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ABSTRACT 
 
 
 

TRIFLUOROMETHYLATED FULLERENES AND POLYCYCLIC AROMATIC 

HYDROCARBONS AND ANAEROBICALLY MILLED SILICON NANOPARTICLES 
 
 
 

 Well characterized molecules and materials are essential to understand trends and predict 

future performance. Fundamental studies provide information about molecular properties which 

may be useful in other applications such as electronic devices. The focus of this dissertation is 

the characterization of three different classes of molecules/materials with the goal of 

understanding the fundamental underlying reasons for any trends observed.  

 The first chapter of this dissertation examines the photophysical properties of C70(CF3)n (n = 

8 or 10) molecules. Four of the compounds exhibited quantum yields higher than for any 

previously reported C70 derivative and three exceeded 0.24, the highest fluorescence quantum 

yield for any fullerene or fullerene derivative. A difference in the location of only one CF3 group 

in C70(CF3)8 and C70(CF3)10 isomers resulted in 200-fold and 14-fold increases in fluorescence 

quantum yields respectively. The isomer of C70(CF3)10 with the highest fluorescence quantum 

yield (0.68 in toluene) also exhibited the longest fluorescence lifetime (51 ns). Formation of the 

S1 state in one of the C70(CF3)10 isomers occurred within 0.6 ps and its nanosecond-long decay 

was monitored by ultrafast transient absorption spectroscopy. Time-dependent density functional 

theory calculations provide a physically meaningful understanding of the photophysical 

properties. High fluorescence quantum yields are correlated with high oscillator strengths for the 

S0→S1 transition, large ΔS1−T1 energy gaps, and small spatial extension of the S0→S1 excitation. 

 The second chapter of this dissertation explores trifluoromethyl derivatives of polycyclic 

aromatic hydrocarbons (PAH(CF3)n). First, the effects of PAH size and shape on the product 

distribution are examined. Second, the electronic properties, including reduction potential and 
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gas-phase electron affinity, are examined. Third, the influence of number and orientation of the 

CF3 groups on the crystalline morphologies of these compounds is explored. Finally, charge-

transfer complexes made with PAH(CF3)n molecules mixed with PAHs are prepared and 

examined spectroscopically and crystallographically. From this work it was determined that 

when PAHs with 8–10 substitutable carbons are reacted with at least 10 equivalents of CF3I gas 

the PAH(CF3)n products had n values of 4–6 regardless of the size or shape of the PAH core. The 

reduction potential and gas-phase electron affinity exhibit a regular, incremental increase as a 

function of the number of trifluoromethyl groups. The number and position of CF3 groups 

influences the π-π stacking and crystalline morphologies and typically the more CF3 groups 

added, the lower the intermolecular overlap. Charge-transfer complexes made from mixing 

PAH(CF3)n and PAH form mixed stacks in the solid-state and exhibit weak association constants 

in solution. 

 The third chapter of this dissertation examines the effects of oxygen and aromatic molecules 

on stirred media milling of silicon. Metallurgical-grade silicon was wet-milled in a stirred media 

mill to produce nanoparticles. Several milling fluids, additives, and milling parameters have been 

tested and compared between aerobic and anaerobic milling. It was determined that oxygen and 

aromatic molecules serve as surface passivating additives and lead to higher specific surface 

areas, indicating smaller particles. Particle amorphization occurs rapidly in a stirred media mill, 

within two hours crystallite size is on the order of 2-50 nm regardless of whether surface 

passivating additives are present. In all milling experiments, even in the presence of oxygen, new 

Si–C bonds are formed, the most Si–C bonds are formed when aromatic molecules are present 

during the milling process. 
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INTRODUCTION 
 
 
 

Background and Motivation 

 Well-characterized molecules and materials are essential to understand structure-property 

relationships predict future performance of new molecules or materials. This work endeavors to 

characterize three different classes of molecules/materials to better understand their properties 

and elucidate the underlying chemical reasons for those properties. Each class of 

molecules/materials have been investigated using different methods and is targeted for different 

applications spanning from energy storage and conversion or optoelectronics to biological 

imaging and theranostics. 

 The first class of molecules investigated herein is trifluoromethylfullerenes (TMFs). 

TMFs are one of the most well-studied classes of fullerene derivatives and many dozens of 

isomerically pure TMFs with a wide variety of addition patterns have been produced which have 

provided insight into a number of properties that arise as a result of the addition pattern.1 

Fullerenes and fullerene derivatives typically exhibit low fluorescence quantum yields due to the 

efficiency of transfer to the triplet state, except for a few examples. Nakamura and co-workers 

have discovered a number of fluorescent fullerene derivatives2-5 and, based on the derivatives 

studied, they hypothesized that the shape of the remaining pi system was the determining factor 

for fluorescence quantum yields. In this work, a family of highly fluorescent fullerene 

derivatives comprised of structurally similar C70(CF3)n (n = 8 or 10) compounds has been 

discovered and the reasons for differences in the fluorescence quantum yields have been 

examined based on the results of experimental spectroscopy and theoretical study. The 

photophysical properties of TMFs may make them attractive for use in electroluminescence, 

photodynamic therapy, or imaging the air-spaces in leaves. 

 The second class of molecules studied is trifluoromethyl derivatives of polycyclic 

aromatic hydrocarbons (PAHs). The introduction of electron-withdrawing groups onto the PAH 
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core is known to tune the properties, particularly the electrochemical properties, of the PAH 

derivative.6-8 Since selective organic functionalization of a PAH core typically involves multi-

step synthesis procedure, previous studies of PAHs substituted with electron-withdrawing groups 

have typically focused on characterizing either a single compound or a small number of 

molecules per study, which made elucidation of more general trends and relationships difficult to 

achieve.8,9 The goal of this work is to build selected libraries of new PAH(CF3)n compounds to 

find trends in PAH size or shape, number of CF3 substitutions, or substitution pattern, and, in 

particular, the effect of these differences on the electrochemical properties. The enhanced 

electron acceptor properties of PAH(CF3)n compounds may make them attractive for use in field 

effect transistors , organic photovoltaics, or other optoelectronic devices. 

 The third and final class of materials studied is silicon nanoparticles produced by wet 

stirred media milling. Peukert and co-workers have extensively investigated the effects of 

changing milling parameters such as milling time, amount of milling media, agitator tip velocity, 

and temperature and they have also looked into a selection of fluids or additives to stabilize the 

milled particles.10-15 Despite this interest in stirred media mills there has been a distinct lack of 

research into the effects oxygen plays in the milling process. The goal of this work is to wet mill 

silicon and compare the effects of milling solvent with and without presence of oxygen during 

the milling process. Silicon nanoparticles are being researched for use in lithium-ion batteries, 

optoelectronic devices, and fluorescent biomarkers. 

 The methods used to characterize the materials investigated in this dissertation depend on 

the properties being evaluated and included fluorescence spectroscopy, density functional theory 

calculations, high performance liquid chromatography, cyclic voltammetry, NMR spectroscopy, 

mass spectrometry, photoelectron spectroscopy to measure gas-phase electron affinity, single 

crystal X-ray diffraction, powder X-ray diffraction, Brunauer, Emmet, and Teller surface area 

analysis, and X-ray photoelectron spectroscopy. 
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CHAPTER 1. PHOTOPHYSICAL PROPERTIES OF 
TRIFLUOROMETHYLFULLERENES 

 
 
 

1.1. Introduction 

 Fullerenes, closed cage molecules composed exclusively of carbon atoms, were first reported 

in 1985.1 The two fullerenes obtained in the highest abundance are Ih-C60 and D5h-C70 shown in 

Figure 1.1. These fullerene structures obey the ―isolated pentagon rule‖ which predicts higher 

stability for fullerene structures in which the pentagons are isolated from one another by 

hexagons.2,3 Both C60 and C70 have 12 pentagons, but have different numbers of hexagons which 

leads to the different shapes of these two fullerenes. The flatter equatorial region of C70 is a result 

of the addition of 10 extra carbon atoms while still only having 12 pentagons and obeying the 

isolated pentagon rule. 

 

Figure 1.1. Structure of Ih-C60 (left) and D5h-C70 (right). 
 

Initially, fullerenes were produced by laser vaporization of graphite which resulted in very 

small quantities. Subsequently new methods of synthesis, such as arc discharge of graphite, were 

discovered that led to much higher amounts, sufficient for research into the chemistry of these 

new molecules. Although all of the carbon atoms are included in the pi electron system, 

fullerenes behave more like electron deficient olefins than as aromatic molecules. Since their 

discovery fullerenes have been derivatized in many different ways.4 One of the most well studied 

classes of fullerene derivatives are trifluoromethylfullerenes (TMFs).5 
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The photophysical properties of fullerenes have been exploited for use in photovoltaics, 

photodynamic therapy, and electroluminescence.6-8 Despite the potential usefulness of fullerenes 

in these applications, still mostly confined to research studies, they typically show poor 

performance in fluorescence. Both C60 and C70 show high rates of intersystem crossing and 

therefore low fluorescence quantum yields, ΦF.
9-11 Derivatization of the fullerenes reduces the 

symmetry and changes the π system. Thus, absorptions of the derivatives are usually optically 

allowed and hence higher radiative rate constants, kf, can be reached. However, the relatively 

small perturbation of the fullerene π-system at the early stages of functionalization results in 

relatively low S0→S1 absorption intensities and, hence, relatively low fluorescence rate. 

Intersystem crossing (ISC) also remains efficient, thus preserving rather low ΦF values in 

fullerene derivatives (albeit higher than those of bare fullerenes). 

 More extensive derivatization opens the possibilities for more pronounced changes in the 

fullerene π-system. Fujita et al. showed that the ΦF values in multiply phenylated/alkylated C60 

can be as high as 24% for C60Ph10(CH2Ph)3Me2H, much higher than for all fullerene derivatives 

reported prior to their work.12 In comparison the highest reported ΦF for a C70 derivative, 

C70Ph10, is 2.5%.13 Photophysical studies of C70Phn showed that ISC remains the primary 

mechanism of S1 decay and even for the most highly fluorescent compound (C70Ph10), the yield 

of the triplet state is nearly quantitative.13 

 In conjunction with the low quantum yields the fluorescence lifetime is also low for 

fullerenes. The fluorescence lifetimes of C60 and C70 are 0.65 ns and 1.1 ns respectively.14 The 

fluorescence lifetime of fullerene derivatives is also generally low, but this too can be altered 

with derivatization. Matsuo et al. reported lifetimes up to 67 ns for C60Ph5(p-t-butyl-C6H4)5Me2.
8 

 Fullerenes and fullerene derivatives that exhibit low fluorescence quantum yields and retain 

high ISC yields have been investigated for use as photodynamic therapy agents.7,15,16 Several 

groups have derivatized the fullerenes to improve their water solubility which makes them more 

attractive for biological use.17-21 Red absorption is one of the characteristics of an ideal 

photosensitizer22 and can be difficult to achieve with fullerenes or fullerene derivatives. Singlet 
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oxygen sensitizers that are not suitable for photodynamic therapy can still be used for 

photocatalysis or photodisinfection.23-26 

 TMFs are one of the most thoroughly characterized classes of fullerene derivatives with a 

number of useful properties.5,27-32 i) TMFs are air stable and can be stored, handled, and used 

under ambient conditions. ii) TMFs are thermally stable, which allows them to be used in high-

temperature applications. iii) TMFs can be sublimed without decomposition, so high-quality thin 

films can be fabricated by vapor-deposition. iv) They are freely soluble in many organic 

solvents, allowing films to be fabricated by spin-casting or spray methods. iv) Libraries of TMFs 

with different numbers of CF3 groups and different isomeric structures for a given number of 

CF3 groups can be prepared in a single reaction followed by one- or two-step HPLC separation. 

v) Electrochemical studies of 18 C60(CF3)n and 17 C70(CF3)n derivatives with n = 2–12 showed 

that varying the value of n and, even more importantly, varying the addition pattern for a given 

value of n, allows for versatile tuning of their electronic properties (e.g., the ranges of first 

reduction potentials for C60(CF3)n and C70(CF3)n compounds are 0.73 and 0.45 V, 

respectively).27,28 

 Fluorescence spectra were reported for a selection of C60(CF3)n compounds in 2007.27 The 

fluorescence spectrum and quantum yield have been reported for one isomer of C70(CF3)10.
33 The 

majority of this work, except the leaf air-space imaging and singlet oxygen quantum yields, has 

already been published.34 The goal of this work was to examine the photophysical properties of a 

series of selected C70(CF3)n compounds, whose Schelgel diagrams are shown in Figure 1.2. 

Compounds were selected that had visible fluorescence when excited with a handheld 405 nm 

laser. Additionally, between isomers there was a difference in the position of only one CF3 group 

so the impact of small structural changes on photophysical properties could be examined. The 

methods used to examine the photophysical properties include: steady-state UV-vis and 

fluorescence spectroscopy, time-resolved fluorescence spectroscopy, ultrafast transient 

absorption spectroscopy, time-dependent density functional theory (TD-DFT), and steady-state 

singlet oxygen emission spectroscopy. 
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Figure 1.2. Schlegel diagrams of TMFs studied in this work. Black dots indicate the position of 
trifluoromethyl groups and the shaded spaces indicate ribbons of trifluoromethyl groups. 
 

1.2. Results and Discussion 

1.2.1 Steady State Spectroscopy.  

The UV-vis spectra of the compounds studied in this work, 70-8-1, 70-8-2, 70-10-1, 70-10-2, 

and 70-10-5, have been previously reported in dichloromethane.28 For this work the absorption 

and emission spectra of 70-8-1 and 70-8-2 were collected in cyclohexane. For the isomers 70-10-

1, 70-10-2, and 70-10-5 the spectra were collected in cyclohexane, hexafluorobenzene, 

perfluorodecalin, and toluene. Absorption and fluorescence spectra of 70-8-1 and 70-8-2 in 

cyclohexane and 70-10-1, 70-10-2, and 70-10-5 in toluene are shown in Figure 1.3. The 

spectrum of 70-10-2 presented in 200828 showed absorption at wavelengths longer than 550 nm 

which line up with the absorption of other TMFs (Figure 1.4). To obtain reliable fluorescence 
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quantum yield measurements, the compounds studied should be pure so extra care was taken in 

the separation to obtain pure compounds. The isomeric purity was assessed using 19F NMR 

spectroscopy shown in Figure 1.5 and was determined to be 95 mol% or higher. 

Figure 1.3. Absorption (black) and fluorescence (red) spectra of 70-8-1 (λex =  481 nm) 70-8-2 
(λex = 444 nm), 70-10-1 (λex = 449 nm), 70-10-2 (λex = 468 nm), and 70-10-5 (λex = 570 nm). The 
insets show vertically-expanded spectra for the lowest energy absorption and fluorescence bands. 
The wavenumber scale is used in the insets to more readily provide visual evidence of the 
mirror-image rule. 
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Figure 1.4. Absorption spectra of TMFs reported in 200828 plotted to show the likely presence of 
70-10-5 and 70-10-4 in the sample of 70-10-2. The asterisks mark the absorption peaks which 
are suspected to originate from TMFs other than the main compound present in the sample. 
 

 
Figure 1.5. Fluorine-19 NMR spectra of TMFs (376 MHz, CDCl3, C6F6 int. std. (δ −164.λ)). 
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Table 1.1. Absorption and emission maxima (λ), Stokes shifts (Δ), fluorescence quantum yields 
(ΦF), fluorescence lifetimes (τF), and fluorescence decay rate constants (kF) for C70(CF3)8 and 
C70(CF3)10 compounds in different solvents.a

 

cmpd 
 

solv λabs  
nm 

λF  
nm 

Δb 
cm−1 

ΦF 
c
 
 τF 

ns 
106kF  
s−1 

70-8-1 chx 595 613 495 0.0012(8) – – 

70-8-2 chx 666 670 90 0.27(3) – – 

70-10-1 chx – 506 – 0.041(5) 4.0 10.2 

 hfb – 504 – 0.033(4) 12 2.8 

 pfd – 501 – 0.030(4) 3.5 8.5 

 tol – 513 – 0.047(5) 5.6 8.4 

70-10-2 chx 499 514 585 0.24(3) 4.5 53.3 

 hfb 497 512 590 0.22(3) 6.6 33.4 

 pfd 496 510 550 0.20(2) 2.0 99.5 

 tol 503 520 650 0.29(3) 3.2 90.6 

70-10-5 chx 616 623 182 0.50(5) 55 9.1 

 hfb 613 620 180 0.46(5) 55 8.3 

 pfd 612 617 130 0.51(6) 66 7.7 

 tol 621 632 280 0.68(7) 51 13.4 

a Solvents are abbreviated as follows: chx – cyclohexane, hfb – hexafluorobenzene, pfd – 
perfluorodecalin, tol – toluene; b Δ denotes the Stokes shift; c Uncertainties in the least 
significant digit are shown in parentheses; uncertainties are determined from measurements of 
three independently prepared solutions. 
 

 Table 1.1 lists the principal spectroscopic parameters. The spectra show a weak solvent effect 

and the S1 energies for toluene were lower than for any other solvent. All of the compounds 

exhibited fluorescence spectra with well-defined vibronic structure comprising the 0-0 transition 

and its 2–3 descending equidistant replicas, each at ca 1350 cm−1. These features were well 

matched by the analogous bands in the lowest-energy part of the absorption spectra, showing that 

the mirror-image rule is fulfilled and enabling precise determination of the energies of the first 
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excited singlet states. The Stokes shifts are relatively small and span the range 90–650 cm–1. The 

largest shifts were found for toluene solutions, and the smallest for cyclohexane solutions. The 

compound 70-10-1 was the only compound that showed an apparent deviation from the mirror-

image rule. Its absorption spectrum has no distinct vibronic structure, presumably due to the 

overlap with higher-energy excitations, and its Stokes shift could not be determined precisely. 

Although all of the C70(CF3)n derivatives studied in this work have a common addition-

pattern motif (i.e., a belt of 8 CF3 groups around the C70 equator), the ΦF values vary from 

0.0012 to 0.68, demonstrating that small addition-pattern variations can have very large effects. 

Both 70-8-1 (Cs symmetry) and 70-8-2 (C2 symmetry) have addition patterns that can be 

described as a ribbon of seven edge-sharing C6(CF3)2 hexagons, and differ by the position of 

only one CF3 group. Nevertheless, this change results in the increase of ΦF from 0.0012 to 0.24, 

respectively. A similar situation was found for the C70(CF3)10 isomers. 

 The structure of 70-10-5 is related to the structures of 70-10-1 and 70-10-2 by the position of 

one CF3 group (a different one in each case), but these seemingly small structural differences are 

sufficient to change ΦF from 0.05 for 70-10-1 to 0.25 for 70-10-2 to 0.68 for 70-10-5. The latter 

value is now the highest value reported for any fullerene derivative and is almost 3 times larger 

than the 0.24 value for previous record holder, C60Ph10(CH2Ph)3(CH3)3H.12 Furthermore, the 

addition patterns of 70-10-5 and C70Ph10 also differ by the position of only one substituent, but 

their ΦF values differ by more than 50 times, 0.68 for 70-10-5 and 0.025 for C70Ph10.
13 That this 

ΦF disparity is due to the minor addition-pattern difference and not to the electronic or steric 

properties of the CF3 and Ph substituents is shown by comparing the ΦF values in cyclohexane 

for 70-8-1 (0.0012) and C70Ph8 (0.0013),13 which have the same addition pattern. It is now 

apparent that the luminescence efficiencies and the HOMO-LUMO gaps of C70(CF3)n 

derivatives, and not only their reduction potentials,28 can be conveniently tuned by the proper 

choice of addition pattern. 
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1.2.2. Time Resolved Spectroscopy.  

Further insight into the photophysical properties of the C70(CF3)10 derivatives was obtained 

by time-resolved measurements using 355 nm excitation from a pulsed Nd:YAG laser. The 

fluorescence lifetimes (τF) listed in Table 1.1 show that 70-10-5 has the longest lifetimes, up to 

66 ns in perfluorodecalin, as well as the highest quantum yields, up to 0.68 in toluene. Its 

lifetime in toluene is more than 70 times longer than that of C70 in toluene (0.7 ns)35 and is close 

to the 67 ns lifetime reported by Matsuo et al. for C60Ph5(p-C6H4(
tBu)5Me2, which has a 

cyclophenacene-like π-system and a ΦF value of 0.185.8 

 The excited state behavior of one of these compounds was also studied by ultrafast transient 

absorption spectroscopy. To date only 70-10-2 was studied in perfluorodecalin. It was excited at 

495 nm, which corresponds to the lowest energy absorption maximum in this solvent. Figure 1.6 

shows transient absorption spectra recorded at different pump-probe delays. At delays shorter 

than 2 ps, the spectra exhibit an almost instantaneous rise throughout the visible region 

characterized by several absorption features and a shallow bleach (i.e., a negative peak) near 500 

nm. The negative peak is ascribed to loss of the ground state, while the absorption bands are 

ascribed to the S1 Sn excited state transitions. This evolution was complete within 0.6 ps, and 

this state persisted for the next 100 ps. 

 More dramatic changes in the transient absorption spectra occurred at longer pump-probe 

delays. From 100 to 2990 ps, the spectra reveal an evolution from one electronic state to another 

with the emergence of four isosbestic points at 516, 537, 576 and 612 nm. The spectrum at 2,990 

ps exhibits broad features at long wavelengths and sharp, narrow features from 440 to ca. 490 

nm. The broad features are consistent with a triplet excited state. Based on the computational 

results, described in the next section, the longer-time spectral changes are ascribed to the 

conversion of the S1 state to a T1 state. Kinetic data at multiple wavelengths and a global fitting 

analysis revealed a lifetime of 1270 ± 150 ps, which is consistent with literature values for other 

fullerenes and their derivatives.36-42 This lifetime is shorter by a factor of 2-3 as determined by 

fluorescence spectroscopy in cyclohexane or toluene solution. This difference in the measured 
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lifetime is ascribed to unspecified solvent interactions. It was also found that the relaxed S1 state 

was formed within 0.6 ps. 
 

 

Figure 1.6. Transient absorption spectra of 70-10-2 in perfluorodecalin measured at different 
pump-probe delays. Top panel: −0.07 ps (black), 0.30 ps (red), 0.520 ps (blue), 1.97 ps (purple), 
99.9 ps (green). Bottom panel: 99.9 ps (red), 299 ps (blue), 605 ps (green), 1.200 ns (purple), 
2.99 ns (navy).  
 

 The transient absorption spectra in Figure 1.6 are also consistent with a number of other 

studies on fullerenes (no transient absorption spectra for C70 derivatives have been reported in 

the literature to date).36-38,40,42 Of particular note is that many previous studies show an increase 

in the absorption of the excited state relative to the ground state. However, few of these studies 

show the absorption detail that was found in this work. It is not certain yet if these peaks are due 
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to more allowed transitions associated with the trifluoromethylated C70 studied here, or if it is 

due to differences in the spectral resolution of the instruments employed. 

It is noted that the ground state absorption spectrum of 70-10-2, shown in Figure 1.3, features 

low energy peaks separated by ca. 1500 cm–1. For comparison, the transient absorption spectrum 

at a 2 ps delay (ascribed to S1Sn) exhibits peaks separated by 1351 cm–1 (449nm, 498 nm) and 

1578 cm–1 (520 nm, 576 nm). It is likely that these peaks are due to the vibrational structure of 

the S1 state.  

1.2.3. Computational Studies.  

To understand the reasons for the large variation in ΦF values measured in this work, and in 

the future to propose addition patterns for fullerene derivatives with even higher quantum yields, 

time-dependent TD-DFT calculations at the PBE/TZ2P level were performed. The fluorescence 

quantum yield is related to the radiative and non-radiative decays of the S1 state via the equation 

ΦF = kF/(kF + knr). To achieve the maximum quantum yield, the fluorescence rate constant kF 

should be maximized and the cumulative rate constant of non-radiative processes, knr, should be 

minimized. 

 The Strickler-Berg (SB) rule connects kF with the absorption intensity:43,44 

0 1

2 2 2 2
F max max2900 0.125

S S

k n d n f   


     

where n is the refractive index of the solvent, νmax is absorption maximum (in 104 cm−1), and f is 

the oscillator strength of the S0→S1 excitation. According to the SB rule, a high fluorescence rate 

constant is expected for the molecules with high oscillator strength. Very good matches between 

the f values, listed in Table 1.2, which were obtained by direct integration of the absorption 

spectrum and from the kF value determined in photophysical measurements shows that the SB 

rule holds for 70-10-5. At the same time, 70-10-2 significantly deviates from the rule (its kF 

value is ca 4 times higher than might be expected from the SB equation). The values listed in 

Table 1.2 show that the TD-PBE method underestimates excitation energies (adiabatic values by 

ca. 0.4 eV; vertical values by ca. 0.25 eV), but relative S1 energies and, even more importantly, 

computed oscillator strengths agree very well with the experimental estimations. For 70-10-1, the  
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Table 1.2. Experimental and calculated S1 and T1 energies and S0→S1 oscillator strengths f.a 

a all energies are in eV; S1-exp is the energy of S1 from fluorescence in toluene, S1-vert and S1-
adb are vertical and adiabatic S0→S1 excitation energies computed at the TD-PBE/TZ2P level; 
fexp-int and fexp-SB are oscillator strengths determined experimentally by integration of the 
absorption spectrum (int) or from Strickler-Berg relation (SB) using experimental kF values; fcalc 
denotes TD-DFT computed oscillator strengths; τF-exp are experimental lifetimes, τF-calc are 
lifetimes computed using experimental ΦF and computed f values. 
 

f value computed from the SB equation also fits the TD-DFT prediction very well. Hence, it is 

reasonable to use computed f values when their experimental determination is not possible, and 

then estimate the lifetimes using the experimental quantum yields. Comparison of the f values for 

70-8-1 and 70-8-2 shows that their ΦF difference can be explained, in part, by the very low 

oscillator strength of the S0→S1 excitation in 70-8-1. In contrast, very long lifetimes would be 

expected for 70-8-2. In principle, it appears that compounds with higher ΦF tend to have higher 

oscillator strengths. However, the analysis of only f is not sufficient to explain the results here 

because, for example, 70-8-2 and 70-10-1 have similar f values for their respective S0→S1 

excitations but have quantum yields that differ by more than a factor of 6. 

 C70 70-8-1 70-8-2 70-10-1 70-10-2 70-10-5 

S1-exp 1.93 2.02 1.86 2.42 2.38 1.96 

S1-vert 1.75 1.83 1.51 2.19 2.03 1.62 

S1-adb 1.69 1.62 1.43 2.05 1.89 1.51 

fexp-int     0.039 0.046 

fexp-SB    0.015 0.162 0.035 

fcalc 0.000 0.003 0.012 0.011 0.036 0.041 

τF-exp    5.6 3.2 50.9 

τF-calc  1.1 72.7 7.8 12.1 45.9 

T1-adb 1.52 1.37 0.98 1.75 1.38 1.03 

ΔS1-T1 0.16 0.25 0.44 0.29 0.51 0.48 

T1→T2-vert  0.63 0.72 0.46 0.73 0.79 
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 Analysis of the rate of the non-radiative decay is more complicated and its direct prediction 

is hardly possible now. However, if S1→T1 ISC remains the main pathway for the non-radiative 

decay, the energy-gap law can be applied, which states that the rate of the ISC increases with the 

decrease of the energy gap between the states, ΔS1−T1.
44 The ΔS1−T1 values listed in Table 1.2 

show that the largest gap of 0.5 eV is found for 70-10-2 and 70-10-5 followed by 70-8-2 with 

0.44 eV. In the series 70-10-1 to 70-8-1 to C70 the ΔS1−T1 values decrease from 0.29 to 0.25 to 

0.16 eV. Thus, it is clear that compounds with high fluorescence quantum yield have the largest 

ΔS1−T1 gaps. To verify that S1→T2 ISC is unlikely, vertical T1→T2 excitation energies have been 

computed and found that in all compounds T2 state is higher in energy than S1. 

 Increase of the fluorescence yields for multiply functionalized C60 derivatives was earlier 

ascribed to the shrinking of the π-system.8,12 The results in this work show that neither the size 

nor the location of the π-system itself is of such a high importance since there remain 60 C(sp2) 

atoms in very similar positions in the three C70(CF3)10 isomers. Presumably, the spatial extension 

of the S0→S1 excitation, which is visualized in Figure 1.7 by plotting the difference S1/S0 

electron densities, is a factor that also plays a role. δarger ΔS1−T1 gaps are achieved when 

excitation is more localized (i.e., when the HOMO and LUMO are spatially localized in the same 

fragment of the molecule), as in 70-10-2 and 70-10-5, whereas a larger spatial extension leads to 

smaller ΔS1−T1 gaps as in 70-10-1. Since the addition pattern dictates the shape and localization 

of the frontier orbitals in functionalized fullerenes, including TMFs,27 it follows that it should 

also determine their photophysical properties, as shown in this study. 

 Table 1.3 lists TD-DFT computed vertical excitation energies and oscillator strengths. In 70-

10-2 and 70-10-5 the S0→S1 excitations are much more intense than all other excitations in the 

range of at least 0.5 eV (70-10-2) and even more (70-10-5). This agrees with the experimentally 

observed spectra, where S0→S1 band is clearly seen for both compounds, but for 70-10-2 the 

overlap with higher energy bands is stronger than for 70-10-5. On the contrary, there is almost no 

gap between S0→S1 and other S0→Sn excitations of similar intensity in the computed spectrum 

of 70-10-1, and hence the overlap in experimental spectrum is much stronger. 
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Figure 1.7. TD-DFT computed difference electronic densities for S0→S1 excitation, Δρ = 
ρ(S1)−ρ(S0), in 70-10-1 (left), 70-10-2 (middle), and 70-10-5 (right). Positive and negative Δρ 
lobes (i.e. spatial distribution of the electron and hole in the exciton formalism) are red and blue, 
respectively. Each molecule is shown in two orientations in the top and bottom rows with a 
Schelgel diagram in the middle row. 
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Table 1.3. TD-DFT computed vertical excitation energies, and oscillator strengths, f. 

 70-10-1  70-10-2  70-10-5  
 E, eV f E, eV f E, eV f 
S1 2.19 0.011 2.03 0.036 1.62 0.041 
S2 2.24 0.000 2.21 0.008 1.91 0.000 
S3 2.25 0.002 2.24 0.001 1.98 0.001 
S4 2.32 0.007 2.28 0.000 2.01 0.003 
S5 2.38 0.000 2.35 0.003 2.07 0.004 
S6 2.42 0.005 2.40 0.002 2.18 0.002 
S7 2.49 0.001 2.49 0.022 2.23 0.009 
S8 2.51 0.003 2.53 0.000 2.33 0.001 
S9 2.53 0.004 2.56 0.005 2.34 0.001 
S10 2.55 0.003 2.61 0.000 2.41 0.003 
S11 2.58 0.007 2.63 0.004 2.41 0.006 
S12 2.64 0.001 2.66 0.001 2.45 0.005 
S13 2.67 0.001 2.67 0.001 2.47 0.007 
S14 2.69 0.003 2.67 0.004 2.54 0.004 
S15 2.70 0.004 2.69 0.003 2.56 0.000 
S16 2.72 0.011 2.72 0.001 2.60 0.006 
S17 2.75 0.001 2.74 0.001 2.65 0.001 
S18 2.78 0.003 2.81 0.000 2.65 0.004 
S19 2.79 0.003 2.84 0.000 2.70 0.003 
S20 2.82 0.002 2.85 0.001 2.71 0.001 
S21 2.83 0.001 2.85 0.001 2.76 0.008 
S22 2.85 0.004 2.87 0.000 2.80 0.011 
S23 2.87 0.005 2.87 0.001 2.84 0.005 
S24 2.87 0.003 2.92 0.004 2.87 0.003 

 

1.2.4. Leaf Air-Space Imaging  

The fluorescence and solubility properties of TMFs, particularly 70-10-2, make them suitable 

for use as leaf air-space imaging agents. Perfluorodecalin has been investigated for use in 

imaging the interior of leaves.45,46 The use of perfluorodecalin as an imaging medium leads to 

high quality images of the interior structure of leaves. When perfluorodecalin alone is applied to 

the leaf air-spaces must be manually distinguished from vacuoles. Littlejohn et al. reported using 

a suspension of green fluorescent protein in perfluorodecalin to distinguish air-spaces, which 

were flooded with green fluorescent protein, from vacuoles.45,46 A perfluorodecalin soluble 

molecule should provide a more stable imaging medium which is not prone to the fluorescent 

molecule settling out of solution. The structure and size of the air-spaces within leaves may 
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impact their photosynthetic efficiency, by providing efficient access of photosynthetic cells to 

CO2 while minimizing water losses due to transpiration. Visualization of the air-spaces will 

therefore allow for improved modeling of the structure-function relationship between air-spaces 

and photosynthetic efficiency. 

The use of perfluorodecalin soluble molecules as leaf imaging agents has not yet been 

reported in the literature. Preliminary studies on the use of 70-10-2 as a leaf air-space imaging 

agent in Arabidopsis thaliana leaves have been conducted. Shown in Figure 1.8 are images of a 

wild-type leaf and a leaf from plant with a mutated reticulata gene. Plants with mutated 

reticulata genes (re-6) are known to have lower mesophyll cell density, but on the exterior the 

leaves appear the same.47 Work to model the structure-function relationship between air-spaces 

and photosynthetic efficiency are ongoing. 

                                         

                  A            B 

Figure 1.8. A) Wild-type Arabidopsis thaliana leaf interior. B) re-6 mutant Arabidopsis thaliana 
leaf interior. Both images taken from the under-side of the leaf, green areas are air-spaces 
flooded with dye in PFD, red portions are chloroplasts, and black portions are cell interiors. Note 
that the air-spaces are smaller and more numerous in the re-6 mutant. 
 

1.2.5. Singlet Oxygen Yields  

TMFs are soluble in both hexafluorobenzene and perfluorodecalin. Fluorous solvents have 

high oxygen solubility relative to typical organic solvents.48,49 Since photodynamic therapy 

depends on the sensitization of oxygen in the surrounding area, solvents with higher oxygen 
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content may result in more effective therapy. The measured solubility of 70-10-1 in 

perfluorodecalin was 0.7 mM. 

 All three C70(CF3)10 compounds studied (70-10-1, 70-10-2, and 70-10-5) are fluorescent in 

hexafluorobenzene and perfluorodecalin, with quantum yields similar to the fluorescence 

quantum yields in cyclohexane. Therefore, it is reasonable to expect fluorescence quantum yields 

of C70(CF3)8 compounds to be similar to the yields measured in cyclohexane. Despite the 

relatively high fluorescence, all five TMFs sensitize the production of singlet oxygen. The 

singlet oxygen yields in hexafluorobenzene are 70-8-1 0.12 ± 0.02, 70-8-2 0.7 ± 0.2, 70-10-1 0.6 

± 0.1, 70-10-2 0.17 ± 0.04, and 70-10-5 0.18 ± 0.05. Given the low fluorescence quantum yield 

of 70-8-1, the low singlet oxygen yield was unexpected. Benasson et al. studied C70(Ph)8 with the 

same addition pattern and determined a singlet oxygen yield of 0.18 ± 0.02;50 this is further proof 

that the photophysical properties are largely due to the addition pattern and not the electronic 

properties of the substituents. Taken together these results suggest that this addition pattern on 

C70 undergoes significant non-radiative decay. Singlet oxygen yields must be measured in the 

same solvent as the standard and so yields have not been determined in perfluorodecalin, 

however, they are expected to be similar given the fluorescence quantum yields in these solvents. 

 Many singlet oxygen generating fullerenes have been reported in the literature, but this is the 

first report of TMF sensitizers and one of very few reports in fluorous solvent.51 Wilson et al. 

reported one compound they called the C3 tris-RF, C60(C(CO2CH2CH2CH2C8F17)2)3, which was 

soluble in perfluorohexane and had a singlet oxygen yield of 0.45. The C3 tris-RF compound has 

a lower singlet oxygen yield than 70-8-2 or 70-10-1 and its fluorescence spectrum and yield have 

never been reported. 

1.3 Summary and Conclusions 

 Three TMFs meet or exceed the highest previously reported fluorescence quantum yield for a 

fullerene derivative. One of these, 70-10-5, is more than 2.8 times higher than any other fullerene 

or fullerene derivative. Fluorescence quantum yields and lifetimes show a weak dependence on 

the solvent with ΦF generally being slightly lower in fluorous solvents. The ultrafast transient 
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absorption spectrum of 70-10-2 shows the transition to the vibrational states of the S1 excited 

state and, at longer pump-probe delays, conversion to the triplet state. High fluorescence 

quantum yields are correlated with high oscillator strength, large ΔS1−T1 energy gaps, and smaller 

spatial extension of the S0→S1 excitation. DFT calculation of these values can provide a method 

for screening potential fullerene fluorophores in the future. A difference in the location of only 

one CF3 group in C70(CF3)8 and C70(CF3)10 isomers resulted in 200-fold and 14-fold increases in 

ΦF, respectively. By comparing the fluorescence and singlet oxygen quantum yields of 70-8-1 

and the values reported for C70Ph8,
13,50 which has the same addition pattern with different 

substituents, it was determined that it is highly probable that the addition pattern and not the 

identity of the substituents that affects the photophysical properties of fullerenes. 

 The TMFs studied in this work sensitize the production of singlet oxygen. Two of these 

compounds, 70-8-2 and 70-10-5, also absorb red wavelengths and one of these, 70-8-2, even 

absorbs 630 nm, the wavelength typically used for photodynamic therapy and has a high singlet 

oxygen yield. Compounds that have both an appreciable fluorescence quantum yield and singlet 

oxygen yield could be used as dual purpose photosensitizers to determine cellular localization 

using fluorescence while still generating sufficient singlet oxygen to kill cancer cells. 

1.4. Experimental Details 

1.4.1. Reagents and Solvents.  

Silver trifluoroacetate (Aldrich), C70 (MTR Ltd.), 4-(dicyanomethylene)-2-methyl-6-(4-

dimethylaminostyryl)-4H-pyran (Aldrich), absolute ethanol (Pharmco-Aaper), cyclohexane 

(Mallinckrodt), hexafluorobenzene (Oakwood Products or Aldrich), perfluorodecalin (SynQuest 

Labs), heptane (Fisher Scientific), and toluene (Fisher Scientific or Burdick & Jackson) were 

used as received. All TMFs were isolated from the products of high-temperature reactions 

performed by Mr. Travis C. Folsom or the students in CHEM 462 Spring 2012, of C70 with CF3I 

in a flow-tube apparatus.28,52 In addition to the flow tube reactions, the compounds 70-8-1 and 

70-8-2 were prepared by the author in a reaction of C70 with silver trifluoroacetate in a copper 

tube.53 
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1.4.2. Preparation of TMFs.  

Mr. Travis Folsom prepared C70(CF3)n in a flow-tube using 101 mg C70 and 24 equivalents of 

copper powder under a flow of CF3I gas at 540 °C for 1.25 hours. The students in CHEM 462 

Spring 2012 prepared C70(CF3)n in a flow-tube using approximately 50 mg C70 and 24 

equivalents of copper powder under a flow of CF3I gas at 460 °C for 3 hours. 

 The compounds 70-8-1 and 70-8-2 were also prepared by the author in a reaction of C70 with 

silver trifluoroacetate, similar to reactions reported previously.53 For this work 112 mg C70 and 

10 equivalents of silver trifluoroacetate were ground with a mortar and pestle. The mixture was 

placed in a Pyrex tube which was loaded into a copper tube sealed at one end and a Swagelok 

fitting at the other end. The Swagelok fitting was closed tightly and the tube placed in a 340 °C 

tube furnace for 3 h. After cooling the products were transferred to a larger Pyrex tube which 

was placed in a Pyrex tube sealed at one end with a Teflon valve at the other end. The outer tube 

was connected to a vacuum pump and evacuated. The entire assembly was heated to 520 °C for 6 

h. After cooling the inner Pyrex tube was removed and sealed below the sublimed TMFs. The 

TMFs were washed out of the Pyrex tube by dissolving them in toluene. 

1.4.3. Separation, Purity Characterization, and Isomer Identification.  

High performance liquid chromatography (HPLC) is used to isolate pure molecules. In 

HPLC, mobile phase flows, at high pressure, through a column filled with stationary phase. The 

stationary phase is typically small silica gel beads whose surface is modified to produce different 

interactions with the analytes. A mixture of analytes is injected into the system and flows onto 

the column. In the column the analytes partition between the mobile phase and the stationary 

phase. In a static system the analytes would come to equilibrium with a certain amount in the 

liquid and the rest interacting with the stationary phase. During separation the system is 

constantly perturbed by fresh mobile phase being pumped into the system and the analytes move 

along the length of the column. Compounds with a higher affinity for the stationary phase are 

retained on the column longer. The Buckyprep stationary phase is shown in Figure 1.9. 
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Figure 1.9. The stationary phase of the Buckyprep column is 3-(1-pyrenyl)propyl groups bonded 
to silica. 
 

Isomers of C70(CF3)8 were purified by the author using HPLC with a Cosmosil Buckyprep 

(Nacalai Tesque) semi-preparative column (250 × 10 mm i.d.) on an HPLC Prominence system 

(Shimadzu) comprised of LC-6AD pump, 2 mL sample loop, equipped with SPD-20A UV-vis 

detector, SPD-M20A diode array detector, and CBM-20A communications bus module. The first 

stage of separation used 100% toluene eluent at 4 mL min−1; a fraction collected between 5.2-6.5 

minutes contained both 70-8-1 and 70-8-2. This fraction was further purified using 20:80 

toluene:heptane eluent at of 5 mL min−1; a fraction collected between 14.9-16.0 minutes 

contained 70-8-1 and a fraction collected between 20.2-21.7 minutes contained 70-8-2. 

Isomers of C70(CF3)10 were purified by the author using HPLC with a Cosmosil Buckyprep 

(Nacalai Tesque) preparative column (250 × 20 mm i.d) on an HPLC Prominence system 

(Shimadzu) comprised of LC-8A pump, 20 mL sample loop, equipped with SPD-M20A diode 

array detector, DGU-20As degasser, CBM-20A communications bus module, and FRC-10A 

fraction collector. The first stage of separation used 100% toluene eluent at 16 mL min−1, a 

fraction collected between 2.8-6.0 minutes contained all three isomers. The second stage of 

separation used with 20:80 toluene:heptane eluent at 16 mL min−1; a fraction collected between 

10-11.8 minutes contained 70-10-2 and 70-10-5 and a fraction collected between 12.3-15.5 

minutes contained 70-10-1. The fraction containing 70-10-2 and   70-10-5 was further purified 

using 100% heptane eluent at 16 mL min−1; a fraction collected between 45.7-51.7 minutes 
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contained 70-10-5 and a fraction collected between 55.3-63.4 minutes contained 70-10-2. TMF 

purity was determined to be 95 mol% or higher as shown by 19F NMR spectroscopy in Figure 1.5 

(Varian 400 spectrometer). UV-vis spectra were obtained on a Cary 500 UV/Vis/NIR 

spectrometer in a 1 cm quartz cuvette.  

1.4.4. Fluorescence Spectroscopy.  

Fluorescence spectroscopy is used to examine the emission of photons as excited electrons 

relax back to the ground state.54 Electrons in the sample are excited by incoming photons of a 

selected wavelength. Typically no matter what energy level the electron is excited to it relaxes 

quickly via a process called internal conversion to the first excited state. The excited electrons 

can then relax back to the ground state in either a non-radiative or a radiative manner. Electrons 

that relax in a radiative manner emit photons which are detected by a photomultiplier tube in the 

fluorimeter. Since most electrons relax from the first excited ground state, the emitted photons 

are lower in energy than the absorbed photons. Figure 1.10 depicts the basic processes involved 

in absorption and fluorescence. The fluorescence spectrum is typically the mirror image of the 

low energy portion of the absorption spectrum because electrons can relax to any vibrational 

level within the ground state in the same way they can be excited to any vibrational level of the 

first excited state and these vibrational levels possess approximately the same energy spacing. 

The fluorescence quantum yield is the ratio of photons emitted to photons absorbed. This 

value allows different fluorescent compounds to be compared for how fluorescent they are. The 

most common method used to measure fluorescence quantum yields is the relative method where 

the fluorescence intensity of the sample is compared to the fluorescence intensity a well-

characterized quantum yield standard. 

Steady-state fluorescence was measured by the author on an AVIV ATF-105 Auto-Titrating 

Differential/Ratio Spectrofluorimeter with 90o measurement geometry. Sample solutions were 

degassed with a minimum of three freeze-pump-thaw cycles. The quartz cuvette size was 1 cm 

square. Each sample solution was independently prepared and measured three times. A blank  
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Figure 1.10. Jablonski diagram depicting absorption and fluorescence processes. S0, S1, and S2 
are the ground, first excited, and second excited singlet states respectively; within these states the 
thickest line represents the ground state and the thinner lines represent higher vibrational states. 
 

solution of the pure solvent was also measured three times for each sample or standard solution. 

The absorbance of standard and sample were matched at the excitation wavelength and the 

absorbance at and above the excitation wavelength was kept below 0.1. Slit widths were 2 nm, 

the step size was 1 nm, and the temperature was 25.0 ± 0.2 oC. The spectra were corrected for 

wavelength dependent detector response using a correction curve generated by comparing the 

measured spectrum of tetraphenylporphyrin with published data.55,56  

 To ensure correct determination of fluorescence intensities in the NIR range, additional 

fluorescence measurements were performed by Dr. A. A. Popov (Leibniz Institute for Solid State 

and Materials Research, Dresden, Germany) on a home-made system comprised of a 405 nm 

laser (Omicron) and diode-array spectrometer AvaSpec-ULS2048XL (Avantes). The detector 

was calibrated versus the certified halogen lamp AvaLight-DH-CAL (Avantes). Corrected 

spectra measured independently on both systems were found to be virtually identical. 

 Fluorescence quantum yields were calculated using the equation: 

         ∫  ∫                             

where x represents the sample, std represents the standard, Φ is the quantum yield, ∫  is the 

integrated fluorescence intensity, A is the absorbance at the excitation wavelength, and η is the 
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refractive index of the solvent. The standard used was 4-(dicyanomethylene)-2-methyl-6-(4-

dimethylaminostyryl)-4H-pyran in absolute ethanol which has a published ΦF value of 0.44 ± 

0.02.57 

1.4.5. Fluorescence Lifetimes.  

Fluorescence lifetimes were measured by the author in the laboratory of Dr. Jeffrey J. Rack 

(Ohio University) with an Edinburgh LP920 Spectrometer equipped with an Edinburgh TM300 

monochromator and an Edinburgh LP900 PMT using a Surelite Continuum Nd:YAG laser with a 

Surelite SSP. The excitation wavelength was 355 nm. Detection occurred at the fluorescence 

emission maximum. During the measurements, two laser pulses were discarded and three were 

averaged for one output. The instrument response was also recorded for each sample using a 1-

cm cuvette filled with the relevant solvent. Using Edinburgh L900 software, a reconvolution fit 

was calculated using the sample signal and the instrument response. From this fit the 

fluorescence lifetime of the sample was determined. Samples were measured in the same 

solvents as those used in the fluorescence quantum-yield measurements. 

1.4.6. Ultrafast Transient Absorption.  

Ultrafast transient absorption spectroscopy was performed by Dr. Yuhuan Jin and Dr. Jeffrey 

J. Rack (Ohio University). For ultrafast transient absorption measurements, excitation was at 495 

nm and a sapphire crystal was employed to generate the white light continuum with a detection 

range of ca. 450 to 800 nm 

1.4.7. Theoretical Calculations.  

DFT is a theoretical approach to model the electronic properties of materials and was 

introduced by Kohn and co-workers.58,59 The two theorems underlying DFT calculations are: 1) 

the ground state electron density determines all of the properties of a system and 2) the energy of 

the system can be described as a functional of the electron density. In this work time-dependent 

DFT (TD-DFT), an extension of ground-state DFT, is used to examine excitations of the 

electrons in the system. While the absolute values obtained from some calculations 

underestimate the experimental data, the relative energy levels can be used for comparisons 
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between molecules. TD-DFT calculations were performed by Dr. Popov with the PBE functional 

and TZ2P basis set using the Priroda code.60,61 

1.4.8. Leaf Imaging Experiments.  

The compound 70-10-2 was isolated by the author. Leaf imaging experiments were 

conducted in the laboratories of Dr. Andrew J. Fleming and Dr. Stephen A. Rolfe (The 

University of Sheffield). A solution of 70-10-2 in perfluorodecalin was prepared, at the limit of 

solubility, by sonication. Leaves were immersed in the solution and then examined via confocal 

microscopy. 

1.4.9. Singlet Oxygen Quantum Yields.  

Experiments were carried out by the author with the assistance of Dr. Andrew J. Ferguson in 

the laboratory of Dr. Jeffrey L. Blackburn (National Renewable Energy Laboratory) on a home-

built instrument which used front face detection, a 250 W halogen lamp, a monochromator 

(Acton Research Corp.), a modified Thermo-Nicolet FT-960 liquid nitrogen cooled germanium 

detector, and run by a home written LabView program. Sample and standard 

(tetraphenylporphyrin) were dissolved in hexafluorobenzene (Aldrich or Synquest Laboratories) 

and the absorbance values were matched at the excitation wavelength. Measurements were taken 

in a 1 cm quartz cuvette. 

 Singlet oxygen quantum yields were calculated according to the following equation:             (               )                  

Where x represents the sample and std represents the standard (tetraphenylporphyrin in 

hexafluorobenzene ΦΔ = 0.57),62 A is the absorbance at the excitation wavelength. Slopes were 

determined in the following manner: responses were recorded with increasing neutral density 

filters placed before the sample and peak areas were plotted against the transmission of the filter. 
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CHAPTER 2: TRIFLUOROMETHYL POLYCYCLIC AROMATIC HYDROCARBONS 
AND CHARGE-TRANSFER COMPLEXES 

 
 
 

2.1. Introduction 

 Small molecule electron acceptors, such as polycyclic aromatic hydrocarbons (PAHs), are 

being increasingly studied for use in organic electronics. Despite the growing market for and 

interest in organic electronics there remains an acknowledged need for electron acceptors and n-

type semiconductors that are air-stable even in the presence of light. The term air-stable is 

generally used in the field of organic electronics to mean that charge carrier mobilities are the 

same, within an order of magnitude, under inert atmosphere and upon exposure to air. Electron 

affinities (EAs) have been shown to be correlated with air-stability and offer a method to 

evaluate candidates for acceptor materials without full device fabrication. Chang and co-workers 

found that compounds with DFT calculated EAs > 2.8 eV tend to be air-stable.1  

One method of tuning the properties, including air-stability, of PAHs for use in organic 

electronics is functionalization, particularly fluorination or perfluoroalkylation.2-4 Sun and co-

workers predicted that the addition of perfluoroalkyl groups to the PAH substrate anthracene 

would not only ―tune‖ the HOMO and δUMO levels and their gap, but would also improve the 

hydrophobicity and air-stability of PAH thin films.5 Furthermore, Sun and co-workers 

demonstrated that perfluorooctyl PAH compounds were more photostable in the presence of air 

than parent PAHs or hydrocarbon analogs.6 

Alterations to the electronic properties of PAHs can also occur through the introduction of 

heteroatoms into the PAH core. A common heteroatom is nitrogen and the potential 

semiconducting capabilities of nitrogen-containing acenes, or azaacenes, have been investigated 

by a few groups.7-9 Compared to their all carbon analogues azaacenes have higher electron 

affinities (EAs).9 For example, phenazine (PHNZ) a diazaacene analogue of anthracene has an 

EA of 1.3 ± 0.1 eV,10 more than twice that anthracene at 0.53 ± 0.02 eV.11,12 Aside from 

increased EAs, improved electron mobilities have been observed when nitrogens are substituted 
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into other, non-acene, PAHs.13,14 Derivatives of PHNZ have been identified as natural 

products,15,16 and other derivatives have found applications in dyes,17,18 sensors,19 and light-

emitting diodes.20 

For most organic electronic applications charge transport is an important consideration. 

Altering the electronic properties of the molecules under consideration can impact the charge 

transport as can the solid-state packing and it has been found that some packing motifs are more 

favorable than others.21,22 Nitrogen-containing heterocycles exhibit different stacking than the 

corresponding all-carbon PAH.23 Attaching electron-withdrawing groups, such as perfluoroalkyl 

groups, changes the electrostatic potential distribution thereby changing intermolecular 

interactions and potentially the packing motif.24,25 Electron-poor PAHs derivatized with electron-

withdrawing groups can also be co-crystallized with underivatized PAHs resulting in electron-

rich and electron-deficient interactions.22,26,27  

When electron acceptors and electron donors are mixed there is a possibility of forming a 

charge transfer complex (CTC). Aromatic electron donor-acceptor CTCs have been the subject 

of many reviews and book chapters because they are relatively well studied.28-30 Conductivity in 

CTCs has been known since the discovery of superconductivity in tetrathiafulvalene/7,7,8,8-

tetracyanoquinodimethane (TTF/TCNQ).31,32 The TTF/TCNQ complex crystallizes in segregated 

stacks where the donor molecules are separate from the acceptors. Mixed stack complexes which 

crystallize with alternating donor and acceptor molecules have also demonstrated conductivity 

and carrier mobility.33-35 Additional useful properties investigated in CTCs include: 

fluorescence36,37 antimicrobial activity,38 thermoelectric performance,39 and photoconductivity.40-

42 Investigation into the properties of CTCs reveals information about the intermolecular 

interactions both in solution and in the solid state. 

Previous attempts to produce electron acceptors by directly perfluoroalkylating one or two 

ring PAH cores generally resulted in products with low numbers of substitutions, low yields, and 

poor regioselectivity.43-45 For PHNZ there are no examples of direct perfluoroalkylation. The 
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literature examples of PHNZ(CF3)n all contained one or two trifluoromethyl groups substituted 

on the core and were synthesized from trifluoromethyl containing non-PAH precursors.46-49  

Some of the work carried out by the author of this dissertation and described in the first part 

of this chapter, including the synthesis and characterization of ANTH(CF3)n, PERY(CF3)n, 

PHEN(CF3)n, and PYRN(CF3)n derivatives, has already been published.50 Subsequent to that 

publication the effects of multiple CF3 groups on the properties of the two-ring PAHs 

naphthalene and azulene were investigated by other members of the Strauss-Boltalina group.51,52 

The goals of the work described in this chapter were (i) to isolate and characterize new 

trifluoromethyl derivatives of three- and four-ring PAHs and a three-ring heteroatom-PAH and 

(ii) to study their ability to serve as acceptors in the formation of CTCs with PAH donors. The 

PAH substrates studied in this work, their abbreviations, and their IUPAC locants are shown in 

Figure 2.1. The substrates for the synthesis of PAH(CF3)n derviatives were chosen to provide 

insight into the effects of: shape (i.e., ANTH vs PHEN), the presence of heteroatoms (i.e., ANTH 

vs. PHNZ), three- vs four-ring (i.e., ANTH and PHEN vs PYRN), and the presence of five 

member rings (i.e., PHEN vs. FLUR and PYRN vs FLRA) on direct PAH trifluoromethylation. 

The substrates studied for CTC formation were selected to investigate the effects of electronic 

differences (i.e., EA and reduction potential), PAH shape and size, and substitution pattern of the 

PAH(CF3)n compounds. The methods used to isolate and characterize new PAH(CF3)n 

compounds in this work are HPLC, 1H and 19F NMR, mass spectrometry, single crystal X-ray 

diffraction, UV-vis spectroscopy, electrochemistry, and gas-phase electron affinity. The CTCs 

were studied using UV-vis spectroscopy and single crystal X-ray diffraction. 
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Figure 2.1. PAH cores derivatized with CF3 groups and/or used to form CTCs in this work: 
anthracene (ANTH), fluorene (FLUR), fluoranthene (FLRA), pyrene (PYRN), phenanthrene 
(PHEN), phenazine (PHNZ), azulene (AZUL), coronene (CORO), and perylene (PERY). IUPAC 
locants for the C atoms available for substitution (i.e., bearing H atoms in the parent PAH) are 
shown. 

2.2. Results and Discussion 

2.2.1. Product Composition, Separation, and Identification 

 Eight trifluoromethylation reactions were performed. The reaction conditions are detailed in 

Table 2.1. Variables include starting amount of PAH substrate, mole ratio of CF3I gas, sealed 

glass ampoule size, reaction temperature and reaction time.  



36 
 

Table 2.1. Reaction conditions for PAH + CF3I reactions 
rxn 

number 
PAH 

substrate 
mass PAH 
used, mg 

n(CF3I)
a Vampoule, 

mL 
Vheadspace, 

mL 
T, °C reaction 

time 
1 ANTH 97 21 350 350 360 18 h 
2 ANTH 178 12 215 215 350 18 h 
3 FLUR 182 7 220 220 350 25 min 
4 FLRA 33 5 35 35 360 17 min 
5 PHEN 18 20 50 50 360 24 h 
6 PHNZ 28 8 35 35 310 33 min 
7 PHNZ 216 10 373 373 330 20 h 
8 PYRN 20 30 60 60 360 20 h 

a n = mole ratio of CF3I with respect to the number of moles of PAH 

The trifluromethylation of ANTH was performed twice. The reaction conditions differed in 

the number of equivalents of CF3I used and the size of the sealed glass ampoule (see Table 2.1 

for details). In spite of these differences, both reactions produced a very similar crude product 

mixture. The products were mainly ANTH(CF3)5,6 isomers; a small amount of ANTH(CF3)4 

isolated from Rxn 1 (Table 2.1). Mass spectrometry analysis identified ANTH(CF3)7 as a 

product, but a pure isomer has not been isolated. From Rxn 1 there was 302.2 mg crude product 

and the isolated yields were <1 mol% ANTH-4-1, 5 mol% ANTH-5-1 and 20 mol% ANTH-6-1, 

based on the amount of starting ANTH. From Rxn 2 there was 455.9 mg crude product and the 

yield was only calculated for ANTH-6-2 which was 2 mol%, based on the amount of starting 

ANTH. The ANTH(CF3)n crude reaction mixtures were separated by HPLC and all identified 

products have been isolated in 2 steps. In the first step, the mixture was separated on a 

Buckyprep semipreparative column using 100% acetonitrile eluent at 5 mL min−1 as shown in 

Figure 2.2. The fraction collected between 6.3–6.9 min contained ANTH-5-1 and, in one case, 

ANTH-4-1. The fraction collected between 7.4–8.0 min contained a mixture of ANTH-6-2, 

ANTH-6-3, and ANTH-6-4. The fraction collected between 9.0–9.8 min contained 98+ mol% 

pure ANTH-6-1. No pure compounds were isolated from the fraction that eluted between 3–4.2 

min, but mass spectrometry indicated it contained one or more ANTH(CF3)7 derivatives. 

 The fraction containing ANTH-4-1 and ANTH-5-1 was further purified on a FluoroFlash 

analytical column using 100% acetonitrile eluent at 2 mL min−1 (Figure 2.3). The chromatogram  
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Figure 2.2. HPLC chromatogram of the ANTH(CF3)n crude product mixture Rxn 1 in Table 2.1. 
Separation conditions: Buckyprep semipreparative, 100% acetonitrile eluent at 5 mL min−1, 370 
nm detection. 
 

 

Figure 2.3. HPLC chromatogram of ANTH-4-1 and ANTH-5-1 separation. Mixture was from 
the 6.3–6.9 min fraction from the first separation stage of the crude product mixture from Rxn 1 
in Table 2.1 (see Figure 2.2). Separation conditions: FluoroFlash analytical, 100% acetonitrile 
eluent, 2 mL min−1, 300 nm detection. Vertical lines represent where the fractions were 
collected. 
 

was obtained during separation of the Rxn 1 (Table 2.1) and was the only example where a 

detectable quantity of ANTH-4-1 has been isolated. The fraction collected between 3.2–4.0 min 
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contained 95 mol% pure ANTH-4-1 and the fraction collected between 5.0–6.3 min contained 98 

mol% pure ANTH-5-1. No other pure compounds have been isolated from this separation. 

 Further purification of ANTH-6-2 from ANTH-6-3 and ANTH-6-4 was performed on a 

FluoroFlash analytical column using 95:5 v:v acetonitrile:water eluent at 1 mL min−1 (Figure 

2.4). The fraction collected between 15.0–16.7 min contained 98 mol% pure ANTH-6-2 and the 

fraction collected between 17.1–18.4 min contained 40 mol% ANTH-6-3 and 60 mol% ANTH-

6-4. 

 

Figure 2.4. HPLC chromatogram for separation of ANTH-6-2 from ANTH-6-3 and ANTH-6-4. 
Mixture was from the 7.4–8.0 min fraction from the first separation stage of the crude product 
mixture from Rxn 1 in Table 2.1 (see Figure 2.2). Separation conditions: FluoroFlash analytical, 
95:5 v:v acetonitrile:water eluent, 1 mL min-1, 370 nm detection. 
 

 The reaction of FLUR with CF3I was performed once and yielded 317.2 mg of crude 

FLUR(CF3)n product (Rxn 3 Table 2.1). Based on mass spectrometry the mixture had a 

maximum n value of 5 and a predominant n value of 4. Despite the relatively large mass of crude 

material, only one pure compound, FLUR-5-1, was isolated in < 1 mol% yield, based on starting 

FLUR. Both ANTH and FLUR are three-ring PAHs, but FLUR has a C(sp3) atom in the central 

ring. The trifluoromethylation of FLUR appears to be much less selective than most of the other 

reactions listed in Table 2.1. 
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 Three stages of separation were required to isolate FLUR-5-1 in < 1 mol% isolated yield, as 

shown in Figure 2.5. Stage 1 utilized a Buckyprep preparative column with 100% acetonitrile 

eluent at 20 mL min−1 and the fraction of interest was collected between 3.3–4.1 min. Stage 2 

separation was performed on a Buckyprep semipreparative column with 10:90 v:v 

toluene:heptane eluent at 5 mL min−1 and the fraction of interest was collected between 6.9–7.6 

min. Stage 3 separation was performed on a FluoroFlash analytical column with 95:5 v:v 

acetonitrile:water eluent at 2 mL min−1 and 90 mol% pure FLUR-5-1 was collected between 5.7–

6.8 min. All of the larger peaks in the chromatograms contained multiple compounds that were 

not isolated after several attempts to separate them. Many other separation methods were 

attempted including the use of a Buckyprep semiprep column with mixtures of toluene and 

heptane as eluents, a FluoroFlash column with mixtures of acetonitrile and water as eluents, and 

a FluoroFlash column with mixtures of acetonitrile and methanol as eluents. The 

trifluoromethylation of FLUR would have to be studied in greater detail in order to achieve 

better selectivity. It is possible that a longer reaction time and/or a larger excess of CF3I may 

improve the conversion and selectivity. 
 

 

Figure 2.5. Three stages of isolation of FLUR-5-1 from Rxn 3 in Table 2.1. Stage 1 (left) 
conditions: Buckyprep preparative, 100% acetonitrile eluent, 20 mL min−1, 300 nm detection. 
Stage 2 (middle) conditions: Buckyprep semipreparative, 10:90 v:v toluene:heptane eluent, 5 mL 
min−1, 300 nm detection. Stage 3 (right) conditions: FluoroFlash analytical, 95:5 v:v 
acetonitrile:water eluent, 2 mL min−1, 300 nm detection. 
 

 One trifluoromethylation reaction with FLRA was performed (Table 2.1 Rxn 4) and yielded 

28.5 mg of crude product. Based on mass spectrometry the FLRA(CF3)n products contained a 
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maximum n = 6 and a predominant n value of 5. Three compounds were isolated after 2 stages of 

HPLC separation: FLRA-3-1, FLRA-3-2, and FLRA-4-1. However, only some of the fractions 

yielded pure compounds. Other fractions that could not be separated further (see below) probably 

contain these putative FLRA(CF3)5 and FLRA(CF3)6 derivatives.  

 The first stage of FLRA(CF3)n separation was completed on a Buckyprep semipreparative 

column with 100% acetonitrile eluent at 5 mL min−1 (Figure 2.6). The fraction collected between 

8.4–9.3 min contained a mixture of FLRA-3-1 and FLRA-3-2. The fraction collected between 

15.4–16.8 min contained 90 mol% pure FLRA-4-1 in 7 mol% isolated yield. The compounds 

FLRA-3-1 and FLRA-3-2 were purified in a second stage separation on a Buckyprep 

semipreparative column with 100% methanol eluent at 5 mL min−1 (Figure 2.7). The fraction 

collected between 18.2–19.3 min contained 98 mol% pure FLRA-3-1 in 1 mol% isolated yield. 

The fraction collected between 19.7–21.3 min contained 92 mol% pure FLRA-3-2 contaminated 

with FLRA-3-1 in 1 mol% isolated yield. 
 

 

Figure 2.6. HPLC chromatogram of the FLRA(CF3)n crude product mixture Rxn 4 in Table 2.1. 
The peak highlighted in red contained FLRA-3-1 and FLRA-3-2 and the peak highlighted in blue 
contained FLRA-4-1. Separation conditions: Buckyprep semiprep, 100% acetonitrile eluent, 5 
mL min−1, 300 nm detection. 
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Figure 2.7. Second stage separation of FLRA-3-1 and FLRA-3-2. Mixture was from the 8.4–9.3 
min fraction from the first separation stage of the crude product mixture from Rxn 4 in Table 2.1 
(see Figure 2.6). Separation conditions: Buckyprep semiprep, 100% methanol eluent, 5 mL 
min−1, 300 nm detection. 
 

 Attempts to separate the other predominant peaks from the first stage separation involved 

the use of a FluoroFlash column with mixtures of acetonitrile and water as the eluent. It is 

possible that using methanol eluent with the Buckyprep column could result in additional 

purified products, perhaps including some products where n ≥ 5. When acetonitrile was used as 

the eluent fractions containing compounds with retention times > 20 min were observed and if 

methanol were to be used as the eluent these retention times would likely be longer due to the 

likely lower affinity of FLRA(CF3)n for the more polar eluent. Therefore, it is still recommended 

that the first stage separation be completed in acetonitrile. 

One trifluoromethylation of PHEN was performed (Table 2.1, Rxn 5) and produced 255.3 mg 

of crude product. According to analysis by mass spectrometry the crude mixture had a maximum 

value of n = 6 and a predominant n value of 5. The first stage of separation was performed on a 

Buckyprep preparative column with 100% acetonitrile eluent at 16 mL min−1 (Figure 2.8). The 

fraction collected between 8.5–9.9 min contained impure PHEN-4-1. The fraction collected  
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Figure 2.8. HPLC chromatogram of the PHEN(CF3)n crude product mixture Rxn 5 in Table 2.1. 
Separation conditions: Buckyprep preparative, 100% acetonitrile eluent, 16 mL min−1, 300 nm 
detection. The unusual shapes of the peaks are believed to be artifacts due to defects in the 
column packing. 
 

between 9.9–11.7 min contained impure PHEN-4-2. The fraction collected between 18.8–21.0 

min contained 95 mol% pure PHEN-5-1 in 13 mol% yield, based on starting PHEN. 

 The compounds PHEN-4-1 and PHEN-4-2 were ca. 90 mol% pure after the first stage of 

separation, so a second stage separation was attempted to increase the purity. These fractions 

were separated on a FluoroFlash analytical column with 100% acetonitrile eluent at 2 mL min−1 

(Figure 2.9). In the second stage separation of PHEN-4-1, a fraction was collected between 3.4–

4.5 min which contained 93 mol% pure PHEN-4-1 in 4 mol% yield based on starting PHEN, the 

main impurity is PHEN-4-2. In the second stage separation of PHEN-4-2, a fraction was 

collected between 3.3–4.5 min which contained 95 mol% pure PHEN-4-2 in 11 mol% yield, 

based on starting PHEN. 

 Two trifluoromethylation reactions were performed on the substrate PHNZ (Table 2.1 Rxns 6 

and 7). The two reactions differed in the amount of starting PHNZ, the number of CF3I 

equivalents, the temperature, and, most significantly, the reaction time. Rxn 6, the smaller-scale 

of the two reactions produced 41.3 mg of crude product which, based on mass spectrometry 
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Figure 2.9. HPLC chromatograms of second stage separation of PHEN-4-1 and PHEN-4-2. 
PHEN-4-1 was from the 8.5–9.9 min fraction from the first separation stage of the crude product 
mixture from Rxn 5 in Table 2.1 (see Figure 2.8). PHEN-4-2 was from the 9.9–11.7 min fraction 
from the first separation stage of the crude product mixture from Rxn 5 in Table 2.1 (see Figure 
2.8). Separation conditions were the same in both instances: FluoroFlash analytical, 100% 
acetonitrile eluent, 2 mL min−1, 350 nm detection. 
 

analysis, contained a maximum n = 5, and predominantly had a n value of 4. The first stage of 

separation of Rxn 6 was performed on a Buckyprep semipreparative column with 100% 

acetonitrile eluent at 5 mL min−1 (Figure 2.10). A fraction collected between 5.1–5.9 min 

contained a mixture of compounds. A fraction collected between 6.7–7.2 min contained impure 

PHNZ-3-1. 

 The first fraction collected in the first stage PHNZ(CF3)n separation between 5.1–5.9 min 

was subjected to a second stage of separation on a Buckyprep semipreparative column with 

80:20 v:v toluene:heptane eluent at 5 mL min−1 (Figure 2.11). A fraction was collected between 

3.5–4.2 min which was still a mixture of compounds. This fraction underwent a third stage of 

separation on a Buckyprep semipreparative column with 100% methanol eluent at 5 mL min−1 

(Figure 2.11). Four fractions were collected. Fraction 1 was collected between 8.5–9.3 min and 

contained 65 mol% PHNZ-2-1 and 35 mol% PHNZ-2-2 in a total yield of 3 mol%. Fraction 2 

was collected between 11.7–12.5 min and contained 95 mol% pure PHNZ-3-2 in 6 mol% 

isolated yield, based on starting PHNZ. Fraction 3 was collected between 13.3–14.1 min and 

contained 98 mol% pure PHNZ-4-1 in 2 mol% isolated yield, based on starting PHNZ. Fraction 
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Figure 2.10. HPLC chromatogram of the PHNZ(CF3)n crude product mixture Rxn 6 in Table 
2.1. Separation conditions: Buckyprep semiprep, 100% acetonitrile eluent, 5 mL min−1, 300 nm 
detection. 
 

 

Figure 2.11. HPLC chromatograms of stage 2 (left) and stage 3 (right) separation of of the 5.1–
5.9 min fraction from the first separation stage of the crude product mixture from Rxn 6 in Table 
2.1 (see Figure 2.10). Stage 2 separation conditions: Buckyprep semiprep, 80:20 v:v 
toluene:heptane eluent, 5 mL min−1, 300 nm detection. Stage 3 separation conditions: Buckyprep 
semiprep 100% methanol eluent, 5 mL min−1, 370 nm detection. 
 

4 was collected between 15.9–16.8 min and contained 98 mol% pure PHNZ-4-2 in 2 mol% yield, 

based on starting PHNZ. In the future the second stage separation could likely be skipped since 

all four isolated compounds co-eluted. 
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The second fraction collected between 6.7–7.2 min in the first stage PHNZ(CF3)n separation 

(Rxn 6, Table 2.1) underwent a second stage separation on a Buckyprep semipreparative column 

using 80:20 v:v toluene:heptane eluent at 5 mL min−1 (Figure 2.12). A fraction was collected 

between 4.4–5.0 min and was still impure so a third stage of separation was performed. The third 

stage of separation used a Buckyprep semipreparative column with 100% methanol eluent at 5 

mL min−1 (Figure 2.12). A fraction collected between 15.7–16.6 min contained 98 mol% pure 

PHNZ-3-1 in 1 mol% yield, based on starting PHNZ. For the isolation of PHNZ-3-1 the second 

stage separation could likely be omitted since only minor improvements in purity were gained. 

Overall, for PHNZ(CF3)n separations with the Buckyprep and FluoroFlash columns it is likely 

that two stages of separation will remain necessary since, in methanol, on the Buckyprep column 

PHNZ-3-2 and PHNZ-4-2 would co-elute, but are separated in acetonitrile. The separation could 

likely be performed with either eluent to start, but would then require a second stage separation. 
 

 

Figure 2.12. HPLC chromatograms of stage 2 (left) and stage 3 (right) separation of PHNZ-3-1 
from Rxn 6 (Table 2.1). Mixture was from the 6.7–7.2 min fraction from the first separation 
stage of the crude product mixture from Rxn 6 in Table 2.1 (see Figure 2.10). Stage 2 separation 
conditions: Buckyprep semiprep 80:20 v:v toluene:heptane eluent, 5 mL min−1, 300 nm 
detection. Stage 3 separation conditions: Buckyprep semiprep 100% methanol eluent, 5 mL 
min−1, 370 nm detection. 
 

 The large-scale PHNZ trifluoromethylation reaction (Rxn 7, Table 2.1) produced 352.2 mg 

of crude product which, based on mass spectrometry analysis, contained a maximum n = 6 and a 
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predominant n value of 5. The first stage of separation was performed on a Buckyprep 

preparative column with 100% acetonitrile eluent at 20 mL min−1 (Figure 2.13). A fraction (1) 

collected between 4.0–4.4 min contained impure PHNZ-6-1 and PHNZ-6-2. A fraction (2) 

collected between 4.4–5.4 min contained a mixture of PHNZ-4-1, PHNZ-4-2, and PHNZ-5-1.  
 

 

Figure 2.13. HPLC chromatogram of the large-scale PHNZ(CF3)n crude product mixture Rxn 7 
in Table 2.1. Separation conditions: Buckyprep prep, 100% acetonitrile eluent, 20 mL min-1, 370 
nm detection. 
 

Fraction 1, which was collected between 4.0–4.4 min in the first stage separation, underwent 

a second stage of separation using a Buckyprep semipreparative column with 100% methanol 

eluent at 5 mL min−1 (Figure 2.14). A fraction collected between7.7–8.6 min contained 75 mol% 

PHNZ-6-1 and 25 mol% PHNZ-6-2 with a combined yield of 3 mol%, based on starting PHNZ. 

Crystals of PHNZ-6-1 were grown from this mixture and the substitution pattern of PHNZ-6-2 

has been predicted based on the NMR spectra. From this information, the structures of PHNZ-6-

1 and PHNZ-6-2 differ by the placement of only one CF3 group (i.e., 1,2,4,6,8,9-PHNZ(CF3)6 

and 1,2,4,6,7,9-PHNZ(CF3)6 Figure 2.15). It is expected that PHNZ-6-1 would be more polar and 

it is possible that these compounds could be isolated from each other on the basis of polarity, but 

this separation has not been attempted at this time. 



47 
 

 

Figure 2.14. HPLC chromatogram from separation of PHNZ-6-1 and PHNZ-6-2. Mixture was 
from the 4.0–4.4 min fraction from the first separation stage of the crude product mixture from 
Rxn 7 in Table 2.1 (see Figure 2.13). Separation conditions: Buckyprep semiprep, 100% 
methanol eluent, 5 mL min−1, 370 nm detection. 
 

 

Figure 2.15. Drawings of the structures of PHNZ-6-1 and PHNZ-6-2. The structure of PHNZ-6-
1 has been confirmed by single crystal X-ray diffraction. The structure of PHNZ-6-2 is predicted 
based on NMR spectra. These two compounds differ in the position of one CF3 group. 
 

 Fraction 2, which was collected from 4.4–5.4 min in the first stage separation of the large-

scale PHNZ(CF3)n reaction (Rxn 7, Table 2.1), underwent a second stage separation using a 

Buckyprep semipreparative column with 100% methanol eluent at 4 mL min−1 (Figure 2.16). A 

fraction collected between 14.5–15.8 min contained 95 mol% pure PHNZ-5-1 in 6 mol% yield, 

based on starting PHNZ. A fraction collected between 16.1–17.5 min contained 97 mol% pure 

PHNZ-4-1 in 4 mol% yield, based on starting PHNZ. A fraction collected between 18.6–20.4 

min contained 98 mol% pure PHNZ-4-2 in 7 mol% yield, based on starting PHNZ. The peak 
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Figure 2.16. HPLC chromatograms of stage 2 separation of of the 4.4–5.4 min fraction from the 
first separation stage of the crude product mixture from Rxn 7 in Table 2.1 (see Figure 2.13). 
Separation conditions: Buckyprep semiprep, 100% methanol eluent, 4 mL min−1, 370 nm 
detection. 
  

collected between 13.3–14.3 min contains two PHNZ(CF3)5 compounds, based on NMR 

analysis, but these compounds have not been isolated. 

 The large-scale and small-scale PHNZ(CF3)n reactions produced different product 

compositions. The large-scale reaction produced products with n values ≥ 4, whereas the small-

scale reaction produced products with n values ≤ 4. From the small-scale to the large-scale the 

number of CF3I equivalents increased from 8 to 10, the reaction temperature increased from 310 

°C to 330 °C, and the reaction time increased from 33 min to 20 h. It is difficult to separate the 

effects of these changes, but it is clear that the reaction conditions impact the product 

composition and conditions designed to increase the n value such as higher equivalents, higher 

temperatures, and longer times resulted, in this case, in the desired higher n value products. 

 One reaction of PYRN with CF3I was performed (Rxn 8, Table 2.1) and produced 180 mg of 

crude product. According to mass spectrometry the maximum number of additions was 7 and the 

predominant products had n = 5 and 6. Five PYRN(CF3)n compounds were isolated from this 

reaction mixture over the course of three stages of separation. Stage 1 separation occurred using 
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a Buckyprep preparative column, 100% acetonitrile eluent at 20 mL min−1 (Figure 2.17). A 

fraction collected between 2.8–4.5 min contained impure PYRN-6-1. A fraction collected 

between 15.8–18.2 min contained 95 mol% pure PYRN-5-1 in 18 mol% yield, based on starting 

PYRN. A fraction collected between 20.1–22.8 min contained 70 mol% PYRN-5-2 and 30 mol% 

PYRN-5-3, with a combined yield of 9 mol% yield, based on starting PYRN. A fraction 

collected between 28.2–34.6 min contained impure PYRN-6-3. Based on NMR analysis, the 

large peak between 35–40 min contains PYRN(CF3)4, but these compounds have not been 

further separated. 

 

Figure 2.17. HPLC chromatogram of the PYRN(CF3)n crude product mixture Rxn 8 in Table 
2.1.. Separation conditions: Buckyprep preparative, 100% acetonitrile eluent, 20 mL min−1, 370 
nm detection. The unusual shapes of the peaks are believed to be artifacts due to defects in the 
column packing. 
 

 PYRN-6-1 was further purified using a FluoroFlash analytical column with 100% acetonitrile 

eluent at 2 mL min−1 (Figure 2.18). The fraction collected between 4.8–6.0 min contained 95 

mol% pure PYRN-6-1 in 1 mol% isolated yield, based on starting PYRN. No other pure 

compounds have been isolated from this separation. 
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Figure 2.18. HPLC chromatogram of stage 2 separation of PYRN-6-1, PYRN-6-1 containing 
fraction highlighted in red. Mixture was from the 2.8–4.5 min fraction from the first separation 
stage of the crude product mixture from Rxn 8 in Table 2.1 (see Figure 2.17). Separation 
conditions: FluoroFlash analytical, 100% acetonitrile eluent, 2 mL min−1, 300 nm detection. 
 

 The additional separation stages used to isolate pure PYRN-6-3 are shown in Figure 2.19. 

The second stage of separation was done on a FluoroFlash analytical column with 100% 

acetonitrile eluent at 2 mL min−1. A fraction was collected between 6.1–6.7 minutes which 

contained impure PYRN-6-3. This fraction underwent a third stage of separation on a Buckyprep 

semipreparative column with 60:40 v:v toluene:heptane eluent at 5 mL min−1. A fraction 

collected between 3.5–3.8 min contained 90 mol% pure PYRN-6-3 in < 1 mol% yield, based on 

starting PYRN. The other peak may contain another PYRN(CF3)5 compound, but the identity has 

not been confirmed. For future separations the second stage separation could be eliminated since 

separation of pure compounds was ineffective at this stage. 

Based on the work performed here, the shape of the PAH core does play a minor role in the 

resulting products. For the reactions of ANTH and PHEN (Rxns 1 and 4 Table 2.1) the number 

of CF3I equivalents was similar as was the reaction temperature and reaction time. Despite these 

similarities the product composition was different, with ANTH(CF3)n products being comprised  
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Figure 2.19. Stages 2 (left) and 3 (right) of the isolation of PYRN-6-3. Mixture was from the 
28.2–34.6 min fraction from the first separation stage of the crude product mixture from Rxn 8 in 
Table 2.1 (see Figure 2.17).  Stage 2 separation conditions: FluoroFlash analytical, 100% 
acetonitrile eluent, 2 mL min−1, 300 nm detection. Stage 3 separation conditions: Buckyprep 
semiprep, 60:40 v:v toluene:heptane eluent, 5 mL min−1, 370 nm detection. 
 

mostly of n = 5, 6 whereas PHEN(CF3)n products exhibited n values of 4 and 5. In the PHEN 

derivatives presented in this work there were no examples of CF3 groups adding to the C4 or C5 

position of the core. In contrast, there were examples of substitutions at every position in the 

ANTH derivatives studied in this work. There is a report in the literature53 of radical attack on 

the C4 position of PHEN, suggesting that the C4 and C5 positions are not exempt from radical 

attack. A more exhaustive separation of the PHEN(CF3)n reaction mixture may yield products 

with substitution at the C4 and/or C5 position, but these were not the major products. If CF3 

radicals have a low probability of adding to the C4 and C5 positions this means there are 8 

carbons which are likely to experience CF3 substitution. Substituting 6 CF3 groups onto 8 

carbons would lead to ≥ 75% substitution, which is rare, based on the PAH(CF3)n products 

identified in the Strauss-Boltalina research group. 

The presence of heteroatoms also impacted the product composition, likely because the 

number of carbons available for substitution has decreased. Even with fewer equivalents of CF3I 

in the PHNZ large-scale reaction (Rxn 7 Table 2.1) than in the ANTH reactions (Rxns 1 and 2 

Table 2.1), PHNZ derivatives with n = 6 were isolated. As mentioned previously ≥ 75% 
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substitution is rare, but it was observed in PHNZ(CF3)6 which is 75% substituted, leaving only 2 

unsubstituted carbons. In comparison, ANTH(CF3)6 is only 60% substituted and this difference 

in the relative amount of substitution was likely at least partially responsible for the different 

abundances of these products in the two different reactions.  

The product composition of PYRN(CF3)n was similar to that ANTH(CF3)n with n = 5 and 6. 

Although PYRN has 4 rings compared to 3 rings in ANTH, there were 10 carbons available for 

substitution in both compounds. However, substitution on the C2 and C7 positions is typically 

rare for PYRN derivatives because there is no HOMO and LUMO density on these positions in 

underivatized PYRN.54 From the low probability of substitution onto 2 carbons one would expect 

a lower degree of substitution, as was observed in the PHEN(CF3)n derivatives, but this was not 

the case as PYRN(CF3)n derivatives maintained a higher degree of substitution (i.e., n values of 5 

or 6). In the identified PYRN(CF3)n products there was an example, PYRN-6-3, of a compound 

with substitution at the C2 position. Although this was a minor product, it means that substitution 

at these positions is possible and they are not completely unreactive. It is likely that the positions 

of the HOMO and LUMO change as the core is derivatized. 

The presence of a 5 membered ring which contains a C(sp3) atom, as observed in FLUR, 

produced products that were difficult to separate and only one pure product has been identified. 

The identified product had 5 CF3 groups and was 50% substituted, including one substituent on 

the C(sp3) atom. The short time (25 min) and low (7) number of equivalents of CF3I that were 

used in the FLUR reaction (Rxn 3 Table 2.1) could lead to products with low n values and a 

large number of isomers for each composition. When reactions are run for a short time there is 

less time for molecules with low n values to react further. The proposed reaction mechanism 

involves a CF3 radical adding to a carbon and subsequently another CF3 radical removing the 

hydrogen from the same carbon. For this mechanism one CF3 substitution would require two 

equivalents of CF3I. Based on the results from the other reactions presented here, it seems likely 

that a narrower product distribution could be achieved by running a reaction with more CF3I, 

pushing the products to higher n values which typically have fewer isomers. For both 
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PHEN(CF3)n and FLUR(CF3)n no products with CF3 groups in the bay region have been 

identified. Trifluoromethyl groups have been identified on the bay region of perylene50 so 

substitutions are possible on bay regions, but so far are considered unlikely on smaller (i.e., 3 

ring) PAH cores. 

The reaction of FLRA with CF3I (Rxn 4 Table 2.1) also ran for a short time (17 min) and 

used a low (5) number of equivalents of CF3I, and despite having 10 substitutable carbons, the 

only products identified so far have n = 3, 4. Due to the significantly different reaction conditions 

it is difficult to compare the two 4 ring systems studied here. For a better comparison the FLRA 

reaction should be repeated with 30 equivalents of CF3I. It is recommended to make the FLRA 

reaction equivalent to the PYRN reaction because it is hypothesized that adding more 

equivalents will narrow the product distribution while also adding more electron-withdrawing 

groups and thereby increasing the EA of the products. 

The Buckyprep stationary phase consists of 3-(1-pyrenyl)propyl groups bonded to silica and 

has a larger π system than the more typical phenol stationary phase. A larger π system can 

interact more strongly with the PAH(CF3)n compounds and provide improved separation. 

Buckyprep columns are sold for fullerene separations which are typically done in relatively non-

polar solvents such as toluene and hexane due, in part, to the very low solubility of fullerenes in 

polar solvents. The PAH(CF3)n molecules investigated here have solubility in aromatic solvents 

as well as increased solubility, relative to fullerenes, in more polar solvents such as acetonitrile 

or methanol. Therefore, PAH(CF3)n compounds have a wider variety of separation 

methodologies on a Buckyprep column than do fullerenes. It was found that typically by using a 

polar, non-aromatic solvent the PAH(CF3)n molecules interacted more with the column. Only 

four separations were performed using toluene or toluene mixtures as the eluent and only one of 

those led to the isolation of a pure compound, PYRN-6-3.  

The FluoroFlash stationary phase is perfluorooctylethylsilyl bonded to silica and is reported 

to separate compounds based on fluorine content.55 This reported separation is based on 

increasing fluoroalkyl chain length. In this work the FluoroFlash column did not routinely show 
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increased retention time for increased number of CF3 groups. In this work seven separations 

were completed on the FluoroFlash column, and six of these separations resulted in the isolation 

of pure compounds. The FluoroFlash column can be useful for isolating pure PAH(CF3)n 

compounds, however, frequently the peaks of interest are not well separated under the conditions 

investigated here (Figures 2.3, 2.9, 2.18, and 2.19) and therefore peaks must be selected carefully 

and collection times must be controlled to decrease contamination from overlapping peaks and 

may result in lower isolated yields than would be possible with improved separation techniques. 

For some separations methanol eluent on a Buckyprep column may be productive and should be 

investigated further. 

Once pure compounds have been isolated, the CF3 groups provide insight, via 19F NMR 

spectroscopy, into the substitution pattern of the PAH derivative. Examples of the way NMR 

spectra are used in structure assignments are shown in Figures 2.20 and 2.21. Trifluoromethyl 

groups within three carbons of each other result in quartets in the 19F NMR and CF3 groups with 

two CF3 neighbors present an apparent septet, or quartet of quartets. This fluorine-fluorine 

coupling can even occur across a fissure as seen in PYRN-6-1 (Figure 2.21). The shift of the 

groups is also determined by the position on the PAH core, similar to what is observed in 1H 

NMR for non-substituted PAHs, the relationship between position and being shielded or 

deshielded follows a  similar pattern for 19F NMR and 1H NMR spectra. For example, in 

ANTH(CF3)n structures, any CF3 groups on the 9 or 10 position are more deshielded (δ −50 to 

−51) than those on the outer rings (δ −63 to −67). The 19F and 1H shifts of all isolated PAH(CF3)n 

compounds are listed in Table 2.2. Structures which were predicted based on NMR spectra, but 

not yet confirmed by X-ray are shown in Figure 2.22. Structures confirmed by X-ray diffraction 

will be discussed later. 
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Figure 2.20. Assignment of NMR peaks for ANTH-6-2. The ANTH-6-2 molecule is shown at 
the top. The 19F NMR spectrum (CDCl3, 376 MHz, δ(C6F6) = −164.λ) is shown on the left (insets 
show the structure of the multiplets) and the 1H NMR spectrum (CDCl3, 399 MHz, δ(CHCl3) = 
7.27) is shown on the right.  
 
 
 

 
 
Figure 2.21. Assignment of NMR peaks for PYRN-6-1. The PYRN-6-1 molecule is shown at 
the top. The 19F NMR spectrum (CDCl3, 376 MHz, δ(C6F6) = −164.λ) is shown on the left and 
the 1H NMR spectrum (CDCl3, 3λλ MHz, δ(CHCl3) = 7.27)  is shown on the right. Notice that 
fluorine-fluorine coupling occurs across the fissure for (CF3)a and (CF3)b. 
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Table 2.2. 19F and 1H shifts of all identified PAH(CF3)n compoundsa 

ANTH-4-1 
19F: −62.4 (s, 2CF3), 
−65.4 (s, 2CF3) 
 
1H: 9.22 (s, 2H),  
8.46 (s, 2H),  
8.32 (s, 2H) 
 

ANTH-5-1 
19F: −50.4 (s, 1CF3), 
−63.3 (s, 2CF3),  
−66.8 (s, 2CF3) 
 
1H: 9.55 (s, 1H), 
9.11 (s, 2H),  
8.23 (s, 2H) 
 

ANTH-6-1 
19F: −51.2 (s, 2CF3), 
−63.5 (s, 4CF3) 
 
1H: 9.17 (s, 4CF3) 

ANTH-6-2 
19F: −50.6 (s, 1CF3), 
−54.6 (q, 15 Hz, 1 CF3), 
−56.2 (as/qq, 15 Hz, 
1CF3),  
−60.5 (q, 15 Hz, 1CF3) 
−63.2 (s, 1CF3),  
−67.0 (s, 1CF3) 
 
1H: 9.67 (s, 1H), 
9.27 (s, 1H),  
9.10 (s, 1H), 
8.27 (s, 1H) 
 

ANTH-6-3 
19F: 
−56.3 (q, 16 Hz, 1CF3), 
−60.1 (q, 16 Hz, 1CF3),  
−64.0 (s, 1CF3) 
 
1H: 9.79 (s, 1H) 
9.36 (s, 1H) 
8.41 (s, 2H) 

ANTH-6-4 
19F: 
−56.5 (q, 16 Hz, 1CF3), 
−60.2 (q, 16 Hz, 1CF3), 
−63.8 (s, 1CF3),  
 
1H: 9.58 (s, 2H) 
8.39 (s, 2H) 

FLRA-3-1 
19F: −61.1 (s, 1CF3), 
−62.9 (s, 1CF3), 
−65.9 (s, 1CF3) 
 
1H: 8.39 (d, 8 Hz, 1H), 
8.35 (d, 8 Hz, 1H), 
8.25 (d, 8 Hz, 1H), 
8.11 (d, 8 Hz, 1H), 
8.00 (d, 9 Hz, 1H), 
7.76 (d, 8 Hz, 1H), 
7.59 (t, 7 Hz, 1H) 
 

FLRA-3-2 
19F: −61.1 (s, 1CF3), 
−63.5 (s, 1CF3), 
−63.8 (s, 1CF3) 
 
1H: 8.23 (s, 1H), 
8.15 (d, 8 Hz, 1H) 
8.17 (um, 2H), 
7.99 (d, 9 Hz, 1H), 
7.51 (um, 2H) 

FLRA-4-1 
19F: −61.2 (s, 1CF3), 
−63.2 (s, 1CF3),  
−63.4 (s, 1CF3),  
−66.2 (s, 1CF3) 
 
1H: 8.39 (s, 1H), 
8.32 (d, 1H), 
8.30 (s, 1H),  
8.26 (um, 1H) 
8.06 (d, 1H) 
7.78 (um, 1H) 

FLUR-5-1 
19F:  
−62.4 (q, 12 Hz, 1CF3), 
−62.7 (q, 12 Hz, 1CF3), 
−64.8 (s, 1CF3) 
−65.8 (s, 1CF3) 
−69.9 (d, 8 Hz, 1CF3) 
 
1H: 8.66 (s, 1H), 
8.27 (s, 1H),  
8.24 (s, 1H), 
8.17 (s, 1H) 
4.87 (q, 8 Hz, 1H) 
 

PHEN-4-1 
19F: 
−62.4 (s, 2CF3), 
−65.4 (s, 2CF3) 
 
1H: 9.22 (s, 2H), 
8.46 (s, 2H), 
8.32 (s, 2H) 

PHEN-4-2 
19F: 
−62.0 (s, 1CF3), 
−63.9 (s, 1CF3), 
−65.6 (s, 1CF3), 
−65.6 (s, 1CF3) 
 
1H: 9.19 (s, 1H), 
9.03 (s, 1H) 
8.67 (s, 1H) 
8.46 (d, 9 Hz, 1H), 
8.31 (s, 1H), 
8.06 (d, 9Hz, 1H) 

a 19F NMR: 376.5 MHz, CDCl3,shifts referenced to internal standard: C6F6 (δ −164.λ) or 1,4-
bis(trifluoromethyl)benzene (δ −66.4). 1H NMR 399 MHz, CDCl3, shifts referenced to residual 
CHCl3 (δ 7.27). Abbreviation: s, singlet; d, doublet; t, triplet; q, quartet; as/qq, apparent septet or 
quartet of quartets; um, broad unresolved multiplet. Table continues on next page. 
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PHEN-5-1 
19F: 
−62.0 (s, 1CF3),  
−62.3 (q, 12 Hz, 1CF3), 
−62.6 (q, 12 Hz, 1CF3) 
−63.7 (s, 1CF3),  
−65.7 (s, 1CF3) 
 
1H: 9,26 (s, 1H), 
9.23 (s, 1H),  
8.82 (s, 1H),  
8.80 (s, 1H),  
8.41 (s, 1H) 
 

PHNZ-2-1 
19F: −63.4 (s, 2CF3) 
 
1H: d: 8.55 (9 Hz, 1H),  
d: 8.29 (7 Hz, 1H) 
t: 7.95 (8 Hz, 1H) 

PHNZ-2-2 
19F: −63.λ (s, 2CF3) 
 
1H: 8.37 (um, 2H),  
8.25 (s, 2H) 
7.98 (um, 2H) 
 

PHNZ-3-1 
19F: −64.1 (s, 1CF3), 
−64.3 (s, 1CF3), 
−66.6 (s, 1CF3) 
 
1H: 8.80 (s, 1H), 
8.50 (d, 9 Hz, 1H), 
8.40 (s, 1H) 
8.37 (d, 7 Hz, 1H) 
8.04 (t, 8 Hz, 1H) 
 

PHNZ-3-2 
19F: −64.0 (s, 1CF3), 
−64.0 (s, 1CF3),  
−64.5 (s, 1CF3) 
 
1H: 8.56 (d, 9 Hz, 1H), 
8.35 (d, 7 Hz, 1H), 
8.32 (s, 2 H), 
8.03 (t, 8 Hz, 1H) 
 

PHNZ-4-1 
19F: −64.0 (s, 1CF3), 
−64.3 (s, 1CF3),  
−64.5 (s, 1CF3),  
−66.7 (s, 1CF3) 
 
1H: 8.91 (s, 1H),  
8.46 (s, 1H),  
8.41 (s, 2H) 

PHNZ-4-2 
19F: −64.5 (s, 4CF3) 
 
s: 8.40 (s, 4H) 

PHNZ-5-1 
19F: 
 −57.4 (q, 15 Hz, 1CF3), 
−60.4 (q, 15 Hz, 1CF3) 
−64.5 (s, 1CF3),  
−64.6 (s, 2CF3) 
 
1H: 8.67 (s, 1H),  
8.46 (um, 2H) 

PHNZ-6-1 
19F:  
−57.5 (q, 15 Hz, 2CF3), 
−60.4 (q, 15 Hz, 2CF3) 
−64.6 (s, 2CF3) 
 
1H: 8.71 (s, 1H) 

PHNZ-6-2 
19F: 
 −57.5 (q, 16 Hz, 2CF3), 
−60.5 (q, 16 Hz, 2CF3) 
−64.6 (s, 2CF3) 
 
1H: 8.69 (s, 1H) 

PYRN-5-1 
19F:  
−57.6 (q, 19 Hz, 1CF3), 
−58.4 (q, 1λ Hz, 1CF3) 
−60.3 (s, 1CF3),  
−60.7 (s, 1CF3),  
−60.9 (s, 1CF3) 
 
1H: 9.12 (s, 1H), 
8.84 (s, 1H),  
8.83 (s, 1H),  
8.80 (um, 2H) 
 

PYRN-5-2 
19F:  
−57.9 (q, 18 Hz, 1CF3), 
−58.4 (q, 1λ Hz, 1CF3) 
−60.4 (s, 1CF3),  
−60.7 (s, 1CF3),  
−63.6 (s, 1CF3) 
 
1Hb 

PYRN-5-3 
19F: 
−57.7 (q, 19 Hz, 1CF3),  
−58.3 (q, 19 Hz, 1CF3), 
−60.6 (s, 1CF3),  
−60.9 (s, 1CF3), 
−63.5(s, 1CF3) 
 
1Hb 

 

PYRN-6-1 
19F: 
−58.3 (q, 17 Hz, 2CF3), 
−58.7 (q, 17 Hz, 2CF3), 
−60.5 (s, 2CF3) 
 
1H: 9.07 (s, 2H), 
8.80 (s, 2H) 

PYRN-6-3 
19F:  
−53.9 (q, 16 Hz, 1CF3), 
−58.3 (q, 16 Hz, 1CF3), 
−58.9 (q, 19 Hz, 1CF3), 
−60.4 (q, 15 Hz, 1CF3), 
−60.7 (s, 1CF3), 
−63.5 (s, 1CF3) 
 
1H: 9.21 (s, 1H), 
9.15 (um, 1H), 
9.11 (s, 1H), 
8.88 (s, 1H) 
 

 

a 19F NMR: 376.5 MHz, CDCl3, shifts referenced to internal standard: C6F6 (δ −164.λ) or 1,4-
bis(trifluoromethyl)benzene (δ −66.4). 1H NMR 399 MHz, CDCl3, shifts referenced to residual 
CHCl3 (δ 7.27). b These two compounds have not been isolated from each other and the 1H NMR 
signals could not be distinguished. Abbreviation: s, singlet; d, doublet; t, triplet; q, quartet; as/qq, 
apparent septet or quartet of quartets; um, broad unresolved multiplet. 
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Figure 2.22. Drawings of structures for PAH(CF3)n predicted based on NMR spectra. These 
predictions have not yet been confirmed by single crystal X-ray diffraction. 
 

2.2.2. Electrochemistry and Electron Affinity 

 The substitution of an electron-withdrawing group onto a PAH core is known to result in 

molecules with enhanced electron acceptor properties, better air-stability, and improved solid-

state charge-carrier mobilities.5,56-59 In this work the reduction potential, E1/2, and the gas-phase 

EA of CF3 derivatives of ANTH, FLRA, PHEN, PHNZ, and PYRN have been studied. From 

these studies it has been determined there is a regular, linear increase in both the E1/2 and the EA 

with the number of CF3 substitutions on the PAH core. The effect of substitution pattern on E1/2 

and EA values depends on the PAH core. All of the reduction potentials and electron affinity 

measurements are listed in Table 2.3. IUPAC locants used in Table 2.3 are defined in Figure 2.1. 

 For the unsubstituted PAH cores studied in this work E1/2 values range from −3.10 to −1.74 

V vs Fe(Cp)2
+/0. In contrast, for PAH(CF3)n compounds the E1/2 values range from −1.71 to 

−0.46 V vs Fe(Cp)2
+/0. Some representative cyclic voltammograms (CVs) are shown in Figure  
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Table 2.3. Reduction potentials and electron affinity measurements 

 

a Uncertainty in the least significant digit shown in parentheses. b Uncertainty not reported.           
c Substitution pattern not known at this time. d Irreversible reduction, E1/2 estimated from square 
wave voltammetry. 
 

2.23. The change in reduction potential as a function of the number of CF3 groups is dependent on the 

core. The trend for the 3 and 4 ring systems ANTH (3 ring), PHEN (3 ring), FLRA (4 ring), and PYRN (4 

ring) are 0.26 V/CF3 group, 0.29 V/CF3 group, 0.26 V/CF3 group, and 0.27 V/CF3 group respectively. 

cmpd abbreviation gas-phase EA,a 
eV 

E1/2, V vs 
Fe(Cp)2

+/0 
anthracene ANTH 0.53(2)11,12 −2.52 
1,3,6,8,10-ANTH(CF3)5 ANTH-5-1 2.40(2) −1.24 
2,3,6,7,9,10-ANTH(CF3)6 ANTH-6-1 2.81(2) −0.92 
1,2,3,6,8,10-ANTH(CF3)6 ANTH-6-2 2.68(2) −0.98 
fluoranthene FLRA 0.630b,60 −2.31 
FLRA(CF3)3

c FLRA-3-1 — −1.58 
FLRA(CF3)3

c FLRA-3-2 — −1.45 
FLRA(CF3)4

c FLRA-4-1 2.28(1) −1.26 
phenanthrene PHEN −0.01(4)61 −3.10 
1,3,6,8-PHEN(CF3)4 PHEN-4-1 — −1.96 
1,3,6,9-PHEN(CF3)4 PHEN-4-2 — −1.83 
1,3,6,7,9-PHEN(CF3)5 PHEN-5-1 1.95(2) −1.71 
phenazine PHNZ 1.3(1)10 −1.74d 

PHNZ(CF3)2 mixture of 
isomers 

2.00(2) −1.21 

2,4,6-PHNZ(CF3)3 PHNZ-3-1 2.37(2) −1.07 
1,4,6-PHNZ(CF3)3 PHNZ-3-2 2.30(2) −1.12 
1,4,6,8-PHNZ(CF3)4 PHNZ-4-1 2.65(1) −0.92 
1,4,6,9-PHNZ(CF3)4 PHNZ-4-2 2.60(1) −0.97 
1,2,4,6,9-PHNZ(CF3)5 PHNZ-5-1 2.93(1) −0.71 
PHNZ(CF3)6 mixture of 

isomers 
3.24(2) −0.46 

pyrene PYRN 0.41(1)62 −2.65 
1,3,4,6,8-PYRN(CF3)5 PYRN-5-1 2.44(2) −1.25 
1,3,4,6,9-PYRN(CF3)5 PYRN-5-2 2.38(2) −1.27 
1,3,4,6,8,9-PYRN(CF3)6 PYRN-6-1 2.71(2) −1.01 
1,2,4,6,8,9-PYRN(CF3)6 PYRN-6-3 — −1.05 
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Figure 2.23. Representative cyclic voltammograms of PHNZ(CF3)n compounds. (0.1 M N(n-
Bu)4ClO4 in dimethoxyethane, 500 mV sec−1)  
 

Among these 3 and 4 ring systems, with 12–16 total C atoms, the trend in reduction potential as a 

function of the number of CF3 groups is very similar and does not appear to be dependent on shape or the 

number of rings in the system. 

The effect of the number of CF3 groups is much higher in the two-ring system, naphthalene(CF3)n 

(C10H8−n(CF3)n) with a change of 0.37 V/CF3.
51 In contrast the effect is less for the larger five ring system, 

PERY(CF3)n (C20H12−n(CF3)n), where the change is 0.20 V/CF3.
50 Aside from the similarity in 3 and 4 ring 

systems, in general, as the PAH core gets larger the CF3 groups are less effective at withdrawing electron 
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density from the aromatic rings leading to lower magnitude increases in the reduction potential as a 

function of the number of CF3 groups. The heterocyclic PHNZ core does not follow the same trend as the 

3 and 4 ring systems, instead these derivatives show a 0.20 V/CF3 group change in reduction potential 

(Figure 2.23). This suggests that the N atoms in the core diminish the electron-withdrawing effect of the 

CF3 groups possibly by donating electron density back into the aromatic system. 

 The effect of substitution pattern on the reduction potential is dependent on the PAH core. 

The substitution pattern had a significant impact on the E1/2 of derivatives of FLRA and PHEN. 

Between isomers of FLRA(CF3)3 and PHEN(CF3)4 the E1/2 values changed by 0.13 V. In 

contrast, for derivatives of ANTH, PHNZ, and PYRN the difference between isomers was ≤ 0.06 

V. For a selection of PERY(CF3)5 isomers the E1/2 values differed by up to 0.14 V.50 These data 

suggest that PAH cores that only have fissures between rings exhibit less pronounced isomer 

effects on the solution reduction potential. 

 The EA values, shown in Table 2.3, for the all-carbon PAH cores are very low, all less than 

0.6 eV, the azaacene PHNZ exhibits a much higher EA of 1.31 eV. Importantly, the CF3 

derivatives of PAHs show a nearly-linear incremental increase in EA with increasing number of 

CF3 groups substituted on the core. This regular increase in EA allows for the EA of a new 

compound to be predicted, as long as the increase per CF3 group is known for a given core. The 

increase in EA with increasing number of CF3 groups in PAHs was dependent, to some extent, 

on the size of the parent PAH, similar to the change in reduction potential. The fewer C atoms in 

the PAH core the larger the increase in EA. For 6 ring corannulene derivatives (C20H10−n(CF3)n) 

the DFT-predicted change is 0.20 eV/CF3 group.63 Derivatives of a 20 carbon PAH with only 5 

rings, PERY (C20H12−n(CF3)n) showed a change of 0.25 eV/CF3 group.50 For 3 ring ANTH 

(C14H10−n(CF3)n), 3 ring PHEN (C14H10−n(CF3)n), 4 ring FLRA (C16H10−n(CF3)n, and 4 ring PYRN 

(C16H10−n(CF3)n) derivatives the change was 0.37 eV/CF3, 0.39 eV/CF3, 0.41 V/CF3, and 0.39 

eV/CF3, respectively. The EA increase values for FLRA and PHEN derivatives are each based 

on the two data points available at this time and may change if additional EA data is collected. 

Similar to the E1/2 trend the presence of heteroatoms in the PAH core affected the EA trend. For 
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PHNZ (C12H8−n(CF3)n) derivatives the EA trend was attenuated to 0.32 V/CF3 group. This result 

supports the hypothesis that the N atoms are donating electron density back into the aromatic 

system. Representative photoelectron spectra are shown in Figure 2.24. The experimental result 

of 0.37 eV/CF3 for ANTH(CF3)n matched well with a theoretical prediction of 0.35 eV/CF3 

group from Sun and co-workers.5 

 

Figure 2.24. Low-temperature photoelectron spectra (20 K, 266 nm) of ANTH-6-2 and PHNZ-6. 
 

 The effect the N atoms have on the electronic properties can be investigated most directly by 

comparing PHNZ and its all-carbon analog ANTH (Figure 2.25). The relative difference in E1/2 

between ANTH(CF3)n and PHNZ(CF3)n is attenuated as additional groups are added to the core, 

the difference started at 0.81 V when there are no CF3 groups and decreased to 0.46 or 0.52 V for 

ANTH(CF3)6 and PHNZ(CF3)6. The difference in EA as a function of the number of CF3 groups 

for ANTH(CF3)n and PHNZ(CF3)n compounds was also attenuated as more CF3 groups are 

added, it started at 0.78 eV for n = 0 and decreased to 0.43 or 0.56 eV for n = 6. 

 The effect of substitution pattern on EA can be assessed for ANTH, PHNZ, and PYRN. The 

largest difference is observed for ANTH(CF3)6 compounds which differ by 0.13 eV. The rest of 

the isomer pairs differ by ≤ 0.07 eV. Trifluoromethyl derivatives of PERY show a similar 

insensitivity of the EA value to the substitution pattern with a series of PERY(CF3)5 isomers 
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Figure 2.25. Comparison of change in E1/2 and EA for ANTH(CF3)n and PHNZ(CF3)n 
compounds. In both instances the relative change for PHNZ(CF3)n compounds is attenuated 
relative to the relative change for ANTH(CF3)n compounds. 
 

differing up to 0.04 eV, which is within the uncertainty of the measurement.50 Aside from the 

ANTH(CF3)6 outliers, the solution E1/2 was more sensitive to changes in the substitution pattern 

and the structure of the PAH core than the gas-phase EA. In the future, measuring the EA of 

isomers of FLRA(CF3)3 and PHEN(CF3)4 may help elucidate these patterns further. 

 A plot of E1/2 vs EA for all PAH and PAH(CF3)n compounds discussed in this work and some 

additional compounds from ref 50 is shown in Figure 2.26. The plot is nominally linear with a 

slope of 0.74 V eV−1. This demonstrates, for a broad set of PAHs and PAH(CF3)n derivatives, 

that the incremental change in E1/2 from one compound to the next is, on average, attenuated by 

26% relative to the change in EA from one compound to the next. Designers of new electron 

acceptors with targeted EAs will find this correlation useful, because reduction potentials are 

much easier to measure than precise values of gas-phase electron affinities. Significantly, the 

0.74 V eV−1 slope stands in contrast to the 1.0 V eV−1 slope for a similar plot for aromatic 

hydrocarbons published by Ruoff et al. in 1994.64 
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Figure 2.26. Plot of E1/2 vs gas-phase EA for PAH and PAH(CF3)n compounds. Data points for 
PAHs are gray and data points for PAH(CF3)n are black The slope of the least squares fit of the 
data is 0.74 V eV−1. 
 

2.2.3. Crystal Structure Analysis 

 Thermal ellipsoid plots for all PAH(CF3)n compounds crystallized during the course of this 

work are shown in Figure 2.27. The collection of PAH(CF3)n molecules identified in this work 

with varying n values and differing substitution patterns provide interesting crystal structure 

comparisons. The first comparison is the impact of different numbers of CF3 groups, illustrated 

with ANTH-5-1 and ANTH-6-1. Drawings of two neighboring pairs of molecules of ANTH-5-1 

and ANTH-6-1 are shown in Figure 2.28. For both derivatives the upper aromatic core is 

rigorously parallel to the aromatic core below it. The packing varies along both the short and 

long axis of the ANTH core. The most dramatic difference is along the long axis, where the 

slippage for ANTH-5-1 is ca. 0.6 Å and for ANTH-6-1 is ca. 4.0 Å. The ANTH core is only 7.3 

Å, so each ANTH-6-1 overlaps less than half of the neighboring molecule. 

 Another comparison to be made among the crystal structures studied in this work is the 

difference between two isomers of the same composition. Shown in Figure 2.28 are drawings of 

PYRN-5-1 and PYRN-5-2, which have nearly identical EA and E1/2 values and four of their five 

CF3 groups in the same positions, but exhibit very different solid-state packings. For PYRN-5-1, 
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Figure 2.27. Thermal ellipsoids shown at the 50% probability level for all PAH(CF3)n 
compounds crystallized and structurally characterized by X-ray diffraction in the course of this 
work. (F atoms are colored yellow, N atoms are colored blue, and H atoms are shown as spheres 
of arbitrary size). 
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Figure 2.28. Comparison of portions of the X-ray structures of ANTH-5-1 and ANTH-6-1 (top) 
and PYRN-5-1 and PYRN-5-2 (bottom). Both F and H atoms have been omitted for clarity, and 
the C atoms are shown as spheres of arbitrary size. The CF3 C atoms are shaded gray. Each 
drawing is oriented so that the least-squares plane of the lower aromatic core is in the plane of 
the page. For ANTH-5-1, ANTH-6-1, and PYRN-5-2, the least-squares planes of the upper 
aromatic cores are rigorously parallel to the planes of the lower cores. For PYRN-5-1, the least-
squares plane of the upper aromatic core is tilted 5.2° with respect to the plane of the lower core. 
 

the two aromatic cores are nearly parallel, but the second molecule is rotated by 45° resulting in 

three of the rings being nearly superimposed when viewed normal to the least-squares plane 

(LSP) of one of the molecules. The two molecules are not rigorously parallel: the upper molecule 

is tilted by 5.2° relative to the LSP of the lower molecule. The two aromatic cores are separated 

by 3.5–3.7 Å. In contrast, the molecules of PYRN-5-2 are rigorously parallel and are not rotated 

relative to one another. Instead, the molecules are slipped by half the distance of an aromatic 

ring. The result is that there is much less π overlap between adjacent molecules. The distance 

between aromatic cores is also greater with distances ranging from 4.1 to 4.3 Å. 

 The series of PHNZ(CF3)n compounds crystallized for this work allow for a more detailed 

examination of the effect of the number of CF3 groups on packing distances. Introducing 



67 
 

multiple CF3 groups, which repel each other, onto the PHNZ core is expected to reduce PHNZ 

core interactions between adjacent molecules. Indeed, PHNZ(CF3)2,3 derivatives stack in 

columns that exhibit significant core overlap while PHNZ(CF3)4,5,6 derivatives exhibit no core 

overlap. Adjacent molecules of PHNZ-3-1 and PHNZ-3-2 adopt opposite orientations within the 

columns, as shown in Figure 2.29, but molecules of PHNZ-2-1 are all oriented in the same 

direction within columns. The average perpendicular distances between mean planes of 

neighboring PHNZ core atoms are 3.56, 3.44, and 3.55 Å in PHNZ-2-1, PHNZ-3-1, and PHNZ-

3-2, respectively (Figure 2.30). For comparison, the interplanar distance between PHNZ cores is 

3.49 Å.65
 Repulsion between CF3 groups in both the C1 and C5 positions cause less favorable 

stacking interactions in PHNZ-2-1 and PHNZ-3-2 compared to when CF3 groups are at C1 and 

C3, as in PHNZ-3-1, which actually packs closer than bare PHNZ. Having two isomers with 

different packing distances allows for a means of choosing molecules with the same electron-

withdrawing strength, but with potentially different charge transport pathways. Some core planes 

in the crystal structures of PHNZ-4-2 and PHNZ-5-1 are also parallel to adjacent molecules 

(perpendicular distances are 4.00 and 4.09 Å, respectively), but the bulky CF3 groups cause such 

a shift that there is actually no core overlap. In the most extreme case, PHNZ-6-1, all molecules 

pack in a herringbone fashion where no cores are parallel to the nearest neighbors. 

 
Figure 2.29. Comparison of overlap between PHNZ-3-1 and PHNZ-3-2. For both compounds 
adjacent molecules adopt opposite orientations, but the position of the CF3 groups in PHNZ-3-1 
allows for more overlap between molecules. 
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Figure 2.30. Molecular packing of four molecular cores of PHNZ(CF3)n (n = 2–6) viewed down 
the long axis of the PHNZ core. Distances between nearest parallel cores are given. H atoms and 
CF3 groups were removed for clarity. 
 

2.2.4. Reactions of PHNZ(CF3)n with Triethylaluminum 

 Shuster et al. reported a reaction between PHNZ and triethylaluminum, AlEt3, in which they 

suggest that PHNZ promoted homolytic Al–C cleavage and acted as a radical monoanion.66 It 

was hypothesized that PHNZ(CF3)n compounds would be more stable than PHNZ as radical 

monoanions and would therefore form a similar complex intermediate with AlEt3. Three 

reactions, described in the Experimental Details as Reactions A, B, and C, were performed. 

Reaction A involved crude PHNZ(CF3)n to assess whether a reaction with any of the 

PHNZ(CF3)n derivatives would occur, which would warrant further study with individual, 

purified PHNZ(CF3)n compounds. Crude PHNZ(CF3)n was yellow in solution and 30 min after 

adding AlEt3 the reaction mixture turned orange. After 16 h the solution turned red and remained 

that color for the next 80 hours. Changes in the 19F NMR spectra of the PHNZ(CF3)n precursor 

and the reaction mixture were observed including different splitting and shifted peaks. It was 
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determined, based on the color change and the NMR spectral changes, that this reaction was 

promising to attempt with purified PHNZ(CF3)n compounds. 

 Reactions B and C were performed with PHNZ-4-1 and PHNZ-4-2, respectively. Both 

reaction mixtures were initially yellow solutions and over the course of 1 day became light 

orange in color. In both cases the NMR spectra after 4 days looked nearly identical to the spectra 

of the starting materials indicating that this reaction does not work for PHNZ(CF3)4 compounds. 

This is possibly due to (i) steric hindrance blocking the Al atom from interacting with the N atom 

and/or (ii) the four electron withdrawing groups weakening a putative Al–N bond. Given the 

NMR spectral changes observed for Reaction A, it is possible that a PHNZ(CF3)n/AlEt3 reaction 

with n ≤ 3 would be worth studying in the future. 

2.2.5. Charge-Transfer Complex Characterization 

 Table 2.4 lists the names, formulas, and abbreviations of the PAH and PAH(CF3)n 

compounds studied as components of CTCs in this work, their gas-phase ionization energies 

(IEs) and/or EAs, and their solution and/or solid-state visible absorption maxima. The IUPAC 

locants used in this table are defined in Figure 2.1. Compounds with electron-withdrawing 

groups are better electron acceptors than the underivatized parent compound. When electron 

acceptors are mixed with electron donors, such as some parent PAHs, partial charge transfer can 

occur, which frequently leads to new absorption bands referred to as charge-transfer (CT) bands 

These new absorption bands resulted in color changes for most mixtures of PAH and 

PAH(CF3)n compounds studied in this work. Some of the CTC colors appeared to be different in 

1,2-dichloroethane (DCE) solution than in the solid-state, but in some cases these differences 

might be a function of the concentration of the CTC (i.e., low concentration in solution vs high 

concentration in the solid state). For example, ANTH/ANTH-5-1 was golden-yellow in solution 

and orange in the solid state (single crystals as well as thin films). Both ANTH/ANTH-6-1 and 

ANTH/ANTH-6-2 were pink in solution and orange as solids. The CTC CORO/ANTH-6-1 was 

orange-red in solution and red in the solid-state. The most pronounced, and unambiguous, color 

change was observed for PERY/ANTH-6-1 which was yellow-green in solution, similar to the 
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color of a solution of PERY itself, and blue-green in the solid state. In contrast, all three CTCs 

with PYRN as the donor were the same color in solution and in the solid state: PYRN/ANTH-6-1 

was pink, PYRN/AZUL-5-1 was red-purple, and PYRN/PYRN-6-3 was orange.  

 UV-vis spectra of DCE solutions were recorded for all CTCs other than a mixture of CORO 

and ANTH-6-1, for which toluene was the solvent, and solid-state UV-vis spectra were recorded 

for ANTH/ANTH-5-1, ANTH/ANTH-6-1, PERY/ANTH-6-1, and PYRN/ANTH-6-1 (Figure 

2.31). Solution and solid-state spectra appeared similar for all CTCs investigated with both 

methods. Typically the solid-state CT bands were broader and the absorption maxima were 

slightly different than those in solution. A longer wavelength absorption in the solid was most 

pronounced for PERY/ANTH-6-1, which, as mentioned previously, in solution was nearly the 

same color as PERY alone, but as a solid adopted a dark blue-green color. A shift to longer 

wavelength absorption in the solid has previously been observed by Berionni et al. in a CTC with 

ANTH as the donor.67 For PYRN/AZUL-5-1, it appears that CT occurred between the ground 

state of PYRN and the S2 state of AZUL-5-1 because the CT band maximum is at a shorter 

wavelength than the S0–S1 absorption band maximum in AZUL-5-1 alone. 
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Table 2.4. Electron affinity, ionization potential, and spectroscopic dataa   
              
compound or CTC abbreviation gas-phase gas-phase gas-phase longest wavelength 

stoichiometry in single  EA, eV IP, eV Δ(IP/EA), eVb λmax value, nm [eV] 

crystals     soln solid 
              
anthracene ANTH 0.53(2)c 7.439(6)c — < 400 [>3.11] < 400 [>3.11] 

azulene AZUL 0.790(8)c 7.42(2)c — 579 [2.14] — 

perylene PERY 0.973(5)c 6.960(1)c — 523 [2.37] 467 [2.655] 

pyrene PYRN 0.41(1)c 7.426(1)c — < 400 [>3.11] < 400 [>3.11] 

coronene CORO 0.47(9)c 7.26(5)c — 451 [2.75] — 

1,3,6,8,10-ANTH(CF3)5 ANTH-5-1 2.40(2)d — — < 400 [>3.11] < 400 [>3.11] 

2,3,6,7,9,10-ANTH(CF3)6 ANTH-6-1 2.81(2)d — — < 400 [>3.11] < 400 [>3.11] 

1,2,3,6,8,10-ANTH(CF3)6 ANTH-6-2 2.68(2)i — — < 400 [>3.11] — 

1,2,3,5,7-AZUL(CF3)5 AZUL-5-1 2.890(5)d — — 536 [2.31] — 

1,2,4,6,8,9-PYRN(CF3)6 PYRN-6-3 — — — < 400 [>3.11] — 

ANTH/(ANTH-5-1)2 — — — 5.04(2) 467 [2.66] 456 [2.72] 

ANTH/ANTH-6-1 — — — 4.63(2) 523 [2.37] 530 [2.34] 

ANTH/ANTH-6-2 — — — 4.76(2) 506 [2.45] — 

PERY/ANTH-6-1 — — — 4.15(2) 595 [2.08]e 655 [1.90] 

PYRN/(ANTH-6-1)2 — — — 4.62(2) 510 [2.43] 494 [2.51]f 

PYRN/AZUL-5-1 — — — 4.54(2) —g — 

PYRN/PYRN-6-3 — — — — 454 [2.73] — 

(CORO)2/ANTH-6-1 — — — 4.45(5) 504 [2.46] — 
              
a All λmax values were determined by the author of this dissertation. The solution CTC stoichiometries were determined to be 1:1 for 

ANTH/ANTH-5-1, ANTH/ANTH-6-1, PERY/ANTH-6-1, and PYRN/ANTH-6-1 and are assumed to be 1:1 in solution for the other 

CTC combinations b Δ(IP/EA) = IP(PAH) − EA(PAH(CF3)n) 
c From NIST Webbook (http://webbook.nist.gov/chemistry). d From ref 

50 e Shoulder at ca. 640 nm [ca. 1.94 eV]. f This is the maximum of the CT band. g There was no clear CT band maximum (see text). 
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Figure 2.31. Visible spectra showing CT band absorptions. Solution spectra are presented for all 
D/A combinations as DCE solutions, except CORO/ANTH-6-1, for which the solvent was 
toluene. Solid-state spectra are presented for four D/A combinations as thin fi lms drop-cast from 
1:1 DCE solutions. The spectrum of PYRN/PYRN-6-3 was compared with the spectrum of 
PYRN-6-1 because no purified sample of PYRN-6-3 was available after PYRN/PYRN-6-3 
single crystals had been prepared (several crystals were dissolved in DCE to record the spectrum 
of PYRN/PYRN-6-3). The spectrum of PYRN-6-3 is probably similar, but not identical, to the 
spectrum of PYRN-6-1.  
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Determination of the solution stoichiometry for PERY/ANTH-6-1 was complicated by the 

overlap of the trailing edge of PERY absorption and the CT band. This overlap was addressed by 

taking the absorbance of the mixture and subtracting out the contribution of PERY, (i.e., the 

equation used was AbsD/A−%D×AbsD). A comparison of the raw spectra and the PERY-

absorbance-subtracted spectra is shown in Figure 2.32. Job's plots68 for ANTH/ANTH-5-1, 

ANTH/ANTH-6-1, PERY/ANTH-6-1, and PYRN/ANTH-6-1, showing the formation of 1/1 

donor/acceptor (D/A) complexes in solutions for which [D]max = [A]max ≤ 10 mM, are shown in 

Figure 2.33. Plots of spectral data used to determine the equilibrium quotients (KCT values) for 

the ANTH + ANTH-5-1  ANTH/ANTH-5-1 and the ANTH + ANTH-6-1  

ANTH/ANTH-6-1 equilibria at 20 °C in DCE and the molar extinction coefficients of the 1/1 

D/A complexes are shown in Figure 2.34.69,70 The KCT values are 1.7(1) and 2.8(1) M−1, 

respectively. The DCE  and λmax values were found to be 7.7(4) × 102 cm−1 M−1 and 468 nm, 

respectively, for ANTH/ANTH-5-1 and 6.3(3) × 102 cm−1 M−1 and 523 nm, respectively for 

ANTH/ANTH-6-1. 

The CTCs formed between ANTH and ANTH-5-1 and between PYRN and ANTH-6-1 were 

both found to have 1:1 stoichiometries in solution, but both combinations crystallized as 1:2 

complexes, although with significantly different morphologies (the structures will be discussed 

in more detail below). In contrast, the solution and solid-state stoichiometries were the same for 

ANTH/ANTH-6-1 and PERY/ANTH-6-1. No obvious reasons for the discrepancy have been 

identified. It has been suggested that solvent choice is important in determining solid-state 

stoichiometry,30 but this has not been looked into at this time. 
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Figure 2.32. Comparison of the absorption spectra of solution of PERY and ANTH-6-1 with the 
mol% PERY varying from 0% (red spectrum, 100% ANTH-6-1) to 100% (black spectrum, 0% 
ANTH-6-1, top) with the corresponding PERY-absorbance-subtracted spectra (bottom). The 
latter spectra allowed an approximate CT band λmax value for the CTC PERY/ANTH-6-1 of 595 
nm to be determined. As the mol% of PERY increased from 0 to 100% in increments of 10%, the 
CT band absorbance at λmax first increased (e.g., orange spectrum 10% PERY, yellow spectrum 
30% PERY, green and teal spectra 50% and 60% PERY respectively) and then decreased (e.g., 
blue spectrum 70% PERY, indigo spectrum 80% PERY, etc.). 
  



75 
 

 

Figure 2.33. Job’s plots indicating 1/1 charge transfer D/A CTC formation in DCE. From top to 
bottom: ANTH/ANTH-5-1 (λmax = 467 nm), ANTH/ANTH-6-1 (λmax = 523 nm), PERY/ANTH-
6-1 (λmax = 595 nm), and PYRN/ANTH-6-1 (λmax = 510 nm). 
 
 

    

Figure 2.34. Scott plots (left) and Seal plots (right) for ANTH/ANTH-5-1 and ANTH/ANTH-6-
1 titrations in DCE. The acceptor concentration was 5.0 × 10−3 M and the donor concentration 
was varied between 1.0 × 10−2 and 7.0 × 10−2 M. The Keq values for ANTH/ANTH-5-1 and 
ANTH/ANTH-6-1 were found to be 1.7(1) and 2.8(1) M−1, respectively. The DCE  and λmax 
values were found to be 7.7(4) × 102 cm−1 M−1 and 468 nm, respectively, for ANTH/ANTH-5-1 
and 6.3(3) × 102 cm−1 M−1 and 523 nm, respectively for ANTH/ANTH-6-1. 
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Relatively low association constants of 1.7(1) and 2.8(1) M−1 were determined for the CTCs 

ANTH/ANTH-5-1 and ANTH/ANTH-6-1 respectively. These association constants suggest that 

the intermolecular interaction is relatively weak in DCE solution. For these two complexes the 

association constant appears to be directly correlated to the EA, however the ratio between EAs 

is not the same as the ratio between KCT values. The EA of ANTH-6-1 is higher than that ANTH-

5-1 and ANTH/ANTH-6-1 has a correspondingly higher association constant.50 Low association 

constants have been observed for other CTCs with ANTH as the donor. For example, a mixture 

of ANTH and chloranil exhibits a KCT of 1.7 M−1 in chloroform.71 In another example CTC,  the 

association constant for a mixture of ANTH and 4-nitrobenzodifuroxan is reported to be 5.5 

M−1.67 

The energy-level differences between the solution-based CT absorption bands, solution redox 

potentials, and gas-phase EAs and IEs can be compared. For example, consider ANTH/ANTH-5-

1 vs ANTH/ANTH-6-1. The EAs of the two acceptors differ by 0.41 eV, their reduction 

potentials differ by 0.32 V, and their CT λmax values differ by 0.284 eV. The two solution-phase 

differences are in close agreement; the gas-phase EA difference is ca. 26% higher. This is in 

close agreement with the 0.74 V eV−1 relationship found between gas-phase electron affinities 

and solution-phase reduction potentials found for PAH and PAH(CF3)n compounds. In other 

words, differences in gas-phase EAs for a series of compounds are attenuated, in this case by 

26%, when their ―electron affinities‖ (i.e., their reduction potentials are measured in solution). A 

similar attenuation, ca. 20%, was reported for C60(CF3)n compounds in 2007.72 

A similar analysis can be performed for a given acceptor (ANTH-6-1) and different donors 

(ANTH, PERY, and PYRN). Consider ANTH/ANTH-6-1 vs PERY/ANTH-6-1. The IEs of 

ANTH (7.439(6) eV) and PERY (6.960(1) eV) differ by ca. 0.5 eV.73,74 However, their +/0 

reduction potentials differ by only ca. 0.3 V75 and their CT band λmax values with ANTH-6-1 as 

the acceptor differ by only 0.287 eV. Once again, the condensed-phase CT band λmax more 

closely corresponds to the difference in solution (i.e., the difference in ―donor ability‖ of ANTH 

and PERY in solution, E1/2 values) than to the difference in the gas-phase (i.e., the difference in 
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―donor ability‖ of ANTH and PERY in the gas-phase, IEs). In this case the attenuation is ca. 

40% (i.e., 0.3 eV/0.5 eV = 0.6). A similar comparison can be made for the pair of CTCs 

ANTH/ANTH-6-1 and PYRN/ANTH-6-1, but in this case the two donors, ANTH and PYRN, 

have similar ―donor abilities‖ and the comparison is less compelling because the differences are 

so small. Ignoring the uncertainties in the measured values, the IEs of ANTH (7.439(6) eV) and 

PYRN (7.426(1) eV) differ by 0.013 eV,73 their +/0 E1/2 values differ by 0.03 V,75 and the CT 

band λmax values differ by 0.06 eV.  

Selected geometric parameters for the seven Dx/Ay X-ray structures reported in this work and 

for the structure of PYRN/AZUL-5-1 reported previously52 are listed in Table 2.5. Seven of the 

eight structures contain (Dx/Ay/)∞ columns, with six parallel columns surrounding each column in 

pseudohexagonal arrays. Five of these structures consist of infinite columns with alternating 

donors and acceptors (i.e., (D/A/)∞ columns): ANTH/ANTH-6-1, ANTH/ANTH-6-2, 

PERY/ANTH-6-1, PYRN/AZUL-5-1, and PYRN/PYRN-6-3. Drawings of the column stacking 

in these five structures are shown in Figure 2.35. Two of the other structures, ANTH/(ANTH-5-

1)2 and (CORO)2/ANTH-6-1, consist of (D/A2/)∞ or (D2/A/)∞ columns, respectively, also 

arranged in pseudohexagonal arrays. Drawings of these two structures are shown in Figure 2.36. 

The eighth structure, PYRN/(ANTH-6-1)2, consists of discrete D/A2 units arranged so that (i) 

each PYRN molecule is sandwiched between two ―domed‖ ANTH-6-1 molecules and (ii) the 

D/A2 sandwiches are arranged in herringbone-like layers which are virtually superimposed on 

each other, as shown in Figures 2.37 and 2.38. 
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Table 2.5. X-ray Structure Geometric Parameters for Dx/Ay Co-crystalsa   
                                     
structure major axis, Å; minor axis, Å; D/A LSP  A→D(δSP) OOP's rotation of D major axis D minor axis 

  to ...  to ... dihedral  (i.e., π–π overlap), Å D/A major axes slip, Å [%] slip, Å [%] 
                                     

ANTH/(ANTH-5-1)2 D: 7.296; 14.8° D: 2.784; 7.6° 2.2° 3.76–3.86 17.1° 2.42 [33] 1.07 [38] 

 A: 7.301; 9.3° A: 2.800; 12.9° 

ANTH/ANTH-6-1 D: 7.296; 17.5° D: 2.809; 3.0° 2.4° 3.47–3.66 20.7° 2.20 [30] 0.44 [16] 

 A: 7.344; 16.4° A: 2.832; 5.9° 

ANTH/ANTH-6-2 D: 7.301; 18° D: 2.804; 4° 1.9° 3.39–3.62 14.8° 2.24 [31] 0.49 [18] 

 A: 7.342; 16° A: 2.806; 2° 

PERY/ANTH-6-1 D: 5.727; 7.2° D: 2.493; 18.9° 1.0° 3.48–3.66 23.2° 0.89 [16] 2.42 [97] 

 A: 7.353; 0.7° A: 2.849; 15.1° 

PYRN/(ANTH-6-1)2 D: 7.006; 6.7° D: 4.919; 3.4° 1.6° 3.36–3.73 33.0° 0.99 [14]b 0b 

 A: 7.300; 11.6° A: 2.816; 0.5° 

PYRN/AZUL-5-1 D: 7.027; 7.0° D: 4.917; 5.2° 0.8° 3.58–3.67 3.85° 0 0 

 A: 5.236; 3.1° A: 3.164c; 1.8° 

PYRN/PYRN-6-3 D: 7.009; 17.6° D: 4.904; 7.0° 3.1° 3.45–3.60 22.8° —d —d 

 A: 7.041; 15.9° A: 4.900; 11.4° 

(CORO)2/ANTH-6-1 D: 7.359; 1.2° D: 5.676; 24° 4.8° 3.45–3.76 2.6° 0 2.49 [44] 

 A: 7.353; 0.7° A: 2.844; 22.7° 

ANTH/NAPH(F)8
e D: 7.296; 14.8° D: 2.784; 7.6° 2.7° 3.34–3.42 19.9° D: 0.26 [3.5] D: 1.07 [38] 

 A: 7.301; 9.3° A: 2.800; 12.9°    A: 0.12 [2.5] A: 1.08 [26] 
                                     
a Al l data from this work unless otherwise indicated. b Structure is comprised of acceptor-donor-acceptor isolated triads so donor to donor slip axis is not possible. 
c Minor axis taken as longest distance across 7-membered ring perpendicular to major axis. d Major and minor axis slip dimensions are meaningless in this case 
since the donor molecules on either side of the acceptor are rotated almost perpendicular to each other (86.1°). e from Collings et al.76 
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Figure 2.35. Pseudohexagonal packing of the (D/A/)∞ columns in the structures of 
ANTH/ANTH-6-1 (top left), ANTH/ANTH-6-2 (top right), PERY/ANTH-6-1 (middle), 
PYRN/AZUL-5-1 (bottom left), and PYRN/PYRN-6-3 (bottom right). The H atoms have been 
omitted for clarity. The F atoms are depicted as large spheres so that the "Teflon-like" insulation 
between the columns can be appreciated. 
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Figure 2.36. Pseudohexagonal packing of the (D2/A/)∞ or (D/A2/)∞ columns in the structure of 
(CORO)2/ANTH-6-1 (top) and ANTH/(ANTH-5-1)2 (bottom). The H atoms have been omitted 
for clarity. The F atoms are depicted as large spheres so that the ―Teflon-like‖ insulation between 
the columns can be appreciated.  
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Figure 2.37. Drawings of the structure of PYRN/(ANTH-6-1)2, showing (i) how the PYRN 
donor is sandwiched between two domed ANTH-6-1 acceptors (top) and (ii) the overlap between 
the π systems of the PYRN and one of its two nearest-neighbor ANTH-6-1 molecules (bottom). 
The atoms are depicted as spheres of arbitrary size, and the F atoms in the bottom drawing are 
highlighted in yellow. 
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Figure 2.38. Drawings showing the herringbone-like layers of the CTC A/D/A sandwiches in the 
structure of PYRN/(ANTH-6-1)2. The top and middle drawings show a single layer of 
sandwiches in two perpendicular orientations. The bottom drawing shows two superimposed 
layers. The H atoms have been omitted for clarity and the C and F atoms are depicted as spheres 
of arbitrary size. 
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As an example of the way the stacking within and the packing of the (Dx/Ay/)∞ columns can 

be analyzed, the structure of ANTH/ANTH-6-1 will now be described in detail. The ANTH and 

ANTH-6-1 molecules have crystallographic inversion symmetry, so only half of each molecule 

is unique. In each (ANTH/ANTH-6-1/) column the centroids () of the ANTH donors and 

ANTH-6-1 acceptors lie on a rigorously straight line that is parallel to the crystallographic a axis, 

as shown in Figure 2.39. The distance along the ... vector between ANTH centroids or 

between ANTH-6-1 centroids is the unit cell a dimension, 7.3206(3) Å. 

 
 

 

Figure 2.39. (Top) The unit cell for the structure of ANTH/ANTH-6-1 showing that the 
centroids of both ANTH and ANTH-6-1 lie on a straight line that is parallel to the 
crystallographic a axis (50% probability ellipsoids). (Bottom) Drawing of the ANTH-6-1 
molecule in the structure of ANTH/ANTH-6-1 showing that the C(sp2) aromatic core is only 
approximately planar (the atoms are shown as spheres of arbitrary size). In both drawings the H 
atoms have been omitted for clarity. 
 

 The ANTH molecule is essentially planar. The range and average out-of-plane deviations 

(OOP's) from the LSP of the 14 C(sp2) atoms are ±0.002–0.012 Å and 0.005 Å, respectively. The 
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aromatic core of the ANTH-6-1 molecule is only approximately planar, as also shown in Figure 

2.36. The range and average OOP's from the LSP of the ANTH-6-1 C(sp2) atoms are ±0.024–

0.132 Å and ±0.066 Å, respectively. The C(sp2) LSP's of ANTH and ANTH-6-1 are nearly 

parallel; the interplane dihedral angle is 2.4°.  

 Figure 2.40 shows the orientations of the major and minor axes of the ANTH and ANTH-6-1 

molecules with respect to the ... vector, which is not normal to the LSP of either molecule. 

The major axis of each molecule is defined here as the line which connects the centroids of (i) 

C2 and C3 and (ii) C6 and C8 and the minor axis as the line connecting C9 and C10. The angles 

between the ... vector and the major and minor axes of ANTH are 17.5 and 3.0°, 

respectively; for ANTH-6-1 these angles are 16.4 and 5.9°, respectively. Two views of 

ANTH/ANTH-6-1 stacking in each (D/A/)∞ column, one looking down the ... vector and one 

looking down the normal to the ANTH LSP, are shown in Figure 2.41. 
 

 
 

Figure 2.40. Drawing of the structure of ANTH/ANTH-6-1 showing the orientations of the 
major and minor axes of the ANTH and ANTH-6-1 molecules (shown as dashed lines) with 
respect to the vertical dashed line through the  of the 14 C(sp2) atoms of each molecule (the 
's are shown as small circles; H atoms omitted for clarity; C and F atoms are shown as spheres 
of arbitrary size). The angles between the ... vector and the major and minor axes of ANTH 
are 17.5 and 3.0°, respectively; for ANTH-6-1 these angles are 16.4 and 5.9°, respectively. 
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Figure 2.41. (Top) View looking down the centroid...centroid (...) vector, which is parallel 
to the crystallographic a axis, of two ANTH and one ANTH-6-1 molecules in one of the (D/A)∞ 
columns in the structure of ANTH/ANTH-6-1 (H atoms omitted for clarity; C and F atoms 
shown as spheres of arbitrary size). Note that the three 's, which are depicted as small circles, 
are superimposed in this view. (Bottom) View looking down the normal to the ANTH least-
squares planes. The three 's are connected with dashed lines. 
 

A flat projection of one pair of adjacent ANTH donor and ANTH-6-1 acceptor molecules 

along the (D/A/)∞ columns in the structure of ANTH/ANTH-6-1 is shown in Figure 2.42. The 

projection of the ANTH-6-1 major axis onto the ANTH LSP is rotated 20.7° relative to the 

ANTH major axis. The numbered C(sp2) atoms of ANTH-6-1 that appear "within" or nearly 

within the red lines of the ANTH π-electron cloud have the following perpendicular out-of-plane 

displacements from the ANTH least-squares plane: C1, 3.63 Å; C2, 3.66 Å; C5, 3.34 Å; C11, 

3.49 Å; C12, 3.46 Å; C13, 3.48 Å; and C14, 3.50 Å. Note that the standard errors for C–C 

distances in this structure are no more than ±0.002 Å. 
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Figure 2.42. A flat projection of one pair of adjacent ANTH and ANTH-6-1 molecules along the 
(D/A)∞ columns in the ANTH/ANTH-6-1 co-crystal (H and F atoms omitted for clarity; CF3 
carbon atoms are highlighted as dark circles; the LSP of the ANTH C(sp2) atoms is coincident 
with the plane of the page). The projection of the ANTH-6-1 major axis onto the ANTH LSP is 
rotated 20.7° relative to the ANTH major axis. The numbered C(sp2) atoms of ANTH-6-1 that 
appear "within" or nearly within the red lines of the ANTH π-electron cloud have the following 
perpendicular out-of-plane displacements from the ANTH least-squares plane: C1, 3.63 Å; C2, 
3.66 Å; C5, 3.34 Å; C11, 3.49 Å; C12, 3.46 Å; C13, 3.48 Å; and C14, 3.50 Å. Note that the 
standard errors for C–C distances in this structure are no more than ±0.002 Å. 
 

As predicted by Sun and co-workers,77 mixing of CF3 containing substituents with 

underivatized PAHs led to mainly π-π stacking. Similar mixed stacks have been seen many times 

for co-crystals of fluorine-containing substituents with electron donors.26,76,78,79  

Two interesting comparisons in solid-state packing can be made when there is little to no 

difference in gas-phase ion energetics. The CTCs ANTH/ANTH-6-1 and ANTH/ANTH-6-2 had 

no difference in donor IE (i.e., ANTH is the donor in both cases) and little difference in acceptor 

EA (2.81(2) eV for ANTH-6-1 and 2.68(2) eV for ANTH-6-2). Their solid-state packing is 

similar with infinite stacks of alternating donors and acceptors and with the stacks organized in 

pseudohexagonal arrays. However, in ANTH/ANTH-6-1 these stacks were parallel to each other, 

whereas in ANTH/ANTH-6-2 adjacent stacks were tilted from one another by 33.7° as shown in 

Figure 2.43. Given the minimal differences in ion energetics, the most likely explanation is the 

difference in structure between the centrosymetric molecule, ANTH-6-1, and the 
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Figure 2.43. (Top) Packing of ANTH/ANTH-6-1 co-crystal. Adjacent stacks are parallel. 
(Bottom) Packing of ANTH/ANTH-6-2 co-crystals. Adjacent stacks have a 33.7° angle of 
corrugation between them. This is most apparent in the top three molecules of the bottom image 
where there are two ANTH molecules around an ANTH-6-2 molecule, the angle is measured 
between the central ANTH-6-2 molecule and one of the adjacent ANTH molecules. F atoms are 
colored yellow. 
 

non-centrosymmetric molecule, ANTH-6-2. It is likely that the differences in intermolecular 

F...F interactions may be the reason for the different interstack orientations. 

 The next comparison is between ANTH/ANTH-6-1 and PYRN/ANTH-6-1. The difference in 

donor IE is only 0.013 eV and both CTCs have the same acceptor. The difference in solid-state 

packing is significant. As described above the structure of ANTH/ANTH-6-1 consists of parallel 

infinite alternating D/A stacks whereas the structure of PYRN/ANTH-6-1 consists of A/D/A 

sandwiches in herringbone-like planes superimposed on one another in the third dimension 

(Figures 2.37 and 2.38). This difference may have been due to the rotation between PYRN and 

ANTH-6-1 which may have induced a bend in the ANTH-6-1 core leading to the observed 

structure. 
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2.3. Summary and Conclusions 

 The sealed-ampoule reaction between a PAH and CF3I can be used to produce PAH(CF3)n 

compounds with a variety of compositions and isomers. It has also been demonstrated that this 

method can be used to add CF3 groups to PHNZ, which has not been post-synthetically 

trifluoromethylated in the past. In general, when PAHs with 8–10 carbons available for 

substitution are reacted with at least 10 equivalents of CF3I the main PAH(CF3)n products will 

have a range of n values from 4 to 6. Most of the products are ≤ 60% substituted, but higher 

levels of substitution can be achieved. The shape of the PAH does play a role: the predominant 

PHEN(CF3)n products had lower n values than derivatives of the linear acene, ANTH. Changing 

the number of rings in the parent PAH from 3 to 4 (i.e., ANTH vs PYRN) did not significantly 

impact the product distribution, likely because both PAHs have the same number of C(sp2) atoms 

available for substitution. Finally, reaction times of less than 1 h and using ≤ 8 equivalents of 

CF3I in the reaction led to a wider product distribution and lower n values. 

The addition of electron-withdrawing CF3 groups to PAHs resulted in a regular, incremental 

increase in both the E1/2 values and EAs as a function of the number of CF3 groups. PAHs with 3 

or 4 rings have very similar trends in E1/2 and EA as a function of the number of CF3 groups. The 

presence of heteroatoms in the PAH core decreases the electron-withdrawing ability of the CF3 

groups and results in lower changes in E1/2 or EA per CF3 group added. The substitution pattern 

impacts the E1/2 more than the EA and the largest impacts of substitution pattern are observed for 

PAHs with bay or fjord regions, such as FLRA, PHEN, and PERY. Reduction potentials and 

EAs can also be correlated and for a broad selection of PAH and PAH(CF3)n the approximately 

linear plot exhibited a slope of 0.74 V eV−1. The significance of this is that differences in gas-

phase acceptor properties of PAH(CF3)n compounds are attenuated in solution, and presumably 

would also be attenuated in the solid state. 

 CTCs are formed when solutions of PAHs and PAH(CF3)n compounds are mixed. A color 

change is typically observed and many PAH/PAH(CF3)n CTCs pack in pseudohexagonal arrays 

of alternating donor-acceptor. The association constants for ANTH/ANTH-5-1 and 
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ANTH/ANTH-6-1 were found to be 1.7(1) and 2.8(1) M−1 in DCE solution. The energy of the 

CT band is more closely approximated by the difference in solution oxidation/reduction 

potentials of the donors and acceptors than by the difference in gas-phase IEs and EAs of the 

donors and acceptors. 

2.4. Experimental Details 

2.4.1. Reagents and Solvents. All reagents and solvents were reagent grade or better. 

Anthracene (TCI America, 94%), coronene (TCI America, 95.0%) fluorene (Aldrich, 98%), 

fluoranthene (Aldrich, 98%), pyrene (Alfa Aesar, 98%), phenanthrene (Aldrich, 98%), phenazine 

(Aldrich, 98%), perylene (Aldrich, 99%), ACS grade toluene (Fisher), Spectroscopy grade 

toluene (Burdick & Jackson), HPLC grade heptane (Fisher Scientific), HPLC grade acetonitrile 

(EMD or Fisher), HPLC grade methanol (Fisher), ACS grade dichloromethane (Fisher), 

triethylaluminum 25 wt% in toluene (Aldrich), hexafluorobenzene (Aldrich), 1,4-

bis(trifluoromethyl)benzene (Central Glass), chloroform-D (Cambridge Isotopes Laboratories), 

and 1,2-dichloroethane (Acros or Fisher Scientific) were used as received. AZUL-5-1 was 

prepared by Mr. Tyler T. Clikeman as previously described.52 For the reaction of PHNZ(CF3)n 

with triethylalumium ACS grade toluene was refluxed over sodium metal under N2 for 3 h 

followed by distillation under N2. For NMR analysis of the reaction of PHNZ(CF3)n with 

triethylaluminum: d8-toluene (Cambridge Isotopes Laboratories) and hexafluorobenzene 

(Oakwood Products) were dried over activated 3 Å molecular sieves and distilled under N2. 

2.4.2. Reactions of PAH with CF3I. Reactions were performed by Strauss-Boltalina postdoc Dr. 

Igor V. Kuvychko as previously described.50 Reaction conditions for each PAH substrate are 

listed in Table 2.1. 

2.4.3. Separation of PAH(CF3)n Compounds.  

PAH(CF3)n compounds were separated by the author using an HPLC Prominence system 

(Shimadzu) comprised of LC-6AD pump, 2 mL sample loop, equipped with SPD-20A UV-vis 

detector, SPD-M20A diode array detector, and CBM-20A communications bus module. Three 

columns were used for separations (i) Cosmosil Buckyprep (Nacalai Tesque) preparative column 
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(250 × 20 mm i.d), (ii) Cosmosil Buckyprep (Nacalai Tesque) semi-preparative column (250 × 

10 mm i.d.), and (iii) FluoroFlash (Fluorous Technologies, Inc.) analytical column (150 × 4.6 

mm i.d.). Separation conditions and compounds isolated at each step are detailed in the results 

and discussion. 

2.4.4. Characterization of Newly Identified Compounds 

Preliminary isomer identification was performed by the author using 19F and 1H NMR 

spectroscopy. Fluorine-19 (376 MHz) and proton (399 MHz) NMR spectra of samples dissolved 

in CDCl3 were recorded on a Varian Innova 400 MHz instrument using a 1 s relaxation time and 

a 45° pulse angle. The 19F chemical shifts were referenced using either hexafluorobenzene (δ 

−164.λ) or 1,4-bis(trifluoromethyl)benzene as an internal standard (δ −66.4). The 1H chemical 

shifts were referenced using the resonance of the residual CHCl3 in CDCl3 as an internal 

standard (δ 7.27).  

UV-vis spectra were recorded by the author using a Cary 500 UV/Vis/NIR 

spectrophotometer. Mass spectra were recorded by the author with the assistance of Dr. Olga V. 

Boltalina or Dr. Kuvychko using an electrospray ionization source on either a 2000 Finnigan 

LCQ Duo or a Finnigan LTQ instrument. For mass spectrometry the carrier solvent was 

acetonitrile at 0.3 mL min−1; the samples were injected as solutions in dichloromethane or 

acetonitrile.  

In this work solution reduction potentials have been determined by cyclic voltammetry (CV) 

using a three electrode system. The platinum working electrode is where oxidation and reduction 

of the analytes occur. Current flows into the system through the platinum auxiliary electrode. 

The potential is controlled as the energy difference between the working electrode and a 

reference electrode. A silver wire quasi-reference electrode was used because the measurements 

were made in non-aqueous solutions. Since the potential between the working and reference 

electrodes is then a function of the composition of the system, ferrocene (Fe(Cp)2) was used as 

an internal standard for the potential of the system and all reduction potentials are reported 

versus Fe(Cp)2
+/0. In a CV experiment the potential is scanned, at a set scan rate, to a set value, 
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then the potential is scanned in the opposite direction, back to the initial. The current in the 

system changes as species are either oxidized or reduced. A cyclic voltammogram is produced 

by plotting the current as a function of the potential. For the electron acceptors studied in this 

work the reduction potential is a measure of the electron accepting capabilities of the molecule; 

as the reduction potential increases, i.e., becomes less negative, the molecule is easier to reduce 

and is therefore a better electron acceptor. CV measurements were carried out in a purified 

dinitrogen-atmosphere glovebox using a PAR 263 potentiostat/galvanostat. CV measurements 

utilized 0.1 M tetrabutylammonium perchlorate in dimethoxyethane with platinum working and 

counter electrodes and a silver wire quasi-reference electrode at a scan rate of 500 mV s−1 using 

ferrocene as an internal standard. Electrochemical measurements for ANTH-6-2, all FLRA(CF3)n 

compounds, PHEN-4-1, PHEN-4-2, all PHNZ(CF3)n compounds, and PYRN-6-3 were performed 

by the author. All other electrochemical measurements were performed by Dr. Kuvychko. 

2.4.5. X-ray Crystallography of PAH(CF3)n Compounds 

 To perform single crystal X-ray diffraction, the molecule of interest must be grown as a 

single crystal, typically from solution. The crystal is then mounted onto the instrument in the 

path of the X-ray beam. Incident X-rays are diffracted by the electrons in the crystal lattice and 

produce a diffraction spot when Bragg’s δaw is satisfied. Many diffraction spots are generated as 

the crystal is rotated in the X-ray beam. A Fourier transform of the diffraction pattern results in 

an electron density map of the crystal. Larger molecules with more electrons will have a higher 

electron density. The molecular structure is then modeled by fitting atoms to the electron density. 

The model is refined to minimize discrepancy between the model and the data, while also 

minimizing the data-to-parameter ratio. 

All crystals were grown by the author via slow solvent evaporation. X-ray crystallographic 

studies were performed by Dr. Kuvychko, Mr. Eric V. Bukovsky, and Mr. Clikeman. Some 

crystal structures were collected at Colorado State University using a Bruker APEX-II CCD 

diffractometer with a Mo Kα X-ray tube source and graphite monochromator. Other crystal 

structures were collected at the Advanced Photon Source synchrotron instrument at Argonne 
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National Laboratory, Argonne IL, on beamline 15ID-B with a wavelength of 0.40651 Å, 

employing a diamond 1 1 1 monochromator and a Bruker D8 goniometer with the assistance of 

Dr. Yu-Sheng Chen. Diffraction data for PHNZ-6-1 were collected during the 2014 American 

Crystallographic Association Summer Course in Chemical Crystallography at the University of 

Notre Dame using a Bruker Kappa APEX II CCD diffractometer employing Cu Kα radiation and 

a graphite monochromator. 

Unit cell parameters were obtained from least-squares fits to the angular coordinates of all 

reflections, and intensities were integrated from a series of frames (ω and ϕ rotation) covering 

more than a hemisphere of reciprocal space. Absorption and other corrections were applied using 

SCALE.80 The structure was solved using direct methods and refined (on F2, using all data) by a 

full-matrix, weighted least-squares process. Standard Bruker control and integration software 

(APEX II) was employed81 and Bruker SHELXTL software was used with Olex 2 for structure 

solution, refinement, and molecular graphics for PHEN-4-1, PHEN-4-2, and all PHNZ(CF3)n 

compounds.82,83 The data for PHNZ-6-1 were indexed with three twin components and 

absorption and other corrections were applied using TWINABS.84 A small amount of twinning in 

PHNZ-6-1 was accounted for by modeling disorder near one F atom. 

2.4.6. Reaction of PHNZ(CF3)n with Triethylaluminum 

Three reactions of PHNZ(CF3)n with triethylaluminum were performed by the author. The 

proposed reaction is shown below. 

 

PHNZ(CF3)n + 2 eq. AlEt3                        2 PHNZ(CF3)nAlEt2 + 2 C4H10 

 

Reaction A was performed with crude PHNZ(CF3)n reaction mixture from Reaction 7 (Table 

2.1) mixed with 2 equivalents (assuming n = 4) of AlEt3, stirred at room temperature, under inert 

atmosphere in a N2 glovebox for 4 days. Reaction B was performed with PHNZ-4-1, 2 

equivalents of AlEt3, stirred at room temperature in a N2 glovebox for 3 days. Reaction C was 

performed with pure PHNZ-4-2 and 2 equivalents of AlEt3, stirred at room temperature in a N2 

toluene 
rt, N2, 4 d 
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glovebox for 4 days. For all reactions, after the stirring was stopped the reaction mixture was 

dried under vacuum and redissolved in d8-toluene for NMR analysis. 

2.4.7. Characterization of Charge-Transfer Complexes 

Solution spectra of the CTCs were recorded by the author. Unless otherwise noted the spectra 

were recorded using a 1 cm quartz cuvette containing DCE solutions. For PYRN/PYRN-6-3 

several diffraction-quality single crystals were re-dissolved in DCE and the spectrum was 

recorded using a 10 cm quartz cuvette. For CORO/ANTH-6-1 the spectra were recorded in 

toluene due to the low solubility of CORO in DCE. Solid-state UV-vis spectra were obtained by 

Mr. Bukovsky. Solutions of 1/1 D/A were drop-cast onto a quartz slide and the experiment was 

performed in dual-beam mode with another quartz slide in the background subtraction beam. The 

stoichiometry of the CTCs in solution was determined, by the author, using Job’s method of 

continuous variation.68 Solutions of donor and acceptor with concentrations of 1 × 10−2 M were 

prepared and subsequently mixed to cover the range of 0% donor to 100% donor in increments 

of 10%. Measurements were taken in a 1 cm quartz cuvette. The absorbance of each solution was 

plotted versus the D/A ratio.  

Association constants for ANTH/ANTH-5-1 and ANTH/ANTH-6-1 were determined, by the 

author, by measuring the absorbance at the charge transfer band maximum as a function of 

changing donor concentration. Measurements were taken in a 1 cm quartz cuvette. The 

concentration of the acceptor was held constant at 5 × 10−3 M and the concentration of the donor, 

ANTH, was varied between 1 × 10−2 M and 7 × 10−2 M. The resulting data were used in a Scott 

analysis, Equation 2.1, where the absorbance at the charge transfer maximum is plotted versus 

the absorbance and the slope of the fitted line gives the association constant.69 The same data 

were analyzed according to Seal’s equation, Equation 2.2, where the sum of the donor and 

acceptor concentrations are plotted versus the product of the concentrations divided by the 

absorbance and the slope of the fitted line is the molar absorptivity.70 

                                  (Equation 2.1) 
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                                   (Equation 2.2) 

2.4.8. Gas-Phase Electron Affinity 

 Electron affinities were measured by Strauss-Boltalina collaborator Dr. Xue-Bin Wang and 

his co-workers at the Pacific Northwest National Laboratory. The measurement of gas-phase 

electron affinities provides direct information on the molecule of interest without solvation 

effects. Photoelectron spectra are collected after the molecules are at low-temperatures (ca. 12–

20 K) to reduce molecular vibration and therefore eliminate what is known as the hot band which 

is observed at the low binding energy side of the spectrum.  

 The instrument is operated and functions in the following manner. A dilute solution of the 

molecule of interest is chemically reduced by tetrakis(dimethylamino)ethylene. This solution is 

injected into the instrument through a desolvation capillary heated to ca. 80 °C. The desolvated 

anions pass through a series of skimmers and ion guides to the 3D Paul ion trap where ions are 

thermalized to low temperatures (ca. 12–20 K) by collisions with 0.1 to 1 mTorr helium with 

20% H2 gas. Cooled ions are then sent through a time-of-flight mass spectrometry flight tube 

after which the ion of interest is selected by a mass gate. The selected ions interact with a laser 

which leads to the photodetachment of electrons, which are then collected by a magnetic bottle, 

guided through an electron flight tube and detected by three multi-channel plates. The 

photoelectron time-of-flight spectra are converted to kinetic energy spectra through calibration 

by known spectra. Finally, the binding energies are obtained by subtracting the kinetic energy 

spectra from the energy of the photodetachment laser used. The electron affinity of each 

compound was directly measured from the first peak maximum which is produced by the 0–0 

transition in the corresponding photoelectron spectrum.85 The energy resolution (ΔE/E) was ca. 

2% (i.e., ca. 20 meV for 1 eV electrons).  
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CHAPTER 3: STRICTLY ANAEROBIC STIRRED MEDIA MILLING: THE EFFECT 
OF OXYGEN ON MILLING DYNAMICS, CRYSTALLITE SIZE, AND SURFACE 

COMPOSITION OF SILICON NANOPARTICLES 
 
 
 

3.1. Introduction 

 Comminution by mechanical attrition (grinding) is a routine method to reduce particle size 

which is beneficial for: increasing surface area and reactivity of a material, increasing solubility, 

maximizing solids loading, thickening and stabilizing slurries/suspensions, intimate 

homogenization of powdered materials, homogenizing particle size and morphology, and top 

down manufacture of nanoparticles.1-8 The desirability of nanoparticles for a host of reasons 

makes them attractive synthetic targets; however, commonly employed bottom-up synthesis, 

while well-established, is sensitive to many variables and requires exceptional control over 

solvent, reagents and any possible contaminants (known or otherwise), temperatures, reaction 

time, pH, surfactants, and other additives for reproducibility.9-11 Top-down grinding of materials 

to form nanoparticles is attractive from the standpoint of cost and, in certain applications, 

irregular morphologies and larger size distributions of milled nanoparticles can be tolerated.5,7,12 

The properties that make nanoparticles attractive (rapid solubility, increased suspension 

properties, rapid reaction rates, high surface areas) also make them difficult to synthesize in high 

purity. For example, nanoparticles possess the inherent property of having a significant portion 

of the per-mass or per-volume composition of the material as surface material which necessitates 

exacting control of all components that could affect the surface chemistry during nanoparticle 

formation. Whether via solution based bottom-up synthesis or top-down grinding based methods; 

in both cases any and all compounds that can interact with the nascent surface have the 

possibility of reacting and contaminating the particle surface. Simple, top-down grinding 

methods with precise control over all reagents and contaminants are required to make further 

strides in this field. 
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 The grinding method most discussed in literature which is easily adapted to anaerobic 

conditions is a ball mill either inside an inert atmosphere glovebox, or charging a ball mill jar in 

an inert atmosphere and then sealing with an inert gas. While it is simple to adapt a ball mill to a 

glovebox, presumably without even opening the glovebox face, ball mills themselves are ill -

suited for efficient production of high purity nanoparticles.1-3,13 First, ball mills are known to 

have poor efficiency when grinding a material below ca. 1 m. This is due to simple statistics, 

the chances of a ball in the milling jar striking a particle in such a way that particle fracture 

occurs decreases as the particle size decreases, requiring considerably longer milling times for 

marginal decrease in particle size.3,13 Second, a ball mill relies on high-energy impact to fracture 

particles and, in the process, damaging the milling balls and milling jar over time and is known 

to contaminate the sample with measurable amounts of the milling balls or milling jar 

materials.1-3 Due to contamination concerns milling balls and jars must be chosen carefully in 

order to not inadvertently react with or contaminate the sample. 

 A mill design well suited to efficiently grinding materials to fine particulate size, 10–1 m 

and easily into the nm range, is a stirred media mill, sometimes called an attritor mill or a stirred 

ball mill.1,13,14 The attritor mill imparts energy to fine milling media in a stationary vessel 

through a rotating mixer, maximizing the mechanical energy imparted to the milling media and 

material.1,3 It has been claimed that a stirred media mill can grind a material up to 10 times faster 

compared to a conventional ball mill.3,15 The grinding process occurs by a cyclic mechanism of 

increasing lattice defects generated through severe plastic deformation of the sample particles 

during grinding via various particle- mill, media, and particle interactions until a critical potential 

energy point in an individual particle is reached, such that further imparted energy from the mill 

causes particle fracture. A stirred media mill can operate with a solvent-covered or dry sample 

allowing fine control over what materials contact the freshly exposed reactive material during the 

grinding process. However, the stirred media mill is not without its problems. Due to its high-

energy transfer and rapid grinding of a sample, rapid amorphization can occur if care is not taken 

to prevent aggregation and agglomeration of fine particles that limit further particle fracture.  
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 Factors affecting grinding rate, ultimate grinding limit, and other grinding dynamics of a 

stirred media mill have been explored by Peukert et al. and others at length.13,14,16-24 Peukert et al. 

show that grinding efficiency in stirred media mill applications depends on multiple variables 

including milling time, mill media loading percent, agitator tip velocity, temperature, and the 

ability of the milling fluid and additives to stabilize the particles against agglomeration.14,16-

18,20,23 Various additives to stabilize the suspension and mitigate agglomeration by means of 

electrostatic, steric, or electrosteric stabilization have been shown to allow further particle size 

reduction to occur compared to systems without such additives.14,17,23 This concept is logical 

from the stand point of the system changing to minimize the surface potential (Figure 3.1).25,26 

The nascent particle surfaces generated during grinding are quite reactive and therefore the 

surface potential is greatly increased during milling. At some point it becomes more favorable 

(under the conditions created during grinding) for a sample to agglomerate into larger particles, 

thereby reducing the generated surface potential. In many respects this shift to minimize surface 

potential is similar to micelles in a solution forming a predictable size based on properties of the 

aqueous and lipid portions, type and quantity of surfactant and any additives for salts, the system 

will change to minimize the surface potential under that particular set of conditions. The major 

difference being that during comminution of a sample in a mill the set of conditions is dynamic 

throughout the milling cycle, i.e., as more fresh surface is exposed, chemical reactions, 

physisorption, and particle agglomeration can augment the surface and can further change the 

overall surface potential.  
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Figure 3.1. Diagram showing different regions of surface potential of a particle suspended in a 
solution. In this diagram the particle is negatively charged attracting positive charges to the 
immediate surface that slowly (if at all) exchange with the solution, this layer is known as the 
Stern Layer, and has a related Stern potential. Outside the Stern Layer is a more labile layer that 
exchanges more rapidly with the solution and has its own associated potential known as the Zeta 
potential (ζ – potential). The ζ – potential can be measured directly and is determined by the 
suspended particle (which determines the Stern layer), the solvent, any additives (buffers, 
surfactants and other physiochemical interacting species) and other particles and their associated 
layers suspended in solution. The ζ – potential also dictates how stable a suspension is with low 
values of ζ indicative of  rapid flocculation and high values indicative of a stable 
suspension/colloid.25,27  
 

 Peukert et al. also describe a ―true‖ grinding limit that is reached when crystallites become 

too small for a critical number of lattice defects to be generated in the particle.20 It is necessary to 

know the true grinding limit of a particular system to minimize significant amorphization. 

Peukert et al. go on to describe an ―apparent‖ grinding limit that is controlled by the stability of 

the suspension and how the suspension can hinder reaching the true grinding limit by being too 

viscous decreasing energy transfer from milling media to particles and significant inter-particle 

interaction leading to agglomeration. While stirred media mills have been used extensively to 

produce nanoparticles, and other groups have investigated what experimental factors are 
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important for reaching the smallest particle size, no examples have been found of another group 

adapting a stirred media mill to an inert atmosphere for complete inert atmosphere operation. In 

this work it will be demonstrated that even though the milling slurry in a stirred media mill under 

aerobic conditions is constantly covered with solvent (and any possible additives) atmospheric 

oxygen can have a significant impact on the resultant product.  

 The quite reactive element oxygen, in ca 20% abundance in air, readily reacts with most 

metals and metalloids, especially with the freshly exposed surfaces produced during grinding. 

Butyagin and coworkers showed that Si ball milled in an atmosphere of 100 Torr of O2, will 

irreversibly bind (likely through chemical reaction) 17.5 wt% oxygen, and silicon powder 

activated by ball milling in vacuum and then exposed to the same amount of O2 still irreversibly 

bound 1.1% oxygen.28 Top-down production of nanoparticles via an anaerobic method is quite 

attractive for many applications: formation of metal nanoparticles for increased volumetric 

energy densities of liquid and solid fuels and explosives,4,29-33 formation of cold-welded single 

component powders and multi-component intermetallic powders,15,34,35 and quantum confined 

suspension-stable nanoparticles.36-38 The effect on milling efficacy caused by adventitious 

oxygen present during the grinding of metals (no matter the mill design) is of interest since most 

metals form a surface oxide coating that would affect the agglomeration rates of these particles, 

affecting the ultimate particle size as well as the purity of the sample. In some cases this highly-

reactive, nascent particle surface has been exploited to form new chemical bonds. The purity and 

surface composition of the new species would be affected by any undesired side reactions. 

Mitchell and Koch et al. used silicon with oxygen or various reactive organic solvents in a ball 

mill to concurrently mill the silicon into nanoparticles and form Si–C and Si–O bonds on the 

surface of the particles to produce a variety of air-stable, luminescent, passivated silicon 

nanoparticles.36-38 

 What species passivate the surface and other details of surface composition were investigated 

with X-ray photoelectron spectroscopy (XPS). The binding energy of an electron in a molecule is 

dependent on the composition of the molecule, particularly what adjacent atoms are present in 
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the molecule. The peak positions in raw data must generally be corrected for charging in a 

sample which causes peaks to shift. This correction is applied by shifting all peaks based on a 

peak with a well-established binding energy, frequently researchers use the C–C/C–H peak at 

284.8 eV or 285.0 eV due to the fact that nearly all samples have an adventitious carbon layer 

present.39 However, this practice is not universal and depending on how the peaks are shifted 

there can be large variations in peak positions between literature references. For a given binding 

environment peak positions reported in the literature can vary up to 1.2 eV. Collected in Table 

3.1 are literature reported peaks relevant to this work. Authors do not always report peak 

positions for all elements involved in a given binding environment; for example, none of the 

references40-42 that report Si3+ 2p peaks provide the associated O 1s peak position. Despite these 

issues, XPS is a powerful tool to identify what binding environments are present on the surface, 

particularly for nanoparticles. 

 To determine the effects an oxygen containing atmosphere has on milling dynamics in a 

stirred media mill, herein is reported a strictly anaerobic milling setup and results of the 

treatment of metallurgical grade silicon (MGS). To accomplish this research a Netzsch MiniCer 

stirred media mill has been completely adapted to an enclosed inert gas glovebox and the effect 

oxygen had on the grinding dynamics of MGS have been investigated. MGS was chosen as the 

test material because, while it does have an initial surface covering of SiO2, the large increase in 

surface area created by the milling process rendered this small amount of initial oxide coating 

insignificant. Also, freshly exposed Si would rapidly react with any available O2, making surface 

oxide or other surface silicon bonds easily distinguished by XPS. The milling dynamics were 

further investigated by intentionally adding surface passivating aromatic compounds during the 

anaerobic grinding of MGS samples. Anaerobic experiments are compared to aerobic milled 

samples produced under similar conditions. Both anaerobic and aerobic samples were analyzed 

by BET N2 specific surface area, aerobic and anaerobic powder X-ray diffraction (XRD), O2 

titration and reaction experiments, and XPS.   
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Table 3.1. Literature reported XPS shifts relevant to this work 
binding 

environment 
Si 2p position (eV) 

C 1s peak 
position (eV) 

O 1s peak position 
(eV) 

Si0 2p3/2 99.340,43,44 
99.445 

99.542,46-48 
— — 

Si–C 99.949 
100–100.450 

100.344 
101.041,51 

282.250 
282.8, 283.451 

283.044 
283.241 

— 

Si2+ 101.140 
101.5 (Si–Si2O3)

42 
101.7 (SiO)42 

— 531.8 (Si–Si2O3)
42 

Si3+ 102.140 
102.1 (Si2O3)

41 
102.5 (Si–SiO3)

42 
— — 

SiO2 102.649 
103.043 

103.240,45 
103.344 
103.441 
103.542 
103.846 

— 
532.445 

532.540,42,46 

 

3.2. Results 

3.2.1. General  

 Handle all metals milled anaerobically with caution: samples were extremely pyrophoric; 

samples poured through air reacted rapidly ranging in severity from heating and glowing 

orange to igniting particulate mid-air causing a fireball. Unless otherwise noted, anaerobic 

samples were treated anaerobically and manipulated in a N2 or Ar environment. Milled samples 

were analyzed by BET surface area analysis, powder X-ray diffraction (XRD), (sometimes as a 

paste in highly purified grease to protect from oxygen), scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), and XPS to determine effects of milling time, solvent, 

additives, and oxygen content. Dynamic light scattering was used to determine approximate 
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particle size, compare size distribution, and to further substantiate the BET surface area 

measurements. It was known from SEM and TEM that the milled particles were solid particles 

that were irregular in shape (i.e. without internal surface area due to pores), SEM and TEM 

images of A-H/M-5.5h are shown in Figures 3.2 and 3.3. All of the samples inspected by SEM 

looked similar to A-H/M-5.5h. Collected data for all milled MGS samples are summarized in 

Table 3.2. 

 

           
 
Figure 3.2. SEM images of A-H/M-5.5h aerobic milled MGS. Left image is 50,000X at 20.0 kV 
looking at many irregular shaped particles. Note the large distribution of sizes and that most 
particles appear to have flat jagged surfaces. Right, 200,000X at 20 kV, many small particles 
adhered to the surface of a larger particle form a larger agglomerate particle. These SEM images 
illustrate the morphology and broad particle size range of the nanoparticles after milling.  
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Figure 3.3. TEM images of A-H/M-5.5h aerobically milled MGS. Top Image: notice the 
different orientation of atoms in the same particle. Between these two regions is an area that is 
random and amorphous. These are multiple crystalline regions created/combined by the milling 
process with amorphous regions in-between the crystalline regions. Bottom Image: The sample 
is mostly amorphous with very small but identifiable Si crystallites imbedded in a continuous 
amorphous particle. Two crystallites were measured indicated by black lines, the top having a 
length of 3.10 nm and the bottom a length of 1.90 nm in the long dimension perpendicular to the 
image. 
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Table 3.2. Summary of Milling Experimental Details. 
sample name milled 

aerobic/ 
anaerobic 

seal-fluid mill-fluid additives 
(wt/wt% of 

MGS) 

mill 
time 
(h) 

BET surface 
area (m2g−1) 

Si–C (at. 
% of Si by 

XPS)a 

Si–Ox x < 2 
(at. % of Si 
by XPS)a 

SiO2 (at. 
% of Si by 

XPS)a 

hand ground 
20-45 m 

— — — — — 0.7 0 9 35 

A-M/P-5h aerobic mesitylene mesitylene pyrene 
9.0 

5 130 34 24 10 

A-M/P-6h aerobic mesitylene mesitylene pyrene 
9.0 

6 140 — — — 

AA-M/P-1h anaerobic mesitylene mesitylene pyrene 
9.0 

1 75 — — — 

AA-M/P-2h anaerobic mesitylene mesitylene pyrene 
9.0 

2 162 — — — 

AA-M/P-5h anaerobic mesitylene mestiylene pyrene 
9.0 

5 258 33 11 0 

AA-M/P-6h anaerobic mesitylene mesitylene pyrene 
9.0 

6 206 — — — 

A-H/M-5.5h aerobic mesitylene heptane — 5.5 243 13 27 14 
AA-H/M-5.5h anaerobic mesitylene heptane — 5.5 295 38 9 0 

AA-H-5.5h anaerobic heptane heptane — 5.5 70 23 5 0 
A-H-5h aerobic heptane heptane — 5 169 19 20 33 

AA-H-1h anaerobic heptane heptane — 1 44 12 7 0 
AA-H-2h anaerobic heptane heptane — 2 45 — — — 
AA-H-3h anaerobic heptane heptane — 3 33 17 6 0 
AA-H-4h anaerobic heptane heptane — 4 36 — — — 
AA-H-5h anaerobic heptane heptane — 5 40 18 6 0 

a These are the percent of the observed silicon peak for these binding environments. The remaining fraction was Si0. 
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3.2.2. Anaerobic Powder XRD  

 Due to the reactivity of some of the milled materials it was necessary to find a method to 

perform powder XRD analysis in an anaerobic or nearly anaerobic environment. The transfer of 

the samples and purging of the instrument X-ray protection enclosure would have been 

painstaking and still not afforded a sufficiently anaerobic environment for these materials. A 

different method was tested with known samples to determine its effect on the resulting data (See 

results in Figure 3.4). Rather than try to protect the dry sample throughout the transfer and during 

the powder XRD experiment it was decided that mixing the material in a high purity grease 

(Apiezon Type N) would keep the sample anaerobic during the powder XRD experiment. 

Apiezon grease is highly purified aliphatic only based grease. Since the samples were milled in 

heptane it was suspected that the Apiezon Type N grease would not react with the milled silicon 

samples. A control experiment was also performed where XRD patterns were obtained on a 

sample immediately after preparation and again on the same sample 52 days later to confirm that 

the grease was protecting the sample and no significant change in the observed powder XRD 

pattern had occurred (Figure 3.5). As expected, the powder XRD of samples mixed with Apiezon 

grease attenuated the peak height and slightly broadened the peak widths compared to samples 

dispersed on top of high-vacuum silicon grease. However, for the purposes of this study 

determination of crystallinity was still possible with the observed measurements (Figure 3.4, 

3.5). Diffraction patterns for 1 h milled samples (AA-H-1h and AA-M/P-1h) showed decreased 

but measurable diffractions peaks, however, all samples milled for longer than 1 h showed very 

weak diffraction peaks.  
  



112 
 

 
Figure 3.4. Comparison of two silicon powder samples analyzed by powder XRD to determine 
the effect of preparing the sample as a paste intimately mixed with Apiezon Type N grease. 
Hand ground metallurgical silicon ranging in size from 20–45 m, and AA-H-5.5h dispersed 
onto a thin film of high-vacuum grease spread on a glass microscope slide compared to the same 
materials mixed with Apiezon Type N grease forming a homogenous paste and spread onto a 
glass microscope slide. The samples in Apiezon grease were weighed as well as the quantity of 
Apiezon grease, (the hand ground sample was mixed with Apiezon grease but not treated 
anaerobically). Notice the decrease in peak heights and broadening of peak widths for both the 
hand ground and AA-H-5.5h when mixed with Apiezon grease. While some signal attenuation 
was observed, this was acceptable to determine relative crystallinity of these samples while 
keeping the sample anaerobic during the XRD experiment.  
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Figure 3.5. Powder XRD pattern of AA-H-1h in Apiezon Type N grease, the bottom pattern is 
from a sample prepared immediately after milling and drying the sample, the top pattern is the 
exact same powder XRD sample after 52 days; the sample was left intact, on the slide, in 
ambient air during those 52 days.  
 

3.2.3. Anaerobic Milling in Heptane  

 The three milling experiments performed in dry, air-free heptane in an inert atmosphere 

glovebox produced dark gray to black solids that were reactive with oxygen. In addition to the 

three anaerobic milling experiments in dry, air-free heptane, two additional anaerobic 

experiments were performed to probe how much batch to batch contamination was transferred 

after normal cleaning; the first with dry, air-free heptane as the milling fluid and mesitylene as 

the seal fluid to determine ―impurity‖ leeching from the seal fluid (AA-H/M-5.5h) and a second 

experiment with dry, air-free heptane as the seal fluid and mill fluid (AA-H-5.5h) to determine 

cross contamination between batches with small quantities of impurities. The AA-H-5.5h 

experiment was also meant to remove contaminants from the slurry lines and sonicator flow cell, 

and is included as further data.  

 The five samples free of deliberate and adventitious slurry stabilizing species had similar 

BET surface areas (Table 3.2, Figure 3.6) indicating mechano-chemical equilibrium was reached 

quickly. The surface area changed little with time while the crystallite size decreased rapidly; the 

AA-H-4h sample had almost an identical powder XRD pattern to the AA-H-5h sample, 

suggesting similar crystallite sizes Further evidence of decreasing crystallite size is given by 
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comparing TEM images of AA-H-1h to those of AA-H-5h (Figures 3.7 and 3.8). The TEM 

images demonstrate that the bulk of the particles were amorphous with the agglomerated 

particles having a size range on the order of 10-200 nm in size. The remaining crystallites 

embedded in the amorphous agglomerated particles identified by darkfield TEM (Figures 3.3, 

3.7 and 3.8) range in size from 2-50 nm comparable to crystallites sizes observed in Si ball 

milling research.52 

 
Figure 3.6. Anaerobic powder XRD of AA-H- 1–5 h compared to hand ground silicon powder 
ranging in particle size from 20–45 m. The 1–5 h milled samples were milled anaerobically and 
treated rigorously anaerobic. The hand ground sample of metallurgical silicon was prepared by 
mixing in Apeizon Type N grease, same as the other 5 samples, but was not treated 
anaerobically. Note the similar surface areas for all 5 samples. Also note the decrease in 
crystallinity with increased milling time.  
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Figure 3.7. TEM images of AA-H-1h. Top: original agglomerate particle image. Bottom: 
Darkfield view of the same particle with the beam in 0° and 90° orientations highlighting the 
crystalline regions of the particle. The scale bar for the darkfield images is the same as for the 
normal view image. Note the crystalline regions are on the order of 10–50 nm in length.  
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Figure 3.8. TEM images of AA-H-5h. Darkfield view images of the same particle with the beam 
in 0° and 90° orientations highlighting the crystalline regions of the particle. Note the crystalline 
regions (Some that only show up in the 0° orientation and some that only show up in the 90° 
orientation are on the order of 5–12 nm in length.) 
 

 The surface composition of the samples AA-H/M-5.5h, AA-H-5.5h, AA-H-1h, AA-H-3h, 

and AA-H-5h was examined using XPS. See Figure 3.9 for AA-H-1h, AA-H-3h, and AA-H-5h. 

All samples contained silicon, carbon, and oxygen and all samples except AA-H/M-5.5h and 

AA-H-1h had a small (≤ 5 atomic %) amount of fluorine present (Table 3.3). The silicon spectra 

contained 3 peaks: ca. 99.5 eV associated with Si0,42,46-48 ca. 100.5 eV assigned to Si–C,41,44,50 

and ca. 101.5 associated with SixOy.
40,42 Sample AA-H/M-5.5h exhibits significantly different 

silicon binding than the other samples, of the silicon 38% is Si–C, 9% is Si–O, and 53% is Si0. 

For all other samples milled anaerobically in heptane the silicon is in the same three bonding 

environments, but the amount of each is: Si–C 12–24%, Si–O 5–7%, and Si0 72–81%. At one 

hour there is 12% Si–C and 7% Si–O and after that first hour there is a slight increase in the 

amount of Si–C to 17% and almost no change in the Si–O (6%) and these values are nearly the 

same after 5 hours (Table 3.2) 
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Figure 3.9. XPS of AA-H-1h (top), AA-H-3h (middle), and AA-H-5h (bottom). Few changes are 
observed in the XPS spectra of samples milled anaerobically in heptane for varying amounts of 
time. This indicates that there is little change in the surface composition after the first hour of 
milling anaerobically in heptane. 
 

Table 3.3. Amounts of various elements in all samples studied by XPS. 

sample 
Si 

atomic 
% 

C 
atomic 

% 

O 
atomic 

% 

F 
atomic 

% 

N 
atomic 

% 
A-M/P-5h 24 56 20 — — 

AA-M/P-5h 31 62 7 — — 
A-H/M-5.5h 33 35 32 — — 

AA-H/M-5.5h 38 55 6 1 — 
AA-H-5.5h 53 38 8 2 — 
AA-H-1h 67 22 11 — — 
AA-H-1h 
sputtered 

70 16 8 3 3 

AA-H-3h 62 23 11 3 — 
AA-H-3h 
sputtered 

66 18 10 5 1 

AA-H-5h 59 26 12 4 — 
AA-H-5h 
sputtered 

65 19 8 3 4 

A-H-5h 36 32 33 — — 
 

 Three carbon binding environments were observed: ca. 283.5 eV for Si–C,41,44 ca. 285.0 eV 

for C–C/C–H,46,48 and ca. 286.5 eV for C–O.47,48 Samples AA-H-1h, AA-H-3h, and AA-H-5h 
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were sputtered to remove surface hydrocarbon contamination (Figure 3.10). The amount of 

carbon did decrease for all samples, but all three binding environments remained. A small (≤ 4 

atomic %) nitrogen peak was present after sputtering. Despite the fact that these samples were 

milled anaerobically, oxygen was present at 3–12% of the total and had two binding 

environments: C–O at ca. 532 eV42 and Si–O at ca. 533.8 eV. 
 

 
Figure 3.10. XPS of AA-H-3h as made (top) and sputtered (bottom). The Si–C peak is more 
pronounced in the C 1s spectrum after sputtering removed surface hydrocarbon contamination. 
Little change is observed in the other elements. 
 

 Attempts to understand the reactivity of the silicon surface of the anaerobically milled 

particles led to multiple gas uptake experiments of anaerobically milled Si powder with various 

gases. During the BET surface area analysis in N2 (99.999%) samples did not exhibit any 

irreversible sorption of N2 gas indicating no silicon nitride was rapidly being formed. Post 

treatment experiments of AA-H/M-5.5h (specific surface area = 295 m2g−1) with oxygen 

exhibited 5.1% by mass irreversible absorption in 5,128 min. Most of that mass was taken up 

quickly (Figure 3.11). Similar experiments by Butyagin et al.28 with anaerobically milled silicon 

showed a 1.1% mass increase by mass until equilibrium pressure was reached (time not 

reported). While the oxygen uptake by AA-H/M-5.5h is ca. 4.6 times greater than in the 

Butyagin experiment, it should be noted that the AA-H/M-5.5h sample has ca. 110 times greater 

surface area than samples described by Butyagin. A second oxygen post treatment experiment 
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with AA-H-5.5h exposed to air showed a 2.6% mass increase in ca. 5,760 min (AA-H-5.5h 

specific surface area = 70 m2g−1). Interestingly the anaerobic AA-H-5.5h sample absorbed ca. 

68% of the total oxygen mass in the first 10 min, and during this time the sample and containing 

vial warmed to the touch. A final experiment demonstrating the reactivity of these anaerobically 

milled samples with oxygen was simply pouring ca. 50 mg sample of anaerobic AA-H-5.5h from 

a vial (sample prepared in an argon atmosphere and filled with argon) through air causing orange 

sparks and an ensuing fireball. The resulting powder was a brown color instead of the original 

grey black color.  

 

Figure 3.11. Post treatment of AA-H/M-5.5h with O2. Rate of O2 uptake of 5 doses of O2 on a 
single sample (0.237 g) of AA-H/M-5.5h, order of doses indicated 1-5. The rate of uptake for 
each dose was graphed following one another. The expanded inset shows the first 3 doses and 
the rate of uptake over time for clarity. 
 

 To determine if water vapor in air was reacting at all with the anaerobically milled MGS, a 

fresh sample of anaerobic AA-H/M-5.5h was treated with ca. 4 Torr of water vapor (low vapor 

pressure of H2O to inhibit condensing H2O on the glass) and in ca. 6 h the pressure dropped 3.5 
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Torr. The sample itself did not actually take up mass, it is believed the observed pressure drop 

was due to exposing the rigorously dry glassware to the water vapor. A final experiment to 

determine if a sample treated with O2 would then take up H2O was also performed; again the 

total pressure of H2O taken up was 8.85 Torr, but the mass of the sample only increased by 0.2%. 

Therefore it is likely that any mass uptake upon exposure to air is mostly due to oxygen.  

3.2.4. Anaerobic Milling in Mesitylene with Pyrene Additive  

 Two anaerobic batches were milled in dry, air-free mesitylene with 9.0 wt/wt% pyrene 

additive (relative to Si mass) as an aromatic stabilizer to determine the effects aromatic 

compounds have on milling silicon. The two milling experiments performed in dry, air-free 

mesitylene in an inert atmosphere glovebox produced dark gray to black solids that were reactive 

with oxygen, but not to the extent that the heptane milled samples were reactive with oxygen. If 

rapidly exposed to air, the mesitylene/pyrene milled samples would warm and, in some 

instances, visible smoke was observed, the sample did change in color from grey/black to brown, 

no sparks or flame were observed. The two anaerobic batches (AA-M/P-1h, AA-M/P-2h, AA-

M/P-5h, AA-M/P-6h) produced 4 samples exhibiting surface area growth with increased milling 

time; a trend commonly observed in attritor milling experiments. The 1, 2, and 5 hour milled 

samples had increasing BET surface areas while the 6 hour milled sample had a BET surface 

area lower than the 5 hour sample (Figure 3.12) indicating that particle agglomeration was 

becoming the dominant interaction stopping overall particle fracture. Also from Figure 3.12, as 

expected, the MGS continued to lose crystallinity from 1 to 6 h of milling time. Surface 

composition analysis of the AA-M/P-5h sample by XPS revealed a small amount of Si–O 

bonding (11% of the total Si), and significant Si–C bonding (33% of the total Si), no other 

species were observed.  
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Figure 3.12. Anaerobic powder XRD of MGS milled in dry, air-free mesitylene with pyrene 
additive for 1, 2, 5, and 6 h compared to hand ground silicon powder ranging in particle size 
from 20–45 m. Note these XRD samples were prepared by dispersion on high-vacuum silicon 
grease on a glass slide under aerobic conditions. The samples did discolor upon exposure to air, 
but no change was observed in the XRD pattern.  

 

 Post treatment of AA-M/P-5h with O2 was performed, it displayed rapid initial uptake of O2, 

but quickly stopped taking up O2 (Figure 3.13). The O2 was added in small quantifiable doses so 

an overall rate of O2 uptake is not known, but the final amount of O2 taken up equated to 0.9% 

by mass. This is ca. 18% of the O2 taken up by AA-H/M-5.5h indicating the mesitylene/pyrene 

sample was more passivated towards O2 reactions than anaerobic material milled only in heptane. 

No water uptake experiments were performed on mesitylene/pyrene milled samples.  
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Figure 3.13. Post treatment of AA-M/P-5h with O2. Rate of O2 uptake of 3 doses of O2 on a 
single sample (0.235 g) of AA-M/P-5h, order of doses indicated 1-3. The rate of uptake for each 
dose was graphed following one another. The expanded inset shows the first 2 doses and the rate 
of uptake over time for clarity.  
 

 The surface composition of AA-M/P-5h was studied with XPS (Figure 3.14). Silicon, carbon, 

and oxygen were all present in this sample with the same binding environments which were 

observed for the samples milled anaerobically in heptane. Of the silicon present 33% was Si–C, 

11% was Si–O, and 56% was Si0. Compared to the samples milled anaerobically in heptane AA-

M/P-5h contained a much higher amount of carbon, 62% of the total elemental composition 

(Table 3.3). 
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Figure 3.14. XPS of A-M/P-5h (top) and AA-M/P-5h (bottom). The aerobic sample contains 
SiO2 (ca. 103.5 eV) that is not present in the anaerobic sample. The aerobic sample also had 
more silicon suboxide species (ca. 102 eV in Si 2p and ca. 533.5 eV in O 1s) than the anaerobic 
sample. For A-M/P-5h the Si–C peak in the C 1s spectrum is likely contained within the broader 
C–C/C–H peak. 
 

 Pyrene was chosen as an additive because it could physiochemically adsorb to the nascent Si 

surface, and during the continued milling in aromatic mesitylene solvent, act as a surface 

stabilizing additive allowing further particle break down. Previous studies have shown that 

aromatic compounds, typically benzene, interact with certain faces of Si when rigorously 

cleaned, and can form strong chemisorption interactions.53 The pyrene was thought to react with 

or adsorb to the Si surface thereby protecting the Si surface and allowing further comminution. 

In a post-milling treatment, the pyrene could be exchanged later with a more desirable surface 

coating. Additionally, the adsorbed/reacted pyrene on the Si surface could be pyrolyzed thereby 

protecting the surface from atmospheric oxidation making the particles air-stable, however, this 

concept was not further investigated in this effort.  

3.2.5. Aerobic Milling in Heptane  

 The aerobic milling in as received heptane yielded a brown powder that was not noticeably 

reactive with air. Both samples milled aerobically in heptane, A-H/M-5.5h and A-H-5h, were 

studied using XPS. Sample A-H/M-5.5h contained 33% silicon, 35% carbon, and 32% oxygen 

(Table 3.3). Sample A-H-5h contained 36% silicon, 32% carbon, and 33% oxygen (Table 3.3). 

The silicon spectra contained peaks for Si0 at ca. 99.5 eV, Si–C at ca. 100.5 eV, SixOy at ca. 102 
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eV, and a peak at ca. 103.5 eV for SiO2.
40,42,44 The amounts of silicon for each type of bond in A-

H/M-5.5h are: 46% Si0, 13% Si–C, and 41% Si–O (Table 3.2). The amounts of silicon for each 

type of bond in A-H-5h are: 28% Si0, 19% Si–C, and 53% Si–O (Table 3.2). In the carbon 

spectra, the same peaks are observed that were present in the anaerobically heptane milled 

samples. Sample A-H/M-5.5h contained the same two oxygen peaks (ca. 532 and 533.8 eV) that 

were seen in samples milled anaerobically. Sample A-H-5h contained three oxygen peaks at 

531.5 eV, 533 eV, and 534.2 eV (Figure 3.15). 

 

 
Figure 3.15. XPS of A-H-5h (top) and AA-H-5h (bottom). The aerobic sample contains SiO2 
(ca. 103.5 eV) which is not present in the anaerobic sample. The amounts of silicon suboxide 
species (ca. 102 eV) are also higher in the aerobic than the anaerobic. The Si-C shoulder (ca. 
283.5 eV) is more evident in the anaerobic sample. 
 

3.2.6. Aerobic Milling in Mesitylene with Pyrene Additive  

 The aerobic milling in as received mesitylene yielded a brown powder that was not 

noticeably reactive with air. Sample A-M/P-5h was studied by XPS (Figure 3.14). The silicon 

spectrum contained the same peaks as were seen in the aerobic heptane milled samples. The 

amounts of silicon were: Si0 31%, Si–C 34%, Si–O 35%. The carbon spectrum contained two 

peaks at 285 eV and 286.4 eV, the Si–C peak is likely contained within the C–C/C–H peak at 

285 eV. The oxygen spectrum contains two peaks at 532.5 eV and 533.8 eV. 
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3.2.7. DLS Particle Size Analysis of Samples  

 Comparable 1 h and 5 h milled MGS samples were tested for particle size range by DLS to 

ascertain the mean particle size and the total range of particle sizes. Shown in Figure 3.16 are the 

data compared for 5 samples compared, AA-H-1h, AA-H-5h, AA-M/P-1h, AA-M/P-5h, and A-

H-5h (the distribution in Figure 3.16 is the average of 3 measurements for each sample). Notice 

from Figure 3.17 that all 5 samples, independent of additives and milling time, exhibit similar 

mean particle size and particle size distribution. For all samples measured by DLS the data 

obtained was considered "quality" by the Malvern software. Based on the DLS analysis in 

absolute EtOH, all of the samples measured had a minimum particle size starting around 70 ± 5 

nm and depending on the additives a maximum particle size ranging up to 600 ± 175 nm. 
 

 

Figure 3.16. DLS analysis of 5 samples: AA-H-1h, AA-H-5h, AA-M/P-1h, AA-M/P-5h, and A-
H-5h. Displayed graphs are the average of 3 measurements where each measurement consists of 
12-15 runs each. Samples were hand ground to break up clumps, and then dispersed in absolute 
ethanol with a bath sonicator for 10-15 min per sample. The DLS measurement was performed at 
25 °C after 2 min equilibration at 25 °C for each sample. All samples appeared to have similar 
particle size and particle size distributions.  

3.3. Discussion 

3.3.1. General  

 During the milling experiments there was purposefully a low volume percentage of sample 

compared to milling media to: 1) decrease time required to reach mechano-chemical equilibrium 
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in experiments where that was the desired target, 2) minimize particle-particle 

interaction/agglomeration, and 3) minimize changes in milling efficiency when multiple samples 

were removed. Milling efficiency is dependent on the ratio of milling media to sample. The 

milling media in the mill chamber on a percent volume basis started at ca. 94% for all 

experiments, and when samples, roughly half the mass of the original starting material were 

removed, the percent volume of milling media went up to 97%, a change of only 3%.  

3.3.2. Anaerobic vs. Aerobic Without Surface Passivating Additives (AA-H-1h, AA-H-2h 

AA-H-3h AA-H-4h AA-H-5h, AA-H-5.5h compared to A-H-5h) 

 The apparent effect oxygen (or air) had on stabilizing the slurry against agglomeration was 

quite dramatic. The anaerobically milled MGS in dry, air-free heptane reached mechano-

chemical equilibrium rapidly with little measurable change in surface area between the 1 h 

milling time and 5 h milling time for the five anaerobically milled samples (Figure 3.6). As 

expected, the increased milling time only led to further amorphization of the MGS (Figure 3.6) 

without significant changes to particle size as confirmed by BET surface area measurements. The 

A-H-5h sample had a similar amount of crystallinity compared to AA-H-5h as determined by 

powder XRD, but had a BET surface area over four times greater than the AA-H-5h sample. This 

would suggest that in aerobic conditions even though the MGS is being ground in a slurry of 

heptane, enough available oxygen is present to react with the silicon surface forming Si–O bonds 

and changing the surface composition of the particles. Additionally, the partially oxidized 

surface was mitigating inter-particle interaction and agglomeration allowing further particle 

fracture. The amount of oxide present on the MGS after milling was compared using XPS; when 

milled aerobically 35–53% of the total Si present was in the form of an oxide while after 

anaerobic milling 5–7% of the total Si present was bound to oxygen, whereas, anaerobic 

experiments were apparently forming more Si–C bonds observed at ca. 283.5 eV (Figures 3.9 

and 3.15). One can reasonably assume that reaction of Si with heptane molecules in the heptane 

only milled samples is especially difficult, as it requires activation/cleavage of a strong C–H or 

C–C bond at near room temperature, a reaction that is likely to be thermodynamically 
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unfavorable under these conditions unless the freshly exposed Si surface is catalyzing such 

reaction. The XPS results confirm a low degree of Si–C bond formation in the anaerobically 

milled samples, indicating that the freshly exposed Si is likely not catalytically activating C–H or 

C–C bond cleavage based on the moderate percent of Si–C bonding present. However, under the 

conditions created during the milling process, it is likely more energetically favorable to cold-

weld smaller particles together forming larger agglomerates minimizing the overall surface 

potential compared to the surface potential of an equal mass of smaller Si particles, explaining 

the time independent specific surface area for all anaerobic, heptane only milled samples. The 

cold-welding of smaller particles is likely the thermodynamically more stable way to minimize 

the surface potential but with such a high concentration of heptane the formation of Si–C bonds 

from reaction with heptane is likely a kinetic product. The ability of the nascent Si surface to 

activate C–H or C–C bonds at or near room temperature as evidenced by XPS is interesting and 

could be further utilized to protect the Si surface from rapid reaction with air.  

 Further evidence of the different surface chemistry for the anaerobically milled samples 

compared to the aerobically milled samples is shown by the differences in forming a suspension. 

After drying the AA-H-5h and A-H-5h samples, attempts to suspend the particles in dry, air-free 

heptane with a probe sonicator yielded different results; the AA-H-5h sample formed a 

suspension that did not settle out in a matter of tens of minutes compared with aerobic milled A-

H-5h that settled out almost immediately. The AA-H-5h sample was shown by XPS to have very 

little oxygen (Si–O = 6% of the total Si), some Si–C bonding (18% of the total Si), indicating the 

addition of carbonaceous species to the surface of the MGS particles. The carbonaceous species 

groups were likely beneficial for suspending the particles in heptane. On the other hand, the A-

H-5h sample had 53% of all Si in Si–Ox (x < 2) or SiO2 bonding environments on the surface, 

according to XPS analysis, and only 19% of all Si was in Si–C bonding environments (Figure 

3.15). Based on this data, it is no surprise that the much more hydrophilic Si–O surface 

composition of the A-H-5h would not suspend in heptane despite the fact that both samples had 

similar amounts of Si–C bonding.  
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 To examine how strongly carbonaceous groups are bound to the Si-surface, evacuation of the 

milled samples was carried out. Silicon–carbon bonds are present even after evacuating the 

milled sample on a high-vacuum line (ca. 10−5 Torr) for greater than 12 h which would remove 

any weakly bound or physisorbed heptane. XPS analysis was performed after the samples were 

evacuated. Once initial spectra were obtained the samples were sputtered and XPS analysis was 

repeated. After sputtering, while the total percent of carbon decreases, the Si–C peak is more 

pronounced suggesting that carbon surface contamination has been removed leaving behind 

mostly those carbonaceous species that exhibit Si–C bonds. No precedent has been found in the 

literature for the formation of bonds between silicon and aliphatic carbon compounds by 

mechanochemical means alone. The Mitchell group milled silicon with a ball mill in octane, 1-

octene, and 1-octyne and found evidence of C–H bonds in the FT-IR spectra for 1-octene and 1-

octyne milled silicon, but not in octane milled silicon.36,37,54 

 In all of the anaerobically milled samples there is no peak present at ca. 103.5 eV for SiO2. 

However, there is typically a peak present at ca.102 eV which is likely due to a silicon suboxide 

species, i.e., SixOy
40,42 (Figure 3.9). Despite the anaerobic milling conditions, some surface bound 

oxygen remains and it cannot be determined whether this is from the initial SiO2 layer on MGS, 

due to reactions with the small amount (≤ 5 ppm) O2 in the milling atmosphere, or another 

unknown source of oxygen. Given that the starting hand-ground MGS material had 44% of the 

total Si in Si–O bonding environments, it seems likely that a large proportion of the remaining 

oxide is due to oxygen present in the MGS before milling. 

 When samples were milled anaerobically without the presence of surface reactive carbon 

species, most had a small (≤ 5 atomic %) amount of fluorine present. The only fluorine source 

identified at this time is the Viton® tubing transporting the slurry from the overhead stirrer to the 

sonicator and back to the mill. One hypothesis is that the nascent silicon surface is so reactive 

after a short time in the mill that it can react with the normally inert Viton® tubing and start to 

leach or remove compounds from the tubing. In the C 1s spectra there is no evidence of C–F 

bonds, but given the low level of fluorine present, these peaks could be below the detection limit. 
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The high reactivity of nascent silicon surfaces is corroborated by the presence of fluorine and Si–

C bonds in samples milled anaerobically in heptane. 

 Samples that were milled anaerobically (in a N2 atmosphere) in heptane and then sputtered in 

the XPS also showed the presence of a small (≤ 4 atomic %) amount of nitrogen. Silicon will 

very slowly react with nitrogen during milling to form silicon nitrides.55 The reason that this 

peak is only apparent after sputtering is not clear, but may be due to the hydrocarbon surface 

contamination. 

3.3.3. Anaerobic Milling Without Surface Passivating Additives vs. Anaerobic Milling With 

Surface Passivating Additives (AA-H-5h, AA-M/P-5h) 

 All of the anaerobically milled samples appeared to be reactive with O2 based on visual 

inspection when exposed to air and upon post-treatment with O2 gas. Not surprisingly, the 

anaerobically milled material with surface passivating additives was less reactive with O2, likely 

due to greater passivation of the nanoparticle surface. Direct comparison of XPS data for 

anaerobic milled samples with and without surface passivating additives shows similar small 

amounts of Si–O bonding (AA-H-5h Si–O = 6%, AA-M/P-5h Si–O = 11%) but a marked 

increase in Si–C bonding in the sample with surface passivating additives (AA-H-5h Si–C = 

18%, AA-M/P-5h Si–C = 33%). The slowed rate of post-treatment O2 reactivity and the greater 

Si–C bonding in the anaerobic milled sample with surface passivating additives indicates that in 

the absence of oxygen and in the presence of a reactive organic material more Si–C bonding will 

occur.  

3.3.4. Milling Time for Anaerobic Milling Without Surface Passivating Additives vs. 

Anaerobic With Surface Passivating Additives (AA-H-1h, AA-H-2h AA-H-3h, AA-H-4h, 

AA-H-5h, AA-H-5.5h compared to AA-M/P-1h, AA-M/P-2h, AA-M/P-5h, AA-M/P-6h) 

 Milling time did not make much difference in the measured BET surface in the anaerobic 

experiments without surface passivating additives (AA-H-1h, AA-H-2h, AA-H-3h, AA-H-4h, 

AA-H-5h, AA-H-5.5h). In the 1-5 h series the crystallinity rapidly decreased forming mostly 

amorphous particles with small crystallites embedded in solid amorphous particles. In the AA-H-
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5.5h sample, the BET surface area was 70 m2g−1 compared to the 1-5 h series average BET 

surface area of 40 ± 5 m2g−1, which indicates a difference in these samples. As mentioned 

previously the AA-H-5.5h was run to remove contaminants from the slurry lines. The AA-H-

5.5h experiment occurred after an experiment in which mesitlyene was used as the seal fluid and 

the relatively high surface area indicates that some aromatic compounds carried over between 

runs. While the percentages of Si–O and Si–C bonding are nearly the same for these samples 

based on the Si bonding environments, the overall carbon was 12% greater in the AA-H-5.5h 

sample. This additional carbon could be further mitigating particle agglomeration and allowing 

greater particle reduction without the formation of Si–C bonds. By XPS (Figure 3.9) these 

samples (AA-H-1h, AA-H-2h, AA-H-3h, AA-H-4h, AA-H-5h, AA-H-5.5h) all had less than 

10% Si–O bonding (6.5 ± 0.5%) and Si–C bonding near 15% (15.0 ± 3.0%). The anaerobic 

samples milled for 1, 2, 3, 4, and 5 h in heptane had almost no increase in BET surface area 

indicating there was little to no stabilization of the slurry and therefore particle fracture quickly 

reached a maximum and particle agglomeration (likely through cold-welding) became the 

dominate process. 

 In contrast, the samples milled anaerobically with surface passivating additives did increase 

in measured BET surface area with increased milling time, going from 1 h = 75 m2g−1 to 5 h = 

258 m2g−1. The 6 h milled sample had a measured BET surface area of 205 m2g−1, decreased 

from the 5 h sample indicating minimum particle size had been reached and agglomeration was 

occurring due to increased inter-particle interactions. The aromatic surface passivating species 

were superior at stabilizing the slurry and allowing further particle reduction. The anaerobic 

samples milled for 1, 2 and 5 h with surface passivating species showed increases in BET surface 

area with increased milling time indicating further particle fracture was occurring between those 

times. 
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3.3.5. Anaerobic Milling With Surface Passivating Additives vs. Aerobic Milling With 

Surface Passivating Additives (AA-M/P-5, AA-M/P-6 compared to A-M/P-5, A-M/P-6) 

 Interestingly, samples milled anaerobically with the same surface passivating additives had 

measured BET surface areas greater than samples milled aerobically (AA-M/P-5h, AA-M/P-6h = 

258 and 205 m2g−1 respectively, A-M/P-5h, A-M/P-6h = 130 and 140 m2g−1 respectively). 

However, the presence of oxygen does not appear to preclude or diminish formation of Si–C 

bonding; for aerobic milled MGS with surface passivating additives significant Si–O formed 

with nearly the same amount of Si–C bonding (AA-M/P-5h Si–O = 11%, Si–C = 33%, A-M/P-

5h Si–O = 35%, Si–C = 34%) (Figure 3.14). Based on bond enthalpies, a Si–O bond is stronger 

by 67 kJ/mol compared to Si–C bond indicating the formation of significant Si–C is a kinetic 

phenomenon, likely arising due to the significantly greater concentration of carbon containing 

molecules compared to O2 during milling. Once an MGS particle fractures exposing fresh 

reactive surface, the more readily available carbon additives and solvent react even though 

reaction with O2 would be the energetically favored reaction. This result also indicates that while 

Si–O bonds are more thermodynamically favorable, they are not as good at mitigating surface 

potential allowing further particle size reduction compared with aromatic carbon compounds for 

MGS. This result regarding additives versus oxygen should be taken into account when milling 

any metal powder aerobically; the presence of oxygen and formation of metal oxide might be 

controlling the minimum particle size more than the intentional additives augmenting the surface 

potential.  

 Under the milling conditions presented here, regardless of oxygen, milling solvent, or surface 

passivating additives all samples milled for 5 or 5.5 h reached nearly the same level of 

amorphization (Figure 3.17). The specific surface area of each of these samples spans a range of 

over 7 times from the lowest specific surface area to the greatest. This wide range of surface area 

and corresponding particle sizes was produced by variations in additives, solvent, and oxygen 

presence. 
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Figure 3.17. Anaerobic powder XRD of metallurgical silicon milled in dry, air-free heptane for 
5–5.5 h. The AA-H/M-5.5h and AA-M/P-5h samples were exposed to air and spread on a thin 
film of high-vacuum grease; all other samples were mixed in Apiezon grease. Samples AA-H-
5h, AA-H-5.5h, and AA-M/P-5h were treated rigorously anaerobic. 
 

3.3.6. Comparing DLS Results With BET Surface Areas 

 For the 5 samples tested by DLS, the DLS particle size distribution measurements appear to 

be counter to the BET surface area measurements. This comparison is only valid if the 

assumption that the surface area can be directly correlated to particle size is valid (this 

assumption requires that the particles be non-porous, which appears to be the case for the 

samples inspected by TEM). Table 3.4 shows the results for samples measured by DLS, 

measured by BET surface area, calculated particle size based on BET specific surface area 

assuming solid spheres with monodisperse distribution, and the particle size range obtained by 

DLS in absolute ethanol. From Table 3.4 note the large disparity in calculated monodisperse 

particle size based on BET specific surface area and the mean DLS particle size for each sample, 

the DLS particle size is 3 to 23 times as large as the calculated size. These two methods for 
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deriving particle size do have a number of variables that could account for the observed 

differences.  
 
Table 3.4. Estimated Particle Size from BET Surface Area Measurement Compared to DLS 
Particle Size  

sample 
BET surface 
area (m2 g−1) 

calculated particle 
sizea (diameter nm) 

DLS particle 
sizeb (mean, std 

dev nm) 

estimated DLS 
particlec size range 

(nm) 

AA-H-1h 44 58.5 235, 0.92 80-850 

AA-H-5h 40 64.3 208, 1.58 70-900 

AA-M/P-1h 75 34.3 224, 0.79 70-850 

AA-M/P-5h 258 9.98 235, 3.71 75-550 

A-H-5h 169 15.2 167, 1.13 65-550 
a Particle size calculated assuming non-porous spheres with no size distribution. The particle size 
diameter was varied until the surface area was ± 0.1 m2 g−1 of the measured surface area.  
b DLS particle size mean was averaged from the three measurements using the Malvern software. 
The std. dev. is the standard deviation of the mean and was also calculated using the Malvern 
software. 
c The estimated DLS particle size range is taken from the graph (Figure 3.17).  
 

 First, the calculated particle size based on BET specific surface area assumes the sample is 

comprised of spherical monodisperse particles, which is known to be untrue from SEM and 

TEM. In fact, SEM and TEM show thin plates of irregular shape which would have a much 

greater surface area to volume ratio compared to a sphere so small changes in actual particle size 

of thin irregular sheets would have a significant change in the surface area. Similarly, the 

calculations used to obtain particle size from the changes in scattering patterns in the DLS 

experiment assume spherical particles which, again, it is known these samples are not. Also, the 

samples were dispersed in ethanol which could be reacting with the reactive surface of the 

anaerobic samples or otherwise changing the surface potential of the samples causing 

agglomeration in the suspension and artificially increasing the particle size. Attempts to repeat 

the DLS measurement in air-free heptane resulted in unreliable data due to rapid particle settling, 

even at low concentrations. Based on the SEM and TEM images and the BET surface area 
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measurements it seems the DLS measurements in ethanol are not an accurate representation of 

the true particle size of these samples.  

3.4. Conclusions 

 Stirred media mills can be used in a top-down approach method to produce irregularly 

shaped silicon nanoparticles. When milling silicon, the presence of surface passivating additives 

including oxygen or aromatic carbon containing species mitigates agglomeration and leads to a 

dramatic increase in specific surface area, and corresponding decrease in average particle size. 

Particle amorphization occurs rapidly in a stirred media mill, within two hours crystallite size is 

on the order of 2-50 nm regardless of whether surface passivating additives are present. Nascent 

silicon surfaces are sufficiently reactive to result in the formation of Si–C bonds even when 

milled in a relatively inert solvent such as heptane. Interestingly, when milled aerobically in 

either heptane or mesitylene the silicon still forms a significant amount of Si–C bonds as well as 

Si–O bonds, indicating selection of mill fluid and additives should be considered carefully and 

that when milling silicon, and likely all metalloids and metals, significant metal oxygen 

formation does occur without other surface passivation in stirred media mills. When milled 

anaerobically the silicon forms mostly Si–C bonds with very little Si–O and, due to the lack of 

surface passivation, the resulting material is highly reactive once dried to a solid in the absence 

of O2/H2O. The silicon milled anaerobically with aromatic additives is less reactive than silicon 

milled anaerobically in heptane, but does still exhibit some reactivity with residual O2 in 

controlled experiments. Finally, the nascent silicon surface produced by this milling method was 

reactive with typically non-reactive solvents, any oxygen present, and aromatic additives; this 

empirically derived knowledge should be used as a guide when choosing milling conditions for 

producing silicon nanoparticles or any metal nanoparticle of an oxygen reactive metal with a 

particular particle size and chemically modified surface.  
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3.5. Experimental Details 

3.5.1. General  

 The milling process and all subsequent manipulations of the anaerobic milled silicon took 

place in an N2 or Ar atmosphere glovebox for anaerobic samples. The quality of the atmosphere 

(concentration of oxygen and solvent) was determined by the length of time an exposed 25 W 

tungsten filament light bulb stayed on in the glovebox.56 The atmosphere was sufficiently pure to 

keep the light bulb on continuously for at least 24 h prior to any milling or handling of 

anaerobically milled silicon indicating combined concentrations of O2 and H2O at or below 5 

ppm.57 All milling operations were performed equally by the author and Mr. Eric V. Bukovsky 

and employed a continuous flow Netzsch MiniCer Laboratory stirred media mill with yttrium 

stabilized zirconium oxide lining, and Netzsch SiLi yttrium stabilized zirconium oxide milling 

media (0.3–0.4 mm). The grinding chamber (volume ca. 160 mL) with a cylindrical slotted mixer 

blade, a 150 m separator screen, double mechanical seals separating the grinding tank from 

motor bearings by means of ca. 80 psi seal fluid, and an inline QSonica 700 W, 20 kHz sonicator 

with an 85 mL low-flow cell and a 1.27 cm diameter probe, was programmed to run periodically 

throughout the milling procedure for 3 min at 30% of peak amplitude in intervals every 10 min, 

see schematic and slurry flow direction in Figure 3.18.  

 
Figure 3.18. Schematic of Netzsch MiniCer Laboratory mill, arrows indicate direction of flow. 
1) 160 mL water cooled milling chamber with double mechanical pressurized fluid seal, slotted 
cylinder mixer blade, 150 m separator screen, 2) slurry tank with overhead mixer, samples and 
additives were added via slurry tank, 3) peristaltic slurry pump with 1/8‖ I.D. Viton® tubing,    
4) low-flow sonicator cell with 1/2‖ diameter probe, 5) mill motor.  
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 For anaerobically milled material the mill was adapted by Mr. Bukovsky and installed by the 

author, Mr. Bukovsky, and Mr. Brent M. Wyatt in an inert atmosphere glovebox requiring minor 

modifications to adapt; water cooling lines, inert gas pressure line, and 230 V electrical 

connections through the glovebox walls. The operation, function, and capabilities of the mill 

were otherwise unaffected by these adaptations. A Buchi RII rotary evaporator was also adapted 

for use in the same glovebox to remove solvent from milled samples, with the vacuum and 

solvent trap outside of glovebox. The heater bath was filled with Thomas Scientific dimethyl 

silicon fluid, SF96/50 (removed all volatiles at ca. 30 × 10−3 Torr for 48 h at 150 °C).  

 The MGS was obtained from Kratos LLC (Si = 98.9 ± 0.20%, major impurities Fe = 0.35 ± 

0.30%, Al = 0.20 ± 0.15%, Ca = 0.12 ± 0.06%). Prior to milling, the silicon powder was hand 

ground in air with a mortar and pestle, and sieved to a size range of 45–λ0 m.  

3.5.2. Anaerobic Milling in Heptane  

 Dry, air-free heptane (Fisher, HPLC grade, submicron filtered) was prepared by refluxing 

over sodium metal for ca. 12 h, and then distilled under N2. Except for sample AA-H/M-5.5h 

dry, air-free heptane was also used as the seal fluid in the Netzsch MiniCer mill. For sample AA-

H/M-5.5h dry, air-free mesitylene was used as the seal fluid. The mill was charged with ca. 130 

mL of 0.3–0.4 mm Netzsch SiLi beads. Once the mill was ramped up to 4104 rpm and the 

heptane was circulating, ground, sieved MGS powder (ca. 20 g) was added to the slurry tank 

over a 5 min period, followed by more heptane (ca. 150 mL). Once all MGS was added, the 

inline sonicator was started and continued until the end of the milling cycle. For the AA-H-1h 

and AA-H-2h experiment, after 1 h of milling, approximately half of the slurry material was 

removed from the mill by taking the outflow material till the slurry bucket was nearly empty, this 

produced sample AA-H-1h. An equal volume of dry, air-free heptane was added to the slurry 

bucket and the milling continued for an additional 1 h to make the AA-H-2h sample. The 2 h 

sample material was removed by taking the outflow material till the slurry bucket was nearly 

empty, adding dry, air-free heptane to the slurry tank, milling for 10 additional minutes, and then 

taking the outflow material until the slurry bucket was empty. Both of the second set of outflows 
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were collected and treated as the 2 h sample. These two slurries (1 h and 2 h) were collected in 

separate flasks and dried to a powder by rotary evaporation in the glovebox. A similar procedure 

was followed for milling, collecting and drying samples AA-H-3h and AA-H-4h. The AA-H-5h 

sample was milled, collected with two flushes of dry, air-free heptane, collected and dried as a 

single sample. After the samples were dried to a powder they were sealed in their respective 

flasks, removed from the glovebox and all volatiles were removed by vacuum (<10−5 Torr) at 20 

°C for ca. 15 h.  

3.5.3. Anaerobic Milling in Mesitylene with Pyrene Additive  

 Dry, air-free mesitylene (Alfa Aesar, 98+%) was prepared by refluxing over sodium metal 

for ca. 12 h, and then distilled under N2. Dry, air-free mesitylene was also used as the seal fluid 

in the Netzsch MiniCer mill. Pyrene (0.99 mmols, Alfa Aesar 98%, used as received) was mixed 

with ca. 460 mL of mesitylene for ca. 15 h in the glovebox. The mesitylene solution of pyrene 

was then added to the slurry tank following the same procedure described in the heptane milling 

experiments. Samples were removed following the heptane procedure as well, except with dry, 

air-free mesitylene to wash through the mill. Besides using a solution of pyrene in mesitylene all 

other milling parameters and handling procedures were the same as previously described. One 

batch was milled for 1 h, removed ca. half the slurry and the second portion was taken at 2 h 

(AA-M/P-1h and AA-M/P-2h respectively) and second batch was milled for 5 h, removed ca. 

half the slurry and the second portion was taken at 6 h (AA-M/P-5h and AA-M/P-6h 

respectively). 

3.5.4. Aerobic Milling in Heptane  

 The aerobic milling of silicon took place outside of the glovebox using the same Netzsch 

MiniCer mill. Mesitylene was used as the seal fluid to mill sample A-H/M-5.5h. Heptane was 

used as the seal fluid to mill sample A-H-5h. The mill was operated as previously described with 

the following exceptions: heptane was used as received, rotary evaporation was performed 

outside the glovebox, powder XRD and BET samples were prepared in air, XPS sample films 

were transferred to the XPS sample chamber under aerobic conditions. The A-H/M-5.5h XPS 
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sample film was prepared in 1,2,3-trichloropropane (Alfa Aesar, 98+%) and the A-H-5h XPS 

sample film was prepared in heptane. 

3.5.5. Aerobic Milling in Mesitylene with Pyrene Additive  

 The aerobic milling of silicon took place outside of the glovebox using the same Netzsch 

MiniCer mill and produced samples A-M/P-5h and A-M/P-6h. The mill was operated as 

previously described with the following exceptions: mesitylene was used as received, rotary 

evaporation was performed outside the glovebox, powder XRD and BET samples were prepared 

in air, XPS sample film was prepared in 1,2,3-trichloropropane and transferred to the XPS 

sample chamber under aerobic conditions. 

3.5.6. BET  

 One method to probe particle size is to perform Brunauer, Emmett, and Teller specific 

surface area analysis (BET).58 The sample is placed under vacuum and cooled to liquid nitrogen 

temperatures. The sample is then exposed to N2 gas which adsorbs to the surface and the sample 

is allowed to equilibrate. From the difference in the starting pressure and equilibrium pressure, 

the number of moles of nitrogen adsorbed can be calculated. This process is repeated multiple 

times to create a trend which is evaluated by linear regression to determine the volume of a 

monolayer of adsorbed gas. From this volume, Avogadro’s number, the cross-sectional area of 

the adsorbate gas, the molar volume of the gas, and the mass of the sample the specific surface 

area is calculated. The specific surface area can then be used to determine average particle size 

using the material density and assuming the particles are spherical and non-porous. Even for 

non-spherical particles, smaller particles will have large BET specific surface areas and as 

particle size increases BET specific surface area decreases. Therefore, even if it is known that the 

particles are non-spherical, BET analysis provides an assessment of relative particle sizes. 

 Anaerobic specific surface area analysis was performed via the BET method58 by the author, 

Mr. Bukovsky, or Mr. Wyatt using specially designed air-free ―pear-shaped‖ flasks. The flasks 

had narrow necks minimizing the volume of gas exposed to a gradient temperature (i.e. 

temperature change going from room temperature to liquid N2 temperature). This method of BET 
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analysis required a two temperature measurement of the final pressure in the flask. The gas used 

was N2 (Airgas, UHP, 99.999%) and the sample was cooled to liquid N2 temperatures. The 

silicon sample was added to the flask in a glovebox and then further dried by vacuum (< 10−5 

Torr) at 20 °C for at least 16 h. Samples were ca. 1.00 g in mass, and the sample volume was 

corrected for in the final pressure measurement. The data was plotted as Peq/n(P0-Peq) vs. Peq/P0 

and fit to a linear equation where the slope, intercept, and the moles of N2 required to form a 

monolayer was calculated,58 and the specific surface area was determined using a surface area 

for N2 of 1.62 × 10−19 m2 molecule−1.59 At least 5 nitrogen additions were performed per sample, 

more additions were performed when required to keep the Peq/P0 in the linear range of 0.05–

0.30.58 In all cases the linear fit through the 5 or more data points had a r2 > 0.999. 

3.5.7. H2O and O2 Gas Uptake Experiments  

For oxygen uptake experiments industrial grade O2 (Airgas, 99.5%) was used as received and 

these experiments were performed by Mr. Bukovsky and Dr. Steven H. Strauss. For water uptake 

experiments distilled deionized water (Barnstead Nanopure filtration and deionizer system, final 

resistance greater than 18 MΩ) was freeze, pump, thaw, degassed three times to remove any 

dissolved gases and the experiment was performed by Mr. Bukovsky. A fresh sample of milled, 

dried MGS was transferred to an air-free test tube in an N2 or argon-filled glovebox and attached 

to a glass manifold with a #9 o-ring joint. Keeping the sample rigorously anaerobic all volatiles 

were again removed by vacuum, < 10−5 Torr for ca. 12 h. The sample was then exposed to 

measured doses of O2 or H2O. In the case of H2O experiments, the H2O was held isothermally at 

a temperature of 19 °C, just below room temperature to ensure no water vapor would condense 

in the air-free sample tube leading to erroneous mass changes.  

3.5.8. Powder XRD  

 A powder is placed in the X-ray beam and the detector moves over a range of angles, 

collecting the intensity of the diffracted electrons as a function of the angle. Peaks occur when 

the lattice planes of crystalline regions diffract X-rays at the detection angle. When examining a 

material, the intensity and position of the peaks can be compared to known materials since the 
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combination of these two is unique to a particular phase of a material. A completely amorphous 

sample will not diffract electrons and will therefore produce a flat line pattern. Larger crystallites 

diffract more and produce more intense peaks. As crystallite size decreases peaks become shorter 

and broader. 

Data were collected by Mr. Bukovsky on a Scintag X-2 powder X-ray diffractometer, with 

Cu Kα radiation (λ = 0.154 nm) at 40 mA and 45 kV, a tube divergent slit width of 2 mm, and a 

tube scatter slit width of 4 mm. The instrument is equipped with a Pelteir detector with a scatter 

slit width of 0.5 mm and a reference slit width of 0.2 mm. The experimental setup was a standard 

Bragg-Brentano geometry with a stationary sample stage. Each sample was scanned from 5° – 

90° or 10° – 80° in 0.02° step increments with 1.00 s collection time per step. Samples that were 

aerobic were sprinkled onto a thin film of high vacuum silicon grease applied to a standard glass 

microscope slide or mixed in mortar and pestle with Apiezon Type N grease in air and spread as 

a paste to a standard microscope slide. 

3.5.9. Air-free Powder XRD  

 Instrument and experimental set up were the same as previously described and were 

performed by Mr. Bukovsky. Samples were prepared by grinding/mixing a weighed sample of 

the milled MGS in a weighed amount of Apiezon Type N grease in a N2 or argon filled 

glovebox. All milled MGS samples were 0.106 ± 0.008 g and all amounts of Apiezon Type N 

grease were 0.260 ± 0.007 g. The mixture of milled MGS powder and grease was ground in a 

clean, dry agate mortar and pestle inside the glovebox until a smooth brown paste formed. The 

paste was then removed from the glovebox and spread as a film covering ca. the middle half of 

the surface area on a standard glass microscope slide.  

3.5.10. TEM  

Transmission electron microscopy was performed by Mr. Bukovsky with the assistance of 

Dr. Roy Geiss on a JEOL JEM-2100F field emission transmission electron microscope. Samples 

were dispersed in ethanol (Pharmco-AAPER, 200 proof, ACS/USP grade) or isopropyl alcohol 

(Fisher, 99.999%) in air with a bath sonicator for ca. 10 min. The dispersion settled for ca. 1 min 
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then the solution was added drop-wise to TEM grids (Ted Pella, part #01840, pure carbon on 200 

mesh Cu), and allowed to dry in air for ca. 10 min. The grids with samples were then attached to 

a double tilt holder and subjected to ca. 10−3 Torr vacuum until the pressure equilibrated 

(indicating little to no residual alcohol remained). Samples were imaged at 200 keV, images 

were captured and manipulated with Gatan Microscopy Suite, Version 2.31.734.0. To simplify 

crystalline region and crystallite size analysis most TEM images were collected in darkfield view 

with the beam at an arbitrary angle and then rotated 90° from the initial angle. 

3.5.11. SEM  

Scanning electron microscopy was performed by Mr. Bukovsky with the assistance of Dr. 

Geiss on a JEOL JSM-6500F field emission scanning electron microscope. Samples were 

dispersed in ethanol (Pharmco-AAPER, 200 proof, ACS/USP grade) or isopropyl alcohol 

(Fisher, 99.999%) in air with a bath sonicator for ca. 10 min. The dispersion settled for ca. 1 min 

then the solution was added drop-wise to TEM grids (Ted Pella, part #01840, pure carbon on 200 

mesh Cu), and allowed to dry in air for ca. 10 min. 

3.5.12. XPS  

 X-ray photoelectron spectroscopy (XPS) is used to examine the binding environments of 

atoms in a sample and was pioneered by Kai Siegbahn and co-workers.60 It is related to the 

photoelectron spectroscopy that was described in an earlier chapter for measuring electron 

affinities, but uses X-rays to eject electrons because the binding energies of core electrons are 

higher than the binding energy of an extra electron. Samples are typically prepared as a film and 

placed into the analysis chamber, which is under high vacuum (< ca. 10−8 Torr). X-rays irradiate 

the surface of the sample and as they interact with atoms electrons are ejected. Emitted electrons 

are collected by either an electrostatic or a magnetic lens system. In the extraction lenses the 

electron energy is retarded to a specific energy, set by the user, known as the pass energy. Using 

a pass energy allows uniform energy resolution across the entire spectrum. Only electrons with 

the specified pass energy are sent into the concentric hemispherical analyzer which controls the 

path of electrons by setting negative potentials on the two hemispheres thereby directing 
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electrons around the hemisphere to the multichannel plate. The spectrum is scanned by varying 

the electric fields in the extraction lenses to retard electrons with differing initial kinetic energies. 

The binding energy of the detected electron is determined by subtracting the kinetic energy of 

the electron and the work function of the spectrometer from the X-ray source energy. 

The binding energy of the electrons depends on the element, the orbital, and what other 

atoms are bound to the atom of interest. Electrons in atoms bound to other atoms with higher 

electronegativity will exhibit higher binding energies. Spin-orbit splitting is observed when 

electrons can have different angular momentum values (j), i.e., p, d, and f orbitals, and leads to 

two peaks in the spectrum. The observed spectrum is fit with peaks for the different binding 

environments likely present in the sample. XPS is considered a surface analytical technique, 

because only electrons which are able to escape the material detected. The depth of analysis is 

dependent on the inelastic mean free path of the ejected electron which, in turn, is dependent on 

the material being analyzed, but typically on the order of 10 nm or less. 

X-ray photoelectron spectroscopy (XPS) experiments were performed by the author on a 

PHI-5800 system using a monochromatic Al Kα X-ray source. A takeoff angle of 45° was used 

for all analyses and an electron neutralizer set to 5 A for anaerobic samples and 35 A for 

aerobic samples was used to partially offset sample charging. High resolution spectra were 

collected using 0.1 eV/step, 100 ms/step, 23.50 eV pass energy, and a spot size of 0.8 × 2 mm. 

CasaXPS Version 2.3.16 was used to analyze all data. Silicon and carbon spectra were fit with a 

Tougaard background and oxygen spectra were fit with a Shirley background, using an average 

width of 5 and 70% Gaussian 30% Lorentzian peak shapes for all elements. After fitting the C 1s 

spectrum, all peaks were shifted by setting the C–C/C−H peak to 285.0 eV46,48 to charge correct 

all binding energies. The metallic silicon Si0 environment was fit with both 2p1/2 and 2p3/2 peaks, 

the other Si environments were fit with single peaks. 

Anaerobic samples were loaded onto the sample holder in a N2 or argon-atmosphere 

glovebox and transferred into either a transfer bag or a glass jar. When using a transfer bag, the 

bag was opened over the flush of nitrogen exiting the sample introduction chamber and the 
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sample holder transferred into the instrument and started under vacuum as quickly as possible, 

typically within 30 seconds. When using the glass jar with a plastic lid and the seam covered in 

parafilm, the glass jar was opened under a flush of argon and the sample holder transferred into 

the instrument under a flush of argon and then immediately started under vacuum. For samples 

that were sputtered to remove surface hydrocarbon contamination, an argon-ion gun within the 

XPS operated at 2 kV for 0.1 min was used. 

3.5.13. DLS  

Dynamic light scattering was performed by Mr. Bukovsky on a Malvern Zetasizer Nano ZS 

with a 633 nm laser source operating in backscatter mode with a source detector angle of 173°. 

Samples were dispersed in ethanol (Pharmco-AAPER, 200 proof, ACS/USP) by breaking up 

clumps in an agate mortar and pestle and then further dispersion with sonication for 10-15 min in 

a bath sonicator. Samples were diluted until a quality experiment was achieved. Samples were 

tested in 1.5 mL PMMA ISO 9001-14001 Certified, disposable cuvettes (GMBH, Cat. No. 

759085D) at 25 °C and were held isothermally at 25 °C for 2 min prior to the experiment. For 

each sample 3 measurements of 12-15 runs per measurement were utilized (number of runs 

depending on sample concentration, determined by instrument for each sample).  
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SUMMARY/CONCLUSIONS AND FUTURE CONSIDERATIONS 
 
 
 

Summary/Conclusions 

 Three different classes of molecules/materials have been characterized in this 

dissertation. This work explored the ability to tune properties by altering either the molecular 

structure or the synthetic conditions. Careful study and analysis allows for conclusions to be 

drawn about what effects different changes have on the properties of interest.  

 In Chapter 1, a selection of fluorescent C70(CF3)n (n = 8 or 10) molecules were studied to 

determine the effect that addition pattern had on the photophysical properties. Since these 

molecules all had the same substituents any substituent effects could be ruled out. Additionally, 

pairs of molecules differed in the placement of a single trifluoromethyl group so the remaining pi 

systems were very similar. Through experimental and theoretical studies it has been determined 

that high fluorescence quantum yields are correlated with high oscillator strength, large ΔS1−T1 

energy gaps, and smaller spatial extension of the S0→S1 excitation. Similarities in the 

fluorescence and singlet oxygen quantum yields for two compounds, 70-8-1 and C70Ph8, with the 

same addition pattern, but different substituents leads to the conclusion that the addition pattern 

and not the identity of the substituents affects the photophysical properties of fullerenes. 

 In Chapter 2, the effect of molecular shape on product distributions, the electrochemical 

properties of PAH(CF3)n compounds, and the effects of donor or acceptor choice on CTCs were 

explored. In general, based on the selection of PAH cores studied in this work, when cores with 

8–10 substitutable carbons are reacted with at least 10 equivalents of CF3I the PAH(CF3)n 

products will mostly have a range of n = 4–6. This synthetic technique worked equally well for 

the heterocyclic compound PHNZ. The addition of electron-withdrawing CF3 groups to PAHs 

results in a regular, incremental increase in both the E1/2 and EA as a function of the number of 

CF3 groups. For a broad selection of PAH and PAH(CF3)n compounds the relationship between 

reduction potentials and EAs is 0.74 V eV−1. When PAH(CF3)n compounds are mixed with 
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PAHs, CTCs can form and the energy of the CT band in solution is closely approximated by the 

difference in solution oxidation/reduction potentials of the donor and acceptor. 

 In Chapter 3 the first example of adapting a stirred media mill to operate in an inert 

atmosphere glovebox is presented. When milling silicon, the presence of surface passivating 

additives including oxygen or aromatic carbon containing species mitigates agglomeration and 

leads to a dramatic increase in specific surface area, and corresponding decrease in average 

particle size. Nascent silicon surfaces are sufficiently reactive to result in the formation of Si–C 

bonds even when milled in a relatively inert solvent such as heptane. After milling anaerobically 

in heptane the resulting silicon nanoparticles are very reactive with oxygen resulting in the 

production of sparks upon exposure to ambient air. Silicon milled in mesitylene and pyrene 

forms nearly the same amount of Si–C bonds whether it is milled aerobically or anaerobically. 

Future Considerations 

 TMFs that exhibit high fluorescence quantum yields could have their 

electroluminescence quantum yields measured to determine whether they are suitable for use in 

organic light emitting diodes. TD-DFT can be used to calculate oscillator strengths and ΔS1−T1 

energy gaps to search for new promising fullerene fluorophores. Additional study is needed to 

explain the reason that 70-8-1 has low fluorescence and singlet oxygen quantum yields while 70-

8-2 exhibits relatively high fluorescence and singlet oxygen quantum yields. Preliminary 

experiments have demonstrated the proof of concept for using fullerene derivatives as leaf 

imaging agents, however, the solution was made at the limit of solubility for 70-10-2 in 

perfluorodecalin. Future leaf imaging experiments would be improved by using a molecule with 

either higher solubility or a higher fluorescence quantum yield. Theoretically higher solubility 

could be achieved with longer perfluoroalkyl chain length so it is recommended to target the 

synthesis of molecules with the same addition pattern as fluorescent TMFs, but longer 

perfluoroalkyl chain length. TMFs with high singlet oxygen quantum yields could be 

investigated for use as photodynamic therapy agents or photodisinfection. 
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 To further understand the effect of five-membered rings on product composition in 

PAH(CF3)n compounds, reactions of FLUR and FLRA with CF3I should be performed with at 

least 10 equivalents of CF3I gas. It is hypothesized that this will result in narrower product 

distributions and higher n value products. In instances where separation has largely been 

unsuccessful the use of methanol as the mobile phase will likely lead to increased interaction 

with the stationary phase and may then result in improved separation and the isolation of new, 

pure compounds. Measuring the gas-phase EA of FLRA-3-1, FLRA-3-2, PHEN-4-1, and PHEN-

4-2 will further elucidate the relationship between reduction potential and EA for isomers where 

the reduction potential is significantly different. PHNZ(CF3)n compounds where n < 4 could be 

tried in reactions to produce organometallic complexes. Different solvents could be used to 

crystallize CTCs to determine whether the crystallizing solvent or the intermolecular interactions 

play a more important role in solid-state stoichiometry. 

 Milling experiments with other metals or metalloids could be completed to determine 

whether the effects noted here are similar for other materials. The most enlightening experiment 

would be to determine the identity of the carbon species on the surface of the nanoparticles, but a 

method do to this has not yet been found. Pyrene in mesitylene was selected on the hypothesis 

that pyrene would selectively bind to the surface because of the steric hindrance for silicon to 

bind to mesitylene. To check whether the addition of pyrene results in more Si–C bond formation 

than mesitylene alone, milling experiments could be conducted with pure mesitylene as the mill 

fluid. 
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