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ABSTRACT 

 

IVORY POACHING, SOCIALITY, AND THE ROLE OF BEHAVIOR IN CONSERVATION 

 

 The potential of animal behavior to contribute to conservation biology has been 

acknowledged for decades, but empirical work to realize this potential has been surprisingly slow 

(Sutherland 1998; Caro 2007; Angeloni et al. 2008; Berger-Tal et al. 2015). Behavior that 

reliably conveys the response of populations to human threats may be particularly useful in 

assessing population status and recovery potential as it can be measured over relatively short 

time periods. African elephants (Loxodonta africana) rely heavily on behavioral decisions and 

are highly dependent on complex social processes that revolve around older animals (Douglas-

Hamilton 1972; Moss 1988; Wittemyer et al. 2005b). Within the last decade poaching of 

elephants for their ivory has increased to meet rising demand on international markets (Maisels 

et al. 2013; Wittemyer et al. 2014), which has disproportionately been targeted toward older 

elephants for their larger tusks (Wittemyer et al. 2013; Chiyo et al. 2015). In this dissertation I 

analyze behavior in the context of a well-studied population of African elephants in northern 

Kenya under illegal killing pressure, with emphasis on social behavior. I describe baseline levels 

of sociality among adult male elephants prior to the intensification of poaching, compare 

hierarchical social network structure of female elephants before and during poaching, investigate 

fine-scale social strategies among young females following family mortalities, assess the utility 

of a flight metric as a behavioral indicator of harvest pressure, and examine the overlap in area 

use of two adjacent subpopulations. This work contributes to the growing literature on 
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conservation behavioral methods and advances understanding of sociality in this threatened 

species.  
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Chapter 1: Introduction 

 

Behavioral responses of wildlife to anthropogenic pressures may affect fitness and 

associated demographic trends, and may provide managers with proxies for population health 

(Sutherland 1998; Angeloni et al. 2008; Berger-Tal & Saltz 2016). In social species, interactions 

with conspecifics may be an important component of such responses. This dissertation addresses 

questions founded in animal behavior to understand the indirect effects of unsustainable harvest 

on a threatened species, highlighting the ways in which sociality studies may be useful for 

conservation and advancing theory on cooperation in a complex society. It encompasses analyses 

on the behavior of a population of African elephants (Loxodonta africana) in Samburu, northern 

Kenya that has been intensively monitored since 1997 (Wittemyer 2001). The population 

experienced a surge in ivory poaching in 2009 that continued at a high intensity through 2013 

(Wittemyer et al. 2014). Much of the following work reflects elephant behavior in the context of 

illegal harvest. 

Chapter 2 characterizes bonds among male African elephants. Male elephants undergo 

discrete periods of sexual activity and inactivity, the seasonal timing of which varies from bull to 

bull. As a result of their mismatched sexual periods and changing motivations for conspecific 

association between periods, social bonds among male elephants have been challenging to 

quantify and remain poorly understood. We control for this aspect of bull biology by quantifying 

social association indices among pairs of bulls (only considering pairs to be available to associate 

if they were in the same motivational state—sexually active or inactive—on the date of the 

observation). We show that social preference is much stronger than was previously thought and 

that when sexually inactive bulls tend to associate with age-mates. This chapter provides 
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important baseline information for the species and demonstrates the utility of controlling for 

motivational states in animals.  

Chapter 3 compares social structure in adult female elephants over a sixteen-year period 

during which the population experienced intensifying illegal harvest. Harvest disproportionately 

targeted older females for their larger tusks (Wittemyer et al. 2013), mirroring the targeted 

removal of highly connected nodes in theoretical networks (Albert et al. 2000). We use social 

associations to construct clustering trees and social networks. Significantly distinguishable 

structural change points on cluster trees indicated that the nested hierarchical structure of female 

elephant society present in undisrupted periods is maintained despite high mortality. Daughters 

in the disrupted period replicate their mothers’ social environments, which is the mechanism by 

which complex structure is resilient to perturbation. Females from highly disrupted groups that 

could not replicate their mothers’ social patterns because of severe family mortality strengthened 

bonds within their mothers’ more distant contact networks, regardless of relatedness. By bridging 

theoretical networks with an empirical system this chapter presents rare evidence for evolved 

mechanisms of network resilience and provides novel information on how this highly social 

species responds to harvest pressure. 

The context of novel bond formation defined in Chapter 3 is used to investigate female 

elephant social strategies following family mortality at a finer scale in Chapter 4. We use the 

types and directions of behavioral interactions collected while following individuals to 

understand the bonding choices elephants make. Our results suggest that there are measureable 

social costs to lost bonds, but that behavioral flexibility allows individuals to improve their social 

environment following family mortality. Orphans experienced less affiliation and more 

aggression than their non-orphan counterparts. Alloparenting (directing parenting behavior 
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toward calves that are not their own) and acting submissive were negatively related to the time 

an elephant was orphaned and whether they belonged to their natal group, indicating that 

elephants alter their behavior as they integrate into new groups. This chapter provides insight 

into the evolution of social behavior in elephants and the implications of age-selective poaching 

for remaining young females in a matriarchal society. Our results suggest that the fission-fusion 

nature of this society allows elephants to compensate for their lost bonding partners over an 

extended period of social integration, and that the persistence of older individuals in the 

population may be critical to this process. 

Chapter 5 tests the utility of anti-predator flight metrics as proxies for anthropogenic 

pressure. Rapid behavioral assessment has been suggested as an inexpensive and easily 

implemented method to gauge human pressure on wildlife (Caro 2005). However, if flight 

metrics are related to non-human variables they could be misleading for management efforts. We 

use mixed-effects models predicting reaction of elephants to observer vehicle approaches in 

which we treat individuals as random effects and include ecological, anthropogenic, spatial, 

social, and demographic predictor variables. We show that elephant response is better predicted 

by non-human variables than it is by harvest pressure. We discuss the implications of our results 

for population monitoring and behavioral assays conducted in situ. This chapter provides a 

unique perspective on a problem that has long been identified in wildlife management but is 

rarely dealt with. 

Finally, Chapter 6 investigates spatial segregation between elephant sub-populations. We 

compare the photographic identification records of two long-term elephant monitoring projects 

(Samburu/Buffalo Springs National Reserves and Mpala Ranch) that are located close to one 

another relative to an elephant’s ranging ability (approximately 75 km). Despite the proximity of 
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the two study areas, we find no overlap among photographic records but use radio-collar tracking 

data to show that there is evidence of infrequent shared space use. We highlight the importance 

of projects like these for wildlife corridor planning and ongoing national development, and 

emphasize the value of combining tracking data with observational methods. 
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Chapter 2: Controlling for behavioral state reveals social dynamics among male African 

elephants, Loxodonta africana1 

 

Introduction: 

In social systems with contest polygyny, males attempt to monopolize receptive females, 

and male-male relationships are often competitive (East & Hofer 1993; van Hooff & van Schaik 

1994). Despite this expectation of competitive relationships, preferential association has been 

demonstrated among males in polygynous taxa (e.g. ibex: (Villaret & Bon 1998); chimpanzees: 

(Langergraber et al. 2007)). Empirical work has linked companion preference among males to 

reproductive success when coalitions or coordinated displays facilitate copulations (Connor et al. 

2001; Ryder et al. 2009; Schülke et al. 2010). In societies in which reproductive benefits of 

association are not apparent, reports of preferential associations among males are rare (Fischhoff 

et al. 2009).  

Motivational state is highly relevant to the structure of social relationships. Male 

interactions often vary in relation to the reproductive status and distribution of females (Emlen & 

Oring 1977). During mating periods, competitive or coalition-based interactions likely dominate 

whereas the influence of reproductive competition may be less apparent during periods of sexual 

inactivity. Social interactions while sexually inactive may provide benefits including information 

exchange (e.g. (McComb et al. 2001; Sonerud et al. 2001), predator defense (e.g. (Hamilton 

1971), foraging facilitation (e.g. (Baird et al. 1991)), or resolution of dominance hierarchies 

(Beacham 2003; de Villiers et al. 2003; Evans & Harris 2008). Understanding one’s status in a 

                                                           
1 Adapted from: Goldenberg, S. Z., de Silva, S., Rasmussen, H. B., Douglas-Hamilton, I., and 
Wittemyer, G. 2014. Controlling for behavioural state reveals social dynamics among male 
African elephants, Loxodonta africana. Animal Behaviour 95:111-119. 
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hierarchy can prevent future contest among competitors, which is especially beneficial for 

species with weaponry (Rowell 1974). Investigation of social preference is potentially 

confounded by such shifts in behavioral states (sexually active to inactive). Few studies of 

sociality assess differences in structure across behavioral states, despite the potential difference 

in cost/benefit ratios (but see (Lusseau 2007; Fischhoff et al. 2009; Patriquin et al. 2010)). 

African savannah elephants engage in contest polygyny, with females coming into estrus 

for 4-6 days once every 4 years (Moss & Poole 1983). Mature males have distinct periods of 

sexual activity and inactivity throughout the year (Poole 1987). Because females can come into 

estrus at any time of year (Poole 1989a), mature male elephants undergo sexually active periods 

asynchronously (Hall-Martin 1987; Poole 1987; Rasmussen 2005). Grouping behavior reflects 

these periods, as males often are found among all-male groups when sexually inactive and found 

among mixed groups when sexually active (Poole & Moss 1981), suggesting that motivation to 

associate with conspecifics changes between states (Fischhoff et al. 2009). 

Quantifying relationships among males necessitates a framework that accounts for this 

marked difference in motivational state. Dyadic association indices incorporate observations 

when one individual is seen without the other as rejected opportunities to associate (Cairns & 

Schwager 1987; Ginsberg & Young 1992). Previous studies using association indices have found 

weak or random relationships among male African elephants (Croze 1974; Moss & Poole 1983; 

Chiyo et al. 2011), but have not accounted for the dynamic and individual-based schedules of 

sexual activity that may drive association. Collapsing multiple states into one category 

potentially distorts values by including males as potential associates when they may be 

predisposed towards avoidance (i.e. one is seeking female associates while the other is seeking 

male associates), limiting understanding of what may be driving social behavior. Here, we 
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control for mixed motivational states by conducting state-based calculations of association 

indices in a population of free-ranging elephants in Samburu, northern Kenya. We investigate 

male-male associations and the social network metrics that arise from those associations to gain 

insight into the strength of bonding and the drivers of male sociality. 

Assuming the distribution of females is the primary driver of male conspecific 

association during sexually active periods (Emlen & Oring 1977), but that it plays a limited role 

during sexually inactive periods, we expect associations among male elephants to be structurally 

different in relation to their reproductive state. Males may use sexually inactive periods to assess 

competitors (of close stature/age) and resolve rank to mitigate potentially costly contests 

(Beacham 2003), or male-male bonding may be driven by other non-contest-related benefits such 

as information exchange across male age classes (Evans & Harris 2008; Chiyo et al. 2011) or 

predator defense (McComb et al. 2011). If males use sexually inactive periods to foster bonds 

that confer benefits like shared knowledge similar to those found among females in the species 

(McComb et al. 2001; Wittemyer et al. 2005b), we expect evidence of preferred companionship. 

The structure of preferred companionship may provide insight into the benefits of such 

affiliations. To assess the importance of incorporating state in social analyses, we compare 

elements of social structure (association index values and social network metrics): (1) 

disregarding behavioral states and (2) differentiating state-based social properties. We present 

individual-based comparisons of state-dependent differences in social metrics. We investigate 

relationships among age, association and social network structure across states to provide insight 

regarding possible drivers of observed social patterns. Finally, we relate our findings to previous 

work on male elephant society (Evans & Harris 2008; Chiyo et al. 2011). 
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Methods: 

Study Population 

 This study is a part of an ongoing long-term monitoring project that has maintained 

individual-based records of the elephant subpopulation that uses the unfenced Samburu and 

Buffalo Springs National Reserves in northern Kenya (0.3-0.8˚N, 37-38˚E) since 1997 

(Wittemyer 2001; Wittemyer et al. 2013). The reserves are located along the Ewaso N’giro 

River, the only permanent water source in this semiarid savannah ecosystem and thus a focal 

area for wildlife. Because of the sparse, semiarid vegetation, good visibility at the study site 

enables researchers to detect groups and solitary individuals easily. The elephants that use these 

reserves are habituated to vehicles, allowing detailed behavioral observation, but move in and 

out of the reserves regularly; they are a part of a larger population that ranges within the 

Laikipia/Samburu ecosystem (Wittemyer et al. 2005a). 

 

Data Collection 

 Between August 1999 and November 2003, observations of elephants were collected 

while performing established transects on a daily basis within Samburu and Buffalo Springs 

National Reserves that resulted in complete coverage of the parks at least once per week (see 

further description in (Wittemyer et al. 2005b)). Observations were also collected 

opportunistically outside of the reserves where few roads exist, making systematic surveys 

impossible; elephants were located during opportunistic surveys through the use of radiotracking 

collars (Rasmussen 2005). When elephants were encountered the identities of all individuals 

over 18 years old in the group (younger males were often difficult to distinguish and therefore 

noted by age rather than identity), the GPS location, date, time and group activity were recorded 
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(Wittemyer et al. 2013). Individuals were identified using unique ear patterns and tusk shape 

(Douglas-Hamilton 1972; Moss 2001). Bulls were considered a part of a group if they were 

spatially clustered (within a 500 m radius of an observationally estimated center) and 

coordinated in movement and activity (Wittemyer et al. 2005b; Chiyo et al. 2011). The presence 

of musth signaling (i.e. temporal gland secretion and urine dribbling) was recorded (Poole 1987) 

and used to verify model accuracy in defining states of sexual activity and inactivity (see 

Delineating States below). For days when a bull was observed more than once, only the first 

observation of the day was included in analyses (Rasmussen 2005; Wittemyer et al. 2005b). Bull 

ages were estimated using established criteria, including shoulder height, tusk girth and head 

shape (Moss 1996), the accuracy of which was established using molar dentition from dead or 

immobilized individuals (Rasmussen et al. 2005). 

 There were 154 bulls identified over the course of the study. It is common to use the most 

frequently observed individuals in analyses to minimize effects driven by poor sampling 

(Whitehead 2008). We defined our focal bulls (N = 32) as those seen at least 20 times in the 

sexually inactive state because we anticipated social interactions to be strongest during the 

sexually inactive state, when mate competition would not structure interactions. The number of 

observations in the sexually active and inactive states of these focal bulls was similar (median: 

inactive = 42; active = 45). There were 3473 observations of focal bulls in known states in 2018 

distinct aggregations over the 4-year study. Focal bulls were estimated to be between 21 and 41 

years old at the midpoint of the study. To analyze the relationship between age and strength of 

association, we divided pairs of individuals (dyads) into four categories in which ‘age-mates’ 

were defined as individuals born 5 or fewer years apart. Age classification was determined by the 

youngest member of the dyad, for which ‘old’ bulls were at least 30 years old and ‘young’ bulls 
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were younger than 30 years old. The 30-year cutoff criterion was based on the age of musth 

onset in the study population (Rasmussen et al. 2008). Therefore, our four categories were ‘age 

mates (old)’, ‘non-age-mates (old)’, ‘age-mates (young)’ and ‘non-age-mates (young)’. 

 

Delineating States 

 When sexually active, mature males overtly musth-signal whereas younger males 

typically do not overtly signal their state (Ganswindt et al. 2005). Therefore, we applied a hidden 

Markov model (HMM) (Rabiner 1989) to characterize individual males’ sexual state to allow 

state delineation based on behavioral traits other than overt musth signaling. In this model, the 

frequency of association type (mixed-sex group, bull group, lone bull) served as the observable 

signal with state-specific probabilities, and sexual state served as the unobservable (hidden) state 

(Rasmussen 2005). Sequences of these observable group contexts (i.e. association type) were 

used to infer underlying sexual state (Rasmussen 2005; Ganswindt et al. 2005; Rasmussen et al. 

2008). Models relied on three sets of parameters: (1) the probability of starting in a given state, 

(2) the probability of switching to another state given the current state and (3) the probability of 

producing a particular observable signal given the current state. Models with differing numbers 

of states were tested and parameters were determined using maximum likelihood. Model 

parameters (i.e. state transition and observable signal probabilities) were optimized on temporal 

sequences from multiple bulls simultaneously to avoid model overfitting that might arise from 

individual-based model optimization. Because males associate with other males when both 

sexually active and inactive, the HMM state assignment does not predict the strength of 

relationships among males in either state. Rather, differences in costs and benefits of male-male 

association between sexual states may lead to differences in social metrics. For example, if bulls 
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form coalitions while sexually active (when they are frequently found in mixed-sex groups) but 

do not benefit from relationships with particular individuals while sexually inactive, we might 

expect to see higher dyadic association index values among sexually active males than among 

sexually inactive males. In contrast, if benefits from association with particular males are higher 

when sexually inactive, we might expect the opposite trend.  

 Bulls included in the HMM procedure were those seen at least 30 times/year (N = 38). To 

verify that sexual state corresponds to associational preference and that association shifts with 

underlying state, models were first applied to a subset of older bulls (>35 years; N = 12) with 

regularly occurring musth periods and concurrent visual signals to determine whether model-

defined sexually active periods based on association type accurately distinguished these periods 

of heightened reproductive activity (Poole 1987) (see (Rasmussen 2005) for details of 

verification). When this cross-validation procedure confirmed HMM assignments, the same 

modelling steps were applied to temporal sequences of younger bulls without regularly occurring 

musth periods. Finally, a combined model was optimized for all bulls. Although varying 

numbers of states were tested, the best combined model included two states, assigning bulls to 

state 1 (sexually inactive, in which the probability of association with females was low) or state 2 

(sexually active, comprising musth and sexually active nonmusth, in which the probability of 

association with females was high). The combined model preserved most of the state 

designations from the age-specific models (91-99%). Models were fitted using Mathematica 

(Wolfram Research 2004). For further details on model definition and results, see (Rasmussen 

2005) and (Rasmussen et al. 2008). 

 States were assigned for each day on which a focal bull was seen for all but 61 occasions 

over the 4-year study. A bull seen consecutively in the same state less than 28 days apart was 
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assumed to be in that state for the days between sightings. If two consecutive sightings of a bull 

were within 28 days but he was in different states on those days, the interim period was split 

evenly between the two states. If two consecutive sightings of a bull were more than 28 days 

apart, his state during that period was considered unknown, during which the individual was 

excluded from state-based calculations (see below). 

 

Calculating Association Indices 

 Association indices measure the strength of association between two individuals (Cairns 

& Schwager 1987). Because bulls in our study system were as likely to be identified when apart 

as they were when together and because all individuals within a group were registered, we used 

the simple ratio index (hereafter ‘AI’) to determine the strength of dyadic bonds: AI = NAB/(NAB 

+ NA + NB), in which NAB is the number of times that individuals A and B were seen together, 

and NA and NB are the number of times that individual A or B was seen without the other, 

respectively (Cairns & Schwager 1987). AI was only calculated for dyads that comprised focal 

bulls. The number of observations per dyad ranged from 0 to 211 for sexually inactive dyads 

(median = 28) and from 0 to 146 for sexually active dyads (median = 22). 

 To evaluate the effect of including motivational state, we calculated AI using three 

approaches: (1) using all observations of focal bulls regardless of group type or sexual state (the 

‘all-data sample’, medianobs = 95), (2) using only observations of bulls in all-male groups (the 

‘all-male sample’, cf. (Chiyo et al. 2011), medianobs = 38) and (3) using only data for which the 

members of the dyad were both categorized with identical sexual states (i.e. observations on 

dates when the members of a dyad were in different states or when one member was in an 

unknown state were not included in calculations). AI values for dyads were calculated 
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independently for both the sexually active (medianobs = 45) and inactive states (medianobs = 42). 

Association index data were non-normal even after arcsine transformation. As a result, 

nonparametric statistical approaches were used to compare the distributions of AI values derived 

from sexually active and inactive data. We also tested for any association between the AI value 

of a dyad and their absolute age difference using the Mantel test (Mantel 1967) implemented in 

the package ‘ade4’ for R (Thioulouse et al. 1997). All analyses and associated statistical tests 

were performed in R v.2.15.1. 

 

Permuted Data Sets to Test for Random Association 

 Permuted data sets can be used to provide a distribution of random association against 

which to compare observed data (Manly 1995). We used the swap method described in (Bejder 

et al. 1998) to generate random associations from our observation data, in which the number of 

times a bull was seen and the group structure in terms of number and sizes of observed groups 

were maintained (i.e. the column and row totals). We additionally excluded all observed groups 

that were composed entirely of nonfocal individuals before permutation in order to increase the 

statistical power of the permutation tests while maintaining biological validity. This approach, 

which we will henceforth refer to as Permutation I, effectively retains the observed data structure 

and controls for variation among bull sightings (Bejder et al. 1998; Whitehead et al. 2005). Two 

individuals from two distinct groups, for which each individual was only present in one of the 

groups, were randomly selected and swapped. Our modification accounting for different 

motivational states was to swap two bulls only if they were in the same sexual state on both dates 

on which the groups were observed (state 1 for sexually inactive random matrices and state 2 for 

sexually active random matrices), thereby keeping the state-specific social attributes the same 
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(Croft et al. 2011). As such, randomly chosen bulls that were in different states were not 

available for swaps. This contrasts with the all-male and all-data approaches, in which bulls 

could be swapped despite being in different states. Although AI was only calculated for dyads 

composed of focal bulls, swaps could occur among all known bulls in the population, distributed 

among 2018 observations of distinct groups. Observed dyadic association strengths higher than 

those derived from permutations suggest the existence of social preferences.  

 Two thousand permutations of 1000 swaps each (two million total swaps from the 

original data set) were completed and dyadic AI calculated for every permutation for each of the 

four samples (all-data, all-male, sexually active or sexually inactive). The distributions of 

observed and random AI values were therefore derived from the same data set, regardless of 

subsampling structure. This large number of swaps served to decrease autocorrelation among AI 

values between permutations. After each 1000 swaps, the AI and sample size (i.e. the sum of the 

observations of bulls A and B: NS = NA + NB +2NAB) of each dyad were calculated. After 2000 

permutations were completed, all AI values corresponding to a given sample size were grouped 

and the 95th quantile was determined (Table 2.1). Observed AI values were considered 

significant when greater than or equal to the 95th quantile of the sample size-specific distribution 

of randomly generated AI values. We controlled for sample size in this way to avoid bias 

potentially introduced by subsampling by state and consequent reductions in sample sizes. 

Because there were few randomized values corresponding to the highest and lowest sample sizes, 

a function for the sample size and corresponding 95th quantile value was fitted using nonlinear 

least squares (the nls() nonlinear regression function in R) and used to predict the significance 

cutoff value for the highest and lowest sample size distributions that had too few values for 

empirical estimation. We chose a one-tailed distribution because we were interested in preferred 
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companions. These procedures were implemented in R v.2.14.0 (R Development Core Team 

2010). 

 
Table 2.1: This example table demonstrates how AI values were grouped by sample size. The 
95th quantile value for this sample size was 0.416; AI values higher than 0.416 were considered 
significant in this sample size class. 

Dyad AI Sample 
size 

Permutation 

1 0.021 29 5 
1 0.135 29 6 
2 0.160 29 2 
2 0.074 29 4 
2 0.510 29 6 
3 0 29 3 
3 0.110 29 5 
52 0.051 29 23 
74 0.108 29 200 
405 0.275 29 1050 

 

Modular Structure 

 To determine whether bull social networks were modular (i.e. whether bulls associate 

more closely with a subset of individuals), we constructed undirected weighted networks in 

which nodes representing individuals were linked by edges whose thicknesses were proportional 

to AI values. We then analyzed these networks using established techniques (Newman 2006) to 

identify structural components that may relate to the drivers of male-male associations. We 

examined structure using the Walktrap community detection algorithm in iGraph v.0.6.5 for R 

(Pons & Latapy 2005), which accounts for weighted edges. This approach uses a short random 

walk to identify nodes that are henceforth referred to as ‘modules’. We tried 3, 4 and 5 steps for 

each state-based network, choosing the partition that maximized modularity (Newman 2006). To 

determine whether the observed partition was likely to occur by chance for each state, we 

compared the observed maximum modularity to the distribution of modularity maxima obtained 
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for the 2000 permuted data sets obtained via Permutation I, described in the previous section. 

Departure from what would be expected at random suggests the existence of modules in the 

population. 

 

Network Metrics 

 We compared nodal metrics from ego-networks (graphs consisting of the immediate 

neighbors of each focal individual, in which neighbors share an AI > 0 with the focal individual) 

for each bull across states to assess how individual bulls differ from one another socially. We 

created ego-networks using the ‘statnet’ package for R. Three primary network metrics were 

examined for each individual and compared across the sexually active and inactive states as a 

means to infer differences in their social drivers: (1) ‘ego-network size’ (also known as degree 

centrality, the number of direct connections to the individual), which directly measures the 

number of companions an individual has had, (2) ‘ego-network density’ (sometimes referred to 

as clustering coefficient, the proportion of an individual’s companions that are also connected to 

one another), which is a measure of community integrity defined as the propensity of a subject’s 

companions to associate with one another and (3) ‘betweenness centrality’ (the number of 

shortest paths in the entire network that pass through an individual), which indicates how 

centrally embedded the subject is within the full network (Wasserman & Faust 1997). 

Individuals with higher betweenness are structurally important to the integrity of networks since 

they tend to bridge different social groups (Lusseau & Newman 2004) and can be biologically 

relevant by facilitating information exchange or maintaining social cohesion (Williams & 

Lusseau 2006; Chiyo et al. 2011). We also computed a related measure for a subset of analyses, 
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‘eigenvector centrality’, which is also influenced by the centrality of an individual’s contacts 

themselves. 

 To test the null hypothesis that network measures do not depend on sexual state, we 

generated 10,000 permutations samples of the sexually active and sexually inactive data sets, 

respectively. This procedure, henceforth referred to as Permutation II, preserved associations 

among individuals on any given day, the sizes of aggregations in which they were observed and 

the total number of observations per individual, but it randomly assigned their sexual state. The 

mean values of the three network metrics and differences between the two states for the 

permuted data sets were computed. 

 

Ethical Note 

 Observations were conducted in a noninvasive manner (ACUC R217B) and with 

permission of the Kenya Wildlife Service (wildlife authority in Kenya), the Samburu and Isiolo 

County Councils (local managers of the protected areas) and the University of Oxford and Save 

the Elephants (host institutions). 

 

Results: 

Comparing Association Index Values across Sampling Approaches, Sexual States and Age 

Classes 

 AI values were significantly greater among sexually inactive bulls than among active 

bulls (Wilcoxon signed-ranks test: W = 131465.5, N = 414, P < 0.001). Because data were nested 

across the other treatments (all-male or state-based treatments were a subsample of the all-data 

treatment), statistical comparisons were not appropriate, although it was clear that AI means 
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were higher with state-based treatments. This shift in means was not related to differences in 

sample sizes across the treatments, as the all-data and all-male treatments showed similar AI 

distributions, but had markedly different sample sizes. Similarly, the all-male, sexually active 

and sexually inactive treatments had similar sample sizes, but showed differences in the 

distributions of means.  

 Identification of significant dyads varied depending on data treatment (Fig. 2.1). Dyadic 

AI was significantly greater than expected by chance for 12.8% of potential dyads in the sexually 

inactive state (mean AI ± SD = 0.334 ± 0.118, N = 62) and 6.8% of potential dyads in the 

sexually active state (mean AI ± SD = 0.310 ± 0.251, N =29). In contrast, 16.1% in the all-data 

sample (mean AI ± SD = 0.079 ± 0.025, N = 80) and 15.9% in the all-male sample (mean AI ± 

SD = 0.117 ± 0.043, N = 79) were significantly greater than expected by chance when 

disregarding state. Mixing states by randomizing individuals into groups that could not occur 

biologically deflated the randomized AI distribution relative to when biological constraints were 

imposed in the randomization procedure. As a result, the threshold above which AI values were 

considered significant was deflated in the all-data and all-male samples, resulting in more 

significant dyads. 
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Figure 2.1: Mean dyadic association index ± SE among male African elephants based on 
sampling approach (all-data, all-male, state specific: active, inactive). Numbers above bars 
indicate the mean ± SE number of significant affiliates per bull. Standard errors were determined 
empirically. 
 

 The average AI for the inactive state and the number of significant dyads per individual 

when inactive were positively correlated with their age (Spearman rank correlation: AI: rS = 

0.422, N =32, P < 0.05; significant dyads: rS = 0.472, N =32, P < 0.05). However, these 

relationships were not found among sexually active bulls (AI: rS = -0.014, N = 32, P = 0.938; 

significant dyads: rS = 0.028, N = 32, P = 0.879; Fig. 2.2). Across both states, significant dyads 

included age-mates and non-age-mates. The proportion of significant dyads differed by dyadic 

age category in the inactive state (chi-square test: χ3
2 = 31.575, P < 0.001) but not in the active 

state (χ3
2 = 2.157, P = 0.541; Fig. 2.3). Age differences among significant dyads tended to be 

smaller among inactive dyads (median: inactive: 5; active: 10), with 54.8% and 34.4% of 

significant dyads composed of age-mates in the inactive and active states, respectively. Of the 
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significant inactive age-mates, 82.4% were older dyads. However, there was no significant 

relationship between the absolute within-dyad age difference and its AI value in either state 

(Mantel test: inactive: r = -0.1073, P = 0.96; active: r = 0.0633, P = 0.10). 

 

 

Figure 2.2: Mean (top) association index and (bottom) number of significant associates for 
individual African elephant bulls ordered by bull age. Black dots: sexually inactive; gray dots: 
sexually active. See text for details. Lines show linear fits. 



21 

 

 

Figure 2.3: Proportion of significant dyads to available dyads among dyadic age categories of 
male African elephants. Assignment of ‘old’ or ‘young’ was determined by the age of the 
youngest member of the dyad (old: ≥30 years; young: <30 years). Age-mates were separated by 
5 or fewer years. 
 

 There was a positive correlation in the AI between sexually inactive and sexually active 

states among dyads for which both could be calculated (Spearman rank correlation: rS = 0.214, N 

= 414, P < 0.001). Among dyads for which AI was significant in both states (N = 7), 85.7% were 

composed of bulls over 30 years old at the midpoint of the study. The median age difference 

among these dyads was 7 years. 

 

Module Detection and Network Statistics 

 Greater modularity (qmax) than expected under the null model of chance association was 

found in both the sexually inactive and active states, with the qmax in the active state higher than 

that in the inactive state (Permutation I: P < 0.0005; Fig. 2.4). However, observed values 
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(inactive: qmax = 0.082; active: qmax = 0.21) were below the 0.3 threshold taken to indicate 

meaningful structure (Whitehead 2008). The composition of modules differed across states. On 

average, sexually inactive bulls had larger and denser ego-networks but lower betweenness 

relative to when active (Permutation II: P < 0.0001). The ego-network sizes and densities 

observed in either state, as well as betweenness in the inactive state, were unlikely to have arisen 

through chance association (P < 0.0005). Only betweenness in the active state was not different 

from random (Fig. 2.5). The relative values of network measures under each treatment are 

provided in Fig. 2.6. 
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Figure 2.4: social networks of male African elephants when (top) sexually inactive and (bottom) 
sexually active, constructed using Fruchterman and Reingold’s force-directed placement 
algorithm. Nodes represent individual bulls, with node size corresponding to age at the midpoint 
of study, and shape representing module assignment. Edge weight corresponds to dyadic 
association index value. Edge color denotes whether the association index value was found to be 
significant (gray: nonsignificant; black: significant). 



24 

 



25 

 

 

Figure 2.5: (top) Ego-network size, (middle) density and (bottom) betweenness metrics derived 
from elephants in the inactive and active sexual states relative to the corresponding permuted 
values. Expected metrics present the average and confidence interval of the permuted data set 
averages (mean ± 95% CI, N = 2000 data sets). Observed metrics present the state-specific 
averages of the 32 focal bulls (confidence intervals were not computed because there was only 
one observed data set). 
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Figure 2.6: Mean ± 95th quantile for ego-network size, density and betweenness, respectively, 
for male African elephant bulls (N = 32) in all analytical approaches: all-data, all-male, sexually 
inactive and sexually active.  
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 The relationship between network measures and age varied with sexual state. In the 

sexually inactive network, density was negatively correlated with age (Spearman rank 

correlation: rS = -0.49, N = 32, P < 0.01), but no other measures exhibited a significant 

relationship. In the sexually active network the reverse was true: density showed a significant 

positive correlation with age (rS = 0.42, N = 32, P < 0.05), while size and betweenness showed 

negative correlations with age (size: rS = -0.46, N = 32, P < 0.01; betweenness: rS = -0.43, N = 

32, P < 0.05). There was no correlation between age and eigenvector centrality in the sexually 

inactive state (rS = 0.29, N =32, P = 0.1129), but there was a significant negative correlation in 

the sexually active state (rS = -0.44, N = 32, P < 0.05). 

 

Discussion: 

 Variation in social interaction among animals may arise from segregation due to 

reproductive states (as shown here), dynamic environments (Gill & Wolf 1975), shifts between 

life history tactics (Bon et al. 2001; Fischhoff et al. 2009), or changes in life state (Patriquin et al. 

2010), among other processes. The behavioral state-based analytical approach implemented here 

on male African elephants provides an effective way to partition and quantify relationships 

related to different contexts. By accounting for motivational states in our study system, we were 

able to assess more precisely the social complexity of male African elephants, an animal 

previously assumed to be relatively asocial. Our results demonstrate that associations among 

pairs of bulls are much stronger than previously reported in studies in which sexual state was not 

controlled for (thereby diluting associations by considering behaviorally restricted periods as 

missed opportunities to associate; (Chiyo et al. 2011)). However, while association indices were 

stronger in our state-based treatment compared to standard approaches, we used a more 
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conservative definition of what constitutes significant dyadic affiliation. This is because 

partitioning data sets for the state-based analyses reduced the denominator of the AI, which can 

itself result in higher AI values. To account for this, we defined significant affiliates (i.e. those 

with AI values greater than random) not with respect to the average of the population at large, 

but relative to dyads that had the same total number of samples (NS) in permutations. We then 

compared the number of significant dyads relative to those derived from permutations that 

allowed biologically unfeasible associations (all-data and all-male). Lack of adherence to the 

assumption that all individuals are equally likely to associate is an acknowledged problem in 

approaches to social data, often discussed with respect to unrecognized spatial and temporal 

constraints (Whitehead et al. 2005). This study provides an explicit example of how such 

problems driven by behavioral state can bias inference. 

 

Significant Affiliates, Age and Sexual State 

 A surprising result of these analyses was the presence of significant affiliates across 

behavioral states. In particular, we expected males to be highly individualistic in their sexually 

active state due to the high levels of mate competition typical of polygynous species. Most of the 

observations of sexually active males occurred in mixed-sex groups and it is possible these 

results reflect attraction to the same resource (i.e. estrus females) among males with overlapping 

sexually active periods, and consequently may not reflect male-male companion preference (Lee 

et al. 2011). Active periods become more consistent as bulls age, and those males that come into 

musth show a high degree of temporal fidelity in the timing of their musth periods across years 

(Poole 1987; Rasmussen 2005), possibly enhancing the effect of overlapping resource attraction, 

although such a hypothesis is less applicable to younger, nonmusth individuals. 
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 If male interactions are used to assess the ability of possible competitors (Beacham 2003; 

de Villiers et al. 2003; Evans & Harris 2008) or coalition partners (Connor et al. 2001), persistent 

relationships among age-mates may be beneficial by facilitating contest resolution based on 

previous knowledge rather than potentially dangerous conflict (Rowell 1974). Such a hypothesis 

has less relevance to non-age-mates, in which substantial size asymmetries presumably reduce 

the probability of conflict. The observed difference in median age difference among significant 

sexually active dyads relative to inactive dyads may be a function of young males shadowing 

older, more experienced males during sexually active states to gain experience (the information 

exchange hypothesis of (Evans & Harris 2008)) or to access mating opportunities as 

noncompetitive sneakers (Perrill et al. 1978). The drivers of significant sexually active affiliates 

were not definitive, and further work documenting directions and types of male interactions may 

provide insight to this question. 

 The greater proportion of significant affiliates that were age-mates among inactive dyads 

may indicate that competitor assessment plays a role during inactive periods, possibly by 

reaffirming dominance hierarchies or renegotiating relations based on dynamic variables like 

body condition (i.e. repeated assessment of the physical state of competitors). The majority of 

these were among older dyads (82.4%), potentially in relation to higher benefits of resolved rank 

among bigger bulls that come into musth during their active periods. However, the tight and 

extended nature of bonds between males (recorded in GPS radiotracking data reported in 

(Rasmussen 2005)), and the tendency for the proportion of significant dyads to be among older 

bulls regardless of their being age-mates suggest that other mechanisms besides simple 

competitor assessment also play a role in male relationships. Disproportionate bonding with age-

mates may arise from cooperative benefits as has been documented in other taxa (Langergraber 
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et al. 2007). Vigilance enhancement of antipredator benefits (Hamilton 1971) are probably 

important benefits in the study ecosystem where human predation is relatively high (Wittemyer 

et al. 2013), and foraging facilitation has been observed among male groups, whereby multiple 

individuals feed on a resource that was made accessible by joint activity or by a member of the 

group (Wittemyer pers. obs.). Such cooperative relationships may occur more frequently among 

relatives (Chiyo et al. 2011). In addition, males grow up in highly social female-structured 

societies before dispersing (Lee et al. 2011). It is possible that the extended significant 

relationships recorded are not costly and are simply a manifestation of the species’ social 

propensity. Determining the motivations giving rise to these social relationships, which appeared 

to be manifested over multiple years and were stable despite dynamics in the study system, was 

beyond the scope of this study. 

 A positive association between dyadic age difference and AI value was found in a study 

of all-male groups in Amboseli National Park, Kenya (Chiyo et al. 2011). Sexually inactive 

males in our study did not show such a trend. This disparity could reflect behaviors that manifest 

from differences in the age structure of the two populations (Wittemyer et al. 2013). The 

Amboseli population had a greater spread of age differences in the sample analyzed (up to 40 

years) than that in our system (up to 20 years). Alternatively, differences may reflect 

incompatibility across our different analytical approaches, supported by the fact that trends 

derived from the all-male sample (as conducted by (Chiyo et al. 2011)) differed from those 

derived from either the sexually active or the sexually inactive samples. Specifically, older bulls 

in the present study and in Amboseli were more often observed in all-male groups than were 

younger bulls (Chiyo et al. 2011); as such, metrics derived from all-male groups alone may 

exaggerate the role of older bulls within networks. 



31 

 

State-specific Network Structure  

 We found weak (but higher than expected by chance) modular structure in networks for 

both states. However, the 32 focal individuals were partitioned differently in each state and the 

sexually active social network was more clearly divided into modules. Age-related homophily 

does not appear to account for the observed modules as each module included bulls in different 

age groups (Fig. 2.4). Modularity may be partially due to the use of geographically distinct ‘bull 

areas’ (Croze 1974) during the inactive state (manifested in the study system as an ‘east’ versus 

‘west’ distinction), when individuals focus on foraging rather than mate searching. Such spatial 

segregation probably facilitates repeated encounters and the emergence of conspecific 

preferences, although, by and large, our sample of focal males inhabited the western bull area. In 

the Samburu system, mature males focused their sexually active states on one of the three time 

periods coinciding with female receptivity (Rasmussen 2005; Wittemyer et al. 2007a). This 

temporal segregation in sexual activity with attraction to the same resource, estrus females, also 

may serve to structure social contacts of males using the same areas. This is consistent with the 

observation that modularity tends to be higher in the sexually active state. Although modularity 

values were unlikely to have arisen by chance, they were nevertheless very weak relative to those 

found in female African or Asian elephants, Elephas maximus (de Silva & Wittemyer 2012), 

perhaps a manifestation of the lower level of sociality in males (Lee et al. 2011; Chiyo et al. 

2011). The weakness of the modularity and the lack of obvious drivers of the structure make 

inference difficult. 

 All ego-network metrics, except betweenness in the sexually active state, were 

significantly different from expectations based on randomizations of association (Permutation I). 

Individuals formed larger and better connected networks when sexually inactive relative to when 



32 

 

active, an outcome that was the opposite of expectations based on randomization by state 

(Permutation II). Networks are likely to be structured by the different levels of competition and 

motivations for aggregating across sexually active and inactive periods (discussed above). 

Although we did not investigate the costs and benefits of grouping among males between sexual 

states, our finding that most observed ego-network values were unlikely to have arisen by chance 

indicates that further work targeting such shifting cost/benefit ratios may be fruitful. 

 Network centrality metrics measure the extent to which an individual is a social hub, and 

they can potentially be used to discern individuals that are important for the structural integrity 

of networks. Chiyo et al. (2011) found that network centrality (measured as eigenvector 

centrality) was positively correlated with age in their study of male sociality in Amboseli 

National Park, Kenya, suggesting a possible function of older individuals in maintaining social 

cohesion. In contrast to the Amboseli study, we found a significant negative correlation between 

age and eigenvector and betweenness centrality measures when bulls were sexually active and 

found no significant relationship when sexually inactive. The significant negative correlation 

between age and eigenvector (as well as betweenness) centrality when bulls were sexually active 

could be due to increasing temporal asynchrony in sexual activity with age that is inherently 

driven by avoidance of overlap with older, sexually active bulls (whose sexually active periods 

are more synonymous with aggressive musth). 

 

Future Directions 

 The duration of sexually active periods in male elephants decreases with age as these 

periods become more synonymous with musth and therefore more energy intensive (Rasmussen 

2005). In addition, younger bulls in the Samburu system that did not experience musth tended to 
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have two sexually active periods annually whereas older bulls had one (Rasmussen 2005). This 

suggests that the duration of overlap in motivational state between two bulls will be dynamic 

over the course of their lives and, therefore, their potential and motivation to associate may vary 

over time. State-specific analyses as conducted here are essential to identify and understand such 

dynamics, and more broadly to parse out the potential drivers of complex behaviors in dynamic 

social systems. Our analyses suggest that not controlling for inherent structure that influences the 

ability of individuals to associate can strongly affect the results and interpretation of social 

dynamics. 

 Time-ordered network analyses and approaches like the exponential-family random 

graph model (ERGM) or the multiple regression quadratic assignment procedure (MRQAP) may 

be particularly helpful for understanding state-dependent networks (Blonder & Dornhaus 2011; 

Pinter-Wollman et al. 2013), but such approaches require large volumes of data (beyond that 

available here). The present study represents a 4-year time window, which is a snapshot 

considering elephants can live up to 6 decades in the wild (Moss 1988). More detailed behavioral 

observations and longitudinal data are needed to address temporal changes in association within 

a state-based framework and to test alternative hypotheses about their social function. 

Unfortunately, the Samburu population continues to experience high rates of human-caused 

mortality that have strongly altered the sex and age class structure, particularly among males 

(Wittemyer et al. 2011, 2013). As a result, the majority of the individuals in this study are dead, 

precluding further research into the drivers and structure of long-term bonding among these 

males. The differences in social properties among age classes documented here and elsewhere 

(e.g. (Chiyo et al. 2011)) suggest that such age-selective harvest will impact the social structure 

of a population. Further work addressing whether and how bulls compensate for the loss of age-
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mates as they mature may help to elucidate the driving costs and benefits of association among 

males. 
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Chapter 3: Vertical transmission of social roles drives resilience to poaching in elephant 

networks2 

 

Introduction: 

Network topology determines process direction and strength, from information flow on 

the internet and electrical transmission on power grids (Watts & Strogatz 1998) to eco-

evolutionary processes like sexual selection (Oh & Badyaev 2010), disease transmission (Naug 

2009), and cultural exchange (Allen et al. 2013). Network perturbations threaten connective 

integrity, with implications for functionality and the benefits that individual components derive 

from structure (Fewell 2003; Phan & Airoldi 2015). Targeted removal of nodes may lead to 

destabilization, a shift in structure reflective of shifting optima, or regeneration of original 

structure (O’Donnell 1998; Flack et al. 2006; Naug 2009; Barrett et al. 2012). While theoretical 

work has demonstrated that redundancy in complex networks (Albert et al. 2000) and redirection 

of ties following removal of highly connected nodes can lead to structural resilience (O’Donnell 

1998; Santos et al. 2006; Zhong et al. 2011), whether these or alternative processes occur in 

evolved systems requires investigation. There is evidence for functional collapse after the 

removal of key social hubs in the few animal studies on perturbation in complex social networks 

(O’Donnell 1998; Flack et al. 2006). However, these studies of natural networks are often short 

term or conducted in captive systems. In situ and longer term studies will illuminate how natural 

networks respond to perturbation. 

                                                           
2 Adapted from: Goldenberg, S. Z., Douglas-Hamilton, I., and Wittemyer, G. 2016. Vertical 
transmission of social roles drives resilience to poaching in elephant networks. Current Biology 
26:75-79. 
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Elephant populations have experienced a resurgence in ivory poaching over the last 

decade, which has targeted older cohorts for their larger tusks (Wittemyer et al. 2013, 2014). The 

importance of older elephants is well recognized, raising concerns about the impacts of age-

selective poaching on population function (McComb et al. 2001). Elephants maintain complex 

societies, characterized by clearly detectable social tiers (strongly cohesive core groups nested 

within moderately cohesive bond groups, which in turn are nested within less cohesive clan 

groups) (Wittemyer et al. 2005b) and heterogeneously distributed social ties, with older females 

serving as connectivity hubs (McComb et al. 2001). Older elephant removal is analogous to the 

targeted knockouts of highly connected nodes in other networks (Albert et al. 2000; Flack et al. 

2006). Disproportionate removal of old individuals may therefore reduce the potential benefits of 

grouping, resulting in disintegration of structure organized around matriarchs. However, novel 

bonding after increased mortality has been recorded in elephants (Charif et al. 2005; Wittemyer 

et al. 2009), and may be a mechanism for social resilience congruent with compensatory 

behavior following uncontrolled knockouts in other species (Engh et al. 2006; Barrett et al. 

2012), but the emergent patterns of these relationships in the context of changing harvest 

conditions are not understood. 

Using the context created by this selective harvest, we investigated emergent grouping 

patterns among individually identified adult female elephants in northern Kenya's Samburu and 

Buffalo Springs National Reserves (0.3-0.8° N, 37-38° E) over a sixteen year period (Wittemyer 

et al. 2013, 2014). We quantified different social metrics (ego-network properties and 

hierarchical grouping structure) to elucidate if and how elephants, like individual agents in 

theoretical models, reconstruct their social ties following disruption and to characterize the 

impact of their behavioral responses on broader network structure. We investigate the interaction 
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between past and present social circumstance using longitudinal demographic and association 

data to assess: 1) the degree to which elephant social structure is robust to endogenous 

perturbations, and 2) the mechanisms by which social robustness occurs. With its salient baseline 

social features, long-term dataset, and current ivory poaching crisis, this study system provides a 

rare opportunity to test theoretical models on the resilience and drivers of complex social 

networks, as well as provides empirical insight into how elephant behavior is affected by illegal 

killing.   

 

Methods: 

Data Collection 

 The unfenced study system is semiarid savannah receiving approximately 350 mm of rain 

annually in two wet seasons (Barkham & Rainy 1976). When elephants were encountered along 

four established reserve transects, the date, time, GPS coordinates, group size, individuals 

present, and observation accuracy were recorded. Elephants were considered to be associating 

when behaviorally coordinated and spatially cohesive within 500 m of an observer-estimated 

center (Wittemyer et al. 2005b). Focal interaction data were collected for 30-minutes or less in a 

sampling day, during which all interactions with conspecifics were recorded (Archie et al. 2006). 

Data were collected across all seasons. Observations were conducted noninvasively (IACUC 12-

3414A) and with permission of the Kenya Wildlife Service, the Samburu and Isiolo County 

Councils, Colorado State University, and Save the Elephants. 
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Data Analysis 

 We investigated network properties in our study population across three sampling periods 

representing different ecological and harvest conditions: the moderate productivity, low 

poaching period T1 (June 1998 – May 2001), the high productivity, low poaching period T2 

(June 2001 – August 2004), and the moderate productivity, high poaching period T3 (June 2012 

– July 2014). A severe drought in 2009 was an additional source of disruption prior to T3 

(Wittemyer et al. 2013).  

To ensure observation consistency and quality, we only included observations for which 

all breeding females present were identified and only used observations conducted by three 

primary observers. We limited analysis to parous females, where females were considered parous 

starting in the month in which they had their first calf. We compared age distributions of females 

across periods using Kruskal-Wallis chi-square tests. We used the simple ratio index as an 

association index (AI) to measure strength of association between pairs of females: �� =
�ಲಳ�ಲ+�ಳ+�ಲಳ, where NAB is the number of observations for which both individuals were in the 

same group, and NA and NB are the number of observations when A was without B and B without 

A, respectively (Ginsberg & Young 1992). A modified approach was applied where AI values 

were calculated only during periods when dyad members were parous and alive on the date of 

the observation, thereby controlling for demographic changes over time (Whitehead et al. 2005; 

Goldenberg et al. 2014). We calculated AI separately for each of the three sampling periods.  

To limit  bias introduced by small sample size, we only included females observed 10 

times or more within a sampling period (NT1 = 97, NT2 = 130, NT3 = 120) (Whitehead 2008). We 

used AI values to examine structure at the individual and population scales using ego-networks 

and cluster analyses, respectively. We constructed distance matrices (distance = 1 – AI) and 
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clustered individuals using Ward’s linkage rule (Romesburg 1984; Wittemyer et al. 2005b). We 

plotted the cumulative number of bifurcations for each 0.05 increment in cluster tree height to 

locate points of structural change, where significant slope changes on the cumulative bifurcation 

plot (using Mann-Whitney U tests) were identified as points at which clustering patterns change 

(Wittemyer et al. 2005b; de Silva & Wittemyer 2012). All individuals represented on a unique, 

contiguous branch below the identified knot value were considered a group.  

We first performed this procedure with all females in each sample to determine core 

group structure. We then determined the oldest female (matriarch) of each core group and 

conducted a separate cluster analysis using matriarchs as representatives of core groups to more 

clearly delineate higher order structure that may be dampened by the strong associations within 

core groups when all individuals are included (Wittemyer et al. 2005b). Because bond and clan 

groups are most apparent during the wet season (Wittemyer et al. 2005b), we recalculated AI 

between matriarchs using observations during the wet season, where wet season was defined for 

the study system using threshold normalized difference vegetation index values (Wittemyer et al. 

2007a). As with previous AI calculations, we excluded matriarchs seen fewer than 10 times (NT1 

= 39, NT2 = 49 NT3 = 39). 

We constructed networks from AI values, where nodes represent females and ties 

between nodes represent AI strength (Krause et al. 2009), visualizing networks using Gephi 

(v.0.8.2) (Bastian et al. 2009). We then calculated ego-network metrics using the statnet package 

for R (Handcock et al. 2003). Because elephants are long-lived and age is associated with 

increased group survival (McComb et al. 2001), we used Pearson correlations to compare 

metrics to age, where age at the midpoint of each sampling period was used. P-values were 
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Bonferroni-adjusted where multiple comparisons were used. Statistical analyses were done in R 

(v.3.0.3) (R Core Team 2013). 

 

Identification of Mechanisms Driving Structure 

We used Mantel tests to compare matrices of AI values to understand whether behavior is 

consistent within individuals and within mother-daughter and other pairs. We conducted four 

sets of comparisons: 1) AI among individuals present in two adjacent sampling periods, 2) AI 

among mothers and AI among their daughters within the same period, 3) AI among mothers in 

one period and AI among their daughters in the following period, and 4) AI among daughters in 

T3 and among oldest bond group members outside daughters’ core groups in T2. The third 

category was subdivided for the T2-T3 test using mother-daughter pairs for which the mother 

was dead in T3 and for which the mother was alive in T3 to illuminate whether association 

indices are correlated with a history of family mortality. For all generational tests, the order of 

daughters in matrix rows and columns corresponded to the ordering of the older generation 

matrix, so that corresponding cells in the two matrices represented relevant matched pairs. We 

ran one thousand permutations for each Mantel test. 

To address the mechanisms related to node-level metrics, we implemented generalized 

linear models (GLMs) predicting a female’s degree, betweenness, and clustering coefficient 

using Poisson, gamma and beta regressions, respectively, on a subset of females from T3 for 

which mothers were known to be alive in T2 and covariates were available (N = 67). We used a 

quasi-GLM to correct for overdispersion in the Poisson model, adjusting coefficient standard 

errors by the overdispersion parameter (Zuur et al. 2009). Explanatory variables included age in 

T3, mother’s age in T2, core group size in T2, core group size in T3, bond group size in T2, bond 
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group size in T3, number of calves in T3, mother’s degree in T2, mother’s betweenness in T2, 

mother’s clustering coefficient in T2, and whether the mother was alive in T3.  

To further investigate behavioral mechanisms we used focal follow data of affiliative 

behaviors directed toward conspecifics in T3. For each female observed for at least one hour 

while feeding, we combined all follow data and calculated the rate at which she directed 

affiliative behaviors (e.g. body rubbing, trunk touching, greeting) toward non-core group 

members. We conducted a Spearman correlation of affiliation rate with birth year to elucidate 

whether age structures social initiative. 

 

Results and Discussion: 

Despite the population changes over time (Fig. 3.1), agglomerative clustering of elephant 

pairs (dyads) revealed hierarchically structured social organization across the study, with 

distinguishable core and bond groups with similar group size AI values (Fig. 3.2; Table 3.1) 

(Wittemyer et al. 2005b). Structure was conserved despite ~70% turnover in the population’s 

adult females and a significant decline in average age between T1 and T3 (Age T1-Age T3: χ2 = 

6.47, df = 1, p-value < 0.05). The matrilineal composition of core and bond groups, however, 

changed over the study, particularly where previously distinct matrilines fused after groups were 

affected by mortality (Fig. 3.3). Eight of nine females that fused into a different core group in T3 

had lost their mothers, and seven of nine core groups that fused into different bond groups in T3 

lost their matriarchs (defined here as the oldest member of the group) between T2 and T3. 
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Figure 3.1: Study females changed with time due to maturation and mortality, with a 70% 
turnover in the population’s adult females over the study and a resulting downward shift in age. 
Cohorts of females are shaded based on when an individual was first present in the analysis. 
Median ages (with interquartile ranges) for cohorts (within bars) and overall (above bars) are 
presented. 
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Figure 3.2: Cumulative number of bifurcations from Ward’s clustering trees for every 0.05 
increment in cluster tree height. Results are shown for the analysis using all females (top) and 
core group matriarchs only (bottom). Cutoff lines on cluster trees (horizontal) and cumulative 
bifurcation diagrams (vertical) indicate structural change points demarcating core groups (top) 
and bond groups (bottom). 
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Table 3.1: Cluster tree height values used as cutoffs to define structural tiers (knots), and the 
compositional characteristics of delineated groups. 

 T1 T2 T3 

Tier Knot 

value 

Number 

of 

groups 

Median 

(IQR) 

group 

size 

Median 

(IQR) 

AI 

Knot 

value 

Number 

of 

groups 

Median 

(IQR) 

group 

size 

Median 

(IQR) 

AI 

Knot 

value 

Number 

of 

groups 

Median 

(IQR) 

group 

size 

Median 

(IQR) 

AI 

Core 1.15 39 7.5 

(4.75-

10.5) 

0.76 

(0.58-

0.92) 

0.85 59 6.5 

(3.5-

9.75) 

0.83 

(0.73-

0.89) 

0.95 42 7 (5-

11.25) 

0.77 

(0.72-

0.87) 

Bond 1.65 12 21 

(12.13-

29.13) 

0.46 

(0.38-

0.54) 

1.6 14 17.75 

(14-

34.63) 

0.33 

(0.21-

0.53) 

1.55 11 25.5 

(19-

37.25) 

0.30 

(0.16-

0.40) 

Clan 2.75 4 33.5 

(28.75-

80.25) 

0.44 

(0.32-

0.47) 

2.4 7 32 

(23.5-

38) 

0.27 

(0.23-

0.47) 

------ ------ ------ ------ 
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Figure 3.3: Despite changes in matriline composition over time, core and bond group structure 
are maintained in elephant society. Nodes in the T2 population network (top left) represent 
individual female elephants, width of edges between nodes represents association index strength, 
and colors differentiate bond groups. Insets of three of these bond groups (the Royals, a group 
that experienced low adult mortality, and the Flowers and Planets, groups that experienced high 
adult mortality) are shown. Matching nodes represent distinct core groups, where hybridized 
nodes represent fusion of matrilines and black lines through nodes represent core groups that 
fissioned after T2. The Flowers and Planets merged into one bond group by T3. Gray words 
distinguish the nested tiers of female elephant society.  
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In contrast to core and bond groups, the inability to detect clans in T3 may suggest that 

this structure was not beneficial during the disrupted period or that clans are a manifestation of 

lost links among older age cohorts. It has been suggested that as young females reach breeding 

age, resource competition within groups becomes more intense and older females lead permanent 

fissions of core groups into discrete core groups that together comprise a bond group (or fissions 

in bond groups into discrete units that comprise a clan group) (Wittemyer et al. 2005b). The 

altered age structure after poaching reduced the number of connected multi-generational 

lineages, potentially severing the foundational connections necessary for clans to emerge. 

In this population, the relationship between age and network position appears to be 

relative: the oldest individuals available have higher degree and betweenness centrality. Degree, 

the number of contacts per individual, was significantly positively correlated with age in all 

sampling periods (T1: r = 0.308, p < 0.01; T2: r = 0.335, p < 0.01; T3: r = 0.281, p < 0.01). 

Betweenness, the number of shortest paths that go through an individual within the larger 

network, was significantly correlated with age in T2 and T3 (T1: r = 0.137, p = 0.180; T2: r = 

0.212, p < 0.05; T3: r = 0.221, p < 0.05). Thus, the oldest individuals in the population tended to 

serve as social bridges (higher betweenness) and hubs (higher degree). In extreme cases, we 

witnessed this clustering even within highly disrupted families, where surviving relatives 

coalesced around the oldest female in the group even if she was a juvenile. These findings 

indicate that the overall structure of female elephant society is resilient regardless of age 

composition. 

To investigate the role that older individuals play in structuring social environments, we 

examined the relationship between the social positions of daughters and their mothers 

(Wittemyer et al. 2009) or their bond group matriarchs using Mantel tests of dyadic AI. We first 
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tested associations among individuals present in more than one period to determine whether 

elephants are socially consistent over time. Second, we tested whether mothers’ associations with 

each other were correlated with their daughters’ relationships. AI of individuals over time and in 

mother-daughter pairs both within and between sampling periods were all significantly 

correlated (Table 3.2), indicating that individual contact patterns were consistent over time and 

that closely associated mothers have daughters that are also closely associated. This correlation 

held even after a mother died. To assess the possibility of the alternative hypothesis that 

daughters’ social positions are more a function of their broader social environment than that of 

their mothers’, we also compared the social associations of these daughters with those of their 

oldest bond group member outside of their core group. While significant, the correlation was 

considerably lower than that between mother-daughter pairs (Table 3.2).   

 

Table 3.2: Mantel test correlations comparing association indices within individuals across time 
and between generations within and across time periods. 

 r p-value 
Within individuals across periods 0.94 (T1-T2) 

0.89 (T2-T3) 
< 0.01 (T1-T2) 
< 0.01 (T2-T3) 

Between mother-daughter 
generations within periods 

0.94 (T1) 
0.95 (T2) 
0.88 (T3) 

< 0.01 (T1) 
< 0.01 (T2) 
< 0.01 (T3) 

Between mother-daughter 
generations T1-T2 

0.90 < 0.01 

Between mother-daughter 
generations T2-T3, mother alive 
in T3 

0.84 < 0.01 

Between mother-daughter 
generations T2-T3, mother dead 
in T3 

0.89 < 0.01 

Between non-mother-daughter 
generations within bond groups 

0.64 < 0.01 
 

 

Similar to Mantel tests, GLMs showed that mother betweenness in T2 was the strongest 

predictor (significantly positive) of daughter betweenness in T3 (Table 3.3). Network position 
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was unrelated to mother death. Age was positively correlated with social position, but was not as 

important in predicting daughters’ positions. While age was significantly correlated with social 

position in our univariate analysis at the population level, the GLM was a multivariate analysis 

focused on a narrower age distribution (11-27 year olds rather than 9-58 year olds). Collectively, 

these results suggest that the conserved structure in elephant social networks was a function of 

individuals maintaining their social positions over time and daughters replicating the contact 

patterns of their mothers.  

 

Table 3.3: Standardized coefficient values for GLMs predicting degree, betweenness, and 
clustering coefficient for a subset of females in T3 for which mothers in T2 were known and 
covariates were available (N = 67). Significant coefficients (p-value < 0.05) are demarcated in 
bold. 

 Degree Betweenness Clustering 
coefficient 

Age T3 0.02450  0.07286  0.03655  
Core group size 

T2 
0.02992  0.15657  -0.07387 

Core group size 
T3 

-0.03377 -0.07788  -0.01919  

Bond group size 
T2 

0.04818  0.12688  -0.06959  

Bond group size 
T3 

-0.01597 -0.05627  0.10363 

Calves T3 -0.01728  -0.00050  -0.06568 
Mother alive in 

T3  
-0.02223 0.03032 -0.06620 

Mother age T2 0.02905 0.06079 -0.07852  
Mother degree 

T2 
0.05437 0.11820 -0.04866 

Mother 
betweenness T2 

0.04434 0.44652 -0.11417  

Mother 
clustering 

coefficient T2 

0.05688 0.29848 -0.06525 

 

While lineage-replicated behavior was a key component in network resilience, active 

contact building revealed the extent to which this replication is learned. Birth year was positively 

correlated with initiation of affiliative behaviors toward non-core group members (ρ = 0.45, p < 
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0.01; Fig. 3.4), indicating that social exploration was primarily conducted by younger elephants. 

Juveniles actively built their contacts within the context created by their mothers, which is likely 

the means by which daughters replicated the network positions of their mothers. This mechanism 

allows individuals whose mothers’ close contacts are gone to strengthen bonds, conserving the 

general network properties that they experienced before disruption. Fusions of previously distinct 

matrilines occurred in groups where removal of most adult elephants meant daughters could not 

replicate the social networks of their mothers (Fig. 3.3). This active contact building often 

involved strengthening bonds with elephants that were distant contacts in their mothers’ 

networks. 

 

Figure 3.4: Younger elephants initiate affiliative interactions toward non-core group members at 
a higher rate than older elephants. 
 

The remarkable stability in elephant population structure across periods of demographic 

change was attributable to the ability of young elephants to emulate the contact patterns of their 



51 

 

mothers within a hierarchically clustered context. The social arena set by the grouping decisions 

of matriarchs may buffer network collapse by providing maturing females with social 

opportunities from which they can build their own contact structure. Our finding that younger 

females are more interactive with individuals outside of their immediate core group underscores 

the active role that they take in shaping their own contacts and suggests this emergent property is 

more a function of learning than of classic inheritance (McDonald 2007). Thus, the apparent 

inheritance of social position appears to be an interaction between the tiered sociality defined by 

older relatives and the active maintenance and generation of social ties by younger females (Silk 

et al. 2004). We did not explicitly assess the role of primary productivity here, but ecological 

dynamics are likely important in structuring networks, as elephant associations are known to 

reflect seasonal changes (Wittemyer et al. 2005b). Further analysis of the relationship between 

productivity and network structure merits investigation. Although this study demonstrates 

structural resilience in elephant society regardless of age composition in the population, further 

study is needed to understand the fitness repercussions of family mortality and loss of 

matriarchs. Our work highlights the potential that empirical systems offer for understanding of 

social network evolution and function and demonstrates the mechanism by which network 

integrity is maintained in this social species.  
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Chapter 4: The social costs of being an orphan in elephant society 

 

Introduction: 

 Social bonds formed early in life may define fitness trajectories in long-lived, social 

species (McDonald 2007; Stanton & Mann 2012). As the loss of social partners can be a 

challenge in such societies, the ability of young animals to buffer against perturbations to their 

social environment by engaging in compensatory behavior may be essential in order to survive 

into adulthood and successfully reproduce (Engh et al. 2006; Nunez et al. 2015). A growing body 

of literature is documenting the importance of established social bonds for later challenges (Silk 

et al. 2003; McDonald 2007; Nunez et al. 2015; Goldenberg et al. 2016), but the processes by 

which animals establish and maintain bonds in dynamic contexts remains poorly resolved. 

Fission-fusion dynamics, in which animals vary the size and composition of their social groups, 

allow animals to adjust to changing competitive and cooperative scenarios (Aureli et al. 2008). 

Understanding how animals generate the social environments that may benefit them in the long-

term and how they are received by potential partners can advance understanding of the form and 

function of fission-fusion sociality.  

 Bond strength and relatedness are highly correlated for many social animals (Silk 2007), 

but cooperative bonds among nonrelatives in several species have served to identify a range of 

social strategies (Griffin & West 2002; Cameron et al. 2009; Clutton-Brock 2009). For example, 

vampire bats regurgitate for unrelated roost mates to expand their future meal donor network 

(Carter & Wilkinson 2015), and hyenas choose social partners based on dominance rank to 

maximize feeding opportunities (Smith et al. 2007). Social expansion beyond kin has also been 

recorded in more reactive circumstances. For instance, army ants that lose their queen fuse with 
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neighboring colonies despite low relatedness to improve reproductive success (Kronauer et al. 

2010), and elephants (Wittemyer et al. 2009; Goldenberg et al. 2016) and humans (Goldenberg 

2009) strengthen bonds with non-kin in response to severe societal disruption. Reactive 

responses like these are especially illuminating of network formation and partner selection 

processes. 

 By changing the availability of bonding partners, selective removal experiments with 

known individuals are a powerful way to characterize animal response to an altered social 

context. Previous experimental work in captive colonies of wasps (O’Donnell 1998) and 

pigtailed macaques (Flack et al. 2005) has demonstrated the role of individual actors in 

maintaining or failing to maintain normative population structure. Similarly, simulation studies 

have pointed to individual behavioral rules as determinants of social patterns following 

knockouts (Santos et al. 2006). Such removal approaches may be informative in contextualizing 

the ecology and evolution of social behavior in non-captive systems but are challenging to 

implement in situ.   

 Female African elephants (Loxodonta africana) provide a rare evolved system in which 

to investigate the mechanisms of bonding following selective removals because they are highly 

social (Douglas-Hamilton 1972; Moss 1988; Wittemyer et al. 2005b), their sociality is thought to 

be closely tied to fitness (McComb et al. 2001; Wittemyer et al. 2007b; Lee et al. 2016), and 

recent mortality is altering social environments (Wittemyer et al. 2013; Goldenberg et al. 2016). 

Elephant populations have been experiencing increased ivory poaching over recent years, 

typically targeting older elephants for their larger tusks (Wittemyer et al. 2013, 2014; Chiyo et al. 

2015). Older female elephants are important members of family units that act as knowledge 

repositories (McComb et al. 2001), affect the calving success of family members (Lahdenperä et 
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al. 2016; Lee et al. 2016), and provide access to preferred resources through their dominance 

status and ecological knowledge (Wittemyer et al. 2007b; Foley et al. 2008). Loss of old females 

therefore presents a serious challenge for the elephants bonded to them, but fission-fusion 

dynamics may facilitate compensatory bonding to overcome these challenges (Farine et al. 

2015). Though this particular harvest pressure is recent, elephant evolutionary history has been 

punctuated by die-offs from hunting and drought (Foley et al. 2008; Yravedra et al. 2012); social 

challenges like these are therefore not evolutionarily novel.  

The elephant population that uses the Samburu and Buffalo Springs National Reserves in 

northern Kenya has been studied continuously since 1997 through a project that maintains 

individual-based records of births, deaths, and social associations (Wittemyer 2001). A period of 

high mortality in older age cohorts began in 2009 in this population, initially with a severe 

drought followed by a rise in ivory poaching. The mortality affected families differently, creating 

a natural removal experiment characterized by heterogeneous age structures among families 

(Wittemyer et al. 2013). Previous work in the population has revealed that social restructuring 

occurs following deaths (Wittemyer et al. 2009; Goldenberg et al. 2016), but the behavioral 

processes that facilitate integration and novel bond formation remain unclear.  

We recorded the social interaction behavior of females of diverse ages, developmental 

stages, and histories of family mortality to elucidate the processes by which individuals 

restructure their social networks after disruption. We treated the behavior of non-orphans 

belonging to their natal groups as a control. We tested the following hypotheses: 1) to 

compensate for the potentially greater cost they experience after losing mature social partners, 

young orphans in non-natal groups will initiate affiliative interactions more than will older 

elephants, non-orphans, or orphans in their natal groups; 2) disruption and social integration will 
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be associated with greater social costs, but orphans in non-natal groups will adjust their behavior 

to minimize social costs and maximize social benefits more so than non-orphans or orphans in 

natal groups; 3) because matriarchs confer the greatest advantages to their associates in elephant 

society, we tested whether orphans direct interactions toward matriarchs relative to alternative 

entry points to social integration. We discuss the implications of results for social bond 

formation and resilience to disturbance. 

 

Methods: 

Data Collection 

We collected data in the Samburu and Buffalo Springs National Reserves in northern 

Kenya (0.3-0.8°N, 37-38°E) between May 2012 and April 2015. When we encountered groups 

of elephants along established transects we recorded the date, time, activity, GPS coordinates, 

identity of individuals present, and accuracy of the observation according to protocol (100% 

identified, breeding females identified, or incomplete identification; Wittemyer et al. 2005b), 

where groups were considered aggregations of elephants that were behaviorally coordinated and 

spatially cohesive within 500 m of an observer-estimated center (Wittemyer et al. 2005b). We 

registered new calves as they were encountered, and assigned ages to older elephants using 

established estimation methods (Moss 1996). We recorded missing individuals and considered 

them dead when absent from their core social groups on consecutive sightings or when identified 

from a carcass (Wittemyer et al. 2013).   

We conducted focal sampling (‘focal follows’) during feeding and resting activities 

(Nfollows_feeding = 1568, Nfollows_resting = 278; Nhours_feeding = 435.75, Nhours_resting = 79.93) on a subset 

of females chosen to represent a range of disruption (Norphan = 61, Nnon-orphan = 39), age (6 to 34 
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years), and development (preparous through multiparous). We divided follows into feeding and 

resting categories to control for activity-driven differences in interaction frequency. During focal 

follows we observed individuals and recorded all interactions with other elephants and their 

directions (Altmann 1974), defining interactions from the literature (Archie et al. 2006; Poole & 

Granli 2011) (Table 4.1). Focal follows continued until one of the following occurred: 1) the 

animal went out of sight, 2) the animal switched activity, or 3) the follow reached 30 minutes. 

We completed no more than one follow in each activity on a given animal in a given sampling 

day to control for behavioral autocorrelation, such that a maximum of 60 minutes was collected 

on each animal per day (i.e., 30 minutes feeding, 30 minutes resting). The median lengths of 

feeding and resting focal follows were 14.75 and 15 minutes, respectively. We collected 

observation and interaction data across both wet and dry seasons and only collected interaction 

data when elephants appeared to be unperturbed by the presence of the research vehicle (i.e., did 

not direct attention or behaviors towards the research vehicle). 

 
Table 4.1: Ethogram of elephant interactions 

 Interaction Description 
Affiliative Body rub A rubs B with her body 
 Ear brush A brushes her ear on B 
 Greeting A rumbles when A and B meet 
 Head rub A rubs B with head 
 Herd A rubs B resulting in their coordinated movement 
 Playful fight A and B intertwine heads and spar with no escalation 
 Playful head rest A rests head on B’s body 
 Test mouth A holds trunk to B’s mouth 
 Trunk grasp A grabs B’s trunk 
 Trunk touch A touches B with trunk 
 Tusk rub A rubs B with tusk 
Aggressive Displacement A approaches B, B leaves  
 Forward trunk swing A swings trunk in direction of B 
 Kick back A kicks B with back foot 
 Pursuit A chases B 
 Push A pushes B 
 Stand tall A faces B with head held above shoulders 
 Supplant A approaches B, A takes B’s place  
 Tusk A hits/pokes B with tusks 
Exploratory Trunk reach to smell A holds her trunk in the direction of B 
Submissive Back toward A moves toward B rear first 
Alloparental Allosuckling A attempts to breastfeed from B 
 Other A protects/comforts B (a calf that is not her own; 

associated with calf crying or environmental stimulus) 
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Data Analysis 

We used hierarchical Bayesian negative binomial regression models with uninformative 

priors to predict interactions in order to account for overdispersion, the large number of zeros in 

our count data, and individual heterogeneity (Kery & Royle 2016). To test our hypotheses related 

to the general social environment of orphans and the paths to social integration, we conducted 

two different sets of models structured on predictions of: 1) interactions for a given focal follow, 

and 2) interactions with a given social partner. Response variables explored in models were 

counts of affiliative, aggressive, submissive, exploratory, and alloparental interactions (see Table 

4.1 for ethogram of interactions).  

The counts of affiliative interactions per individual were combined for analyses, as were 

aggressive interactions (Table 4.1). Separate models were used to analyze counts of reception 

and initiation events to distinguish between the actions and acceptance of orphans. Because 

young calves were largely inactive while families rested, we did not assess alloparenting while 

resting. The recipients of backing toward and trunk reaching interactions were difficult to discern 

while animals were clumped together, precluding analyses of these interaction classes for resting 

elephants. 

We fit models using Markov-Chain Monte Carlo (MCMC) by running three parallel 

chains of 100,000-500,000 iterations each depending on convergence time, which was assessed 

using trace plots and the Gelman diagnostic. The first 10% of iterations were discarded as burn-

in after assessments. We ran models using JAGS (Plummer 2003) combined with the rjags 

package in R (R Development Core Team 2010; Plummer 2016).  

In focal follow interaction models, the log length of the follow was included as an offset 

to control for observation time. In partner interaction models, we included the log length of the 
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sampling time during which both the focal animal and the social partner were alive to control for 

the potential for two individuals to interact. We standardized continuous predictor variables ቀ��−�� ቁ, where xi represents variable x at observation i, and µ and ı represent the variable mean 

and standard deviation, respectively, prior to running models for ease of convergence and 

interpretation and varied the intercept by elephant to control for individual heterogeneity. The 

process model for the probability of an interaction was defined as: ln(ߣ௜,௝) =  �௝ + ��௜,௝ + ln(�௜,௝), 
where λi,j is the expected interaction count for elephant j during focal follow i (for the set of 

models predicting interactions in a follow) or with social partner i (for the set of interactions 

predicting interactions with a partner), αj is the random intercept for elephant j, β represents the 

vector of fixed effects coefficients associated with covariates x, and ln(γi,j) is an offset controlling 

for sampling effort. The conditional probability was defined as: (�௜,௝|�, �௝ , ,�ߤ �� , ,�)݉݋݊�ܾ݃݁݊ ~ (� (௜,௝݌ ሺͲ,Ͳ.ͳሻ݈ܽ݉�݋݊ ~ � ×   × �௝ ,�ߤሺ݈ܽ݉�݋݊ ~  ��ሻ ሺͲ,Ͳ.ͳሻ݈ܽ݉�݋݊ ~ �ߤ ×  ሺͲ.ͲͲͳ,ͳͲͲሻ݉�݋݂�݊� ~ �� ×    ,ሺͲ,ͳͲͲሻ݉�݋݂�݊� ~ � × 
where µα and Ĳα are the mean and precision of αj, respectively, r is the dispersion parameter, and 

pi,j is the probability that an interaction occurs. 

Predictor variables x spanned family history, group composition, demography, and 

ecological conditions. To define social context, we included covariates characterizing the 

aggregation of elephants during the focal observation (as defined in Data Collection) as well as 
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the core group of the focal female. We assigned core group membership from which these latter 

covariates were derived using structural change points on clustering trees (described at length 

elsewhere: Romesburg 1984; Wittemyer et al. 2005b; Goldenberg et al. 2016), built using the 

simple ratio index as a measure of association strength (AI: Cairns & Schwager 1987; Ginsberg 

& Young 1992). Analysis was conducted on all females recorded in a completely identified 

aggregation of individuals (Nobs = 1182; observation frequency among included individuals: 

medianobs counts = 35, inter-quartile rangeobs counts = 20.5-48.25). We defined a core group’s 

matriarch as its oldest member (Archie et al. 2006; Wittemyer & Getz 2007). 

For the set of models predicting interactions during a focal follow, covariates included in 

models were a binary variable delineating if a female’s core group was her natal group (natal) 

(Wittemyer et al. 2009; Goldenberg et al. 2016), a binary variable delineating if the focal 

female’s mother was dead on the day of the focal follow (orphan), matriarch age (matriarch 

age), AI with matriarch (matriarch AI), mean AI within the core group (mean AI), number of 

dispersal-aged males in the core group (dispersing males), core group adult to juvenile ratio 

(adult:juvenile), core group size (core size), number of calves six-months old or younger in the 

core group (group young), size of the aggregation (aggregation size), number of mature bulls (30 

years or older or a bull of any age that was in musth) present in the aggregation (mature bulls), 

focal female age (age), a binary variable delineating if the focal female was parous (mother), a 

binary variable delineating if the focal female had a calf three-months old or younger (own 

young), ecosystem average normalized difference vegetation index at the time of observation 

(NDVI), and the time of day that the focal follow began (time). We assessed correlations among 

covariates, and removed individual covariates where correlations exceeded |r|=0.6. Age and 

whether a female was a mother were highly correlated (r=0.74-0.75), as were AI with matriarch 
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and mean AI within the core group (r=0.79-0.81). Whether the female was a mother and mean 

AI within the core group were therefore not included in models, as the continuous predictor age 

was more informative than mother and matriarch AI more directly addressed our hypotheses 

than did mean AI. Several covariates controlled for behavioral variability without directly testing 

hypotheses (i.e., NDVI, time, aggregation size, core size, mature bulls, own young, 

adult:juvenile), and are not emphasized as we focus on reporting results directly related to our 

hypotheses with relevance to elephant social strategies.  

If models predicting interactions in focal follows showed differences between orphans 

and non-orphans or between elephants in their natal group or non-natal group, we re-ran models 

on a subset of data including orphans only (Nfollows_feeding = 998, Nfollows_resting = 186; Nhours_feeding = 

280.38, Nhours_resting = 53.61), replacing the binary variable delineating orphans from non-orphans 

with a continuous variable distinguishing the time (in days) the focal animal was orphaned (time 

orphaned). This separate set of analyses allowed us to disentangle the temporal aspects of social 

disruption and integration among orphans that may explain differences in social environments, as 

well as differences between natal and non-natal orphans. 

For the set of models predicting interactions with a particular individual throughout the 

study, covariates were the absolute age difference between the focal animal and the social 

partner (age diff), a binary variable delineating if the partner was a matriarch (matriarch), a 

binary variable delineating if the partner was a young calf (defined as less than two years old for 

more than half of the sampling period; calf), a binary variable delineating if the partner was the 

focal animal’s calf (own calf), a binary variable delineating if the partner was male (sex), a 

binary variable delineating if the partner was from the focal animal’s natal group (natal), a 

binary variable delineating if the partner was not from the focal animal’s natal group but was 
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from its current core group (core), and a binary variable delineating if the partner was a mother 

(females were considered mothers if they had at least one calf for more than half of the sampling 

period; mom). Own calf and mom were included to control for mother-calf interactions so that the 

patterns of interactions with other elephants could be distinguished. As with the set of models 

predicting interactions per focal follow, directions of interactions were also treated separately in 

this set of analyses (i.e., initiated vs. received). A similar process was used as with the first set of 

models whereby explanatory variables were examined for correlations > 0.6. Mom and sex were 

strongly correlated for models in which the focal animal was the recipient of aggressive 

interactions (r = -0.76-0.89). Mom was also correlated with age diff for the feeding recipient 

aggressive model (r = -0.60) and with matriarch for the resting recipient aggressive model (r = 

0.61). Mom was therefore removed from these models. Interaction partners that directed 

aggressive behaviors to focal animals were never young calves or the calves of focal animals; 

these variables were therefore removed from relevant models. Calf was removed from the resting 

model in which focal animals were aggressive actors, as no aggressive interactions directed 

towards a young calf while resting were observed. Submissive and alloparenting interactions 

were not examined in predicting interactions per partner due to sample size limitations.  

 

Results: 

Orphan Affiliation Patterns 

Contrary to Hypothesis 1, being an orphan did not clearly predict initiated affiliation, nor 

did age (Fig. A.1; Table 4.2). The received affiliation environment was clearly different between 

orphans and non-orphans in that non-orphans were more likely to receive affiliative interactions 

(Fig. 4.1), consistent with Hypothesis 2 that family disruption would be associated with greater 
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social cost. Further, in the orphan only subset, natal group membership was predictive of 

received affiliation in both activities (feeding and resting), supporting Hypothesis 2 (Fig. A.2; 

Table 4.3). The amount of time an elephant was orphaned was unrelated to the affiliation she 

received (Fig. A.2; Table 4.3). 
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Table 4.2: Coefficient estimates for models including orphans and non-orphans. Standard deviations are in parentheses. Models are 
listed in the top row and coefficients are listed in the first column. 

 Initiating 

affiliative 

(feeding) 

Initiating 

affiliative 

(resting) 

Receiving 

affiliative 

(feeding) 

Receiving 

affiliative 

(resting) 

Initiating 

aggressive 

(feeding) 

Initiating 

aggressive 

(resting) 

Receiving 

aggressive 

(feeding)  

Receiving 

aggressive 

(resting) 

Initiating 

submissive 

(feeding) 

Receiving 

submissive 

(feeding) 

Initiating 

exploratory 

(feeding) 

Receiving 

exploratory 

(feeding) 

Initiating 

alloparenting 

(feeding) 

Age 0.042 

(0.079) 

-0.048 

(0.100) 

0.270 

(0.085) 

0.027 

(0.092) 

0.642 

(0.146) 

0.498 

(0.647) 

-0.344 

(0.121) 

-0.216 

(0.184) 

-1.319 

(0.838) 

1.312 

(2.418) 

-0.094 

(0.131) 

0.209 

(0.133) 

-1.529 

(0.579) 

Time 0.033 

(0.048) 

0.040 

(0.099) 

0.022 

(0.045) 

0.004 

(0.085) 

0.200 

(0.130) 

-1.432 

(0.862) 

0.159 

(0.092) 

0.034 

(0.173) 

0.472 

(0.667) 

0.994 

(2.639) 

-0.107 

(0.121) 

0.090 

(0.115) 

0.549 

(0.254) 

Orphan 0.036 

(0.177) 

-0.127 

(0.246) 

-0.235 

(0.187) 

-0.402 

(0.218) 

-0.079 

(0.343) 

-2.052 

(1.427) 

-0.008 

(0.235) 

0.479 

(0.449) 

-1.074 

(1.193) 

-1.055 

(2.767) 

-0.239 

(0.300) 

0.284 

(0.312) 

-0.788 

(0.770) 

Matriarch age -0.026 

(0.095) 

0.124 

(0.118) 

-0.062 

(0.101) 

0.097 

(0.101) 

0.109 

(0.185) 

-0.147 

(0.750) 

0.010 

(0.118) 

0.013 

(0.221) 

-0.044 

(0.769) 

0.869 

(2.590) 

0.090 

(0.156) 

0.127 

(0.150) 

-1.002 

(0.478) 

Matriarch AI 0.044 

(0.094) 

-0.070 

(0.122) 

-0.010 

(0.102) 

-0.087 

(0.106) 

-0.029 

(0.167) 

0.420 

(0.938) 

0.068 

(0.119) 

-0.385 

(0.176) 

1.707 

(1.127) 

0.398 

(2.650) 

0.340 

(0.173) 

0.201 

(0.144) 

0.379 

(0.468) 

Dispersed 

males 

0.024 

(0.100) 

0.004 

(0.147) 

0.029 

(0.102) 

-0.008 

(0.134) 

0.424 

(0.198) 

-0.176 

(0.873) 

0.102 

(0.131) 

0.405 

(0.229) 

0.054 

(0.953) 

-0.093 

(2.633) 

0.066 

(0.179) 

-0.108 

(0.175) 

0.816 

(0.480) 

Adult:juvenile 0.157 

(0.087) 

-0.006 

(0.120) 

0.180 

(0.086) 

-0.008 

(0.114) 

0.251 

(0.176) 

0.732 

(0.850) 

0.152 

(0.111) 

0.137 

(0.179) 

0.243 

(0.912) 

-0.670 

(2.703) 

0.152 

(0.160) 

0.037 

(0.152) 

0.193 

(0.428) 

Core size -0.017 

(0.102) 

0.046 

(0.132) 

0.045 

(0.109) 

0.047 

(0.122) 

-0.346 

(0.190) 

1.276 

(0.973) 

-0.116 

(0.131) 

-0.241 

(0.236) 

1.125 

(0.866) 

-0.032 

(2.730) 

0.199 

(0.169) 

-0.358 

(0.186) 

-0.024 

(0.408) 

Natal 0.111 

(0.203) 

0.193 

(0.251) 

0.112 

(0.222) 

0.201 

(0.231) 

-0.051 

(0.369) 

-0.374 

(1.467) 

-0.451 

(0.250) 

0.458 

(0.452) 

-1.982 

(1.531) 

-1.684 

(2.855) 

-0.200 

(0.371) 

-0.330 

(0.320) 

-0.462 

(0.930) 

Own calf 0.994 

(0.389) 

-0.719 

(0.816) 

0.929 

(0.357) 

-1.589 

(0.768) 

-3.350 

(1.945) 

-0.665 

(2.947) 

0.129 

(0.799) 

-2.571 

(2.066) 

-0.730 

(2.859) 

0.620 

(3.060) 

1.012 

(0.951) 

-1.398 

(1.175) 

-1.789 

(2.510) 

Group young 0.031 

(0.055) 

0.008 

(0.093) 

0.128 

(0.050) 

-0.043 

(0.090) 

0.115 

(0.138) 

0.069 

(0.694) 

-0.088 

(0.110) 

-0.184 

(0.200) 

-0.231 

(0.595) 

-0.305 

(2.661) 

-0.204 

(0.146) 

0.208 

(0.126) 

0.887 

(0.308) 

NDVI -0.110 

(0.052) 

0.063 

(0.106) 

-0.058 

(0.048) 

0.038 

(0.089) 

0.037 

(0.134) 

-1.292 

(1.140) 

-0.253 

(0.106) 

0.324 

(0.142) 

0.225 

(0.599) 

1.269 

(2.306) 

-0.157 

(0.139) 

-0.189 

(0.143) 

-0.109 

(0.371) 

Aggregation 

size 

0.058 

(0.053) 

0.089 

(0.101) 

0.030 

(0.048) 

0.052 

(0.089) 

0.097 

(0.135) 

0.904 

(0.757) 

0.329 

(0.091) 

0.127 

(0.146) 

0.808 

(0.662) 

-0.198 

(2.491) 

0.354 

(0.132) 

0.130 

(0.125) 

-0.719 

(0.517) 

Mature bulls 0.037 

(0.048) 

-0.023 

(0.098) 

0.050 

(0.044) 

0.005 

(0.086) 

0.118 

(0.122) 

1.101 

(0.766) 

0.114 

(0.080) 

-0.032 

(0.159) 

-2.215 

(1.590) 

-0.619 

(2.821) 

-0.054 

(0.131) 

0.165 

(0.107) 

-1.958 

(1.459) 
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Table 4.3: Orphan subset model coefficient estimates. Standard deviations are in parentheses. Models are listed in the top row 
and coefficients are listed in the first column. 

 Receiving 

affiliative 

(feeding) 

Receiving 

affiliative 

(resting) 

Initiating 

aggressive 

(resting) 

Receiving 

aggressive 

(resting) 

Initiating 

submissive 

(feeding) 

Receiving 

exploratory 

(feeding) 

Initiating 

alloparenting 

(feeding) 

Age 0.298 (0.109) 0.078 (0.139) 1.389 (1.603) -0.135 (0.242) -0.495 (2.073) 0.311 (0.163) -1.730 (0.961) 

Time 0.020 (0.056) 0.060 (0.114) -0.207 (1.787) 0.153 (0.208) 1.687 (1.911) -0.003 (0.148) 1.322 (0.379) 

Time orphaned 0.063 (0.112) -0.011 (0.150) -1.651 (2.004) -0.243 (0.247) -1.608 (2.277) -0.118 (0.195) -1.739 (1.043) 

Matriarch age 0.018 (0.124) 0.068 (0.141) 0.340 (1.933) 0.234 (0.257) 0.324 (1.890) 0.143 (0.195) -1.773 (0.698) 

Matriarch AI -0.077 (0.123) -0.212 (0.140) -0.095 (1.892) -0.598 (0.212) 1.429 (2.153) 0.238 (0.181) 1.726 (0.794) 

Dispersed males 0.011 (0.124) -0.158 (0.171) -0.429 (1.870) 0.602 (0.311) 0.327 (2.076) -0.008 (0.211) 0.210 (0.619) 

Adult:juvenile 0.243 (0.106) -0.099 (0.150) 1.696 (1.862) 0.180 (0.232) -0.547 (2.082) 0.062 (0.194) 0.198 (0.537) 

Core size -0.114 (0.141) 0.147 (0.196) 2.340 (1.948) -0.429 (0.360) 0.486 (1.964) -0.351 (0.240) 0.635 (0.673) 

Natal 0.230 (0.250) 0.324 (0.307) -1.686 (2.232) 1.069 (0.602) -3.388 (2.533) -0.525 (0.380) -1.874 (1.197) 

Own calf 1.062 (0.441) -1.804 (0.836) -0.497 (3.099) -2.952 (1.998) -0.178 (3.124) -0.907 (1.245) -1.140 (2.667) 

Group young 0.156 (0.064) -0.090 (0.120) 0.281 (1.585) -0.147 (0.240) -0.430 (2.116) 0.254 (0.156) 1.261 (0.459) 

NDVI -0.036 (0.063) 0.063 (0.118) -0.347 (2.013) 0.450 (0.157) 0.533 (1.928) -0.154 (0.184) -0.098 (0.457) 

Aggregation size 0.007 (0.060) -0.007 (0.115) 1.276 (1.673) 0.168 (0.175) 0.682 (1.886) 0.017 (0.164) -0.375 (0.619) 

Mature bulls 0.046 (0.058) -0.005 (0.121) 1.111 (1.595) -0.102 (0.196) -1.235 (2.349) 0.150 (0.143) -2.078 (1.508) 
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Figure 4.1: Credible interval estimates for orphan (black; non-orphan = 0, orphan = 1) and natal 
(gray; non-natal = 0, natal = 1) covariates in models including both orphans and non-orphans, 
where points represent median values and upper and lower bars represent 75% and 25% range, 
respectively. Natal group membership was independent of orphan status. Values above zero 
represent positive relationships with being an orphan or belonging to a natal group. 
 

  

 Costs and Benefits Among Orphans  

 Consistent with Hypothesis 2, resting orphans received more aggression than resting non-

orphans (Figs. 4.1 & A.1; Table 4.2); However, resting non-natal orphans received less 

aggression than resting natal orphans (Fig. A.2; Table 4.3). This trend was reversed while 
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animals fed, with non-natal orphans receiving more aggression than natal orphans. Orphans 

received more aggression the more recently they were orphaned (Figs. 4.2 & A.2; Table 4.3). 

 
Figure 4.2: Aggression directed toward orphans was negatively related to time orphaned. 

 
 

Contrary to Hypothesis 2, non-orphans were more likely to exhibit the submissive 

“backing toward” behavior than orphans (Figs. 4.1 & A.1; Table 4.2). Natal group membership 

was negatively related to initiated submission in the orphan only model, though this estimate was 

associated with a large amount of uncertainty (Fig. A.2; Table 4.3). This behavior trended 

negative with time orphaned (Fig. 4.3).  
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Figure 4.3: Submission and alloparenting initiated by orphans were negatively related to time 
orphaned. 

 

 In models including both orphans and non-orphans, orphans were less likely to alloparent 

than their non-orphan counterparts (Figs. 4.1 & A.1; Table 4.2), opposite to the relationship 

predicted by Hypothesis 2. In the subset model of orphans only, however, non-natal orphans 

were more likely to alloparent than natal orphans as predicted by Hypothesis 2 (Fig. A.2; Table 

4.3). There was a strong negative relationship between alloparenting and the time a focal animal 

was orphaned (Figs. 4.3 & A.2; Table 4.3), suggesting that orphaned elephants were more likely 

to alloparent the more recently they became orphans. Additionally, strong bonds with matriarchs 

were predictive of alloparenting among orphans (Fig. A.2; Table 4.3). Both orphans and non-
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orphans were more likely to alloparent if their groups had younger matriarchs (Fig. A.1; Table 

4.2). 

 

Orphan Bonding Targets 

 In contrast to Hypothesis 3, whether a focal animal’s bonding partner was a matriarch did 

not structure the affiliation she initiated, nor did the age difference between focal animals and 

their social partners (Fig. A.3; Table 4.4). Alternative hypotheses for indirect social integration 

through age mates or young bulls were not supported, but whether social partners were young 

calves was a strong predictor of the affiliative interactions that focal elephants (orphans and non-

orphans) initiated while feeding (Fig. A.3; Table 4.4).  

 Regardless of whether orphans targeted matriarchs directly as bonding partners, 

matriarchs structured the social environment. Focal elephants received less aggression and 

exhibited more submission if they had stronger associations with their matriarchs. Elephants 

received more exploratory trunk reaches if they were associated with groups led by older 

matriarchs and if they had stronger bonds with their matriarchs (Fig. A.1; Table 4.2). 
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Table 4.4: Coefficient estimates for models predicting interactions with specific partners. Standard deviations are in parentheses. 
Models are listed in the top row and coefficients are listed in the first column. Blank cells represent covariates that were removed 
because of strong correlations with other covariates or because they lacked variation for relevant datasets. 

 Affiliative 

actor 

(feeding) 

Affiliative 

actor 

(resting) 

Affiliative 

recipient 

(feeding) 

Affiliative 

recipient 

(resting) 

Aggressive 

actor 

(feeding) 

Aggressive 

actor 

(resting) 

Aggressive 

recipient 

(feeding) 

Aggressive 

recipient 

(resting) 

Exploratory 

actor 

(feeding) 

Exploratory 

recipient 

(feeding) 

Age 

difference 

-0.039 

(0.049) 

-0.085 

(0.075) 

0.013 

(0.051) 

-0.156 

(0.079) 

0.024 

(0.090) 

-0.132 

(0.225) 

0.040 

(0.063) 

0.016 

(0.114) 

0.051 

(0.083) 

-0.007 

(0.098) 

Partner 

mother 

-0.021 

(0.118) 

-0.080 

(0.168) 

-0.063 

(0.126) 

-0.098 

(0.176) 

0.206 

(0.253) 

-0.254 

(0.593) 

------- ------- -0.078 

(0.207) 

0.062 

(0.245) 

Partner 

matriarch 

-0.067 

(0.105) 

-0.261 

(0.241) 

0.172 

(0.169) 

0.318 

(0.252) 

-0.152 

(0.274) 

0.548 

(0.700) 

-0.045 

(0.150) 

-0.094 

(0.300) 

0.161 

(0.299) 

-0.085 

(0.360) 

Partner 

young 

calf 

1.033 

(0.083) 

-0.351 

(0.158) 

1.309 

(0.082) 

-0.157 

(0.149) 

-0.461 

(0.557) 

------- ------- ------- 0.237 

(0.254) 

0.144 

(0.215) 

Partner 

own calf 

1.402 

(0.114) 

1.024 

(0.186) 

2.148 

(0.120) 

1.396 

(0.186) 

0.116 

(0.321) 

-0.515 

(0.638) 

------- ------- -0.315 

(0.393) 

0.238 

(0.350) 

Partner 

male 

0.058 

(0.078) 

-0.060 

(0.139) 

0.308 

(0.078) 

-0.131 

(0.138) 

-0.032 

(0.181) 

-0.310 

(0.497) 

-0.176 

(0.149) 

0.100 

(0.272) 

-0.004 

(0.067) 

-0.080 

(0.190) 

Partner 

core-non-

natal 

0.667 

(0.171) 

0.479 

(0.265) 

0.458 

(0.191) 

0.362 

(0.274) 

0.212 

(0.301) 

0.612 

(0.925) 

0.275 

(0.226) 

-0.255 

(0.576) 

0.070 

(0.414) 

0.486 

(0.389) 

Partner 

natal 

0.587 

(0.087) 

0.649 

(0.154) 

0.602 

(0.087) 

0.437 

(0.151) 

0.049 

(0.203) 

0.135 

(0.530) 

0.033 

(0.157) 

0.020 

(0.294) 

-0.010 

(0.198) 

-0.149 

(0.234) 

Focal 

mother 

-0.004 

(0.125) 

-0.425 

(0.177) 

-0.105 

(0.122) 

-0.312 

(0.167) 

0.003 

(0.202) 

-0.007 

(0.550) 

0.209 

(0.132) 

0.040 

(0.235) 

0.263 

(0.168) 

0.228 

(0.197) 
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Discussion: 

 Indirect effects of mortality events, like altered social relationships, can destabilize 

populations (Milner et al. 2007). Among highly social species, deaths of key individuals can 

affect dominance and association networks for remaining animals (Williams & Lusseau 2006). 

Due to high levels of illegal killing for ivory, such removals are common in most African 

elephant populations (Wittemyer et al. 2014). Previous work in our study system has shown that 

elephants that experience disruption may become members of core groups that are different from 

those they were born into, presumably to improve their altered social context (Wittemyer et al. 

2009; Goldenberg et al. 2016). This study addresses an unanswered and critical piece to this 

process: how do orphaned elephants integrate into society without their older relatives and do 

they experience greater costs as a result of social marginalization? Our results point to an 

elongated and complex process of social integration for orphaned animals in this society, but also 

highlight the advantage that a fission-fusion social system confers on animals that must 

compensate for lost bonding partners (Farine et al. 2015). This study contributes to a larger 

understanding of social bonding in dynamic environments and provides specific insight to the 

response of a threatened species to ongoing disruption. 

 

Social Costs and Acceptance of Orphans 

 Social environments of orphans and non-orphans clearly differed: non-orphans received 

more friendly behaviors from other elephants than did orphans, and orphans were on the 

receiving end of aggression more frequently. Further, remaining tightly associated with natal 

groups was tied to more affiliation generally and less aggression while feeding (Figs. 4.1 & A.1; 

Table 4.2). These results support Hypothesis 2, which predicted that family disruption and social 
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integration would be associated with social cost. While decreased received affiliation as a result 

of being orphaned or leaving a natal group may not in itself be a social cost, it may reflect 

peripheral positions of orphans that may be tied to disadvantage in this highly social species. 

These results call into question the decision to leave one’s natal group, and suggest that it may be 

the best option only after the natal group has been substantially degraded. The elephants we have 

observed to join new groups (Wittemyer et al. 2009; Goldenberg et al. 2016) are usually from 

families that have been dramatically reduced in size, though this is not always the case.  

Interestingly, our finding of lower received affiliation did not change for orphans with 

time but received aggression seemed to wane (Fig. 4.2), suggesting that elephants may not fully 

integrate with new groups but may experience greater tolerance over time. Consistent with 

Hypothesis 2 that orphans would adjust their behavior to minimize costs to bonding targets, 

integrating orphans may facilitate tolerance by acting subordinate more if they are in their non-

natal groups and when they are more recently orphaned (Fig. 4.3); this is likely manifested as 

relinquishing resources. These results highlight the subtlety to the long-term impacts of being an 

orphan. We previously demonstrated that elephants reconstruct association patterns and 

emergent population social structure to resemble that found prior to poaching (Goldenberg et al. 

2016); the present finer-scale results indicate that reconstruction is not synonymous with total 

recovery for disrupted elephants. 

 

Orphan Behavior and Social Integration 

We did not find support for Hypothesis 1 that young orphans belonging to non-natal 

groups would initiate more friendly behaviors than older elephants, non-orphans, or orphans 

within their natal groups to compensate for their lost bonds. Initiated affiliation did not differ by 
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orphan status or age, and exhibited the opposite trend as expected with natal group membership 

(natal group membership was positively related to initiated affiliation; Fig. 4.1). These results 

were likely related to the fact that orphans integrating into non-natal groups often remain 

spatially peripheral, at least initially, whereas orphans that remain with their natal groups are less 

peripheral. Despite the affiliation limitations for peripheral animals, orphans seemed to actively 

improve their social positions in less direct ways. This was apparent in the negative relationships 

between submission and time orphaned, alloparenting and time orphaned, and alloparenting and 

natal group membership (Fig. 4.3), which suggest that as elephants navigate their new social 

contexts they alter their behavior to reduce costs and increase benefits to bonding targets 

(consistent with Hypothesis 2). 

 Elephant life history strategy favors strong investment in calves (Lee 1986; Lee & Moss 

2011). Alloparenting is thought to benefit mothers by lending more eyes to vulnerable calves and 

to benefit young allomothers by enabling parenting practice in this and other species (Lee 1987; 

Pillay & Rymer 2015). In our study, alloparenting was more common in groups with younger 

matriarchs and more commonly conducted by natal members of their groups, possibly reflecting 

the greater access that more integrated non-orphans may have to young calves. However, the 

negative relationship between the time an elephant was orphaned and alloparenting in the orphan 

only model (controlling for age) indicates that this behavior may facilitate integration in non-

natal groups. Years prior to the intensification of ivory poaching in the population, we observed 

an orphaned subadult integrate into an unrelated family by alloparenting the recently born 

matriarch’s calf (Wittemyer pers. obs.). She remained with that group when she gave birth to her 

own calf and is a part of their core group approximately fifteen years later (Goldenberg et al. 
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2016). As such, alloparenting can serve as a bridge to social integration, but it is likely not the 

only bridge used by orphans. 

 

Social Partners  

Hypothesis 3 related to the particular bonding partners targeted by focal elephants. While 

directing affiliation toward matriarchs, who confer the greatest advantages to their associates 

(McComb et al. 2001; Foley et al. 2008), would be a direct path for orphans (Hypothesis 3), 

affiliating with age-mates, dispersing bulls, or young calves may still allow orphans to benefit 

from matriarch proximity and knowledge without interacting with dominant matriarchs directly. 

We did not find evidence that orphans affiliate directly with matriarchs more so than they do 

with other elephants, but our results showed that all sampled elephants direct attention to groups 

with older matriarchs and to matriarchs generally (manifested as more exploratory trunk reaches 

directed toward those in groups with old matriarchs and toward those with strong bonds with 

matriarchs). In contrast to the subtle relationships among the interactions of orphans with 

matriarchs, interactions with young calves were clear. For non-orphans and orphans alike, 

affiliation was strongly positively predicted by whether social partners were young calves (Fig. 

A.3; Table 4.4). This result is consistent with the alloparenting trends discussed above.  

 

Matriarch Influence on Social Environments 

 The ability of matriarchs to structure the social environments and resource access of other 

animals (McComb et al. 2001; Wittemyer et al. 2007b; Foley et al. 2008) persists in this 

population that has lost so many older females (Wittemyer et al. 2013; Goldenberg et al. 2016). 

Focal animals exhibited more submissive behavior if they had stronger bonds with their 
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matriarchs (likely reflective of greater proximity and therefore opportunity for backing toward 

matriarchs), and received more aggression if they had weaker bonds with matriarchs. Despite the 

non-nepotistic (Archie et al. 2006) or weakly nepotistic (Wittemyer & Getz 2007) hierarchies 

described within elephant families, our results indicate that the aggression an animal receives is 

still influenced by their relationship with their matriarch. Access to matriarchs through the 

indirect routes of alloparenting and submission may place elephants in better social positions. 

 

Conservation Implications of Orphan Behavior 

African elephants face considerable pressure from poaching throughout their range linked 

to the rise in international demand for ivory (Wittemyer et al. 2014; Turkalo et al. 2016). 

Demographic parameters are often the focus of studies on overexploited populations (e.g., 

(Servanty et al. 2011; Bragina et al. 2015)), but indirect effects like altered social relationships 

should be considered in population monitoring of threatened and endangered species dependent 

on social processes (Milner et al. 2007). Social behavioral metrics derived from studies like these 

may provide indicators of the resilience of populations to harvest. For example, high proportions 

of orphans from disrupted families integrating into new groups may buffer against downstream 

mortalities resulting from the loss of mothers and matriarchs. Linking social environments 

experienced by orphans to calving parameters (e.g., orphans that receive more aggression are less 

likely to raise calves to weaning age) will provide further insight to the potential of behavioral 

data to inform conservation objectives. 

Importantly, throughout our study we observed several unaffiliated young females over 

brief periods that subsequently disappeared. The fate of these animals is unknown, but we 

suspect they did not survive. While not definitive, it is notable that the orphans we observed for 
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longer periods tended to integrate into social groups within the study period and subsequently 

survived. This appears to indicate a diversity of experiences (possibly strategies) among elephant 

orphans, with differential fitness. Future work should illuminate the bonding decision-making 

process in young female elephants that may vary substantially with elephant context and 

personality. Whether different social decisions are associated with different fitness outcomes is 

of direct relevance to conservation goals. 

Poaching affected families in the Samburu system differently, such that some families 

survived relatively intact whereas others lost all of their adult females (Wittemyer et al. 2013). It 

is notable that age and the presence of older individuals structured many of the interactions that 

we investigated, and suggests that the survival of at least some older elephants may be critical to 

this process of social integration. The mortality experienced by the Samburu population, while 

disruptive, was lower than that in other populations (Maisels et al. 2013; Wittemyer et al. 2014). 

The behavioral processes toward social integration documented here may be absent in heavily 

poached populations that experience greater loss of old females. The downstream demographic 

effects of younger and reconstituted families, and the prevalence of social behavioral flexibility 

across populations experiencing different levels of pressure have yet to be studied, but will likely 

play important roles in the recovery of elephant populations.  
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Chapter 5: Challenges of using behavior to monitor anthropogenic impacts on wildlife: a 

case study on illegal killing of African elephants3 

 

Introduction: 

Animals modify their behavior to avoid predation while attempting to minimize related 

fitness costs (Lima & Dill, 1990). Anti-predator responses (e.g., proactive responses like 

grouping patterns or reactive responses like increased vigilance) have been used to monitor 

populations and as a proxy for mortality impacts (Caro 2005; Creel et al. 2014). In particular, 

anti-predator behaviors have been measured as indicators of human activities in harvested or 

otherwise disturbed populations (Benhaiem et al. 2008; Reimers et al. 2009; Magige et al. 2009; 

Kiffner et al. 2014; Tarakini & Crosmary 2014). Anti-predator behavior in wildlife may not only 

serve as a useful metric of threat, but can directly influence fitness via energetic trade-offs 

(Anthony & Blumstein 2000; Frid & Dill 2002; Lone et al. 2015). Flight from suitable habitat 

and heightened vigilance may reduce access to resources and increase energy expenditure, which 

in turn contributes to poor body condition and decreased reproductive rates (Frid & Dill, 2002). 

Thus, wildlife behavior may serve as a proxy for population status or health, where direct fitness 

metrics are not possible or practical to collect (Bejder et al. 2009). 

Flightiness (quantified as flight initiation distance, time to flight, or distance of flight) is 

the most common response recorded by researchers because of its apparent connection to 

predator stimuli and the relative ease with which it can be measured (Stankowich & Blumstein 

2005; Setsaas et al. 2007; Benhaiem et al. 2008). However, these metrics should be tailored to 

                                                           
3 Adapted from: Goldenberg, S.Z., Douglas-Hamilton, I., Daballen, D., and Wittemyer, G. 2016. 
Challenges of using behavior to monitor anthropogenic impacts on wildlife: a case study on 
illegal killing of African elephants. Animal Conservation. 
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systems of interest; whether flightiness is effective as an anti-predator metric across 

evolutionarily disparate taxa should be tested. Additionally, relevant variables influencing 

flightiness may be unavailable or unknown and therefore excluded from analyses (Gill et al. 

2001; Griffin et al. 2007). For instance, an anti-predator response may result from variables 

unrelated to the anthropogenic threat of interest like the social nature of the activity, population 

density, habitat quality relative to alternative sites, or the presence of vulnerable young (Cooper 

2009; Moller et al. 2013; Semeniuk et al. 2014). While these potential pitfalls have been 

recognized (Gill et al. 2001), few studies using behavior to understand human impacts have also 

assessed the extent to which non-anthropogenic variables account for anti-predator behaviors or 

have assessed the applicability of such a general metric.  

Despite the complications of interpreting flightiness, it may be of considerable value to 

wildlife managers. Poaching of wildlife is a pervasive problem (Muth 1998; Dinerstein et al. 

2007; Magige et al. 2009; Wittemyer et al. 2011), and direct information about such illegal 

activity is often difficult to obtain (Knapp et al. 2010; Liberg et al. 2012) Measuring flightiness is 

markedly easier and less expensive than directly measuring illegal harvest (Caro 2005).  Such 

behavioral indicators can advance the design and implementation of monitoring programs, 

enhance security operations (Anthony & Blumstein, 2000), and provide timely warning for 

wildlife managers (Donadio & Buskirk 2006; Wildermuth et al. 2013).  

The African savannah elephants (Loxodonta africana) of the Laikipia/Samburu 

ecosystem of northern Kenya—a region divided into a variety of land use patches (Kahindi et al. 

2010)—comprise the second largest Kenyan elephant population and one of the largest on the 

continent to range primarily outside of protected areas (Omondi et al. 2002). The population has 

been intensively studied since 1997 in a project that records social, movement, and demographic 
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parameters of individual elephants in a relatively small protected area within the ecosystem 

(Wittemyer 2001). Ivory poaching is a considerable risk to these elephants (Wittemyer et al. 

2011, 2013, 2014) and the population range was designated as one of the sites for the Monitoring 

of Illegal Killing of Elephants (MIKE) programme of the Convention on International Trade in 

Endangered Species (CITES). It has been intensively monitored for illegal killing since 2002 

(Kahindi et al. 2010). This coupling of behavioral and demographic data provides an opportunity 

to investigate the relationship between behavioral monitoring and high effort, demographic-

based measures of human impact, and to assess the utility of flight metrics in elephants.  

While some studies have examined correlations between flight behavior and demographic 

parameters (Müllner et al. 2004; Griffin et al. 2007), rigorous analyses exploring potential 

confounding variables that may explain flight behavior are rare (Donadio & Buskirk 2006; 

Kiffner et al. 2014). Elephants have been shown to discriminate among threats that are associated 

with different levels of risk, like between garments belonging to people from different ethnic 

groups (Bates et al. 2007) and voices belonging to people of different ages and genders 

(McComb et al. 2014). This sophisticated ability to differentiate threats may extend to elephants’ 

keen spatial understanding (Polansky et al. 2015; Wittemyer et al. 2016); understanding risk 

inherent to area use may influence anti-predator behavior. These characteristics specific to 

elephants may complicate the employment of widely used flight metrics. Nonetheless, if flight 

behavior reliably reflects poaching levels such metrics would provide a valuable management 

tool to assess pressures on this wide ranging species, particularly where monitoring ability is 

spatially limited relative to the population's range as in this study system. In this study, social, 

ecological, demographic, spatial, and anthropogenic variables are related to elephant response to 

the approach of humans in vehicles in protected areas (where elephants are accessible for study). 
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This behavioral metric was designed to provide an index of human threat exposure that the wide-

ranging study individuals encountered in inaccessible, poorly monitored regions. We test the 

hypothesis that this behavioral metric collected within a protected area could serve as an index 

for human pressure in the greater ecosystem by assessing the relationship between elephant 

reactivity and illegal killing levels, collected independently. We identify the variables offering 

the greatest predictive insight on behavioral response of elephants to research vehicle approach 

and discuss the implications for wildlife management. 

 

Methods: 

Data Collection 

Research teams led by one of three primary observers collected data in Samburu and 

Buffalo Springs National Reserves, northern Kenya (Fig. 5.1) between 2000 and 2014. The 

reserves are unfenced, border the Ewaso Ngiro River (the only permanent water source in the 

region), and are situated within a complex human land use mosaic throughout which elephants 

range (Omondi et al. 2002). The reserves represent less than 10% of the monitored elephants’ 

range (Wittemyer et al. 2005a). Elephants are individually identified by ear and tusk 

idiosyncrasies (Douglas-Hamilton 1972; Moss 1996) as a part of an ongoing individual-based 

monitoring project (Wittemyer 2001). Elephant ages are known from observed births or 

estimated using established methods (Moss 1996). New calves are registered as they occur and 

individuals are considered dead when their carcasses are found  or when repeatedly missing from 

their group (Wittemyer et al. 2013). Rates and locations of poached carcasses are available from 

the CITES MIKE programme (Kahindi et al. 2010; Wittemyer et al. 2014). Global positioning 

system (GPS) locations were available for a subset of tracked females (n = 12) at 1-3 hour 
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intervals with 5-20 m spatial accuracy, allowing accurate determination of the time each collared 

individual spent within or outside protected areas. Collared elephants in this study ranged from 

an estimated 23 to 48 years old and were associated with core groups ranging in size from 5 to 

22 individuals. Observations of tracked families ranged from 5 to 87 (median = 18.5, sd = 26.5). 

We recorded the behavioral responses of known elephants to the research vehicle, termed 

reaction index (RI), when we approached an elephant group within 20 m consistent with research 

protocol. The measure is a relative ranking from 1-4, where behavior is ranked as 1 = calm with 

activity uninterrupted, 2 = initially skittish but calm within 10 minutes, 3 = actively avoiding 

vehicle, and 4 = running from the vehicle. RI is considered a group-level metric, as all group 

members generally behave similarly in the presence of a research vehicle. In addition to RI, we 

recorded the date, time, GPS coordinates, aggregation size (an aggregation was defined as a 

spatially cohesive and behaviorally coordinated group of elephants within a 500 m radius of an 

observer-estimated center) (Wittemyer et al. 2005b), individuals present, and presence of bulls in 

musth.  
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Figure 5.1: Poaching levels varied by elephant home range. The 95% minimum convex polygon 
home ranges are presented here for two radio-collared females with different space use strategies 
that exposed them to different levels of poaching (red dots represent poached elephant locations 
between 2000 and 2014).  
 

Data Analysis 

Due to very few observations of RI = 3 or 4, we consolidated RI values = 2, 3, and 4 into 

a single category representing reactive behavior. Similar to other systems (Kiffner et al. 2014), 

for the purpose of analysis we binned these behaviors as RI = 0 (did not react) and RI = 1 (did 

react). To examine the factors influencing RI, we fitted a set of candidate regression models with 

RI as the response variable. We conducted analyses on two subsets of the data: 1) from 

observations including radio-collared females only, and 2) from all available observations for 
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which all breeding females present were recorded (population level). The former allowed us to 

analyze the effects of time since entering protected areas and home range, which we expected 

might influence elephant responses to human beings. Therefore, we collated information for the 

subset of individuals for which radio-tracking data were available, where each female 

represented a distinct core group (the closest level of bonding in elephant society) (Wittemyer et 

al. 2005b).  

For this radio-tracked subset, we ran generalized linear mixed-effects models with a logit 

link function in which core group identities were incorporated as random effects. Intercepts were 

allowed to vary by core group identity, thereby partitioning variance due to independent 

variables from inherent baseline reactivity levels of core groups and controlling for repeated 

measures within groups. Population-level models did not incorporate a random effect. Within the 

regression models, we investigated aggregation specific covariates including aggregation size 

(size); presence/absence or number of calves present ≤ 3 months of age (based on a 

developmental threshold (Lee 1986; Owen-Smith 1988), present/absent: calf, count: calves); 

ratio of mature females to juveniles in the core group (adult:juvenile); presence or absence of a 

bull in musth (defined by urine dribbling, musth) (Poole 1989b); number of core group members 

that died or were wounded within one year prior to the date of the observation (mortality); age of 

matriarch (age); time since entering the protected area (where we considered the adjacent 

Samburu and Buffalo Springs National Reserves a single protected area block, time), and 

proportion of months in the year that we saw the group in the protected area (months).  

Model covariates explored on study area conditions at the time of the observation were 

ecosystem primary productivity measured as 10-day composite Normalized Difference 

Vegetation Index (NDVI) for a region comprising the core range use of the study population (960 
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km2), as described in (Wittemyer et al. 2007a); the proportion of illegally killed carcasses in the 

Laikipia/Samburu ecosystem for the year of the observation (PIKE), with higher PIKE values 

occurring in the latter years of the study (Kahindi et al. 2010; Wittemyer et al. 2014); and the 

PIKE value ascertained for each radio-collared female for the year of the observation within the 

95% minimum convex polygon area of her home range, constructed from radio-tracking data 

(Medianpoints: 22,281, Rangepoints: 6,891-53,066; mcp PIKE) (Fig. 5.1). We also considered the 

year of the observation (year). We assessed correlations between explanatory variables using 

Pearson correlations, considering two variables to be strongly correlated when r > 0.6. Only year 

and PIKE met this criterion. We therefore excluded year from the models because we were 

especially interested in the effects of poaching pressure on elephant response. All relevant 

covariates were available for 354 observations for the subset comprised of radio-collared 

elephants. For the population level dataset that did not consider core groups independently, 3,356 

observations of elephant aggregations were available. 

We ran models predicting the probability of a reactive response to a research vehicle in R 

using the glmmADMB and the stats packages (R Core Team 2013; Skaug et al. 2014). We 

standardized covariates prior to running models to aid in model convergence and for ease of 

interpretation. For each of the two datasets, we determined a set of candidate models including a 

global model with all uncorrelated independent variables and interactions hypothesized to be of 

importance (social-seasonal interactions as well as the interaction between matriarch age and 

young calves) (Moss 1988; McComb et al. 2011), subsets of the global model, and a varying-

intercept-only null model for the radio-collar subset (Table 5.1). We compared models using a 

model selection approach, and used Akaike’s Information Criterion corrected for small samples 
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(AICc) as the metric for comparison with the bbmle package for R (Burnham & Anderson 2002; 

Bolker & Team 2014). We present and interpret results from the top ranked model.  

 

Table 5.1: List of candidate models for all observations and the radio-collared subset 
Radio-collar 
observations 
 

varying intercept only 
size+calf+adult:juvenile+musth+mortality+months+age+time+NDVI+PIKE+ 
mcp PIKE+NDVI*size+NDVI*calf+NDVI*musth+NDVI*adult:juvenile+calf*age 
size+calf+musth+age+adult:juvenile+calf*age 
size 
calf 
musth 
age 
adult:juvenile 
calf*age 
mortality 
NDVI 
NDVI+NDVI*size+NDVI*calf+NDVI*musth+NDVI*adult:juvenile 
months+time+PIKE+mcp PIKE 

All 
observations 

size+calves+musth+NDVI+PIKE+NDVI*size+NDVI*calves+NDVI*musth 
size+calves+musth 
size 
calves 
musth 
NDVI 
NDVI+NDVI*size+NDVI*calves+NDVI*musth 
PIKE 

 

Statement on Animal Subjects 

We collected data with permission from the Kenya Wildlife Service, Colorado State University, 

the Samburu and Isiolo County Councils, and Save the Elephants (IACUC 12-3414A). 

 

Results 

Radio-collared Dataset 

 The top model for the radio-collared female cohort (global model; Table 5.2) indicated 

NDVI was a strong positive predictor of elephant reactivity. RI during the wet season was 
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heightened in the presence of a bull in musth and diminished with the presence of a young calf 

and increasing group size (Fig. 5.2), however only the coefficients for NDVI and NDVI*musth 

were significant (i.e., coefficient 95% confidence intervals did not overlap 0). The proportion of 

months in the year that a core group spent in the protected areas was significantly negatively 

related to RI (Fig. 5.2). Contrary to our expectations, neither mortality data nor time since 

entering the protected reserves was correlated with RI. PIKE was in fact negatively related to RI, 

though this result was not significant in the radio-collar dataset. The standard deviation of 

random intercepts (3.03e-8) was large relative to the mean (1.48e-14), indicating that inherent 

differences between groups were important in this system (Table 5.3).  
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Table 5.2: Ecological, social, demographic, anthropogenic, and spatial variables were related to 
reaction of African elephants to researchers in Samburu and Buffalo Springs National Reserves, 
Kenya. The models accounting for ~95% of AICc weight in both the radio-tracked and 
population level datasets are presented.4  
Radio-collar observations (Nobservations = 354) 

Model AICc ∆AICc ωi 

size+calf+adult:juvenile+musth+mortality+months+age+time+NDVI+ 

PIKE+mcp PIKE+NDVI*size+NDVI*calf+NDVI*musth+ 

NDVI*adult:juvenile+calf*age 

259.40 0 0.57 

NDVI+NDVI*size+NDVI*calf+NDVI*musth+NDVI*adult:juvenile  260.94 1.5 0.26 

NDVI 262.36 3.0 0.13 

All observations (Nobservations = 3356) 

size+calves+musth+NDVI+PIKE+ NDVI*size+NDVI*calves+ 

NDVI*musth 

1756.13 0 1.00 

 

                                                           
4 ∆AICc represents the difference in AICc value between the model and the top-ranked model, 
and ωi represents Akaike weight (totaling one across all considered models), where lower AICc 
values and higher weight correspond to models with greater explanatory power.  
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Figure 5.2: Standardized coefficient values from the top model for radio-collared females (top) 
and the population level (bottom). Asterisks denote significant coefficients. Thick and thin lines 
around estimates represent 50% and 95% confidence intervals, respectively. 
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Table 5.3: Intercept values in mixed-effect models predicting reactive behavior for radio-
collared females represent differences among core groups in baseline reactivity levels, where 
higher intercept values represent elephant groups that were more likely to respond when 
controlling for explanatory variables.  

Radio-collared elephant  Intercept value 

Aztec -4.68e-8 

Rosemary -4.42e-8 

Resilience -2.22e-8 

Mercury -1.53e-8 

Jerusalem -1.44e-8 

Wendy -2.81e-10 

Annabelle -2.16e-10 

Maua  1.12e-8 

Goya 1.61e-8 

Bonsai 3.29e-8 

Amina 3.56e-8 

Monsoon 4.75e-8 

 

 

Population Level Dataset 

 Results from the top model assessing predictors of RI for the population level dataset, 

again, did not support our hypothesis that an increase in illegal killing rates predicted reactivity 

(Table 5.2). Rather, PIKE was significantly negatively correlated with RI in the top model, and 

NDVI was significantly positively associated with a reaction (Figs. 5.2-5.3). In addition, the 

number of young calves present was positively correlated with RI (Fig. 5.2).  
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Figure 5.3: Mean RI (reaction index) and PIKE (Proportion of Illegally Killed Elephants). For 
this figure the mean of raw RI values was calculated at quarterly intervals. Annual PIKE values 
are plotted at the midpoint of each year. 
 

Discussion 

Reaction Indices and Illegal Killing 

Behavioral assessment can be a valuable and low cost approach to monitor threats to 

populations; however, behavior can be influenced by multiple factors, complicating simple 

interpretation of its meaning (Gill et al. 2001). Our results demonstrated that a high level of 

poaching did not increase reactivity as recorded for the study population inside the reserve. 

Contrary to our expectation, PIKE was negatively correlated with RI, significantly so in the 
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population level dataset. In the subset model for which spatial use was controlled, there was no 

relationship between reactivity and the PIKE specific to an elephant’s home range. These results 

may be a function of the highly nuanced reactions that elephants demonstrate towards humans. 

Elephant defensive responses to visual, olfactory, and auditory human cues recorded in a 

different Kenyan population captured fine-scale discrimination between ethnic groups and 

genders associated with different degrees of risk (Bates et al. 2007; McComb et al. 2014). It is 

likely that the elephants in this study did not perceive research vehicles as a threat connected to 

the poaching experienced outside the protected area, given that poaching in our study area is 

primarily conducted on foot and tourist presence (within vehicles) has been consistently high in 

the protected area for decades. Elephant experiences with vehicles in the reserves likely range 

from positive to negative, but are rarely fatal (vehicle collisions have occurred). Consistent lack 

of association with mortality risk may lead to tolerance of vehicles by elephants, which may be 

especially heightened in periods when risk from humans on foot is high. 

Furthermore, levels of poaching pressure are low inside the protected areas relative to the 

outlying, unprotected areas (Wittemyer et al. 2013). Elephants' keen spatial knowledge 

(Polansky et al. 2015) likely structured results in our study. Elephants have been shown to move 

more quickly through high-risk areas and spend more daylight hours in low-risk areas (Graham 

et al. 2009) as well as to adjust resting patterns and circadian activity patterns relative to risk 

(Wittemyer et al. 2014, 2016). They react strongly to a person on foot within the reserves. 

However, such mismatches between threats to wildlife (e.g., person on foot) and the behavioral 

monitoring stimulus (e.g., vehicle approach) are common, especially in areas where walking on 

foot is prohibited and dangerous (Frid & Dill 2002; Caro 2005; Donadio & Buskirk 2006; 

Kiffner et al. 2014). Assessing whether generalized behavioral monitoring stimuli are 
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appropriate proxies for threat is critical; employing such proxies offers a simple and inexpensive 

monitoring approach, much sought if effective. In particular, monitoring of elephant populations 

often occurs in spatially restricted areas (e.g., bais in Central African forests) (Turkalo et al. 

2013), where broader ecosystem monitoring is prohibitively difficult to perform.  

 Differences in reactivity were related to differences in spatial use across groups. Among 

collared groups, those that spent a greater proportion of the year within the protected areas were 

calmer.  Repeated exposure to vehicles (tourist and researcher) likely allows elephants to more 

readily recognize that people in vehicles are not a threat and therefore minimize unnecessary 

flight responses. In contrast, time since entering the reserves by collared individuals had no 

effect on elephant RI. Taken together these results suggest that longer-term spatial patterns are 

more predictive of behavior toward human approach in the reserves and that more recent 

experience is less important. A trend towards lower reactivity during increased poaching could 

indicate an association between vehicle presence and safety, though active avoidance of vehicles 

was not uncommon. Our unexpected findings related to elephant behavior and human activity 

underscore the importance of testing the assumptions of behavioral assessment prior to 

interpretation of such data (Gill et al. 2001; Bejder et al. 2009). Complexity in the degree to 

which elephants adjust behavior to exploitation pressure has been observed in other systems as 

well (Caro 2005; Kiffner et al. 2014).   

 

Environmental Stimuli and Inherent Group Traits 

Despite reactivity not being an effective indication of poaching pressure, a number of 

interesting insights were gleaned through this analysis. For example, elephants were more 

reactive when NDVI was high in both datasets. Elephants undergo dramatic changes in body 
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condition between the wet and dry seasons (Foley et al. 2001; Wittemyer et al. 2007a; 

Rasmussen et al. 2007), and greater tolerance of potential threats during the dry season may 

reflect a physiological state of energy conservation rather than risk assessment (Gill et al. 2001). 

The study elephants expand their range and travel more during the wet season (Wittemyer et al. 

2007b), and reactivity may therefore also relate to changing movement patterns and associated 

risks on the landscape, though the fine-scale spatial variables did not emerge as important in 

analyses. In addition, increased forage availability (and related increased physiological 

condition) during the wet season corresponds to a period of greater social activity, with the 

largest aggregation sizes (Wittemyer 2001) and the majority of mating and birthing events 

(Wittemyer et al. 2007a) occurring during that time. The positive interaction found between 

NDVI and the presence of a musth bull supports the idea that reproductive events heighten 

excitement in elephants which in turn influences response to human observers.  

While primary productivity and group composition strongly predicted elephant response, 

model intercepts varied considerably among core groups, indicating that baseline differences in 

the temperament across groups existed. Social animals may gauge their anti-predator responses 

by the responses of those around them, which may be especially relevant where more 

experienced, dominant, or bolder individuals are present in the group. In elephant society 

matriarchs may have disproportionate effects on group behavior (McComb et al. 2001; Foley et 

al. 2008); observed differences among groups may therefore relate to inherent differences among 

matriarchs, though the collection of RI as a group metric limited such inference here. Inherent 

matriarch effects may also interact with environmental covariates. For example, differences in 

social dominance among individuals are correlated with differential use of the protected areas 

(Wittemyer et al. 2007b), which itself was a predictor of group behavior. Lower reactivity could 
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therefore relate to individual traits like dominance, potentially complicating the ability to 

characterize level of threat within the ecosystem based on individual responses unless their social 

context is determined. 

 

Implications for Personality Research 

While aspects of this study are specific to elephant behavior, our findings hold 

implications for the use of behavior to assess human impact in wild populations and extend to 

other disciplines like personalities (Dall et al. 2004). Reaction to a human observer is often 

employed as a measure of shyness-boldness (Réale et al. 2007). While such metrics may 

represent inter-individual differences along the shyness-boldness personality continuum, it is 

also possible that they are more reflective of the subject’s recent experiences, reproductive state 

or ecological conditions. In our case, environmental context was a strong driver of our behavioral 

metric. Mixed-effects models allow investigation of such behavioral metrics by partitioning the 

variance due to differences among individuals while controlling for the effects of environmental 

variables (Dingemanse & Dochtermann 2013). Individual intercepts can thereby be interpreted as 

metrics of personality, after controlling for external stimuli that influence the behavioral metric. 

In this particular study, the behavioral measure was a group level metric and therefore not easily 

used for personality measures. However, matriarchs are known to disproportionately affect group 

behavior, which may be true for group responses to predator stimuli. As such, the variation 

among core group intercepts reported here potentially reflected personality differences among 

matriarchs. In this case, elephants with higher intercepts might be considered less bold or more 

reactive than the rest of the individuals in the sample.  
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Ensuring the Utility of Flight Response Monitoring 

In addition to demonstrating the complexities of behavioral assessment, our study 

highlights the need to extend such research beyond conventionally adopted flight metrics and 

tailor metrics for greater relevance to the system of interest (Gill et al. 2001; Kiffner et al. 2014). 

Elephants assess threat using olfactory, auditory, and visual cues (Bates et al. 2007; McComb et 

al. 2014), and cues of researchers are different from those of the specific humans that might 

present risk to elephants in this system. Behavioral studies should be carefully designed to 

address potential mismatches between threats to wildlife and anti-predator stimuli. Efforts should 

also be made to measure other variables that may affect the study species, like availability of 

alternative habitat, seasonal constraints on activities like breeding or socializing, and presence of 

vulnerable young. Further, behavioral manifestations unrelated to human stimuli may also be 

informative. For example, we have observed instances in which elephants known to have 

experienced poaching events responded calmly to research vehicles in the days following the 

event but were generally skittish toward other stimuli unrelated to humans. Recognition of such 

nuances in study systems will be critical for the effective use of behavioral indicators 

(increasingly being advocated for use in the conservation of species that are difficult to monitor) 

(Berger-Tal & Saltz 2016) to characterize population threats and trends. Finally, it is essential for 

researchers to account for confounding proximate variables that may explain wildlife behavior in 

studies measuring personality traits or effects of human disturbance. The mixed-effects approach 

implemented here provides a promising avenue for future work in both fields, where inherent 

differences among individuals may be separated from environmental variables (Dingemanse & 

Dochtermann 2013). 
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Chapter 6: Evidence of strong spatial segregation between elephant subpopulations in the 

contiguous Laikipia-Samburu ecosystem in Kenya5 

 

Introduction: 

Connectivity within populations affects important ecological and evolutionary processes 

like gene flow, disease dynamics, and cultural exchange (Noad et al. 2000; McCallum & Dobson 

2002; Epps et al. 2005). Understanding connectivity is especially relevant in the context of 

conservation as landscape-level changes may alter wildlife movement. Such changes 

disproportionately affect wide-ranging species (Seidler et al. 2015) and those whose movement 

corridors are not protected (Didier et al. 2011). However, assessing connectivity across and 

within populations is difficult given the ephemeral and often cryptic nature of dispersal. 

Comparative, long-term datasets of known individuals can provide critical information and 

insights for wildlife managers and policy makers to determine whether and how subpopulations 

are connected. 

The Laikipia-Samburu elephant (Loxodonta africana Blumenbach) population is the 

second largest in Kenya with approximately 7415 individuals, primarily relying on range outside 

of governmentally protected areas (Poole et al. 1992; Litoroh et al. 2010). The 34,000 km2 

Laikipia-Samburu ecosystem is a complex land use mosaic comprised of private, government, 

and community lands (Thouless 1995), which represent varying levels of risk to the region’s 

elephants (Ihwagi et al. 2015). The region is undergoing large-scale development projects 

(LAPSSET Corridor Development Authority, 2015), with unknown consequences for elephants 

                                                           
5 Adapted from: Goldenberg, S.Z., Oduor, S., Kinnaird, M. F., Daballen, D., Douglas-Hamilton, 
I., and Wittemyer, G. 2016. Evidence of strong spatial segregation between elephant 
subpopulations in the contiguous Laikipia-Samburu ecosystem in Kenya. African Journal of 
Ecology 54:261-264. 
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and other wide-ranging animals. Social interactions drive spatial segregation between elephant 

groups at the local scale (Wittemyer et al. 2007b). Social segregation may also occur at larger 

scales, but few opportunities to test this hypothesis exist. Understanding current levels of 

connectivity among elephants of the Laikipia-Samburu landscape can provide deeper insight to 

spatial segregation in this species as well as provide fundamental information for planners and 

researchers. Here, we elucidate the degree of overlap between individuals using two intensively 

studied areas within the spatially contiguous study ecosystem. 

 

Methods: 

Photographic records of individual elephants using the 220 km2 Samburu and Buffalo 

Springs National Reserves (SBSNR) (compiled through a monitoring project started in 1997), 

were compared with records collected on the 200 km2 Mpala Ranch (compiled through a 

monitoring project started in 2009). The two study areas are separated by approximately 75 

kilometers (Fig. 6.1). SBSNR are protected areas in the lowlands of the ecosystem, surrounded 

by community conservancies and permanent settlements. In contrast, Mpala is embedded in a 

mosaic of smallholder farms and large private ranches on the Laikipia plateau. Both projects use 

ear and tusk idiosyncrasies to identify individuals (Wittemyer 2001), facilitating comparison. 

Our comparative search included breeding females (NSBSNR = 356, NMpala = 573) and dispersed 

males (NSBSNR = 239, NMpala = 139) (Wittemyer 2001).  
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Figure 6.1: The study areas Mpala Ranch and Samburu and Buffalo Springs National Reserves 
are located in north central Kenya and are separated by approximately 75 km. 
 

Results and Discussion: 

No overlap was identified among the photographically documented elephants using 

Mpala and SBSNR. This was unexpected given radio-tracking evidence of connectivity between 

the two areas (Fig. 6.2), and the short distance between the two study areas relative to the tens of 

kilometers elephants can travel in a day and the thousands of square kilometers that can be 

encompassed in an elephant’s home range (Wittemyer et al. 2007b; Wall et al. 2013). Radio-

tracking evidence revealed that one male (30-35 years old) and one female (20-25 years old) 

traveled between SBSNR and Mpala between 2012 and 2015. Given the social structure of 

elephant society (Douglas-Hamilton 1972; Moss 1988), the female was likely traveling with her 

family group (approximately 20 individuals), whereas it is unclear whether the male was alone or 
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in a herd. Both elephants were collared in Samburu National Reserve (along with approximately 

two dozen elephants tracked at the same time).  

 

 

Figure 6.2: The paths of two radio-tracked elephants between 2012 and 2015 demonstrate 
connectivity between Mpala Ranch on the Laikipia plateau and Samburu and Buffalo Springs 
National Reserves in the lowlands despite zero overlap among the more than 1300 adult 
elephants identified in the two areas. 

 

The duration between elephant re-sightings from the long-term Samburu study varies 

among family groups, but in the extreme can span ten years (i.e. the longest recorded time 

between two consecutive sightings of a family). The six year duration of the Mpala study could 

limit the ability to capture SBSNR elephants that (very) infrequently use Mpala. It is also 



101 

 

possible that elephants using the two study areas were not detected while in the reserves. Radio-

tracked elephants have entered the northern part of Mpala without detection. In Samburu, 

unidentified elephants from outside the subpopulation were observed using areas just outside the 

boundaries of the park (Wittemyer pers. obs.). Irrespective of incomplete sampling, it is clear 

strong intra-population structuring limits the interaction of the known elephants across the 

Laikipia-Samburu ecosystem.  

Thouless (1995) suggested that the elephant use of the Laikipia plateau is relatively 

recent, with more elephants gradually moving into the area from the lowlands in response to 

increased poaching pressure and changing land management practices in the 1970s and 1980s. 

Thus, range use in this population may be changing continuously, with elephant knowledge of 

alternative habitats becoming increasingly crucial as development and ivory poaching continue 

in the region (Wittemyer et al. 2014; LAPSSET Corridor Development Authority Request for 

Proposals 2015).  

Long-term datasets on known individuals are rare, but provide invaluable information on 

population processes (Clutton-Brock & Sheldon 2010). Such datasets may be even more 

powerful when there is the potential for comparison within species or populations. In this 

instance, comparable datasets revealed the surprising result that despite being separated by a 

short distance relative to an elephant’s ranging ability (Wall et al. 2013), these two 

subpopulations demonstrate strong spatial segregation. While radio-tracking data identified 

ephemeral connectivity between the two populations, it is notable that the use of Mpala by the 

tracked individuals was brief (a matter of hours for the male). This study demonstrates the value 

of both individual-based monitoring and tracking data sets to understand connectivity and 

segregation, where the combined data provides stronger inference than either dataset alone.  
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Range overlap outside Mpala and SBSNR among some individuals remains a possibility and rare 

connectivity events, as evident from radio-tracking data, suggest that genetic exchange may still 

occur despite the strong degree of segregation. Conservation efforts targeted at maintaining 

movement corridors can facilitate such exchange, which can be critical to sub-population 

persistence (Keller & Waller 2002; Okello et al. 2008).  

Older elephants are known to hold more information than younger elephants (McComb et 

al. 2001; Polansky et al. 2015); the selective harvest of older elephants for their larger tusks in 

this population in recent years (Wittemyer et al. 2013) may thus threaten connectivity with the 

loss of corridor knowledge. Targeted movement studies addressing generational changes in 

movement may shed light on the long-term effects of ivory harvest for subpopulation 

connectivity. Our findings demonstrate the utility of GPS technology in identifying rare events 

that may have implications for population dynamics. 
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Chapter 7: Conclusion and future directions 

 

 Addressing conservation challenges requires diverse skill sets and creative approaches. 

As an older field, animal behavior encompasses a rich theoretical foundation that may be of 

value in navigating wildlife conservation problems. In this dissertation, I explored research 

questions rooted in animal behavior (predator responses, socio-ecology, and reproductive tactics) 

in the context of a population of African elephants that experienced a sudden rise in age-selective 

overharvest. I investigated long- and short-term responses as behavioral indices, as well as 

baseline behavior, illuminating how such data may provide insight to what the population was 

experiencing. 

The downstream demographic effects of overharvest in species with slow life histories 

are well documented (Stockwell et al. 2003), and the potential for behavioral repercussions has 

also been noted (Williams & Lusseau 2006). However, the relationship between the two is 

poorly understood. Elucidating the interaction between demography and behavioral patterns is 

certain to lead to fresh insights that will be beneficial to wildlife managers and conservation 

practitioners. For example, in this work we demonstrated a degree of social resilience to 

continuous poaching among female elephants. If such measures of social resilience are related to 

demographic parameters (e.g., integrated orphans have greater calving success than peripheral 

orphans or social integration breaks down when many matriarchs die), social metrics can be used 

to refine estimates of recovery from overharvest or as proxies for population health where longer 

term demographic studies are impossible or impractical. Planned work in this population will 

integrate the data presented in this dissertation on social strategies with calving histories of 

individual females to develop this line of inquiry.  



104 

 

In addition to the implications for demographic trajectories, social strategies during 

disruption may affect emergent population trends in landscape use. Elephants are ecosystem 

engineers (Campos-Arceiz & Blake 2011; Haynes 2012); where and how they move impacts 

ecological communities. Additionally, risk (e.g., poaching and human-elephant conflict) is 

distributed heterogeneously across the landscape (Ihwagi et al. 2015), and understanding how 

landscape use reflects risk-taking is important to assessments of population recovery (Wittemyer 

et al. 2016). Because female elephants move in groups, their social patterns should be reflected 

in their movement decisions. However, the link between social relationships and landscape use is 

poorly understood. Future work will use the social bonds investigated in this dissertation to 

clarify this emergent property of sociality.  

 The work here sheds new light on the behavioral flexibility and social complexity of this 

threatened species. Though still not widely implemented, behavioral metrics offer promise for 

conservation goals, and these chapters provide insight into the utility of such metrics for wildlife 

studies while laying the foundation for future research.  
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Appendix I: Chapter 4 model results 

 

Initiating affiliative interactions (feeding)

 

Initiating affiliative interactions (resting) 
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Receiving affiliative interactions (feeding) 

 

Receiving affiliative interactions (resting) 
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Initiating aggressive interactions (feeding) 

 

Initiating aggressive interactions (resting) 
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Receiving aggressive interactions (feeding) 

 

Receiving aggressive interactions (resting) 
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Initiating submissive interactions (feeding) 

 

Receiving submissive interactions (feeding) 
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Initiating exploratory interactions (feeding) 

 

Receiving exploratory interactions (feeding) 
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Initiating alloparenting interactions (feeding) 

 

Figure A.1: Estimates of standardized coefficients for Bayesian models predicting interactions 
per focal follow, where thick lines represent 68% credible intervals and thin lines represent 95% 
credible intervals.  
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Receiving affiliative interactions (feeding) 

 
Receiving affiliative interactions (resting) 
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Initiating aggressive interactions (resting) 

 
Receiving aggressive interactions (feeding) 
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Receiving aggressive interactions (resting) 

 
Initiating submissive interactions (feeding) 
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Initiating alloparenting interactions (feeding) 
 

 
 

Figure A.2: Estimates of standardized coefficients for Bayesian models predicting interactions 
per focal follow in the orphan subset, where thick lines represent 68% credible intervals and thin 
lines represent 95% credible intervals. 
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Focal is affiliative actor (feeding) 
 

 
 
 

Focal is affiliative actor (resting) 
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Focal is affiliative recipient (feeding) 
 

 
 
 

Focal is affiliative recipient (resting) 
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Focal is aggressive actor (feeding) 

 
 

Focal is aggressive actor (resting) 
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Focal is aggressive recipient (feeding) 

 
 

Focal is aggressive recipient (resting) 
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Focal is exploratory actor (feeding) 

 
 

Focal is exploratory recipient (feeding) 

 
Figure A.3: Estimates of standardized coefficients for Bayesian models predicting interactions 
per partner, where thick lines represent 68% credible intervals and thin lines represent 95% 
credible intervals.  
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