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Abstract

The Mathematical Modeling and Analysis of Nonlocal Ecological

Invasions and Savanna Population Dynamics

The main focus of this dissertation is the development and analysis of two new mathe-

matical models that individually address major open problems in ecology. The first challenge

is to characterize and model the processes that result in a savanna ecosystem as a stable

state between grassland and forest, and the second involves modeling the non-local spread

of a biological invader over heterogeneous terrain while incorporating the influence of a mass

transportation network on the system. Both models utilize and compare work done in other,

often more opaque, modeling paradigms to better develop transparent and application-ready

solutions which can be easily adapted and inform ecological work done in the field.

Savanna is defined by the coexistence of trees and grass in seasonally dry areas of the

tropics and sub-tropics, but there is no consensus as to why savanna occurs as a stable state

between tropical grassland and forest. To understand the dynamics behind the tree-grass

relationship, we begin by reviewing and analyzing approaches in currently available savanna

models. Next, we develop a mathematical model for savanna water resource dynamics based

on FLAMES, an Australian process-based software model created to capture the effects of

seasonal rainfall and fire disturbance on savanna tree stands. As a mathematically explicit

dynamical system represented by coupled differential equations, the new model immediately

has the advantage of being concise and transparent compared to previous models, yet still

robust in its ability to account for different climate and soil characteristics. Through analyt-

ical analysis of the model, we show a clear connection between climate and stand structure,
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with particular emphasis on the length and severity of the dry season. As a result, we

can numerically quantify the parameter space of year-by-year stochastic variability in stand

structure based on rainfall and fire probabilities. This results in a characterization of sa-

vanna existence in the absence of extreme fire suppression based on the availability of water

resources in the soil due to climate and ground water retention. One example of the model’s

success is its ability to predict a savanna environment for Darwin, Australia and a forest

environment for Sydney, even though Sydney receives less annual rainfall than Darwin.

The majority of this dissertation focuses on modeling the spread of a biological invader

in heterogeneous domains, where invasion often takes place non-locally, through nearby

human transportation networks. Since early detection and ecological forecasting of invasive

species is urgently needed for rapid response, accurately modeling invasions remains a high

priority for resource managers. To achieve this goal, we begin by revisiting a particular

class of deterministic contact models obtained from a stochastic birth process for invasive

organisms. We then derive a deterministic integro-differential equation of a more general

contact model and show that the quantity of interest may be interpreted not as population

size, but rather as the probability of species occurrence. We then proceed to show how

landscape heterogeneity can be included in the model by utilizing the concept of statistical

habitat suitability models which condense diverse ecological data into a single statistic. Next,

we develop a model for vector-based epidemic transport on a network as represented by a

strongly connected, directed graph, and analytically compute the exact optimal control for

suppression of the infected graph vectors. Since this model does not require any special

assumptions about the underlying spatiotemporal epidemic spread process, it should prove

suitable in a variety of application contexts where network based disease vector dynamics

iii



need to be understood and properly controlled. We then discuss other methods of control for

the special case of the integro-differential model developed previously and explore numerical

results of applying this control. Finally, we validate model results for the Bromus tectorum

invasion of Rocky Mountain National Park using data collected by ecologists over the past

two decades, and illustrate the effect of various controls on this data.

A final chapter concerns a problem of cognitive population dynamics, namely vowel pro-

nunciation in natural languages. We begin by developing a structured population approach

to modeling changes in vowel systems, taking into account learning patterns and effects such

as social trends. Our model treats vowel pronunciation as a continuous variable in vowel

space and allows for continuous dependence of vowel pronunciation on time and age of the

speaker. The theory of mixtures with continuous diversity provides a framework for the

model, which extends the McKendrick-von Foerster equation to populations with age and

phonetic structures. Numerical integrations of the model reveal how shifts in vowel pro-

nunciation may occur in jumps or continuously given perturbations such as the influx of an

immigrant population.
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CHAPTER 1

Introduction

Systems modeling is an essential part of managing ecosystems and understanding large-

scale population dynamics under the various forms of human and global stress. Modeling

approaches are extremely varied, but in general, they can be understood as taking either a

process-based approach, or a mathematical and/or statistical approach built around conser-

vation laws or basic principles.

Modern process-based models exist primarily on computers as programs that seek to

set up a virtual environment in which events occur as they do in nature, or at least in

which favored processes are faithfully carried out similar to reality. Process-based models

are common because they are basically a coded version of a scientist’s understanding of

the system in question. It is not difficult to code a process as it exists in theory, and by

having that process act upon virtual organisms and environments, the computer provides

a virtual model in which one can test hypotheses. However, because the system being

modeled is typically complex, and opinions may vary widely as to what processes are critical

for a faithful virtual representation, these programs usually grow quite large and contain

many relationships between their variables. As a result, they often become black boxes and

completely intractable to analyze directly. The result is that while process-based models

provide some sort of structure for conducting experiments not possible in the field, it is

nearly impossible to understand to what extent the virtual environment represents reality

or how the underlying processes and parameters affect the system as a whole.
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Mathematical and statistical approaches, on the other hand, are usually derived from

clear and fundamental relations that can be written down on paper. They seek to be math-

ematically tractable to analyze while simultaneously capturing the critical behavior of the

system as a whole. These models are not black boxes and can generally be re-implemented by

a third party from scratch. On the other hand, they are not intuitively derived, understood,

or implemented by anyone unfamiliar with advanced mathematics or statistics because they

are written in the language of dynamical systems and differential equations. They do not

seek to mimic all the details of organisms as they exist in the wild, and thus can be chal-

lenging to explain and justify to a scientist focused on processes on or below the scale of an

individual or group.

In this dissertation, I will develop and analyze two new mathematical models for ecolog-

ical processes, and a third model which extends the McKendrick von Foerster [1] equation

with dynamics for the evolution of vowels sound systems. Both of the ecological models

were inspired by existing process-based models developed by ecologists to test theoretical

assumptions, and they are motivated by open ecological problems.

Chapter 2 is motivated by a history of models written primarily by ecologists to address

questions about the driving relationships behind the savanna ecosystem. Savanna is defined

by the coexistence of trees and grass in seasonally dry areas of the tropics and sub-tropics,

but there is no consensus as to why this coexistence occurs. Since trees and grasses both use

similar resources such as water, sunlight, and soil, it has been an open question for some time

as to why savanna landscapes do not become either tropical grassland or forest, depending

on which species has the competitive edge in the given environment.
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To understand the dynamics behind the tree-grass relationship, we begin by review-

ing and analyzing approaches in currently available savanna models. Next, we develop a

mathematical model for savanna water resource dynamics based on FLAMES, an Australian

process-based software model created to capture the effects of seasonal rainfall and fire dis-

turbance on savanna tree stands. As a mathematically explicit dynamical system represented

by coupled differential equations, this new model immediately has the advantage of being

concise and transparent compared to previous models, yet still robust in its ability to account

for different climate and soil characteristics.

Through analysis of this model, we show a clear connection between climate and stand

structure, with particular emphasis on the length and severity of the dry season as a function

of stand biomass. Using this result, it is theoretically possible for ecologists to numerically

quantify year-by-year stochastic variability in a given stand structure based on rainfall history

and fire probabilities. In the absence of extreme fire suppression, this results in a character-

ization of savanna stand structure as a function of seasonal water resource availability and

ground water retention. Long-term dynamics of the model reveal an oscillating steady state

for woody biomass and stand demographics based on fire disturbance and seedling survival

events. One example of the model’s success is its ability to predict a savanna environment

for Darwin, Australia and a forest environment for Sydney, even though Sydney receives less

annual rainfall than Darwin.

The majority of this dissertation, and the subject of Chapters 3 and 4, focuses on model-

ing the spread of a biological invader in heterogeneous domains. Invasion is assumed to take

place non-locally, perhaps through the action of seeds spreading on the wind, and can reach

remote locations utilizing nearby human transportation networks. Since early detection and
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ecological forecasting of invasive species is urgently needed for rapid response, accurately

modeling invasions remains a high priority for resource managers. Data is severely limited,

however, due to a lack of resources and the spatial scales involved in an invasion. Population

density information is unavailable, species presence data is sparsely collected, clustered, and

incomplete, and even key functional information about the species, such as species growth

rates and spread distributions, are not well understood and can be highly dependent on

environmental conditions [2, 3, 4, 5].

To provide as much temporal and spatial information as possible given the limited data,

we begin by revisiting a particular class of deterministic contact models obtained from a

stochastic birth process for invasive organisms. We then derive a deterministic integro-

differential equation of a more general contact model and show that the quantity of interest

may be interpreted not as population size, but rather as the probability of species occurrence.

We then proceed to show how landscape heterogeneity can be included in the model by

utilizing statistical habitat suitability models which condense diverse ecological data into a

single statistic [3, 6, 7].

Next, we develop a model for vector-based epidemic transport on a network as represented

by a strongly connected, directed graph, and analytically compute the exact optimal control

for suppression of the infected graph vectors. Since this model does not require any special

assumptions about the underlying spatiotemporal epidemic spread process, it should prove

suitable in a variety of application contexts where network based disease vector dynamics

need to be understood and properly controlled. We then discuss other methods of control for

the special case of the integro-differential model developed previously and explore numerical

results of applying this control. Finally, we validate model results for the Bromus tectorum
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invasion of Rocky Mountain National Park using data collected by ecologists over the past

two decades [2, 3], and illustrate the effect of various controls on this data.

The final chapter, Chapter 5, concerns a problem of cognitive population dynamics,

namely vowel pronunciation in natural languages. We begin by developing a structured

population approach to modeling changes in vowel systems, taking into account learning

patterns and effects such as social trends. Our model treats vowel pronunciation as a con-

tinuous variable in vowel space and allows for continuous dependence of vowel pronunciation

on time and age of the speaker. The theory of mixtures with continuous diversity provides

a framework for the model, which extends the McKendrick-von Foerster equation to popu-

lations with age and phonetic structures. Numerical integrations of the model reveal how

shifts in vowel pronunciation may occur in jumps or continuously given perturbations such

as the influx of an immigrant population [8].
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CHAPTER 2

Savanna Woody Population Dynamics

2.1. Introduction

Modeling has become an essential part of understanding ecosystem dynamics, and within

the savanna ecology community, models are used as a key tool to advance theories about

the determinants of savanna as an ecological state between forest and grassland. The debate

hinges around the fact that while savannas are defined by a co-existence between grasses

and trees, there is still no consensus on the details concerning how this co-existence is

maintained. The most active point of contention is between resource-based and disturbance-

based theories, the first claiming that savanna exists because of a resource niche separation

and/or competition with grasses while the second claims that fire suppresses woody growth

in regions that would otherwise be forest, preventing closure of the canopy and maintaining

a savanna state [9]. In more recent years, a middle ground has also formed, characterizing

savanna as either arid or moist, the first of which is maintained through resource competition

while the second is maintained through fire disturbance [10].

While models have often been a key component in arguing for a favored theory, less

attention has been paid to the modeling approach itself. The result is that these models

often take the form of large, complex, and opaque simulation models that cannot be readily

analyzed for driving relationships and parameters, and are thus difficult to properly critique

or evaluate (e.g. [11, 12, 13]). These process-based models, often referred to as Dynamic

Global Vegetation models (DGVMs), are designed to simulate ecosystem composition by

mimicking the author’s understanding of the relevant ecological processes and how they fit

together. They are difficult to understand in detail, and have often been used to advance

6



a favored theory or as black boxes to examine the effect of experimental conditions on the

ecosystem [14, 15].

In this paper, we begin with a literature review of savanna models, theories, and field-

based observations. Particular attention is paid to modeling methods and underlying as-

sumptions, and how these have evolved over time. We then proceed to introduce a simplified

model based on FLAMES, a process-based, demographic model developed by Liedloff and

Cook (2007) [11] for Australian savannas. This resulting, simplified model remains tractable

to mathematical analysis while still capturing key soil water resource dynamics and allow-

ing for sophisticated fire disturbance mechanics to be explored. Our goal is to present a

clearly formulated model which can easily be extended or further analyzed for theoretical

implications while challenging some of the commonly held assumptions in the literature. We

present an analysis of the model, including relevant parameter space approximations, and

then conclude with a discussion of long-term predictions for savanna dynamics.

2.2. Review

Savannas are a biome characterized by a continuous grass layer with scattered trees.

They persist in locations with strong wet and dry seasons, and cover approximately a fifth

of the global land surface. Savannas also contain most of the world’s rangeland, livestock,

and wild herbivore biomass, and thus understanding the balance between trees and grasses

in savanna locations is of critical importance for plant and livestock production, as well as

maintaining ecosystem function, in the face of future changes in climate and land use [16, 17].

Despite this fact, and decades of research into the problem, there is still no consensus on

the dynamics driving grass-tree coexistence in these ecosystems, though many of the factors

influencing the relationship are well known [16, 18, 9].
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The earliest models for grass-tree coexistence in savannas focused on competition for

water resources utilizing the Lotka-Volterra equations. Since trees and grasses often have

different rooting depths, competition and coexistence in these equations is defined by a niche

differentiation, where trees have sole access to water in the subsoil and compete with grasses

in the topsoil [19]. The differential equation model formulated by Walker and Noy-Meir

(1982) [20] stands out in the literature as the prototypical articulation of this paradigm,

often referred to as the ”Walter hypothesis” [21, 16, 19]. Mathematical analysis of the model

suggests that niche differentiation and competition for water resources results in stable grass-

tree coexistence, though the extent to which the model is an accurate representation of

savanna dynamics has often been questioned [20, 16, 19].

While it is not our intention to exhaustively review the factors involved in savanna

composition and all of the different modeling approaches (see Scholes & Archer 1997 [16] for a

comprehensive review of the subject), the Walker/Noy-Meir model deserves special attention

as an analytical model focusing on the most critical driver of savanna structure: water

availability [17, 18]. While there is plenty of evidence that this is not the only mechanism

behind grass-tree coexistence, water availability has been shown to be the most important

predictor of woody cover in African savannas [18], and rainfall seasonality remains a defining

characteristic of all locations supporting the savanna biome. As a result, any model for

savanna grass-tree coexistence, even those primarily focused on disturbance, must begin

with a foundation in water resource dynamics. As a rooting niche differentiation model,

the Walker/Noy-Meir model assumes that trees have access to water that is unavailable to

grasses. This assertion may not always be valid in the form of a root niche differentiation

[19], but may still hold if trees store water internally or otherwise have negligible (< 0.0001)
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mortality rates when unable to access water for short periods. As such, a niche separation

approach to water resource consumption continues to be the obvious place to start any

attempt to model savanna composition dynamics.

The Walker/Noy-Meir analytical model includes a mixture of continuous and discrete-

time dynamics. It is assumed that soil moisture is divided into a topsoil layer accessible to

roots of trees and grasses, and a subsoil later accessible only to tree roots. The water is

completely replenished during the rainy season and then used before the start of the next

rainy season so that each year forms one time step in the discrete side of the model. During

a year, dry season dynamics are described by the equations

dT

dt
= −θgG− θwW − l(1)

dS

dt
= −σwW

where T is the amount of water in the topsoil, S is the amount of water in the subsoil,

G represents grass biomass, W represents woody leaf biomass, and θg, θw ,l and σw are

constants (θg, θw, and σw are grass and woody water usage rates and l is an evaporation loss

term). It is assumed that initial values for available water in the topsoil and subsoil, T0 and

S0 respectively, are given.

Each season, grass biomass and woody leaf biomass are updated via the equations

∆G = εgθgGtT −MgG(2)

∆W = εw(θwWtT + σwWtS)−MwW
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where εg, εw and σw are growth rates, Mg and Mw are per season death rates, and tT and tS

represent the amount of time that the topsoil and subsoil, respectively, contain water during

a season (uniquely obtained by solving each of the equations in (1)). Walker and Noy-Meir

have explored the parameter space of these equations along with certain modifications that

have the effect of relaxing several basic assumptions. They find equilibrium solutions that

often feature grass-tree coexistence, with varying ratios of biomass depending on rainfall and

soil composition [20].

This model has several broad assumptions that are worth examining a bit further.

(1) In general, all available water in the root zone is used before the start of the next

rainy season.

(2) Annual rainfall is constant.

(3) The length of the dry season is constant, and no rainfall occurs during the dry season.

(4) Annual loss of grass and woody leaf biomass is directly proportional to the amount

of grass and woody leaf biomass respectively.

The first two are explicitly pointed out by Walker and Noy-Meir [20] and the last two are

implicit in the construction of the model. The first assumption is very questionable for

savanna structures that are not in equilibrium, and particularly in the presence of fire or

grazing which reduce woody biomass below potential amounts, this will often be the case.

Considering the second and third assumptions, it appears to be an open question as to how

big a role stochasticity plays in savanna water resource dynamics, and this is a question
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we will address in subsequent sections. Rare but severe droughts may have the potential

to cause significant changes in woody composition, while occasional rains during the dry

season could cause a significant change in expected woody biomass. The final assumption

may be true to the extent that water resource consumption is also assumed to be directly

proportional to the amount of grass and woody leaf biomass and climatic conditions are

assumed to be constant, but the relationship between mortality and resource availability is

not made clear in the Walker/Noy-Meir model.

It should be noted that Walker and Noy-Meir also extend their model computationally

by adding a number of mechanics including sophisticated water infiltration dynamics, de-

pendence of plant mortality on time and soil moisture, stochastic variation of mean annual

rainfall, and loss of plant biomass due to grazing [20]. As a software based model, this for-

mulation is much less explicit and difficult to review analytically. As a result, we refer the

reader directly to their paper for further discussion and all computational results.

Process-based savanna models began to dominate in the literature from the year 2000

to 2009. Instead of taking a reductionist approach, these models seek to simulate a wide

range of ecological processes which are then connected to yield a computational result. They

are generally impossible to analyze in detail due to their complexity, and few attempts

are made to understand the relative importance of each sub-process and the effects of how

these processes were coupled. As a result, they are generally offered as evidence that the

authors’ paradigm for grass-tree coexistence is feasible, at least in so far as the model’s

output resembles natural savanna structure in the location that was parameterized, and are

of limited value for obtaining a more detailed view of the dynamics involved.
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An early example of these models can be found in Higgins et al. (2000) [19]. In this model,

processes for rainfall, grass production, herbivory, decomposition, grass moisture content, fire

(including stem mortality and stem resprouting), tree mortality, stem growth, stem neigh-

borhoods, seed production, seed dispersal, seed bank decay, and seedling establishment are

defined by a sequence of equations which are connected in various ways. Trees are mod-

eled individually in a spatially explicit manner, and the authors promote a non-equilibrium

mechanism for grass-tree coexistence based on disturbance.

Another detail to note is that rainfall was once again modeled in a rather coarse manner,

using only mean annual precipitation (MAP) amounts and certain broad assumptions about

its distribution during the annual seasons. Specifically, the authors assume that MAP is

normally distributed about a climatic mean which is then adjusted interannually by a si-

nusoidal, long-term periodicity. Besides setting a probability for wet season drought, which

affects seedling establishment, little attention is paid to how rainfall is distributed seasonally,

which remains a defining characteristic of savanna climates.

This attention to mean annual rainfall as the primary variable for water resources also

appears in some process-based models (e.g. [12]), reinforced by the observation of Sankaran

et al. (2005) [17] that MAP is highly correlated with an upper bound on maximum woody

cover in African savannas. For savannas receiving less than 650mm, this correlation translates

to a linear constraint on woody cover while precipitation above that amount allows canopy

closure [17]. The relative statistical importance of MAP beside several other factors (fire

return interval, soil properties and browser presence) was further explored in a later paper

[18], which found that mean annual precipitation was the most important determinant of

woody cover below 700mm rainfall/yr. Sankaran et al. interpreted these data to mean
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that arid (< 650mm MAP) savannas are stable, in the sense that they do not require fire

to maintain grass-tree coexistence, while mesic savannas (> 650mm MAP) are unstable

and require fire to prevent canopy closure. This thinking was likely influenced by existing

theoretical models, which were often either resource-based or disturbance-based, and was

later explored in detail by Higgins, Scheiter, and Sankaran (2010) using a new analytic

model [9].

How definitive is the analysis of Sankaran et al. in their 2005 paper [17]? Unfortunately

it raises many questions, particularly from the Australian perspective. Vast tracts of savanna

with approximately 30% tree cover dominate northern Australia with mean annual precip-

itation between 1000 and 2000mm, directly challenging the thesis that savanna receiving

more than 650mm of annual rainfall is uniformly unstable [22]. While fire is prevalent in

Australia, experimentation with unburned plots supports the conclusion of savanna stability

in wet Australian savannas, and even with fire present, savannas in Australia are more likely

to be at or close to their climatic optimum, perhaps due in part to their higher fire tolerance

compared with African tree species [23, 24, 22].

In Africa, a decades-long fire experiment across various savanna climates in Kruger Na-

tional Park (mean annual precipitation between 447 and 737mm) casts further doubt on fire

as a key mechanism for determining woody cover [25]. Variation in fire frequency, fire season,

and total fire exclusion consistently had no significant effect on the density of trees across

all rainfall amounts and soil types. Instead, fire influenced the size structure and biomass

of tree populations, delivering a high mortality rate (> 0.9) for small stems less than two

meters in height and a low mortality rate (< 0.05) for larger trees, though most savanna tree

species also have the capacity to resprout after fire from root stocks [25].
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The assumption that only mean annual precipitation need be considered, rather than

intra-annual variability and seasonality, is also questionable. Models with this assumption

immediately preclude dynamical comparison with climates displaying more or less rainfall

seasonality at the same annual amounts, and more tellingly, wet Australian savannas with

mean annual precipitation above 1000mm generally display far more seasonality than their

wet African counterparts, with more than 90% falling in six contiguous months. The reverse

is true when comparing arid African savannas with arid Australian savannas. In addition,

Australia has far more interannual variation in rainfall than Africa, likely resulting in a

fluctuation of the climatic optimum for woody cover and presenting another variable possibly

masked by the use of only a static rainfall statistic in some models (e.g. [12]). These facts

have led to the finding that the length of the seasonal drought, rather than mean annual

precipitation, is the main mechanism by which rainfall limits tree density in Australian

savannas [22].

All of these observations inform the 2007 FLAMES model of Liedloff and Cook [11].

FLAMES is a process based software model that uses an object-oriented programming ap-

proach to model individual trees in an Australian savanna stand. Precipitation amounts

come directly from the daily rainfall record of the location of interest, and water is utilized

by grasses and trees based upon soil infiltration and rooting depth. Fire disturbance is a

key component of FLAMES, and is parameterized based on data from the Kapalga fire ex-

periment in Kakadu National Park [24, 26]. Only small stems and very large, old stems are

greatly affected by fire, and trees also possess the ability to resprout after fire damage. We

will return to the mechanics of FLAMES later in this paper, as we develop a mathematical

process for savanna dynamics.

14



One major critique of FLAMES is that it exists primarily in silico and is relatively

opaque to analysis of all but the most basic sort. In contrast to agent based models, which

rely on stochastic population-level simulations made up of simple individual members, the

processes governing individuals in FLAMES are too complex to provide a clear explanation

for their emergent behavior. This complexity also obscures the relative importance of the

driving processes - some parameters and functions may be critical while others are relatively

unimportant - and it is difficult to understand the strengths and weaknesses of the model

in terms of functional modeling assumptions, geographical location, or climatic variables.

FLAMES is hardly alone in these faults however, as several publications describing process-

based savanna DGVMs have appeared throughout the decade [14, 12, 13], one requiring 33

parameters and a 29 page explanation to fully describe the model [13]. These DGVMs have

primarily found use as a first evaluation of hypothetical situations [14, 15, 27] through black

box model experimentation and subsequent comparison with the limited available data.

In more recent years, however, a number of simplified models have appeared in the

literature that succeed in remaining mathematically tractable while including a level of detail

appropriate to the system and hypothesis under consideration [28, 9, 29, 10]. In contrast with

processed based simulations, these models have the ability to explore ecosystem dynamics in

depth, focusing on specific processes and interactions and providing clues as to what drives

savanna structure and function [28]. While these models have often focused on the dynamics

of fire stem size selection or the Sankaran et al. (2005) [17] conclusions about ecosystem

stability in Africa, Australian lessons about savanna stability in wet climates has been largely

ignored.
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In the following sections, we will develop a simplified model based on processes from

FLAMES [11] to explore the interaction between variable resource dynamics, fire disturbance,

and stand structure in Australian savannas. Our ultimate goal is to provide a basic model

for savanna dynamics that can be built upon and applied globally while remaining robust

to Australian phenomenon. In particular any such model must be able to account for the

stability of mesic Australian savannas, so we will pay special attention to modeling water

resource availability based on soil properties, rooting depth, and daily rainfall history. Fire is

essentially a disturbance away from climate induced equilibrium dynamics, so understanding

the basic effects of water resource limitation, variance, and seasonality is also critical for

accurately capturing how fire can alter stand composition. Using data from the Kapalga

fire experiment [24, 26], we can then examine the effects of fire as perturbations from an

underlying climatic state.

2.3. Model formulation

We begin by considering a model similar to Walker and Noy-Meir (1982) and Higgins,

Scheiter, and Sankaran (2010) [20, 9] in that soil water dynamics are characterized by a

possible niche separation between grass and trees. This niche separation is generally pa-

rameterized by rooting depth, but could equivalently take the form of internal water storage

or drought resistance. However, unlike the Walker and Noy-Meir model, our formulation

will be less focused on competition and will ignore the effects of shade, root biomass, and

relative usage of soil nutrients to suppress growth. While this approach may overestimate

woody or grass biomass on the two extremes of the model (transition to forest or grassland),

confounding factors such as the occasional shade tolerance of grasses, differing amounts of
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woody biomass necessary for canopy closure, and complicated seedling-grass dynamics make

these transitionary states difficult to model consistently across all locations and species.

Consider an Australian stand that is one hectare in size, and assume that all plants share

water resources within this hectare. As rainfall enters the soil system, it first starts to fill

the topsoil where it is soaked up like a sponge until the layer reaches field capacity. Any

additional water added to the topsoil then begins to occupy the space between soil particles,

which can continue until the topsoil reaches saturation. At the same time, any topsoil water

in excess of field capacity drains quickly into the subsoil layer (it is assumed that saturated

topsoil will drain back to field capacity in approximately a day), which in turn begins to

similarly soak up water until it reaches field capacity. Any excess water in the subsoil is

then considered lost to the system due to drainage, since the drainage rate in this layer

is also relatively high on a day to day time scale. A schematic of this system, where soil

layers are represented by buckets, is shown in Figure 2.1. The definition of the variables and

parameters follows.

Variable definitions:

Γ: topsoil water, R: subsoil water, G: grass biomass, T: finite vector of trees belonging to

uniform woody size classes (given by basal area)

Parameter definitions:

f(t): daily rainfall, γ,ω: water usage constants, FΓ: topsoil field capacity, VΓ: topsoil

saturation capacity, VR: subsoil capacity, VS: depth of subsoil to which seedlings have access,

δ: rate at which topsoil water in excess of field capacity drains to subsoil when Γ > FΓ.

In our implementation of the system in Figure 2.1, we have assumed for simplicity that

rainfall amounts are defined daily, e.g., via a daily rainfall record or a stochastic distribution
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Figure 2.1. Schematic of water dynamics in the savanna model. Γ is the
volume of water in the top (grass) layer bucket, and R is the volume of water
in the bottom (tree reservoir) layer bucket.

based on such data. Water directly enters the soil as it falls, so we do not consider runoff,

and the infiltration rate for water absorbed by the soil, f(t), is identical to the amount of

rain currently falling. This model is robust to more complicated calculations for runoff and

infiltration rates by simply altering the calculation and interpretation of f(t) from data.

Since more nuanced infiltration rates and runoff calculations effectively just decrease the

amount of water entering the system, f(t) can be calculated as desired to appropriately

account for intense rainfall events or other considerations.

This water resource system can be coupled to a variety of grass-tree dynamics and should

prove fairly modular for use in future, alternative savanna models. In our formulation, we

approximate grass dynamics by assuming that when Γ > 0 grass grows at a constant rate

g (tonnes/day), and when Γ = 0, grass begins to cure (dies) at a rate c proportional to the

current grass biomass [11]. Temporarily assuming that T is constant, we can represent the
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system by the equations

dΓ

dt
= f(t)(1−H(Γ− VΓ))− (H(Γ− FΓ)δ + γG+ ω ·T)H(Γ)

dR

dt
= δH(Γ− FΓ)(1−H(R− VR))− ω ·T(1−H(Γ))H(R)(3)

dG

dt
= gH(Γ)− cG(1−H(Γ)).

In our effort to better capture the asymmetric demographic effects of fire, we will extend

the separation of woody population used in Hanan et al. (2008) [28] to a vector of woody

age classes representing mean population numbers. While the Hanan et al. approach of

modeling juvenile and adult biomass differentiates between two mortality rates for fire, it

loses all information about woody population numbers, implicitly making the assumption

that one gigantic tree with 50 tonnes of woody biomass is identical to 100 adult trees with

half a tonne biomass each. Since it has been argued that the defining effect of fire is to

alter stand composition rather than total biomass [25, 22], we would like to capture the

details of population demographics in our model and subsequently examine the effects of fire

disturbance on stand composition to test this hypothesis.

To model the dynamics of woody biomass, we will make the simplifying assumption

that basal radius increases linearly with age in the presence of water resources. However,

since the vector T can only capture discrete classes of basal area and trees must remain

in a size class for a minimum amount of time before moving on to the next one, we must

either introduce a time delay for tree dynamics into our continuous-time model, or couple

the continuous-time dynamics to a discretely evolving system. We found the second option
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Figure 2.2. Flowchart for discrete/continuous numerical solution of the sa-
vanna model

to be the least difficult to implement and analyze, so we will only describe the formulation

of our discrete-continuous model below.

2.3.1. Woody dynamics. In reality, trees are continuously growing through a contin-

uum of sizes. We will discretize this process for use with a finite size (age) vector using a

discrete time dynamical system, which we will then couple to the soil system described at

the beginning of this section. Since trees grow on a considerably longer timescale than that

which is relevant for day to day soil water dynamics, holding woody mechanics as constant

on monthly intervals between discrete updates should be a good approximation to the con-

tinuous process while remaining computationally easy to implement. A schematic of the

system is shown in Figure 2.2.

We consider three cases for the growth and decay of our woody population. First, either

Γ > 0 or R > VR−VS (no stress on any size classes of T). Second, Γ = 0 and 0 < R < VR−VS
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(stress on seedlings, but not on mature trees). Third, Γ = R = 0 (stress on all trees). In the

first case, everything grows. In the second case, seedlings begin to die, but everything else

in T continues as normal. In the third case, there is a water shortage for all of T, so all tree

classes decrease.

Consider a size class in the vector Tt at time t, Ti,t, that is not near the beginning of the

vector (i > σ) where trees would be considered seedlings. Let µi be the per-capita, per-day

mortality rate of Ti,t during times of water stress, and νi the death rate due to other causes

(e.g., age) per month. Let ∆t be the amount of time in days during month t that Γ = R = 0,

e.g. the trees were stressed, during month t. Then we arrive at the following relation for

Ti,t+1,

(4) Ti,t+1 = Ti−1,t(1− µi−1)∆t(1− νi−1),

derived from solving a daily discrete-time dynamical system where either Ti−1,t remains the

same (if trees were not stressed) or is adjusted to equal Ti−1,t(1− µi−1) each day that water

was absent.

Since the vector Tt is finite and everything in the last entry is lost to the system, we

consider the last entry of the death rate vector ν to be equal to 1 so that no trees live beyond

reaching the last age class. The length of the vectors should be chosen such that very few

trees could ever live to reach the last age class, with entries in ν gradually increasing to 1.

Ideally, ν can be parameterized using a life table or a probability distribution describing the

life-span of the woody species in question. In areas around Darwin, Australia, eucalyptus

is the primary savanna tree, so we have chosen to use a gamma distribution with a mean

of 400 (an estimate for the average life-span of eucalyptus) and a standard deviation of
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40 (arbitrarily chosen) to represent the waiting time until natural death in our numerical

simulations. This distribution was then converted into the death rate function ν(t) using

conditional probabilities. Since this term is meant to model relatively rare mortality due

to events such as cyclones, storms, insects and disease, the rates are generally quite low:

< 0.0001/month for trees less than 300 years old, approximately 0.0017/month for trees 400

years old, and reaching a maximum of 0.0048/month just under 500 years old.

Now suppose that Ti,t is near the beginning of the vector Tt (0 < i ≤ σ), in an entry that

would be considered a seedling size class with limited access to water resources. The growth

dynamics are similar to equation (4), with the only difference being that ∆t is replaced by

a new quantity Θt, representing the amount of time in days during month t that Γ = 0

and R < VR − VS. This more strict condition models the seedlings greater susceptibility

to drought in the soil. For new seedlings (T0,t), we will assume a seasonal recruitment

rate s(t) that is independent of woody population due to the presence of latent seeds. If

dependence upon woody population is desired, this dynamic can easily be incorporated into

the function s, but for simplicity we will not consider such dynamics in this paper. Together

with equation (4) and (3), we have the following discrete-time dynamical system for woody

dynamics

(5) Ti,t+1 =



Ti−1,t(1− µi−1)∆t(1− νi−1) if i > σ

Ti−1,t(1− µi−1)Θt(1− νi−1) if 0 < i ≤ σ

s(t) if i = 0.

2.3.2. Combined model. Since we will eventually want to add fire disturbance into

the model of savanna dynamics, we now include one more variable, C in equation (3) to
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keep track of dead grass that has not yet decomposed. Since dry standing grass is a key

seasonal fuel for fires, this quantity is important to keep track of but will have no effect on

normal woody growth or water resource dynamics in our model. The full system can now

be formulated by the system

dΓ

dt
= f(t)(1−H(Γ− VΓ))− (H(Γ− FΓ)δ + γG+ ω ·Tm)H(Γ)

dR

dt
= δH(Γ− FΓ)(1−H(R− VR))− ω ·Tm(1−H(Γ))H(R)

dG

dt
= gH(Γ)− cG(1−H(Γ))(6)

dC

dt
= cG(1−H(Γ))− kC

Ti,m+1 =



Ti−1,m(1− µi−1)∆m(1− νi−1) if i > σ

Ti−1,m(1− µi−1)Θm(1− νi−1) if 0 < i ≤ σ

s(m) if i = 0

where ∆m is the number of days in month m that Γ = R = 0 and Θm is the number of days

in month m that Γ = 0 and R < VR − VS.

This hybrid continuous-discrete time implementation has the advantages of being simple

yet thorough when a detailed solution for water resource dynamics is desired. An example

of the output for this model based on data from Darwin, Australia is shown in Figure 2.3.

2.3.3. Long term dynamics. For time scales longer than about 30 years, and par-

ticularly when day-to-day water resource dynamics are unimportant in model output, we

suggest moving to a fully discrete model by replacing the ODE system in equation (3) with

an updating model that processes soil water content, grass biomass, and rainfall once every

23



Figure 2.3. Soil moisture, grass biomass, and woody dynamics including
total basal area (TBA) after 30 years (the last 10 years are shown) using
the combined continuous/discrete approach and data from Darwin, Australia.
Initial conditions were chosen to represent a current stand nearby Darwin.

day. Numerical trials comparing outputs from both of these approaches suggest that solution

differences are negligible, and since the fully discrete implementation runs on a longer time

scale (a day for all sections of the model), it has a huge advantage in speed and memory. An

example of such long-term dynamics for Darwin, Australia is plotted in Figure 2.4 and 2.5,

using the same parameters as in Figure 2.3.

Using stochastic rainfall distributions parameterized from the rainfall records of a loca-

tion, arbitrarily long time periods can be simulated for long-term effects. There are many

choices for forming such a distribution from data, most of them involving a two step pro-

cess by which a given day is determined to be either wet or dry (using a Markov process),

and then if the day was wet, an amount of rainfall is determined by sampling a probability

distribution (often the Gamma distribution). Both steps can easily be parameterized using
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Figure 2.4. Model prediction for stem count, stand composition, and total
basal area for Darwin, Australia without fire disturbance over a period of 1500
years. Note that the middle plot is log-linear.

Figure 2.5. Model prediction for tree litter, live grass, and dead grass
amounts in tonnes over a period of 1500 years. The live grass and dead grass
plots are pretty typical for this model (with an additional feature that dead
grass amounts drop to zero when a fire occurs), and tree litter dynamics typ-
ically mimic total basal area. The calculation from FLAMES was used to
acquire these numbers, and dead grass and tree litter is used to determine fire
intensity in model runs were fire dynamics are included.

a suitably long daily rainfall record, and quite a few variations on this approach and other

methods have been examined, including the case where less data is available [30, 31].
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In our numerics, we have chosen to use Bernoulli trials in lieu of a more complicated

Markov process while sampling from a Gamma distribution for rainfall amounts. We then

parameterized our combined Bernoulli-Gamma distribution, Φ(ti), on a daily basis using a

fairly long rainfall record (128 years in the case of Darwin, Australia) in order to generate

stochastic, location specific, precipitation amounts. While this method provides only a very

rough approximation to precipitation trends because it completely neglects the tendency for

rainfall to occur on successive days, it is very easy to implement and should serve to illustrate

the utility of our model and its subsequent analysis.

When fire is not present in the system, our model predicts a stand that consists of

similarly aged trees dating back to a period of heavy seedling recruitment (Figure 2.4) with

a relatively constant live and dead grass biomass (Figure 2.5). When enough water resources

are present, monthly seedling germination events continuously introduce individuals into the

model until their water usage equals the available water, after which the large quantity of

seedlings begins to thin. Competition for the now limited resources between neighboring

trees in turn limits woody biomass as the individual trees mature and grow old, decreasing

the total stem count but maintaining a roughly constant total basal area. Finally, as the

older trees begin to die out, water resources are once again unused and seedlings appear in

large numbers to repeat the cycle.

2.4. Analysis

To begin our analysis of the process for water resources represented in equation (3),

we will examine the dynamics of soil water during the relatively short time scale of one

year. On this time scale, we assume that any changes in woody biomass are negligible and

hold T constant, which will allow us to uncouple equation (3) from the woody growth/death
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process in equation (5), and focus purely on the effect of stochastic rainfall distribution on soil

moisture content and grass biomass. The goal of this approach is to gain an understanding of

how stochastic variation in rainfall can influence woody demographic dynamics by stressing

a given stand structure or alternatively, providing sufficient resources for additional growth

or seedlings. This analysis is similar to the approach taken by D’Odorico et al. [32] for

fire-induced savanna dynamics.

In the absence of fire, the primary environmental variable affecting tree mortality is water

stress. Since adult trees become stressed when Γ = R = 0, our goal should be to quantify

the likelihood and duration of this model state for the year given a current stand structure.

We first note that it does not take an unusual amount of rainfall to saturate the subsoil and

obtain the state R = VR. This state is realized after a few days of strong rain and is actually

the typical state of the system during a typical wet season rainfall pattern. Similarly, the

typical state for Γ during the wet season is FΓ ≤ Γ ≤ VΓ. Figure 2.3 illustrates these points

for the seasonal rainfall in Darwin, Australia.

For the purpose of analysis, we now make a few definitions regarding rainfall seasonality.

We define the start of a dry season, td, as a day in which Γ = 0 and R ≈ VR. We then

assume that on this day R = VR, and that G decreases quickly toward 0 so that we can

assume G = 0 for the duration of the dry season. We now define the end of the dry season

as the first day in which R = VR again, though we will mistrust this date if it falls too early

(less than 150 days after the start of the dry period). On the occasions when this scenario

occurs, we record the date but continue to look forward in the year in case the soil dries

out considerably again, signifying that the dry season is not yet over and the wet conditions
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were a statistical anomaly unrelated to seasonality. In this case, we continue to look for the

end of the dry season; otherwise, we keep the original date recorded.

We now suppose that the probability distribution for the daily rainfall function, which

we treat as a random variable Φ(ti) where ti is the ith discrete day, is known. Supposing

that G = 0 and ω · T are constant, if Γ 6= 0, R and Γ decay at a constant rate as long as

Φ(ti) = 0. When Φ(ti) 6= 0, we will continue to assume G = 0 until R = VR (this is based

on the observation that grass returns relatively slowly), so that all of the water is used by

the woody biomass and decays at the constant rate of ω · T. We will further assume that

when Φ(ti) > 0 during the dry season, no water is lost to runoff. This assumption greatly

simplifies our calculation and can be justified in a number of scenarios, particularly when dry

season rains are known to be light and/or brief, or runoff is locally contained. Even if this

assumption is not particularly justified by the physical situation, we can treat our resulting

calculations as a wettest-case scenario for R and approximate downward from there.

Note that since G = 0 during the dry season, all incoming rainfall from Φ is either

absorbed by the woody biomass at a constant rate of ω · T or is stored in R for later use.

More specifically, we can observe that Γ 6= 0 only for temporary, localized periods of time

until the end of the dry season. As a result, we will neglect the topsoil stage of the model

in our current analysis and assume that all incoming rainfall directly enters R. One way to

conceptualize this simplification is that if water enters Γ and R stays constant for a certain

amount of time while it is absorbed, the effect is the same as if the water had entered R

instead and then is absorbed back down to the level where R would have stayed constant

in the original scenario. To allow R to contain the water in Γ, we will assume that it has

capacity VR + FΓ and declare the dry season over when R = VR + FΓ.
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As a result of these simplifications, we can now think about soil water R as a discrete-time

Markov process with a continuous state-space and absorbing boundary conditions at R = 0

and R = VR + FΓ. The initial value of this process is R = VR, and the internal transition

probabilities are given by the time-dependent random variable Φ(ti)−ω ·T. In the analysis

of this process, we are immediately interested in two probability distributions: the amount

of time spent at R = 0 and the first transit time at R = VR + FΓ, which marks the end of

the dry season. These distributions quantify the amount of stress on woody biomass and the

length of the dry season, respectively. We would also like to quantify the probability that

in a given realization R = VR + FΓ before R < VR − VS, since this is the probability that

seedlings can occur despite the dry season.

Since this process is non-linear due to the absorbing boundary conditions, the most

straight-forward method of analysis is numerical exploration. For a sequence of rainfall

random variables Φ(ti), we can quickly and easily generate hundreds of realizations for

R and approximate the distribution for the first transit time of R = VR + FΓ. We can

similarly approximate probabilities for the length of time when R = 0 and the probability

that R 6< VR−VS in a realization by recording the frequency of such visits, and then examine

how these probabilities change with perturbations in the drift term, ω · T. The result is a

comprehensive description of climate based effects on different savanna stand structures in

a given location, and this information will also provide us with a basis to understand the

effects of fire on available water resources.

Plots 2.6 through 2.9 were generated using this method. Note in Figure 2.9 that even

with soil parameters from Darwin, Australia, Sydney’s rainfall distribution produces far
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more woody biomass than Darwin while receiving less mean annual rainfall (1610 mm/year

verses 1204 mm/year).

Figure 2.6. Approximate probability distribution of (a) dry season length
and (b) non-zero tree stress days for a Darwin base tree stand with 10m2ha−1

total basal area. Note that for 90.5% of the time, the soil was never dry.

Figure 2.7. Approximate probability distribution of (a) dry season length
and (b) non-zero tree stress days for a Darwin base tree stand with 14m2ha−1

total basal area. Note that for 28.3% of the time, the soil was never dry.

Figure 2.8. Distributions for the beginning and end of the dry period.
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Figure 2.9. Stress probabilities for Darwin, Australia (solid lines) and Syd-
ney, Australia (dashed lines) by total basal area. From top to bottom: (a)
Probability that seedlings will survive in a given year, given that seedlings die
if soil water level drops below a critical rooting depth during the year. Plotted
with the probability that soil water is not depleted during the year. The black
line marks the climatic induced average as predicted by Figure 2.4. (b) Mean
number of days that the soil will be dry during the year. This last statistic is
somewhat misleading, because the distribution is often heavily skewed toward
zero dry days during the year. The soil parameters for Darwin, Australia were
used for both locations.

2.5. The effect of savanna fires on woody dynamics

As mentioned in Section 2.2, fire can significantly alter stand structure and woody

biomass away from climate induced equilibria. Since the immediate effect of fire is to reduce

woody biomass, water usage can also be reduced temporarily, possibly resulting in addi-

tional, secondary changes to stand structure. We will explore some of these effects through

simulation utilizing various fire regimes.

To observe the effect of fire on savanna stands, we implement the disturbance mechanics

developed for FLAMES [11] based on the Kapalga Australian fire experiment [24, 26]. Fire

intensity, and thus tree morality, is a function of monthly humidity averages, cured grass

amounts, and stochastically generated wind conditions around a yearly average. When

fire occurs, we assume that it affects the entire stand in a demographically asymmetric

way. Seedlings, small trees, and old trees generally suffer significant fire damage, while
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Figure 2.10. Model prediction for stem count, stand composition, and total
basal area for Darwin, Australia with fire disturbance every two years in July.

normal adult trees have a low rate of mortality. In addition, trees burned over a certain

age are allowed to resprout into a smaller age/size class 90% of the time, an assumption

approximately based on observed resprout rates for eucalyptus in northern Australia.

Using the stochastic rainfall distributions described in Section 2.3.3, Figures 2.10 and 2.11

show the effects of burning every 2 and 4 years respectively during the dry season. Note

that since these burns are conducted regardless of stand structure, seedlings are heavily

suppressed by the burns but reappear almost continuously in the two year case, and over

a prolonged period in the four year case, due to sustained resource availability caused by a

reduction in woody biomass. Burns conducted every two years also heavily reduce woody

biomass, eventually showing similar behavior as predicted by the model for yearly burns.

Gignoux et al. (2009) explored the effects of frequent burning in the field in detail, and

have found that forest species may be excluded at the seedling stage due to an inability to

stabilize their survival probability at the following resprout stage, which is in line with our

results for similar regimes [33].
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Figure 2.11. Model prediction for stem count, stand composition, and total
basal area for Darwin, Australia with fire disturbance every four years in July.

In our model, both fire regimes also produce very specific, periodic dynamics for total

basal area and reduce the period of the long-term oscillation from the 400 years seen in

Figure 2.4. This observation is easily explained by noting that fire has replaced water

shortage and other phenomenon as the main cause of mortality among larger trees, and

trees do not typically grow as large before being burned. A typical stand will consist of

trees with the same approximate age from the same seedling recruitment period. These

trees continue to grow for a while, only gradually thinning due resistance to fire. Finally, as

they become large, the stand has thinned sufficiently to allow seedlings to survive while the

remaining trees from the previous generation die out due to higher susceptibility to fire (see,

for example, the middle plot in Figure 2.11). This high susceptibility to fire in Australian

savannas may be due to termite hollowing weakening old trees exposed to many fires, as

observed in the Kapalga fire experiment [26, 24]. Seedlings are also quite susceptible to fire

in both Africa and Australia [26, 24, 25], and it can take some time for the full stand to

re-establish.
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Figure 2.12. Model prediction for stem count, stand composition, and total
basal area for Darwin, Australia with a 0.5 probability for fire disturbance each
year in July. Mean total basal area for the time period shown was calculated
to be 3.62m2ha−1.

Figure 2.13. Model prediction for stem count, stand composition, and total
basal area for Darwin, Australia with a 0.25 probability for fire disturbance
each year in July. Mean total basal area for the time period shown was calcu-
lated to be 6.57m2ha−1.

Figures 2.12 and 2.13 add some measure of stochasticity to the previous regimes seen in

Figures 2.10 and 2.11. Instead of a constant burn pattern, every year has a set probability

(0.5 and 0.25 respectively) that a fire will occur in July, which means that some periods will

have frequent fires while others go without, possibly allowing seedlings to establish in ways

that were previously impossible. We can see the effects of stochasticity in fire occurrence
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on stand structure especially well when comparing Figure 2.10, with 2 years between fires,

and Figure 2.12, with a mean of 2 years between fires. Figure 2.12 shows significantly larger

stable seedling recruitment events than Figure 2.10, as displayed by the stem count plot,

and Figure 2.12 also predicts far more woody biomass in the stand overall when compared

to the equivalent plot in Figure 2.10. Comparing the two stochastic regimes, burning with a

0.25 probability every year produces almost twice the mean woody biomass as burning with

a 0.5 probability, and can approximately reproduce stand structures and biomass currently

seen in the Darwin, Australia area (compare the 550 year prediction in Figure 2.13 to the

initial conditions in the same figure).

To examine the effect of even more stochasticity in the timing of fire events, Figure 2.14

displays the model result for a uniform, 0.05 monthly probability that a fire will occur. As a

result, we expect a fire roughly every 2 years, but the fire most often will occur during a season

where there is less dry grass and leaf litter available to burn. Compared with Figure 2.12,

which has the same 2 year expected value for fire, we see far less seedling recruitment in

Figure 2.14, but also less variation in total basal area. Since there is now only a relatively

small chance of fire occurring in the summer months when there is enough unburnt fuel for

a strong fire, seedlings are not generally suppressed by fire, and instead appear all at once

when conditions are right. This trend continues for smaller monthly probabilities, often

resulting in conditions not unlike those currently seen in the Darwin area, but the results

are highly variable due to the stochastic placement and intensity of critically less frequent

fire events.
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Figure 2.14. Model prediction for stem count, stand composition, and total
basal area for Darwin, Australia with a 0.05 probability per month of fire
disturbance.

2.6. Discussion

With equation (3), we have introduced an explicit yet robust mathematical model for

savanna water resource dynamics. This model provides transparency and tractability to

the primary climatic process driving all savannas and builds on three decades of ecological

understanding and theory, with the main simplifying assumption of the model being that all

plants have access to the entire hectare of water. By coupling this model with the discrete-

time woody growth process described in equation (5), we can then observe this model in

action over the span of decades or even centuries.

Numerical simulations based on conditions outside of Darwin, Australia, suggest a very

specific, climate induced cycle for savanna stands in the absence of fire disturbance. Stands

tend to be roughly the same age, having sprouted in a period where conditions were unusually

favorable. Mortality and growth roughly balance each other throughout the lifetime of the

stand, with trees growing and dying in tandem to roughly maintain the resource induced

optimum for woody biomass. Eventually, age becomes a factor for the stand, and with

no new seedlings to replace occasional losses due to insects, wind, cyclones, rot, and other
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factors, the stand begins to thin. This process finally frees up enough resources to allow

seedlings to germinate, and with the old stand dying out, the cycle begins anew.

When fire disturbance is added back into the model, we see very different results with the

outcome depending heavily upon the burn regime used. If a constant, intense, frequent burn

regime is used (every one or two years in July), new woody growth is heavily suppressed due

to the susceptible nature of juvenile trees to fire. The current stand slowly burns out as it

gets older, and in the end, fire reduces the stand to a state that is completely determined

by the specifics of the disturbance. Seedlings will almost always have plenty of resources to

germinate, but fire typically removes woody growth early, so the stand consists mostly of

juveniles. This observation has consequences for current frequent fire regimes, in that our

model predicts long-term stand collapse when new woody growth is consistently excluded.

More responsive fire regimes, however, could avoid this result by allowing seedlings to grow

into fire resistent sizes as they appear.

The suppressing effect lessens as the interval between burns increases, and regular burns

instead begin to primarily reduce the maximum expected age for adult trees in the stand.

The outcome becomes more similar to the case without fire, only with a shortened cyclic

period due to earlier removal of woody growth by fire. Similar results are observed for high

intensity stochastic fire regimes (constant annual probability of burning in July), even when

the annual probability for fire is quite high (0.5). In this case, stochasticity plays a big role

in the resulting dynamics by allowing seedlings to mature to a fire resistant size during the

occasional periods of prolonged fire absence. When fire can happen at any time of the year,

there is a large chance for low intensity fires that may consume fuel and a small amount of

susceptible woody biomass, but otherwise have little effect. The result of such fire regimes is
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highly stochastic, with seedlings appearing at irregular intervals depending on stand specific

conditions and fire history.

While these numerical simulations were kept simple with a constant woody growth rate

and constant seedling recruitment when water resources allowed, the results reveal critical

dynamic relationships between fire disturbance, water resource allocation, and stand struc-

ture. Most foundationally, our model demonstrates how rainfall distribution, rather than

mean annual precipitation, can function as the primary driver behind climatically induced

maximums on woody biomass. This is especially the case for ecosystems in high precipita-

tion locations, as found in northern Australia, and firmly establishes in theory that seasonal

availability of resources alone is enough to maintain a savanna state.

Analysis of the model resulted in a method of quantifying the probability of water stress

and seedling recruitment in a given year. Given a current savanna stand structure and a

probability distribution for daily precipitation amounts, we have described a simple process

for generating the distribution of seasonal drought length and severity. This analysis holds

regardless of stand history or fire roles and provides a useful tool to predict stand resource

pressures in the short term. By coupling this process with an understanding of potential

fire intensities and resulting biomass reduction (perhaps using a more detailed, probabilistic

approach similar to D’Odorico et al. (2006) [32]), it is now possible to explore how different

fire scenarios can immediately effect water consumption and seasonal stress.

Additional study is still required to understand the relative importance of shade condi-

tions and understory on savanna conditions, both of which were not considered in this thesis,

though these factors may be quite location and species specific. In our model formulation,
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grass did not appear to play a significant role in woody dynamics (other than slightly re-

ducing the total amount of water available at the beginning of the dry season), and this fact

gives us further reason to believe that the paradigm of grass-tree competition and savanna

as unstable state may be incorrect. Instead, savanna appears to be possible as a climati-

cally induced state whose structure is defined primarily by woody resource dynamics, fire

disturbance, and the seasonality and quantity of water resources, with grass filling in open

spaces and providing fuel for fire. This dynamic directly supports the main hypothesis of

Higgins et al. (2000) [19], who suggested that grass-tree coexistence is driven by the limited

opportunities for tree seedlings to escape both drought and flame into the adult stage.

While our model was kept relatively simple for illustrative and analytic purposes, certain

assumptions may be relaxed without serious implications to the model. For example, it would

not be difficult to maintain two or more size class vectors for different tree species, rather than

assume that all trees behaved the same, and the calculation for their age related growth rates

can be altered at will. Similarly, multiple understory species may be accommodated alongside

the variable for total grass biomass. More difficult challenges would include attempting to

quantify woody cover and its effect on understory growth, and without a spatial component,

it would be very difficult to remove the assumption that all water resources within the hectare

are shared.

In future work, we hope to parameterize our model for locations both inside and outside

of Australia to examine the robustness of our technique to different woody species and

climatic scenarios. Since the model presented here was based on the processes underpinning

the FLAMES simulation model of Liedloff and Cook (2007), stochastic realization of stands

approximating the dynamics presented in section (3.2) can be found using the FLAMES
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software [11], providing a more concrete, visual tool for management exploration of the

scenarios described in this paper.
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CHAPTER 3

Modeling the presence probability of invasive

plant species with nonlocal dispersal

3.1. Introduction

Invasive species represent one of the major environmental threats of the 21st Century.

Damage to native species and habitat as well as agricultural lands leads to economic suppres-

sion, reduced food and water security, and direct threats to human health [34]. Cheatgrass

(Bromus tectorum), for example, has invaded over 50 million acres of rangelands, pastures,

crops, prairies, and open meadows in the western states and continues to increase its range

by 14% annually. It and other invasive grasses provide fuel for wildfires, and reduce plant

diversity, critical wildlife habitat, and crop yield [35, 36, 37]. Although it is not possible to

eradicate these species given their current spatial extent, range managers hope to minimize

spread by, for example, the application of herbicides to vulnerable areas. Control costs rise

dramatically with population size, so mathematical models of potential spread to inform

management strategies are essential.

Ecological niche models (also called species distribution models, environmental matching

models, and habitat suitability models) are increasingly being used to model and map inva-

sive species distribution potential [38, 39]. Combining statistical algorithms with geographic

information systems (GIS), ecological niche models use presence-only or presence-absence

data in combination with environmental variables to predict the species’ potential distribu-

tion across a landscape. These tools help to define conservation priority areas and aid in

making public health decisions and in investigating the potential impacts of climate change
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[38]. While niche modeling tools have been successful in estimating the potential range of a

species, these programs are unable to model the continuous spread of a species, and so are

of limited use in predicting the time scales involved, or for modeling the effects of different

management strategies.

Modeling the spread and growth of biological species has been the subject of considerable

mathematical interest over the last century, an interest that continues to the present day.

The classical starting point (as introduced by Skellam (1951) [40] and continued to this

day) is a reaction-diffusion system such as the Fisher-KPP equation, which exhibits logistic

growth coupled with Fickian diffusion [41, 42, 40]. This approach has been widely criticized

for numerous reasons. Dispersal is assumed to obey Fick’s first law of diffusion, and to be

uniform in all directions and normally distributed. In reality, plant species in particular

do not “diffuse” at all - the current population remains stationary rather than physically

moving to regions of lower concentration. Furthermore, dispersal can be more complicated

depending on environmental and species dependent factors, and frequently fit much better

with leptokurtic distributions rather than normal ones [43, 44, 45].

Another approach is to use continuous-time models based on a “contact-birth process”, as

introduced by Mollison (1977) [46]. Individuals are assumed to have a fixed spatial location,

and each new individual born into the population is assigned a permanent location with

distance from the parent given by a probability distribution. This approach is much better

suited for herbaceous invasive species or other situations where the movement of present

individuals is assumed to be negligible. Furthermore, such models lack the assumption of

diffusion and may incorporate a variety of contact distributions, including leptokurtic ones.
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They have been used in the context of epidemiology [47, 48, 49] and in more recent years,

have attracted some attention for ecological applications [50].

However, Mollison and Daniels (1992) [51] point out that for the general nonlinear case of

the contact birth process, a deterministic formulation in the form of a differential equation for

population numbers does not follow from taking the expected value of the actual, underlying

stochastic process. Rather, these authors show that the stochastic birth process admits the

equation

(7) ẏ(x, t) = αȳ(1− y),

where instead of population size, y(x, t) is the probability that the expanding population

front has passed location x at time t, and ȳ is the convolution of y with the contact dis-

tribution. While this observation undermines the justification for studying Equation (7) as

an approximation to a real (and stochastic) physical process, subsequent literature has in-

terpreted y(x, t) as population size [47, 50], citing Mollison’s earlier work [48] which studied

Equation (7) for results on propagation velocities. We favor the use of Equation (7) to model

the spread of invasive plant species, but the aim of this paper is to derive a correct interpre-

tation of a modification of this equation (Equation (23) in Section 3.2) from the underlying

stochastic process presented by Mollison (1977) [46]. In our derivation, y(x, t) represents the

probability of finding a species at location x at time t.

A governing equation for the evolution of species presence probability complements avail-

able field data on species distribution which typically consist of presence-absence information

over a spatial domain rather than species density. Field-condition-motivated initial condi-

tions for such a model can be determined in spite of the lack of data on population size.
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As we discuss in Section 3.3, the output of ecological niche models naturally incorporates

into stochastic realizations of contact-birth processes and our deterministic equation to give

spatially varying parameters.

A challenge in deriving a deterministic equation from the contact-birth process is deter-

mining of how the carrying capacity K (the ecological parameter in the contact-birth process

that we focus on) carries over to parameters in the deterministic equation. We determine

this dependence by comparison of the numerical simulations of the deterministic equation

that we derive against stochastic realizations of the contact-birth process, and we find a

nonlinear dependence of the parameters in the deterministic equation on K. Consequently,

the speed of traveling wave solutions also is a nonlinear function of K. As we discuss in Sec-

tion 3.2, this contrasts with calculations of wavespeed given by Medlock and Kot (2003) [47]

which give wavespeed as proportional to carrying capacity in a model similar to Equation

(7), but with y(x, t) interpreted as population size (or number of infected individuals in an

epidemiological interpretation).

This chapter is published in the Journal of Mathematical Biology [7] and is organized

as follows: In Section 3.2, we derive from a contact-birth process first a spatially discrete,

and then a spatially continuous evolution equation for the probability of species presence

in landscapes where the carrying capacity for the species is constant. We also discuss in

Section 3.2 the dependence of the speed of traveling wave solutions on the carrying capacity.

We extend the model to heterogeneous landscapes of spatially varying carrying capacity

(interpreted in terms of habitat suitability output of ecological niche models) in Section 3.3.

Simulations of the model as well as the underlying stochastic process in two-dimensional

spatial domains are presented in Section 3.4. We conclude in Section 3.5 with a discussion of
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practical applications and potential extensions of our model, before examining an extension

of particular interest in Chapter 4.

3.2. A Continuous-time, Contact-Birth Presence Model

We will examine in detail a generalization of the contact birth process introduced by

Mollison (1977) [46]. We first consider a spatially discrete version of the model and introduce

our main quantity of interest, which is the probability that the species is present at a given

spatial location and time. An evolution equation for this probability is derived using a

Master equation approach. We then make a continuum transition and discuss the spatially

continuous version of this model.

3.2.1. Spatially Discrete Model. Consider a set of nonnegative integer-valued pop-

ulations Yi(t) occupying a finite or infinite set of cells labeled by indices i from an index set

L, i ∈ L. We assume that the Yi evolve stochastically in time t according to a contact-birth

process [52, 53, 54] with transition rates

(8) lim
τ↓0

(1

τ
Pr[Yi → Yi + 1 in (t, t+ τ)]

)
= rY ifi(Yi),

where r > 0 is the growth rate, Y i =
∑

j∈LWijYj, and Wij is the probability that an

individual located in cell j gives birth to a new individual in cell i. The function fi(Yi)

measures how the population growth rate responds to crowding, so that typically fi(Yi) is a

decreasing function satisfying fi(Yi) ≥ 0 and fi(0) = 1. The entries Wij of the weight matrix

W are assumed to be real and nonnegative with
∑

jWij = 1. If cell i has a finite carrying

capacity, ki, the population is limited to Yi(t) ≤ ki and (8) holds for 0 ≤ Yi(t) < ki. We
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set ki = ∞ if cell i has no carrying capacity. If ki is finite, we require that fi(ki) = 0. The

standard choice in this case is a linearly decreasing function, fi(Yi) = 1− Yi/ki.

Let Y = (Y1, . . . , YN)T be the discrete random vector of populations, and let p(y, t) =

Pr[Y(t) = y] be the probability that Y(t) = y for any possible realization y = (y1, . . . , yN)T .

The probability distribution p(y, t) satisfies the Master equation [55]

(9) ṗ(y, t) =
∑
{y′}

w(y,y′)p(y′, t)− a(y)p(y, t),

where the dot denotes ∂/∂t and the sum in (9) is a short-hand notation for summation

over all possible realizations. The Master equation (9) is the general form of the evolution

equation for discrete-states, continuous-time stochastic processes if the transition probability

Pr(Y(t+ τ) = y|Y(t) = y′) for small τ has the form

(10) Pr(Y(t+ τ) = y|Y(t) = y′) = [1− a(y)τ ]Πiδ(yi, y
′
i) + w(y,y′)τ +O(τ 2),

where w(y′,y′) = 0 and δ(y, y′) is the discrete delta function, δ(y, y′) = 1 if y = y′ and

δ(y, y′) = 0 if y 6= y′. Accordingly, for given y′, w(y,y′)τ + O(τ 2) is the probability of the

transition y′ → y for y 6= y′, and 1− a(y′)τ +O(τ 2) is the complementary probability that

there is no transition, that is,

a(y′) =
∑
{y}

w(y,y′).

The Master equation (9) follows directly from the Chapman-Kolmogorov equation in the

limit τ → 0.

The specific form of w(y,y′) for our model is derived from (8). Since time is continuous

and Y is a discrete random vector of countable length, the probability of two simultaneous
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transitions is almost surely zero. Therefore, to simplify our computations, we will assume

that the probability of such transitions is of the order O(τ 2) in (10). The same assumption

is made for the probability of transitions by more than a unit. Then, according to (8), the

transition matrix w(y,y′) is given by

(11) w(y,y′) = r
∑
i∈L

y′if(y′i)δ(yi − 1, y′i)
∏
j 6=i

δ(yj, y
′
j),

where y ≡ (y1, . . . , yN)T = Wy, yi ≥ 0 for all i ∈ L, and

(12) a(y) =
∑
{y′}

w(y′,y) = r
∑
i∈L

yifi(yi).

Notice that a(y) = 0 if yi = ki <∞ for all i ∈ L, since in this case no transition can occur

anymore. The special form of w allows us to write the first term in the Master equation

more explicitly as

(13)
∑
{y′}

w(y,y′)p(y′, t) = r
∑
i∈L

(y − ei)ifi(yi − 1)p(y − ei, t),

where ei is the i-th “coordinate vector”, with components eij = δ(i, j), so that the vector

y′ = y − ei has the components y′j = yj if j 6= i and y′i = yi − 1, and we set p(y, t) = 0 if

yi < 0 or yi > ki for some i ∈ L.

We are particularly interested in the probability

(14) pj(t) ≡ Pr[Yj(t) = 0] =
∑

{y|yj=0}

p(y, t),

where here the sum extends over all realizations y with yj = 0. The evolution equation for

pj is found from the Master equation. Applying the sum in (14) to the first term in (9) using
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(13) yields

∑
{y|yj=0}

∑
{y′}

w(y,y′)p(y′, t) = r
∑
i 6=j

ki∑
y=1

∑
{y|yj=0,yi=y}

fi(y − 1)(y − ei)ip(y − ei, t)

= r
∑
i 6=j

ki−1∑
y=0

∑
{y|yj=0,yi=y}

fi(y)yip(y, t),(15)

and the second term becomes

(16)
∑

{y|yj=0}

a(y)p(y, t) = r
∑
i 6=j

ki−1∑
y=0

∑
{y|yj=0,yi=y}

fi(y)yip(y, t) + r
∑

{y|yj=0}

yjp(y, t).

Noting that if yj = 0, then p(y, t) is the joint probability

p(y, t) = Pr[Yj(t) = yj, Yj(t) = 0] = Pr[Yj(t) = yj |Yj(t) = 0]pj(t),

where yj = (y1, . . . , yj−1, yj+1, . . . , yN) and analogously Yj(t), the sum in the second term

in (16) can be written as

∑
{y|yj=0}

yjp(y, t) =
∑

{y|yj=0}

yjPr[Yj(t) = yj |Yj(t) = 0]pj(t) = E[Y j(t) |Yj(t) = 0]pj(t),

where E denotes the expectation value. Thus the evolution equation for pj(t) which results

upon subtracting (16) from (15) takes the form

(17) ṗj(t) = −rpj(t)E[Y j(t) |Yj(t) = 0].
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A quantity characteristic for the spread of the species is the complementary probability

uj(t) = 1− pj(t) = Pr[Yj(t) > 0]. This probability satisfies the evolution equation

(18) u̇j(t) = r(1− uj(t))E[Y j(t) |Yj(t) = 0].

In the next subsection we set up approximations and extensions for the expectation

value in (18) for appropriate one- and two-dimensional continuum limits. Further extensions

aimed specifically at heterogenous landscapes as required by niche models will be discussed

in Section 3.3.

3.2.2. Spatially Continuous Model. We now generalize the discrete model from the

preceding subsection by replacing Yi(t) with Y (x, t), where x ∈ L and L is a measurable loca-

tion space with measure µ [46]. Specifically we consider one-dimensional or two-dimensional

location spaces, L = R or L = R2, with the standard Lebesgue-measure. In this case, the

contact birth process is given by

(19) lim
dt→0

(
1

dt
· Pr[Y (x, t)→ Y (x, t) + 1 in (t, t+ dt] ]) = rȲ (x, t)f(Y (x, t), x),

where Ȳ is given by the integral

Ȳ (x, t) =

∫
L
Y (y, t)w(x, y)dµ(y)

with weight function w which gives the probability density that an individual located at

point y gives birth to a new individual at location x. The function w is assumed to have

similar properties as W in subsection 3.2.1. If w is symmetric and constant with respect to

y, Ȳ can be taken to be a convolution, as in [46].
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The function f(Y, x) is also defined as in subsection 3.2.1 (usually a crowding function),

so that Equation (19) is a non-decreasing, spatiotemporal process in which death plays no

significant role. Such a process is well suited for modeling biological invasions in which there

is no active resistance to species takeover, since we can expect that any individuals dying of

natural causes will be replaced in successive generations. For heterogeneous landscapes the

carrying capacity, K(x), varies over x ∈ L and we assume f(K(x), x) = 0 as in subsection

3.2.1. Mollison has pointed out that without a crowding function f(Y, x), this process results

in exponential growth, as expected [46]. For homogeneous landscapes, K is constant and f

depends only on Y .

It remains to interpret x ∈ L under the assumption that L is a continuous space. For

the purpose of illustration, suppose that we wish to take L = R2. Begin by taking a uniform

square grid in R2 with cell dimensions given by ∆x1 and ∆x2. We can then arrange for a

discretization of the space, D, to be the set of all cells in this grid, the elements of which are

then represented by the R2 value of the midpoints from each cell. We now have that

lim
dt→0

(
1

dt
· Pr[Y (x, t)→ Y (x, t) + 1 in (t, t+ dt] and x ∈ D ])

= lim
dt→0

(
1

dt
· Pr[Y (~x, t)→ Y (~x, t) + 1 in (t, t+ dt],

with ~x ∈ ((x1 −
∆x1

2
, x1 +

∆x1

2
], (x2 −

∆x2

2
, x2 +

∆x2

2
]) ])

= rȲ f(Y (x, t)) for x ∈ D,

where

Ȳ |x∈D(x) =

∫
D
Y (y, t)w(x, y)dµ(y) =

∑
y∈D

Y (y, t)w(x, y)∆x1∆x2,
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and Y (y, t) is understood to be the population in the cell ((y1−∆x1
2
, t1+ ∆x1

2
], (y2−∆x2

2
, y2+

∆x2
2

]). But in this formulation, the choice of grid and therefore D was completely arbitrary.

If we redefine Y (x, t) to be the population in the rectangle ((x1 − ∆x1
2
, x1 + ∆x1

2
], (x2 −

∆x2
2
, x2 + ∆x2

2
]) rather than at a location x in some space, then Equation (19) is valid for the

continuous spatial variable x, with Ȳ resulting from integration over R2. We will therefore

assume that x ∈ R2 for the remainder of our discussion.

Let u(x, t) be defined by Pr[Y (x, t) > 0]. If we assume that Y obeys a process that

matches Equation (19), then the equation for ∂u(x, t)/∂t follows form (18) by replacing the

discrete variable j by x,

(20)
∂u(x, t)

∂t
= rE[Ȳ (x, t)|Y (x, t) = 0](1− u),

with

(21) E[Ȳ (x, t)|Y (x, t) = 0] =

∫
L
E[Y (y, t)|Y (x, t) = 0]w(x, y)dµ(y).

It is generally not possible to explicitly determine E[Ȳ (x, t)|Y (x, t) = 0] from knowledge of

Pr[Y (x, t) > 0] only. Accordingly, we seek an approximation to this conditional expectation

that will allow us to effectively model the presence probability. According to the integral

representation (21), we can reduce the problem to that of approximating E[Y (y, t)|Y (x, t) =

0] at all locations y, after which we can take the convolution.

Different spatial values of Y are correlated to the extent that they are connected via

the weight function, and since we wish to convolute the resulting expected value with this

same weight function, the correlated values of Y are the most important for approximat-

ing Equation (20). Unfortunately, we have no information about the joint expected value
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E[Y (y, t), Y (x, t) = 0] or the joint distribution of Y (y, t) and Y (x, t). Treating Y as a ran-

dom vector, it may be possible to look at the interdependencies of each component based on

the transition probability and estimate the joint expected value, but in this paper, we will

only derive rough estimates for E[Y (y, t)|Y (x, t) = 0] in terms of u(y, t).

It is clear that E[Y (y, t)|Y (x, t) = 0] ≤ E[Y (y, t)], and it may be expected that

E[Y (y, t)|Y (x, t) = 0] evolves similarly to E[Y (y, t)] in response to different values of u(y, t).

The correlation between a spatially fixed stochastic variable Y (x, t) and every other spatial

component of Y is complicated and heavily dependent upon spatial distance and the choice

of convolution kernel. In general, one cannot say that E[Y ′|Y = y] ≈ E[Y ′] given two

stochastic variables Y ′ and Y , particularly if the two variables are strongly correlated, but

for kernels with relatively small standard deviation, the spatial region of high correlation

among the stochastic variables Y (x, t) should be relatively small. In the extreme case where

the convolution kernel is a delta function, we have E[Y (y, t)|Y (x, t) = 0] = E[Y (y, t)].

Therefore, we will attempt to find an approximation for E[Y (y, t)] through u(y, t) for all

locations y ∈ L and then replace E[Y (y, t)|Y (x, t) = 0] by this approximation in (21), so

that Equation (20) is approximated by a closed evolution equation for u(x, t). Expecting

that these two approximations, namely i) replacing E[Y (y, t)|Y (x, t) = 0] by E[Y (y, t)]

and ii) approximating E[Y (y, t)] for every y by a function of u(y, t), results in an upper

bound on the rate of change ut(x, t), we will then solve the resulting equation for u(x, t) and

compare with pseudo-random realizations for Y obtained from the corresponding stochastic

birth process, correcting as needed. This method of approximation is naturally imperfect,

but must suffice in abeyance of a further investigation which provides a better method

of approximation. In the following we describe and motivate our approach to finding the
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approximation of E[Y (x, t)] as function of u(x, t) for the case of a homogeneous landscape,

where K is constant and f(Y, x) = f(Y ).

In the case K = 1, it is evident that E[Y (x, t)] = u(x, t). At the other extreme, consider

the limit K = ∞; that is, there is no carrying capacity limit to population size. We can

then formally find a first-order approximation for E[Y (x, t)] by introducing a new parameter

λ(x, t0), defined to be the average rate of change for Y (x, t) between times t = 0 and a fixed

time t = t0. Let Yavg(x, t) be a stochastic function that evolves according to the fixed rates

given by λ(x) until the time t0. That is,

lim
dτ→0

(
1

dτ
· Pr[Yavg(x, τ)→ Yavg(x, τ) + 1 in (τ, τ + dτ ] ]) = λ(x), τ ≤ t0.

For each x, the event Yavg(x)→ Yavg(x)+1 occurs with a fixed average rate and independently

of the time since the last event. Thus, by definition, Yavg(x, t) is Poisson distributed with

parameter λ(x) for each x ∈ R2. In essence then, we approximate the local stochastic process

by a Poisson process as it is the simplest relevant stochastic process. Since we have that

P [Y (x, t) = 0] = 1 − u(x, t), we can now invert the probability mass function of Yavg(x, t)

and solve for λ(x):

λ(x) = − ln(1− u(x)),

which in fact tells us that

(22) E[Y (x, t)] ≈ E[Yavg(x, t = t0)] = − ln(1− u(x, t)).

3.2.2.1. Two-parameter model. For ecological reasons, we are naturally most interested

in the situation where Y does have a finite carrying capacity, typically much larger than 1.
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Interpolating between E[Y ] = u at K = 1 and E[Y ] ≈ − ln(1 − u) at K = ∞, we take

E[Y ] ≈ −α ln(1 − u) + βu, where the parameters α and β are functions of the carrying

capacity K. Setting E[Y (y, t)|Y (x, t) = 0] ≈ E[Y (y, t)] ≈ −α ln(1 − u(y, t)) + βu(y, t), the

governing equation for u(x, t) reads

(23)
∂u(x, t)

∂t
= r [J(u(y)) ∗ w(y)] (1− u),

where

(24) J(u) = −α(K) ln(1− u) + β(K)u.

We determine the functions α(K) and β(K) in (24) by comparing numerical simulations of

Equation (23) with stochastic results for Y obtained through pseudo-random realizations of

the transition probability. For varying values of K, we compute the absolute error

(25)

∫
[0,tend]

||u(t)− Pr[Y (t) > 0]||1 φ dt∫
[0,tend]

φ dt
, φ =



2 if t ≤ 6

2− (t− 6)/24 if 6 < t ≤ 30

1 if t > 30

for a range of values of α and β and find the values of these parameters that minimize this

error. We use a weighted absolute error in contrast to an L∞ error because our equations are

non-local. Moreover, absolute error captures deviations in both wave speed and wave shape.

The choice of the weight function φ(t) gives larger weight to errors occurring at smaller

values of time (t ≤ 6), where the choice of 6 and 24 were arbitrary choices to represent short

and long time periods. We choose this weighting to give priority to short-term ecological
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forecasts rather than long-time forecasts that would in any case be more subject to error

from changing environmental conditions. For these comparisons, we made the natural choice

of f(Y ) = (1− Y/K) in Equation (19) for a version of Mollison’s “simple epidemic model”

[46]. As this is by far the most common choice of f(Y ) in the literature, for the rest of this

section we will continue to assume that

(26) lim
dt→0

(
1

dt
· Pr[Y (x, t)→ Y (x, t) + 1 in (t, t+ dt] ]) = rȲ (x, t)(1− Y (x, t)/K)

is the underlying stochastic process for some large, discrete choice of K > 1.

In our simulations, we chose a variety of values for K ranging from 25 to 1000. For the

weight function w in the convolution, we examined both a normal distribution

N(x;σ) =
1

σ
√

2π
e−

1
2(x−µσ )

2

and a Laplace distribution

L(x; b) =
1

2b
e
−|x|
b ,

because the Laplace distribution exhibits heavy tails that are exponentially bounded and is

one of the suggested distribution kernels for an invading organism given by Kot et al. (1996)

[44]. Theoretically, any distribution kernel could be used, though Mollison [56] has shown

that distributions without negative-exponentially bounded tails result in wave velocities that

tend toward infinity in the limit for all non-trivial initial conditions. Initial conditions for

pseudo-random realizations of Y were then chosen to be a Heaviside function, scaled such

that Y = K where Y > 0. We have generated 1000 pseudo-random realizations of the

stochastic process until ts = 30 (to disperse transient effects due to the initial conditions),
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and Pr[Y (x, t) > 0] was estimated from the resulting data. This value for Pr[Y (x, t) > 0]

was then used as the initial condition for our model (t = 0). We then continued to generate

1000 pseudo-random realizations of the stochastic process until ts = 60 (t = 30). These

results were again used to estimate Pr[Y (x, t) > 0], but this time for direct comparison with

the output of the model as it is run from t = 0 to t = 30.

The optimal values of the parameters α and β for varying values of K are shown in

Table 3.1 for the normal distribution and in Table 3.2 for the Laplace distribution. In the

case of the normal distribution, for each of the three choices of the standard deviation given

in Table 3.1, α (respectively β) is a generally increasing (respectively decreasing) function

of K. In contrast, β increases with K in the case of the Laplace distribution, whereas α

remains small. Values of α and β for more values of K are included in Tables 3.3 (for the

normal distribution with σ = 1) and 3.4 (for the Laplace distribution with b = 1) of Section

3.2.3, where we discuss the wavespeed.

Table 3.1. Parameters α and β for the normal distribution kernel w = N(u;σ).

K σ = 0.5 α β σ = 1 α β σ = 2 α β

100 0.000 0.82 0.000 0.82 0.000 0.86
300 0.040 0.86 0.040 0.86 0.080 0.84
500 0.120 0.72 0.120 0.72 0.190 0.72
700 0.130 0.81 0.130 0.81 0.350 0.60
900 0.260 0.55 0.260 0.55 0.340 0.63

Table 3.2. Parameters α and β for the Laplace distribution kernel w = L(u; b).

K b = 0.5 α β b = 1 α β b = 2 α β

100 0.005 0.67 0.005 0.81 0.025 0.82
300 0.005 0.83 0.010 0.83 0.125 0.72
500 0.005 0.87 0.030 0.76 0.035 0.94
700 0.010 0.88 0.005 0.91 0.120 0.82
900 0.010 0.88 0.005 0.92 0.005 0.97
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Figure 3.1. (a) Solution to Equation (23) plotted at even integer values of
time up to time 28 (dashed lines) plotted along with Pr[Y > 0] based on data
from 1000 stochastic realizations of the transition probability (solid lines). The
distribution kernel is the normal distribution with σ = 0.5, and the carrying
capacity is K = 700. (b) Absolute error as a function of time.

Results of numerical integrations of Equation (23) with the normal distribution and

varying values of σ are shown in Figs. 3.1 (σ = 0.5), 3.2 (σ = 1), and 3.3 (σ = 2) for values

of α and β determined by K = 700. The figures show good qualitative and quantitative

agreement between the model and the stochastic computation, but for increasing t the leading

edge of the wavefront of the model (smallest value of x for which u = 0) tends to lag behind

the leading edge of the stochastic wavefront. The wavespeed increases with increasing σ,

consistently with the discussion of wavespeed in Section 3.2.3.

Results for the Laplace distribution with b = 1 are shown in Fig. 3.4 (K = 300) and

Fig. 3.5 (K = 700). The wavespeed is only slightly larger for K = 700, again consistently

with calculations in Section 2.3. In all simulations, the absolute error is less than 1 for all

time.
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Figure 3.2. (a) Solution to Equation (23) plotted at even integer values of
time up to time 28 (dashed lines) plotted along with Pr[Y > 0] based on data
from 1000 stochastic realizations of the transition probability (solid lines). The
distribution kernel is the normal distribution with σ = 1, and the carrying
capacity is K = 700. (b) Absolute error as a function of time.

In our model, it is also necessary to specifically deal with the case where u(y) = 1, since

J(1) does not exist. Analytically, this singularity reflects the fact that we may be sure that

Y > 0 is in a given location, but without further information about the non-local time

evolution of Y , we cannot know E[Y (x, t)|Y (x, t) > 0]. To fix this problem, we assume that

E[Y (x, t)|Y (x, t) > 0] ≈ K/2 based on the assumption that Y grows quickly once Y > 0 but

will not achieve carrying capacity for a significant amount of time while still in the support of

w(x) centered around locations with u(x) < 1. Numerical observations also suggest that the

choice of constant does not play a significant role, so the choice of K/2 can also be considered

as essentially arbitrary. Setting E[Y |Y > 0] to a constant also fixes a key numerical concern

that J(u) is stiff - numerical computation can be achieved much more quickly by taking, for

example, J(1) = K/2.

58



40 60 80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

1

x

u
 =

 P
[Y

>
0
]

Species Presence Probability

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

0.2

0.4

0.6

0.8

1

t

A
b

s
o

lu
te

 E
rr

o
r

Absolute Error at Integer Time Steps

Figure 3.3. (a) Solution to Equation (23) plotted at even integer values of
time up to time 28 (dashed lines) plotted along with Pr[Y > 0] based on data
from 1000 stochastic realizations of the transition probability (solid lines). The
distribution kernel is the normal distribution with σ = 2, and the carrying
capacity is K = 700. (b) Absolute error as a function of time.

3.2.2.2. Initial conditions and one-parameter model. Having established parameters α

and β for the two-parameter model J(u) given by (24) across different choices of K and dis-

persal kernel w, we now consider more closely the problem of initial conditions for the model.

In the field, we expect data to be given for u(x, t) at time t = 0, but since the stochastic

variable Y (x, 0) is unknown, it is impossible to know with any accuracy E[Y (x, 0) > 0].

Instead, we will only know some places where Y (x, 0) > 0, some places where Y (x, 0) = 0,

and perhaps some uncertainty in the remaining area of the form of 0 ≤ u(x, 0) ≤ 1. If we

have full knowledge of Y (x, 0) in the study area, u(x, 0) would take on only values of 0 and

1. For simplicity, we will assume this is the case and examine Heaviside initial conditions

u(x, 0).
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Figure 3.4. (a) Solution to Equation (23) plotted at even integer values of
time up to time 28 (dashed lines) plotted along with Pr[Y > 0] based on data
from 1000 stochastic realizations of the transition probability (solid lines). The
distribution kernel is the Laplace distribution with b = 1, and the carrying
capacity is K = 300. (b) Absolute error as a function of time.

Given that u(x, t) = 1 in some location, we must again confront the fact that Y (x, t) is

unknown when choosing values for J(1). Since we are assuming the species represented by Y

is an invader, we will assume that Y is initially large where u(x) = 1 and continue with our

above approximation E[Y |Y > 0] ≈ K/2. Even with this approximation, we need a further

alteration of J(u) for u < 1, since the model is critically affected by large concentrations of

E[Y ] nearby locations where we have set u(x, 0) = 0. In this case, the K =∞ approximation

of Equation (22) provides a better model. We therefore introduce in addition to the general

two-parameter model (24) the model

(27) JH(u) = −γ ln(1− u),
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Figure 3.5. (a) Solution to Equation (23) plotted at even integer values of
time up to time 28 (dashed lines) plotted along with Pr[Y > 0] based on data
from 1000 stochastic realizations of the transition probability (solid lines). The
distribution kernel is the Laplace distribution with b = 1, and the carrying
capacity is K = 700. (b) Absolute error as a function of time.

where γ is determined by numerical comparison of the deterministic equation with stochas-

tic simulations. This model serves to deal particularly with the issues of Heaviside initial

conditions and is used in an initial time interval.

3.2.2.3. Combined model. To test the deterministic model for long time periods based on

Heaviside initial conditions, we introduce a time-dependent homotopy between the one pa-

rameter model JH(u), Equation (27), and the general two-parameter model J(u) of Equation

(24). A linear homotopy works well, but notable improvement is achieved by perturbing the

linear homotopy function with a polynomial so that, relative to the linear homotopy, higher

weight is given to the model JH(u) at smaller values of time. The homotopy we use is thus

−(1− h(τ)) ln(1− u) + h(τ)(−α ln(1− u) + βu),
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Figure 3.6. (a) Solution to Equation (23) plotted at even integer values of
time up to time 48 (dashed lines) plotted along with Pr[Y > 0] based on data
from 1000 stochastic realizations of the transition probability (solid lines). The
distribution kernel is the normal distribution with σ = 1, and the carrying
capacity is K = 200. (b) Absolute error as a function of time.

where τ = t/26 (with a Heaviside initial condition, 26 time units is the approximate amount

of time transients require to decay), h(τ) = τ + aτ(τ − b)(τ − 1) for 0 ≤ τ < 1, and

h(τ) = 1 for τ ≥ 1. Figures 3.6 and 3.7 illustrate the accuracy possible when starting

from Heaviside initial conditions for u with the correct temporal homotopy for J(u). For

K = 200 (Fig. 3.6), the homotopy parameters a = 2.8, b = 0.44 minimize the error, whereas

for K = 600 (Fig. 3.7), the optimal homotopy parameters are a = 3.1, b = 0.43.

In considering the numerical size of the problem, it is immediately clear that we should

begin by doing simulations in R rather than R2, since approximately 1000 stochastic realiza-

tions of Y are required for good estimations regarding Pr[Y (x, t) > 0], and each stochastic

realization requires a fine time step, dt, to properly simulate the transition probability. We

used a time step of dt = 0.0001 after finding that significantly greater values failed to produce
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Figure 3.7. (a) Solution to Equation (23) plotted at even integer values of
time up to time 48 (dashed lines) plotted along with Pr[Y > 0] based on data
from 1000 stochastic realizations of the transition probability (solid lines). The
distribution kernel is the normal distribution with σ = 1, and the carrying
capacity is K = 600. (b) Absolute error as a function of time.

plausible results. We acquired our 1000 pseudo-random realizations for Y over 30 time units

by running 18 realizations at a time in parallel, a process which took approximately 45 min-

utes with a 1-D spatial mesh 100 units long. Reasonably sized 2-D simulations could easily

have over 100,000 spatial cells, highlighting the need for better than brute-force methods to

acquire results about Y on standard desktop computers. In contrast, numerically solving

our model for u(x, t) takes between five seconds to 2 minutes.

In the plot of 30 time units on a larger domain, it becomes obvious that while the speed

of the traveling wave is good, the shape is not quite correct. We are slightly over-estimating

u = Pr[Y > 0] when u > 0.5, and slightly under-estimating when u < 0.5. This error is

likely due to our use of E[Y ] in place of E[Y |Y (x, t) = 0], but it is predictable.
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3.2.3. Wavespeed. Studies of Equation (7) and other nonlinear equations for popula-

tion spread have revealed that, although nonlinear terms affect the shape of traveling wave

solutions, the speed of traveling wave solutions of the nonlinear equations match the speeds of

solutions to linearizations of the equations [47, 57]. Consistent with the conjecture that this

should hold in general for equations governing population spread [57], numerical simulations

of traveling wave solutions to our Equation (23) and its linearization

(28)
∂u(x, t)

∂t
= rĴ(u(y)) ∗ w(y), Ĵ(u(y)) = (α + β)u(y),

about u = 0 yield matching wave speeds for both normal and Laplace distributions. The

linearization (28) is, up to a change in parameters, also the linearization of the equation

(29)
∂u

∂t
= rū(K − u)

about u = 0, as studied by Medlock and Kot (2003) [47], who compute wavespeeds for

Equation (29) by making the traveling-wave ansatz u(x, t) = Ae−θ(x−ct) in the linearized

equation for various distribution kernels. These authors obtain wavespeeds of

(30) c =
√

eσrκ

for the normal distribution kernel N(v;σ) and

(31) c = ±3
√

3

2
rbκ

for the Laplace distribution kernel L(v; b), where κ is the carrying capacity K in the case of

Equation (29), which translates into κ = α+β for our Equation (23). In Tables 3.3 and 3.4,
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we give the analytical wavespeeds according to Equations (30) and (31) as well as wavespeeds

calculated from numerical simulations of Equation (23). The match between analytically and

numerically computed wavespeeds is fairly good, with potential error coming from the fact

that the wave in the numerical calculation has not completely converged to the traveling

wave, as well as from errors in numerically determining the wavespeed from profiles of u at

a discrete set of times.

In contrast to the prediction given by Equations (30) and (31) with κ = K that wavespeed

is proportional to carrying capacity, our computations as given in Tables 3.3 and 3.4 suggest

a nonlinear and less sensitive dependence of wavespeed on carrying capacity, a result of the

nonlinear dependence of κ = α + β on K.

Table 3.3. Parameters α and β and analytical (as given by Equation (30)
with r = 1) and numerical wave speeds for the normal distribution kernel
w = N(u;σ) with σ = 1.

K α β analytical wavespeed numerical wavespeed

100 0.000 0.82 1.352 1.3667
200 0.000 0.8 1.434 1.400
300 0.040 0.86 1.484 1.467
400 0.050 0.86 1.500 1.467
500 0.120 0.72 1.385 1.467
600 0.130 0.80 1.533 1.533
700 0.130 0.81 1.550 1.533
800 0.210 0.75 1.583 1.533
900 0.260 0.55 1.335 1.500
1000 0.160 0.71 1.434 1.500

3.3. Heterogeneous Landscapes

In the derivations of the previous section, we have always assumed that the landscape is

homogeneous in terms of suitability for the species in question. The model takes the entire

domain to be completely fertile, and no obstacles exist for establishment. We now relax this
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Table 3.4. Parameters α and β and analytical (as given by Equation (31))
and numerical wave speeds for the Laplace distribution kernel w = L(u; b)
with b = 1.

K α β analytical wavespeed numerical wavespeed

100 0.005 0.81 2.117 2.067
200 0.005 0.85 2.221 2.167
300 0.010 0.83 2.182 2.167
400 0.010 0.85 2.234 2.233
500 0.030 0.76 2.052 2.200
600 0.005 0.93 2.429 2.300
700 0.005 0.91 2.377 2.267
800 0.005 0.94 2.455 2.300
900 0.005 0.92 2.403 2.333
1000 0.005 0.93 2.429 2.300

assumption and derive a more realistic model that takes into account available ecological

data about the species, terrain, and climate.

On the surface, the challenge of creating such a model is a daunting task. Ecological

data is often species- and location-dependent, both in availability and importance, and sci-

entists will disagree over which variables should be prioritized for inclusion into the model.

Furthermore, lack of data is a constant problem in ecology, and as new data are acquired,

our model should be flexible to accommodate changes in ecological understanding.

As mentioned in the introduction, statistical software packages that model potential

species distribution have seen much success in recent years. These programs are of particular

interest to our efforts because they have the capacity to crunch a wide variety of relevant

data sets to return a map of “suitability” for the species. We interpret this suitability

to mean the probability that a location can support the species in question, and we will

use the output of such models to parameterize our model. By outsourcing the problem of

interpreting ecological data to these statistical packages, we can then concentrate on how to

best incorporate the suitability of the terrain into our model. In addition, since landscape
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suitability can be a function of time, we also gain the ability to model spread under changing

environmental conditions by having the statistical packages predict suitability under different

assumptions for temporal change. Such methods can then be used to model expected species

distribution under various climate change and management scenarios. Indeed, this approach

is not wholly new; recent years have seen at least a couple of numerical, process based models

utilize the output from these statistical packages for similar purposes [58, 59].

We start again with the contact birth process given by Mollison (1977) [46] and assume

that suitability data is defined on a discrete spatial domain at some coarse scale compared

to the size of an individual from the species in question. We expect this suitability data to

be a number between 0 and 1 (inclusive) which gives the probability of establishment for

the species, given that its propagules have access to that location. These assumptions are

reasonable for the ecological niche modeling package Maxent [6] which is a popular choice

among such statistical packages, though we also expect that these assumptions are valid for

other choices.

Since suitability data is coarse and discrete, we assume that within a region on which it

is constant there are only areas (size dx2 in R2) of binary suitability. Thus, randomly picking

a location x in the domain, one finds either that x can support the species, or it cannot. We

can then interpret suitability data to be the probability that a randomly chosen location x

in some suitability cell will be able to support the species, that is, Pr[x is suitable]. Given

that the probability that Y (x, t)→ Y (x, t) + 1 on a location x with suitability zero is equal

to zero, we examine the transition probability

(32) lim
dt→0

(
1

dt
Pr[Y (x, t)→ Y (x, t) + 1 in (t, t+ dt] and a seed will grow at x]).
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Let s(x) = Pr[x is suitable] be a function to be defined by data. Since the previous tran-

sition probability in (19) could be interpreted as acting on a spatial domain where suitability

is identically 1 everywhere, we can reinterpret (19) to be the conditional probability

lim
dt→0

(
1

dt
Pr[Y (x, t)→ Y (x, t) + 1 in (t, t+ dt] | a seed will grow at x])

As a result, the transition probability in Equation (32) is equal to

lim
dt→0

(
1

dt
Pr[Y (x, t)→ Y (x, t) + 1 in (t, t+ dt] and a seed will grow at x])

= lim
dt→0

(
1

dt
Pr[Y (x, t)→ Y (x, t) + 1 in (t, t+ dt] | a seed will grow at x]) Pr[x is suitable]

= r · s(x)Ȳ f(Y ).

Here, we will generally assume that f(Y ) = (1 − Y/(Ks(x))), since we would expect the

carrying capacity to change linearly with an area’s suitability. Since s(x) effectively adds

only a spatial component to the constants r and K, we can now set u(x, t) ≡ Pr[Y (x, t) > 0]

and repeat the process described in Section 3.2 to arrive at the model

(33)
∂u(x, t)

∂t
= rs(x) [J(u(y, t)) ∗ w(y)] (1− u(x, t)),

where J(u(y, t)) = −α (Ks(y)) ln(1− u(y, t))) + β (Ks(y))u(y, t).

When considering initial conditions, we must be more careful in heterogeneous terrains.

Instead of taking u(x, 0) = 1 whenever Y (x, 0) > K as in Section 3.2.2, we should instead

take u(x, 0) = 1 when Y (x, 0) > Ks(x), in order not to underestimate the size of initial

populations in areas of relatively low suitability. While this requirement means that we
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must work somewhat harder to gather initial data in some environments, all other aspects

of the calculation remain unchanged.

3.4. Simulations in two spatial dimensions

For all of the 2-D simulations, we used a carrying capacity of K = 300 individuals per cell.

Lower values of K decrease the computation time, which is important when working with

longer 2-D problems. We then ran the simulation for 15 time units on a 100-by-100 mesh

using Runge-Kutta 4th order with variable time steps to solve the vectorized 2-D problem.

No special information about the problem was supplied to our numerical solver.

In a first simulation, we chose the suitability function to be uniform random values

between 0 and 1 over the domain. Initial conditions for the population Y (x, 0) were five

2-D bivariate normal distributions (mean µ = 0 and covariance matrix Σ = I), which were

translated into initial conditions for u(x, 0) by setting u(x, 0) = 1 when Y (x, 0) > 0.15 ·K,

and then smoothing the edges with a standard Gaussian distribution (u(x, 0) = Z(|x −

x0|)/Z(0), where x0 is the closest location such that Y (x0, 0) > 0.15 ·K).

Since the simulation was run for a relatively short period of time, we used the one-

parameter model function JH(u) = −γ ln(1 − u) in the model, scaled by an appropriate

factor γ to stand in for the decay of transients. This approach works well for time periods in

the range of 15 time units or less and is robust to both the bivariate normal initial conditions

above and the Heaviside initial conditions discussed earlier in this chapter. Suggested scaling

factors γ for Laplace and Normal distributions are given in Table 3.5 for both 1-D and 2-D

problems. For simplicity, we have assumed in the 2-D simulations that the variances in the

x and y directions are equal, so that the parameters satisfy σx = σy = σ.
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Figure 3.8. Solution to the model equation (33) after 15 time units with
uniform random noise suitability. Initial locations where u(x, 0) = 1 are shown
in black.

The results of 2-D simulations are shown in Figures 3.8 through 3.11. The initial condition

consisted of five patches where u(x, 0) = 1. The isotropy in the variance parameter σ and the

homogeneous (random noise) suitability yield isotropic radial spreading of the population

from patches where u(x, 0) = 1. The “ragged” edges, apparent in Fig. 3.8 and in the

cutaway plot of Fig. 3.9 are due to random suitability. In general, as observed in this and

other simulations, the shape of the leading edge strongly depends on the suitability function.

Comparing Fig. 3.8, which shows u(x, t = 15), with the graph of absolute error in Fig. 3.10,

we note that the error is concentrated at the leading edge. Fig. 3.11 shows that the mean

error does not increase with time.
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Figure 3.9. Cutaway view of solution to the model equation (33) (dashed
line) and stochastic realization of Pr[Y (x1, x2, t) > 0] (solid line) at x2 = 80
and time step 12. x1 is given along the x-axis and Pr[Y (x1, 80, 12)] is along
the y-axis.

Table 3.5. Scaling factors γ for two distributions and various choices of parameters.

Distribution Parameter Scaling Factor γ Parameter Scaling Factor γ

1-D Normal σ = 1 0.98 σ = 2 0.99
σ = 3 0.98

1-D Laplace b = 1 0.86 b = 2 0.93
b = 3 0.96

2-D Normal σ = 1 0.93 σ = 2 0.89
2-D Laplace σ = 1 0.98 σ = 2 0.97

When working with 2-D domains, we must also be more careful as to how we measure

the success of our model. Error is inevitable, and we can expect that it will be greatest in

proximity to the leading edge. In 1-D, the area of the leading edge is more or less constant,

but in 2-D, the length of the leading edge grows as it moves away from a spatially centered

initial population. As a result, the total error of the system increases with time even if we
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Figure 3.10. Absolute error between the model and stochastically generated
results for Pr[Y > 0] after 15 time units with uniform random noise suitability.

Figure 3.11. Error plots for the model vs. stochastically generated results
for Pr[Y > 0] with uniform random noise suitability. Note that the mean error
does not increase with time.
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are modeling the system with the same accuracy as in the 1-D case. This suggests that total

error is not necessarily a good metric by which to measure the success of our model. Instead,

we will pay more attention to the mean absolute error as calculated among all cells whose

absolute error is above a threshold value (0.001). For a successful model, we should observe

that this mean error does not increase significantly with time.

For a second simulation, we chose a more complicated topology for the suitability, as

shown in Figure 3.12. The model was then run for 15 time units with the same parameters

and weight function as for the simulation of Figs. 3.8 - 3.11, and similarly compared to an

expected value of Pr[Y > 0] as generated from 1000 pseudo-random realizations of Y over

the same 15 time units. To give some idea of the computational advantage that the model

has over repeated realizations of the stochastic process, it took 19 hours and 11 minutes to

obtain the 1000 pseudo-random realizations for Y on a 100-by-100 spatial mesh using 27

processors in parallel at 2.4 ghz each (quad core) with 128 GB of memory. By contrast, the

derived model did not run in parallel, and on a 2.2 ghz dual core machine with 8 GB of

memory, it took 1 hour and 39 minutes.

The results are shown in Figures 3.13 through 3.15. The nonhomogeneous suitability gives

rise to a nonisotropic spreading of the probability function from patches where u(x, 0) = 1.

The error, as before, is concentrated at the edge of the propagating front.

3.5. Discussion

With Equation (33), we have derived a first model for the time-evolution of the occurrence

probability for an invasive plant species. A key motivation for working with occurrence

probability as our quantity of interest is the fact that field data for invasive species, and in

particular data used as input to ecological niche models such as Maxent, typically come in
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Figure 3.12. Plot of a suitability landscape.

Figure 3.13. Model solution after 15 time units with suitability given in
Figure 3.12. Initial locations where u(x, 0) = 1 are shown in black.
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Figure 3.14. Absolute error between the model and stochastically generated
results for Pr[Y > 0] after 15 time units with suitability given in Figure 3.12.

Figure 3.15. Error plots for the model vs. stochastically generated results
for Pr[Y > 0] with suitability given in Figure 3.12.
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the form of spotty species presence points. From these data, one may estimate a probability

of species occurrence across the domain of interest even though one does not have species

population data at hand. This estimate may then be used as a realistic initial condition for

our model, but not for a model whose quantity of interest is population size.

The numerical simulations presented in this chapter were chosen to illustrate how our

deterministic formulation of the model accurately captures the underlying stochastic process.

The parameters α and β, which depend on the distribution kernel chosen for the model as well

as the carrying capacity, must be determined once for a given kernel and carrying capacity by

comparison with the stochastic process, and then the deterministic model may be run instead

of the much more computationally expensive stochastic realization. The computation time

saved by using the deterministic model increases as one studies larger domains of interest

to ecologists and resource managers. When choosing unit values for measuring an invader

and setting base carrying capacity, we suggest choosing the smallest viable, reproducing

population size of the invasive organism to be the base unit in the model. Carrying capacity

can then be set at the largest number of such units possible in a perfectly suitable unit area

of the domain. This choice will maximize the dynamics captured by the model and give

traveling wave speed results that can be described as the rate of spread for viable colonies.

As discussed in the introduction to this chapter, ecological niche models produce maps

giving a suitability (a number between 0 and 1) for a given species at points in a given terrain.

We have interpreted this suitability as the probability of establishment of the species and

incorporated it into our model as a function s(x). Suitability map outputs of these programs

may now be incorporated into our model, so that ecological niche models, together with our

evolution equation, can predict how a species will spread. In these models, carrying capacity
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becomes a spatial function of suitability, and α and β similarly become spatial functions. In

the following chapter, we will combine Maxent data for cheatgrass suitability in the Rocky

Mountains with our model and compare the model output with data on cheatgrass spread.

As plants (particularly in temperate climates) often have separated growth and dispersal

phases, discrete analogs of Equation (7) are often used [60, 44], and for certain applications,

it may be necessary to utilize a discrete-time analog of Equation (33).

The stochastic simulations of the contact-birth process (26) and the corresponding wave

speeds presented in this chapter suggest a nonlinear relationship between carrying capacity

K and wavespeed, with wavespeed being more sensitive to carrying capacity at lower values

of K. This model, however, neglects many ecological processes that either ecological data or

models suggest affect wavespeed, including Allee effects and the timing of growth and dis-

persal phases [61]. Cellular automaton modeling has shown that stochasticity in colonization

and spatial heterogeneity can significantly increase invasion speed [62]; it will be interesting

to investigate the effect of heterogeneity of carrying capacity and suitability as determined

by ecological niche models on wavespeed for Equation (33).

As it stands, our model will predict how species occurrence probability changes with time

under the assumption of no plant death. The model may be used to predict how a species

may penetrate terrains of various suitability levels or degrees of suitability heterogeneity, but

it does not currently accommodate resource management strategies such as the application

of herbicides. The model may be extended in two simple ways to include such effects. By

allowing the suitability function s(x) to depend on time, we could model, for example, the

periodic application of a herbicide that reduces the suitability of a patch for a species. The

herbicide would also kill existing plants at the site, so it would also be necessary to add a
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death term −µu to the right-hand side of the governing equation. Effects such as seasonal

variation and changing suitability values due to factors such as forest fire, competition with

other invading species, or climate change may also be studied via the suitability function

and death term that depend on time.

In the formulation of our model, we have been motivated by the study of invasive plants.

As in Mollison’s original contact-birth model, our model may also be appropriate for other

situations, including epidemiological contexts.
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CHAPTER 4

The dynamics and control of non-local invasive

spread coupled with a vector-based transportation

network

4.1. Introduction

In the previous chapter, we derived a model for invasive spread motivated by invasive

plants, and in particular cheatgrass (Bromus tectorum). In order to keep our model as

general as possible, we have not assumed any mechanics that are specific to Bromus, and we

will continue to take this approach in the current chapter to the extent possible. Similarly,

we do not speculate as to why the species is invasive (though plenty of theory exists on this

topic, see for example [63]), but only assume that there is no significant biological competitor

which reduces invasive range over short-term periods. With this general approach in mind,

we now turn to the particular case of Bromus tectorum to evaluate the effectiveness of our

modeling approach in a real world scenario, and look for ways to improve our predictions.

Bromus tectorum, also known as downy brome or cheatgrass, is an introduced annual

grass that has infested more than 40 million hectares in the United States. Impacts include

damage to rangeland, winter crops, hayfields, pastures, grass seed fields, and native shrub

species due to increased fires [35]. In particular, there is an active Bromus invasion taking

place in Rocky Mountain National Park, for which presence data exists intermittently since

1996 [2]. Evangelista et al. (2008) [3] examined the performance of various niche model-

ing techniques for Bromus tectorum in the western United States, and one of the authors,

Sunil Kumar, was able to provide us with suitability data for Bromus in Rocky Mountain
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National Park using the Maxent niche modeling package [6]. This suitability data is based

on the latest Bromus presence data for Rocky Mountain National Park, and allows us to

easily parameterize the spatial heterogeneity in the previously described presence probability

model.

Dispersal distributions of Bromus tectorum can vary depending upon site conditions,

including burn history [5]. However, allowing the distribution kernel of Chapter 3 to vary

spatially represents a rather difficult numerical challenge for the area, both in terms of

implementation (due to the size of the problem) and the availability of data to parameterize

the spatial heterogeneity. Instead, we uniformly utilized a multivariate Laplace distribution

[64] with parameters based on a mean of (0, 0), variance of (1, 1), and correlation 0 to

roughly match the distribution data gathered in [5] for burned sites. The multivariate

Laplace distribution was specifically chosen for its heavy tails and exponential shape, with

most of the probability being contained inside a circle of radius 1 from the origin. While this

choice certainly represents a worse-case scenario for Bromus spread, our modeling efforts

are centered around calculating an upper bound on presence probability, and since Maxent

suitability modeling often includes layers with terrain cover information, we might expect

this distribution to be automatically damped in forested areas due to a suitability change

(see, for example, Section 4.3.3).

Figure 4.1 displays the solution of the presence probability model in 1999 based on initial

data from 1996 using the model, data, and dispersal kernel described in Chapter 3. The

model growth rate was set to r = 5, and the carrying capacity was chosen to be K = 323,

based on the number of square feet of cheatgrass necessary to cover a square meter (1 square
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Figure 4.1. Predicted Rocky Mountain National Park cheatgrass presence
for 1999 based on data from 1996 (black outlined pink stars). Presence data
for 1999 is also plotted (pink stars). Parameters: r = 5, w ∼ Laplace(µ =
(0, 0), σ = (1, 1), ρ = 0), K = 323.

foot of cheatgrass was arbitrarily chosen as the minimal plant unit for presence in a 30m2

area).

Upon inspection of Figure 4.1, one can immediately see that while the model does a

fairly good job of capturing local spread with these parameters, other points are completely

missed, occurring in locations nowhere close to the model output. While this may be due

to a lack of search in these new areas during the 1996 census, it is well documented that

trail corridors function as habitat and conduits for movement of plant species in Rocky

Mountain National Park [65], and with the number of visitors, it is not hard to believe that

these findings extend to non-local movement along paved roads as well. Bromus tectorum

seeds can easily attach to clothing, and visitors would find it easy to unknowingly transport

propagules down trails or to distant sites using motor vehicles. Since the additional points
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in Figure 4.1 are conspicuously near roads or trails, we now seek to develop a model that

can capture these long-distance events in a way that remains tractable to analysis.

This chapter is organized as follows: In Section 4.2, we introduce a graph-based popula-

tion model in which individuals can become infected at nodes. The population of the graph

is conserved, but every node acts like both a source and sink for individuals to leave and re-

enter the graph uninfected. We then conduct analysis on this network model and show how

it can be coupled to a more spatially continuous infection model to obtain a more complete

model of epidemic spread. In Section 4.3, we extend this model to the case of a herbaceous

invader and show some numerical results for Rocky Mountain National Park. Section 4.4

introduces two different types of control to the model and discusses optimal control in the

linear case. We then review numerical simulations for control in Section 4.4.5 and conclude

with a discussion of our results in Section 4.5.

4.2. Infectious disease epidemic model

4.2.1. Linear graph model. To begin modeling long-distance spread, we will first

consider the general case of an epidemic with intermediary carrier vectors. These carrier

vectors will not be infectious amongst themselves and remain on a transportation network

with well defined nodes and directional rates of flow. At each node, carrier vectors can

later interact with an underlying, spatially coupled model such as the one developed in

Chapter 3. If the underlying model predicts invader presence at an assigned node location,

network carrier vectors will become infected and possibly spread the epidemic to other nodes,

which in turn infect the underlying model. The precise mechanics of this concept will be

formalized in the following sections, including some immediately relevant analysis.
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Consider an individual on a strongly connected1, directed graph, and let X(t) be a

stochastic variable which gives the node this individual occupies at time t. We assume that

X(t) satisfies the Markov property and represents a continuous-time Markov chain on the

nodes of the graph. Let gij ≥ 0 be the transition rate for the j → i node edge whenever

i 6= j, and let

gjj = −
∑
i 6=j

gij.

We require this value for gjj to assure that the rate at which individuals leave node j is equal

to the sum over all the rates for entering destination nodes i. In particular, this guarantees

that the number of individuals on the graph will be conserved.

Define p(t) to be the vector of probabilities of finding X at each node at time t: pi(t) =

Pr[X(t) = i]. Since the number of individuals on the graph is conserved, the matrix G such

that (G)ij = gij gives us the evolution of these probabilities on the graph via the first-order

equation

(34)
dp

dt
= Gp(t).

Assuming that there are N individuals on the graph and their initial distribution between

the nodes is given by the vector N(0) = N0, we can now set up an initial value problem

dN

dt
= GN.(35)

N(0) = N0

for the expected distribution N of the individuals over the graph’s nodes at time t.

1For every node, there exists a path through the graph to every other node. This is typical for transportation
networks.
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The above graph model does not explicitly contain any sources or sinks, but in a localized,

real-world transportation network, individuals leave and enter the network all the time from

each of the nodes. To incorporate this additional dynamic, we will suppose that the number

of individuals leaving the graph is balanced by the total number of individuals entering.

More specifically, suppose that individuals leave the graph node i with rate µi such that

gii ≥ µi ≥ 0, and define a vector of these rates, µ. Assuming that the total population on

the graph is conserved, individuals also enter the graph at a rate given by
∑
µi but spread

out over the graph via a vector ν, with
∑
νi = 1. Then we can define a new matrix of

transition rates H by the relations

hij = gij + (νµT )ij, ∀i 6= j(36)

hjj = gjj − µj + (νµT )jj,

where νµT denotes the outer product, noting that

hjj = −
∑
i 6=j

hij

because
∑
νi = 1.

This definition of H is equivalent to the more shorthand relation H = G−diag(µ)+νµT .

Since the columns of both G and H sum to zero, we are guaranteed that these matrices are

singular. While we could simply redefine the entries of G to include the case of H, the

distinction between these two matrices will prove useful shortly, as we define two distinct

subgroups within the graph population N .
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4.2.2. Susceptible/infected vector model on a graph. Suppose now that all

individuals on the graph have the potential to be carriers for some vector-borne disease or

invader. We assume that these individuals are unable to contract the disease themselves, at

least not in any significant way, or transmit it between members of their own population.

Instead, they acquire the disease at certain nodes with a given rate which is variable in time.

Define βi ≥ 0 to be the rate of infection at node i, and β(t) to be the vector of all such rates

at time t. We will assume that once an individual has the disease, it remains a carrier for

all time but may leave the graph as described in the previous section. New members that

join the graph are always disease free, but can later become carriers by the same process.

Let s represent the expected number of suspectable but non-infected individuals at each

node, and c the expected number of infected (carrier) individuals at each node. Using

the matrix G and H of transition rates defined in the previous section, we can model the

movement of these populations on the graph by the equations

ds

dt
= (H − diag(βt))s + (µ · c)ν

dc

dt
= diag(βt)s + (G− diag(µ))c(37)

s(0) = s0

c(0) = c0

where H = G− diag(µ) + νµT ,

and diag(µ) denotes the diagonal matrix formed from vector µ. With β(t) specified, these

equations are linear in s and c and provide a simple model for disease vectors on a graph
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which can be subsequently coupled to an underlying epidemic or ecological invasion model,

as shown in Sections 4.2.3 and 4.3.2.

Before continuing, however, there are a few key observations to be made about the model

given in equation (37) that will give us significant insight into the behavior of our system.

First, we rewrite equation (37) in vector form

d

dt

 s

c

 = At

 s

c

(38)

s(0) = s0 s : susceptible

c(0) = c0 c : carrier

where

(39) At =

 H − diag(βt) νµT

diag(βt) G− diag(µ)


with νµT once again denoting the outer product. Since the elements of ν sum to 1, At is a

transition matrix of exactly the same general form as G or H, with aij ≥ 0 ∀i 6= j and

ajj = −
∑
i 6=j

aij.

In fact, we can think of the system as modeling two identical graphs, one for s and one for

c, with specific links between them. Every node of the s graph is directly reachable from

any node of the c graph through the weighted edges given by νµT , while nodes of the c

graph are only directly connected to corresponding nodes of s graph when βi > 0. Assuming
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that at least one βi > 0 and the graph of s (and thus also c) is strongly connected, then the

combined graph will also be strongly connected. This observation implies that once a single

node is infected, every node becomes suspectable to infection. It also allows us to broadly

apply the following lemma, and ultimately arrive at a key theorem about the dynamics of

system (38).

Lemma 1. Let G be a matrix of transition rates for a strongly connected, directed graph,

so that gij ≥ 0 when i 6= j and

gjj = −
∑
i 6=j

gij < 0.

Then the spectrum of G is equal to {0, λ1, ..., λdim(G)−1} where λi < 0.

Proof. We will proceed by applying the Perron-Frobenius theorem to a linear trans-

formation of G, and then interpreting the result for our original matrix. Let 0 < ε <

1/max{|gij|}, and define a matrix Pε = ε G + I. Then Pε is a column stochastic matrix

- e.g., all elements of Pε are between 0 and 1 and the columns of Pε each sum to 1. This

fact implies that the largest eigenvalue of Pε is 1, and that this is also the spectral radius.

Furthermore, since the graph associated with G is strongly connected and the positive el-

ements of Pε exactly correspond to the nonzero elements of G, Pε is also associated with

the strongly connected directed graph, but in the discrete-time sense (more precisely, Pε is

the transition matrix of a strongly connected, discrete-time Markov chain). Thus Pε is an

irreducible matrix, and since it is also non-negative, by the Perron-Frobenius theorem we

can conclude that the maximal eigenvalue of 1 is unique. Now, since ε G = Pε− I, it follows

that ε G has a unique largest eigenvalue of 0, and therefore so does G. �
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Theorem 1. Let the matrix A be defined as in equation (39) from a strongly connected

graph and let β be constant in time. Then A has a one-dimensional kernel with all other

eigenvalues negative. The asymptotic behavior of any trajectory for the system (38) with

initial condition (s0, c0) is that it approaches a stable equilibrium (s∗, c∗) such that
∑

s∗ +∑
c∗ =

∑
s0 +

∑
c0.

Proof. Suppose that at least one βi > 0. Then by construction of A and our previous

observation concerning strongly connected graphs for s and c, A is a matrix of transition

rates for a strongly connected, directed graph that satisfies the requirements of Lemma 1.

Thus A has a one-dimensional kernel with all other eigenvalues negative.

Writing out A as

A =

 G− diag(µ) + νµT − diag(β) νµT

diag(β) G− diag(µ)

 ,

we note that the column sums of G equal 0, and since
∑
νi = 1, the column sums of

νµT equal µ. Thus the column sums of A are zero, which implies balance in the system

of differential equations (38) and therefore conservation for the sum of the elements of s

and c for all time t. Thus the solution of the initial value problem approaches the kernel

of A at a unique point, where the element sum of an eigenvector associated with the zero

eigenvalue is equal to the sum over all the elements of (s0, c0). Since all other modes have

negative eigenvalues, they will decay, and the solution will asymptotically approach a stable

equilibrium.
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Now suppose instead that β is equal to the zero vector. Then A can be written as a

block upper triangular matrix

A =

 H νµT

0 G− diag(µ)

 ,where H = G− diag(µ) + νµT .

Recall that G is the transition matrix for a continuous-time Markov process on a strongly

connected graph. By Lemma 1, G has a unique largest eigenvalue of 0.

Assume first that µ is the zero vector. Then A is in fact block diagonal, and represents

two completely uncoupled, continuous-time graph processes, both with associated transition

matrix G. Since the column vectors of G all sum to zero, the differential equation system (38)

is balanced and the sum of its solution vector is conserved. Along with the system decoupling,

this implies that both s and c separately have families of unique, stable steady states, and

thus the combined system has one unique, stable steady state for (s, c) with initial condition

(s0, c0).

Now assume that µ has at least one positive entry. Since A is block upper triangular,

the equation for dc
dt

lacks a coupling term,

(40)
dc

dt
= (G− diag(µ))c.

We claim that the kernel of (G − diag(µ)) is trivial. To prove this assertion, we first note

that the eigenvalues of both G and −diag(µ) are non-positive, since G has a unique maximal

eigenvalue of 0 and µ is always non-negative. Thus, for any vector v ∈ ker(G − diag(µ)),

v ∈ ker(G) and v ∈ ker(diag(µ)). Suppose that v ∈ ker(diag(µ)). Since diag(µ) is a

diagonal matrix with at least one positive entry, v must have at least one zero element,

89



specifically in the row k corresponding to µk 6= 0. Now suppose that v has at least one

non-zero element as well.

By construction of G, including equation (34) for the time evolution of probabilities

through a Markov process on a graph, it is easy to see through Lemma 1 that if v ∈ ker(G),

either vi ≥ 0 for all i, or vi ≤ 0 for all i. Since gij ≥ 0 whenever i 6= j, gii < 0, and at

least two entries of any row are nonzero, then in any row k of G such that vk = 0, there

must be nonzero entries only in columns j such that vj = 0 as well, because all other entries

have the same sign. Since G is a matrix of rates on a directed graph, this fact implies that

the associated nodes j are only connected to each other. In the case that v has at least one

nonzero element, this observation contradicts the assumption that the graph represented by

G is strongly connected. Thus v must be the zero vector, and we have proven our claim.

With this result, we can now conclude that c has a single, stable steady state at c = 0.

We now need only to examine the behavior of s at this steady state. When c = 0, we have

ds

dt
= Hs,

and since the graph representation of H is equivalent to that of G up to a change of variables,

we can apply Lemma 1 to show that H has a unique largest eigenvalue of 0. Since the sum

of the elements in s and c are conserved, and c = 0 at the steady state, the kernel of H

intersects the solution space of s at exactly the point where the element sum of s is equal

to the combined sum of the elements of s0 and c0. Thus (s, c) has exactly one stable steady

state solution, which concludes the proof of the theorem. �

90



This theorem will prove useful in the following sections to analyze different combined

models and to find an optimal control. We now introduce the first of these combined models

and discuss some of its applications and assumptions.

4.2.3. Coupling the graph with a spatial infection model. To combine our

graph vector model with an underlying model of epidemic spread, let Y (x, t) represent the

infected target population (non-graph) over a location space Ω at time t. We will assume

that Y (x, t) evolves in time either by a deterministic process

∂Y

∂t
= F1(Y, x)

or by a stochastic transition probability

lim
dt↓0

[
1

dt
Pr[Y (x)→ Y (x) + 1 in (t+ dt]]] = F2(Y, x)

in absence of the graph and its carrier vectors. To couple the graph to this model, define

a vector valued function w(x) such that wi(x) is a probability density function centered at

some location xi ∈ Ω corresponding to node i on the graph. We will now say that node i on

the graph is centered at location xi in Ω, and given that a disease vector from the graph is

located at node i, wi(x) is defined to be the probability of finding that vector at location x

in Ω.

Next, we redefine F1 or F2 via

(41) F̃ (Y, c, x) = F1 or 2(Y, x) + rw(x) · c,
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where r is the infection rate of a graph disease vector. This change in the Y (x, t) equation

allows graph vectors to grow the infected population near assigned locations of the graph

nodes, specifically by distributing the infection rate through the distribution w(x). Finally,

given F , we explicitly define β(t) on the graph using the number of infected individuals Y

located around each node. Let γ be the rate that an individual from Y infects a disease

vector on the graph when contact is made. Then

βi(Y ) = γ

∫
Ω

Y (x)wi(x)dx(42)

β(Y ) = {βi(Y )}ni=1

Assuming (without loss of generality) that the underlying infection model is deterministic,

our complete, coupled model can now be written as

ds

dt
= (H − diag(β(Y )))s + (νµT )c

dc

dt
= diag(β(Y ))s + (G− diag(µ))c

∂Y

∂t
= F (Y, x) + rw(x) · c(43)

β(Y ) = γ

∫
Ω

Y (x, t)w(x)dx

s(0) = s0, c(0) = c0, Y (x, 0) = Y0(x).

4.3. Invasive species model: multiple time-scales

4.3.1. Underlying assumptions. The model represented in equation (43) requires

some underlying assumptions that make it best suited for modeling the spread of an infectious

disease rather than an herbaceous, biological invader. These include
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(1) Only one timescale is involved - the infection grows at a rate comparable to move-

ment on the graph.

(2) There is no significant latency between contact with an infected graph vector and

full infection of a Y individual.

(3) Graph coupling not only provides for non-local spread of the disease via graph edges,

but also facilitates local infection. Infected individuals Y can infect susceptible

vectors s→ c at a node, and the newly infected vectors c may add to the infection

rate at their node of origin before moving on.

While Assumption 3 may be appropriate for an herbaceous invader, the first two assump-

tions certainly are not. Plants do not germinate, grow, and release new seeds (a year-long

process) in the same amount of time as an individual would typically visit a park (a day-long

process). Similarly, since infection of a location corresponds to the presence of a seed bearing

invasive plant in this context, there is a certain amount of latency between the time seeds

are distributed by graph vectors and the resulting infection of a location. To account for

this change of context, our model needs to be modified.

4.3.2. Modifying the model for an herbaceous invader. To address assump-

tions 1 and 2, we begin by requiring that F (Y, x) is scaled appropriately by some value ε,

0 < ε << 1. This scaling represents the idea that our model encompasses two timescales -

one on which individuals on the graph move from node to node (∼ t) and another on which

plants reproduce and grow (∼ ε). Additionally, we will introduce a new variable L(x, t),

x ∈ Ω, representing latent seeds which have been spread by graph vectors but have not yet
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established themselves in their location. L(x) increases from the graph as Y (x) previously

did, with members leaving L(x) to Y (x) at a rate of order ε. The resulting system can be

represented by the equations

ds

dt
= (H − diag(β(Y )))s + (νµT )c

dc

dt
= diag(β(Y ))s + (G− diag(µ))c

∂L

∂t
= rw(x) · c− σL(x, t)h(Y, x)− δL(44)

∂Y

∂t
= εF (Y, x) + σL(x, t)h(Y, x)

β(Y ) = γ

∫
Ω

Y (x, t)w(x)dx

s(0) = s0, c(0) = c0, Y (x, 0) = Y0(x), L(x, 0) = L0(x)

where σ ∼ δ ∼ ε, δ ≥ 0 is a decay term for the latent seeds, and h(Y, x) is a crowding term

also represented in F (Y, x).

4.3.3. Numerical results: Rocky Mountain National Park. Using equation (44)

and the deterministic presence probability model described in Chapter 3, we tested our

model’s performance on the Rocky Mountain National Park data set described in Section 4.1.

The 1996-1999 model results and presence data seen in Figure 4.1 were used to parameterize

the growth rate of Chapter 3 while assuming a Laplace distribution (described in Section 4.1)

for the dispersal kernel w(x).

Nodes were chosen based on remote sensing data of the park made available through

Google Earth [66], including trail heads, trail junctions, parking lots, campgrounds, picnic

areas, waterfalls, stables, and ranger stations. Since traffic rates between each of the points
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was unavailable, flow between graph nodes was estimated using some basic knowledge of

the park’s attractions, geographical proximity of the nodes, and the function of the nodes in

question (e.g., if one has just finished hiking at a trail head, they are less likely to immediately

hike another trail - perhaps opting instead to eat lunch at a picnic site). Similar methods

were used to estimate the vector ν for graph entry rates, and vector µ for graph exit rates.

Since presence probability was used instead of an explicit model for Y (x, t), β(Y ) was

calculated slightly different than previously described. The exact equation used was

(45) β(Pr[Y (x, t) > 0]) = γ

∫
Ω

Pr[Y (x, t) > 0]m(x)w(x)dx,

where m(x) is the suitability of location x as parameterized by Maxent [6] and w(x), the

distribution function connecting each spatial node location to the graph, was chosen to be a

normal distribution with mean (0, 0), standard deviation (5, 5), and correlation 0, centered

around each of the nodes. γ was chosen to be 0.1, corresponding to an estimate that if

cheatgrass is present with a probability of 1 and suitability of 1, then the infection rate onto

visitors’ clothing is 10%.

Other parameters were chosen as follows: graph infection rate r = 4, carrying capacity

K = 350, ε = 1/180 (180 active days in the year, due to winter), σ = ε, δ = 0.33, and the

total number of individuals on the graph at any time N = 5000. The model was run until

2008, starting with data from 1999 and assuming a standard normal probability distribution

for Pr[Y (x, t) > 0] around presence points. The results are shown in Figures 4.2 and 4.3.

As shown in Figure 4.2, the graph coupled presence probability model appears to capture

all of the 2008 presence locations, with the exception of a couple of points in the lower left and

one nearby the park boundary toward the center of the Figure. Both these locations illustrate
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Figure 4.2. 2008 Rocky Mountain National Park Bromus presence proba-
bility, based on 1999 presence data. Grey dots are 2008 presence data, pink
diamonds are node locations, and pink dots are the 1999 initial presence points.

Figure 4.3. 2008 Rocky Mountain National Park Bromus presence proba-
bility, scaled by suitability. Grey dots are 2008 presence data, pink diamonds
are node locations, and pink dots are the 1999 initial presence points.
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important limitations to the model. The two points in the lower left lie some distance

down a trail (not shown), but not particularly nearby any trail head or junction. Since

the combined model was not configured to treat spread down trail corridors any different

than over regular terrain (except for a possible suitability difference - trail and road data

are common environmental layers to include for niche modeling), the model did not spread

the invader fast enough to reach these points. In the other case, the one missed point near

the center lies near the boundary of the park, outside of which no presence information

was available. Since the town of Estes Park lies just outside the boundary, which includes

populations of cheatgrass, it is reasonable to expect that this missed presence point was due

to invasion from outside Rocky Mountain National Park boundaries.

Another feature of the model to note is that in some spots, there are relatively large areas

of high presence probability but no 2008 presence data (e.g., the top right of Figure 4.2).

While these locations could be due to model overestimation, we have no information about

which areas of the park were surveyed in 2008, and likewise no species absence data. Since

these areas are often hard to access, more information is needed to assess model performance

for overestimation in these places.

Also of interest: just below the two missed points in the lower left of Figure 4.2 there

is a small area of presence probability surrounding a graph node connection, but otherwise

disconnected from the main mass of species presence. This node was located at a trail

junction close to a lake that could possibly see a lot of travel, but because of the low suitability

of the area, the invasion has been largely contained. The lack of model propagation at this

node demonstrates the ability of the model to respond when, even though a location is
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connected to the invasion via the transportation network, the heterogeneity of the terrain

makes it difficult for the species to persist locally.

In Figure 4.3, another view of the park is shown. The model result is exactly the same

as in Figure 4.2, but it has been scaled by the provided Maxent suitability data. One can

immediately see the usefulness of this view, as presence data points are most often found in

locations that are both highly suitable and predicted to have presence by the model.

4.4. Control

4.4.1. Introduction. In this section, we consider a couple methods of control that can

be applied to the models described by equations (43) and (44). The first is a control on the

graph, where we seek to limit the number of infectious vectors, c. In the case of vector-borne

disease, this will correspond to removing or curing the disease carrying vectors at given

nodes, while in the herbaceous invasive species model, we will assume that efforts are being

made to remove seeds from the humans or vehicles that carry them. The second control will

be applied directly to the underlying model. In this case, we will assume that we are directly

eliminating the disease in the target population. For the invasive species model, this effort

corresponds to spraying a location, killing both live plants and latent seeds.

4.4.2. Graph control. To implement a control on the graph for the vector-borne

disease model, we will continue to assume that the total number of graph vectors, s + c, is

constant. If we also assume that infected vectors are being removed and replaced with the

same distribution ν as used before, we need only make an adjustment to the constant vector
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µ with a vector valued control function u(t).

ds

dt
= [H − diag(β(Y ))]s + [ν(µ+ u(t))T ]c

dc

dt
= diag(β(Y ))s + [G− diag(µ+ u(t))]c(46)

||u(t)|| ≤ K ∀t s.t. t0 ≤ t ≤ t1

s(0) = s0, c(0) = c0.

The norm on u(t) is left unspecified, as it is dependent on the specific application, and this

graph system can now be coupled to an underlying model as described in Sections 4.2.3

and 4.3.2.

Alternatively, if we assume that disease vectors are being cured and re-released on site,

we can formulate control on the model using equations

ds

dt
= [H − diag(β(Y ))]s + (νµT )c + diag(u(t))c

dc

dt
= diag(β(Y ))s + [G− diag(µ+ u(t))]c(47)

||u(t)|| ≤ K ∀t s.t. t0 ≤ t ≤ t1

s(0) = s0, c(0) = c0.

In the case of an herbaceous invasive species, we favor system (47) over the previous formu-

lation since the graph vectors are likely to be humans or vehicles, which after being cleaned

continue to exist on the graph at the same location. As a result, we will direct our subsequent

analysis to the model given in (47) and leave the other system for future work.
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4.4.3. Optimal graph based control. In this section, we will consider the system

of equations (47) and extrapolate our results to a combined invasive plant model. Our most

important assumption will be to assume that Y is constant and omit its contribution in the

analysis. Because of the presence of two time scales, this assumption is particularly mild

in the plant model and will allow us to linearize the system (47) in s and c, taking β as

constant. We then look for an optimal control u for arbitrary β, which will give us a method

for describing an optimal control in the original model.

We begin by rewriting system (47) as an optimal control problem

||c||L2(0,T ) → inf

dx

dt
= Ax +B(u)x(48)

x(0) = x0

||u|| ≤ K

where

x =

 s

c

 A =

 H − diag(β) νµT

diag(β) G− diag(µ)

 B =

 0 diag(u)

0 −diag(u)

 .

Since s, c,u ∈ Rn with n the number of network nodes, x ∈ R2n, and A and B are 2n× 2n

matrices.

Assume that u is to be held constant during the time interval from 0 to T . This is likely

the most realistic case since real-time information about s and c can be difficult to acquire,

and management will often want to implement a constant control strategy for the season,
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adjusting only periodically as further studies are carried out and completed. Consequently,

we will not concern ourselves with transients in the solution, but rather attempt to minimize

the unique attracting state of ||c|| for a given matrix A.

Theorem 2. Consider the problem

||C̃∗|| → inf

dx

dt
= Ax +B(u)x

x(0) = x0

||u|| ≤ K, K > 0

where x, A, and B are as defined in problem (48) and

(A+B(u))x̃∗ = (A+B(u))

 S̃∗

C̃∗

 = 0, s.t.
2n∑
i=1

x̃i = N.

Then the optimal, constant control u which minimizes ||C̃∗|| is given by

u = K
ũ

||ũ||
where ũi =


βi(C

∗
i +S∗i )

C∗i
if C∗i 6= 0

0 if C∗i = 0

where

Ax∗ = A

 s∗

c∗

 = 0, s.t.
2n∑
i=1

xi = N

is guaranteed to have a unique solution x∗ by Theorem 1.
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Proof. Let 0 < ε < 1, and let x̃ = x + εy with y1,y2 ∈ Rn so that

y =

 y1

y2

 .

Our goal is to perturb the matrix A by εB(u), affecting a shift of x∗ by εy in the desired

direction that minimizes ||c∗ + εy2|| and satisfies the equations

(49) (A+ εB)(x∗ + εy) = 0

and

(50)
2n∑
i=1

x∗i + εyi = N.

Multiplying out equation (49), we have the relation

(51) Bx∗ + Ay + εBy = 0.

The Fredholm alternative implies that this equation is solvable for y as long as for every

z ∈ R2n such that zT (A + εB) = 0, it follows that zTBx∗ = 0. But because this statement

implies that zTA = −εzTB, we have zTBx∗ = −zTAx∗/ε = 0 and ε > 0, since x∗ ∈ ker(A).

Thus a solution always exists, and furthermore, since the columns of (A+ εB) sum to zero,

the solution is not unique from this equation alone.

Now since we wish to minimize ||c∗+ εy2|| with 0 < ε < 1, we will choose y2 = −c∗ and

attempt to find u so that a vector y of this sort will satisfy equation (51). This task is made

easier if we first solve for y1. Using the block form of A in equation (51), we can form the
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system of equations

(H − diag(β))y1 + (νµT )y2 + diag(u)c∗ + εdiag(u)y2 = 0(52)

diag(β)y1 + (G− diag(µ))y2 − diag(u)c∗ − εdiag(u)y2 = 0.

Adding these two equations and recalling that H = G− diag(µ) + (νµT ), we find that

H(y1 + y2) = 0.

By our choice of y2 = −c∗, we now have that y1 = c∗+v, where v ∈ kerH. Furthermore,

by equation (50) and the fact that the elements of x∗ sum to N due to conservation in the

system given by A,
∑
yi = 0. Thus

∑
vi = 0 as well. But it was previously shown in the

proof of Lemma 1 that H + I satisfies the Perron-Frobenius theorem with a unique positive

eigenvalue of 1, which implies that there exists a corresponding eigenvector such that all

components of the vector are positive. Since this eigenvector must be in the kernel of H and

the kernel of H is of dimension 1, the components of v must all have the same sign. Thus

v = 0, and y1 = c∗.

Returning to the second equation in system (52), we now have

diag(β)c∗ − (G− diag(µ))c∗ − diag(u)c∗ + εdiag(u)c∗ = 0.

Using the fact that Ax∗ = 0, diag(β)s∗ = −(G− diag(µ))c∗, so we arrive at

diag(β)c∗ + diag(β)s∗ − diag(u)c∗ + εdiag(u)c∗ = 0.

103



This system is now completely uncoupled, so whenever a c∗ component satisfies c∗i 6= 0, we

arrive at the solution

ui =
βi(c

∗
i + s∗i )

c∗i
· 1

1− ε
.

Since y2i = 0 whenever c∗i = 0, control of this component has no effect, so we can theoretically

set it to anything we want. However, since we wish to maximize ε by controlling over non-

zero c∗i components, and we are constrained by the condition ||u|| ≤ K, we must set ui = 0

whenever c∗i = 0 to minimize the effect of these components on the norm. Thus

||u|| = ||{ui}ni=1|| ≤ K,

which we maximize to give us our result. �

4.4.4. Control on the underlying model. On the underlying model, control at

minimum involves a kill function for the invader Y . Let ϕ(x, t, Y ) be a control to be applied to

location x at time t, possibly dependent on the value of Y at that location on the underlying

model. This control represents a reduction rate on the current infected population Y (x, t).

We incorporate this control with the equations

ds

dt
= [H − diag(β(Y ))]s + (νµT )c

dc

dt
= diag(β(Y ))s + [G− diag(µ)]c

∂Y

∂t
= F (Y, x) + rw(x) · c− ϕ(x, t, Y )Y(53)

β(Y ) = γ

∫
Ω

Y (x, t)w(x)dx

||ϕ(x, t)||L2(Ω) ≤ K ∀t s.t. t0 ≤ t ≤ t1
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For the herbaceous invader model, we also apply this control to L,

ds

dt
= [H − diag(β(Y ))]s + (νµT )c

dc

dt
= diag(β(Y ))s + [G− diag(µ)]c

∂L

∂t
= rw(x) · c− σL(x, t)h(Y, x)− δL− ϕ(x, t, Y )L(54)

∂Y

∂t
= εF (Y, x) + σL(x, t)h(Y, x)− ϕ(x, t, Y )Y

β(Y ) = γ

∫
Ω

Y (x, t)w(x)dx

||ϕ(x, t)||L2(Ω) ≤ K ∀t s.t. t0 ≤ t ≤ t1.

4.4.5. Numerical results. Control regimes implemented on the cheatgrass model of

Rocky Mountain National Park have yielded extremely limited results. Optimized graph

based control effectively reduces the amount of carrier vectors on the transportation network,

but has almost no discernable affect on the underlying model output. This failure to suppress

the invader is caused by early establishment of populations around the geographical node

locations. Graph based control cannot hope to yield perfect results, and in realistic scenarios,

some amount of propagules still make it to all the node locations, often even before control

is even implemented. Once a presence probability is established at a location, graph based

control has no suppressing effect on this population, and it spreads as normal. Since the

invader has a high growth rate, any delay that the graph control might have caused is

negligible, and no effect of the control is noticeable after as short a time as two years.

Since optimal control for the underlying model is not available, the choice of control

function ϕ(x, t, Y ) is not immediately clear. In our numerical trials, we arbitrarily chose

to implement control around the graph nodes in areas where the product of suitability
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Figure 4.4. Projected results for the control regime ϕ on the underlying
model in Rocky Mountain National Park. Results were based off of 1996
presence data, with the model running until 1999. Without control, the range
of the species is projected to be nearly identical.

probability and species presence probability was greater than 0.1. Control decreased presence

probability by a factor of 0.95 and latent seeds by a factor of 0.65 when applied, and could be

used over an area the size of three American football fields. Control was applied once near

the beginning of each year (one tenth of the way into the growing season), and suppressed

new presence for some time, losing effect later in the growing season.

Figure 4.4 shows the results of this control regime applied on the 1996 Rocky Mountain

National Park presence data until 1999. This period was chosen (rather than the 1999-

2008 period of Figure 4.2) for its brevity. While the effects of the control are visible in

areas nearby node locations, the breadth of the spread model is nearly identical to model

output without control, suggesting that this regime was a failure at delaying the spread of

the invader. One likely reason for this result is the units of the model. Since this model

shows presence probability rather than population density, it is hard to know exactly what
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Figure 4.5. Projected results for the control regime ϕ and optimal graph
based control in a central area of Rocky Mountain National Park. Results
were based off of 1996 presence data, with the model running until 1999. The
extent of the probability results without control is shown in pink.

happens to population numbers when control is applied. Local presence probability is heavily

reduced, but this fact does not grant us much confidence that the invasion has ceased to

spread nearby. Even low probabilities can continue to spread, and as they spread, they grow

- only a small patch of cheatgrass is needed to quickly resume the invasion. Thus rare events

can combine to continue the model’s propagation through the domain.

To give the reader a better idea of what kind of invasive suppression occurs with these

controls, Figure 4.5 plots the projected result of the control described above implemented

alongside optimal graph based control (with ||u|| ≤ 200) for an area of Rocky Mountain

National Park. The pink regions around the non-zero presence probability areas show the

extent of model spread without any control over the same period.
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4.5. Discussion

Using the Bromus tectorum invasion of Rocky Mountain National Park as motivation, we

have introduced with equation (43) and (44) a simple, linear model for invasive spread on a

transportation network through the action of carrier vectors. Biological invasions rarely occur

without human interaction, and understanding long distance dispersal events is critical for

accurately assessing the exposure of remote locations to short-term infection. By using the

natural graph structure of a transportation network, we can begin to model the probability

of spread to remote locations, informing the steps needed to stop the invasion.

While our model predicted significant difficulty controlling Bromus tectorum in Rocky

Mountain National Park, other methods have yet to be considered. Using the model results,

it may be possible to focus control efforts on key network connections leading to as of yet un-

invaded sites, especially those which are projected to be highly susceptible to transportation

of Bromus due to a close proximity of high presence probability. Another option is to alter

the transportation network itself, avoiding infected sites entirely by placing nodes elsewhere.

Even if that is impossible, our results can be used in infrastructure planning to avoid placing

nodes in sensitive, but as of yet uninfected, areas that would then be newly connected to

the Bromus invasion.

In addition to the results shown in this chapter, we see relevance for our model on a con-

tinental or even global scale, where the transportation network takes the form of commercial

shipping routes or airline connections. The modular form of equations (43) and (44) should

allow for simple implementation with existing spatial models in both epidemiological and

ecological settings, and with an optimal control available, management can quickly prioritize

resources to the affected nodes for possible containment. Similarly, we envision applications
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on a microbiological scale as well, including applications to cancer tumor growth and possible

spread to other organs.
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CHAPTER 5

Towards a continuous population model for

natural language vowel shift

5.1. Introduction

POINS: Come, your reason Jack, your reason.

FALSTAFF: What, upon compulsion? No: were I at the Strappado, or all

the Racks in the World, I would not tell you on compulsion. Give you a

reason on compulsion? If Reasons were as plentie as Blackberries, I would

give no man a Reason upon compulsion, I.

This comparison of reasons and blackberries from Shakespeare’s Henry IV,1 written in the

year 1596, is better understood if one knows that reasons in Shakespeare’s day was pro-

nounced similarly to the current standard American pronunciation of the word raisins. Such

difficulties in understanding Shakespeare can due to changes produced by the Great English

Vowel Shift, which remodelled the English vowel system between the 16th and 19th centuries.

But problems can occur not only in trying to read the works of the old masters. Consider

the following story (adapted from [68]):

Bernice visits her great grandmother and tells her that her baby will be a

boy. “Oh!,” says the grandmother, “why not name him Ian (pronounced

ee-yun) after my great uncle?” “But, it is a boy!” exclaims Bernice, “I

won’t give him a girl’s name!” Bernice’s great grandmother, probably like

you, is confused.

1Henry IV, Part I, Act 2, Scene 4, 196–200; e.g. [67] p. 139.
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The explanation to Bernice’s story lies in a vowel system change that is much more recent

than, but equally dramatic as, the Great English Vowel Shift. First studied by William

Labov et al. [69], this set of changes, called the Northern Cities Vowel Shift (NCVS) is

currently underway in some cities on the United States side of the Great Lakes region. One

component of the NCVS is the replacement of the vowel sound in Ann as spoken in Standard

American English with the vowel sound at the beginning of Ian. As this change has affected

the speech of those in Bernice’s generation, she misunderstands her grandmother’s older

form of speech.

To understand vowel changes such as the NCVS, we need to consider the parameters

that define a vowel. Vowels are classified according to how they are produced by the tongue

and lips. Drawing a stylized representation of the mouth cavity as a trapezoid as in Fig. 5.1

(the teeth being the leftmost line, the roof of the mouth the top line), linguists give various

vowel sounds symbols which are placed in the diagram at the tongue position used to make

that sound. For example, the vowel of Ann as spoken in Standard American English is

represented by [æ] and placed in the lower left region of the vowel trapezoid, and the initial

vowel sound [i] of Ian is placed in the upper left region. One says that the NCVS “raises”

the vowel of Ann from [æ] to [i], as the change corresponds to moving up in the trapezoid.

Similarly, vowels can be “lowered,” “fronted,” or “backed” according to their movements

within the diagram, “fronting” corresponding to moving (leftwards) towards the teeth.

A key to understanding vowel changes such as the Great English Vowel Shift or the

Northern Cities Vowel Shift is to realize that the phonetic space represented by the vowel

trapezoid is a continuous space. The raising of [æ] to [i] occurs phonetically gradually; at the

beginning of the change, speakers may utter a vowel sound closer to the [æ] as in Fig. 5.1,
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Figure 5.1. A vowel trapezoid. The vertical axis represents vowel height
(the vertical position of the tongue relative to the mouth of the roof during
articulation), and the horizontal axis represents vowel backness (the horizontal
position of the tongue relative to the back of the mouth during articulation).
The various symbols represent the sounds produced at the various positions.
Arrows represent the Northern Cities Vowel Shift described in the text.

and as the change proceeds the typical position of the tongue moves up closer to the position

of [i] in Fig. 5.1. However, the change is lexically abrupt, meaning, in our example, that

the vowel [æ] will be raised in all words in which that vowel appears, the only possible

conditioning coming from the phonetic environment. That is, the change may proceed, for

example, more quickly when the vowel is uttered after a consonant [p] sound than after a [b].

Such phonetically gradual but lexically abrupt vowel changes are termed regular changes.

Also attested are irregular vowel changes that are phonetically abrupt but lexically gradual—

there is a sudden change from one vowel to a very different vowel, but the change first occurs

in a few words where the original vowel appears, and eventually the change may spread to

all words in the lexicon with the original vowel. This later type of change is also called

lexical diffusion. According to Labov [70], regular changes are commonly associated with

raising, lowering, fronting, and backing within the phonetic trapezoid, whereas changes in

vowel length commonly occur through lexical diffusion.
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To elucidate the factors that are involved in regular vowel changes, let us consider in more

detail the NCVS. The NCVS is a change currently underway in a region of the northern

United States centred around the Great Lakes, stretching from Chicago to Buffalo. The

raising of [æ] to [i] mentioned above is the first step in a chain of changes associated to the

NCVS. In Fig. 5.1 are diagrammed the vowels [2] of stuck, [O] of stalk, [A] of stock, and [æ] of

stack as spoken in Standard American English. The raising of [æ] to [i] leaves a “hole” in the

phonetic space; there is not any more a vowel in the system between [æ] and [i]. The second

step of the NCVS remedies this situation by backing [A] to [æ]; so, stock after the change

is pronounced as stack was before the change. The process then proceeds with the lowering

of [O] to [A] so that stalk becomes pronounced as stock before the change, and the backing

of [2] to [O] so that stuck becomes pronounced as stalk before the change. Such a series of

movements is often referred to as a “chain shift” as the initial movement of [æ] resulted in

the jostling of the other vowels in the system. The end result of this chain shift is that the

original system of five vowels has moved around in a circle in phonetic space.

The work of Labov et al. [69] and later, for example, Eckert [71] that documents the

NCVS relies on the notion of apparent time. That is, one assumes that the oldest speakers

in a population still speak the language that they learned when they were young. If one

finds in a population many great grandmothers who say stalk with the standard American

pronunciation, many younger people such as Bernice who pronounce stalk as stock, and

middle-aged speakers uttering a vowel somewhere in between the two extremes, one concludes

that a change has occurred in the population over the great grandmother’s lifetime. This

assumption is not without complications; speakers may take on different forms of speech

according to social norms as they age. Furthermore, juveniles also show developmental
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differences that distinguish them from the general population; Labov [70] states children of

age eight to be the appropriate youngest subjects of apparent-time phonetic change studies.

The changes associated to the NCVS have not proceeded to the same degree in all regions

affected by the change; cities such as Chicago or Cleveland show the greatest advancement of

the change, whereas only the first stages of the change are noticed in cities such as Pittsburgh

or Indianapolis. Also, the NCVS is not reported to have affected African American English.

It is also important to note that the change is not easily noticed by the communities in which

it occurs; sound change is a gradual process that requires, in the case of the NCVS, three to

four generations for completion [70].

Our objective in this chapter is to develop an age-structured mathematical model for

vowel pronunciation in a natural language community as a basis for understanding vowel

learning and regular changes in vowel systems. The model is not appropriate for changes

through lexical diffusion. We develop a framework in which one may consider the question

of how vowel systems that have, as in the case of American English, been stable to hundreds

of years, begin to continuously change so that significant differences are noticed within a

few generations. This contrasts with current models for vowel systems such as those of

Liljencrants and Lindblom [72], Schwartz et al. [73, 74], and de Boer [75], who model the

emergence of vowel systems, considering the number of vowels and their spacing in the vowel

parallelogram.

Our model must be consistent with the fact that not all speakers (even of the same

age) have identical vowel pronunciation. Particularly since Kuhl’s studies of perception

in humans and animals [76, 77, 78], this distributional aspect of of speech utterance and

perception [79, 80, 81] has been of interest to linguists. Infants in particular have been shown
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to be perceptive of distributional aspects of language as they learn to speak [82, 83, 84] and

to be able to distinguish phonetic contrasts that adults do not distinguish [85].

Three simplifying assumptions of the model we present are the following:

(1) The rate of change of a vowel is independent of its phonetic environment. This

means that the rate at which the pronunciation of a particular vowel changes is

supposed to be the same for all words. This is not quite true in practice, for

surrounding phonemes may sometimes enhance the vowel change [86]. However, as

regular vowel changes typically affect, in the end, all instances of a particular vowel

regardless of the phonetic environment, this assumption is justifiable for a simple

model.

(2) The chain shift is rigid. In other words, all elements of the vowel system are sup-

posed to undergo simultaneously the same shift. Consequently, the sound change in

a single vowel defines uniquely the shift in the whole vowel system. It is evident that

this is a severe simplification, which is justified only because of its resulting mathe-

matical simplicity: in a general situation we would need to model the shift of each

vowel separately, together with the vowel–vowel interactions (“knock-on effects”) by

drag- and push-chain mechanisms [87].

(3) Age is the only social structure. We will not consider, for example, differences

between urban and rural speakers or social status in a community.

The object of our study is an age- and phonetic structured population, such that its

individuals are distinguished by their age and vowel system sound (pronunciation). The

processes of ageing, birth and death follow the standard demographic model by McKendrick
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and von Foerster [1], while the evolution of language by teaching and social interaction is

based on the theory of mixtures with continuous diversity proposed by Faria [88].

The structure of the remainder of this paper is as follows: The fundamental variables of

the model are introduced in Sect. 5.2. General balance equations are explained in Sect. 5.3,

and A.1 gives a detailed derivation of these equations. In Sects. 5.4 and 5.5 (supplemented

by A.2) we propose explicit expressions for terms in the equations that describe factors such

as the influence of speakers on speakers of other ages, and in Sect. 5.6 we give boundary

conditions. In Sect. 5.7, we derive an approximation of a stationary solution to the balance

equations, corresponding to a state of phonetic equilibrium in which speakers of all ages share

the same distribution of vowel pronunciation, and we define a parameter that measures

the variance in this distribution. Via a numerical simulation we show how a symmetric

initial condition evolves to the equilibrium solution of the same mean vowel pronunciation.

Motivated by a common suggestion of why vowel shift occurs, we model in Sect. 5.8 a

situation in which the initial population consists of a majority pronunciation that is affected

by an immigrant minority with a different mean vowel pronunciation. Such initial conditions

lead to vowel shift in numerical simulations of the model. Finally, we close in Sect. 5.9 with

perspectives on using the model to understand factors impacting vowel shift. This chapter

is published in the Journal of Theoretical Biology [8].

5.2. Fundamentals

We define all sounds of a vowel system through the position of a single vowel in the two-

dimensional phonetic space, represented by the vowel trapezoid of Fig. 5.1. Vowels may be

quantitatively described by their formants (frequencies of highest energy), as the two dom-

inant formants have been shown to correlate to the perception of vowels [89]. Accordingly,
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in this model we assume that the phonetic space is a circle in the space of the two dominant

formants. That is, sound changes occur in a closed loop—mathematically represented by the

unit circle S1—instead of a two-dimensional region of the phonetic space. The generalization

to the latter case is nonetheless straightforward. Representing vowel space as a closed loop

will also lead us to take periodic boundary conditions in σ (see Sect. 5.6), but we acknowledge

that the start and end of a vowel chain do not necessarily interact cyclically (cf. discussion

in Sect. 5.9). We also assume that any speaker has a definite vowel pronunciation, which

may be interpreted as the average over the naturally variable pronunciation of that speaker;

we return to this point later, in Sect. 5.9.

All speakers of same age and utterance constitute what is called a species. Their number

is specified by the product n∗(σ, a, t) da dσ, which represents the number of speakers aged a

to a + da and uttering vowel sounds in the phonetic interval σ to σ + dσ, at time t. Thus,

the most fundamental quantity of the theory is the speakers number density2

(55) n∗(σ, a, t) : S1 ×A× R→ R, with A := [0, 1] ⊂ R.

In the expressions above, σ := θ/(2π) ∈ S1 is the vowel sound, mathematically represented

as a normalized arc length of the closed vowel loop S1, with corresponding angle 0 ≤ θ < 2π.

Further, a := x/L ∈ A is the dimensionless age, which specifies a point in the age space A,

with x and L standing for the temporal (i.e. dimensional) age and the maximum lifespan of

any speaker in the population, respectively. From these definitions, we immediately conclude

2In full species density of the number of speakers. Species densities are distribution densities on S1 ×A.
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that

∫
S1

dσ =
1

2π

∫ 2π

0

dθ = 1,

∫
A

da =
1

L

∫ L

0

dx = 1,(56)

∫
S1

∫
A

da dσ =
1

2πL

∫ 2π

0

∫ L

0

dx dθ = 1.(57)

Additionally, the double integral

(58) N |σ1,a1σ0,a0
(t) :=

∫ σ1

σ0

∫ a1

a0

n∗(σ, a, t) da dσ

specifies the number of speakers aged between a0 and a1 and uttering vowel sounds between

σ0 and σ1, at time t. Likewise, we define the population size (i.e. the total number of speakers

in the population) by

(59) N :=

∫
S1

∫
A

n∗(σ, a, t) da dσ, N = constant.

For simplicity, we suppose N to be constant in time (i.e., there is a stable population of

stationary size, with vanishing Malthusian parameter); otherwise time changes of the total

number of speakers could disguise vowel shifting.

Finally, we introduce also the supplementary densities

(60) nM(a, t) :=

∫
S1

n∗(σ, a, t) dσ, nN(σ, t) :=

∫
A

n∗(σ, a, t) da

associated with the total number density of speakers aged a and the total number density

of speakers uttering the sound σ, respectively. From this point on, we shall consider only
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stable populations with stationary age-structure, defined by the constraint

(61)
∂nM

∂t
≡ 0 ⇒ nM(a).

5.3. Phonetic process and balance equations

The objective of this theory is the determination of governing equations for the time-

evolution of the vowel system in a steady, age-structured population. As discussed above, the

vowel sound distribution in such a population is described by the speakers number intensity

n∗. Its evolution is dictated by the system of equations proposed below, which can be seen

as a generalization of the celebrated McKendrick–von Foerster equation [1] according to the

principles of the theory of mixtures with continuous diversity [88]. We derive in Sec. A.1

the balance equations of

• speakers number

(62)
∂n∗

∂t
+

1

L

∂n∗

∂a
+
∂n∗u∗

∂σ
= −n∗µ∗ + n∗Γ ∗,

• transition impetus

(63)
∂n∗u∗

∂t
+

1

L

∂n∗u∗

∂a
+
∂n∗u∗2

∂σ
+
∂ϕ∗

∂a
+
∂φ∗

∂σ
= n∗κ∗.

Besides the speakers number density n∗, we identify in (62) the phonetic transition rate

u∗, the age-dependent mortality rate per capita µ∗, and the rate of abrupt sound change per

capita Γ ∗. The transition rate u∗(σ, a, t) describes the mean rate per capita at which speakers

aged a and uttering the sound σ gradually change their pronunciation. Thus, u∗ corresponds

to a kind of “velocity” in the phonetic space; that is, it describes regular (continuous) sounds
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changes. In contrast, the rate Γ ∗ models irregular (discontinuous) sound changes, which may

be interesting in connection with certain phenomena like lexical diffusion, but are unlikely

to have relevance for vowel shift. Thus for the purposes of this theory we may set3

(64) Γ ∗(σ, a, t) ≡ 0.

Equation (63) is new; it relates the evolution of the transition rate u∗—more precisely

the product n∗u∗, called phonetic transition impetus—to the phonetic stresses ϕ∗ and φ∗,

as well as the global stimulus rate per capita κ∗. All these three quantities describe multi-

age interactions in the phonetic space. The phonetic stresses ϕ∗ and φ∗ are associated to

interactions between familiar species, i.e. between speakers with similar ages and utterances.

In contrast, the global stimulus rate κ∗ stands for interactions between speakers with distinct

ages and utterances.

The fundamental equations of the theory are then (62) and (63), the solution {n∗, u∗}

of which defines a phonetic process. Nevertheless, the system (62) and (63) is not closed yet,

for the quantities µ∗, ϕ∗, φ∗ and κ∗ are still unknown. This closure problem is solved in

Sects. 5.4 and 5.5.

3It must be emphasized that deliberate sound changes, consciously adopted in particular situations, are not
considered in the model. Rather, we are interested only in natural sound changes. Thus, according to the
usual hypothesis that vowel shift is characterized by a regular sound change [70, 90], we conclude that (64)
should hold.
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5.4. Closure and phonetic functionals

The starting point to close the system (62) and (63) is to introduce general functional

relations of the form

(65)

Fγ(σ, a, t) = Hγ (σ, a, t ;σ′, a′, n◦, u◦) , γ = 1, 2, 3, 4,

F1 := µ∗, F2 := ϕ∗, F3 := φ∗, F4 := κ∗,

where n◦ := n∗(σ′, a′, t) and u◦ := u∗(σ′, a′, t), with σ′ ∈ S1 and a′ ∈ A.

Equation (65) states that the phonetic functions Fγ are determined by the (non-local)

phonetic functionals Hγ, in such a way that a speaker aged a and uttering vowel σ may be

influenced by individuals of all ages and pronunciations, taking into account their number

and rate of pronunciation change. This kind of dependence on multiple sounds and ages

suggests that the phonetic functionals Hγ may contain intricate integrals over S1 and A. It

is evident that such complicated functional relations are not convenient for applications and

should be simplified somehow. The objective of the remainder of this Section is to discuss

such simplifications.

We begin by introducing the hypothesis of phonetic objectivity : the inherent behaviour

of the speech community does not depend on absolute time or sound. Such an assumption is

plausible as long as all speakers live in an unchanging environment and have no physiological

or personal bias towards a particular pronunciation [91]. In order to apply this hypothesis

to (65), one needs first to introduce the notion of phonetic reference frame: time and pro-

nunciation are abstract notions that can only be specified with reference to particular time

and sound, which together with the orientation (handedness) of the vowel loop S1 define

a phonetic frame of reference. In this sense, phonetic objectivity is related to changes of
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phonetic reference frame that preserve time lapses and sound intervals. The most general of

such frame transformations is described by the equations

(66) σ̂ = s σ + ς, t̂ = t+ τ,

where σ̂ and t̂ are the sound and time identified with respect to the new reference frame,

while ς(t) ∈ S1 and τ ∈ R denote shifts in sound and time references, respectively. The

factor s = ±1 accounts for a possible change of handedness of the vowel loop S1, such that

s = −1 denotes an inversion. From (66) there immediately follow the transformation rules

(67) â = a, û∗ = s u∗ +
dς

dt
.

Seeing that the speakers number density n∗ is an intrinsic property of the population, which

should not depend on the choice of the phonetic reference frame, we have also

(68) n̂∗ = n∗.

Thus, since the balance equations (62) and (63) must be invariant with respect to frame

changes of the type (66), we derive

(69) µ̂∗ = µ∗, φ̂∗ = φ∗, ϕ̂∗ = s ϕ∗, κ̂∗ = s κ∗.

By combining the hypothesis of phonetic objectivity with (66)–(69), we conclude that the

functionals (65) cannot depend explicitly upon time t, whereas explicit dependencies on the
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sound σ and the transition rate u∗ are allowed only in terms of the differences

(70) σ − σ′ and u∗ − u◦ = u∗(σ, a, t)− u∗(σ′, a′, t).

Collecting all these results together, (65) reduces to

(71) Fγ(σ, a, t) = Gγ (a ; a′, σ − σ′, n◦, u∗ − u◦) .

Further consequences of the hypothesis of phonetic objectivity will be exploited in Sect. 5.5.

An additional simplification we may invoke here is the hypothesis of instantaneous adap-

tive response: past phonetic profiles of the speech community do not affect its inherent

behaviour. This hypothesis implies the absence of a collective memory, so that speakers

perceive solely the current structure of the population, without prospective or retrospective

dispositions. Mathematically, it simply implies the exclusion of u◦ from (71), leading to the

reduced functional

(72) Fγ(σ, a, t) = Fγ (a ; a′, σ − σ′, n◦) = Fγ (a ; a′, σ − σ′, n∗(σ′, a′, t)) .

5.5. Explicit phonetic functions

To proceed towards explicit forms of (72) we may constrain the integrals in Fγ to have

the following general pre-defined form:

(73) Fγ(σ, a, t) =

∫
S1

∫
A

Vγ
(
σ − σ′

)
Wγ

(
a, a′

)
Xγ

(
n∗(σ′, a′, t)

)
da′ dσ′.
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We can determine particular expressions for Xγ and the influence kernels Vγ and Wγ by

exploiting the properties of the population under study as follows.

The constraints (59) and (61) of constant size and stationary structure of the population

require that the total mortality rate M should be constant

(74) M :=

∫
S1

∫
A

n∗µ∗ da dσ =

∫
A

nMµM da = constant ,

implying that

(75) F1(σ, a, t) := µ∗(σ, a, t) ≡ µM(a),

where we assumed that the mortality rate is independent of pronunciation. Consequently,

from (73) and (75) it follows

(76) V1

(
σ − σ′

)
≡ 1, W1

(
a, a′

)
≡ µM(a), X1 (n∗) ≡ 1.

The explicit form of µM(a) can be obtained from existing life tables.

Concerning the fluxes ϕ∗ and φ∗, we must first realize that they describe short-range

interactions, resulting that we can express the influence kernels V2, W2, V3 and W3 of (73)

as nascent delta functions (e.g. narrow Gaussian bumps). It should be noticed, however,

that the transformation properties (66)–(69) require ϕ∗ to be an odd function of σ, while φ∗

must be an even function of σ, implying that

V2

(
σ − σ′

)
≡ 0,(77)

V3

(
σ − σ′

)
≡ δε(σ − σ′), W3

(
a, a′

)
≡ δε(a− a′)

[τφ(a)]2
,(78)
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where δε(·) denotes a nascent delta function and τφ(a) is the characteristic reaction time to

phonetic stress of the speakers aged a. For example, juveniles should have much shorter

reaction times than elders.

In contrast, the global stimulus rate κ∗ describes long-range interactions between speakers

with distinct ages and/or pronunciations. From (66)–(69) it follows that it should be an odd

function of σ, while no particular symmetry is required for its long-range age dependence.

Owing to this, as well as to other reasons that will become apparent soon, we will assume

here that the influence kernels V4 and W4 have the forms

(79) V4

(
σ′ − σ

)
≡ sin [2π(σ′ − σ)] , W4

(
a, a′

)
≡ G(a, a′)

nM(a′) [τκ(a)]2
,

with τκ(a) denoting the characteristic reaction time to global stimuli, while G(a, a′) is the

dimensionless inter-generational influence function, which encodes the influence of speakers

aged a′ upon a speaker of age a. In particular, G(a, a′) should be large for a′ ' a, assum-

ing that a speaker’s generation has a significant influence on the speaker’s pronunciation.

Another strong influence should come e.g. from the generations of parents [92, 93] and

teachers.

Finally, choosing for simplicity’s sake

(80) X3(n∗) ≡ n∗ ≡ X4(n∗),

we obtain from (77)–(80) the following explicit expressions for ϕ∗, φ∗ and κ∗

(81) F ∗2 (σ, a, t) := ϕ∗(σ, a, t) = 0,
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(82) F ∗3 (σ, a, t) := φ∗(σ, a, t) =

1

[τφ(a)]2

∫
S1

∫
A

δε(σ − σ′)δε(a− a′)n∗(σ′, a′, t) da′ dσ′ ' τ−2
φ n∗,

(83) F ∗4 (σ, a, t) := κ∗(σ, a, t) =

1

[τκ(a)]2

∫
S1

∫
A

sin [2π(σ′ − σ)]G(a, a′)
n∗(σ′, a′, t)

nM(a′)
da′ dσ′.

Note that we have taken δε(·) to be the Dirac delta function δ(·) in the final approximation

of (82). While (81) and (82) are the appropriate equations for a zeroth-order theory, the

construction of higher-order theories following similar arguments is straightforward. For

instance, in A.2 we present the results of a linear first-order theory.

The reasons for choosing the sinusoidal expression (79) for V4 now become evident. For

instance, for a given age a0 and time t0, if the distribution of speakers is homogeneous, then

the integral over S1 in (83) vanishes, that is:

(84) if n∗(σ′, a0, t0) = nM(a0), then ∫
S1

sin [2π(σ′ − σ)]n∗(σ′, a0, t0) dσ′ = 0,

implying that speakers of this particular age cause no stimulus for phonetic change in the

population. On the other hand, if all speakers with a particular age a0 utter nearly the same

sound σ0 at time t0, then they may provoke a strong stimulus of phonetic change on the
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population towards the pronunciation σ0:

(85) if n∗(σ′, a0, t0) = δε(σ
′ − σ0)nM(a0), then∫
S1

sin [2π(σ′ − σ)]n∗(σ′, a0, t0) dσ′ ' nM(a0) sin [2π(σ0 − σ)] .

With these explicit expressions for the phonetic functions, we need now to determine the

appropriate boundary conditions for the problem, in order to have a complete model. This

is done in the next section.

5.6. Boundary conditions

In the phonetic space we require periodic boundary conditions with unitary period

(86)

n∗(σ, a, t) = n∗(σ + Λ, a, t), u∗(σ, a, t) = u∗(σ + Λ, a, t),

φ∗(σ, a, t) = φ∗(σ + Λ, a, t), etc. Λ = 1, 2, 3, . . .

Further, since a = 1 represents the maximally achievable dimensionless age of any speaker,

we impose the boundary conditions

(87) n∗(σ, 1, t) ≡ 0 ≡ u∗(σ, 1, t).

Assuming that children are born without an intrinsic transition impetus,

(88) u∗(σ, 0, t) ≡ 0.

It remains to determine a condition for the pronunciation profile n∗(σ, 0, t) of children

entering the speech community. New speakers learn from established speakers, so we impose
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the condition

(89) n∗(σ, 0, t) = LB

∫
A

G(0, a′)
n∗(σ, a′, t)

nM(a′)
da′,

where G(0, a′) is the inter-generational influence per capita introduced in (79), which gives

in this case the collective influence of individuals aged a′ on kids just entering the speech

community. The constant B is the total birth rate of the population. The constraints (59),

(61) and (75) imply that the total birth rate B should balance the (constant) total mortality

rate M ;

(90) B :=
nM(0)

L
= −M = constant.

Finally, assuming that the boundary condition (89) should be valid for any possible pho-

netic process {n∗, u∗}, it follows from (59)–(61), (89) and (90) that (choose e.g. n∗ = N or

alternatively n∗ = nMnN/N)

(91) A(0) :=

∫
A

G(0, a′) da′ = 1.

As a simple example, one may assume that children learn speech primarily from their

parents, so that G(0, a′) = δ(a′ − α), where δ is the Dirac delta function and α is the

average parental age of individuals introducing kids into the speech community. Under this

assumption, (89) reduces to

(92) n∗(σ, 0, t) = LB
n∗(σ, α, t)

nM(α)
.
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5.7. Phonetic equilibrium

We define a state of phonetic equilibrium as any possible phonetic process {n∗|
E
, u∗|

E
}

such that the following conditions apply:

(93)
∂n∗|

E

∂t
≡ 0, u∗|

E
≡ 0,

where |
E

denotes the phonetic equilibrium value of the respective quantity. In simple words,

a population in phonetic equilibrium is phonetically static, that is, there is no speaker un-

dergoing any sort of sound change.

5.7.1. Analytical equilibrium solution. We seek equilibrium solutions of (62) and

(63) obeying the boundary conditions (87), (88) and (92). From (75), (81) and (93) it follows

that, at equilibrium, the balance equations of speakers number (62) and transition impetus

(63) reduce to

(94)
1

n∗|
E

∂n∗|
E

∂a
= −LµM,

(95)
∂φ∗|

E

∂σ
= n∗|

E
κ∗|

E
.

Notice that µM|
E
(a) ≡ µM(a), since this function has no phonetic dependence.

Seeing that the left-hand side of (94) depends on σ and a, while the right-hand side is

solely a function of a, we conclude from (59)–(61) that (94) must have a solution of the form

(96) n∗|
E
(σ, a) =

nM(a)nN|
E
(σ)

N
,
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where we have already used the fact that nM|
E
(a) ≡ nM(a). The age structure nM(a) is given

by the stationary McKendrick–von Foerster equation

(97)
∂nM

∂a
= −LnMµM,

which is just the outcome of (94) integrated over A, cf. (60), (61), and (115).

Insertion of (82), (83) and (96) into (95) yields

(98)
1

S|
E
nN|

E

dnN|
E

dσ
= A

τ 2
φ

τ 2
κ

,

where τφ|E(a) ≡ τφ(a), τκ|E(a) ≡ τκ(a) and

S|
E
(σ) :=

1

N

∫
S1

sin [2π(σ′ − σ)]nN(σ′) dσ′,(99)

A|
E
(a) ≡ A(a) :=

∫
A

G(a, a′) da′.(100)

Since the left-hand side of (98) depends solely on σ, while the right-hand side depends only

on a, we conclude that both sides of (98) must be equal to the same constant H. This

constant is a dimensionless number, characteristic of the population, which gives a measure

of the ratio of attractive to dispersive phonetic forces. It is defined by

(101) H := A
τ 2
φ

τ 2
κ

,

such that (98) reduces to

(102)
dnN|

E

dσ
= H nN|

E
S|

E
.
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It should be noted that H is also a useful measure of the stability of phonetic equilibrium

for a given population. We expect H to be much larger than unity, seeing that H ≤ 1 would

correspond to a population that cannot find a consensus about pronunciation, because of

the dominance of dispersive phonetic forces.

A simple, approximate (valid for large H) solution to (102) that satisfies the periodic

boundary conditions is

(103) nN|
E
(σ) ' NβH(σ − σ0) = NC exp

(
H

2π
cos [2π(σ − σ0)]

)
,

where

(104) C−1 =

∫
S1

exp

(
H

2π
cos [2π(σ − σ0)]

)
dσ

is a normalization constant. Comparing βH(σ − σ0) to a Gaussian nascent delta function

(105) δν(σ − σ0) =
1√
2πν

exp

(
− 1

2ν
(σ − σ0)2

)

by writing the Taylor series of cos [2π(σ − σ0)] about σ0 up to second order, we find that

(106) βH(σ − σ0) '
√
H exp

(
−πH(σ − σ0)2

)
,

i.e., a nascent delta function with variance ν = (2πH)−1. Two examples of βH and δν for

ν = (2πH)−1 are graphed in Fig. 5.2. For large H then, the integral (99) with nN(σ) given
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Figure 5.2. Graphs of βH(σ − σ0) (dots) and δν(σ − σ0) (solid lines) for
σ0 = 0.5, ν = (2πH)−1, and H = 60, respectively H = 400 as labelled.

by (103) turns into

(107) S|
E
(σ) =

∫
S1

sin [2π(σ′ − σ)] βH(σ′ − σ0) dσ′ ' sin [2π(σ0 − σ)] ,

and under this approximation, equation (102) holds.

To sum up, from (96) and (103) we conclude that the state of phonetic equilibrium is

achieved when (93) holds and

(108)

n∗|
E
(σ, a) ' nM(a) βH(σ − σ0),

βH(σ − σ0) = C e
H
2π

cos[2π(σ−σ0)] ' H
1
2 e−πH(σ−σ0)2 ,

where C and H are given by (104) and (101), respectively. The theory gives no preference

to any choice of σ0 in the solution. The value of σ0 is defined either by an initial condition

or, if the system starts from a state out of equilibrium, by the phonetic evolution of the

population.
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Figure 5.3. Graphs of the left- and right-hand sides of (102), with
nN|

E
= NβH(σ − σ0) and σ0 = 0.5, for (a) H = 60 and (b) H = 400. The

vertical axes have been rescaled by the factor f = 1/max(dnN|
E
/ dσ) in or-

der to accommodate all curves within the vertical range ' ±1. Thus, plotted
are the expressions f dnN|

E
/ dσ (solid lines) and fHnN|

E
S|

E
(dots), for (a)

f = 1/(2557N) and (b) f = 1/(3.37× 1026N). From (109) it follows that the
the fractional errors between the solid and dotted curves are (a) ε(60) ' 0.0539
and (b) ε(400) ' 0.00789.

Seeing that the variance of (108) is given by 1/(2πH), it follows that the approximation

(108) works better for large values of H, when the variance in speech is low and the phonetic

attractive forces dominate over dispersive effects. In other words, the smaller the H, the

broader is the phonetic equilibrium distribution n∗|
E

(cf. Fig. 5.2).

As an example of how well (108) may approximate a solution to (102), we plot in Fig. 5.3

both sides of (102), for H = 60 and H = 400. The two graphs soon become nearly indistin-

guishable as H increases. As a measure of the error introduced by the approximation (108),

we can introduce the fractional error

(109) ε(H) := max

(
dnN|

E

dσ
−HnN|

E
S|

E

)/
max

(
dnN|

E

dσ

)
,

which is small for the examples shown in Fig. 5.3, namely ε(60) ' 0.0539, and ε(400) '

0.00789.
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5.7.2. Numerical test of stability. In terms of the parameter H, equation (63)

with ϕ = 0 reads

(110)
∂n∗u∗

∂t
+

1

L

∂n∗u∗

∂a
+
∂n∗u∗2

∂σ
= n∗κ∗ − 1

H

A(a)

τ 2
κ(a)

∂n∗

∂σ
.

To run numerical simulations of the model, we must choose H, the characteristic reaction

time to global stimuli τκ(a), and the intergenerational influence function G(a, a′) in κ∗(σ, a, t)

as given by (83). The choice of G(a, a′) also determines A(a) via (100). To numerically test

the stability of the equilibrium solution (103), we make explicit choices for the functions

G(a, a′) and τ 2(a) as well as the mortality rate µ∗ in (62). Assuming that a speaker’s

generation has maximal impact on the speaker’s pronunciation, we choose a simple form for

G(a, a′);

(111) G(a, a′) = e−γ(a−a′)2 .

We expect the characteristic reaction time to global stimuli to be an increasing function of

age, as older speakers will less likely change their utterance; that is, τ−2(a) is assumed to be

a decreasing function of a. In simulations, we choose functions τ−2(a) of the form

(112) τ−2(a) = r1e−ρa
2

+ r2.

Per capita mortality rates may be obtained from available life tables. For all simulations,

we use 2007 United States Social Security population data, averaging male and female mor-

tality rates in the actuarial life table available at [94]. From these data for µ∗, we numerically
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Figure 5.4. The stationary age structure n42007(a).

compute the stationary age structure, which we will refer to as n42007(a) and which is graphed

in Fig. 5.4.

As a first numerical simulation of the model (with finite difference code in a 250×150 grid

in (σ, a)-space and a time step of 0.25), we choose a value for H in the governing equations

and start with the equilibrium solution (108) for a different value of H, viz. H2 6= H. That

is,

(113) n∗(σ, a, 0) = n42007(a)βH2(σ − σ0),

where the mean utterance is simply chosen as σ0 = 0.5. The initial condition as a function

of σ and a, with H2 = 60, is shown in Fig. 5.5a, and the state at time t = 20 is shown in

Fig. 5.5b. Time-snapshots of cross sectional graphs of n∗ for fixed a as functions of σ are

shown in Fig. 5.6. Note that the evolution from the broad (in σ) curve at time t = 0 to the

equilibrium state is slower for larger values of a, due to the fact that τ−2(a) decreases with
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Figure 5.5. n∗(σ, a, t = 0) and n∗(σ, a, t = 20) as determined by numerical
simulations of the model equations (62), (110) with parameters as given in the
caption of Fig. 5.6.

Figure 5.6. n∗(σ, a, t) as a function of σ for (a) a = 0.1 and (b) a = 0.4
and values of t = 0, 2, 4, 6 . . . 20 as determined by numerical simulations of
the model equations (62), (110) with H = 400 and an initial condition with
H2 = 60. The peak narrows and increases in height with time. (c) shows
n∗(σ, 0.1, 0) (the shortest peak) and n∗(σ, a, t) as a function of σ for t = 20
and a = 0.1, a = 0.2, a = 0.4, and a = 0.6 (increasing a corresponds to a taller
and more narrow peak). The parameters in (112) are r1 = 0.8, r2 = 0.2, and
ρ = 4.

a. τ−2(a) thus provides a sort of time scale for the evolution of n∗. This evolution to the

derived equilibrium solution is robust to choices of H and H2 as well as to variations in the

parameters in the choices (111) for G(a, a′) and (112) for τ−2(a).
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In these simulations, the initial condition is symmetric about a mean vowel pronunciation

σ0 and evolves to an equilibrium state with the same mean utterance σ0. In Sect. 5.8, we

simulate asymmetric perturbations of the equilibrium solution, in order to study a concrete

example of vowel shift.

5.8. Asymmetric perturbations of equilibrium: Vowel shift

The initial conditions n∗(σ, a, 0) chosen in numerical simulations of Sect. 5.7 are sym-

metric about the mean vowel utterance σ0 and evolve to the equilibrium solution with the

same mean utterance. In this section, we consider initial conditions that potentially change

the mean utterance through vowel shift. Although there is no clear consensus on the causes

of vowel shifts such as the NCVS or the Great English Vowel Shift, an aspect of common

theories is that a migration of speakers into an area of a different vowel pronunciation and

the subsequent desire of all speakers to accommodate their speech can give rise to vowel

shift. For example, the Great English Vowel Shift may be the result of a mass migration of

speakers of varying dialects into south-eastern England after the Black Death [95].

Migration of speakers into a region of previously stable mean utterance σ0 may be mod-

elled by an initial condition of the form

(114) n∗(σ, a, 0) = n4(a)
1

(1 + Ψ)

(
βH(σ − σ0) +

p∑
j=1

ψjβHj(σ − σj)

)
,

where ψj denotes the relative size of the j-th immigrant population (with j = 1, . . . , p) and

Ψ :=
∑

j ψj. Each immigrant population is characterized by a a parameter Hj, a mean

vowel pronunciation σj and an equilibrium distribution βHj(σ−σj). In simulations, we take
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n4(a) = n42007(a) and continue to choose the functions G(a, a′) and τ−2(a) to have the forms

(111) and (112) respectively.

First consider the simplest case of a single group of immigrants: p = 1 in (114). Figure 5.7

shows the evolution of the vowel distribution n∗(σ, ·, t) for a simulation with H = H1 = 400,

σ0 = 0.5, σ1 = 0.425, and ψ1 = 0.05. Although an evolution of the speech distribution is

observed for all ages, the larger values of τ−2(a) for smaller a allow the younger generations to

accommodate to an immigrant population more quickly (Fig. 5.8a) than the older generations

(Fig. 5.8b,c). For age a = 0.1, the vowel distribution evolves from the initial condition with

two peaks (at σ = σ0 = 0.5 and σ = σ1 = 0.425), to a broader distribution with only one

peak, which eventually narrows into a distribution with a mean value that has shifted from

the originally dominant value at σ = σ0 to a value in between σ0 and σ1. At that time, vowel

distributions at larger values of a are still centred close to the original value of σ = σ0. We

therefore characterize this evolution as a vowel shift.

Changing only the parameters H and H1 to H = H1 = 600, we obtain the evolution

shown in Fig. 5.8. In this case, for age a = 0.1, the vowel distribution evolves from the initial

condition with two peaks (at σ = σ0 = 0.5 and σ = σ1 = 0.425), to a broader distribution

with only one peak, to a distribution with again two peaks, one of which eventually dominates

so that distribution at time t = 22 has a mean value that, as in the case H = H1 = 400,

has shifted from the originally dominant value at σ = σ0 to a value in between σ0 and σ1.

Again, at that time, vowel distributions at larger values of a are still centred close to the

original value of σ = σ0.

Finally, we consider the case of two groups of immigrants: p = 2 in (114). Figure 5.9a

shows the evolution of the vowel distribution n∗(σ, 0.10, t) for a simulation with H = H1 =
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Figure 5.7. n∗(σ, a, t) as a function of σ for (a) a = 0.1, (b) a = 0.3, (c)
a = 0.6, and t = 0, 2, 4, . . . , 20 as determined by numerical simulations of the
model equations (62), (110) with H = 400. The initial condition (114) with
H = H1 = 400, σ0 = 0.5, σ1 = 0.425, and ψ1 = 0.05 is plotted in blue. The
state at time t = 20 is plotted as a thicker black curve. The parameters in
(112) are r1 = 0.997, r2 = 0.003, and ρ = 6.

Figure 5.8. n∗(σ, a, t) as a function of σ for (a) a = 0.1, (b) a = 0.3, (c)
a = 0.6, and t = 0, 2, 4, . . . , 22 as determined by numerical simulations of the
model equations (62), (110) with H = 600. The initial condition (114) with
H = H1 = 600, σ0 = 0.5, σ1 = 0.425, and ψ1 = 0.05 is plotted in blue. The
state at time t = 22 is plotted as a thicker black curve. The parameters in
(112) are r1 = 0.997, r2 = 0.003, and ρ = 6.

400, σ0 = 0.5, (σ1, ψ1) = (0.44, 0.05), and (σ2, ψ2) = (0.53, 0.1). The second group of

immigrants is larger but also has a mean vowel pronunciation σ2 which is closer to the

dominant mean vowel pronunciation σ0: σ2 − σ0 = 2(σ0 − σ1). As in the simulations of

Fig. 5.7 and Fig. 5.8, the vowel distribution initially broadens. The peak first moves towards

σ2 (which corresponds to the larger value of ψj), but eventually moves back towards σ1.
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Figure 5.9. n∗(σ, 0.10, t) as a function of σ for times t = 0, 2, . . . , 20 as
determined by numerical simulations of the model equations (62), (110) with
H = 400. In each panel, the initial condition (114) is shown in blue. The state
at time t = 16 is plotted in a thicker black curve. For panels, initial conditions
are of the form (114) with H = H1 == H2 = 400, σ0 = 0.5, (σ1, ψ1) =
(0.44, 0.05). For (a) (σ2, ψ2) = (0.53, 0.1), and for (b) (σ2, ψ2) = (0.53, 0.75)
in (114). The parameters in (112) are r1 = 0.997, r2 = 0.003, and ρ = 6. The
initial condition is graphed in blue, the state at time t = 10 is graphed in red,
and the final state is graphed in a thicker black line.

In the long run, the mean utterance is approximately σ ' 0.485. Increasing ψ2 to 0.75

while leaving other parameters constant, the long-term mean utterance is approximately

equal to σ0 = 0.5, although the peak shifts to the right before moving back; see Fig. 5.9b.

Evidently a large increase in the magnitude ψ2 is required to prevent keep the final mean

vowel pronunciation from finally shifting to the left of σ0.

5.9. Summary and perspectives

We have derived here a structured population theory for vowel learning and regular vowel

change in natural languages, simplified to a one-dimensional vowel space, with age as the

social structure. The proposed equations are based on the theory of mixtures with con-

tinuous diversity [88] and extend the McKendrick–von Foerster equation [1] to populations

of interacting speakers. Several factors that impact the evolution of vowel pronunciation
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have been taken into account, including formal and informal learning, age-dependent social

trends, phonetic cohesion by affinity, and spontaneous utterance fluctuations (cf. A.1).

The resulting equations admit a stationary solution that corresponds to the typical situa-

tion of phonetic equilibrium in which all speakers have approximately the same pronunciation

of a vowel. The phonetic variance of the equilibrium distribution results from a balance be-

tween the dispersive action of spontaneous, stochastic fluctuations of speech, given by the

dispersive part of the phonetic stress φ∗, and the attractive effects of affinity, learning and

social trends, modelled by the attractive part of φ∗ and the global stimulus rate κ∗, which

allows speakers of different ages to influence each others’ speech.

Our equilibrium analysis suggests estimating the dimensionless number H, which is a

characteristic of the population, as a step in understanding phonetic learning, variation, and

change. This number measures the ratio of attractive to dispersive phonetic forces and is

defined by (101). As mentioned in Sect. 5.2, the phonetic variable σ may be specified by its

formants. As even an individual speaker must be expected to have stochastic variation in

utterance, a measurement of σ would need to be an average over a number of a speaker’s

utterances. Of interest would be how variable the pronunciation of an individual speaker

is relative to the variance in the population, which at phonetic equilibrium is given by

ν = (2πH)−1. Formant frequencies for a vowel vary with dimensions of the vocal tract

[96, 97] (see [77] for a discussion). Consequently, even if speakers have no physiological

bias towards a particular pronunciation (as assumed in the present model), the stochastic

variability in their speech could be distinct, therefore contributing to the dispersive factor

in φ∗.
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Simulations suggest that the parameter H also affects characteristics of vowel shift; a

“double peak” occurs in the evolution for H = 600, but not for H = 400. In this chapter, we

have simulated only perturbations of equilibrium states via immigrant populations. Other

potential causes of vowel shift may be simulated as well. For example, a short pulse of social

trend introduced from outside (e.g. by the media) can be done by imposing a temporary

change in the global stimulus rate κ∗.

Our model concerns regular sound changes, which are classically characterized as being

phonetically gradual but lexically abrupt. Linguists are increasingly becoming aware that

this characterization is a simplification of reality, so that all sound changes are influenced by

a complex interaction of lexical, social, and phonetic factors, as discussed in [98]. In light

of this, the utterance parameter in our model would be best interpreted as a certain vowel

pronunciation in a particular lexical context rather than in an arbitrary lexical context.

Another simplifying assumption of our model is the representation of vowel space as a loop

(represented by the circle S1 as parameter space). Together with the hypothesis of phonetic

objectivity, this leads us to treat all functions in the theory as translationally independent

in σ, so that, for example, the parameter H, is independent of σ. As some vowel systems are

found more often in natural languages than others, this hypothesis may fail, and our theory

would need to be modified so that parameters such as H are nontrivial functions of σ. In

this case, we would consider vowel space to be a line segment with boundary conditions that

would depend on the position of the boundaries in vowel space.

The next step in the analysis of the simple model derived in this paper is to examine the

stability of phonetic equilibrium to perturbations in the language structure. This can be done

by imposing a temporary change in the global stimulus rate κ∗, representing a short pulse of
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social trend introduced from outside (e.g. by the media). Another important development

is to discard the hypothesis of instantaneous adaptive response (Sect. 5.4), in order to derive

phonetic functionals that depend also on the transition rate u∗. Such a theory would be

much more complex, allowing the study of delays caused by prospective and retrospective

responses of the population, in addition to the purely adaptive behaviour considered in the

current model.

Another very interesting modification of the theory would be its extension to multiple

populations. Such an extension would permit studying the integration of foreign speakers

with distinct pronunciations, learning and socialization skills; in other words, a phonetic

counterpart to the much debated immigrant–host problem [99].

Further, we may address the strong simplifying assumption that the chain shift is rigid,

stated in Sect. 5.1, which prevents the equations that we have derived from modeling vowel–

vowel interactions (“knock-on effects”) by drag- and push-chain mechanisms [87]. Real vowel

shifts, such as the Northern Cities Vowel Shift, generally begin between one pair of vowels and

only later propagate to other vowels in a chain [69]. Our model would need to be extended

from one vowel pronunciation σ ∈ S1 to include a vowel system (σ1, σ2, . . . , σn) ∈ S1×· · ·×S1

as the domain for the functions n∗ and u∗. This would not be a straightforward extension

but would allow for comparison of unimodal and bimodal distributions as in the study of

Maye et al. [84]; e.g. can a bimodal distribution in one σj be stable, or would it split into

unimodal distributions in two utterances σi, σj?

The approach developed here for vowel systems may be applied also to other learning

situations involving a continuous variable that describes an aspect of a learned behaviour.

In language, this includes other aspects of phonetics (such as voicing in consonants [84,
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100]) as well as semantics (such as the learning and interpretation of color words, as color

is also described by continuous variables [101]). Comparable equations may also model

other time-dependent processes of cognition in self-interacting populations, like opinions or

perceptions. In particular, we are currently applying these ideas to model evolving scenarios

of public perception of climate change. Finally, in ecology, non-human behavioural problems

may also be tackled with a similar approach, seeing that continuously varying traits (e.g.

vocalization, aggressiveness, etc.) are not exclusive to human communities. In this manner

we are currently studying the problem of the interaction of invasive exotics with native

species [102, 103].
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[73] J. L. Schwartz, L.-J. Boë, N. Vallé, and C. Abry, “Major trends in vowel system

inventories,” J. Phonetics, vol. 25, pp. 233–253, 1997.
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APPENDIX A

Vowel Shift Supplementary Material

A.1. Derivation of the balance equations

The starting point for the derivation of (62) and (63) is the McKendrick–von Foerster

equation [1] for a homogeneous, non-stationary population with maximum lifespan L

(115)
∂nM

∂t
= − 1

L

∂nM

∂a
− nMµM,

where nM(a, t) and µM(a, t) denote respectively the number density and the mortality rate

per capita of individuals aged a ∈ A at time t ∈ R (cf. definitions in Sect. 5.2). Equation

(115) simply tells us that temporal changes in the structure of the population are caused by

ageing and death. Clearly, death is interpreted as a loss of individuals and is described by

the mortality rate µM. On the other hand, the net effect of ageing is modelled by the age

derivative of nM/L, the convective flux of speakers along the a-axis. Indeed, we can think

of L−1 as a kind of “velocity in the age space”, more precisely the time derivative of the

dimensionless ageing function h, defined as a continuous sequence of dimensionless ages in

time. Let P denote the set of all individuals in the population. Thus, we may regard the

dimensionless ageing function h of an individual p ∈ P as a map

(116) h : P× R→ A, a = h(p, t) :=
t− tB
L

,

where tB(p) is the individual’s birth time and L is, again, the maximum lifespan of any

member of the population.
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The generalization of (115) to a structured population of speakers is now straightfor-

ward. We think of the population as a structured community with a continuous diversity

of speakers. A group of speakers aged a and uttering the sound σ ∈ S1 defines a species

(cf. definitions in Sect. 5.2). Thus, the density number of speakers belonging to a particular

species is given by n∗(σ, a, t), and the main question is which changes occur in (115) when

we replace nM by n∗.

Succinctly, besides the effects of ageing and death we must now account for the effects

of pronunciation changes. Such changes can generally be of two types:

(I) Gradual changes of pronunciation through the actions of learning, social trends,

phonetic cohesion and utterance fluctuations. These changes can be described by an

effective “velocity” in the phonetic space, called phonetic transition rate u∗(σ, a, t).

The product n∗u∗ is named phonetic transition impetus and corresponds to a net

convective flux of speakers along the σ-axis.

(II) Abrupt changes of pronunciation through lexical diffusion, pathological causes, de-

liberate sound changes, etc. Such phenomena are characterized by discontinuous

transfers of speakers in the phonetic space and are modelled by the rate of abrupt

sound change per capita Γ ∗.

Thus, after replacing nM by n∗ in (115) and gathering together all the notions mentioned

above, we obtain

(117)
∂n∗

∂t
= − 1

L

∂n∗

∂a
− n∗µ∗ + n∗Γ ∗ − ∂n∗u∗

∂σ
,
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where µM(a, t) has been generalized to µ∗(σ, a, t), for completeness. Evidently, (117) is iden-

tical to (62), with the last term interpreted as a “divergence in the phonetic space” of the

transition impetus n∗u∗.

The good news about (117) is that it is the appropriate generalization of the McKendrick–

von Foerster equation (62) for a population with age and phonetic structures. The bad news

is that it is no longer possible to compute the structure of the population just by prescribing

the function µM, as done with (62), since there are two new unknowns in (117), namely u∗

and Γ ∗. The latter can be eliminated by avoiding abrupt sound changes, which are not

pertinent for the modelling of regular vowel chain shifts, so that for our purposes (64) holds.

Concerning the transition rate u∗, the situation is more delicate. The variable u∗ is essential

for the modelling of vowel chain shift and therefore cannot be neglected. Instead, we may

study how learning, social trends, phonetic cohesion and utterance fluctuations influence the

impetus of speakers to change their pronunciations. In other words, we must construct a

balance equation for the transition impetus n∗u∗.

If none of the gradual change effects listed in Item I were active, then the time change

of impetus at a given point (σ, a) ∈ S1 × A would be simply caused by the “migration” of

speakers along the age–phonetic space, i.e. there would be a convective transport of impetus

according to the equation

(118)
∂n∗u∗

∂t
= − 1

L

∂n∗u∗

∂a
− ∂n∗u∗2

∂σ
,

such that L−1 and u∗ represent the “velocities” at which speakers carry the impetus n∗u∗

along the a- and σ-axes, respectively.
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However, that several mechanisms of gradual phonetic change may affect the impetus of

a speaker. We can model them as follows:

: Phonetic cohesion and utterance fluctuations. A fundamental feature of most

social systems is the phenomenon of affinity: familiar species (viz. speakers of

similar age and utterance) tend to identify with each other, generating a feedback

that leads to cluster formation. Following [88, 104, 105] we may suppose that such

short-range interactions between familiar species can be modelled by conductive

fluxes of impetus in S1×A, called phonetic stresses φ∗ and ϕ∗. On the other hand,

as in other complex systems susceptible to cluster formation, the dispersive effect

of random fluctuations is unavoidable. Such utterance fluctuations can be modelled

through a stochastic, conductive–diffusive flux density of impetus in the phonetic

space S1, called stochastic flux of impetus, which is incorporated into the phonetic

stress φ∗. Consequently, the phonetic stresses φ∗ and ϕ∗ describe the net effect of

the struggle between cohesive and dispersive phonetic agents.

: Learning and social trends. The most predominant mechanism of phonetic

change during childhood and early adolescence is learning. It is mainly charac-

terized by the influence of parents and educators on the utterance of the child.

As such, we expect learning to be an interaction between speakers with disparate

ages and pronunciations, i.e. between dissimilar species. Similar nurtural effects,

predominant during adolescence and early adulthood, are social trends of pronun-

ciation. New trends determining the general utterance preferences of the whole

population are created by the formation of clusters in the phonetic space S1, which

act as phonetic attractors for speakers attempting to be understood by “everyone”.
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The effects of learning and social trends are introduced in (118) in the form of a

long-range production of impetus called global stimulus rate per capita κ∗.

From the reasoning above, we can generalize (118) to the case of a structured population

of speakers experiencing gradual changes of pronunciation through the actions of learning,

social trends, phonetic cohesion and utterance fluctuations

(119)
∂n∗u∗

∂t
= − 1

L

∂n∗u∗

∂a
− ∂n∗u∗2

∂σ
− ∂ϕ∗

∂a
− ∂φ∗

∂σ
+ n∗κ∗.

A.2. Equations for a linear first-order theory

In Sect. 5.5 we derived the explicit equations for a zeroth-order theory. Here we outline

the procedure to derive the explicit forms of Fγ (γ = 1, 2, 3, 4) in a higher-order theory that

is linear in first-order derivatives.

First, we must realize that the arguments used to derive (75) and (83) are still valid, and

so are the equations

(120) F1 := µ∗(σ, a, t) ≡ µM(a),

(121) F4 := κ∗(σ, a, t) =

1

[τκ(a)]2

∫
S1

∫
A

sin [2π(σ′ − σ)]G(a, a′)n∗(σ′, a′, t) da′ dσ′.

Now, to derive the appropriate forms of F2 and F3 in a linear first order theory, we

must first express the influence kernels V2, W2, V3 and W3 of (73) not only as nascent delta

functions δε(·), but also their first derivatives. During this process, we should respect the
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symmetry properties of the respective quantities and the fact that products of derivatives

are to be neglected. As already mentioned in Sect. 5.5, from (66)–(69) it follows that ϕ∗

should be an odd function of σ, while φ∗ must be an even function of σ. Thus, after a short

inspection of (73) we arrive at

V2

(
σ − σ′

)
≡ ∂

∂σ′
δε(σ − σ′), W2

(
a, a′

)
≡ δε(a− a′)

[τϕ(a)]2
,(122)

V3

(
σ − σ′

)
≡ δε(σ − σ′), W3

(
a, a′

)
≡ δε(a− a′)

[τφ(a)]2
+

∂

∂a′
δε(a− a′)
[τφa(a)]2

,(123)

where τϕ(a), τφ(a) and τφa(a) are the characteristic reaction times of the speakers aged a.

Finally, choosing as before

(124) Xν(n
∗) ≡ n∗, ν = 2, 3,

we obtain the explicit equations for ϕ∗ and φ∗

(125) F ∗2 (σ, a, t) := ϕ∗(σ, a, t) =

1

[τϕ(a)]2

∫
S1

∫
A

∂ δε(σ − σ′)
∂σ′

δε(a− a′)n∗(σ′, a′, t) da′ dσ′ ' τ−2
ϕ

∂n∗

∂σ
,
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(126) F ∗3 (σ, a, t) := φ∗(σ, a, t) =

1

[τφ(a)]2

∫
S1

∫
A

δε(σ − σ′)δε(a− a′)n∗(σ′, a′, t) da′ dσ′

+
1

[τφa(a)]2

∫
S1

∫
A

δε(σ − σ′)
∂

∂a′
δε(a− a′)n∗(σ′, a′, t) da′ dσ′

' τ−2
φ n∗ + τ−2

φa

∂n∗

∂a
,

where we have taken δε(·) to be the Dirac delta function δ(·) in the final approximations of

(125) and (126).
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