finding disturbance location directly from the ATCF for

the developing systems, however, the data set for the dissipating systems contains the single Dvorak satellite

fix option. Disturbance locations not found were filled in using interpolation or extrapolation using a least-

squares fit to the locations retrieved from the Dvorak satellite fixes. For some cases, the GFS analyses again

aided in locating the systems. The tracks of all 100 dissipating systems from 24 hours before dissipation

to 6 hours before dissipation are plotted in Figure 4.2. The number of tracks which are entirely straight

or straight along an appreciable portion is evidence of the greater number of gaps in the fixes for these

systems as compared to the developing systems. The three regions of frequent development pointed out

in conjunction with the tracks of the developing systems can also be seen in the tracks of the dissipating

systems.
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Figure 4.2: Tracks of the 100 dissipating disturbances of the 2001-2009 seasons at 6, 12, 18, and 24 hours
before decay.

4.2.1 Datasets

The Calculation of Omega

The fields of omega are calculated using data from the GFS. The Regional and Mesoscale Meteor-

ology Branch maintains an archive of GFS analyses of geopotential height, temperature, relative humidity,

and the u- and v-components of the wind interpolated to a 2◦ x 2◦ grid. In accordance with the recommenda-

tion of Phillips (1958) discussed in Chapter 2, the wind field was used to calculate the streamfunction, from

which a balanced height field could be calculated according to the balance condition used in the creation of

the global omega equation

Φ(λ, µ, p) − Φ̄ (p) = 2Ωµψ (λ, µ, p) .
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Thus the height field used will differ slightly from that stored in the GFS, but will have the proper relationship

to the streamfunction such that the balance condition is satisfied. Because the temperature is related to the

height field, a new temperature field consisitent with the balance condition was also calculated using the

hydrostatic relationship

T = − p

Rd

∂Φ

∂p
.

As with the geopotential, this balanced temperature field differs only slightly from the original temperature

field of the GFS.

Because the right-hand-side of the above equation vanishes for µ = 0, Φ(λ, µ, p) = Φ̄ (p) at the

equator, meaning the geopotential changes only with pressure along the equator. At each pressure level,

Φ̄ (p) is given by the value of the zonal average geopotential as contained in the GFS data.

In order to isolate large-scale motions, a low-pass filter was applied to the streamfunction before the

height field was computed. The filter is of the form discussed by Sardeshmukh and Hoskins (1984) and has

a response function Sn given by:

Sn = exp

{

−
[

n (n+ 1)

n0 (n0 + 1)

]r}

, n ≤M.

In addition, only the first nine vertical modes were kept.

In solving the omega equation, the traditional form of the forcing was used. The Q form, which

is exactly equal to the traditional form in the quasi-geostrophic framework, is not equal to the traditional

form of the global omega equation. As shown in the previous chapter, the derivation of the Q form requires

additional assumptions of a slowly-varying µ. In addition, because the computation of the omega equation

uses the GFS analysis fields, the winds are (within the model atmosphere) without error. Thus there is

no issue with calculating the forcing from the vorticity effect and the thermal effect, which can result in

calculating small differences between two large numbers. In addition, the use of the traditional form of the

omega equation allows the contribution to the total omega from the individual terms (vorticity, thermal, and

friction) to be compared. Despite the potential drawbacks of looking at the individual components discussed

in Chapter 1, this method can provide insight into the atmospheric processes important to an event such as

tropical cyclogenesis. It has been used with more general forms of the omega equation in the midlatitudes
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Table 4.1: The distribution of the 154 developing systems and the 100 dissipating systems among the three
Atlantic subbasins.

Tropics Subtropics Gulf of Mexico Total
Developing 83 53 18 154
Dissipating 58 35 7 100

(DiMego and Bosart, 1982; Pauley and Nieman, 1992), Tropics (Baumhefner, 1968) and globally (Raisanen,

1995).

4.2.2 Compositing Procedure

As indicated by the tracks of both the developing and dissipating systems, certain regions in the

Atlantic are particularly favorable for tropical cyclogenesis: the tropical Atlantic, the subtropical Atlantic,

and the Gulf of Mexico. In order to examine the characteristics of the large-scale vertical motion typical

for these genesis regions, composite analysis will be used. As discussed by Sinclair and Revell (2000),

composite analysis does not capture the details of the individual members comprising the composite, but

emphasizes the features common to all the members. Composite analysis is used throughout the atmospheric

sciences, including tropical meteorology (e.g. McBride and Zehr, 1981; Bracken and Bosart, 2000).

The outlines of the three subbasins are given in Figure 4.3. Disturbances with an average latitude

less than or equal to 20◦ N are included in the tropical Atlantic composite. Disturbances with an average

latitude greater than 20◦ N are included in one of the other two subbasins according to average longitude:

those with average longitude less than or equal to 81.5◦ W are included in the subtropical Atlantic composite

and those with average longitude greater than 81.5◦ W are included in the Gulf of Mexico composite. The

distribution of the 154 developing systems and the 100 dissipating systems are given in Table 4.1, which

shows that for each of the two types (developing and dissipating), the tropical Atlantic produces the most

systems, followed by the subtropical Atlantic, and with the Gulf of Mexico producing the fewest systems.

At each analysis time (24, 18, 12, 6 hours before development or dissipation, also denoted as -24,

-18, -12, and -6 hours), the fields of height, temperature, relative humidity, u-wind component, and v-wind
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Figure 4.3: Map outlining the three subbasins: Tropical Atlantic, Subtropical Atlantic, and the Gulf of
Mexico.

component obtained from the GFS analyses in a 40◦ longitude by 20◦ latitude box centered on the surface

positions of the systems were used in the three subbasin composites. The composite fields were then placed

on the sphere at the mean latitude and longitude associated with each category (e.g. tropical Atlantic,

developing systems at -12 hours). The rest of the sphere was filled with a global composite consisting of

the same times which went into the system composites. In creating the composite over the systems, an extra

GFS grid point on each side was used, such that a smooth transition in the fields between the system and

global composites could be obtained by successive passes of a 1-2-1 filter.

In compositing the fields of omega, two choices exist. The composite could come from solving

the omega equation from the composite fields of height, temperature, and the u and v wind components.

Alternatively, the omega fields from each member of the group could be averaged to create the composite
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omega field. Even though the omega equation is a linear, partial differential equation, the forcing terms are

nonlinear, so the two options will give different results. The second option will be used here, as the averaging

involved in creating the composite developing and dissipating systems smooths out the features, weakening

the forcing terms. In addition, solving the omega equation is similar to inverting a Laplacian operator, which

has a smoothing effect itself. The end result is an omega field that does correspond exactly to the hieght

field, but one in which potentially important features may have been smoothed away. In addition, preparing

the composite omega field from the individual omega fields themselves allows for additional operations on

the omega fields, such as significance testing, which will be examined at the end of this chapter.

4.3 Results

4.3.1 Tropical Atlantic Systems

Most Atlantic tropical cyclones initiate from easterly waves moving off of the coast of Africa near

the Cape Verde Islands. The origins of these waves can often be traced as far east as Sudan and Ethiopia

(Mekonnen et al., 2006) . These systems constitute not only the majority of tropical cyclones in the Atlantic,

but also the majority of major hurricanes (Category 3 and higher). Landsea (1993) reports that 80% of all

major hurricances in the Atlantic come from African easterly waves.

The tracks of the composite systems (Fig. 4.4) show the mean position of the disturbances at 24, 18,

12, and 6 hours before either development or dissipation. Although the path of the dissipating composite

is to the west of the track of the developing composite, the tracks of the two composites are quite similar

with a mean latitude of about 13◦N and a mean longitude of about 52◦W – roughly 750 km northeast of the

coast of South America. Both are moving to the west-northwest, the developing composite at 11 kts and the

dissipating composite at 10 kts.

The 850-200 hPa wind shear (vector difference) and the sea surface temperature (SST) experienced

by the developing and dissipating composites are shown in Table 4.2. The wind shear values were calculated

from GFS fields, using the u and v components averaged over a 4 ◦x4 ◦ latitude-longitude box centered over

the surface location. The SSTs were taken from Reynolds analysis (Reynolds and Smith, 1993) at the surface
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Figure 4.4: Location of the tropical Atlantic composite developing system (solid) and the composite dissi-
pating system (dashed) at 24, 18, 12, and 6 hours before either genesis or dissipation.

location of the systems. The SST of the developing composites was at all times significantly1 greater than

the SST of the dissipating composite. In both cases, however, the temperatures were above 26 ◦C threshold.

There also existed a difference in 850-200 hPa wind shear between the two composites. The developing

systems experienced a 850-200 hPa shear just above 6 ms−1 at all four times before development. The shear

over the dissipating systems was higher, ranging from 8.4 ms−1 at -24 hours to 8.8 ms−1 at -6 hours. The

differences between the shears were significant, although both means were below the 10–15 ms−1 threshold

suggested by Musgrave et al. (2008) as a range above which vertical wind shear becomes disruptive to the

development of a tropical cyclone.

A time series of plan views of the composite 850 hPa height and omega shows the progression of

1 In this paper, significance will be defined by the 95% level using a two-tailed Student’s t-test
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Figure 4.5: 850 hPa height (black) and omega (blue) for the developing and dissipating tropical Atlantic
composites at 24, 18, 12, and 6 hours before either genesis or dissipation. The height field is contoured
every 10 meters. The omega field is contoured every 1 hPa day−1, with dashed contours indicating rising
motion and solid contours indicating sinking motion. The zero contour is omitted, and the “+” indicates the
surface position of the composite.
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Table 4.2: The 850-200 hPa shear (ms−1) and the SST of the Tropical developing and dissipating composites
at 24, 18, 12, and 6 hours before development or dissipation. The shear calculations are using the winds
averaged over a 4 ◦x4 ◦ latitude-longitude box centered over the surface location, and the SSTs are taken at
the surface location.

Developing Systems Dissipating Systems
Time (hours) Shear SST Shear SST

-24 6.6 28.5 8.4 28.2
-18 6.2 28.5 8.6 28.2
-12 6.3 28.5 8.8 28.1
-6 6.2 28.5 8.8 28.1

the mean developing system (Fig. 4.5a-d) and the mean dissipating system (Fig. 4.5e-h). Both height

composites show an 850-hPa trough progressing north and west, just as the plot of the mean locations

indicates (4.4). The shape of the troughs are similar to the schematic of Frank (1969) of the low-level

wind field found in easterly waves, and display the upshear tilt discussed by Reed et al. (1977). Such

a pattern would be expected in the composites of tropical Atlantic disturbances, as the vast majority of

disturbances in this subbasin are associated with easterly waves. The actual heights of both composites

are similar as well, however, the trough of the developing system is much better defined in the sense of

curvature of the height field, with a closed low developing at -12 hours. The greater curvature in the height

field implies that the wave of the developing systems has a greater amount of low-level vorticity, one of the

well-known ingredients necessary for the genesis of a tropical cyclone. The greater vigor of the composite

wave associated with the developing systems is also seen in the accompanying omega field, produced from

the solution of the global omega equation. The maximum magnitude in the area of rising motion to the west

of the wave of the developing composite (∼ 17 mb day−1) is roughly twice the maximum magnitude of the

rising motion of the dissipating composite (∼ 9 mb day−1). The developing composite also shows stronger

maximum downward motion in the vicinity of the wave, (11 vs. 7 hPa day−1), although the sinking motion

of the composite dissipating system covers a larger area. The dipole of upward and downward motion seen

in both composites is reminiscent of the rising and sinking motion ahead of and behind, respectively, of a

midlatitude trough.
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East-west cross sections through the composites provide confirmation of what is seen in the plan

views, as well as reveal additional details of the two disturbances. Figure 4.6 shows the height anomaly

(relative to the mean height at each level within the compositing domain) and omega through the developing

composite (Fig. 4.6 a-d) and through the dissipating composite (Fig. 4.6 e-h) at the GFS latitude closest to

the mean latitude of the composite disturbances. Confirming what the plan views showed, the composite

perturbation height field of the developing systems indicates a more vigorous wave than that associated with

the dissipating systems. At 24 and 18 hours before development, the minimum low-level height perturbation

is -18 m. The low-level anomaly deepens by 4 meters, resulting in a minimum height anomaly of -22 m

at 12 and 6 hours before genesis. In contrast, the negative low-level height anomaly of the disspating

composite fills over time. Between 24 and 12 hours prior to dissipation, the minimum height anomaly

is -14 m; at 6 hours, the anomaly is -12 m. In addition to the stronger negative anomaly, the trough of

the developing composite extends higher into the atmosphere, above 400 hPa. The composite wave of the

dissipating system also extends above 400 hPa at -24 hours, but shrinks to below 400 hPa at -6 hours. Both

composites also display a positive height anomaly at upper levels. An upper-level anticyclone, although

not a dominant factor, is favorable to the development of disturbances (DeMaria and Kaplan, 2001), as its

associated divergence allows a strong outflow at upper levels (Riehl, 1948). In this case, both the developing

and dissipating composites show a strengthening of this feature with time. Also the upper-level anticyclone

is displaced slightly to the east of the low-level center. In their study of developing and non-developing

systems, McBride (1981) and McBride and Zehr (1981) composited Atlantic disturbances according to

three categories, two non-developing — cloud clusters and wave trough clusters (or wave trough convection)

and one developing — pre-hurricane cloud cluster. For the cloud cluster composite and the pre-hurricane

composite, they also found that the upper anticyclone was displaced to the east. They measured the distance

to be ∼ 3◦ latitude. Their wave trough cluster composite showed no anticyclone. Also in agreement with

McBride and Zehr (1981) is the greater upper-level horizontal shear associated with the developing systems,

as can be inferred by the smaller spacing of the contours of perturbation height.

The pattern of omega in the vicinity of the wave for both composites is a four-cell pattern. The

leading (western) edge of the wave is characterized by rising motion at lower levels and sinking motion at

54



Figure 4.6: Cross section of height anomaly (black) and omega (blue) through the developing and dissipating
composites at 24, 18, 12, and 6 hours before genesis or dissipation. The height anomaly is contoured every 2
meters and omega is contoured every 2 hPa day−1. In both cases solid represents positive values and dashed
represents negative values. The zero contour is omitted, and the “+” sign is placed at the longitude of the
surface location of the composite disturbance.
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Figure 4.7: Vertical motions associated with the omega field forced by vorticity advection alone.

mid to upper levels. On the trailing (eastern) edge, the omega pattern is the opposite: rising motion at the top

of the wave and sinking motion near the bottom. This pattern is consistent with the vertical motion which

would exist in a westward-moving trough forced only by the vorticity term of the omega equation (Fig. 4.7).

With advection of cyclonic vorticity increasing with height (decreasing with pressure) rising motion results,

as seen at the lower levels of the wave. For advection of cyclonic vorticity decreasing with height, sinking

motion results, as seen at the upper levels of the wave. This pattern is seen on the western edge of the wave.

On the eastern edge of the wave, the opposite vorticity forcing is present, that is, cyclonic vorticity advection

increases with height near the top of the wave, forcing rising motion. At the lower levels, cyclonic vorticity

advection decreases with height, resulting in sinking motion. On both the western and the eastern edges of

the wave, the transition between rising and sinking motion occurs near 600 hPa, a typical level for which
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easterly waves have their maximum amplitude (Hopsch et al., 2010), again underscoring the importance of

easterly waves in this subbasin of the Atlantic.

Interestingly, this four-celled pattern is also seen when viewing the distribution of vertical velocities

associated with convection in tropical disturbances. Kiladis et al. (2009) present a conceptual model (re-

produced here in modified form as Fig. 4.8) of convection associated with convectively coupled equatorial

waves, which includes easterly waves. At the leading edge of the wave, the convective pattern consisits of

low-level rising motion situated underneath upper level subsidence. At the trailing edge, the convective mo-

tions continue at higher levels. Beneath this area of upward motion exists a region of sinking associated with

the stratiform precipitation. In the case of easterly waves, the large-scale vertical motions are apparently in

phase with the vertical motions produced by aggregate convection.

That the four-cell pattern of vertical velocity arises from the vorticity term can be confirmed by

separating the forcing for the omega equation into individual terms. Since the omega equation is a linear

partial differential equation, each forcing term may be considered separately, and the sum of the omega

fields resulting from the individual forcing components will equal the total omega field resulting from in-

cluding all of the forcing terms. Cross sections of the components of omega for the developing composite

at -6 hours are shown in Figure 4.9. Panel a shows the total omega. Panel b shows the omega forced by

vorticity effects, which includes not only the term ∂
∂p

[2Ωµvψ · ∇ (ζ + 2Ωµ)], but also the lower boundary

term, (3.12b), which is a vorticity advection. Panel c contains the omega resulting from the thermal effects,

−∇2
[

2Ωµvψ · ∇
(

∂ψ
∂p

)]

, and Panel d the frictional effects. In comparing the four panels, the four-cell

pattern seen in the total omega most resembles the omega forced by vorticity effects alone, although the

rising motion at the low-levels of the western edge is not seen. It is in fact present, appearing if the contour

interval is decreased to 0.25 hPa day−1 (not shown). As important as the vorticity forcing is in determining

the overall pattern of the total omega, it is clearly modified by the frictional forcing. In fact, frictional ef-

fects dominate the lower levels. The large contribution due to friction confirms the finding of Krishnamurti

(1968a), who mentioned the importance, and possible dominance of frictional effects on the omega equa-

tion in the Tropics, where dynamical forcing can be weak. The temperature advection term (4.9 c) forces

downward motion at lower levels on the eastern edge of the wave, and weak upward motion on the western

57



Figure 4.8: Vertical motions associated with convectively coupled equatorial waves as depicted by Kiladis
et al. (2009). The wide arrows corresponding to the large-scale balanced motion attributed to vorticity
advection (Fig. 4.7) have been added.
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Figure 4.9: The contributions to the omega field for the tropical developing composite at 6 hours before
development: a) total omega, b) vorticity effects, c) thermal effects d) friction effects. The omega field is
contoured every 2 hPa day−1, with dashed contours indicating rising motion and solid contours indicating
sinking motion. The zero contour is omitted, and the “+” is located at the longitude of the surface location
of the composite system.

edge at low levels.

The vertical motions due to the forcing components of the composite dissipating system (4.10) look

similar, albeit weaker, to the corresponding components of the developing composite. The four-cell pattern

is missing the sinking motion at low levels on the eastern edge of the wave, (4.10a), but its presence can be

confirmed by looking at the omega resulting from the vorticity forcing terms (4.10b). The sinking motion is

dominated by the lifting due to both frictional and thermal effects. The frictional effects are also primarily

responsible for the low-level rising motion at the western edge of the wave. The thermal effects of the

dissipating composite are weaker than in the developing composite on the western edge, but are stronger on

the eastern edge.

Considering again the pattern of omega forced by vorticity of both composites, it is seen that the
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Figure 4.10: Same as 4.9, only for the dissipating composite.

rising motion at lower levels on the western edge is weaker than the sinking motion at the lower levels on

the eastern edge of the wave. This asymmetry in omega is likely a consequence of the asymmetry in the

perturbation height field of the wave itself. Looking at both Fig. (4.5) and Fig. (4.6), the contours of the

perturbation height field are more closely packed on the eastern side of the wave than on the western side.

Figure 1a of Reed et al. (1977) supports the existence of this asymmetry in that the strongest winds are seen

on the eastern side of the wave. Since the height field is related to the vorticity field, a larger gradient of

vorticity would be expected on the eastern side of the wave, likely resulting in a greater vorticity advection

on the eastern side than on the western side. The top two panels of Fig. 4.11 show the perturbation height

field as well as the vorticity advection by the balanced wind for both the developing composite and the

dissipating composite at -6 hours. That the vorticity advection is greater on the eastern side for both the

developing and dissipating composites is evident. Recall, however, that the forcing of the omega due to the

vorticity effects is related to the vertical derivative of the vorticity advection. The bottom two panels of Fig.
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Figure 4.11: Perturbation height (black) and advection of the balanced vorticity by the balanced wind (blue)
at -6 hours for: a) Developing composite and b) Dissipating composite. Perturbation height (black) and
vorticity forcing for c) Developing composite and d) Dissipating composite. Perturbation height is con-
toured every 2 m, vorticity advection is contoured every 5x10−11 s−2, and vorticity forcing contoured every
0.5x10−19 Pa−1 s−3. For all variables, solid contours denote positive values and dashed contours denote
negative values. The zero contour is omitted, and the “+” is positioned at the surface longitude of the
composite system.

4.11 show the forcing due to vorticity. The four-cell pattern, which was somewhat obscured in the omega

field, is clearly evident in the forcing field for both composites. It is not clear, however, that the forcing on

the eastern side at low levels is greater than on the western side. The pattern of the forcings is such, however,

that upon solving the equation for omega, the low-level subsidence on the eastern edge of the wave is of

greater magnitude than the low-level rising motion on the western edge.

The differences in the total omega fields and their components for the two composite systems can

largely be attributed to the strength of the wave. This difference is particularly true for the vorticity and

frictional effects — the stronger the wave, the more vorticity advection and greater Ekman pumping. The

difference in the temperature effects, however, results not only from the flow associtated with the distur-
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bance, but also from the thermodynamic environment. A plan view of the 850-hPa heights and temperatures

of the two composites six hours before development or dissipation reveals a different juxtaposition of the

height and temperature fields between the two. In the developing composite, the thermal ridge to the east of

the system is displaced somewhat to the north of the surface center, placing the temperature gradient within

the circulation of the disturbance. In the dissipating system, the thermal ridge is farther south, essentially

intersecting the surface position of the composite disturbance. This positioning results in the height contours

and temperature contours to approximately parallel each other in the eastern region of the wave south of the

thermal ridge. In the developing system, the height contours are at a greater angle to the temperature con-

tours, resulting in greater cold-air advection, which is typically associated with sinking motion. The greater

low-level sinking motion just to the east of the wave is in fact seen in the developing composite relative to

the sinking composite as seen in Figures 4.9 c and 4.10 c. The existence of the thermal ridge not only affects

the ω in the eastern portion of the disturbance, but is likely indicative of the presence of a Saharan Air Layer

(SAL), a layer of warm air originating over the African continent. The SAL is also characterized by low

relative humidities. The composite 850-500 hPa mean relative humidity plots 4.12 do show that the air to

the west of the dissipating composite is a bit drier than the air to the west of the developing composite. In

addition, the shape of the moisture ridge in the dissipating composite, and its alignment with respect to the

ridge in height field appear to create a situation where the contours of the relative humidity are at a larger

angle to the wind vectors, indicating greater dry air advection into the dissipating composite. The dry air of

the SAL may therefore be a contributing factor to the disspating systems’eventual demise. This suggestion

is in agreement with other work regarding the interaction of an easterly wave with the SAL as an inhibitive

factor to genesis (Dunion and Velden, 2004). In the case of the developing composite, the humidity contours

are more parallel to the wind vectors, suggesting that the disturbance is protected from dry-air advection.

The idea of an incipient disturbance being protected from the air of the environment, which may be hostile

to the development of a tropical cyclone, forms the basis of the marsupial paradigm of tropical cyclogenesis

(Dunkerton et al., 2009).

The omega pattern, although distinct, is quite weak, even for the developing composite in relation

to the upward motion found to be necessary for genesis. According to McBride and Zehr (1981), 100 hPa
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Figure 4.12: 850-hPa heights (black, m) and temperatures (red, K) at 6 hours before development or dissi-
pation for a) the developing composite, b) the dissipating composite. 850-hPa heights, mean 850-500 hPa
relative humidity (green, %), and 700-hPa GFS wind vectors at 6 hours before development or dissipation
for c) the developing composite, and d) the dissipating composite. The “+” indicates the surface position of
the composite.

day−1 over an area of 4◦ radius is necessary for the development of a tropical disturbance into a tropical

cyclone. The developing composite has a maximum of 7 hPa day−1. This difference of more than an

order of magnitude suggests that the large-scale vertical motion acts to condition the atmosphere to be

more conducive to vertical convection. The role of large-scale vertical motion as a precursor, creating an

environment suitable to sustaining vertical convection forced by smaller-scale processes was suggested by

Doswell (1987) in a study of severe convection at midlatitudes. To investigate this possibility further, the

divergence profile associated with the vertical motion of the composite systems was used to modify the

vertical moisture profile of a typical tropical sounding to see if the developing composite would change the

moisture profile in such a way as to make it more capable of sustaining deep convection than the composite

of the dissipating system. For simplicity, the temperature profile was kept constant, but water vapor changes
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Table 4.3: The CAPE, CIN, and LFC calculated from the 1-D cloud model using three different soundings,
the Jordan sounding (Control), the Jordan sounding with the moisture profile altered by the divergence
profile of the developing composite (Developing) and the dissipating composite (Dissipating).

CAPE (J kg−1) CIN (J kg−1) LFC (m)
Control 231 25 1500

Developing 949 1 200
Dissipating 516 8 700

following a parcel will be assumed to obey the following conservation equation:

D (ln ρv)

Dt
= −∇ · v

which, after performing the integration
∫ ρv,f

ρv,i

d ln ρv = −
∫ tf

ti

∇ · vdt

gives

ρv,f = ρv,ie
¯−(∇·v)4t.

Using the mass continuity equation, the above equation may be written

ρv,f = ρv,ie
∂̄ω
∂p

4t (4.1)

Applying (4.1) to each level of the sounding for each of the composite systems gives the change in wa-

ter vapor density. For this experiment, the profile used was the Jordan mean sounding (Jordan, 1958), and the

divergence was applied for 1 day, or about one quarter the typical period of an easterly wave (Burpee, 1972),

for the developing composite and the dissipating composite. The modified moisture profiles were used along

with the temperature profile of the unmodified mean Jordan sounding (control) in a one-dimensional entrain-

ing cloud model (DeMaria, 2009), and three convective parameters, convective available potential energy

(CAPE), convective inhibition (CIN), and the level of free convection (LFC), were compared. The reults are

given in Table 4.3, which also gives the CAPE, CIN, and the LFC for the unmodified Jordan mean sounding.

The vertical profile of the divergence of both the developing composite and the dissipating composite

create an atmosphere more conducive to convection than the original sounding, that is, they each increase
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Figure 4.13: Same as 4.4, but for the subtropical Atlantic composites.

the CAPE, and decrease both the CIN and the LFC. The changes associated with the developing composite,

however, create the atmosphere which is most able to support deep convection, by improving the three

parameters by at least a factor of two over the dissipating composite.

4.3.2 Subtropical Atlantic Systems

Of all the ocean basins which produce tropical cyclones, the northwest Pacific and the north Atlantic

are unique in that the poleward extent of the active waters reaches to around 30◦N. Frank (1987) connects

this poleward extent of tropical cyclone activity to the poleward extent of warm waters on the western side

of the ocean basins, the so-called western boundary currents (Munk, 1950)—the Kuroshio Current in the

Pacific and the Gulf Stream in the Atlantic. Because of this extratropical extent of warm waters, disturbances

in these regions can be influenced by midlatitude components, most notably, upper-level troughs.
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Table 4.4: As in Table 4.2, but for the Subtropical systems.

Developing Systems Dissipating Systems
Time (hours) Shear SST Shear SST

-24 9.8 27.1 12.2 25.8
-18 9.1 27.1 12.1 25.7
-12 9.0 27.1 11.3 25.6
-6 7.9 27.0 11.5 25.4

The tracks of the composite systems in the subtropical Atlantic are given in Fig. 4.13. The track of

the developing composite is roughly 700 km to the southeast of Bermuda and the dissipating roughly 800 km

to the east southeast of Bermuda. Both composite disturbances move generally to the north. Comparing Fig.

4.13 with Fig. 4.4, the track of the composite storms in the Tropics, a greater separation between the two

composite storms in the Subtropics is evident. In fact, for all four times, the mean latitude of the dissipating

systems is significantly farther north than the mean latitude of the developing systems. In addition, the mean

distance travelled from -24 to -6 hours by the dissipating systems (386 km) is significantly greater than the

mean distance travelled by the developing systems (281 km). Of the three Atlantic subbasins considered in

this work, only the Subtropics shows a significant difference in mean latitude and mean distance travelled

between the developing and dissipating disturbances. The difference in position and distance travelled are

particularly important in this region, as even though the Gulfstream brings warm waters poleward on the

western edge of the Atlantic basin, further to the center of the ocean the sea surface temperatures at these

latitudes are not conducive to the development of tropical cyclones. That the more northeast position of

the dissipating composite puts it farther away from the warm Gulfstream waters is seen in the mean SST of

25 − 26 ◦C, compared to the mean SST of 27 ◦C of the developing composite (Table 4.4). That 1 − 2 ◦C

difference is not only significant in a statistical sense, but also in a physical sense, in that SSTs lower than

26 ◦C are, in general, not capable of supporting a tropical cyclone.

The proximity of the disturbances to midlatitude troughs in the subtropical Atlantic suggests that

these systems will usually form or dissipate under the influence of greater shear than the disturbances in

the Tropics. Table 4.4 also presents the mean 200-850 hPa shear in a 4◦ latitude x 4◦ longitude area over
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both the developing and dissipating systems. Although both means decrease with time, it is clear that the

developing systems experience less shear than the dissipating systems. The differences between the means

are all significant except at -24 hours. In addition, the mean wind shear of the dissipating systems is within

the 10–15 ms−1 range mentioned previously, above which the vertical wind shear is considered unfavorable

for development. For the developing disturbances, the mean shear is below this range for all times, and in

particular at 6 hours before development.

As in the tropical Atlantic subbasin, the composites of the developing and dissipating systems in

the subtropical Atlantic subbasin do show similarities, but also differences during the time leading up to

development or dissipation. In plan view the 850-hPa height and omega fields of the developing composite

(4.14a-d) shows a closed low deepening by 20 m, from 1520 m to 1500 m, during the 18 hours spanned by

the figure. The omega field shows a distinct couplet, with rising motion over and to the east of the low, and

sinking motion to the west, as would be expected in a midlatitude low. The couplet is asymmetrical, with

the rising portion being the more intense by a factor of two to four. The subsident portion weakens with

time, beginning with a maximum sinking of 12 hPa day−1 and ending with a sinking of 8 hPa day−1. The

ascending portion remains essentially the same, starting and ending at -24 hPa day−1 with a decrease to -28

hPa day−1 at 18 hours before development.

Similar to the developing composite, the closed 850-hPa low of the dissipating composite deepens

with time, in this case by 10 m, from 1510 m to 1500 m (4.14e-h). Also similar is the asymmetric couplet of

the omega field, again with the rising branch stronger than the sinking branch by a factor of two to four. The

strength of the sinking branch remains at 8 hPa day−1 throughout the time period. The ascending branch of

the omega field strengthens with time, at 24 hours before development the maximum rising motion is -28

hPa day−1, and at 6 hours before development the value is -32 hPa day−1. Whereas the two composites

have similar magnitudes of the height field, and the rising and sinking branches of the omega fields, the

shape of the fields is slightly different. Both the height field and the rising branch of the omega field

in the developing composite are more circular than their counterparts in the dissipating composite, where

southwestward extensions in the height and omega field are present. These extensions take on the appearance

of an extratropical wave. In particular, the omega field of the dissipating composite looks similar to the 700-
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Figure 4.14: 850 hPa height (black) and omega (blue) for the developing and dissipating subtropical Atlantic
composites at 24, 18, 12, and 6 hours before either genesis or dissipation. The height field is contoured every
10 meters. The omega field is contoured every 4 hPa day−1, with dashed contours indicating rising motion
and solid contours indicating sinking motion. The zero contour is omitted, and the “+” indicates the surface
position of the composite.
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hPa omega field of the midlatitude example given in the last chapter (Figs. 3.2 and 3.3). Also, whereas the

sinking branch in the omega field is offset to the north with respect to the rising branch in the developing

composite, the sinking branch in the dissipating composite wraps around to the southeast, coming close

to the southwestward extension of the rising motion mentioned earlier. This pattern of rising and sinking

motion is in alignment with the trough in the height field, again resulting in the appearance of a cold front.

The perturbation height field seen in east-west cross sections (Fig.4.15) through the disturbances (at

the GFS latitude closest to the disturbance latitude) reveals the midlatitude influence in the development of

tropical cyclones in the Subtropical Atlantic. Here the low at the surface continues all the way to 100 hPa

for both the developing and the dissipating composites. Recall that in the Tropics, the pattern of perturbation

height was a high at upper levels over the lower-level low (Fig.4.6).

The pattern of omega seen in the cross section of the two subtropical composites differs greatly from

that seen in the tropical composites (Fig.4.6). Instead of a 4-cell pattern, the omega field is dominated by

a rising branch to the east of the low and a sinking branch to the west. As seen in the 850-hPa plan view,

the rising branch is more vigorous than the sinking branch for both composites. Within the rising branch

there are likely two maxima of -24 to -28 hPa day−1, one in the middle levels (500 hPa to 300 hPa) and

one at lower levels (850 mb). At some times the maxima are clearly seen, such as at -18 hours in both

the developing and dissipating composite (Fig.4.15b and f). At others, the two maxima need to be inferred

by noting the shape of the contours of omega, and by recognizing that the contour interval of 4 hPa day−1

may not be sufficient to capture both maxima. When the contour interval is increased to 2 hPa day−1 (not

shown) the two maxima are in fact better resolved. The pattern within the sinking branch is better described

as consisting of an elongated maximum of 14 to 20 hPa day−1, extending from 700 hPa to 250 hPa.

Splitting the omega into its vorticity, thermal, and frictional components for the developing composite

(Fig.4.16) and the dissipating composite (Fig.4.17) at -6 hours provides additional insight. First note the

similariy in both magnitude and shape of the omega fields produced by the vorticity term (Fig.4.16 b and

Fig.4.17 b). Both composites have an ascending branch with a maximum of ascent of -16 hPa day−1 at

middle levels (500 hPa - 200 hPa). The descending branches are likewise similar with a broad maximum of

descent of 8 hPa day−1 at a slightly lower altitude (850 hPa - 300 hPa). The omega forced by friction is also
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Figure 4.15: Cross section of height anomaly (black) and omega (blue) through the Subtropical developing
and dissipating composites at 24, 18, 12, and 6 hours before genesis or dissipation. The height anomaly is
contoured every 8 meters and omega is contoured every 4 hPa day−1. In both cases solid represents positive
values and dashed represents negative values. The zero contour is omitted, and the “+” is located at the
longitude of the surface location of the composite system.
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Figure 4.16: The contributions to the omega field for the subtropical developing composite at 6 hours before
development: a) total omega, b) vorticity effects, c) thermal effects d) friction effects. The omega field is
contoured every 4 hPa day−1, with dashed contours indicating rising motion and solid contours indicating
sinking motion. The zero contour is omitted, and the “+” sign marks the surface longitude of the composite
system.

similar between the two. Both are dominated by a single maximum of -16 hPa day−1 at 850 mb (Fig.4.16 d

and Fig.4.17 d). In addition, the pattern of omega forced by thermal effects shows a hint of two maxima, one

centered at 250 hPa and the other at 700 hPa. Therefore, the two maxima in the ascending branch to the east

of the low noticed in the analysis of the cross section time series are due to a combination of the vorticity

and the frictional effects, as well as the thermal effects. Fig. 4.16 and Fig. 4.17 also show the smaller impact

that friction has relative to the vorticity and thermal forcing on systems in the Subtropics than in the Tropics

(Fig.4.16 and Fig.4.16). Although still the largest contributor to ascent, (-16 hPa day−1 friction does not

completely dominate the upward motion at low levels as in the Tropics.

Examination of other fields reveals the greater midlatitude nature of the dissipating composite. The

850-hPa height field (Fig.4.18) shows a deepening of both systems over the 18 hour time frame. A striking
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Figure 4.17: Same as 4.16, only for the dissipating composite.

difference, however, can be see in the temperature field, where the contours in the developing composite

run basically east to west with a signal of a thermal trough to the west of the low. The temperature field

of the composite dissipating system is overall colder, but also displays an elongated ”S” pattern, typical of

that created by the warm and cold front of midlatitude systems. In addition, the temperature gradient is at

all times larger in the dissipating composite than in the developing composite. By thermal wind considera-

tions, this means that the vertical shear should also be greater for the dissipating systems, which would be

consistent with their decay as excessive vertical wind shear is known to hinder tropical cyclogenesis. Mea-

surements of the 850-200 hPa vertical wind shear confirm what the 850-hPa temperature gradient suggests

(Table 4.4). Overall, the shear for the developing composite shows a slight decrease from 10 m s−1 to 8.6 m

s−1 during the hours leading up to cyclogenesis. The shear for the dissipating composite stays basically the

same throughout the period, with a small decrease at 12 hours before dissipation. The shear values are less

for the developing systems, but also below the 10–15 ms−1 value generally agreed upon as the cutoff value
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Figure 4.18: The 850-hPa height(black) and temperature(red) from the GFS analysis for the developing and
dissipating composite at 24, 18, 12, and 6 hours before either development or dissipation. The height field
is contoured every 10 m and the temperature field is contoured every 1 K. The “+” indicates the surface
position of the composite.
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Table 4.5: As in Table 4.2, but for the Gulf of Mexico systems.

Developing Systems Dissipating Systems
Time (hours) Shear SST Shear SST

-24 7.6 29.5 8.1 28.7
-18 7.0 29.5 7.8 28.6
-12 7.5 29.4 7.3 28.5
-6 7.7 29.4 7.8 28.4

(DeMaria et al., 2001), above which genesis is unlikely. The shear of the composite dissipating systems,

while not excessive, is within that cutoff range.

4.3.3 Gulf of Mexico Systems

The number of systems creating the Gulf of Mexico composites was much lower than the number go-

ing into making either the Tropical or Subtropical composites. Eighteen developing systems were used and

seven dissipating systems were used. The conclusions drawn concerning the differences between compos-

ites with so few members should be viewed with some caution, but until the number of systems is increased,

the analysis will proceed with what is available.

The tracks of the composite developing and dissipating disturbances show that both move to the

northwest with time in the central Gulf of Mexico (4.19). The track of the developing composite was

southwest of the track of the dissipating composite, but the difference in location was at no time statistically

significant. Table 4.5 shows the vertical wind shear and SST for the Gulf of Mexico composites. The means

of 850-200 hPa shear were not at any of the four times different by a statistically significant amount. For

both systems, the mean vertical wind shear was 7–8 ms−1, values not detrimental to development. The

mean sea surface temperatures for the devloping systems was about 29.5 ◦C, signifcantly warmer by about

1 ◦C than the sea surface temperature of the dissipating systems.

The composite 850-hPa height field is dominated in both cases by a trough in the central Gulf of

Mexico (4.20). The trough of the dissipating composite is a bit deeper, with heights of 1500-1510 m near

the center. The heights near the center of the developing composite are around 1520 m. The shapes of the
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Figure 4.19: Same as 4.4, but for the Gulf of Mexico systems.

two composites are also different. Although both systems resemble the easterly wave of the Tropical distur-

bances, the developing composite has the more “inverted V” appearance, whereas the dissipating composite

is more circular in shape, suggesting that genesis in the Gulf of Mexico is often associated with an easterly

wave. Aiyyer and Molinari (2008) also found that most cyclogenesis events in the Gulf of Mexico were

associated with an easterly wave, although their data set was considerably smaller, lasting only a few weeks

during the 1998 season. Similar to the tropical composites, the configuration of the height field in the Gulf

of Mexico also displays the asymmetric pattern of the height contours more closely packed on the eastern

side of the wave than on the western side and upshear tilt.

The 850-hPa omega field for both systems is dominated by rising motion; no regions of descent are

seen near either low. This is in sharp contrast with the Tropical and Subtropical cases, where a dipole of

rising and sinking motion is seen. The maximum in the field of upward motion of the developing composite
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Figure 4.20: 850-hPa height (black) and omega (blue) for the developing and dissipating Gulf of Mexico
composites at 24, 18, 12, and 6 hours before either genesis or dissipation. The height field is contoured
every 10 meters. The omega field is contoured every 4 hPa day−1, with dashed contours indicating rising
motion and solid contours indicating sinking motion. The zero contour is omitted, and the “+” indicates the
surface position of the composite.
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Figure 4.21: Cross section of height anomaly (black) and omega (blue) through the developing and dissi-
pating composites at 24, 18, 12, and 6 hours before genesis or dissipation. The height anomaly is contoured
every 8 meters and omega is contoured every 4 hPa day−1. In both cases solid represents positive values and
dashed represents negative values. The zero contour is omitted, and the “+” sign marks the surface longitude
of the composite system.
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is curved, beginning to the southwest of the system center and wrapping around to the east, and then to

the northeast of the surface position. The strength of ascent increases from -16 hPa day−1 at -24 hours to

-20 hPa day−1 at -6 hours. The maximum rising motion of the omega field of the dissipating composite is

characterized by two centers. The stronger is located to the east of the surface low and strengthens from -16

hPa day−1 at -24 hours to -22 hPa day−1 at -6 hours. The weaker maxima is to the southwest. It begins

at -12 hPa day−1, strengthens to -14 hPa day−1 at -18 hours, and is not clearly evident at -6 hours, but the

remaining values are between -10 and -12 hPa day−1.

Distinct differences between the deveoping composite and the dissipating composite are also seen in

the cross section through the center of the systems (4.21). The perturbation height field of the developing

composite shows a structure similar to the both the developing and dissipating composite of the tropical

systems (4.6), with the perturbation low at the surface laying below a perturbation high at upper levels, and

with the perturbation high displaced somewhat to the east of the perturbation low. There is a difference,

however, in the nature of this perturbation high and that seen in the composite of the developing tropical

systems. The tropical high consisted of primarily of a single maximum, with a small secondary maximum to

the west. In the Gulf of Mexico composite, the perturbation high consists of two maxima, with the western

maxima (∼ 32 m) stronger than the eastern maxima (∼ 20 m). The composite of the dissipating systems,

on the other hand, has a perturbation height field resembling that of both the developing and dissipating

composites of the subtropical systems (4.15), with the perturbation low extending from the surface into the

upper troposphere.

The main feature of the omega field of the developing system is a maximum of upward motion

centered near 400 hPa and just to the east of the surface low. The strength of the maxima varies with time,

starting at -26 hPa day−1, strengthening to -28 hPa day−1 at -18 and -12 hours, and ending back at -26 hPa

day−1 at -6 hours. There are three small regions of downward motion near the edges of the domain, the first

at the western edge near 250 hPa, the second on the eastern edge at 200 hPa, and the third at the eastern edge

at 850 hPa. The cross section of omega in the dissipating composite is also dominated by upward motion.

The center of this upward motion is similar to that of the developing composite in that it is displaced to

the east of the low. The magnitude of the ascent is also similar, starting and ending at -26 hPa day−1. In
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this case a weakening to -22 and -20 hPa day−1 occured at -18 and -12 hours, respectively. The level of

the maximum upward motion was more variable in time in the dissipating composite as compared to the

developing composite. This level began at 300 hPa at -24 hours, dropped to between 500 hPa and 700 hPa

by -12 hours, and rose back to 400 hPa by -6 hours. The omega field also shows three areas of sinking

motion. The first two are similar to those seen in the developing composite — one at upper levels on the

west and one at lower levels on the east. The third is different, however, and is centered to the west of the

surface center but does encroach appreciably into the perturbation low that defines the disturbance. At -24

hours it is a 8 hPa day−1 maximum centered at 300 hPa. By -6 hours it weakened to -2 hPa day−1 and

lowered to between 300 hPa and 400 hPa. This region of subsidence is the most notable difference between

the two composites in the cross section of omega. Insights into its origin can be found by looking at the

component omega fields.

Examining the components which make up the rising portions of omega for the developing system

at -6 hours, it can be seen that the vorticity effect plays the largest role, although both the thermal effect

and the frictional effect also contribute to the upward motion. In this case, the thermal effects force rising

motion only to the east of the low, whereas the frictional term forces rising motion to both the east and to

the west with the ascending motion extending higher up to the west of the system. Downward motion is also

forced by the vorticity and thermal effects. The thermal forcing results in two regions of downward motion

on both sides of the upward motion. The effects of vorticity forcing are seen primarily along the western

edge, although a small area of downward motion is seen at the surface, just below the primary region of

upward motion.

The makeup of the dissipating composite at -6 hours is similar to that of the developing composite

in that the vorticity forcing is responsible for the largest fraction of total rising omega, with contributions

also from the thermal forcing and frictional forcing. Again, the thermal forcing results in upward motion

primarily to the east of the surface low, and the frictional forcing to both sides, but to a greater depth on the

western side. The primary source of the downward motion is the thermal effects acting just to the west of

the system. A second area of thermally forced downward motion can be seen further to the east, beyond the

region of ascent. The largest area of descent forced by the vorticity effects is seen on the western edge, with
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Figure 4.22: The contributions to the omega field for the Gulf of Mexico developing composite at 6 hours
before development: a) total omega, b) vorticity effects, c) thermal effects d) friction effects. The omega
field is contoured every 2 hPa day−1, with dashed contours indicating rising motion and solid contours
indicating sinking motion. The zero contour is omitted, and the “+” sign marks the surface longitude of the
composite system.

an additional small area to the west of the low, near 500 hPa.

The downward motion over and to the west of the low, which is seen to be the primary distinguish-

ing characteristic between the developing and the dissipating composites, is primarily the result of thermal

forcing which is active in the middle to upper troposphere. The different configuration of the height fields

and their interaction with the temperature fields illustrates this effect. As an example, Fig 4.24 shows the

250-hPa height, temperature, and thermal forcing for omega at -6 hours. The low-level center of the devel-

oping composite is located on the western periphery of a ridge in both the height field and the temperature

field. The forcing for vertical motion is minimal, as the height field and the temperature field are essen-

tially parallel, implying little warm air advection. In contrast, the height field of the dissipating composite

is characterized by a trough, the height contours of which cross the temperature contours such that cold air
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Figure 4.23: Same as 4.22, only for the dissipating composite.

advection dominates the western side of the trough and warm air advection is typical on the eastern side of

the trough. Cold air advection is typically associated with descent and warm air advection with ascent, thus

the sinking to the west and the rising to the east is the typical pattern seen in middle latitude troughs. In this

instance, the forcing for sinking motion extends to the east such that a portion is over the surface low, just

as was seen in the cross section.

Looking again at the component of omega due to the frictional forcing (Figs. 4.22d and 4.23d),

it is seen that the effect of friction on the large-scale vertical velocity reaches quite a distance into the

troposphere, up to 300 hPa in the dissipating composite and up to 250 hPa in the developing composite.

This vertical extent exceeds that of the omega due to frictional effects in the Tropics (Figs. 4.9 d and 4.10

d) and the Subtropics (Figs. 4.16 d and 4.17 d). To understand why, consider an alternate set up to solving

the omega equation than is used in this work. In the solution of the omega equation used here, the effect of

friction is written as a forcing of the omega equation, i.e. a term on the right hand side of the equation. An
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Figure 4.24: 250-hPa heights (black, m), temperature (red K), and thermal forcing for omega (blue,) for
a) developing and b) dissipating composites at -6 hours. The height field is contoured every 10 m, the
temperature field every 1 K, and the forcing field every 1x10−18Pa−1s−3. The “+” indicates the surface
position of the composite.

alternate approach is to compute omega at the top of the boundary layer and use that as the lower boundary

condition on the solution of omega in the free atmosphere, where frictional effects are ignored. If the second

method is used, the omega equation due to frictional effects in the free atmosphere is

RΓ̄

p2
∇2ω + 4Ω2µ2∂

2ω

∂p2
= 0.

Neglecting for the moment that µ = 0 at the equator, the equation may be written

RΓ̄

4Ω2µ2p2
∇2ω +

∂2ω

∂p2
= 0.

Now, assuming a solution of the form ω (λ, µ, p) = w (p) ei(kx+ly) the equation may be written

d2w (p)

dp2
=
(

k2 + l2
) RΓ̄

4Ω2µ2p2
w (p) .

Without solving the equation, some of its characteristics may be determined by noting the behavior of d2w(p)
dp2

as the length scale, given by the quantity
(

k2 + l2
)

, varies. For small scales,
(

k2 + l2
)

is large resulting in a

large value for d2w(p)
dp2

. The second derivative is related to the curvature of a function, so for this case w (p)

has a large curvature. Because w (p) = 0 at the top of the atmosphere, this means that the magnitude of

w (p) decreases quickly away from the boundary layer. On the other hand, for large scales,
(

k2 + l2
)

and
d2w(p)
dp2

are small, resulting in a small curvature of w (p), so that its magnitude will decrease slowly with

pressure, allowing it to penetrate farther into the tropopause. In this work the top of the boundary layer is
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assumed to be 900 hPa. Looking at that level in the cross sections of omega force by friction, it is clear

that the omega in the Gulf of Mexico composite has the largest horizontal scale, and therefore will penetrate

to a greater altitude than the omega seen in the Tropics and Subtropics. It is is necessary to point out that

the above discussion is a mathematical argument used to explain the characteristics of the omega forced

by friction within the GFS model. The cross section of the Gulf of Mexico composite does extend onto

land where the the interpretation of the meteorological fields is complicated by the fact that several pressure

levels may be under ground. The composites of the Tropical and Subtropical systems contain very few land

masses, so the effects of friction are likely to be more accurately depicted in the GFS fields.

4.4 Significance Testing

In reviewing the composites plots in the three Atlantic subbasins, distinct differences appear in the

omega field between the developing and the dissipating composites. These differences are consistent with

the behavior of other fields, and are supported by forecaster experience. That is, the differences between the

two composites of omega are visually distinct. Additional computations are needed, however, to determine if

the differences of the composite fields are statistically significant. To perform this computation, a Student’s

t-test was performed on the omega fields which composed the composites. The three plots to follow show

the cross section of omega through the center of the developing composites in the three subbasins at -24,

-18, -12, and -6 hours. Areas for which the developing composite had a significantly smaller omega (greater

rising motion) are shaded in light gray, and areas for which the developing composite had a significantly

larger omega (greater sinking motion) are shaded in dark gray.

In the Tropics the greater rising motion of the developing composite at the low levels of the leading

(western) portion of the wave, evident in previous plots, is seen to be significant from 1000 hPa to above

700 hPa. This signal is evident at all four times and underscores the differences seen in the two composite

omega fields for the tropical disturbances (Fig. 4.25). In the Subtropics the omega patterns showed that

the rising and sinking branches of the omega field in the dissipating composite were of similar magnitude

to the developing composite. This similarity was confirmed by the difference of means tests (Fig. 4.26).

There is a small area of significantly greater upward motion of the developing composite at -18 hours in
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Figure 4.25: Cross sections of omega at a) -24 hours, b) -18 hours, c) -12 hours, d) -6 hours for the tropical
developing composite. Areas where the developing composite has significantly greater rising motion are
shaded light gray and areas where the developing composite has significantly greater sinking motion are
shaded dark gray. Omega is contoured every 2 hPa day−1 with dashed contours indicating rising motion
and solid contours indicating sinking motion. The “+” sign marks the surface longitude of the composite
system.

the 200-hPa to 150-hPa layer, and a larger area near the surface at the eastern edge of the cross section

at -6 hours, but these lack the areal coverage and temporal continuity seen in the statistical differences of

the tropical systems. Apparently, the magnitude of omega is not as important as the midlatitude nature of

the dissipating composite, with its higher shear and its northward movement into cooler waters. As has

been seen in other analyses, the Gulf of Mexico case (Fig. 4.27) lies somewhere between the tropical and

subtropical systems. Here, the developing composite shows some significantly greater upward motions

around 300 hPa over the center of the composite at -18 hours and -12 hours. This area is likely in response

to the enhanced downward motion at the rear of the upper-level trough mentioned in the discussion of the

dissipating composite. A second area appears at -12 hours and likely reflects the generally broader area of
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Figure 4.26: Same as Figure 4.25 but for the subtropical developing composite.

rising motion associated with the developing composite evident at -6 hours (Figs. 4.22 and 4.23). Although

these areas of significantly different ascent are larger than those seen in the Subtropics (4.26), they lack the

clear temporal consistency seen in the Tropics (4.25).
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Figure 4.27: Same as Figure 4.25 but for the Gulf of Mexico developing composite.
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Chapter 5

THE USE OF THE GLOBAL OMEGA AS A PREDICTOR OF TROPICAL
CYCLOGENESIS IN THE ATLANTIC

To further examine the utility of the global omega equation in analyzing tropical cyclones, its quan-

titative performance as a discriminator in a tropical cyclogenesis product was measured. The product used

is the Tropical Cyclone Formation Probability Guidance Product, or simply, the genesis product. It was

developed at the Cooperative Institute for Research in the Atmosphere at Colorado State University and

was transitioned to operations at the National Environmental Satellite, Data and Information Service of the

National Oceanic and Atmospheric Administration. The product is a 24-hour forecast of the probability

of tropical cyclogenesis in 5◦ latitude x 5◦ longitude boxes (Schumacher et al., 2009). The analysis uses

a variety of input parameters in a two-step process to determine the probability of tropical cyclogenesis.

The parameters are first screened to remove those points which are in an environment that is hostile to the

formation of tropical cyclones. In the second step, the screened dataset is used in a linear discriminant anal-

ysis (LDA), the results of which are used to develop the probabilities of tropical cyclone formation. Seven

variables are used in the linear discriminant analysis. They are climatology, 850-hPa circulation, 850-hPa

divergence, the distance to any existing tropical cyclone, the vertical wind shear between 850 hPa and 200

hPa, the percent of satellite pixels less than −40◦ C in the water vapor (6.7µm) band, and the percentage

of the analysis box which contains land. The first three—climatology, 850-hPa circulation, and the distance

to any existing tropical cyclone— were found to be the largest contributors to a high probability of the

formation of a tropical cyclone.

The results of the significance tests in the previous chapter were used as a guide for how to include
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the global omega into the genesis product. The subtropical systems did not show any persistent areas of

significantly different means. In the Gulf of Mexico, an area of significantly greater rising motion in the de-

veloping composite was seen around 300 hPa, but lasted for only two time periods. The greatest statistically

significant signal was seen in the Tropics. At the leading edge of the wave from 1000 hPa to 700 hPa, the

developing composite showed greater upward motion than the dissipating composite. This region existed at

all four times examined. For this reason, the 850-hPa omega field was chosen as the additional input into the

genesis product. In addition to having the most robust signal of statistical significance, the tropical subbasin

contained most of the disturbances, with 54% of the developing and 58% of the dissipating disturbances

developing in that region. The specific level of 850 hPa was chosen because it is a level frequently used for

tropical analysis, and it is located near the center of the region of statistical significance.

To determine the impact that the inclusion of omega has on the probability forecast, the Brier skill

score (BSS) of the forecast without omega is compared to the BSS of the forecast which includes omega as

a discriminant. The BSS, as discussed by Schumacher et al. (2009), is “a measure of the improvement of a

probabilistic forecast over the reference forecast and can range from −∞ to 1”. A BSS of zero means the

forecast probability has no skill with respect to the reference forecast. Positive numbers indicate skill with

respect to the reference forecast, with 1 being a perfect score. The reference forecast used in Schumacher

et al. (2009) and here is the climatological formation probability. The comparison will include the Atlantic

Ocean as a whole, as well as the subregions defined by Schumacher et al. (2009). They divided the Atlantic

into 5 subbasins (Figure 5.1) instead of the three used in Chapter 4 (Figure 4.3). In addition to showing the

BSS results, the percent change of the BSS when the global omega is included from when it is omitted is

also presented. In order to get a large enough sample for the analysis to work properly, the sample for the

genesis product analysis included the years 1995-2009.

Although small, the BSSs of the forecasts without as well as with 850-hPa omega are positive, in-

dicating skill with respect to climatology (Table 5.1). For the Atlantic Ocean as a whole, including the

850-hPa omega as an eighth discriminator improves the performance of the genesis product by 1.1% . By

subbasin, the inclusion of the large-scale vertical motion at 850 hPa has a positive impact in the prediction

of the probability of tropical cyclogenesis in the tropical Atlantic and the Caribbean, with an increase in
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Figure 5.1: The five subregions of the Atlantic used in Schumacher et al. (2009).

BSS by 1.5% and 4.9% respectively. The combination of the tropical Atlantic and the Caribbean subbasins

of Schumacher et al. (2009) is roughly equivalent to the tropical Atlantic subbasin as defined in this work.

In the subtropical Atlantic, the inclusion of the 850-hPa omega acts to slightly degrade the performance of

the genesis parameter (-0.8%), but in the East Coast subbasin, the impact is again positive at 2.9% improve-

ment over the product without the 850-hPa omega. These two subbasins combine to approximately form the

subtropical Atlantic subbasin defined in this work. Finally, in the Gulf of Mexico, the low-level, large-scale

vertical motion improves the performance of the genesis product by 5.8%.

Although including the 850-hPa omega does result in a positive impact on the genesis parameter

overall, further examination into the results of the linear discriminant analysis do show some inconsistencies

with the results of Chapter 4. The LDA computes normalized coefficients, the magnitudes of which indicate

the relative importance of the discriminants. The sign of the coefficient also provides a check on the physical

basis of the discriminants’ relation to cyclogenesis. For example, the LDA for the Atlantic as a whole

produced the normalized coefficents listed in Table 5.2. As indicated above, the three largest contributors

are climatology, 850-hPa circulation, and the distance to any existing tropical cyclone. This ranking is clear

when looking at the respective magnitudes of their coefficients, 1.62, 1.38, and 0.69. In terms of physical
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Table 5.1: Comparison of the Brier skill score for the forecast probability without 850-hPa omega and with
850-hPa omega as a discriminant. The third line shows the percent change when the 850-hPa omega is in-
cluded. The results are given for the Atlantic Ocean as a whole and for each subbasin. The abbreviations are
ATL=entire Atlantic, TAT=tropical Atlantic CAR=Caribbean, SAT=subtropical Atlantic, ECO=East Coast,
GOM=Gulf of Mexico.

ATL TAT CAR SAT ECO GOM
without 850-hPa omega 0.01754 0.01964 0.03855 0.01164 0.02306 0.06382

with 850-hPa omega 0.01773 0.01994 0.04045 0.01232 0.02374 0.06330
% change +1.1 +1.5 +4.9 -0.8 +2.9 +5.8

reasoning, consider the sign of the coefficient for the 850-hPa circulation. Because it is positive, it would be

expected that the greater the circulation, the greater the probability of genesis. On the other hand, a negative

coefficient such as the 850-hPa divergence implies that the lower the divergence (or greater convergence),

the greater the probability of genesis. Both of these examples are consistent with a physical understanding

of tropical cyclogenesis.

When viewing the 850-hPa omega under consideration of the two properties of the normalized co-

efficients, it is seen that the large-scale motion is only ahead of the percent land coverage in importance

among the seven discriminants. Additionally, the sign of the coefficient suggests that the greater the omega,

the greater the chance of genesis, which means that genesis is favored in sinking environments. This result

is in contrast with the reasoning behind using the 850-hPa omega in the genesis product. That is, there was

found to be a significantly greater upward motion in the developing systems than the dissipating systems in

the tropics, the region in which most of the disturbances were found. This non-intuitive result could be the

result of a strong correlation between the 850-hPa omega and another discriminant, but that was not found.

The correct sign for the normalized coefficient for the 850-hPa omega was produces, however, when only

it and the climatology term were considered in the LDA. It is assumed, therefore, that something about the

LDA is generating a result which contradicts physical reasoning. To be sure, the behavior of the 850-hPa

omega is unexpected. It is however, not the only discriminant which has a normalized coefficient which is

inconsistent with physical reasoning. In the study of Schumacher et al. (2009), both the cloud-cleared water

vapor brightness temperature, as well as the vertical instability displayed this inconsistency (Shumacher,
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Table 5.2: Normalized coefficients of the LDA listed in order of decreasing magnitude. The abbreviations
are: CPRB=climatological formation probability, CIRC=850-hPa circulation, DNST=distance to any exist-
ing tropical cyclone, PCCD=percentage of cold pixel coverage, VSHR=850–200-hPa vertical wind shear,
HDIV=850-hPa horizontal divergence, QGOM=850-hPa omega, and PLND=percent land coverage.

Discriminant CPRB CIRC DNST PCCD VSHR HDIV QGOM PLND
Normalized coefficient 1.62 1.38 0.69 0.63 -0.29 -0.18 0.17 -0.12

personal communication).

Although the 850-hPa omega did improve the overall performance of the genesis product, it is not

recommended as an additional parameter in the probability forecast, due to the uncertain nature of the

relationship between the sign of the normalized coefficient and physical reasoning. Also, the LDA analysis

found it to be one of the least significant contributors. Finally, unless the genesis product were to be run

on a subbasin basis, it is probably not advisable to include as a discriminant a parameter for which physical

reasoning suggests differing relationships to tropical cyclone formation depending on location within an

ocean basin.
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Chapter 6

CONCLUSION

The quasi-geostrophic system of equations, along with its associated omega equation have seen much

use since their development in the middle of the 20th century. The quasi-geostrophic system was derived

out of the need for a system of equations which was simple enough to be run on the early computers, yet

retained enough of the complexity of the primitive equations to be useful in advancing the understanding of

the large-scale motions of the atmosphere. The quasi-geostrophic equations continue to be used in research,

and are a mainstay in modern education in the atmospheric and oceanic sciences.

Although its use is ubiquitous in the study of middle latitude flows such as the movement of upper-

level troughs and ridges, along with their associated midlatitude cyclones, it has seen little use in the Tropics

where the assumption of geostrophic balance is not as valid. In this work, a balanced system of equations

valid over the whole sphere has been derived. In the derivation, three key steps were taken. First the horizon-

tal wind was decomposed into a nondivergent and an irrotational component instead of the geostrophic and

ageostrophic components as used in quasi-geostrophic theory. Second, the Coriolis parameter is assumed

to be slowly varying with respect to the latitudinal variation of streamfunction defining the nondivergent

flow. This assumption leads to a balance given by 2Ωµψ (λ, µ, p) = Φ (λ, µ, p) − Φ̄ (p). Third, when cre-

ating the atmosphere which contains a balance between the wind and mass fields, it is necessary to begin

by defining the streamfunction of the wind, and then compute the mass field in balance with it. From the

balance condition, it can be seen that this method is the only way to avoid a discontinuity at the equator.

Furthermore, Phillips (1958) found in the geostrophic context that it is more accurate to begin with a wind

field and from there compute the balanced mass field, than to begin with a mass field and from it compute
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the balanced wind field. With these three steps, the derivation of a balanced system of equations valid for

the whole sphere proceeds in a manner similar to that used to derive the quasi-geostrophic set of equations.

Not surprisingly, the resulting set of equations is essentially the same in appearance as the quasi-geostrophic

equations.

From this new set of equations, the derivation of an omega equation again follows just as in the

quasi-geostrophic case. The omega equation takes the form

RΓ̄

p2
∇2ω + 4Ω2µ2∂

2ω

∂p2
=

∂

∂p
[2Ωµvψ · ∇ (ζ + 2Ωµ)]

−∇2

[

2Ωµvψ · ∇
(

∂ψ

∂p

)]

− ∂

∂p
(2Ωµk · ∇ × F) .

That is, the large-scale vertical motion associated with this balanced system of equations is forced by the

vertical derivative of vorticity advection by the nondivergent wind and the Laplacian of the advection of

the temperature by the nondivergent wind. It is similar to the quasi-geostrophic omega equation except that

horizontal advections are accomplished by the non-divergent wind instead of the geostrophic wind, and that

the Coriolis parameter is allowed its full variation. This variation is assumed to be slow with respect to the

variation of the streamfunction, however, meaning that the approximation breaks down as the meridional

variations of the streamfunction decrease (sectoral harmonics). In this formulation the frictional force was

retained, using the results of Krishnamurti (1968a), who noted that because the dynamical forcing in the

Tropics is weaker than in midlatitudes, the frictional force may approach, if not exceed, the magnitude of

the dynamical forcing in the omega equation. In addition to this “traditional” form of the omega equation,

a Q form of the omega equation may be derived. Here there is a slight departure from the standard f -plane

derivation of the Q form of the omega equation. Further use of the approximation of the slowly-varying µ

is necessary, and as a result, the traditional form of the omega equation was used for the rest of the study.

The traditional form has its drawbacks, too. Care must be taken not to draw too many conclusions from

examining the omega resulting from the vorticity forcing or the thermal forcing alone, as they have a mutual

term which cancels upon their summation. Using those terms in isolation as a means of searching for the

processes responsible for the vertical motions of a system, and not to make calculations of the vertical

motions themselves, can still provide insight into the workings of the atmosphere. In order to solve the
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omega equation over the entire sphere, it was transformed using normal modes in the vertical and spherical

harmonics in the horizontal. This transformation results in a system of equations for each vertical and zonal

mode which is then solved to get the spherical harmonic coefficients. The inverse Legendre, Fourier, and

vertical normal mode transfers are them performed to arrive at the solution in physical space.

The equations constituting the balanced system derived in this work, and their associated omega eu-

qation represent a new tool in the study of the atmosphere. In particular, the large-scale motion associated

with tropical disturbances can be studied with the globally-valid omega equation in a manner similar to

which the large-scale vertical motions of midlatitude weather systems have been extensively examined us-

ing the quasi-geostrophic equations. The role of synoptic-scale forcing in relation to tropical cyclogenesis

mirrors the role that Doswell (1987) suggested for synoptic-scale forcing of deep midlatitude convection.

That is, it is not vigorous enough to account for the magnitudes of the vertical motion observed in tropical

cylones, but rather acts to condition the atmosphere by reducing the static stability, making the atmosphere

more conducive to the deep, moist convection necessary to form and sustain a tropical cyclone.

In applying the global omega equation to tropical cyclogenesis, the Atlantic Ocean was chosen as

the basin of study. Data for the 154 named storms of the 2001-2009 Atlantic seasons were collected from

the NHC archives. Composite systems, composed of the disturbances associated with the named storms at

24, 18, 12, and 6 hours before genesis, were created using the fields of height, temperature, the u- and v-

wind components, relative humidity, and omega. Composite systems of those disturbances which eventually

dissipated were also created, again for 24, 18, 12, and 6 hours before dissipation. For these systems, a dataset

consisting of Dvorak satellite fixes compiled at Florida State University was used. Because genesis displays

different characteristics depending on where in the Atlantic a cyclone forms, the composites were created

according to the subbasin in which the disturbance was found. Three subbasins were used — the tropical

Atlantic, the subtropical Atlantic, and the Gulf of Mexico. As hypothesized, the composite systems did

show different characteristics according to the different subbasins.

The tropical Atlantic subbasin contained the largest fraction of both developing systems (83) and

dissipating systems (58). Both composites displayed a structure in the height field characteristic of a tropical

wave, with a ridge above an inverted-V trough at low levels. The trough showed the upshear tilt noted by
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Reed et al. (1977). Some differences between the two composites were seen already in the conventional

measures of cyclogenesis potential. First the height field of the developing composite was characterized

by greater (in magnitude) negative height anomalies than the dissipating composite, indicating a stronger

wave. The SSTs were different statistically, but only by 0.3-0.4◦C. The 850-200 hPa shear was also less in

the developing composite by a statistically significant value of more than 2 ms−1. Rising motion was seen

ahead of both composites at low levels, which upon looking at the omega for the individual forcing terms

(vorticity, thermal, and friction), the frictional effect was seen to dominate, although the four-celled pattern

of omega associated with the vorticity forcing was also evident and was the primary contributor to the pattern

of omega at mid and upper levels. The vertical motion at the mid and upper levels was, however, noticeably

weaker than at low levels. Differences in the forcing due to the thermal term appear to be associated with the

different alignment of the low-level height and temperature fields, with the dissipating composite suggesting

a greater interaction of the warm air of the Saharan Air Layer with the wave. This interaction was also seen

in the relative humidity composite suggesting that dry air was also a likely factor in its demise. The tropical

Atlantic composites were also used to demonstrate the indirect role that large-scale vertical motions have

in the tropical cyclogenesis process. By applying the vertical divergence profile of each composite to a

typical tropical sounding, it was shown that the flow of the developing composite was able to create greater

instability by moistening the sounding than the dissipating composite, as seen in the greater CAPE values

as well as lower numbers for the CIN and LFC.

Fifty-three disturbances went into the developing composite and 35 disturbances went into the dissi-

pating composite of the subtropical Atlantic. Both the developing composite and dissipating composites in

the Subtropics were characterized by a trough existing not only at low levels, but throughout the troposphere.

It was seen that the height and temperature fields of the dissipating composite were much more reminiscent

of a midlatitude low, with the composite upper-level trough acquiring an increasingly negative tilt with time,

and a low-level temperature and omega field indicative of a cold front. In contrast, the upper-level trough of

the developing composite was more closed and cutoff in appearance. In spite of these differences, both the

developing and dissipating systems produced vertical motions throughout the depth of the troposphere, with

all three components (vorticity, thermal, and frictional) contributing. The dissipating composite, however,
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was further north and east, placed over significantly cooler water to the east of the Gulf Stream. It was also

in significantly greater shear, with values approaching those generally considered to be disruptive to gen-

esis. In addition, the low-level center of the composite dissipating disturbance travelled a greater distance

than the low-level center of the developing composite. The direction of this motion was to the northeast,

toward cooler waters. On the other hand, the developing composite existed over 27◦C waters and under the

influence of less shear (10 ms−1 at -24 hours and dropping to 8 ms−1 by -6 hours). Also, its more stationary

nature was conducive to concentrating the convection in a localize area, ultimately resulting in the formation

of a tropical cyclone.

Of the three subbasins, the Gulf of Mexico had the fewest of both the developing systems (18) and

dissipating systems (7). These numbers are lower than would be desired, but composites were created never-

theless. The composites contained some characteristics of both the Tropical disturbances and the Subtropical

disturbances. At low levels, the height fields of both systems had the appearance of an easterly wave, with

the developing composite displaying a more traditional inverted-V shape. The height field of the developing

composite was characterized by a ridge in the upper troposphere, just as in the developing composite of the

tropical subbasin. The negative height anomaly of the dissipating composite extended to the upper levels,

just as in the developing and dissipating composites of the Subtropics. The omega field at lower levels

for both composites was dominated by rising motion. At upper-levels, however, the dissipating composite

showed some descending motion associated with the upper trough. This region of descent extended into the

negative height anomaly defining the system. There existed no significant differences in the 850-200 hPa

shear, but the developing composites were over water which was about 1◦C warmer than the dissipating

composite.

In all three regions, the magnitude of the vertical velocities was roughly an order of magnitude too

weak compared to the 100 hPa day−1 suggested by (McBride and Zehr, 1981) as necessary for the formation

of a tropical cyclone. It is apparent, then, that the role which large-scale vertical velocities play in the

formation of tropical cyclones is one of conditioning the atmosphere. Bracken and Bosart (2000) also came

to this conclusion by examining the forcing for vertical motions over tropical disturbances using a much

simplified omega equation. They propose that synoptic-scale vertical motions act to “1) produce a large
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area of tropospheric-deep lift over the low-level cyclonic vorticity maximum, thereby creating a favorable

environment for strong upward motion and thunderstorm initiation when mesoscale lift is also present; and

2) destabilize the air and/or remove any capping trade wind inversions through that ascent if the air is

neutrally buoyant or stable over large areas.” Certainly the results of this study confirm 2). Agreement with

the first assumption is not entirely complete, however, with regards to the depth of the large-scale vertical

velocities. In the Subtropics and Gulf of Mexico composites the depth of the rising motion did extend

throughout the troposphere. The tropical composite showed some weak rising motion at mid to upper levels

on the eastern edge of the wave, but on the western edge, where Bracken and Bosart (2000) showed forcing

for ascent, the rising motion in this study was limited to the low levels. Their simplified omega equation

measured the forcing for omega at only one layer, assuming that to be representative of the vertical motion

through the depth of the troposphere. It is perhaps this coarseness relative to the present study which resulted

in the discrepancy.

The Student’s t-test was applied to the omega fields constituting the composites to see if there were

any areas where the difference in the means of the developing and dissipating systems was statistically sig-

nificant. Despite what appeared to be distinct differences in the omega field of the two composites in all

three basins, only the omega field of the tropical Atlantic showed a consistent signal of statistical signif-

icance. The rising motion at low levels ahead of the developing composite was significantly greater than

in the dissipating composite. Using this result, the 850-hPa omega was chosen to be used as an additional

discriminant in the Tropical Cyclone Formation Guidance Product, or simply genesis product. Although it

did improve the genesis product’s performance as measured by the Brier skill score, the behavior of the nor-

malized coefficient assigned to the 850-hPa omega remains unclear. The analysis suggested that the greater

the sinking motion, the greater the probability of formation, which is in direct conflict with the physical

reasoning supported by the composite analysis. Thus, the 850-hPa omega is not a viable candidate for an

additional discriminant in the genesis product. Perhaps omega could better serve the genesis product in the

screening step, by eliminating from consideration those data points dominated by subsidence.

As a new tool, the global balance equations, along with the associated omega equation can be ap-

plied to a myriad of atmospheric problems. They will be found most useful perhaps, in the study of those
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phenomena occuring at low latitudes, such as the study of tropical cyclones, or systems which cover a large

portion of the globe, such as tropical cyclones undergoing extratropical transition, and Rossby wave trains.
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Appendix A

DERIVATION OF THE VERTICAL TRANSFORM PAIR FOR ω

In chapter 3, the equations governing the forward (3.13a) and inverse (3.13b) transform pair for ω

were presented without derivation. In this appendix, each equation will be derived, starting with (3.13b).

A.1 Derivation of the inverse transform for ω

Assume the inverse transform of ω takes the form

ω(λ, µ, p) =

∞
∑

`=0

ω` (λ, µ)α`A` (p) , (A.1)

where α` is a value which makes the quantity α`A` (p) unitless, such that ω(λ, µ, p) and ω` (λ, µ) have the

same units. The continuity equation can then be written as

∇ ·
∞
∑

`=0

v` (λ, µ)V` (p) +
∂

∂p

∞
∑

`=0

ω` (λ, µ)α`A` (p) = 0

or
∞
∑

`=0

[∇ · v` (λ, µ)] V` (p) +
∞
∑

`=0

ω`α`
dA` (p)

dp
= 0

Now choose α` =
c2
`

pB−pT
, multiply by V`′(p)

pB−pT
, and integrate from pT to pB :

∞
∑

`=0

∇·v` (λ, µ)

(

1

pB − pT

)∫ pB

pT

V` (p)V`′ (p) dp+
∞
∑

`=0

ω`
pB − pT

(

c2`
pB − pT

)∫ pB

pT

dA` (p)

dp
V`′ (p) dp = 0

where the summation and integration have been switched. If dA`(p)
dp

= −V`(p)
c2
`

then

∞
∑

`=0

[

∇ · v` (λ, µ) − ω`
pB − pT

](

1

pB − pT

)∫ pB

pT

V` (p)V`′ (p) dp = 0
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Using the orthonormality condition of the vertical structure function:

1

pB − pT

∫ pB

pT

V`V`′dp =



















1 `′ = `

0 `′ 6= `.

gives

ω` = pB − pT (∇ · v`)

for each `.

Now, for dA`(p)
dp

= −V`(p)
c2
`

dA` (p)

dp
=

d

dp

(

p2

RΓ̄

dV`
dp

)

or
d

dp

[

A` (p) −
p2

RΓ̄

dV`
dp

]

= 0

by (3.14). Integrating gives

A` (p) =
p2

RΓ̄

dV`
dp

+ C

Looking at (A.1), it can be seen that C must be zero in order for ω (λ, µ, p) to remain bounded. Therefore,

α`A` (p) =
c2
`

pB−pT

p2

RΓ̄
dV`
dp

. This gives the inverse transform of

ω(λ, µ, p) =

∞
∑

`=0

ω` (λ, µ)
c2`p

2

RΓ̄ (pB − pT )

dV`
dp

.

Which is the same as (3.13b).

A.2 Derivation of the forward transform for ω

In order to compute ω` (λ, µ) from ω (λ, µ, p) start with the Sturm-Liouville equation (3.14) which

is repeated here
d

dp

(

p2

RΓ̄

dV`
dp

)

+
V`
c2`

= 0 (A.2)

with boundary conditions
dV`
dp

= 0 at p = pT (A.3a)
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p
dV`
dp

+
Γ̄

T̄
V` = 0 at p = pB, (A.3b)

and c−2
` the eigenvalue. In order to derive the orthonormality condition on V`, apply (A.3b) to V`′ and

multiply by V` and add to (A.3b) applied to V` and multiplied by V`′

−V`′
d

dp

(

p2

RΓ̄

dV`
dp

)

=
V`
c2`
V`′

V`
d

dp

(

p2

RΓ̄

dV`′

dp

)

= −V`′
c2`′
V`

d

dp

(

V`
p2

RΓ̄

dV`′

dp
− V`′

p2

RΓ̄

dV`
dp

)

=

(

1

c2`
− 1

c2`′

)

V`V`′

Multiply both sides by 1
pB−pT

and integrate from pT to pB :

1

pB − pT

∫ pB

pT

d

dp

(

V`
p2

RΓ̄

dV`′

dp
− V`′

p2

RΓ̄

dV`
dp

)

dp =

(

1
c2
`

− 1
c2
`′

)

pB − pT

∫ pB

pT

V`V`′dp

which results in
[

p2

RΓ̄

(

V`
dV`′

dp
− V`′

dV`
dp

)]pB

pT

=

(

1
c2
`

− 1
c2
`′

)

pB − pT

∫ pB

pT

V`V`′dp

Wtih the lower boundary condition (A.3b) the equation may be written

−
[

p2

RΓ̄

(

Γ̄

pT̄
V`V`′ −

Γ̄

pT̄
V`V`′

)]

pB

−
[

p2

RΓ̄

(

V`
dV`′

dp
− V`′

dV`
dp

)]

pT

=

(

1
c2
`

− 1
c2
`′

)

pB − pT

∫ pB

pT

V`V`′dp.

The quantity in the first set of brackets is 0, and because of the boundary condition (A.3a) the quantity in

the second brackets also vanishes, leaving the result:
(

1
c2
`

− 1
c2
`′

)

pB − pT

∫ pB

pT

V`V`′dp = 0

or

1

pB − pT

∫ pB

pT

V`V`′dp =



















1 `′ = `

0 `′ 6= `.
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Orthonormality condition obeyed by dV`
dp

1

pB − pT

∫ pB

pT

V`V`′dp = − c2`
pB − pT

∫ pB

pT

V`′
d

dp

(

p2

RΓ̄

dV`
dp

)

dp

= − c2`
pB − pT

[∫ pB

pT

d

dp

(

V`′
p2

RΓ̄

d

dp

)

dp−
∫ pB

pT

p2

RΓ̄

dV`′

dp

dV`
dp

dp

]

=



















1 `′ = `

0 `′ 6= `.

Evaluating the first integral and factoring out a minus sign gives:

c2`
pB − pT

[

−
(

V`′
p2

RΓ̄

dV`
dp

)pB

pT

+

∫ pB

pT

p2

RΓ̄

dV`′

dp

dV`
dp

dp

]

=



















1 `′ = `

0 `′ 6= `.

Because dV`
dp

= 0 at p = pT the above equation can be written

c2`
pB − pT

[

−
(

V`′
p2

RΓ̄

dV`
dp

)

pB

+

∫ pB

pT

p2

RΓ̄

dV`′

dp

dV`
dp

dp

]

=



















1 `′ = `

0 `′ 6= `.

Using V` = −pT̄

Γ̄
dV`
dp

at p = pB the form of the orthonormality condition on dV`
dp

can be written:

c2`
pB − pT

[

∫ pB

pT

p2

RΓ̄

dV`′

dp

dV`
dp

dp+

(

p3T̄

RΓ̄2

dV`
dp

dV`′

dp

)

pB

]

=



















1 `′ = `

0 `′ 6= `.

From Appendix

ω(λ, µ, p) =
∞
∑

`=0

ω` (λ, µ)
c2`p

2

RΓ̄ (pB − pT )

dV`
dp

. (A.4)

This equation holds at the boundaries, and in this case, at the lower boundary:

ω(λ, µ, p) =

∞
∑

`=0

ω` (λ, µ)

[

c2`p
2

RΓ̄ (pB − pT )

dV`
dp

]

pB

. (A.5)

Now multiply (A.4) by dV`′
dp

and integrate from pT to pB , and multiply (A.5) by pT̄

Γ̄

dV`′
dp

. Adding the two

equations gives:
∫ pB

pT

ω (λ, µ, p)
dV`′

dp
dp+

[

ω (λ, µ, p)
pT̄

Γ̄

dV`′

dp

]

pB

=
∞
∑

`=0

ω` (λ, µ)

{

∫ pB

pT

p2

RΓ̄

dV`
dp

dV`′

dp
dp+

[

p3T̄

RΓ̄2

dV`
dp

dV`′

dp

]

pB

}
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From the orthonormality condition on dV`
dp

the expression in the braces assumes one of two values:

∫ pB

pT

p2

RΓ̄

dV`
dp

dV`′

dp
dp+

[

p3T̄

RΓ̄2

dV`
dp

dV`′

dp

]

pB

=



















pB−pT
c2
`

`′ = `

0 `′ 6= `.

Using that result, the forward transform is given by

ω` (λ, µ) =
c2`

pB − pT

{

∫ pB

pT

ω (λ, µ, p)
dV`
dp

dp+

[

ω (λ, µ, p)
pT̄

Γ̄

dV`
dp

]

pB

}

.
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