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ABSTRACT OF DISSERTATION

STOCHASTIC MODELING OF SEASONAL STREAMFLOW

This research examines topics on seasonal (monthly,
bimonthly, etc.) hydrologic time-series modeling.

A fanmily of periodic models was derived by allowing
parameters for a particular Multiplicative Autoregressive
Integrated Moving Average model(Multiplicative ARIMA) to
vary from season to season. The derived model presents
parameters relating data for seasons in the same year and
parameters relating data for the same season for
consecutive years. PARMA models are particular cases of
the proposed model, here called Multiplicative Periodic
Autoregressive Moving Average (Multiplicative PARMA) .
Least-squares estimation based on the Powell algorithm for
nonlinear optimization was developed for determining the
model parameters.

Properties such as seasonal variances and
autocorrelations were derived analitically for particular
cases of the general model. Analysis of sensitivity of the
annual autocorrelograms to the parameters of the model
showed that the yearly autoregressive parameters are the
most important for the reproduction of high annual

autocorrelations.
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Tests of model were made through data generation. The
model was applied to four-and six-season series for river
discharge presenting distinct characteristics of
variabilty and dependence. Tests for goodness-of-fit and
selection criteria of models for seasonal series were also
discussed.

Results from data generation indicate that the
estimation procedure is able to estimate parameters for
the Multiplicative PARMA models and can also be wused for
refinement of estimations made by method-of-moments for
other models. Application to discharge data from St.
Lawrence, Niger, Elkhorn and Yellowstone rivers showed
that the proposed modeling technique is able to preserve
long term dependence better than models currently used in
practical hydrology. Direct consequence of this
improvement is better reproduction of floods and droughts
and more accuracy in the design and operation of water
resource structures.

Antonio Sergio Ferreira Mendonga
Department of Civil Engineering
Colorado State University

Fort Collins, Colorado 80523
Fall, 1987
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CHAPTER I

INTRODUCTION

1.1 General Remarks

A fundamental problem both in design and in operation
of water resource systems is the appropriate consideration
of the variability of the natural inflows. Stochastic
models for these inflows are generally utilized for
generation of equi-probable future sequences of inflows
that preserve basic statistical characteristics, of the
historic series available, that could influence the
performance of the systems in analysis. Generation of such
synthetic streamflow sequences is required because
observed series of streamflows commonly do not include the
most extreme cases of floods and droughts and cannot
provide good estimates of risks involved in the operation
of the systems.

Generated hydrological sequences can be used in
conjunction with simulation models to test and evaluate
various proposed strategies for water resource systems or
to optimize the sizing and operation of the systems.

Seasonal models are particularly important in water
supply studies, reservoir operation and drought planning.

Hydrologic phenomena are periodic and stochastic in



nature. Hydrologic time series with intervals that are
fractions of the year present periodicities in statistical
characteristics caused by the annual cycle of revolution
of the earth around the sun. The environment responds to
the solar energy, modifying some characteristics of the
cyclic input to the hydrologic system, without eliminating
periodicity but adding randomness to the input.
Autoregressive Moving Average models (ARMA) are very
useful in modeling hydrologic time series that present
second-order stationarity (statiénarity in the mean and in
the covariance) .Common procedures for removing periodicity
from seasonal series are standardization (by subtracting
seasonal means and dividing by seasonal standard
deviations) and filtering (by utilization of linear time
invariant filters). Multiplicative Autoregressive
Integrated Moving Average models (ARIMA) may also be
applied in modeling seasonal time series. However, many
hydrologic time series cannot be stationarized by
standardization and filtering because of their seasonal
correlation structure, and the multiplicative ARIMA model
does not account for periodicities in variance and in
correlation structure. Periodic Autoregressive Moving
Average models (PARMA) allow for periodicity in
statistical characteristics presented by seasonal time
series. PARMA modeling is in an early stages of
development and PARMA models are beginning to be

recognized as important tools for modeling time series.



Another class of models utilized for seasonal
hydrologic series modeling includes disaggregation models.
Disaggregation modeling is composed of the temporal
aggregation of seasonal data and the modeling of the
aggregated series (annual, for example) without taking
advantage of the knowledge of the structure of the
original periodic time series. Then the generated annual
series are distributed into seasonal intervals.

The loss of information seen during the aggregation
of seasonal series made researchers develop another
procedure called Aggregation Modeling.

The present research deals specifically with the
development of a family of models presenting periodic
parameters denominated here as Multiplicative PARMA
models.

1.2 Research Objectives

1.2.1 General Objectives

Seasonal streamflows result from a very complex
interaction of many variables and largely depend on the
watershed characteristics. These general characteristics
and, consequently, the runoff and its within-the-year
distribution are unique. Many models were developed for
generating synthetic hydrologic sequences that could
preserve particular historic statistical properties. The
complexity of seasonal stochastic models is related to
their purpose. The modeler must decide which statistics of

the observed streamflow series should be preserved, based



on the future uses of the model. The uniqueness of basin
characteristics and objectives of stochastic modeling
suggests that groups of models with different degrees of
sophistication should be available for application by
hydrologists.

One of the most desired properties for seasonal
stochastic models 1is the ability for dual preservation of
seasonal and annual dependence. However, this dual
preservation is a very difficult task to perform for many
streamflow series. This research aims at the development
of a family of models which could preserve seasonal
properties and provide better reproduction of annual
autocorrelations than those resulting from models
currently utilized. This development includes formulation,
study of properties, search for techniques for estimation
of parameters, development of method for data generation
of and application to synthetic and historic data.

1.2.2 Specific Objectives

The specific objectives of this study are:
(a) Formulate a new class of stochastic periodic models,
from which particular cases could reproduce seasonal
statistical characteristics and long term dependence from
historic streamflow series.
(b) Develop estimation and generation techniques for the
formulated family of models.

(c) Find the model fitting the series obtained by adding



consecutive seasons from a low order PARMA model.

(d) Analyze the most common methods for analysis of

goodness of fitting and comparison of seasonal models.

(e) Apply models from the proposed family of models to

actual river data and compare with currently used models.



CHAPTER II

LITERATURE REVIEW

2.1 General Remarks

Two basic approaches have been taken by hydrologists
in generation of monthly or seasonal streamflow series.
The first approach 1is to generate annual flows with an
appropriate model and then divide those flows among the
modeled periods within each year, using disaggregation
procedures developed for this purpose. The second basic
approach for modeling seasonal or monthly flows is to
model the seasonal data directly. 1In dealing with
periodicities present in these flows, two sub-approaches
are utilized. One is to try to remove the periodicity by
using a time invariant filter or a standardization
technique. The second approach is the wutilization of
models presenting periodic parameters for fitting the
periodic sequences.

Aggregation Modeling is a technique for modeling
aggregated series(annual, for example) by utilizing the
characteristics of the seasonal historic data and by
deriving relationships between models and parameters for
this seasonal data and models and parameters for the

aggregated data.



2.2 Models for Monthly and Seasonal Flows

2.2.1 Removal of Periodicities

Hydrologic time series of time scales of less than a
year usually present strong seasonal nonstationarity.Time
series are called periodic or seasonal when their
statistical properties change periodically during the
year. Stationary models, like the regular Autoregressive
Moving Average models (ARMA) have been widely accepted for
modeling time sequences that present second-order
stationarity.

One way to remove seasonality is by standardization
of the series by subtracting the seasonal mean and
dividing by the seasonal standard deviation, transforming
the seasonal data into a zero-mean, unit-variance series.
This cyclic standardization may be represented by the

following expression:

Xy, 1 ~ Hr
Yv,7 = (2.1)
Or

where u; and o, are the mean and standard deviation for
the season 7.

Another technique for removing periodicity is the
utilization of a simple autoregressive integrated process.
In this procedure seasonal differencing is utilized for
transforming the original series. For example, if only
first-order differencing is utilized, the process may be
described by :

Ut = X = Xpey (2.2)



where X represents the original series and w is the time
lag of differentiation. This operation could be repeated
several times until a stationary sequence is achieved. If
the series becomes deseasonalized after D operations and
the tranformed series can be fitted by a stationary ARMA
(P,Q) model, the general model for the initial series is
called ARIMA (P,D,Q)y-

Multiplicative Autoregressive Integrated Moving
Average models, ARIMA(p,d,q)x(P,D,Q)y., consist of a
seasonal ARMA(P,Q) fitted to the D-th seasonal difference
of the data, integrated with an ARMA(p,q) model fitted to
the d-th difference of the residuals from the former
model. The application of the latter model assumes that
these residuals achieved stationarity. The multiplicative
model may be represented by:

$p(BY) .¢p(B) V4 VP X¢ = 8o (BY) .84(B) €t (2.3)
where B is a backward shifting operator such that,

BY X¢ = Xt-w (2.4)
and V is a difference operator,

VP Xg = (1-B¥) Xt (2.5)

$p, ¢p: EQ and Gq are polynomials :

$p(BY¥) = 1 - &BY - ¢,B2¥ -, . - @pBPV (2.6)
¢p(B) =1 - ¢1B = ¢B2 ~-...~ ¢ BP (2.7)
8g(BY) = 1 - 81BY - 8,B2W -...- B (2.8)
8q(B) =1 - 81B - ;B2 -...- 6489 (2.9)

Many hydrologic time series cannot be stationarized



because of the periodicity present in their correlation
structure. For these series, models with periodic
parameters are alternatives.

2.2.2 - Periodic Parameters

Thomas and Fiering (1962) suggested an AR(1) model
with periodic coefficients that may be used to fit a time
series presenting seasonal lag-one correlations. The model
for monthly data is composed of twelve linear regression

lines with different parameters for each month :

(Xy,r=Hr)= Tr.0g '(XV,1~1‘“1—1)+01‘(1'r12)1/2'6vr7

Or-1 (2.10)

where X, ; is the observed streamflow at year v and season
T, ry is the lag 1 correlation coefficient between seasons
T and r71-1. by 1is the mean and o, is the standard
deviation for season 7.

€y,r is an independent normal random variable with
mean 0 and variance 1.

Yevjevich (1970) suggested the use of higher order
AR(p) models with periodic parameters for modeling
seasonal hydrologic time series. Salas and Yevjevich
(1972) derived moment estimates of periodic parameters,
and Salas (1972) derived Yule-Walker equations for these
models.

Delleur et al. (1976) and Tao and Delleur (1976)
developed approximated equations for estimation of

parameters for the MA(1), MA(2) and ARMA(1l,1) periodic
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models, patterned on Yule-Walker equations for ARMA(p,q)
with constant parameters.

Salas et al. (1982) derived Yule - Walker equations
for periodic ARMA(p,g) models from which exact moment
estimates of parameters can be obtained. They also show
that for the case of ARMA (p,1l) models the periodic
autoregressive parameters can be calculated by solving a
system of 1linear equations and that the periodic moving
average parameters satisfy a system of equations that can
be solved iteratively.

Vecchia (1983) developed approximation to the exact
likelihood function and algorithm for computing
approximate maximum 1likelihood estimates for PARMA(1,1)
models.

Thonpstone (1983) formulated a class of models
grouping seasons that present similar autoregressive
characteristics in order to consider a single AR model for
those seasons.

Deustch and Ramos(1986) described a Space~time ARIMA
model that is reduced to a Multiplicative ARIMA if only
one site is considered.

2.3 Disaggregation and Aggregation Modeling

Disaggregation modeling is a technique by which time
series of lower-time scale are derived from time series of
higher-time scale already generated. For example, an
annual model could be fitted to an annual streamflow

series and utilized for generating other annual sequences.
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Monthly and seasonal series could be derived from these
series by using a disaggregation scheme.

Harms and Campbell (1967) proposed a two-tier model
to preserve both seasonal and annual flows. The monthly
flows generated by a Thomas-Fiering model are adjusted
against the annual flows generated by an annual model. The
adjustment procedure preserves annual parameters at the
expense of the monthly parameters. The model may be

expressed as :

X'y, 1 = . Xy, 1 (2.11)

where Y,, 1is the generated annual flow for year v. This
model is considered the first disaggregation method.

Valencia and Schaake(1972) developed a model that
provided a basis for almost all subsequent disaggregation
techniques. The model has the form :

Y=AX+Be¢ (2.12)

For disaggregation of annual flows into monthly flows
Y is a column matrix containing the monthly flows and X is
a column matrix presenting the annual flow volume. A and B
are matrices of parameters, and € is the stochastic term.

Mejia and Roussselle (1976) proposed an extension to
the previous model aiming at the preservation of seasonal
covariances between seasons of consecutive years.

Lane (1979) developed a condensed model setting to

zero parameters of the model not considered important.
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Santos and Salas (1983) proposed a step
disaggregation model for utilization in operational
hydrology that saves computer storage and
parameters.

Stedinger et al. (1985) developed a condensed version
of the Valencia~-Schaake disaggregation model.

Contrary to the disaggregation procedure, during the
aggregation modeling the seasonal data is first modeled
and the model and parameters are utilized for deriving the
model and parameters for the annual series.

Vecchia(1983) concluded that a low-order PARMA
process at seasonal level is consistent with an ARMA(1,1)
process at annual level and derived the relationship
between annual and seasonal parameters.

Vecchia et al.(1983) demonstrated that gain in
efficiency of estimation occurs at annual level when
seasonal data and their model are utilized instead of
annual data and their model.

Rao et al.(1985) investigated the relationship
between parameters of original and aggregated data for
cases in which the AR model 1is valid for the aggregated
process, and an AR model or a periodic model(terms in
sines and cosines) is valid for the seasonal process. For
such cases, they concluded that the parameter estimates
for a model for the aggregated sequence can be obtained by
using the parameter estimates for the original series and

that a valid model and its parameter estimates for the



13

original sequence can provide more accurate forecasts
for the aggregated series.

Aggregation and disaggregation modeling aim at the
preservation of both seasonal (monthly, for example) and
aggregated (annual, for example) statistical
characteristics. In disaggregation modeling, the
aggregated time series is first modeled and then
distributed to the different seasons. In practice,
however, the aggregated time series are obtained by adding
up the seasonal series (see Figure 2.1 on the next
page) .

Researchers also verified that important loss of
efficiency of estimation of parameters for the annual
series may be caused by the aggregation ( Vecchia
et al.(1983), Mendonga(1985) and Rao et al.(1985) ). This
justifies further development of new models and
techniques, dealing primarily with seasonal time series,
able to preserve both seasonal and annual statistical
dependence.

Preservation of multi-lag correlations among the
various seasons and years 1s very important for
generation of periodic series because if significant
correlations are not taken into account, serious errors
could happen in analysis. Generated series would tend to
present droughts and floods 1less severe than those
presented by the historic sample (Bras and Rodriguez-

Iturbe,1984).
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CHAPTER III

MULTIPLICATIVE PARMA MODEL

3.1 General Remarks

The major concern of researchers who first developed
disaggregation models was the preservation of
autocorrelation characteristics at both seasonal (monthly,
for example) and aggregated(annual, for example) levels,
for hydrologic series. These models follow the concept by
which annual series should be first synthesized and then
disaggregated into seasonal sequences through matricial
algebra. However, the inverse way is followed in practical
hydrology. The higher-time scale data are derived from
those of lower-time scale and consequently aggregated data
can not contain more information than that contained in
seasonal data. Furthermore, results from Vecchia
et al.(1983), Mendonca(1985) and Rao et al.(1985) show
that significant gain in parameter estimation efficiency
at aggregated 1level may occur when seasonal series and
their models are utilized rather than aggregated series
and their models.In addition, Rao et al. (1985) shows
that the aggregated data can be more accurately predicted
by using a valid model of the original data than by using

a valid model of the annual data.
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These conclusions suggest that the ideal model for
seasonal series would be a single periodic model that
could reproduce automatically both seasonal and annual
characteristics.

ARIMA and Multiplicative ARIMA models do not
reproduce periodicities in seasonal variance and in
seasonal autocorrelation. Low-order PARMA models may
preserve seasonal and annual characteristics for series
presenting low annual dependence but generally do not
reproduce annual autocorrelation for highly dependent
series.

This Chapter presents the development and analysis of
a new class of models, called here the Multiplicative
PARMA model, that has as its objective, besides
preservation of seasonal characteristics the
improvement of the preservation of annual dependence,
over that obtained by the PARMA models for highly
correlated series.

The term "Multiplicative PARMA" comes from the
fact that members of this new class present periodic
parameters relating consecutive seasons in the same
year,as the PARMA models do, and periodic parameters
relating seasons for consecutive years, as a
generalization of the Multiplicative Box-Jenkins models
that present constant parameters relating the same

seasons.
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3.2 Justifification

Box and Jenkins(1976) argue that for monthly data
there are two time intervals of greater importance that
are the month and the year. Specifically, it is expected
that two main relationships occur, one between data for
successive months of a year and the other between data in
the same month of consecutive years. This idea originated
the ARIMA and Multiplicative ARIMA models. However, these
models do not allow for different relationships for
different months, and most of the hydrologic seasonal data
present strong periodicity in statistical characteristics,
such as mean, variance and autocorrelation. PARMA models
allow for periodicity in parameters but do not emphasize
the correlation between data for the same month in
consecutive years.

The above analysis indicates that an important step
in seasonal hydrologic time-series modeling would be the
development of a class of models with periodic parameters
that could simultaneously relate data of consecutive
seasons for the same year and data of consecutive years
for the same season.

3.3 Formulation

The model was derived from the multiplicative
ARIMA(p,d,q)x(P,D,Q),, model defined in Chapter II. Clarke
(1973) stated that in practice models with d=D=0 would
likely be the rule in many hydrological applications, and

since it is intended to assume different relationships for
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each season, the differencing parameters in the expression

(2.3) are assumed null, resulting in :
#p(B¥) ¢p(B) Y¢ = 8q(BY) 64(B) €t (3.1)
Making this expression more explicit :

[1-¢1B-¢,B2~...~¢ BP]. [1-81BY-8,B2V -. .. -3pBFY] v, =

[1-915-9282—...—quq}.{1—§13W~§282W —...-§qBQW}.et (3.2)

This expression considers the same parameters valid
for all seasons. However, many hydrological series present
strong variability in statistical characteristics from
season to season. These series could be better fitted by

allowing parameters to vary:

£1°¢1’TB-¢2'TBZ*...~¢p'TBp}_[1~§1’TBW_§2'TBZW_...~
QP,TBPw]- YV,T = (3‘3)
[1‘91,73'62’TB2~...-eq'TBq].[l-gi,TBW_gthBZW*‘..~

QQ"[BQW]' EV,T

where
Yy, 1 = Zy, 1 = K7
Zy,r is the original series and u, represents the
seasonal mean of Zy .
B(Yy,r) = Yy, -1

B(Evlr) = €y,71-1
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BY¥(Yy 1) = Yy-1,7
Bw(ev,r) = €y-1,71
BP(Yy, 1) = Yy,7-p o
Bd(ey,r) = €v,r-q »
BFY(Yy, 7) = Yy_p,r , and
B ey, 1) = €y-q,r

Expression (3.3) represents the general
Multiplicative PARMA (p,q)x(P,Q), if €y, 7 are residuals
with expected value zero, and w is the number of seasons.

3.4 Properties

3.4.1 Definition

The Multiplicative Periodic Autoregressive Moving
Average, (PARMA), model of order (p,q)x(P,Q)y can be

written as follows :

Yy, 71 = ¢1,7 Yy, r-1% ¢2,7 Yy, r-2%.-+F &p, 7 Yy, 7-p
+ 81,7 Yy-1,7t ®2,7 Yy-2,7t...+ ®p 7 Yy_p 1
- ¢1,r ®1,7r YVo1,7-1" ¢1,7 ®2,7 Yy-2,7-1" ---
- ¢1,7 ®p,1r Yy-pP,7-1 ~-+:~ ¢p,7 21,7 Yy-1,7-p
¢p,r ®2,1 Yy-2,7-p "+~ ¢p,7 ¢p,7 Yy-P,7-p
t €y, 1 ; (3.4)
= 81,7 €v,7-1" 82,7 €y,7-2"-:+" 8q,1 €y, 1-q
- 81,7 €v-1,1" §2,1 €y=2, 77 " §Q,r €v-Q, T
+ 81,7 El,r €y-1,7-1% 81,7 82,7 €y-2,7-1% ...
+ 81,7 §Q,r €v-Q,7=1 t.--t €q, 7 él,r €v-1,1-q

8q,7 82,7 €v-2,7-q t++-* Oq,7 80,7 €v-0,7-q
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where the parameters ¢, r's, ¢ ¢'s and ¢p ;'s are the
periodic lag 1, lag 2 and lag p autoregressive
coefficients, respectively. ¢&; ,'s, & ,'s and %p ,'s are
the periodic lag w, lag 2w and lag Pw autoregressive
coefficients.

The parameters 6;,6;'s, 6, r's and 64, ;'s represent,
respectively, the lag 1, lag 2 and lag g moving average
coefficients; while 83,;'s, 83 's and 8g ;'s represent,
respectively, the 1lag w, lag 2w and lag Qw moving average
coefficients.

Yy,r and €y ; are as defined before and present mean
zero and variances respectively ofz(y) and 072(6).

A simpler model, called Multiplicative
PARMA(1,1)x(1,1)y, can be obtained from expression (3.4)

by assuming p=q=P=Q=1 :

Yy, r =b1,7 Yv,7-1 + ®1,7 ¥Yy-1,7 = ®1,7%1,7 Yy-1,7-12 (3.5)

téy,r — O1,7 €v,7-1 - 81,7 €v-1,7 t ©1,781,7 €v-1,7-1

The variable Yy, presents seasonal mean zero.
Consequently, the Multiplicative PARMA (1,1)x(1,1), model
presents the parameter set {¢1,T,¢1,T,81'T,§1,7,072(6),
7=1,2,...,w} that can be estimated from data.

The expression (3.5) can be written in matricial
form. As an example, for the two-season case, i.e., w=2,

the model can be represented by :



21

1 0] 1¥v,1 -®31,1 ~%1,1| |[¥v-1,2
=¢1,2 1l 1Y¥y,2 Y —®3,2! |¥y-1,2
¢1,1%1,1 0 Yy-2,2
+ =
0 ®1,2%1,21 1¥y-1,1
_ (3.6)
1 0| |€v,1 .\ -61,1 ~©1,1| |€fv-1,1
61,2 1l l€y,2 0 81,21 l€y-1,2
.\ ©1,181,1 0 €y-2,2
0 ©31,281,2! l€y-1,11l-
In multivariate form :
U(B) Yy = V(B) ey (3.7)
where
1- ¢, ,,B —-¢1,1B+ ¢1,1°1,1B2
U(B) = (3.8)
~¢1,2% ¢1,2%1,2B 1- ¢,,0B
and
-3 - Y 2
. 1- 8;7,1B 871,1B+ ©3,1831,1B
V(B) = _ - (3.9)
=6;,2B+ 67 787 2B 1- 81, 2B
where B(Yy ;) = Yy-1,7

3.4.2 Seasonal Variance

The expression for the seasonal variance of Yy, for
the particular Multiplicative PARMA(1,1)x(1,1), model,
that 1is the simplest model presenting all kinds of
parameters, ¢s, 6s, ¢&s and §s, can be obtained by

multiplying all terms of the expression (3.5) by Yy 1
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Yy, r¥v, 7 = @1,1¥v,7-1Yv, 1+ ®1,7Y¥v-1,7¥v, 1

- ¢1,7%1,1¥v-1,7-1Yv, 1 (3.10)

+

€v,7¥v, 7= ©1,1€v,7-1¥v,7~ 81,7€v-1,7¥v, 1

+

81,781, 7€v-1,7-1Yv, 1

Replacing the expression (3.5) into the expression
(3.10) and taking expected values results 1in the
following expression for the variance of the

Multiplicative PARMA(1,1)x(1,1), model:

o72(y) [1- 81,72 - 81,7°] (3.11)

- 07-12(y) [¢1,12+ ¢1,12°1,12+ 91,12+ 91,12§1,12] =

or2(€) [1- 2¢1,,81,1]

5 _
207-1°(€) [¢1,781,7% ¢1,7%1,761,781,7]
y _
+ 0r-1“(€) [¢1,191,T§l,1] [¢1,1+ Q1,1’]
- 2 - 2
t 2¢3,7%1,7 Tw-1,7-1" 291,7°%1,7 Ty,7-1" 201,7%1,7° 1,7

=2¢1,781,7E(€y-1, 7Yy, r-1)% 201,781,781, 7E(€y-1,7-1Yv,7r-1)

Iy, r represents the estimates of the seasonal
autocorrelations, and E represents the expectance

operator.

For the case of two seasons (i. e., w=2), this

expression may be transformed into :
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or2(y) [1- 81,.%- 81,7°] (3.12)
- 07-12(y) 91,72+ ¢1,72@1,12+ 91,72+ 91,12§1,12] =

or2(e) [1- 2¢7,7871,7- 2¢1,7%1,7-101,7]

- 0r-12(e) ¢1,781,7 [2+ @3 ,.81,7~ ¢1,781,7~ %1,781,7"
287,71+ + 267,787, 7-1]

+ 2¢3,7%1,7 [Ty-1,7-1" P1,7%w,7-1" ®1,771, 7]

For the Multiplicative PARMA(1,0)x(1,0)y, from the

expression (3.11), the results are :

or2(y) [1- @1,72] = 07-12(y) [91,7%+ 61,7281, 7°) =

or?(€) + 201,21, 7 [Ty-1,7-1- 91,7%w,7-1" ¥1,7 T1,7]

Expression (3.13) may be written in matricial form,

and replacing the index (1,1) by (1) :

(1-212) 0 '(¢12+¢12®12) Ulz(Y)

= (922+9528,52)  (1-352) 0,52 (y)
0 - (¢3%+93°%232) . .
0 . I

- (P2 +ey22,%)  (1-8,2) [loy2(y)

(3.14)
012 (¢€) ¢1%1 [Ty-1,w~ P1Tw,w~ ®171,1)
052 (€) 285 [Fy-1,1~ P2Tfyw,1~ ¥2r1,2)

= . -+ 2 .

. .

02 (€) PwlwlTw-1,w-1" Puwlw,w-1- ®wr1,wl
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3.4.3 Moment Equations and Seasonal Autocorrelationsa

Here, the objective is to derive equations that could
allow estimation of parameters and determination of
expressions for the seasonal autocorrelations in function
of the parameters of the model. The utilized approach is
similar to that used by Salas et al. (1982) for some PARMA
models.

The Multiplicative PARMA(1,1)x(1,1),, model may be
expressed as:

(1-¢71,7B) . (1-¢3 ;BY)Yy ; =(1-87 B).(1-8; [B¥)ey , (3.15)

This equation is equivalent to

(1- ¢1,7B- @3, ¢BY+ ¢ 7.27,¢B.BY) Yy ; = (3.16)

- -8 4 ry W
(1- 8;,7B- 8;,7B"+ 637,7.87,7B.BY) €y, ¢

This can be made more explicit as
Yy, 77 @1,7¥v,7-1" ®1,7¥v-1,7% @1,7-%1,7¥v-1,7-1 =

€v,r~ O1,7€y,7-1" 81,7€v-1,7% 81,781, 7€y-1,7-1 (3.17)

Five moment equations are necessary for finding
moment estimates of the parameters ¢; r, %17, 61,7, 81,7,
072(6). Multiplying expression (3.17) by Yy, r=1/ taking
expected values and simplifying, the first equation is

obtained :

rl,T— ¢l,TOT-12(Y)- Q1,Trw—1’1_1+ ¢1'1.¢1'Trw,1_l =
- 81,7092,_7(¢) (3.18)

+ 81,7E(Yy,r-1€v-1,7)% 61,781, 7E(Yy, r-1€y-1,7-1)
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where ry 5 represents the estimates of seasonal
autocorrelations and E represents the expectance operator.
Proceeding in the same way, but replacing the
multiplicative factor consecutively by Yy_1, 7, Yy-1,7-1,
Yy,7-2 and Yy ;, the corresponding moment equations are
derived :
ry,r= 1, 1Tw-1,7-1" #1,7072(¥)+ @1, 7.1 71,7 = (3.19)
~81,70%7(€)+ €1,7.81,7-01,70%7-1(€) =61, 1281, 70%,_1(€)
Yy+l,7- ®1,7%w-1,7-1" ®1,7%w,r-17% ¢1,1.§1,1°T~12(Y) =

61,7-81,79%7-1(¢€) (3.20)

ra,r ~%1,7r1,7-1" ®1,7%w+2,7-2% @1,7-%1,7Tw+1,7-2 =

81,781,7E(Yy, r-2€6v-1,7-1)~ 81,7E(¥Yy, 7-2€y-1,7) (3.21)

0r2(Y) = é1,7F1, 7= 1,7, v+ ®1,7-%1, 7 ws1, 1 =
027 (€)= ¢1,7-01,702,-1(€)+ €1, 7202, 1 (¢)

+ 81,781, 7E(Yy, r€y-1,7-1) " 81, rE(Yy, r€y-1,1) (3.22)

For the Multiplicative PARMA(1,1)x(1,0)y the above

moment equations may be reduced to :

ry,r- ¢1,T°T—12(Y)‘ ®1,7fw-1,7-1F ¢1,7-%1,7%w,1-1 =
“91,701-12(6) | (3.23)

Tw, 7= ®1,7%w-1,7-1 ~ Ql,TcTZ(Y) *f1,7-%1,071,7 T
o (3.24)
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2
u+l,7” @1,7%w-1,7-1" ®1,7%w,7-1% @1,7.%1,707-2°(Y) =

0 | (3.25)

2,7 ~%1,7%1,7-1" ®1,7%w+2,7-2% @1,7-%1, 7Tw+1,7-2 T

0 (3.26)

072(Y)= @1,7F1, 1= ®1,7%y, 1+ 1,7-%1, 7 w41, 7 =

02, (€) (3.27)

The moment equations are extremely nonlinear, very
difficult to solve and would require a complex
optimization procedure for solution of the system. It was
decided that, instead of trying to solve the above system
of equations, it would be more practical to estimate the
parameters by utilizing a 1east~équares technique directly
applied to the data.

Seasonal autocorrelations can be computed from the
parameters of the model by utilizing the above moment
equations. It was verified that this could be achieved by
matricial algebra. As an example, for the two-season case,
w=2, the systenm of equations for calculating

autocorrelations up to lag 4 is :

rp,2- #1,2T1,1~ ®1,2%4,2% ¢1,2%1,2%Y3,2 = (3.28)
0
r3,2” ¢1,2r1,1~ %1,2r2,1% ¢1,2§1,2012(Y) = (3.29)

0
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rz,2- #1,2%¥1,1" @1,2022(Y)+ ¢1,2%1,2%1,2 = (3.30)
0
r1,27 ®1,2012(Y) = ®1,2r1,1+ ¢1,2%1,2¥2,1 = (3.31)

”91’2012(6)

ra,1~ ¢1,1%1,2- %1,1%4,1% ¢1,1%1,1%3,1 = (3.32)
0
r3, 1= ¢1,1%1,2- ¥1,1%F2,2% ¢1,1%1,102%(y) = (3.33)
0
ry, 1= #1,171,2- %1,101%(Y)+ ¢1,1%1,171,1 = (3.34)
0
ry,1- ¢1,1022(Y)* ®1,1r1,2% ¢1,1%1,1¥2,2 = (3.35)

“91’1022(6)

The system of equations (3.28) through (3.35) may be

represented by:

1 0 0 0 =% ¢18;7 O 0 ry 1
1% 1 0 0 -¢1 0 0 0 ry,1

0 0 1 0 -¢; -¥; O 0 r3 1

0 1 ¢q8; =87 -¢7 O 0 0 ry 1
-3, ¢o8, O 0 1 0 0 0 ri,2 -
-¢o P29, 0 0 0 1 0 0 ry,2
-¢p —%5 0 0 0 0] 1 0 r3,2
) 0 0 0 0 1 P8, -3 Yy

7

(3.36)
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#1022 (y) - 1052 (€)
#1012 (y)
~$181052 (y)

0
¢2012(Y)“ 92012(6)
2022 (y)
-$2%2012(y)

0

This matricial equation can be written as:
A . r=u (3.37)
and this can be solved for r,

r = A"l qy, (3.38)

where Al is the inverse matrix of A.
The vector r presents the seasonal autocorrelations.
For the Multiplicative PARMA(1,0)x(1,0),; the same
procedure can be followed. The matrix A and the vector r

remain the same, while the vector u is transformed into:

$1022 (y)
§1012(Y)
“¢1§1022(Y)
0
u = (3.39)
#2012 (y)
§2022(Y)

“¢2@2012(Y)

0
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3.5 Aggregation

3.5.1 Annual Series

The objective here is to investigate the structure of
the annual hydrologic series given the structure of the
seasonal series. Due to the complexity of the complete
Multiplicative PARMA(p,q)x(P,Q)y, the analysis will be
made by utilizing the simplest model that presents all
kinds of parameters (¢s, ©s, &s and 6s) that is the
Multiplicative PARMA(1,1)x(1,1),.

For this model,

Yy,1 = ¢1,1¥v-1,2 + ¢1,1¥v-1,1 ~- #1,1%1,1Yv-2,2 (3.40)
+t €y,1 - ©1,1€y-1,2 ~ 81,1€v-1,1 * ©1,181,1€v-2,2

and

Yy,2 = ¢1,2¥y,1 + ®1,2Yy-1,2 = #1,2%1,2¥v-1,1 (3.41)

t €y,2 ~ ©1,2€6y,1 ~ 81,2€6y-1,2 t 61,281,2€y-1,1

Adding these two expressions for obtaining the annual
series and replacing the indices (1,7) by (1) for the

parameters :

Xy =¥y,1 * Yy, 2= ¢2Yy 1+ (P1+ @2)Yy-1,2F (91— ¢2%2)¥y-1,1
- 9121Yy—2+ €y 2+ (1- €3)€y, 1~ (81+ 83)€y-1,2

+ (8285 §1)€v-1,1+ 91§1£v—2;2 (3.42)

Replacing Yy ; and VYy_; p utilizing expressions

(3.40) and (3.41)
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Xy = ¢2(¢1Yy-1,2% €1Y¥y-1,1- P1%81Yy-2,2% €y,1~ ©1€y-1,2
- 81€y-1,1% ©181€y_2,2)
+ @1 (P2¥yo1,1t ®2¥y-2,2- $2%82¥y-2,1t €y-1,2" B2€y-1,1
- 82€y-2, 2t 0282€6y_2 1)
t 22(@2Yy-1,1t ¥2Yy-2, 2= ¢2%2Yy_2, 1t €y-1,2" O2€6y-1,1
- 8€y-2,2+ ©282€6y_2,1)
+ (81— ¢2%2)Yy-1,1~ ?1%1Yv-2,2
+ €y,2t (1-83)€y, 1= (81+ 83)€y_q, 2+ (8385~ 81)€y_1,1

+ 0181€y-2,2 (3.43)

Simplifying this expression, taking into account that

the annual term for the previous year may be expressed as

Xy-1 = Yy-1,1 + Yy-1,2/ (3.44)

and writing only the terms presenting the variable Y,
since Rose(1977) proved that the sum of independent moving
average processes each of order one is representable as a

single moving average process also of order 1 :

Xy = ¢102Xy-1t (2192+ €1)¥y-1,1
+ (8124 9185~ 9181~ $2¢1%1)Yy-2,2 (3.45)

- (22%¢+ @19283)Yy-3,1 *+...

Iterating one more time and making the same

simplifications
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Xy = @192Xy-1t (¢18+ °22)Yv—2,2
+ (°12+ ¢12¢z- P08~ ¢2@22)YV-2,1 (3.46)

(018124 ©102812)Yy_3 2 +...

After one more iteration :

Xy = #102%Xy-1+ (812+ ¢2812)¥y3 1
+ (8334 01822~ 91812~ ¢281291)Yyo3,2 (3.47)

- (028234 $102822) Yy 3,7 .-

Expressions (3.45), (3.46) and (3.47) present an
autoregressive term of order 1. However, the other terms
could not be simplified into new autorgressive terms. Each
new iteration introduces a new term of the variable Y and
the order of the product of parameters(coefficients)
increases by 1. This means that the annual series
represents an ARMA process only if the parameters ¢&s are
null . In this case, the seasonal Multiplicative
PARMA(1,1)x(1,1), would be simplified to a PARMA(1,1)
model. Data generation also showed that the annual series
for the Multiplicative PARMA resulted in an ARMA with
autoregressive parameter approximately equal to the
product of the seasonal autoregressive parameters only
when the parameters other than ¢, ;'s and 6, ;'s were
close to zero.

Annual aggregation for the low-order PARMA model was

studied by Vecchia(1983) and Vecchia et al(1983). Analysis
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of partial aggregation for this model (addition of any
number of consecutive seasons) 1s shown in the next sub-

chapter.

3.5.2 Aggregation of PARMA(1,1) Model

3.5.2.1 PARMA(1,1) Model

The PARMA,(1,1) 1is equivalent to the Multiplicative
PARMA(1,1)x(1,1)y when the parameters &g and 65 are null.
It presents parameters relating consecutive seasons.

The PARMA (1,1) model may be represented by :

Yy, 7 = @1 Yy,7-1 = 87 €y, r-1 * €y, 7 (3.48)

where Yy ; is the seasonal variable during season 7 and
year v, T =1,2...w, and w 1is the number of seasons in
the year. €y, ; is an independent random variable with mean
zero and variance 012(€). ¢ and ©; are the periodic
autoregressive and moving average coefficients.

In multivariate form :

U(B) Yy = V(B) €y (3.49)
where
1 -¢1B
_.¢2 1
U(B) = 0 -¢3 1
6 0... ;¢w .l
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Yo' o= | Yy, 17 Yy,2i...i¥y,y |
1 -81B
-89 1
V(B) = | 0 -85 1
0 .o "ew 1

‘ — - - .
ev' = | ev,1i €v,2i-iiey,y

and B is a lag operator defined by

B Yy, 7 = Yy-1,71

3.5.2.2 Aggregation Modeling of Low 8rder PARMA

Vecchia(1983) and Vecchia et al. (1983) showed that
the total aggregation(annual) of a low-order Periodic
Autoregressive Moving Average model, summing over the
seasons, follows a regular ARMA(1,1) model.

First it will be shown, through an example for easier
understanding, that not only the annual series but also
the series obtained by aggregating some consecutive
seasons can be fitted by this model.

Later this conclusion will be generalized for
aggregation of any number of consecutive seasons from any

PARMA(1,1) model.
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3.5.2.2.1 Aggregation of a PARMA,(1,1) Series

a) Annual

Let the series be represented by :

Y3, Yi,2 Y1,3 Y3,4
Y2,1 Y2,2 Y2,3 Y2,4
Yy-1,1 Yv-1,2 Yv-1,3 Yy-1,4
Yy,1  Yv,2 Yy,3 Yy,4

. .

From the definition of PARMA models

..

Yy,1 = @1 Yy-1,4 — €1 €y-1,4 + €y,1

= ¢ ¥Yy,1 ~ 83 €y,1 t €y, 2

(]
<
N

[

il

$3 Yy,2 ~ 83 €y,2 t+ €y, 3

Yy,4 = ¢4 Yy,3 ~ 84 €y,3 + €y 4

The annual series may be written as :
Xy = Yy, 1 + Yy o + Yy 3 + Yy 4
Substituting expressions (3.50)...(3.53)
present equation :
Xy = @1 Yy-1,4 — O1 €y-1,4 * €y,1 *
¢2 Yy,1 ~— ©2 €y,1 t €y, 2 *
¢3 Yy,2 ~ 83 €y,2 t €y, 3 *

$4 Yy,3 — 84 €y,3 T €y, 4

(3.50)
(3.51)
(3.52)

(3.53)

(3.54)

into the

(3.55)

Iterating, utilizing relationships (3.50)...(3.53),



35

results in the expression (3.56) :

Xy =¢1(¢gq Yy-1,3~ 4 €y-1,3%t €y-1,4) — O1 €y-1,4t+ €y 17

@2 (@1 Yy-1,4= 81 €y-1,4% €y,1) -~ 62 €y,1 + €y oF
¢3(P2 Yy,1 =~ 62 €y,1 * €y,2) -~ 83 €y 3 + €y 3%
¢q(d3 Yy, 2 ~— O3 €y, 0 + €y, 3) ~ 84 €y, 3 *+ €y 4

Iterating two more times :

Xy =¢10203¢4 (Yy-1,1% Yy-1,2%F Yy-1,3t ¥Yy-1,4) + (3.57)
(=1049362) €y-1,1 +
(1+ ¢o- 6% P3¢2— ¢302+PP302~ P493083) €y, 1 +
(010493~ 919403~ ¢201¢463)€y-1,2 *
(1+ @3- O3+ Py3— @483)€y,2 +
(0104-0104+¢20104-020184-¢3¢26104) €y-1,3 +
(1+¢4-64) €y, 3

(9176110201 -92011030201-03¢201-04¢3¢281) €y—-1,4% €y, 4

The last four lines of the above expression show four
independent moving average processes. Box and
Jenkins (1976) and Rose(1977) proved that the sum of
independent moving average processes each of order 1 is
representable as a single moving average process also of

order 1. Hence, expression (3.57) may be expressed as :

* *
Xy = % Xy-1 = ny - 8% Ny, (3.58)
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This equation represents a regular ARMA(1,1) process.
It can be concluded that the annual series follows an
ARMA(1,1) model with autoregressive parameter ¢* ,moving
average parameter 8*. n's are independent with expected

value zero and variance anz, and ¢*=¢1¢2¢3¢4.

b) Partial
Aggregating only the first two seasons from the same
PARMA,4(1,1) :

]

Replacing expressions (3.50)...(3.53) :

X'y,1 = ¢1 Yy-1,4 — 81 €y-1,4t €y,1 + (3.60)

$2 Yy,1 ~ 82 €y,1 T €y,2

Iterating three more times :

X'v,1 =®192¢03¢%4 (Yy-1,1 * Yy-1,2) * (3.61)
(=91049382) €y-1,1 t(1+¢2-63) €y, 1 +
(010493010403 -92010483) €y-1,2 + €y, 2 +
(0104-0104+920104-02¢104) €y-1,3+

(¢1-61+9201-¢261) €y-1,4
Analogously, aggregating the two last seasons :

X‘vlz == YV,3 + Yv’4 (3&62)
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and

X'y,2 = #19203¢%4 (Yy-1,3 + Yy-1,4)t (3.63)
(93920184 €y-1,3 + (1+94-64) €y 3 +
(930201-030201-04939201) €y-1,4 * €y, g4 *
(¢302-03821P49302-04¢362) €y-1,1 +

(¢3-63+0403-9483) €y-1,2

Expressions (3.61) and (3.62) may be written as:

It

* *
X'y1 — ¢ X'yi-1 =n'yy - 681 n'yjg (3.62)

X'ya = % X'yao1 = n'y2 - 8% n'yo g (3.63)

These equations show that the series obtained by
partial aggregation of PARMA4(1,1) samples follows ARMA
(1,1) models with the same autoregressive parameters as
those for the annual series but different moving average

parameters.

3.5.2.2.2 General Proof

In order to generalize the previous conclusions for
any number of consecutive seasons of a PARMA4,(1,1),
consider initially the explicit expressions corresponding
to a PARMA,(1,0) Model :

Yy,1 — ?1 Yy-1,w = €v,1
Yy,2 = @2 Yy,1 = €y,2
. . . (3.66)

. . .

. .

YW, w = ¢y Yy,w = €y,w
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Aggregating m consecutive seasons :

Xy'' = Yy 1 + Yy o+ .ee. + Yy
= @1¥y-1,w t €v,1 ¥
by Yy,1 + €y 2 + (3.67)
et eereae et

oioooooooncdvo--o+

¢m Yy, m-1 * €v,m

Replacing equations (3.66) into the last expression :

Xg'' = ¢1(¢y Yy-1,w-1 * €y-1,w) * €y,1 +
¢2(P1 Yy-1,w + €y,1 ) *+ €y, + (3.68)

D A I R T I I N I I I it.ili+

On(Pn-1 Yv,M-2 + €y, m-1) * €v,m

After w iterations, the expression (3.69) results :

Xy'' = 010203+ Py-19w (Yy-1,1 + Yy-1,2 +.. +¥yq ) +
P1PwPw-1-+ - P4¥3 €y-1,2 + P2P1Py-.-P5P4 €y-1,3 *
...... e PO B P2 Ey-1,mil T
Neeevsvmsetetsetioasenserssnanenaes cereaeeeaet
P1PuPu-1 Ev-1,w-2F P201Py €yl ,w=lFecccrreeret
ettt Ceee e PPy 1Py—2 €v,m-3 *
$10w €vT1,w-1t 9201 €y-1,wt.--t PPp-1 €v,m-2
$1 €y-1,w * P2 €y,1 t...t Oy €y p-1 t

ev’:l + €V,2 +00'+ evlm
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This equation presents an autoregressive term and a
series of independent moving average processes of order
one. Thus, this expression is equivalent to that for an
ARMA(1,1) model. This shows that the partial aggregation
of PARMA,(1,0) can be fitted by an ARMA(1,1) model. The
same conclusion can be drawn for the partial aggregation
of PARMA,(1,1) because the introduction of seasonal moving
average terms to the group of expressions (3.66) would add
only moving average processes of order one to the right-

hand side of equation (3.69).

3.5.2.2.3 Model for Partial Aggregation

The global seasonal series resulting from partial
aggregation cannot be fitted (in the general case) by any
of the models described in the literature review. The
multiplicative Box and Jenkins model does not allow for
periodicity in parameters, and the PARMA (1,1) does not
correlate the data of the same season for consecutive
years.

The model fitting all the seasons of the partially
aggregated series would be one equivalent to different
ARMA(1,1) fitting each season and able to be represented
by a specific case of expression (3.4) where ¢ and 6 are

equal to zero and P=Q=1, such as :

(1 - &1 7 BY) Yy , = (1 - El,, BY) €y,r (3.70)
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Expliciting this expression results in :

Yy, r = ®1,7 Yy-1,7 = €y,7r ~ 81,7 €y-1,7 (3.71)

3.5.2.3 Parameters Relationship

It was shown previously that series obtained by
partially aggregating PARMA (1,1) series follow a regular
ARMA (1,1) model. Here, the objective 1is to derive a
relationship between parameters for original and
aggregated series.

Vecchia (1983) derived the following expressions for
the parameters of the annual series, starting from the
multivariate form of PARMA (1,1) model, (3.49):

Xy = % Xy-1 = ny - 8% ny.q (3.72)

where % = P105.. .0y (3.73)

and 6* can be obtained by solving the matricial systenm :

It

To*= 0y2(1+ 8%2) = 1'Wy D(0) Wp'l + 1'W; D(0) Wp'l

2

I

Ty *= -0y 1'W; D(0) Wgy'l (3.74)

The solution for &* is

* = -R+ /RZ -1 if r;* > o0 (3.75)

and 6* =-R-/R%2 -1 if ;¥ <o
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where R = Ip*/(2r;*) and |R| > 1 (3.76)

Wo and W, are square matrices with elements :

0 (i<3)
WO = 1 . (i=j)
¢ (j+1)-6(3+1) (i=3+1)
m(j+1l,i)-8(j+1)w(j+2,1) (i>j+1)

(3.77)

m(Jj+1,w+i) - 6(j+1)m(3+2,w+i) (i<3)
Wy =| -8(j+1)m(j+2,w+]) (i=3)
0 (i>3)

1 is the unit column vector.

D(0) is a diagonal matrix=diag(c2(1),02(2),...,0°%(w))
and 7(1l,m)= ¢(1l)ep(1l+1l)...0p(m).

Vecchia(1983) developed the above expressions for
annual aggregation by matricial algebra technique,
utilizing the PARMA(1l,1) covariance structure. For partial
aggregation, most of the derivation deals with the same
covariance structure, since the model is the same in both
cases. Parts of the sequence of derivation that remain the
same will not be repeated. The key difference 1is related
with the matricial procedure for aggregation.

Repeating the multivariate representation for the

PARMA (1,1) :

U(B) Yy = V(B) €y (3.78)
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Applying the same operator det(U(B)) U~1(B) to both
sides of the expression above:
det(U(B)) Yy = det(U(B)) U™1(B) V(B) gy (3.79)
The inverse matrix may be expressed as:

U~1(B) = U?(B)/det(U(B)) (3.80)

where U3(B) is the classical adjoint matrix of U(B) and
det represents the determinant operator. Substituting into

(3.79) :

det (U(B)) Yy = U3(B) V(B) €y (3.81)

Each component of Y,, is subjected to the same
autoregressive operator. Hence, the components may be
summed. Multiplying each term of (3.81) by the transposed
of a vector c presenting values 1 corresponding to the
seasons to be aggregated and values 0 otherwise, the
expression containing the aggregated value X, may be

represented by :

det U(B) Xy = ¢' U2 (B) V(B) €V (3.82)

For annual aggregation, the vector c is the unit
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vector represented as 1 by Vecchia(1983). Throughout
Vecchia's derivation, the matricial operations were made
in such a way that this unit vector was not changed or
introduced into other matrices. For partial aggregation,
the same procedure could be followed utilizing the vector
c instead of the unit vector. Thus, it can be concluded
that the equations relating seasonal parameters of the
PARMA model and the parameters for the ARMA fitting
aggregated series can be obtained by replacing the unit
vector by the vector c¢ in the group of expressions (3.75).

*

The parameters ¢, e*

and owz for the ARMA(1,1)
fitting the series resulting from partial aggregation of
PARMA(1,1) series can be computed by employing the

following matricial equations :

®* = ¢p195-. .0y (3.83)

02 (1+6*2)

c'Wo D(0) Wo'c + c'Wy D(0) Wi'c  (3.84)

2

Oy c'W, D(0) Wgy'c (3.85)
where all variables were previously defined. The technique
for the estimation of parameters utilizing the above
expressions could be called "Matricial Method"

The validity of these expressions was verified by
data generation utilizing a computer code developed by the

author.
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3.6 Particular Cases

The general Multiplicative PARMA model can present a
large number of parameters if the orders of parameters, p,
g, P and Q, are all assumed greater than 1.

The total number of parameters may be calculated by :
NP = (p+g+P+Q+1)w (3.86)

Hence, for practical applications it is necessary to
make assumptions that could reduce the number of
parameters of the model, keeping the most important
relationships incorporated in the model.

Reasonable assumptions for dealing with hydrologic
sequences are:

a) The most important parameters are those relating values
for two consecutive seasons in the same year (lag 1) and
those relating values for the same season in consecutive
years (lag w), (Box and Jenkins,1976).

b) If, besides the above parameters, others are to be
taken into account, these should be initially the
parameters related with autoregression between data, for
different lags (in increasing order), of seasons in the
same year.

Another factor that influences the choice of a
particular case is that the 1larger the number of
parameters the more difficult the estimation procedure.

Most of the models utilized for fitting seasonal
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hydrologic time series are specific cases of the general
model (3.4), including PARMA(p,d) ., PAR(p),
Multiplicative ARIMA(p,0,q)x(P,0,Q)y, and ARIMA(p,O,q)
models.

From expression (3.4), fixing all parameters the same
throughout the seasons results in the
ARIMA(p,0,q)x(P,0,Q)y. If besides that the parameters
relating data for the same season in different years are
not taken into account (P=Q=0), the ARIMA(p,0,q) model
results.

If parameters are allowed to vary from season to
season, but no parameter linking data for the same season
in different years is considered, results the PARMA(p,q)
model. The PARMA(1l,1) model, defined previously, is a
PARMA (p,q) presenting only one lag-one autoregressive
parameter and one lag-one moving average parameter for
each season. PAR(p) are PARMA(p,q) presenting only
autoregressive parameters.

It is important to note that the seasonal series
composed of aggregating partially PARMA(1,1) samples also
can be fitted by a particular case of the general
Multiplicative PARMA model. As shown before, these series

can be expressed as follows :

This expression presents only parameters relating the
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same season for consecutive years and is equivalent to the
equations (3.72) and (3.73) represents a Multiplicative

PARMA(0,0)x(1,1) model.

3.7 Estimation of Parameters

Estimation techniques for ARIMA (p,0,q) and
Multiplicative ARIMA (p,0,q)x(P,0,Q)y are described by Box
and Jenkins (1976). Salas et al.(1980) described
application of the ARMA model with periodic parameters.
Salas et al.(1982) derived equations for exact-moment
estimation of parameters for some PARMA (p,q) models and
Vecchia(1983) developed an algorithm for approximate
maximum likelihood estimation for PARMA(1l,1) models. As
shown previously, the moment equations for the
Multiplicative PARMA models are difficult to solve even
for simple particular cases. In this part of the
dissertation, the search for an adequat estimation
procedure for these models is described.

3.7.1 Selection of Estimation Procedure

Delleur and Kavvas(1978), Salas et al.(1980) and Bras
and Rodriguez-Iturbe(1985) suggest that, given a set of
possible models, parameters could first be estimated
roughly and then refined in several iterative procedures.

Most of the techniques for this refinement rely on
the evaluation of the sum of squares of residuals. Salas
et al.(1980) <cites the use of a modified steepest-

gradient algorithm for minimizing the sum of squares of
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residuals in order to find the maximum likelihood estimate
of parameters for a classical ARMA(p,q) model fitting an
annual time series. Delleur and Kavvas (1978) also applied
this technique to find maximum 1likelihood estimates of
parameters for ARMA(1,1), ARIMA(1,1,1) and some
Multiplicative ARIMA models for 15 basins in Indiana,
Illinois and Kentucky.

As stated by Bras and Rodriguez-Iturbe (1985), a
similar procedure could be applied to other seasonal
models. For models presenting few parameters, graphics for
the sum-of-squares surface or conditional sum-of-squares
surfaces could be drawn for visualization of a suitable
starting point. The Multiplicative PARMA(1,1)x(1,1) model,
for example, presents 5 parameters for each season. These
graphics would not help and moment estimates are difficult
to derive, as shown before. It was verified that a good
starting point could be, instead, the moment estimates for
Multiplicative PARMA(1,0)x(0,0) or Multiplicative PARMA
(1,1)x(0,0) model. These models are respectively
equivalent to the PAR(1) and PARMA(1l,1), for which exact
moment estimates were derived by Salas el al.(1982). The
utilization of one of these two points as initial has the
advantage that if, for any reason, the optimal parameters
are not achieved, it can at least be guaranteed that the
derived Multiplicative PARMA(1l,1)x(1,1) model, presenting
smaller sum of squares of residuals, would show a better

fitting to the data than that obtained by the initial
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PAR(1) or PARMA (1,1) model.

3.7.2 Search Technique

A number of search methods for minimization of a
function are described in the literature. The objective
function for the Multiplicative PARMA(1,1)x(1,1) is :

n w
Minimize I N (3.88)
v=1 1=1
where n symbolizes the number of years, w the number of

seasons and

€v, 1 = Yy,7~ P1,7¥v,7-1" ®1,7¥y-1,7F @1,7:%1,7¥v-1,7-1

+ 81,76y, r-1% 81,7€v-1,7" ©1,7-81,76v-1,7-1

Complexity of the objective function indicates that a
non-derivative method should be employed in the search
(Gill et al.(1981)).

The Powell algorithm, that is an expanded variation
of the univariate gradient search, is the most used method
for optimization without derivatives and is described by,
among many other authors, Powell (1964), Brent (1973)
and Gill et al. (1981). Applications of this procedure to
water resources problems are shown by Wurbs(1978) and
Fontane(1982). This algorithm is commonly employed for
maximum-likelihood estimation of parameters for the
ARMA(1,1) model. Powell (1964) showed that his algorithm

is more efficient than the Rosenbrock's (1960) that is
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also frequently applied. The Powell method, that was
chosen as the search procedure for this research, can be
summarized as follows for the case of n-dimensional

search :

(1) Starting with the best previous value position (_}_(_o)k
and a series of linearly independent directions of search
(gl)k, (Mz)k,...,(gn)k, begin the search by finding the
position of the optimum along the line passing through

(go)k which 1is parallel to (gl)k. At this optimum point
(gl)k, begin a second search from this new point in the
(gz)k direction and continue this procedure until all n

search directions have been explored.

(2) Find the particular point (Km)k for which the
greatest improvement of the objective function over
its previous value is realized. The point (gm)k,
therefore, yields the largest change D of any n
moves, where D = |F(Xp)X - F(Xp-1)¥|. Also determine the

vector p = (X)X - (X0)K
(3) Determine y[(2Xp)¥ - (X0)¥]

(4) If (Fx)X > (Fp)K and/or

[(Fo) K- 2(Fp) X + (F)K1. [ (Fp) K- (Fp) K- D12 >

D[ (yo) ¥ -(yp) %12

2
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then u is not a good direction(no progress and/or function
in this region is a valley), and the search is started
again at the last point, using the same directions :

(Xo) ¥*1 =(xpm) ¥
and M)kl =X for i=1,2,...,n. Step (1) is then
repeated.

If neither of these inequalities is satisfied, search
along direction yg until the minimum is found. This point
is defined (30)k+1 and new search directions for the k+1
stage are (Mj)Ktl=M;)X for i=1,2,...,m-1; (M;)k*1 =
(Mj+1)X for i=m,...n-1 and (Mp)K*t1l = y.

Then, repeat the entire process, starting with the
step (1). The stop criterion consists of verifying if the
difference between values of the decision variables in the

two iterations 1is less than the specified limits,

| (x;)¥ - (x1)¥1 | < E(i) for i = 1,2,...,n.

Another parameter utilized by the algorithm is the
maximum step size multiplier in the single variable
searches. Each variable is not increased by more than the
product of this multiplier by the corresponding
convergence limit. The diagram for the algorithm is shown

in Figure 3.1 (Kuester and Mize,1973).

3.7.3 Application to Synthetic Series

Applicability of the Powell algorithm for search of
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the periodic parameters for seasonal models was verified
through data generation. PARMA(1,1) series were simulated
and estimated to check if the developed search technique
could present results comparable with those obtained by
exact method of moments that is the most commonly used.
Multiplicative PARMA(1,0)x(1,0) and and Multiplicative
PARMA(1,1)x(1,1) were also generated to analyze the
applicability of the proposed procedure for the estimation
of parameters for members of the class of nmodels
previously developed in this chapter. Large

samples allow estimations closer to the true value of the
parameters because they present smaller variability of
estimation. Here, the objective is to find out if the
method gives estimates close enough to the true values,
and large and moderately large samples were utilized when
estimation for individual samples were analyzed. Some
statistical properties of the residuals were also computed
to check if they are compatible with the assumptions of
the model.

3.7.3.1 Individual Large Samples

Sample 1 - PARMA4(1,1) -

Parameters : ¢1= 1.2, ¢o= 0.7, ¢3= 0.9, ¢4= 0.8
©1=-0.2, 6,=-0.4, ©3= 0.3, 64= 0.5
01= 1.0 0= 2.5, 03= 1.5, 04= 2.0

Initial parameters :
P1=¢r=¢p3=¢4= 0.5,

61“—’-92-‘;93294& 0.1
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Accuracy for each parameter : E(i)= 0.1, i=1,...8
Sample size : 300 years
Sum of squares of residuals for initial values : 84.33

Evolution of the search process :

Iterations : 1 Total : 41 Sum of squares : 44.43
2 number 99 43.77
3 of 142 43.75
4 trials 179 43.73
5 211 43.72
6 245 43.67
7 280 43.66
8 306 43.65
9 337 43.63

Table 3.1 - Estimated parameters and bias for Sample 1

) ] o

Value Estim. Bias| Value Estim. Bias| Value Estim. Bias

1.20 1.18 0.01} - -0.26 0.06

0.2 0.98 0.02
0.70 0.72 0.02} -0.4 -0.35 0.05

0.3

0.5

2.53 0.03
1.48 0.02
2.00 0.00

0.90 0.92 0.02 0.33 0.03
0.80 0.79 0.01 0.45 0.05

[SS I
(@3S S R

Table 3.2 - Statistics of residuals for Sample 1

Season | Mean Skewness ry,r ra,r r3, r Ty, r
1 0.08 0.18 0.04 -0.14 0.03 -0.02
2 0.18 0.11 0.02 0.07 -0.01 0.03
3 0.11 -0.12 -0.03 -0.10 0.12 0.09
4 -0.09 0.10 0.01 -0.04 -0.02 0.01
Sample 2 - Same parameters, initial values, sample size

and accuracy :
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Sum of squares for initial values

Evolution of the search process :

Iterations :

DWW N

Total
number
of
trials

: 43
111
153
201

: 81.14

Sum of squares

39.26
38.77
38.60
38.60

Table 3.3 - Estimated parameters and bias for Sample 2

¢ (2] o
Value Estim. Bias| Value Estim. Bias| Value Estim. Bias
1.20 1.16 0.04| -0.20 -0.31 0.11 1.00 0.99 0.01
0.70 0.71 0.01y -0.40 -0.30 0.05 2.50 2.59 0.09
0.90 0.89 0.02 0.30 0.27 0.03 1.50 1.60 0.10
0.80 0.84 0.04 0.50 0.55 0.05 2.00 2.15 0.15
Table 3.4 - Statistics of residuals for Sample 2:
Season Mean Skewness ri,r ra,r r3,r Ta,r
1 -0.04 0.03 0.00 0.06 -0.02 -0.04
2 -0.16 -0.08 -0.06 -0.02 -0.03 -0.05
3 0.15 -0.12 0.01 -0.03 -0.07 0.06
4 -0.07 0.04 0.07 0.04 0.06 -0.07
Sample 3 - Multiplicative PARMA(1,1)x(1,1)4
Parameters: ¢1= 1.2, ¢= 0.7, ¢3= 0.9, ¢4= 0.8
81=-0.2, 6,=-0.4, 63= 0.3, 4= 0.5
$1= 0.3, ¢,= 0.5, ¥3= 0.4, $4= 0.2
81= 0.5, 85,=-0.3, 83= 0.1, 84= 0.4
0’1“ 1.0, 02= 205' G3= 105, 642 2;0
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P1=02=¢3=¢4=21=8,=83=84= 0.5

©1=62=63=64=6,=8,=63=68,4= 0.1

Accuracy for each parameter : E(i)=

Sample

size :

300 years

Sum of squares for initial values :

Evolution of search process

Iterati

ons :

Ot W NP

Total
number
of
trials

.
.

¢ 114
162
235
320
390

0.1

88.

, i=1,...,16
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Sum of squares :43.52

42.32
42.12
42.11
42.11

Table 3.5 - Estimated parameters and bias for Sample 3

@ e ]

Value Estim. Bias |[Value Estim. Bias |Value Estim. Bias
1.20 1.20 0.00 |-0.20 -0.21 0.01 |0.30 0.13 0.27
0.70 0.67 0.03 |-0.40 -0.40 0.00 [(0.50 0.52 0.02
0.90 0.92 0.02 0.30 0.30 0.00 |0.40 0.40 0.00
0.80 0.79 0.01 0.50 0.51 0.01 |0.20 0.03 0.17

e o
0.50 0.08 0.42 1.00 1.00 0.00

-0.30 -0.27 0.03 2.50 2.57 0.07
0.10 0.08 0.02 1.50 1.52 0.02
0.40 0.13 0.27 2.00 2.02 0.02

Table 3.6 - Statistics of residuals for Sample 3

Season Mean Skewness ry,r Tz, r r3, g g,

1 0.05 0.05 -0.04 0.01 0.04 0.04
2 0.13 0.06 -0.03 0.01 -0.01 0.00
3 0.03 -0.01 0.03 0.05 0.05 -0.02
4 0.00 0.15 -0.03 0.00 0.03 =-0.01
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Sample 4 - Same parameters, initial values, sample size
and accuracy:
Sum of squares for initial values : 80.16

Evolution of the search process :

Iterations : 1 Total : 153 Sum of squares :54.10
2 number 228 47.64
3 of 292 44.19
4 trials 365 44.01
5 430 43.88
6 506 43.88

Table 3.7 - Estimated parameters and bias for Sample 4

¢ e 4

Value Estim. Bias| Value Estim. Bias| Value Estim. Bias

1.20 1.24 0.04} ~-0.20 -0.08  0.12 0.30 0.33 0.03
0.70 0.66 0.04| -0.40 -0.39 0.01 0.50 0.53 0.03
0.90 0.91 0.01 0.30 0.32 0.02 0.40 0.55 0.15
0.80 0.80 0.00 0.50 0.47 0.03 0.20 0.11 0.09

DI

g

0.50 ~-0.30 0.80 1.00 0.99 0.01
-0.30 -0.30 0.00 2.50 2.58 0.08
0.10 0.22 0.12 1.50 1.58 0.08
0.40 0.28 0.12 2.00 2.13 0.13

Table 3.8 - Statistics of residuals for Sample 4

Season| Mean Skewness r,r ra,r rs, g L
1 0.15 0.24 0.06 0.06 -0.08 -0.04
2 0.17 0.07 -0.20 0.08 -0.08 -0.04
3 0.11 -0.12 0.04 -0.02 0.14 -0.03
4 -0.08 0.10 -0.02 0.00 0.09 =0.01

3.7.3.2 PARMA(1,1) Estimation

Simulations of PARMA; (1,1) samples were conducted

and parameters were estimated by the developed least-
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square technique applying the Powell algorithm, and by the
Exact Method of Moments, to verify if the procedures give
similar estimates. Parameters estimated from the logarithm
of flows of 90 years of discharge data for the St.
Lawrence River near Ogdensburg (1861-1950),by the method
of moments, were utilized for generation. The objective of
the utilization of the historic data estimates for data
generation is only to make comparisons based on real data.

The starting point for the least-square method was
the origin, that is, all parameters starting equal to
zero. The accuracy of each parameter was assumed 0.001,
and different sample sizes were used for generation:
ninety (historic sample size), fifty and twenty five
years. For each sample size, one hundred samples were
generated. Tables 3.9., 3.10 and 3.11 show historic
parameters, average estimated parameters, bias and
standard deviations for estimations by the two procedures.

Bias, standard deviations and Root Mean Square
Errors, (RMSE), computed through the two techniques are
very close for the 90-year and 50-year samples. For 25-
year samples the least-squares method gives smaller bias
but higher standard deviations than those from the method
of moments, resulting in almost equal Root Mean Square
Errors by the two methods.

These results suggest that the proposed method can
be an alternative for estimation of parameters for

PARMA(1,1) models. However, it must be stated that the



58

computer time for estimation through the least-squares
technique is higher than that required by the method of
moments. However, if computer time is not considered as an
important factor, an alternative for estimation of
parameters for PARMA(1l,1) models could be the utilization
of the method of moments estimates as starting point for
the least-squares technique.

This procedure is called " refinement of estimation"
by Bras and Rodriguez-Iturbe(1985).

Table 3.9 presents results for estimations from one
hundred simulations of 90-year samples. Tables 3.10 and
3.11 present results for estimations from 50-year and 25-

year samples, respectively.

Table 3.9 - One hundred 90-year samples - PARMA4(1,1)

Histor. MOM MLS

T ¢, |Estim. Bias STDV RMSE |Estim. Bias STDV RMSE
1 0.892} 0.880 0.012 0.051 0.052} 0.887 0.005 0.059 0.059
2 0.693f 0.724 0.031 0.069 0.076| 0.715 0.022 0.074 0.077
3 1.023( 0.899 0.124 0.139 0.186| 0.909 0.114 0.142 0.181
4 0.881! 0.950 0.069 0.045 0.083| 0.943 0.061 0.057 0.083
T e,

1 -0.337|-0.356 0.019 0.081 0.083|-0.356 0.019 0.106 0.108
2 ~0.613(-0.572 0.041 0.172 0.176|-0.679 0.066 0.194 0.205
3 0.688| 0.571 0.177 0.195 0.227] 0.604 0.083 0.195 0.212
4 -0.169(-0.169 0.000 0.080 0.080(-0.200 0.031 0.101 0.106
T Oy

1 0.030| 0.030 0.000 0.000 0.000| 0.028 0.002 0.000 0.002
2 0.062] 0.060 0.002 0.000 0.002| 0.059 0.003 0.000 0.003
3 0.056} 0.049 0.007 0.000 0.007| 0.049 0.007 0.000 0.007
4 0.036] 0.034 0.002 0.000 0.002| 0.034 0.002 0.000 0.002
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Table 3.10 - One hundred 50-year samples - PARMA,(1,1)

Histor.

MOM

MLS

T ¢r

Estim.

Bias STDV RMSE

Estim. Bias STDV RMSE

0.892
0.693
1.023
0.881

BN

0.866
0.725
0.884
0.957

0.026 0.050 0.056
0.032 0.094 0.099
0.139 0.123 0.186
0.076 0.070 0.103

0.881 0.011 0.056 0.057
0.714 0.021 0.089 0.091
0.899 0.124 0.134 0.183
0.945 0.064 0.062 0.089

-2
@
-~

-0.337
-0.613

0.688
-0.169

W N

-0.367
~0.525

0.554
-0.176

0.030 0.138 0.141
0.088 0.334 0.345
0.134 0.189 0.232
0.007 0.150 0.150

-0.351 0.014 0.134 0.135
-0.652 0.039 0.267 0.269

0.574 0.114 0.189 0.220
-0.196 0.027 0.124 0.127

-3

Or

0.030
0.062
0.056
0.036

S W N

0.033
0.059
0.049
0.035

0.003 0.000 0.003
0.003 0.000 0.003
0.007 0.000 0.007
0.001 0.000 0.001

0.028 0.002 0.000 0.002
0.058 0.004 0.000 0.004
0.048 0.008 0.000 0.008
0.034 0.002 0.000 0.002

Table 3.11 - One hundred 25-year samples - PARMA,4(1,1)

Histor. MOM MOLS

T ¢r Estim. Bias STDV RMSE Estim. Bias STDV RMSE
1 0.892] 0.826 0.066 0.086 0.108| 0.869 0.023 0.090 0.093
2 0.693] 0.731 0.038 0.150 0.154} 0.714 0.021 0.147 0.148
3 1.023 0.838 0.185 0.192 0.266| 0.856 0.167 0.208 0.266
4 0.881] 0.921 0.040 0.099 0.107) 0.926 0.045 0.108 0.117
1 -0.337({-0.439 0.102 0.295 0.312{-0.389 0.052 0.206 0.212
2 -0.613|-0.532 0.081 0.462 0.469|~-0.644 0.031 0.467 0.468
3 0.688) 0.570 0.118 0.247 0.274} 0.569 0.119 0.255 0.281
4 -0.169|-0.198 0.029 0.245 0.247{-0.178 0.009 0.247 0.247
1 0.030f{ 0.035 0.005 0.000 0.005| 0.027 0.003 0.000 0.003
2 0.062] 0.058 0.004 0.000 0.004 0.057 0.005 0.000 0.005
3 0.056} 0.047 0.009 0.000 0.009| 0.046 0.010 0.000 0.010
4 0.036| 0.030 0.006 0.000 0.006} 0.030 0.006 0.000 0.006
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3.7.3.3 Multiplicative PARMA(1,0)x(1,0) Estimation

In order to verify if the least-squares technique can
estimate parameters other than ¢s and 6s efficientely,
presented by the PARMA(1,1) model, samples for a
Multiplicative PARMA(1,0)x(1,0) were generated and
estimated. It was done by checking if the biases, standard
deviations and Root Mean Square errors for estimations of
$® parameters (not presented by the PARMA(1l,1) model)
present values compatible with those computed for this
latter model. The Multiplicative PARMA(1,0)X(1,0) was
chosen because it presents the same number of parameters
as the PARMA(1l,1) does.

Tables 3.13, 3.14 and 3.15 show the computed
values for 100 generated samples with, respectively,
100, 50 and 25 years.

For all estimations the accuracy E(i)= 0.0001, for
i=1,...,8 was adopted. The origin was always utilized as
the starting point for the Powell algorithm .

It can be seen in the tables that the proposed
technique is able, in this particular case, to compute
estimations presenting low biases, standard deviations and
root mean square errors, even lower than those obtained
previously by the same technique for some PARMA(1,1)
samples (Tables 3.9 through 3.12).

The average user CPU time for each estimation on the

Cyber 205 Computer was about 12 seconds.
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Table 3.13 - One hundred 100-year samples
Multiplicative PARMA(1,0)x(1,0)
Param. MOLS

T ¢; | Estim. Bias STDV RMSE
1 0.850] 0.858 0.008 0.100 0.100
2 0.650| 0.649 0.001 0.042 0.042
3 0.650] 0.653 0.003 0.059 0.059
4 0.850| 0.853 0.003 0.109 0.109
T &,

1 0.400] 0.368 0.032 0.087 0.093
2 0.200{ 0.178 0.022 0.100 0.102
3 0.200f 0.195 0.005 0.085 0.085
4 0.400| 0.375 0.025 0.100 0.011
T GT -

1 0.150| 0.149 0.001 0.003 0.003
2 0.100}| 0.097 0.003 0.001 0.003
3 0.100} 0.099 0.001 0.001 0.001
4 0.150) 0.146 0.004 0.003 0.005

Table 3.14 - One hundred 50-year samples
Multiplicative PARMA(1,0)x(1,0)
Param. MOLS

T b7 Estim. Bias STDV RMSE
1 0.850{ 0.863 0.013 0.141 0.142
2 0.650| 0.641 0.009 0.149 0.150
3 0.650] 0.656 0.006 0.010 0.110
4 0.850| 0.847 0.003 0.144 0.144
T ¢,

1 0.400] 0.336 0.064 0.149 0.162
2 0.200] 0.154 0.046 0.157 0.160
3 0.200] 0.188 0.012 0.115 0.116
4 0.400] 0.376 0.024 0.152 0.154
T Oy

1 0.150] 0.142 0.008 0.005 0.009
2 0.100| 0.095 0.005 0.002 0.005
3 0.100} 0.095 0.005 0.002 0.005
4 0.150; 0.142 0.008 0.004 0.009
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Table 3.15 - One hundred 25-year samples
Multiplicative PARMA(1,0)x(1,0)

Param. MOLS
T ¢r | Estim. Bias STDV RMSE
1 0.850| 0.825 0.025 0.209 0.211
2 0.650| 0.649 0.001 0.109 0.109
3 0.650| 0.653 0.003 0.171 0.171
4 0.850| 0.899 0.099 0.218 0.239
1 0.400| 0.299 0.101 0.209 0.232
2 0.200] 0.137 0.063 0.207 0.216
3 0.200]| 0.166 0.034 0.148 0.152
4 0.400| 0.323 0.077 0.241 0.253
1 0.150| 0.149 0.001 0.003 0.003
2 0.100| 0.097 0.003 0.001 0.003
3 0.100| 0.099 0.001 0.001 0.001
4 0.150| 0.146 0.004 0.003 0.005

3.7.4 Initial VvValues and Accuracy

Two kinds of variables that one needs to choose and
that are important for performance of the Powell algorithm
are the acceptable accuracies for parameters, E(i), and
the starting vector of parameters, (go)k. To study the
effects of different accuracies and starting points, one
hundred Multiplicative PARMA(1,1)x(1,1) samples with 100
years each were generated. Parameters for these samples
were estimated by using the developed procedure for three
different accuracies: 0.1, 0.01 and 0.001. For accuracy

0.01, two different starting points were chosen : the
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origin, that is, all parameters assumed 2zero; and the
method-of-moments estimates of the PARMA(1l,1) model for
seasonal parameters ¢s and 6s and zero for seasonal
parameters &s and §s. Average parameters, standard
deviation of estimates for each parameter and average
statistical characteristics for residuals were computed.
Estimation for one of the samples (called here Sample A)
is described with more details for better understanding of
the search of parameters.
Parameters :

#1= 0.9 ¢= 0.6 ¢3= 0.6 ¢,= 0.9

©1= 0.4 6= 0.2 ©3= 0.2 64= 0.4

$1= 0.4 ©5= 0.2 ©3= 0.2 64= 0.4

1= 0.25 6,= 0.05 83= 0.05 84= 0.25

01= 0.1 0= 0.2 o03= 0.2 04= 0.1
Initial values :

PARMA (1,1) parameters for the sample, obtained through
the exact method of moments:

$1= 0.99, ¢o= 0.67, ¢3= 0.66, ¢g= 0.99

81= 0.55, ©65= 0.27, 63= 0.07, ¢4= 0.51
Sample size : 100 years

Sum of squares for initial values : 10.528

a) Sample A , E(i)= 0.1, i=1,...,16

Iterations : 1 Total : 50 Sum of squares: 10.177
3 number 121 10.084
5 of 189 10.062
7 trials 268 9.968
9 344 9.944
11 413 9.938
13 477 9.933



Table 3.16-Estimated parameters and bias for Sample A
PARMA (1,1)x(1,1)

64

- E(i)=0.1

Initial point - PARMA(1,1) moments estimates

Value Estim. Bias| Value Estim. Bias| Value Estim. Bias
@ e )

0.90 1.01 0.11 0.40 0.29 0.21 0.40 0.61 0.21

0.60 0.52 0.08 0.20 0.24 0.04 0.20 0.08 0.12

0.60 0.40 0.20 0.20 =-0.19 0.39 0.20 0.76 0.56

0.90 0.96 0.06 0.40 0.49 0.09 0.40 0.18 0.22
) o

0.25 0.43 0.18 0.10 0.10 0.00

0.05 -0.25 0.30 0.20 0.18 0.02

0.05 0.59 0.54 0.20 0.22 0.02

0.25 0.22 0.03 0.10 0.10 0.00

a.l)Average estimated parameters,

standard deviations,

bias and root mean square errors for 100 samples generated

under the same conditions and with the same accuracy of

estimation

Table

3.17 - One hundred 100-year samples - E(i)= 0.1

are shown in Table 3.17.

MOLS - Multiplicative PARMA(1,1)x(1,1)
Initial Point :

PARMA(1,1) moments estimates

¢; | Est. Bias S.D. RMSE| 6, | Est. Bias S.D. RMSE
0.90| 0.89 0.01 0.09 0.10| 0.40| 0.43 0.03 0.16 0.16
0.60| 0.61 0.01 0.19 0.20{ 0.20| 0.28 0.08 0.35 0.36
0.60| 0.59 0.01 0.33 0.34| 0.20| 0.18 0.02 0.36 0.37
0.90| 0.87 0.03 0.17 0.19| 0.40| 0.40 0.00 0.18 0.18
¢, | Est Bias S.D. RMSE| 6, | Est. Bias S.D. RMSE
0.40| 0.32 0.08 0.40 0.41| 0.25| 0.12 0.13 0.42 0.44
0.20| 0.20 0.00 0.36 0.36| 0.05| 0.01 0.04 0.35 0.36
0.20{ 0.22 0.02 0.35 0.35| 0.05| 0.05 0.00 0.38 0.38
0.40| 0.27 0.13 0.43 0.45| 0.25| 0.09 0.16 0.43 0.46
o Est. Bias S.D. RMSE
0.10| 0.10 0.00 0.00 0.00
0.20| 0.19 0.01 0.01 0.01
0.20{ 0.19 0.01 0.01 0.01
0.10| 0.10 0.00 0.00 0.00
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Table 3.18 -Average statistics of residuals for Sample A
One hundred 100-year samples - E(1)=0.1
Starting point: PARMA(1l,1l) moments estimates

Season | Mean Skewness ry,r ra,r rs, s ry,r
1 0.00 -0.01 0.02 0.00 0.01 -0.01
2 0.00 -0.04 0.01 -0.01 0.00 -0.01
3 0.00 -0.02 -0.00 0.00 0.01 ~0.02
4 0.00 -0.02 0.01 -0.02 0.00 0.00

b) Sample A, E(i) = 0.01, i=1,...,16

Iterations : 1 Trials : 66 Sum of squares : 10.177
3 147 10.080
5 236 10.034
7 314 9.999
9 394 9.995

11 465 9.934
13 534 9.931
15 601 9.930
17 667 9.930
19 737 9.929
21 804 9.929
23 872 9.929
24 904 9.929

Table 3.19 - Estimated parameters and bias for Sample A
PARMA(1,1)x(1,1) - E(i)=0.01
Initial point - PARMA(1,1) moments estimates

Value Estim. Bias|{Value Estim. Bias|Value Estim. Bias

[+)] (3] L
0.90 1.02 0.12] 0.40 0.59 0.19] 0.40 0.57 0.17
0.60 0.50 0.10 0.20 0.21 0.01] 0.20 0.12 0.08
0.60 0.45 0.15} 0.20 -0.20 0.40} 0.20 0.80 0.60
0.90 0.94 0.04] 0.40 0.47 0.07| 0.40 0.27 0.13
) o
0.25 0.40 0.15} 0.10 0.10 0.00
0.05 -0.23 0.28} 0.20 0.18 0.02
0.05 0.64 0.71} 0.20 0.21 0.01

0.25 0.10 0.15] 0.10 0.10 0.00
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b.1) Average estimated parameters, standard deviations,
bias and root mean square errors for 100 samples generated
under the same conditions and with the same accuracy of

estimation, E(i)= 0.01, are shown in Table 3.20.

Table 3.20 - One hundred 100-year samples - E(i)= 0.01
MOLS - Multiplicative PARMA(1,1)x(1,1)
Initial Point : PARMA(1,1) moments estimates

¢;| Est. Bias S.D. RMSE 6, Est. Bias S.D. RMSE

0.90 0.89 0.01 0.10 0.10} 0.40; 0.42 0.02 0.16 0.17
0.60f 0.62 0.02 0.21 0.21} 0.20f 0.29 0.09 0.38 0.39
0.60{ 0.59 0.01 0.35 0.35| 0.20{ 0.29 0.09 0.36 0.37
0.90} 0.87 0.03 0.16 0.18| 0.40| 0.38 0.02 0.17 0.18

®, Est Bias S.D. RMSE Est. Bias §S.D. RMSE

o]
-

0.40} 0.34 0.06 0.42 0.42| 0.25f{ 0.14 0.11 0.45 0.46
0.20y 0.20 0.19 0.01 0.43] 0.05f{ 0.00 0.05 0.42 0.42
0.20] 0.23 0.03 0.42 0.42| 0.05; 0.02 0.03 0.43 0.43
0.40( 0.29 0.11 0.46 0.47| 0.25| 0.11 0.14 0.47 0.49

oy | Est. Bias S.D. RMSE

0.10f 0.10 0.00 0.00 0.00
0.20{ 0.19 0.01 0.01 0.01
0.20f 0.19 0.01 0.01 0.01
0.10} 0.10 0.00 0.00 0.00

Table 3.21 - Average statistics of residuals for one
hundred 100-year samples - E(i)= 0.01
Starting point: PARMA(1,1) moments estimates

Season Mean | Skewness ri,r Iy, r r3, ¢ Ty, r
1 0.00 -0.02 0.02 0.00 0.02 0.00
2 0.00 -0.03 0.01 -0.01 -0.01 -0.00
3 0.00 0.02 0.00 0.00 0.01 -0.01
4 0.00 -0.03 0.01 0.02 -0.02 0.01
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c) Sample A - Same accuracy as in item b but starting from

a different point. All starting parameters equal to zero :

Sum of squares for initial values : 20.079

Iterations : 1 Trials : 326 Sum of squares : 10.403

3 419 10.123
5 500 10.041
7 585 9.981
9 656 9.956
11 729 9.944
13 799 9.939
15 868 9.937
17 940 9.934
19 1008 9.932
21 1076 9.931
23 1143 9.929
25 1212 §.929
27 1273 9.929

Table 3.22 - Estimated parameters and bias for Sample A
Multiplicative PARMA(1,1)x(1,1)
Initial point - origin

Value Estim. Bias |Value Estim. Bias |Value Estim. Bias

¢ =] ®

0.90 1.02 0.12 0.40 0.59 0.19| 0.40 0.57 0.17
0.60 0.50 0.10 0.20 0.21 0.01}y 0.20 0.23 0.03
0.60 0.57 0.03 0.20 -0.16 0.36f 0.20 0.80 0.60
0.90 0.94 0.04 0.40 0.47 0.07; 0.40 0.27 0.13

ol
Q

0.25 0.40 0.15 0.10 0.10 0.00
0.05 -0.23 0.28 0.20 0.18 0.02
0.05 0.64 0.59 0.20 0.22 0.02
0.25 0.10 0.15 0.10 0.10 0.00

These estimated parameters are almost exactly equal to
those obtained, for the same accuracy, using as starting
point the PARMA(1,1) estimates by the method of moments

(case b). The computed averages of parameters and averages
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of statistics for the residuals for the one hundred
samples were also equal to those computed using the method
of moments estimates (case bl). However, the utilization
of PARMA(1,1) estimates resulted 1in fewer iterations and
less computer time for searching the parameters.

Estimations utilizing accuracy E(i)= 0.01 generally
presented smaller bias than the estimations for accuracy
0.1. Estimations wutilizing accuracy for parameters equal
to 0.001 were also realized, resulting in parameters and
statistics very close to those obtained for accuracy 0.01.
This indicates that the 1last 1is sufficient for these
particular samples. In every case the seasonal
autoregressive parameters e and seasonal standard
deviations o presented smaller variability, and average
estimates for all parameters were very close to the
original. Average statistical characteristics of residuals
satisfy the assumptions of mean zero and independence for
residuals of the proposed model.

The analysis of the examples above and results of
various other simulations indicate that the developed
procedure is able to estimate  parameters for
Multiplicative PARMA models well. The number of trials,
CPU time for computing on CYBER 205 and optimal sum of
squares of residuals are shown in Table 3.23. This table
shows that the savings of computer time by using as
starting point the exact- moments estimates for the

PARMA(1,1) increases if E(i) diminishes.
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Table 3.23 -~ Estimation from Sample A for different
accuracies and starting points.

Accuracy Starting Iterations Trials CPU time Sum of

point (seconds) squares
0.100 PARMA(1,1) 13 477 1.8 9.93366
0.010 PARMA(1,1) 24 204 3.1 9.92874
0.010 origin 27 1273 3.5 9.92874
0.001 PARMA(1,1) 33 3019 7.4 9.92874
0.001 origin 51 4703 12.3 9.92874

The utilization of estimates of PARMA(1,1)
parameters for the starting point, besides saving computer
time spent on iterations, guarantees that the Mixed Model
would give better fit to the data than that from the
PARMA(1,1), the most conplete model with varying
parameters actually utilized in practical hydrology.
Furthermore, it may avoid the problem of finding local
optimal points corresponding to parameters that are not
good for fitting the data in analysis. If estimations of
parameters for PARMA models are not available, it would be
helpful in the search of parameters to make various
estimations for the same sample, utilizing different
starting points as suggested by Powell(1964).

Although the results of application were reported for
only a few cases, various other simulations were proceeded
and results from estimation showed that conclusions drawn

for the described cases are valid for most cases.
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3.9 Sensitivity of Annual Autocorrelogram

One of the objectives of the development of the
Multiplicative PARMA models 1is the improvement of the
preservation of the annual autocorrelations over that
obtained by other models currently applied in practice in
hydrology. Hence, it 1is necessary to check if the new
parameters affect the annual autocorrelations. Data
generation was employed for this purpose. First of all,
PAR(1) samples were generated with parameters

¢1,1 =¢1,4 = 1.0 ¢1,2 =¢1,3 = 0.8
and the annual autocorrelograms for 40 samples with 250
years (10,000 years) were averaged.

New parameters were added to those for the PAR(1)
model, one kind each time, to verify if these parameters
affect the autocorrelations. Large positive and negative
values (close to 1) were chosen for these new paranmeters.
Average autocorrelograms for the PAR(1l) and for the
Multiplicative PARMA models (same number of samples and
sample sizes) are shown in Figures 3.2, 3.3, 3.4 and 3.5
on the following pages.

Figure 3.2 presents annual autocorrelograms for the
PAR(1), or Multiplicative PARMA(1,0)x(0,0) model,
presenting the above parameters, and for the
Multiplicative PARMA (1,0)x(1,0) models with the
following parameters :

a) ¢1,1 = ¢1,4 = 1.0 &3, =¢3,3 =0.8

@1'1 = @1,4 = 1.0 @1’2 = @1’3 = 0.8
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b) ¢31,1 = ¢1,4 = 1.0 ¢1,2 = ¢1,3 = 0.8

{4

@1,1 = Q1'4 ==1.0 *1,2 = @1'3 ==0.8

Figure 3.3 presents annual autocorrelograms for the
same PAR(1l) model and for Multiplicative PARMA(1,0)x(0,1)

models with parameters :

a) ¢1,1 = ¢1,4 = 1.0 $1,2 = ¢1,3 = 0.8

b) ¢1,1
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Figure 3.4 shows the same curves for the PAR(1l) and
for PAR(2), or Multiplicative PARMA(2,0)x(0.0), models

with parameters :

a) ¢3,1 = ¢1,4 = 1.0 $1,2 = ¢1,3 = 0.8
$2,1 = ¢2,4 = 1.0 $2,2 = ¢2,2 = 0.8
b) ¢1,1 = ¢1,4 = 1.0 $1,2 = ¢1,3 = 0.8
$2,1 = ¢2,4 ="1.0 $2,2 = ¢2,3 =-0.8

Figure 3.5 shows the same curves for the PAR(1) and
for PAR(3), or Multiplicative PARMA(3,0)x(0,0), models

presenting parameters :

It

a) ¢1,1 = ¢1,4 = 1.0 ¢1,2 = ¢1,3 = 0.8
62,1 = ¢2,2 = ¢$2,3 = ¢2,4 = 0.0
100 ¢3'2 = ¢3'3 = 0»8

1.0 ¢1'2 = ¢1'3 = 0.8

Il

$3,1 = ¥3,4
b) ¢1,1 = ¢1,4

I

N

o
I
o
o

$2,1 = ¢2,2 = 92,3 ,

$3,1 = ¢3,4 =-1.0 $3,2 = ¢3,3 =-0.8
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All the figures present different graphs for the
PAR(1) models and for the other considered models showing
that the additional parameters for the latter models can
have significant effects on the annual autocorrelations.
Figure 3.2 shows the highest increase on the annual
correlation, indicating the high importance of the
parameters &; ,s. Figure 3.3 shows some increase for
negative él,ys. Figures 3.4 and 3.5 showed that the annual
dependence diminished for both positive and negative ¢,
and ¢3, ; parameters. Hence, it seemed important to make a
more detailed analysis for the two first cases by
generating samples with different ¢, ,, ¢;,; and §l,1'

The influence of the parameters 6; , was studied by
adding this seasonal parameter to the parameters ®1,1 and
81,7, obtaining a Multiplicative PARMA(1,1)x(0,1). The
addition of 81,7 parameters to the ¢, ; parameters alone
would not change the annual correlogram since the
aggregation of both PAR(1l) and PARMA(1l,1) model results in
regular annual ARMA models presenting the same
autoregressive parameter, equal to the product of the
seasonal autoregressive parameters ¢, .

Figure 3.6 shows the annual autocorrelograms for the
same seasonal autoregressive parameters ¢; 1=¢;,4= 1.0 and
¢1,2=%1,3= 0.8 and for seven different groups of seasonal
lag 4 parameters. Figures 3.7, 3.8, 3.9 and 3.10 show,
respectively, the seasonal lag 1, lag 2, lag 3 and lag 4

autocorrelations corresponding to the annual



Figure 3.2 - Annual autocorrelograms for PAR(1l) and
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Figure 3.11, on the next page, presents the annual
autocorrelograms for PARMA(1,0)x(1,0) models presenting

the same seasonal autoregressive coefficients

¢1’1 = ¢1'4: 0.85

¢1'3"—" 0.65

®1,2

(average 0.75) and the same seven different groups of
seasonal parameters &3 s utilized for generations
corresponding to figures 3.6 through 3.10.

Figures 3.12 through 3.15 show the seasonal lag
1, lag 2, lag 3 and lag 4 autocorrelograms corresponding

to the annual autocorrelograms plotted on figure 3.11.
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The annual autocorrelograms for seven Multiplicative
PARMA(1,0)x(1,0) models presenting the same set of

seasonal autoregressive parameters

¢1,1 = @1,4 = 0.40

¢l,2 = ¢1,3 = 0.20

(average = 0.30) and different sets of parameters @1,7 are
shown in Figure 3.16.

The seasonal 1lag 1, 1lag 2, lag 3 and 1lag 4
autocorrelograms corresponding to the seven annual
autocorrelograms from Figure 3.16 are presented in Figures

3.17 through 3.20.
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Figure 3.21 presents the annual autocorrelograms for
a series of Multiplicative PARMA(1,0)x(1,0) models

presenting autoregressive parameters

¢1,1 = ¢1,4 = 0.1

1,2 = ¢1,3 =-0.1

(average 0.00) and different groups of seasonal parameters

&1 r-
Figures 3.22, 3.23, 3.24 and 3.25 show,
respectively, the 1lag 1, lag 2, lag 3 and 1lag 4

seasonal autocorrelations corresponding to the annual

autocorrelograms presented in Figure 3.21.
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Figures 3.26 through 3.31 deal with the influence of
the lag 4 moving-average parameters, §1'7, over a given

set of autoregressive parameters ¢1,,:

It
funy
(@]
o

$1,1 = 91,4

¢1,3 = 0.80

il

®1,2

Figure 3.26 shows annual correlograms, while figures
3.27 through 3.31 present the corresponding lag 1, lag 2,
lag 3 and 1lag 4 seasonal autocorrelations for the
Multiplicative PARMA(1,0)x(0,1) for seven different sets

of parameters 87, r.
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Figures 3.31 through 3.35 show the effects of the
addition of lag 1 moving-average parameters, 8;,r on the

model presenting parameters

¢$1,1 = ¢1,4 = 1.0 ¢1,2 = ¢1,3 = 0.8

81,1 = 81,4 = 1.0 81,2 = 81,3 = 0.8

Figures 3.36 through 3.40 show the same for the

model presenting parameters

¢1,1 = ¢1,4 = 1.0 ¢1,2 = #1,3 = 0.8

81,1 = 81,4 =-1.0 81,2 = 81,3 =-1.0

The models resulting from inclusion of the 67

parameters are Multiplicative PARMA(1,1)x(0,1).
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Analysis of figures 3.02 through 3.40 shows that the
seasonal parameters ¢; ;, are the most important with
respect to the capability of increasing the annual and
large lag dependence. The PARMA(1,1) models have proven to
be very reliable for modeling seasonal dependence for low
and moderately autocorrelated seasonal series, which are
the most common in practical hydrology. However,
Obeysekera and Salas (1986) found out that reproduction of
higher annual autocorrelation by this model is worsened
when the number of seasons is increased.

It was verified previously in this dissertation that
for PAR(1), or Thomas-Fiering, and PARMA(1l,1) models, the
corresponding annual series fits a regular ARMA(1l,1) model
with autoregressive parameters equal to the product of all
the seasonal autoregressive parameters. Since the
parameter space of the seasonal autoregressive parameters

for the PARMA(1l,1) models is given by the expression

¢1,1‘¢1,2"‘¢1,W < 1 (3.89)

and in most practical cases these seasonal autoregressive
parameters are less than 1, the number of seasons can be
an important factor affecting the annual autocorrelation.
For example, assuming that the seasonal parameters are all
equal to 0.90(high wvalues), the annual autoregressive

parameters for the case of 2 seasons, w=2, would be

¢ = 0.92 = 0.81
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For the case of 4 seasons ,w=4 , would result in :
¢ = 0.9% = 0.66
For monthly data, w=12, the result would be :
¢= 0.912 = 0,28
These values show that, for the above models, the
annual lag 1 autocorrelation decreases exponentially when
the number of seasons increases. Hence, it would be
important to verify if the models presenting the
parameters ¢/, are able to reproduce high annual
dependence for larger number of seasons. Simulations of
twelve-season Multiplicative PARMA(1,0)%(1,0) samples were
made. Annual autocorrelograms are shown in figure 3.41.
Seasonal autocorrelograms for lags 1, 2 and 12 are shown

on figures 3.42, 3.43 and 3.44.
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Figure 3.41-Annual autocorrelograms for Multiplicative
PARMA(1,0)x(1,0)~- Average parameter ¢1’,=0.9 ~-12 seasons



97

1.0
= =
0.8+ Ué}
0.8
0.4
a
£ o.24
hd
S
(]
o 0.0-
[«
(4]
Q
; ~0.2
ot}
0.4 AVER. PARAM.
0O $=0.80,4= 0.80
O ¢=0.80,9= 0.76
~0-61 4 _$=0.80,4=0.80
St _$=0.90,0= 0.45
-0.84 ,X,..$=0.90,4=0.80
0. $=0.90,4= 0.15
V ¢=0.80,9= 0.00
-5-0 T T T T T T T T
1 2 3 2 5 8 7 8 g 10 14 12
Figure 3.42 - Lag 1 seasonal autocorrelograms

for

Multiplicative PARMA(1,0)x(1,0) models - Average ¢1,r =0.9

1.0
0.8
0.6
0.4 -
=
2 0.2
-t
«
B
o 0.0
[=]
Q
3
~ ~0.2
LA
~0.4- AVER. PARAM.
0O $=0.80,4= 0.80
C_ ¢=0.80,9= 0.76
"0 A _$z0.80- 060
S _$20.90,9= 0.45
~0.e] .%,..950.90,47 030
©...$m0.80,8= 015
Y  $=0.80,%¢= 0.00
-1.0 T T T T T T T ”
1 2 3 4 5 8 7 8 9 10 11
Figure 3.43 - Lag 2 seasonal autocorrelograms

12

for

Multiplicative PARMA(1,0)x(1,0) models - Average ¢; ; =0.9



98

10 = = -~ = S—— = = — = —
& =, & & o o o ~ ~ D)
0.8 » . o - - - = -
i 4 A~ By o - -ﬂ----g-...ﬂ..--&-...,}-_.é)__._&.ncm"‘A
N e e i b CE SRS |
)(nuuannnn){;unn-)@unnt)d:nnn)(..,““)(““‘.’x..”“.Mn‘""x““"'x.“‘.n’)f
G B O S~ S PR
0.4- < © © R O-eennn Ocvnnn. Grvvvnnr Geeemntt & 9
YV .. Y
& e —— g
2 0.2
=
&
B 0.07
o
(%]
3 0.2
g T
<
-0.41 AVER. PARAM.
O ¢=0.80,4= 0.80
O ¢=0.80,9= 0.76
001 A $20.309- 080
¥ 1$=0.90,8=70.45
—aed .X..930.80,4=0.30
107 $=0.80, 4% 0.75
UV $=0.80,¢=0.00
-1.0 T T T Y T Y T Y Y
1 2 3 4 5 8 7 8 8 10 11 12
Figure 3.44 - Lag 12 seasonal autocorrelograms for

Multiplicative PARMA(1,0)x(1,0) models - Average ¢1,r =0.9

Figures 3.6, 3.11, 3.16, 3.21 and 3.41 for annual
autocorrelograms corresponding to Multiplicative
PARMA(1,0)x(1,0) models show that the seasonal parameters
$;,y can greatly increase the values of autocorrelations,
for all lags, over those obtained by using only the lag 1
seasonal autocorrelation parameters ¢; ;. As an example,
the Figure 3.21 shows that for average parameter ¢; , =0.0
the lag 1 annual autocorrelation increases from zero, for
average of parameters ¢; ; equal to zero, to 0.95 for the
average of the same parameters equal to 0.9. Figure 3.41
also shows that the annual autocorrelations for the
PARMA(1,0)x(1,0) models remain high for monthly samples.

Figure 3.26 shows that the parameters §1'7 are only
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able to increase the annual autocorrelations slightly.
Figures 3.31 and 3.36 show that the same happens for the
parameters 6; ;.

Figures for the seasonal autocorrelations of
Multiplicative PARMA(1,0)x(1,0) models show that the
parameters &; , can increase the seasonal autocorrelations
considerably, and the effects are larger for larger lags.
Figure 3.25, for average of parameters 1,71 equal to zero,
shows average lag 4, (between the same season in
consecutive vyears), increasing from average =zero to
average 0.90. Figures 3.25 through 3.28 show that the
parameters §1,7 can increase the seasonal autocorrelations
only slightly. The differences are higher for higher 1lags.

Figures 3.32 and 3.33 show that parameters 6; ;, can
increase the seasonal autocorrelations for small lags.

In general, it can be concluded that the parameters
®1,r are those able to cause larger increments both to
annual and to seasonal autocorrelations. However, it does
not mean that other parameters are not important. They can
allow Dbetter fit to particular data. It 1is widely
recognized that, for example, the PARMA(1,1) gives better
fitting to more hydrologic samples than the PAR(1) model
does.

It can be concluded that Multiplicative PARMA models
presenting parameters ®1,; represent good alternatives in
the selection of models when preservation of annual and

large lag seasonal autocorrelations are important.
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3.9 Parsimony and Analysis of Fitting

3.9.1 Remarks

Before reporting on application of the developed
technique to real hydrologic data, discussion about
parsimony seems important due to the fact that most
Multiplicative PARMA models present more parameters than
other existing models for seasonal series.

The selection of the  Thistorical statistical
properties of a sample to be preserved by a stochastic
model depends on the variability of the series and on the
future uses of the model (Salas et al. ,1980). The model
should preserve the statistics that are necessary for
reproducing the variability of the series in analysis and
that are important for the solution of the hydrological
problem being solved. After deciding which properties are
important, one must select a model that could reproduce
these properties with some degree of accuracy. A balance
between preservation of statistics and complexity of
models must be maintained. By the principle of parsimony,
the best model is theone that can reproduce the important
statistics with a minimum number of parameters. It must be
remarked here that the important statistics are different
for each particular case. A model that is satisfactory for
one modeling purpose may not be for other objectives.

Models that are too simple can fail to preserve
important statistics. Models that are too complex can

present difficult application and sometimes reproduce only
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sampling variability of historical series rather than real
properties.

For seasonal hydrologic series modeling, ARIMA models
have fewer parameters compared with models presenting
varying parameters. However, the ARIMA models are not
adequate for simulation. Using these models, it is common
to simulate streamflows without floods and droughts
present in historical series(Bras and Rodriguez-
Iturbe,1985) . This results from the fact that ARIMA
models are not capable of reproducing seasonal variances
and autocorrelations.

For the design of reservoirs, failure to represent
multi-lag correlations among the various months or seasons
can cause serious mistakes. The reservoirs may be
underdesigned if seasonal correlations higher than one are
significant but not considered. Inadequate use of PAR(1)
models (Thomas-Fiering) may result in this kind of error.
Correct representation of annual dependence is also
important in many cases for water resources planning
because it affects the occurrence of large periods of
floods and droughts.

Previously in this chapter, the development of a
class of models, Multiplicative PARMA, that generally
present more parameters than those seasonal models
presently utilized in practice of stochastic hydrology was
described. However, the use of this model can be justified

if it is judged by the modeler that the preservation of
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annual and seasonal autocorrelations of the historic
sample by models with fewer parameters is not adequate.
The following table presents the number of parameters for
different models for a series of 12 seasons, including
some disaggregation models:

Table 3.24 -~ Number of parameters for various models for
monthly series

ARIMA(p,d,q)x(P,D,Q)320 - . .+ .+ . ptd+g+P+Q+D+1
ARIMA(1,0,1)x(1,0,1)32 « =« =« « « « =+ + . 5
ARIMA(2,0,1)%(2,0,1)72 « =« =+ « « « o « o 1
PARMA(P,Q) « =« « « « « o « « . (ptg+t1l)x12
PAR(1) + + v« &« e e e e e e e e .. 24
PAR(2) + « « o « v 4 e e e e o . .36
PAR(3) + +« « &« '« w4 e e+ . < . . a8
PARMA(1,1) +« « « « « « v '« « v < . .36
PARMA(2,1) « « & « « « e « « « < . . a8
Multiplicative PARMA(p,q)x(P,Q) . . (p+g+P+Q+1)x12
Multiplicative PARMA(1,0)x(1,0) . . . . . . 36
Multiplicative PARMA(1,1)x(1,0) . . . . . . 48
Multiplicative PARMA(1,1)x(1,1) . . . . . . 60
Multiplicative PARMA(1,0)x(2,0) . . . . . . 48
Multiplicative PARMA(2,1)x(1,0) . . . . . . 60
Multiplicative PARMA(3,1)x(1,1) . . . . . . 84
Lane (Disaggregation) . . . . . . . . . 36
Valencia and Schaake (Disaggregation) . . . . 90
Mejia and Rousselle (Disaggregation) . . . .102

The number of parameters for the disaggregation
models on Table 3.24 does not include the necessary
parameters for fitting the annual series. Although
disaggregation models present many more parameters than
the ARIMA and PARMA models, they have been used
extensively in practical hydrology. This utilization is
justified by hydrologists on the necessity of preserving
long term autocorrelation of historical samples in the

solution of many water resource problems.
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The wutilization of Multiplicative PARMA models can
also be justified using the same concept if they are able
to improve the preservation of this long-term dependence
over the other models with fewer parameters. The
Multiplicative PARMA models also present an important
advantage in comparison with the disaggregation models;
that 1is, they deal directly with the seasonal series,
avoiding the aggregation of this series and the estimation
from annual series that is subjected to problems described
previously. Existing tests of goodness of fit and
selection criteria of models for seasonal series are
dicussed in the next subchapter.

3.9.2 Model Testing and Selection

3.9.2.1 Tests of Goodness of Fit

Various statistical tests have been utilized for the
analysis of fitting of models, by verifying if residuals
are normally and independently distributed. One of the
most common tests of normality is made by verifying if the
skewness coefficient is not significantly different from
zero. If residuals have periodic variance, the tests of
normality may be applied to each season individually or to
the complete series by scaling the seasonal residuals as
€'v,7 = €y,r / 0r(€) (Salas et al.,1980). Thompstone(1984)
indicated that the normality assumption is usuallly much
less important than the independence assumption.

A method for verifying the independence of residuals

is to plot the autocorrelogram of the residuals along with
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the upper and 1lower confidence 1limits that can be

calculated using the expression

-1 + uy J/ N-k-1 (3.90)

N-

where u, is the standard normal deviate corresponding to a
confidence level a, N is the sample size, k is the lag and
rk is the autocorrelation at lag k.

The most accepted tests for independence of residuals
are those called portmanteau lack-of-fit tests.

The first of these kinds of tests is based on the
scaled residuals defined above. The corresponding

statistic is :

t

Q1 = Nw T ry2(e') (3.91)
k=1

where N=number of years, w= number of seasons, rx(€') is

the estimated serial 1lag k correlation of residuals and

L is the maximum number of lags considered.
Commonly, L = 0.25 Nw. The distribuition for Q; was
assumed approximately chi-square with L - Np degrees of

freedom by Tao and Delleur(1976). Np symbolizes the number
of the parameters of the model.

Tao and Delleur(1976) also suggested the use of
another statistic, computed directly from the seasonal
residuals, for comparison among models:

w L

Q, = N = T r?g (e€) (3.92)
r=1 k=1
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where ry (€) is the estimated seasonal lag k correlation
of residuals, L is the maximum number of lags considered,
commonly 0.25 N.
McLeod and Hipel (1983) proposed another statistic :
w L
Q3 = N(N+2) = = ry ,(e) (3.93)
T=1 k=1

Another portmanteau test statistic was proposed by

Thompstone(1984):
Q4 = Qp + w L(L+1)/2N (3.94)

All elements from equations (3.96) and (3.97) were
previously defined. For comparison among tests using the
statistics Q;, Q3, Q3 and Q4, the assumption of chi-square
distributions, with L-Np degrees of freedom for Q; and
w(L-Np) degrees of freedom for Qp, Q3 and Q4, was
utilized.

Some simulations of Multiplicative PARMA model
samples were made for analysis of the performance of the
statistics for testing the  goodness of fit for
Multiplicative PARMA models. Firstly, large values of the
parameters ¢; , and §1’, were assumed to check if the
tests would accept models with ¢; , and §1'7 null (PAR(1),
PARMA (1,1) and PAR(2)) as better models only because the
number of parameters affects the number or degrees of
freedom and consequently the critical value of the chi-
square distribuition. For all cases, Np =(p+q+P+Q+1)w and

a 95% confidence limit were used.
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Parameters :
¢l=¢4= 0.9 ¢2=¢3= 0.6 §l=§4= 0.9 §2=§3= 0.6
81=6,=63=6,= 0.75 ©;=65,=63=6,= 0.75

01=0,=0.25 03=04=0.1

Table 3.25 shows the average portmanteau statistics,
critical chi-square values and number of samples passing
each test as a PAR(1), PAR(2), PARMA(1,1) or
Multiplicative PARMA(1,1)x(1,1) model for one hundred 100-
year generated samples.

Table 3.26 presents the same characteristics for

50-year samples.

Table 3.25 - Portmanteau statistics - 100 samples

100 years

Model Aver. Crit. Cases Aver. Crit. Cases

Q1 Value Passing|Qjp Value Pass.
PAR(1) 183.4 118.7 14 210.9 115.3 0
PAR(2) 146.8 114.2 22 176.7 110.9 1
PARMA(1,1) 125.3 114.2 15 172.6 110.9 0
PARMA(1,1)x(1,1)| 84.9 105.3 97 95.6 101.9 73
No model passing 03 27
Model Aver. Crit. Cases Aver. Crit. Cases

Q3 Value Passing| Qg Value Pass.
PAR(1) 244.3  115.3 0 223.5 115.3 0
PAR(2) 205.1 110.9 0 188.7 110.9 0
PARMA(1,1) 197.8 110.9 0 184.7 110.9 0
PARMA(1,1)x(1,1)111.6 101.9 32 107.9 101.9 36
No model passing 68 64
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Table 3.26 - Portmanteau statistics - 100 samples

50 years

Model Aver. Crit. Cases Aver. Crit. Cases

Q7 Value Pass. Q5 Value Pass.
PAR(1) 77.8 62.8 32 72.5 60.5 25
PAR(2) 57.8 58.1 65 53.3 55.8 58
PARMA(1,1) 77.4 58.1 72 75.1 55.8 68
PARMA(1,1)x(1,1) 48.5 48.6 61 48.0 46.0 50
No model passing 20 24
Model Aver. Crit. Cases Aver. Crit. Cases

Q3 Value Pass. Q4 Value Pass.
PAR(1) 85.7 60.5 3 78.7 60.5 15
PAR(2) 64.3 55.8 32 81.3 55.8 44
PARMA(1,1) 89.4 55.8 37 81.3 55.8 53
PARMA(1,1)x(1,1) 58.0 46.0 21 54.3 46.0 29
No model passing 51 39

Tables 3.25 and 3.26 indicate that the number of
years has a great influence on the tests for smaller
samples. For these samples and various other simulations,
the statistic Q5 did the best job of accepting the correct
model. Hence, only this statistic will be computed for

other samples throughout this dissertation.

3.9.2.2 -~ Selection Criteria -

Common procedures for selecting among different
models are those based on information criteria, called
Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). The AIC was proposed by

Akaike(1974) and the BIC was proposed by Schwarz (1978).
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The AIC statistic may be defined as (Thompstone,1983)

w
AIC= ( £ =2 1log Ly ) + 2 [ W(Npy2) + 6 ] (3.95)
T=1
N
where log Ly = - N log or(€) + (a-1) T 1log zy ¢
v=1

in which a is the parameter of the Box-Cox transformation

defined by

(a)
zy,r =(1/0a) (z“v'f - 1) , o # 0

=log zy r , @ =0

§=0 if a=1 and 6=1 if a#l.
oy(€) is the estimated standard deviation for residuals,N
is the number of years and w the number of seasons.

The Bayesian Information Criterion statistic may be
expressed as (Thompstone, 1983)

w
BIC = (Tzl—z log Ly ) + [ wW(Np+2)+ §] log(Nw) (3.96)

All terms in expression (3.96) were previously
defined and the selection criterion is to choose the model
which has the smallest AIC or BIC. Throughout this
dissertation only logarithm tranéformations were employed.

The same simulated samples, utilized for analysis of
portmanteau statistics, were employed for analyzing the
reliability of the criteria for selecting among different

PARMA models.
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Results for the application of the two criteria are

shown in Tables 3.27 and 3.28.

Table 3.27 ~-Number of samples for which each model was
selected as best, by AIC and BIC - 100 years

Model AIC BIC
PAR(1) 0 6
PAR(2) 0 0
PARMA (1, 1) 3 7
Mult.PARMA(1,1)x(1,1) 97 87

Table 3.28 -Number of samples for which each model was
selected as best, by AIC and BIC - 50 years

Model AIC BIC
PAR(1) 30 96
PAR(2) 6 2
PARMA (1,1) 6 2
Mult.PARMA (1,1)x(1,1) 58 0

As the above numbers indicate, the AIC and BIC
statistics are also greatly influenced by the number of
parameters, and this influence increases for smaller
samples. The Akaike Information Criterion in both cases
does the better job of selecting the correct model as the
best. So, only this criterion will be utilized for future

simulations.

3.9.2.3 Autocorrelation and Selection

Data generation was conducted to observe how the
portmanteau statistics and Akaike Information Criteria
combine with the analysis of preservation of annual and

seasonal correlations. Samples presenting 50 years and 100
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years were simulated by using three different sets of
parameters.

a) Parameters :

¢$1,1 = ¢1,4 = 0.85 ¢1,2 = ¢1,3 = 0.65

o
[
=

1l

o
|
-

I

o

©

ol

Ql,Z = Q1’3 = 0.65

91,1 = 91,2 = 91,3 = 61’4 = 0.75

Table 3.29 - Average portmanteau and AIC statistics -
100 simulations - 100 years

Model Aver. Crit. Samp. Aver. Best
Q1 Q1 Pass. AIC Model
PAR(1) 727.5 118.7 0 ~-1247 0
PAR(2) 598.4 114.2 0 -1280 0
PARMA(1,1) 1357.8 114.2 0 -1128 0
Mult.PARMA(1,1)x(1,1) 83.1 105.3 97 -1645 97

Table 3.30 - Average portmanteau and AIC statistics -
100 simulations - 50 years

Model Aver. Crit. Samp. Aver. Best
Q1 Q1 Pass. AIC Model
PAR(1) 264.7 62.8 0 -646 0
PAR(2) 224.5 58.1 0 -660 0
PARMA (1,1) 330.2 58.1 0 -402 0
Mult.PARMA(1,1)x(1,1) 45.1 48.6 81 -830 81

Tables 3.29 and 3.30 show that in this case the
portmanteau statistic Q7 and the Akaike Information
Criteria correctly reject the models PAR(1), PAR(2) and
PARMA(1,1) in all cases and select the PARMA(1,1)x(1,1) as
the best model.

Figure 3.45 shows annual autocorrelograms obtained
from simulations utilizing average parameters estimated by

the different models for 100-year samples for comparison
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with the autocorrelograms for the correct model and
parameters.

Figures 3.46 and 3.47 show average lag 1 and lag 4
seasonal autocorrelations for the same purpose.

Figure 3.48 shows annual autocorrelograms, and
figures 3.49 and 3.50 seasonal lag 1 and lag 4
autocorrelations corresponding to the purposes of figures
3.45 through 3.47 but for parameters from 50-year samples.

Figures 3.45 through 3.50 indicate that the PAR(1),
PAR(2) and PARMA(1l,1) models are not able to preserve the
annual and lag 4 seasonal autocorrelations for the
original Mult. PARMA(1,1)x(1,1) model and were correctly

rejected by the portmanteau test and AIC criteria.

Autocorrelation

PAR(2) ™

---------------

¢ PARMA(1,1)X(1,1)

----------- trraarereaT RN e

-0.2 T T T T T T Y T
4] i 2 3 4 5 8 7 8 9

Fig.3.45-Annual autocorrelograms-For Mult.PARMA(1l,1)x(1,1)
and for average estimated parameters- 100 years
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b) Parameters :

1,1 = ¢1,4 = 0.40 ¢1,2 = ¢1,3 = 0.20
@1’1 = ‘51’4 = 0.85 ‘Ql’z = ‘5113 = 0.65

—

©1,1 = 61,2 = 81,3 =863,4 = 0.75

Table 3.31 - Average portmanteau and AIC statistics -
100 simulations - 100 years

Model Aver. Crit. Samp. Aver. Best
Q1 Q1 Pass. AIC Model
PAR(1) 711.4 118.7 0 -1285 0
PAR(2) 568.5 114.2 0 -1315 0
PARMA(1,1) 833.4 114.2 0 -824 0
Mult.PARMA(1,1)x(1,1) 80.8 105.3 92 -1648 92
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Table 3.32 - Average portmanteau and AIC statistics -
100 simulations - 50 years

Model Aver. Crit. Samp. Aver. Best
Q1 Q7 Pass. AIC Model
PAR(1) 249.3 62.8 0 -667 0
PAR(2) 180.0 58.1 0 ~689 0
PARMA(1,1) 259.8 58.1 0 -416 0
Mult.PARMA(1,1)x(1,1) 44.6 48.6 78 -815 78

Tables 3.31 and 3.32 show that also in this case,
the portmanteau statistic Q; and the Akaike Information
Criteria correctly reject, in all cases, the models
PAR(1), PAR(2) and PARMA(1,1) and select the
Multiplicative PARMA(1,1)x(1,1) as the best model.

Figure 3.51 shows annual autocorrelograms obtained
from simulations using average parameters estimated by the
different models for 100-year samples for comparison with
the autocorrelograms for the correct model and parameters.

Figures 3.52 and 3.53 show average 1lag 1 and lag 4
seasonal autocorrelations for the same purpose.

Figure 3.54 shows annual autocorrelograms, and
figures 3.55 and 3.56 present seasonal lag 1 and lag 4
autocorrelations with the same objective described for the
case of 100-year samples but now using the 50-year samples

Analysis of figures 3.51 through 3.56 indicates that
the PAR(1), PAR(2) and PARMA(1l,1) models also for this
case are not able to preserve the annual and lag 4
seasonal autocorrelations for the original Multiplicative
PARMA(1,1)x(1,1) model and were correctly rejected by the

portmanteau test and the AIC.
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Fig.3.51-Annual autocorrelograms-For Mult.PARMA(1,1)x(1,1)
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c) Parameters :

1,1 = ¢1,4 = 0.85 ®1,2 = ¢1,3 = 0.65

Ql,l = Q1,4 0.10 @1'2 = §1'3 =-0.10

61’1 = 91,2 91’3 = 61[4 = 0.75

Table 3.33 - Average portmanteau and AIC statistics -

100 simulations - 100 vyears
Model Aver. Crit. Samp. Aver. Best
Q1 Q1 Pass. AIC Model
PAR(1) 87.0 118.7 92 -1657 14
PAR(2) 85.8 114.2 94 -1659 41
PARMA(1,1) 87.8 114.2 93 -1486 33
Mult.PARMA(1,1)x(1,1) 88.0 105.3 89 -1647 12

Table 3.34 - Average portmanteau and AIC statistics -
100 simulations - 50 years

Model Aver. Crit. Samp. Aver. Best
Q4 Q4 Pass. AIC Model
PAR(1) 53.1 62.8 S5 -820 41
PAR(2) 50.5 58.1 93 -817 27
PARMA(1,1) 53.1 58.1 94 -795 29
Mult.PARMA(1,1)x(1,1) 45.1 45.6 72 -811 07

In this case, the true model 1is approximately a
PARMA(1,1) model and the results differ greatly from those
obtained for cases (a) and (b), where the true model was a
Multiplicative PARMA with very high $1, 7 parameters.

The acceptance of the models here is correct because
in this case all models showed annual and seasonal
autocorrelations very <close to those for the original

parameters.
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The analysis of results for the simulations
indicates that the use of AIC and Q; statistics are useful
for preliminary tests of fitting and comparison among
competing models.

For final acceptance of a model, it is recommended
that data be generated and that the annual and seasonal
autocorrelograms be plotted for comparison. Many authors
recognize the importance of the preservation of multi-lag
autocorrelations for the reproduction of long-ternm

hydrologic characteristics such as floods and droughts.



CHAPTER IV

APPLICATION TO HYDROLOGIC DATA

4.1 General Remarks

In order to verify the applicability of the developed
model and its estimation procedure in practical hydrology,
discharge data from various watersheds were utilized.
Here, the results from application to four watersheds with
distinct statistical characteristics are reported.

The developed technique was applied to a 90-year
sample for the St. Lawrence River at Ogdensburg, (1861-
1950); to a b50-year sample for the Niger River at
Kaulikoro, (1908-1957); to a 42-year sample for the
Elkhorn River at Waterloo(1929-1970); and to a 60-year
sample for the Yellowstone River at Corwing Springs(1911-
1970) .

Various Multiplicative PARMA models were fitted to
logarithms of 4-season and 6-season samples from the
discharge data for analysis of the influence of the
number of seasons on the performance of different
models.

PAR(1), PAR(2) and PARMA(1l,1l) models, which are the
most common models with periodic parameters in hydrology,

were fitted to the data by the proposed method of least-
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squares, for comparing their performance with those from
other Multiplicative PARMA models fitted by the same
technique.

Statistical characteristics for the residuals and
for generated data were computed and utilized for checking
the fit and for comparing models.

Method-of-moments estimations of parameters for
PAR(1), PAR(2) and PARMA(l,1) models also were made for
the logarithm of 6-year samples for all of the stations in
order to <check if there was significant difference from

estimates by the method of least-squares.

4.1.1 St. Lawrence River

4.1.1.1 Four-season sample

a) Residual characteristics -
Seasonal means of residuals were very close to zero
for every model. The seasonal standard deviations of

residuals are listed below.

Table 4.1 - Seasonal standard deviations of residuals
Logarithm of 4-season discharges- St. Lawrence

Model 04 1] 03 04

PAR(1) 0.031 0.066 0.059 0.035
PAR(2) 0.030 0.062 0.052 0.036
PARMA (1,1) 0.029 0.063 0.051 0.035
PARMA (2,1) 0.028 0.061 0.048 0.035
Mult.PARMA(2,1)x(1,0)|0.028 0.060 0.049 0.035
Mult.PARMA(1,1)x(1,1)|0.030 0.060 0.049 0.034
Mult.PARMA(3,1)x(1,1)|0.029 0.056 0.049 0.034
PAR(3) 0.029 0.062 0.050 0.034
Mult.PARMA(1,0)x(2,0)|0.030 0.063 0.057 0.034
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Seasonal autocorrelations of residuals are shown in
Figures 4.1 through 4.8. Portmanteau statistics and Akaike

Information Criteria are shown in Table 4.2.

Table 4.2 Portmanteau and AIC statistics- St.Lawrence
Four seasons

Model Q1 AIC
PAR(1) 77.9 2548
PAR(2) 82.1 2513
PARMA(1,1) 88.3 2505
PARMA (2,1) 80.4 2485
Mult. PARMA(2,1)x(1,0) 80.3 2490
Mult. PARMA(1,1)x(1,1) 93.1 2487
Mult. PARMA(3,1)x(1,1) 89.4 2502
PAR(3) 84.6 2497

Mult. PARMA(1,0)x(2,0) 77.6 2532
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b) Preservation of statistics -

Data generation was utilized to verify and compare
the reproduction of statistics by different fitted models.
Utilizing the parameters estimated from the historic
sample for the models, 40 samples presenting 250 years
each(total of 10,000 years) were generated. Various
statistics were estimated from each sample and results
were averaged. Large samples were simulated because they
present smaller sample variability and allow computation
of statistics closer to the true value, an, here, the
objective 1is to see how close the true statistics
corresponding to the models are to the statistics from
the historical samples. It was also verified that the
chosen number of samples was enough to obtain the
statistics by analyzing the standard deviations of
estimations and by verifying that averages of statistics
for groups of 20 samples were very close.

Averages for seasonal means for the 4-season samples
for the St. Lawrence River are presented by Figures A.1l
and A.2 in the Appendix. Averages for seasonal standard
deviations are shown in Figures A.3 and A.4 1in the
Appendix. Averages for seasonal skewness are shown in
Figures A.5 and A.6 in the same Appendix.

Averages of annual autocorrelations are presented by
Figures 4.9 and 4.10.

Averages of seasonal autocorrelations are shown in

Figures (4.11) through (4.18).
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4,1.1.2 Six-season sample

The same models applied to the St. Lawrence four-
year sample were also applied to the six-year sample for
the same discharge data for comparison between
performances for a different number of seasons by the
Multiplicative PARMA models.

Logarithms of a six-season series were utilized

for fit.

a) Residuals characteristics -

Seasonal means of residuals for these series were
also very close to zero. The seasonal standard
deviations of residuals from different models are listed

in Table 4.3.

Table 4.3 - Seasonal standard deviations of residuals
Logarithm of six-season discharges

Model o1 oy o3 04 Os Og

PAR(1) 0.024 0.051 0.077 0.058 0.033 0.023
PAR(2) 0.022 0.050 0.076 0.051 0.032 0.021
PARMA(1,1) 0.022 0.050 0.075 0.049 0.033 0.021
PARMA (2,1) 0.021 0.050 0.073 0.047 0.033 0.021

Mult. PARMA(2,1)x(1,0)|0.022 0.047 0.074 0.048 0.032 0.021
Mult. PARMA(1,1)x(1,1){0.023 0.048 0.074 0.048 0.030 0.021
Mult. PARMA(3,1)x(1,1)|0.021 0.048 0.073 0.047 0.028 0.021
PAR(3) 0.022 0.048 0.074 0.049 0.029 0.020
Mult. PARMA(1,0)x(2,0)|0.022 0.050 0.075 0.055 0.032 0.022

Seasonal autocorrelations of residuals are plotted in

Figures 4.19 through 4.30.
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The portmanteau and Akaike Information Criterion
statistics computed from the seasonal autocorrelation of
residuals for the various models are 1listed in the
following Table 4.4.

Table 4.4 - Portmanteau and AIC statistics - St. Lawrence
River - Six seasons

Model Q1 AIC
PAR(1) 118.0 3243
PAR(2) 120.4 3198
PARMA(1,1) 115.8 3190
PARMA (2,1) 112.1 3179
Mult. PARMA(2,1)x(1,0) 118.9 3164
Mult. PARMA(1,1)x(1,1) 122.3 3169
Mult. PARMA(3,1)x(1,1) 119.4 3148
PAR(3) 121.8 3178
Mult. PARMA(1,0)x(2,0) 113.7 3225

b) Preservation of statistics -

The data generation and computation of statistics
for the different models were made in the same way as
those made for four-season samples (forty 250-year
samples).

Seasonal means are shown in Figures A.7 and A.8 in
the Appendix.

Seasonal standard deviations are plotted in Figures
A.9 and A.10.

Figures A.11 and A.12 present the seasonal skewness,
while figures 4.31 and 4.32 present the annual
autocorrelograms.

The seasonal autocorrelograms are plotted in figures

4.33 through 4.44.
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4.1.2 Niger River

4.1.2.1 Four-season sample

a) Residuals Characteristics -

The seasonal means of the residuals for every fitted
model were approximately zero. Table 4.5 shows the
seasonal standard deviations for the residuals:

Table 4.5 - Seasonal standard deviations of residuals -
Logarithms of 4-season discharges - Niger

Model o1 g 03 04

PAR(1) 0.21 0.53 0.19 0.21
PAR(2) 0.18 0.52 0.18 0.21
PARMA (1,1) 0.17 0.53 0.18 0.21
PARMA(2,1) 0.16 0.50 0.17 0.21
Mult. PARMA(2,1)x(1,0)| 0.16 0.46 0.20 0.20
Mult. PARMA(1,1)x(1,1)| 0.17 0.45 0.17 0.18
Mult. PARMA(3,1)x(1,1)| 0.16 0.35 0.14 0.21
PAR(3) 0.17 0.46 0.19 0.21
PARMA(1,0)x(2,0) 0.19 0.50 0.17 0.21

Seasonal autocorrelations of residuals are shown in
Figures 4.45 through 4.52 ; portmanteau and AIC statistics

are shown in Table 4.6

Table 4.6 - Portmanteau and AIC statistics - Niger River
Four seasons

Model Q1 AIC
PAR(1) 88.8 2552
PAR(2) 59.7 2538
PARMA (1,1) 55.2 2537
PARMA (2,1) 56.6 2528
Mult. PARMA(2,1)x(1,0) 56.6 2526
Mult. PARMA(1,1)x(1,1) 58.8 2530
Mult. PARMA(3,1)x(1,1) 51.0 2528
PAR(3) 59.5 2535

Mult. PARMA(1,0)x(2,0) 77.6 2540
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Figure 4.52 - Lag 4 autocorrelation of residuals

Least-squares estimation - Niger River



154

b) Preservation of statistics

The same number of samples presenting the same
size as for the St. Lawrence River were generated
using parameters estimated from the 4-season historic
data from the Niger River at Kaulikoro. Estimations
of statistics from simulated samples were made using
the proposed least-squares technique for PAR(1l),

PAR(2) and PARMA(1,1), Multiplicative PARMA((2,1)x(0,0),

or PARMA(2,1), Multiplicative PARMA(2,1)x(1,0),
Multiplicative PARMA(1,1)x(1,1), Multiplicative
PARMA(3,1)x(1,1), PAR(3) and Multiplicative

PARMA(1,0)x(2,0) models.

Averages for seasonal means are presented in Figures

A.13 and A.14 in Appendix.

Averages for seasonal standard deviations are
shown in Figures A.15 and A.16, while averages

for seasonal skewness are shown in Figures A.17 and

A.18.

Averages annual autocorrelations are presented
in Figures 4.53 and 4,54, Figures 4.55 through
4.62 show the averages for seasonal

autocorrelations.
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4.1.2.2 Six-season sanmple

a) Residuals characteristics

As for all previous samples, the seasonal means of
residuals were approximately zero.

The seasonal standard deviations of residuals are

shown in Table 4.7.

Table 4.7 - Seasonal standard deviations of residuals
Logarithms of six-season discharges

Model o1 0o 03 o4 Os o

PAR(1) 0.18 0.23 0.54 0.25 0.14 0.21
PAR(2) 0.16 0.23 0.52 0.24 0.14 0.21
PARMA(1,1) 0.16 0.23 0.52 0.25 0.14 0.21
PARMA(2,1) 0.14 0.22 0.48 0.24 0.14 0.20
Mult. PARMA(2,1)x(1,0)|0.16 ©0.22 0.44 0.23 0.13 0.20
Mult. PARMA(1,1)x(1,1)|{0.13 0.24 0.48 0.22 0.14 0.20
Mult. PARMA(3,1)x(1,1)0.17 0.25 0.40 0.17 0.12 0.18
Mult. PARMA(1,0)x(2,0)|0.15 0.21 0.51 0.23 0.13 0.21

Seasonal autocorrelations of residuals are plotted in
Figures 4.63 through 4.74. The portmanteau and AIC
statistics computed from residuals are shown in Table 4.8.

Table 4.8 - Portmanteau statistics - Niger River
Six seasons

Model Q1 AIC
PAR(1) 108.0 3442
PAR(2) 89.8 3435
PARMA(1,1) 95.9 3433
PARMA (2,1) 76.1 3423
Mult. PARMA(2,1)x(1,0) 78.7 3412
Mult. PARMA(1,1)x(1,1) 75.5 3421
Mult. PARMA(3,1)x(1,1) 81.5 3374
PAR(3) 80.9 3420

Mult. PARMA(1,0)x(2,0) 80.3 3433
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b) Preservation of statistics

Forty 250-year samples were also generated here
utilizing parameters estimated for the same models applied
to four-season samples. Computed statistics were averaged
for analysis of reproduction of statistics by comparison
with corresponding historical statistics as done
previously for the St. Lawrence River.

Seasonal average discharges are shown in Figures A.19
and A.20 in Appendix. Seasonal standard deviations are
shown in Figures A.21 and A.22. Figures A.23 and A.24
present seasonal skewness.

Annual autocorrelograms are plotted in Figures 4.75
and 4.76, while seasonal autocorrelograms are plotted in

Figures 4.77 through 4.88.

4.1.3 Elkhorn River

4.1.3.1 Four-season sample

For the Elkhorn and Yellowstone River only the models
PAR(1), PAR(2), PARMA(1,1), PARMA(1,1)x(1,1) were employed
since it was seen that most of them did a good job in
reproducing statistical autocorrelations. Parameters were
computed by using the least-squares technique.

a) Residuals characteristics

Seasonal means of residuals were approximately equal

to zero, as computed for all previously fitted models and

samples.
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Seasonal standard deviations of residuals for the

Elkhorn River are shown in Table 4.9.

Table 4.9 - Seasonal standard deviations of residuals -
Logarithms of four-seasons discharges -Elkhorn

Mult. Mult.
T PAR(1) PAR(2) PARMA(1,1) PARMA(1,1)(1,1) PARMA(3,1)(1,1)
1 0.74 0.74 0.72 0.72 0.62
2 0.73 0.69 0.71 0.70 0.72
3 0.89 0.88 0.88 0.86 0.77
4 0.72 0.66 0.67 0.68 0.57

Portmanteau and AIC statistics calculated from the

seasonal autocorrelation of residuals are listed in Table

4010.

Table 4.10- Portmanteau statistics - Elkhorn River
Four seasons

Model Q1 AIC
PAR (1) 48.2 1625
PAR(2) 37.6 1622
PARMA (1,1) 33.0 1621
Mult. PARMA(1,1)x(1,1) 29.2 1634
Mult. PARMA(3,1)x(1,1) 30.1 1598

b) Preservation of statistics
Seasonal average discharges, seasonal standard
deviations and seasonal skewness are shown in Figures
A.19, A.20 and A.21, respectively, in Appendix.
Annual autocorrelations are plotted in Figure 4.89
and seasonal autocorrelations are plotted in Figures 4.90

through 4.93.
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Figure 4.93 Lag 4 seasonal autocorrelations
Least-squares estimation - Elkhorn River

4.1.3.2 Six-season sample

The same models applied to four-year samples were
also applied to six-year samples for a the same discharge
data for comparison between performances for different
number of seasons by the same Multiplicative PARMA models,
estimating parameters through the proposed least-squares
technique. Logarithms of the series were also utilized
here for transformation of the original series.

a) Residuals characteristics -

Seasonal means of residuals for these series were
also very close to zero. The seasonal standard deviations
of residuals from different models are listed in Table

4.11.
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Table 4.11 - Seasonal standard deviations of residuals
Logarithms of six-season discharges

Mult. Mult.
7 PAR(1) PAR(2) PARMA(1,1) PARMA(1,1)(1,1) PARMA(3,1)(1,1)
1 0.31 0.31 0.30 ' 0.28 0.28
2 0.20 0.20 0.20 0.15 0.19
3 0.45 0.44 0.43 0.38 0.40
4 0.49 0.49 0.50 0.49 0.39
5 0.60 0.60 0.60 0.60 0.51
6 0.54 0.45 0.47 0.42 0.40

The portmanteau and AIC statistics computed from the
seasonal autocorrelation of residuals from the various

models are listed in Table 4.12.

Table 4.12 - Portmanteau and AIC statistics - Elkhorn
River -~ Six seasons

Model Q7 AIC

PAR(1) 61.3 1891
PAR(2) 55.3 1884
PARMA (1,1) 54.6 1882
Mult. PARMA(1,1)x(1,1) 47.2 1871
Mult. PARMA(3,1)x(1,1) 55.5 1846

b) Preservation of statistics -

The data generation and computation of statistics
for the different models were made in the same way as
those made for four-season samples (forty 250-year
samples).

Seasonal means, standard deviations and skewness are
shown in Figures A.22, A.23 and A.24, in Appendix.

Figure 4.94 presents the annual autocorrelograms.

The seasonal autocorrelograms are plotted in Figures

4.95 through 4.100.
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Least-squares estimation - Elkhorn River

1.0

0.8

~0.2

Autocorrelation

-0.4-

~0.8

~-0.8-

-1.0

CODE

00 HISTORIC

O PAR(Y)

L _PAR(2) .,
+ ~ PARMA[T1)

[ SR AR AR b Tt I RN

X...PARMA(1, 1))('( 1

L L TR . Srive

...........................

1

i T ¥ i

2 3 4 5 ]

Figure 4.99 - Lag 5 seasonal autocorrelations

Least-squares estimation - Elkhorn River



183

1.0

¢ = 5

Autocorrelation
[=]
o

-0.2-
o4 CODE
{1 HISTOR!IC
O PAR(Y)
~0.84 A PAHL?) - oy

T E‘SE&*?KQ .....

-0.8+ R R RO

..............................

~-1.0 T T T T
1 2 3 4 5 ]

Figure 4.100 - Lag 6 seasonal autocorrelations
Least-squares estimation - Elkhorn River

4.1.4 Yellowstone River

4.1.4.1 Four-season sample.

For the VYellowstone River, the same models as those
for the Elkhorn River were estimated. Generation and

computation of statistics and averages were made in the

same way.

a) Residuals characteristics -
Seasonal means of residuals were very close to zero.

The seasonal standard deviations of residuals are listed

in Table 4.13.
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Table 4.13 - Seasonal standard deviations for residuals
Logarithm of 4-season discharges -Yellowstone

Mult. Mult.
PAR(1) PAR(2) PARMA(1,1) PARMA(1,1)(1,1) PARMA(3,1)(1,1)

-

1 0.16 0.16 0.16 0.15 0.12
2 0.13 0.13 0.13 0.12 0.12
3 0.21 0.21 0.21 0.21 0.19
4 0.26 0.26 0.26 0.25 0.25

Portmanteau and AIC statistics calculated from the
residuals for the fitted models are presented by Table
4.14.

Table 4.14 - Portmanteau and AIC statistics - Yellowstone
River - Four seasons

Model Q7 AIC
PAR(1) 48.5 2053
PAR(2) 50.6 2058
PARMA(1,1) 51.4 2058
Mult. PARMA(1,1)x(1,1) 40.4 2053
Mult. PARMA(3,1)x(1,1) 39.8 2020

b) Preservation of statistics

Seasonal average discharges, seasonal standard
deviations and seasonal skewnesses are shown in Figures
A.25, A.26 and A.28, in Appendix.

The annual autocorrelograms are shown in Figure 4.101
and the seasonal autocorrelations are in Figures 4.102

through 4.105.



185

1.0

CODE
O HISTORIC
5 PAR(1)
0.8- + _PAR(2)_______.

Y T PARMALT, ﬂ

-——— e e 2 T - -

0.4

C.L.(85%)

Autocorrelation

0.0

"‘0.2 Y T Y T T T
0 1 2 3 4 3 8 7 8 8

Figure 4.10l1-Annual autocorrelations - Four seasons
Least-squares estimation - Yellowstone River

1.0

Autocorrelation
o
(=3
1

-0.2
-0.4 CODE
O HISTORIC
O PAR(1)
~0.6 A _PAR(2)_
S CPARMA[TD T
-0.8- ‘?’EmfAﬁMAU 1)xg‘1‘,‘1.)"

.............................

-1.0 .
1 2 3 4

Figure 4.102-Lag 1 seasonal autocorrelations
Least-squares estimation - Yellowstone River




186

1.0
0.8-
ol
= N TR i
S 0.2 ."..‘ W"""laﬁa.,.n-‘n-::.n.l....- T
L R LR BRLETTTNN, 3
E <
= o.0-
o
(&3
S
5 -0.2-
<
~0.4 CODE
3 HIBTORIC
O  PAR(1)
0 L& _PAR(Y
A CPARMA[LD T
-0.8 S PARMA(L1)X(1.1)
' O PARMA(3,1)X(1,1)
-1.0 i é 5 1

Figure 4.103-Lag 2 seasonal autocorrelations
Least-squares estimation - Yellowstone River

1.0

g ol
[ ~ d
z: RiiaiaieiehelcE o {
= freek
o]
j43
8
o -0.24
<
-0.4 CODE
O HISTORIC
0.6 O __PAR(Y)
‘ L _PAR(2)
& _PARMA[LT) "
-0.8+ KL PABRMA(T 1)X(1.1)
(O PARMA(3,1)X(1,1)
-1.0 T T
1 2 3 4

Figure 4.104 - Lag 3 seasonal autocorrelations
Least-squares estimation - Yellostone River



187

1.0
0.8+
0.6
0.4
g | e el
O | ™
e, 0.2"[ """"""
= 5‘ T O T NPIXEELD ‘”“”Hﬁ""'l.vn vr ]
@ zq"n”-”-”-'ll---l---s-e.---------n IR L ’“’.,.’"‘f‘s
04 TN T Ty
b . -
o}
Q
2
= -0.2
<
—0.4- CODE
00 HIBTORIC
O  PAR(Y)
0 L PAR(2)
S CPARMA(LT) T T
-0.8- S PARMACLDIX(1,1),
LLURARMAG, XL,
-1.0 T T
i 2 3 4

Figure 4.105-Lag 4 seasonal autocorrelations
Least-squares estimation - Yellowstone River

4.1.4.2 - Six-season sample

a) Residuals characteristics

Seasonal means of residuals from all models were
approximately equal to zero.

Seasonal standard deviations of residuals for the
Yellowstone River from various models are shown in

Table 4.15.
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Table 4.15 - Seasonal standard deviations of residuals-
Logarithm of six-season discharges
Yellowstone River

Mult. Mult.
PAR(1) PAR(2) PARMA(1,1) PARMA(1,1)(1,1) PARMA(3,1)(1,1)

~

1 0.15 0.14 0.14 0.14 0.14
2 0.10 0.10 0.10 0.09 0.09
3 0.11 0.10 0.10 0.10 0.10
4 0.28 0.28 0.28 0.28 0.28
5 0.34 0.34 0.34 0.32 0.32
6 0.14 0.14 0.14 0.13 0.13

Portmanteau and AIC statistics calculated from the

seasonal autocorrelations of residuals are shown on Table

4.16.
Table 4.16 - Portmanteau and AIC statistics - Yellowstone
River - Six seasons

Model Q1 AIC

PAR(1) 81.6 2674

PAR(2) 81.5 2676
PARMA(1,1) 80.6 2676

Mult. PARMA(1,1)x(1,1) 67.5 2680

Mult. PARMA(3,1)x(1,1) 69.2 2683

b) Preservation of statistics

Seasonal average discharges, seasonal standard
deviations and seasonal skewness are shown, respectively,
in Figures A.28, A.29 and A.30, in Appendix.

Figure 4.106 shows the annual autocorrelations and
Figures 4.107 through 4.112 show seasonal autocorrelations

for lags 1 to 6.
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4.2 Estimation Techniques

The methods of moments and of least-squares for
estimation of parameters for PAR(1l), PAR(2) and PARMA(1,1)
were applied ( Chapter III ) to synthetic 25-year, 50-year
and 100-year samples .Bias, standard deviation and Root
Mean Square Errors were compared showing that for 50- and
100-year samples results are very close. For 25-year
samples, the method of moments presented a higher bias but
a lower variability of estimation. Here, the same methods
are applied to the 1logarithm of six-season samples of
discharge for the St. Lawrence, Niger, Elkhorn and

Yellowstone rivers to compare estimated parameters and the
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reproduction of annual autocorrelograms.

4.2.1 St. Lawrence River

Table 4.17 presents

PAR(1) model estimated from the logarithms of 90

the parameters

for the

years of

bimonthly discharge for the St. Lawrence River. Table 4.18

shows the average annual autocorrelograms from forty 250~

year samples (10,000 years), generated utilizing the sets

of parameter from Table 4.

Table 4.17 - Estimated parameters

17.

St. Lawrence River - PAR(1)

7 1,71 Or

MOM MOLS MOM MOLS
1 0.96 0.95 0.02 0.02
2 0.85 0.85 0.05 0.05
3 0.84 0.84 0.08 0.08
4 0.62 0.61 0.06 0.06
5 1.00 1.00 0.03 0.03
6 0.97 0.97 0.02 0.02

Table 4.18 - Annual Autocorrelograms

LAG MOM MOLS
0 1.00 1.00
1 0.60 0.60
2 0.23 0.22
3 0.08 0.08
4 0.04 0.04
5 0.00 0.02
6 -0.01 0.01
7 -0.01 -0.02
8 -0.00 ~0.01
9 0.00 0.00

-
.
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Table 4.19 presents estimated parameters for the
PAR(2) model and Table 4.20 shows the corresponding annual
autocorrelograms:

Table 4.19 - Estimated Parameters
St. Lawrence River - PAR(2)

T P1,7 ®2,1 Or

MOM MOLS MOM MOLS MOM MOLS
1 1.32 1.32 -0.37 ~-0.38 0.02 0.02
2 1.29 1.43 -0.48 -0.59 0.05 0.05
3 0.56 0.57 0.33 0.34 0.08 0.08
4 0.36 0.34 0.40 0.40 0.05 0.05
5 1.07 1.06 -0.07 -0.06 0.03 0.03
6 1.22 1.22 -0.29 -0.29 0.02 0.02

Table 4.20 - Annual autocorrelograms :
St. Lawrence River - PAR(2)

LAG MOM MOLS
0 1.00 1.00
1 0.64 0.63
2 0.30 0.28
3 0.14 0.13
4 0.07 0.07
5 0.04 0.03
6 0.02 0.01
7 -0.01 }-0.01
8 -0.02 |~-0.02
9 -0.03 |~0.03

Parameters for the PARMA(1,1) model, estimated
through the two techniques are shown in Table 4.21. Table
4.22 shows the average annual autocorrelations from

generated samples.
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Table 4.21 - Estimated Parameters
St. Lawrence River - PARMA(1,1)

T @1, 1 81,1 Or

MOM MOLS MOM MOLS MOM MOLS
1 0.94 0.95 -0.46 ~0.08 0.02 0.02
2 0.81 0.79 -0.54 =-0.75 0.05 0.05
3 0.95 0.98 0.42 0.53 0.08 0.08
4 0.84 0.85 0.50 0.54 0.05 0.05
5 0.96 0.97 -0.14 -0.11 0.03 0.03
6 0.94 0.93 -0.30 -0.30 0.02 0.02

Table 4.22 -Annual Autocorrelogramm :
St. Lawrence River - PARMA(1,1)

LAG MOM MOLS
0] 1.00 1.00
1 0.67 0.69
2 0.34 0.37
3 0.18 0.20
4 0.09 0.11
5 0.05 0.06
6 0.02 0.03
7 ~0.01 0.00
8 ~-0.02 -0.01
9 -0.02 ~0.02

Figure 4.113 shows the average autocorrelograms for
all the models, from samples generated by using the
method-of-moments estimates.

Figure 4.114 shows average autocorrelograms obtained

from estimates by the least-squares method.
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4.2.2 Niger River

Table 4.23 shows parameters for PAR(1l) model
estimation by the two methods, and Table 4.24 presents the

corresponding average generated annual autocorrelations.

Table 4.23 - Estimated parameters
Niger River - PAR(1)

T 91,71 1,7
MOM MOLS MOM MOLS
1 1.04 1.10 0.18 0.18
2 1.15 1.15 0.23 0.23
3 0.66 0.65 0.54 0.52
4 0.33 0.32 0.25 0.25
5 0.47 0.47 0.14 0.14
6 1.24 1.24 0.21 0.21

Table 4.24 -Annual Autocorrelograms :
Niger River - PAR(1)

LAG MOM MOLS
0 1.00 1.00
1 0.24 0.25
2 0.01 0.01
3 -0.01 -0.01
4 0.01 0.00
5 0.00 0.00
6 0.00 0.00
7 -0.03 -0.03
8 -0.01 -0.01
9 0.00 0.00

Table 4.25 shows the estimated PAR(2) parameters
while Table 4.26 shows the corresponding average generated

annual autocorrelograms.
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Table 4.25 - Estimated parameters
Niger River - PAR(2)

T 1,71 ®2,1 Or
MOM MOLS MOM MOLS MOM MOLS
1 0.77 0.81 0.56 0.61 0.16 0.16
2 1.30 1.33 -0.21 +-0.26 0.23 0.23
3 1.21 1.12 -0.78 -~0.68 0.52 0.51
4 0.24 0.24 0.20 0.20 0.24 0.24
5 0.49 0.49 -0.02 ~-0.02 0.14 0.14
6 1.24 1.23 0.00 0.01 0.21 0.21
Table 4.26 - Annual autocorrelograms
Niger River - PAR(2)
LAG MOM MOLS
1 0.35 0.37
2 0.06 0.07
3 0.00 0.01
4 0.01 0.01
5 0.00 0.00
6 0.00 0.00
7 -0.02 -0.02
8 -0.02 ~0.02
9 -0.02 =-0.02
Table 4.27 presents the parameters for the

PARMA(1,1) estimated by the method of moments and by the

least-squares method.
Table 4.28 shows

generated annual autocorrelo

the

grams.

corresponding

average



199

Table 4.27 - Estimated parameters
Niger River - PARMA(1,1)

7 ®1,1 81,1 Of
MOM MOLS MOM MOLS MOM MOLS

1 1.23 1.38 0.46 0.70 0.16 0.14
2 1.10 1.11 -0.24 -0.27 0.23 0.23
3 0.52 0.57 -0.70 -0.51 0.52 0.51
4 0.54 0.46 0.32 0.23 0.25 0.25
5 0.44 0.58 -0.06 0.26 0.14 0.15
6 1.24 1.52 0.01 0.63 0.21 0.21

Table 4.28 -Annual Autocorrelograms

LAG MOM MOLS
0 1.00 1.00
1 0.30 0.38
2 0.03 0.11
3 0.00 0.03
4 0.00 0.02
5 0.00 0.01
6 0.00 0.01
7 -0.02 -0.03
8 -0.01 -0.02
9 -0.02 -0.01

Figure 4.115 presents the average generated annual
autocorrelogranms for all the models. These
autocorrelograms were computed from samples generated
utilizing the moments estimates of parameters.

Figure 4.116 shows the same autocorrelogranms,

but from least-squares estimates of parameters
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4.2.3 Elkhorn River

Tables 4.29, 4.31 and 4.33 show the estimated
parameters for PAR(1), PAR(2) and PARMA(1,1) models,
estimated by the method-of-moments and by the least-
squares techniques.

Tables 4.30, 4.32 and 4.34 present the average
generated autocorrelations corresponding to estimated

parameters.

Table 4.29 - Estimated parameters
Elkhorn River - PAR(1)

7 @1,7 Or

MOM MOLS MOM MOLS
1 0.48 0.49 0.31 0.32
2 0.61 0.62 0.20 0.15
3 1.10 1.25 0.45 0.43
4 0.66 0.66 0.49 0.49
5 0.64 0.64 0.60 0.60
6 0.48 0.48 0.54 0.54

Table 4.30 - Annual autocorrelogranms
Elkhorn River - PAR(1)

LAG MOM MOLS
0 1.00 1.00
1 0.17 0.17
2 -0.10 -0.02
3 0.04 -0.01
4 -0.01 0.00
5 -0.01 0.00
6 0.05 0.00
7 -0.07 -0.03
8 -0.07 -0.02
9 -0.02 ~0.02
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Figure 4.31 - Estimated parameters
Elkhorn River - PAR(2)

T 1,71 $2,1 Or
MOM MOLS MOM MOLS MOM MOLS
1 0.46 0.46 0.04 0.04 0.31 0.31
2 0.53 0.56 0.07 0.06 0.20 0.15
3 0.67 0.94 0.41 0.26 0.44 0.43
4 0.69 0.70 -0.07 -=0.11 0.49 0.49
5 0.71 0.70 -0.13 -=0.12 0.60 0.60
6 0.21 0.21 0.56 0.56 0.45 0.45
Figure 4.32 - Annual autocorrelograms
Elkhorn River - PAR(2)
LAG MOM MOLS
0 1.00 1.00
1 0.35 0.27
2 0.11 0.02
3 0.03 -0.01
4 0.07 -0.01
5 -0.05 -0.00
6 -0.03 0.00
7 -0.03 -0.04
8 -0.02 -0.02
9 -0.01 -0.01
Figure 4.33 - Estimated parameters
Elkhorn River - PARMA(1,1)
T ¢1,71 81,7 Or
MOM MOLS MOM MOLS MOM MOLS
1 0.54 0.58 0.13 0.21 0.31 0.31
2 0.69 0.75 0.16 0.31 0.20 0.15
3 1.34 1.43 0.70 0.73 0.43 0.42
4 0.62 0.71 -0.07 0.09 0.50 0.50
5 0.52 0.72 -0.20 0.19 0.60 0.61
6 1.09 1.17 0.89 0.97 0.47 0.44
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Table 4.34 -Annual autocorrelograms :
Elkhorn River - PARMA(1l,1)

LAG MOM MOLS
0 1.00 1.00
1 0.40 0.40
2 0.17 0.14
3 0.06 0.04
4 0.02 0.01
5 -0.04 -0.01
6 -0.03 -0.01
7 -0.05 -0.03
8 -0.02 -0.02
9 -0.02 -0.02

Figure 4.117 shows the average autocorrelograms for
all the models,from samples generated by using the method-
of-moments estimates of parameters for the Elkhorn River.

Figure 4.118 shows average autocorrelograms obtained

from estimates by the least-squares method.
1.0R

CODE
O__ HISTORIC
A _PAR(Y)
-8 + _ PAR(2)

............................

................................

0.6

0.4

_C.L.(85%)

Autocorrelation

-0.2 Y T

Figure 4.117 - Annual autocorrelograms - Elkhorn River
Method-of-moments estimation - Six seasons
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CODE
O HISTORIC
OH  PAR(1)
+ _PAR(2)

...............................

 C.L.(95%)

Autocorrelation

Figure 4.114 - Annual autocorrelograms - Elkhorn River
Least-squares estimation - Six seasons

4.2.4 Yellowstone River

Table 4.35 shows parameters for the PAR(1l) model
estimated by the two methods, and Table 4.36 presents the

corresponding average generated annual autocorrelations.

Table 4.35 - Estimated parameters
Yellowstone River - PAR(1)

T ¢1,r 1,71

MOM MOLS MOM MOLS
1 0.62 0.62 0.15 0.15
2 0.76 0.75 0.10 0.10
3 0.94 0.93 0.11 0.11
4 0.41 0.43 0.28 0.28
5 -0.03 =-~0.02 0.34 0.34
6 0.74 0.75 0.14 0.14
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Table 4.36 -Annual autocorrelograms :
Yellowstone River - PAR(1)

LAG MOM MOLS
0] 1.00 1.00
1 0.13 0.14
2 0.00 -0.01
3 0.01 0.01
4 0.00 0.00
5 -0.01 -0.01
6 0.00 0.00
7 0.00 0.00
8 -0.01 -0.01
9 -0.02 -0.02

Table 4.37 shows the estimated PAR(2) parameters
estimated by the method-of-moments and by the least-
squares methods while Table 4.38 shows the corresponding

average generated annual autocorrelograms.

Table 4.37 - Estimated parameters
Yellowstone River - PAR(2)

T ®1, 7 ®2,1 Or

MOM MOLS MOM MOLS MOM MOLS
1 0.91 0.92 -0.28 -0.29 0.14 0.14
2 0.80 0.81 -0.04 -0.06 0.10 0.10
3 1.08 1.08 -0.15 =-0.15 0.10 0.10
4 0.32 0.35 0.12 0.09 0.28 0.34
5 -0.10 -0.08 0.29 0.26 0.34 0.34
6 0.74 0.75 0.00 =0.01 0.14 0.14
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Table 4.38 - Annual autocorrelograms
Yellowstone River - PAR(2)

LAG MOM MOLS
0 1.00 1.00
1 0.17 0.16
2 0.00 0.02
3 0.01 0.01
4 0.00 0.00
5 -0.01 -0.01
6 0.00 0.00
7 0.00 0.00
8 -0.01 -0.01
9 0.00 0.00

Table 4.39 presents the

PARMA(1,1) estimated by the methods of moments and least-

parameters

for the

squares.
Table 4.40 shows the corresponding average
generated annual autocorrelograms.
Table 4.39 - Estimated parameters
Yellowstone River - PARMA(1,1)
T 1,7 81,7 Or
MOM MOLS MOM MOLS MOM MOLS
1 0.53 0.53 -0.37 -0.39 0.14 0.14
2 0.73 0.75 -0.08 -0.01 0.10 0.10
3 0.88 0.86 -0.20 -0.25 0.10 0.10
4 0.44 0.41 0.13 0.28 0.28 0.28
5 0.61 0.54 0.71 0.62 0.34 0.34
6 0.75 0.73 0.00 -0.02 0.14 0.14
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Table 4.40 -Annual autocorrelograms
Yellowstone River - PARMA(1,1)

LAG MOM MOLS

1.00 1.00
0.17 0.17
0.01 0.00
0.01 0.01
0.00 0.00
-0.01 -0.01
0.00 0.00
0.00 0.00
~-0.01 =-0.01
0.00 0.00

WO~NOULLWNDEO

Figure 4.119 presents the average generated annual
autocorrelograms for all the models obtained by using
moment estimates, while Figure 4.120 shows
autocorrelograms corresponding to least-squares estimates

of parameters.

1.01
CODE
O HISTORIC
0.8 A PAR(1)
' T+ _PAR()__ ____
KT _PARMA[(LY) |
G PARMA(1L1)X(1,1)
UPARMA(E, DX(1,),
ol s VLUPARMAC
a
o
8
s
2 oua
5 7]
0
O
5 C.L.{95%)
< 0.2
0.0
~0.2 r
0 1 2 3 4 5 8 7 8 g

Figure 4.119 - Annual autocorrelograms - Yellowstone River
Method-of-moments estimation
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Figure 4.120 - Annual autocorrelograms - Yellowstone River
Least-squares estimation - Six seasons

Tables 4.17 through 4.40 show that estimates of all
parameters by the two methods for PAR(1l) and PAR(2) models
are almost exactly equal and that, consequently, the
annual autocorrelograms are very close . Significant
differences are present only in the estimates of a small
group of moving average parameters for the PARMA(1,1)
model. Figures 4.113 through 4.120 show that small
differences happened for only the lag 1 annual
autocorrelation for the Niger and Elkhorn rivers.

Hence, it may be concluded that the two techniques
are almost equivalent. However, the estimation by the

method of moments presents the advantage of requiring less
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computer time. However, 1if computer time is not a
limitation, the parameters for the PARMA(1l,1) could be
estimated by the least-squares method with estimations
starting from the method-of-moments estimates as a form of
verification and refinement.

4.3 Discussion

a) Residuals characteristics

Average residuals are very close to zero for all
samples and models. Seasonal standard deviations for the
PAR(1) model are generally higher than those for other
models. Models presenting parameters relating data
directly from the same season for consecutive years($és and
és) present standard deviation of residuals slightly lower
than the other models not presenting these parameters.

On the average, models presenting more parameters
show lower portmanteau statistics. Graphs for the seasonal
autocorrelation of residuals do not show much difference
between models for lower lags. For higher lags, the models
Multiplicative PARMA(2,1)X(1,0), Multiplicative
PARMA(1,1)x(1,1), and Multiplicative PARMA(3,1)x(1,1), on
the average, present significatively lower
autocorrelations. These models break the yearly
autocorrelations better (between the same season for
consecutive years) probably because of the parameters ¢

and 8.
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b) Preservation of statistics -

All models preserve well the seasonal means and
standard deviations for all samples well. Averages for
seasonal skewness for generated series are significantly
different from the historic values for every model and
samples. However, the average skewness generated by
different model, with parameters estimated from the same
samples, are very close. For the cases of the St. Lawrence
and Niger rivers, the shapes of the periodicity for
skewness of generated samples and for skewness of
historic samples are similar. In general, the differences
could be explained by the large variability for skewness
estimation for samples presenting the size of analyzed
historic samples (Salas et al., 1980).

Lag 1 seasonal autocorrelations were, in general,
well preserved by all models for every sample. However,
significant differences can be seen for large orders.
Models that do not present parameters relating data for
the same season 1in consecutive years tended to present
flat correlograms for higher orders. Mainly for the six-
season samples these models were not able to preserve the
high-order autocorrelations. PAR(1l) model presented the
worst reproductions. The Multiplicative PARMA(3,1)x(1,1)
model sometimes produced autocorrelations higher than the
historic values. It may be concluded that the models
presenting ¢s better preserve high order autocorrelations,

confirming results from analysis of synthetic samples.
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The annual autocorrelations produced by
Multiplicative PARMA(1,0)x(2,0), Multiplicative
PARMA(1,1)x(1,1), Multiplicative  PARMA(2,1)x(1,0) and

Multiplicative PARMA(3,1)x(1,1) were significantly closer
to the historic autocorrelations for samples presenting
higher (St. Lawrence and Niger rivers) and moderate
(Elkhorn river) long-term autocorrelation. The other
models showed a tendency to present a decreasing
autocorrelation for an increasing number of seasons,
confirming results from Obeysekera and Salas(1986) for the
Niger River. The Multiplicative PARMA(3,1)x(1,1) model
showed higher autocorrelations than the historical for the
Yellowstone River. For the Niger River it presented higher
autocorrelations for lags greater than two.

For the Yellowstone river, which presents 1low long-
term dependence, the reproduction of statistics by models
presenting fewer parameters was similar to that for the
models presenting parameters ¢s and §s.

In many simulations the portmanteau statistic Q; and
the AIC proved to be better than the other statistics for
preliminary analysis of goodness of fit and for comparison
of models. Data generation and plotting of
autocorrelograms is suggested for final analysis of the

preservation of dependence and acceptance of a model.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This research has focused primarily on seasonal time-
series modeling. A class of models, called Multiplicative
Periodic  Autoregressive Moving-Average (Multiplicative
PARMA) was developed. The modeling technique utilizes the
Powell minimization algorithm for a least-squares search
of the parameters. The model is a generalization for PARMA
models and for some multiplicative ARIMA models and
presents periodic parameters relating data for consecutive
seasons from the same year and periodic parameters
relating data for the same season in consecutive years.

Analysis of the sensitivity of the annual
autocorrelograms to the different parameters showed that
the proposed model is able to reproduce high long term
annual and seasonal autocorrelations well.

Data generation showed that the developed estimation
procedure is able to find good estimates of parameters for
the Multiplicative PARMA models. It also showed that good
estimation of low-order PARMA models can be obtained by
the technique and that the least-squares method can also

be utilized for refinement of estimations from the method-
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of-moments, by utilizing these moments estimates as
starting points. For estimation of the Multiplicative
PARMA models it was also verified that the wutilization of
low-order PARMA parameters as the starting point saves
computer time and guarantees better fitting than that
given by the starting parameters. If PARMA parameters are
not available, it 1is recommended that more than one
estimation be made, starting from different points, to
avoid accepting local optimal points that can result in a
bad fitting of the sample. Application to real historic
data showed that the Multiplicative PARMA models
presenting parameters directly relating information for
the same season in consecutive years are able to best
preserve high annual autocorrelations and seasonal
autocorrelations for lags greater than one. The yearly
autoregressive parameters, &s, proved to be the most
important for this purpose. This ability to reproduce
long-term autocorrelations by models is important for the
solution of many hydrologic problems because failure to
preserve multi-lag correlations may cause generation of
sequences presenting floods and droughts of lower
magnitude than those presented by the historic series and,
consequently, the undersizing of hydraulic structures.

For samples presenting low annual dependence, it was
verified that the low-order PARMA models are capable of
preserving the most important statistics well. Series

obtained by adding any number of consecutive seasons from
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these models were shown to follow a regular ARMA(1,1)
model with an autoregressive parameter equal to the
product of all seasonal autoregressive parameters.
Relationships between parameters for the PARMA models and
for the aggregated ARMA(1l,1) parameters were derived.

The portmanteau, Qi, and the Akaike Information
Criterion statistics showed better performance, in
preliminary analysis of goodness of fitting and comparison
among competing models than the competing Q5, Q3, Q4 and
Bayesian Information Criterion statistics. Data generation
and comparison between historic and generated correlograms
is recommended for final acceptance of models.

Important areas for future research related to the
subject of this dissertation are very ample. One of the
possible topics for future research could be the search
for relationships between parameters of the Multiplicative
PARMA model and characteristics of watersheds. Another
possible area for research could be related to the
application of the model to forecasting. Only a few
particular cases of the proposed family of models were
applied throughout this research. However, the developed
estimation procedure 1is general, and application to other
particular models is possible. The estimation procedure
can be adapted to multivariate series. The test of other
optimimization algorithms, in substitution for the Powell
algorithm, could be made to verify if it is possible to

decrease computer time spent for searching parameters.
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APPENDIX

GRAPHICAL REPRESENTATION OF HISTORIC
AND GENERATED SEASONAL MEANS, STANDARD
DEVIATIONS AND SKEWNESS.
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Figure A.1 - Seasonal average discharge (cfs)
St. Lawrence River - Four seasons
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Figure A.2 - Seasonal average discharge (cfs)
St. Lawrence River - Four seasons
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Figure A.3 - Seasonal standard deviation (cfs)
St. Lawrence River - Four seasons
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Figure A.4 - Seasonal standard deviation (cfs)
St. Lawrence River - Four seasons
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Figure A.6 - Seasonal skewness
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Figure A.7 - Seasonal average discharge (cfs)
St. Lawrence River - Six seasons

300.0
250.04 R
g
)‘.uunnunnl
2]
By 200.0
&)
=3 150.0
&)
m
<
jany
(&}
2 100.0 CODE
| O HISTORIC
O PARMA(2,1)
A PARMA(Z 1)X$_.(l)_
50.0 _t,868y511_1_)¥_11_)_
' K. PARMA(S, DX(1.1),
LOPAR(3)
VY PARMA(1,0)X{ )
0.0 T T T 1
1 2 a 4 5 ]
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Figure A.12 - Seasonal skewness
St. Lawrence River
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Figure A.13 - Seasonal average discharge (cms)
Niger River - Four seasons
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Figure A.15 - Seasonal standard deviation (cms)
Niger River - Four seasons
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Figure A.16 - Seasonal standard deviation (cms)
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Figure A.18 - Seasonal skewness
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Figure A.20 - Seasonal average discharge (cms)
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Figure A.21 - Seasonal standard deviation (cms)
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Figure A.22 - Seasonal standard deviation (cms)
Niger River - Six seasons



3.0

231

~0.5

SKEWNESS

-~ 3.0

-4.5+

-2.04

~2.5

~3.0

CODE
0O HISTORIC
O PAR(1)
A PAR(2)

i

Figure A.23 - Seasonal skewness

Y T

2 a3

-~

Niger River - Six seasons

-0.%

SKEWNESS

- 1.0

-1.8

~&2.0

—2.9

-3.0

CODE
[J HBTORIC

O _PARMA(Z,1)
A _PARMA(2,1)X(1

S CPARNMATL DX
PARMA(S,1)X(1,1)

A R RN FE R L ) TR Y

¢ PAR{3)

V__PARMA(1,0)X(2,0)

g

b3

Figure A.24 - Seasonal skewness

i T

2 3

Y
4

Niger River - Six seasons




232

1%0.0
125.0
100.0
5
[ %]
~
<
o] 78.0-
|8
a
n
50.0
CODE
1 HISTORIC
O  PAR(Y)
L _PAR(2) .
£3.07 Jo_PARMAQLY)
KW PABRMA(L1)X(, 1)
.9....‘?."2?.&'.4.(.3...’).’.‘..’..?).
0.0 T T
1 2 3 ¢

Figure A.25 - Seasonal average discharge (cfs)
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Figure A.29 - Seasonal standard deviation (cfs)
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