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ABSTRACT 
 
 

EVALUATION OF OXIDATION AND ADSORPTION TECHNIQUES FOR TASTE AND 

ODOR AND TOXIN REMOVAL 

 

The cyanobacteria, also known as blue-green algae, owe their name to the presence of 

photosynthetic pigments. Cyanobacteria are a major group of bacteria that occur throughout the 

world. Freshwater cyanobacteria may accumulate in surface water supplies as "blooms" posing 

as an environmental hazard because of the release of water soluble toxic compounds, called 

cyanotoxins. Especially massive blooms of blue–green algae in the surface waters used as 

drinking water resources may lead to taste and odor problems during the summer and fall, they 

may also produce cyanotoxins. Since the taste and odor compounds, Geosmin (GSM) and 2-

Methylisoborneol (2-MIB) can be easily detected by the human nose at low concentrations of 2-5 

ng/L, the surveillance of harmful toxins such as microcystin-LR may be easily performed by 

sensory analyses due to the likely co-occurrences of the two types of metabolites. This research 

focused on removal of taste and odor compounds (GSM, 2-MIB) and microcystin-LR with five 

oxidants: chlorine, chlorine dioxide, potassium permanganate, ozone, mixed oxidants (MiOX) 

and powdered activated carbon (PAC) using Ralston Reservoir water as reagent water collected 

in early April, 2014. The objective of the study was to develop a bench scale treatment process 

efficacy information that Denver Water can utilize to decide on a treatment technique for taste 

and odor control. The Design Expert software was used to determine the optimum dose of the 

oxidants for an acceptable treatment level.  
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1 : INTRODUCTION 
 
 

Over the last few decades, water scarcity and quality of water have become issues of 

major concern. Major source waters are deteriorating in quality, especially in the developed 

countries. Eutrophication has accelerated in reservoirs used for drinking water supply and has 

often lead to cyanobacteria (blue-green algae) and actinomycetes (bacteria) blooms. Sustained 

loading of nutrients to surface waters leads to eutrophication (Correll, 1999). Some of the issues 

related to eutrophication include increased algal biomass, low dissolved oxygen (DO), increased 

fish mortality, reduced water transparency and frequent incidences of toxic phytoplankton 

(Burkholder et al., 1992; Carpenter et al., 1998; Smith, 1998). Most of the aquatic systems have 

very low concentration of nutrients and small shifts can result in dramatic changes in the ecosystem 

(Dodds and Welch, 2000; Rabalais, 2002, Miltner and Rankin, 1998;). Increases in algal biomass can 

disturb the natural ecosystem and cause severe environmental degradation through means other 

than oxygen depletion, such as toxic blooms associated with certain species and concentrations 

of algae (Smith et al., 1999). Toxic algal blooms can also disrupt tourism due to foul odors, 

unsightly views, and fish mortality events (Howarth et al.,2000).  Release of algal metabolites 

cause great concern for drinking water authorities. In addition to taste and odor compounds, 

some cyanobacteria produce toxic compounds called cyanotoxins. The occurrence of these 

compounds in water bodies, has a strong impact towards the quality and safety of drinking water. 

Reducing the non-point discharge of phosphorus helps to control eutrophication which in turn 

minimizes the algal blooms and hence the occurrence of algal metabolites. 
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2 : LITERATURE REVIEW 
 
 

Taste-and-odor (T&O) is a concern for any water treatment plant (WTP) using a surface 

water source. The odors are predominantly caused by the presence of 2-MIB and Geosmin. Both 

2-MIB and Geosmin are algal byproducts and typically come in brief, but potent, T&O events. 

Geosmin, which accounts for “earthy” odor complaints, while the “musty” odor caused by 2-

MIB and they usually occur during the late summer or early fall. Each compound is difficult to 

treat due to their low thresholds of odor detection. Historically, T&O events have become a 

persistent and ongoing challenge. Consumers do not want their water smelling and tasting like 

dirt and hence utilities spend billions of dollars to treat them. Detrimental economic side effects 

of algal blooms are also seen in expensive water treatment, habitat restoration and human health 

costs at a national scale (EPA, 2015).  The production and release of geosmin and 2-MIB are 

shown in Figure 2-1. 

 

Figure 2-1: Simplified Pathway of MIB/GSM Formation (Srinivasan et al. 2011) 
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2.1 TASTE AND ODOR COMPOUNDS 

2.1.1 GEOSMIN 

Geosmin, chemically known as 1,2,7,7-tetramethyl-2-norborneol, is an organic 

compound that is responsible for the earthy smell that causes the unpleasant flavor in drinking 

water which is often associated with fresh-turned dirt.  Geosmin is a tertiary alcohol, fairly water 

soluble and has a Henry’s law constant (at 20°C) of 0.0023; molecular weight of 182.305 g/mol; 

and water solubility of 150.2 mg/L (at 20 °C) (Bruce et al., 2002; Omur-Ozbek and Dietrich, 

2005). The production of GSM by cyanobacteria is considered to be a secondary metabolite of 

cellular growth. GSM is detectable by the human nose at a concentration of as low as 4ng/L in 

water (David et al. 2008), therefore the removal of GSM from drinking water is critical for water 

providers globally.  

2.1.2 2-METHYLISOBORNEOL 

2-Methylisoborneol (MIB) is a derivate of borneol. 2-MIB has a musty odor that can be 

defined as a damp basement (Gerber et al. 1965) and has a Henry’s law constant (at 20°C) of 

0.0027; molecular weight of 154.25 g/mol; and water solubility of 194.5 mg/L (at 20 °C) (Omur-

Ozbek and Dietrich, 2005). Its odor detection threshold is almost 7-15 ng/L (David et al. 2008), 

and it is one of the chemicals (also GSM) with major influence on the quality of drinking water. 

The molecular structure of geosmin and 2-MIB are shown in Figure 2-2. 

 

http://en.wikipedia.org/wiki/Borneol
http://en.wikipedia.org/wiki/Odor_detection_threshold
http://en.wikipedia.org/wiki/Water_quality
http://en.wikipedia.org/wiki/Drinking_water
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Figure 2-2: Molecular Structure of GSM AND 2-MIB (Srinivasan et al. 2011) 

 

2.2 CYANOTOXINS 

The widespread occurrence of cyanotoxins in the available water resources and finished 

drinking waters around the globe has not only led to livestock deaths but also several cases of 

human hepatoenteritis and even deaths (Byth, 1980; Francis, 1878; Gugger et al., 2005; 

Jochimsen et al., 1998). The hepatotoxic microcystins (MC), the most widespread cyanotoxin 

group, are known to be produced by the members of several cyanobacterial genera including 

Microcystis, Anabaena, Planktothrix, Anabaenopsis, Nostoc, and Hapalosiphon (Skulberg et al., 

1993; Sivonen and Jones, 1999). Typical dissolved microcystin concentrations in surface waters 

rich in toxic cyanobacteria are 0.1-10 µg L-1, but the concentration can be much higher if a 

major bloom is breaking down (Sivonen Jones, 1999). Toxic algal blooms in Lake Erie, 2014 

have left the residents in Toledo, Ohio without drinking water for days (Ecowatch, 2014). Utah 
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Lake was closed due to huge toxic bloom which caused big problems for people who used the 

lake for swimming, fishing and agriculture (The Guardian, 2016). 

 

Figure 2-3: Bloom of the Microcystis aeruginosa in Lake Erie in Oct 2011 (NASA,2011) 

The occurrence of MCs in natural water bodies become a major concern for production of 

drinking water due to their severe acute and sublethal toxicities. Although over 80 microcystin 

variants are known, the most common is microcystin LR (MC-LR), which has been identified 

together with other commonly found MC variants such as MC-LA, MC-RR and MC-YR in 

natural water samples (Falconer et al., 1999; Spoof et al., 2003). Microcystin-LR (MC-LR) is 

one of the most toxic variants, with a mouse LD50 of 50 mgkg-1 (Chorus and Bartram, 1999). 

The molecular structure of Microcystin-LR is show below in the figure 2-3.  
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Figure 2-4: Structure of Microcystin-LR (Rodriguez et al. 2007) 

For this reason, the Environmental Protection Agency (EPA) has set a provisional 

drinking water guideline of 0.3 µg/L for microcystins for bottlefed infants and young children of 

preschool age. For school-age children through adults, the health advisory (HA) value for 

drinking water is 1.6 µg/L. The HA values are based on exposure for ten days (EPA, 2015). 

2.3 TREATMENT OPTIONS 

For control of T&O compounds as well as toxins in drinking water treatment plants, the 

application of conventional water treatment technologies like coagulation 

flocculation/sedimentation, filtration have been reported to be effective for removal of 

cyanobacterial cells but ineffective for removal of extracellular metabolites (Himberg et al., 

1989; Chow et al., 1999; Hrudey et al., 1999). Thus, alternative treatment options such as use of 

adsorbents like activated carbon (both powdered and granular) and oxidants such as ozone, 

chlorine-dioxide, potassium permanganate and MIOX (Rodriguez et al, 2007, 2008, Dixon et al., 

2010) need to be incorporated into the water treatment processes to remove these compounds. 

With respect to oxidation rate, the following general trend is typically observed: O3> H2O2> 

HOCl>ClO2>KMnO4>Cl2. However, discrepancies have been observed depending on the type of 
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compound that is oxidized. The oxidants are usually added at the beginning (e.g., peroxidation) 

or at the end (e.g., disinfection) of the water treatment process, while they can also be added at 

various intermediate points, depending on the treatment objectives (Sharma et. al 2012). 

Previous studies have demonstrated the efficiency of different oxidants potassium permanganate 

(Rodriguez et al., 2007a) and ozone (Onstad et al., 2007), as well as advanced oxidation 

processes (Cornish et al., 2000; Qiao et al., 2005) to oxidize extracellular MC. 

2.3.1 POWDERED ACTIVATED CARBON (PAC) 

Among the treatment options listed, PAC is the most commonly utilized technique for 

control of taste and odor compounds as it has a lower cost and can be used in existing water 

treatment plants without any major adaptations and additional capital costs. Depending on the 

season, the PAC can be applied intermittently and at varying doses for the control of odorants 

and microcystins.  For an initial MIB concentration of 250 ng/l and PAC dosage of 40 mg/l, the 

MIB removal efficiency was reported as 70% (Seckler et al. 2013), which means that the odorant 

levels were still above the human detection levels. Most of the studies pertaining to PAC 

adsorption of cyanotoxins have been conducted on the microcystins, in particular, MC-LR 

(Falconer et al., 1989; Donati et al., 1994; Pendleton et al., 2001; Cook and Newcombe, 2002, 

2008; Campinas and Rosa, 2010a, b). Experiments carried out by Cook and Newcombe (2002) 

for PAC adsorption on four variants of microcystin showed the differences in the adsorption of 

each variant with the ease of removal following the order: MC-RR>MC-YR>MC-LR>MC-LA. 

It was concluded by Campinas et al. (2010) that for low concentrations of microcystins (5 µg/L), 

10mg/L of PAC effectively controlled the microcystins in a model water with M. aeruginosa 

culture whereas a PAC dose of 15 mg/L was necessary when the NOM surrogate concentration 

doubled. For high concentrations of microcystins (20 µg/L),15 mg/L of PAC were unable to 
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achieve the WHO guideline-value. GAC filtration and PAC with conventional treatment in full 

scale application were both generally observed to reduce raw water microcystins by more than 

80% except when raw water levels dropped below 0.5 µg/L (Lambert et. al 1996). 

Results from Ho et. al (2011) demonstrated that PAC could be an effective treatment 

option for the removal of the cyanotoxins from the studied waters under WTP conditions. No 

difference was observed in the removal of the cyanotoxins using contact times of 30, 45 and 60 

mins. The study carried out by Jung et al. (2014), as shown in Figure 2-4 & 2-5, showed that 

removal efficiencies of geosmin and 2-MIB for a given dosage was almost constant regardless of 

initial concentration except geosmin of 44 ng/L, which was lowest beyond the range of most 

initial concentrations. The study also shows that adsorption efficiency of geosmin by PAC was 

superior to that of 2-MIB. 

 

Figure 2-5: % GSM conc. as a function of PAC dosage (Jung et al. 2004) 
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Figure 2-6: % 2-MIB conc. as a function of PAC dosage (Jung et al. 2004) 

 

2.3.2 OZONE (O3) 

Ozone has been used to control taste and odor, remove color, and control biological 

growth in treatments plants. AOPs have great potential for oxidation of double bonds and amines 

found in toxins, and that makes them useful in microcystin degradation (Brooke et.al 2006, 

Onstad et. al 2007). The ozonation process is favored for the treatment of drinking water because 

of its high oxidation efficiency by a direct pathway (O3 direct reaction) and an indirect pathway 

(OH radical reaction).  
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Figure 2-7: Variation of GSM and MIB in each Process (Jung et al. 2004) 

When the initial concentrations of MIB and GSM were between 43 and 220 ng/l, the 

removal efficiency of MIB rapidly increased in proportion to O3 dosage and removal up to 

84.8% for 2- MIB occurred at 3.8 mg/l for 6.4 minutes contact time (Jung et al. 2004). 

 

Figure 2-8: Ozone Generator 

   



 

11 

 

Collivignarelli and Sorlini, (2004) reported that a complete removal geosmin and MIB 

can be obtained only with the combination of ozone (conc. of 1.5–3 mg/l and contact time of 2–3 

mins) with UV radiation (dose of 5,000–6,000 J/m2). Yuan et al. (2013) identified that ozonation 

can lead to 99.9% of GSM removal rate within 30 min at the ozone dosage of 4.19 mg/l. The 

ozonation process led to the algae removal of 91.2% within 60 mins under the ozone dosage of 

5 mg/l and the algae could not survive the dosage of 3 mg/l (Miao et al. 2004). Suffet et al. 

(1986) found that ozone is generally the most effective oxidant for use in taste and odor 

treatment, ozone doses of 2.5 to 2.7 mg/L and 10 minutes of contact time (residual 0.2 mg/L) 

significantly reduce levels of taste and odors. Momani et. al. (2008) and Rodriguez et. al. (2007) 

stated that ozone was very efficient for any type of toxin degradation. Total toxin degradation 

was obtained by an ozone dosage of less than 2 mg/L and a reaction time of 144s (Momani et. al 

2010) 

2.3.3 CHLORINEDIOXIDE (ClO2) 

Cheng et al. (2011) reported that effective removal of MIB and GSM was observed with 

just chlorine dioxide (ClO2) at an optimum dosage of 5 mg/l, in comparison to a mixture of ClO2 

and coagulant (poly. Aluminum chloride). Lalezary et al. (1986) used chlorine, chlorine dioxide, 

ozone, and permanganate to treat earthy-musty smelling compounds.  In that study, chlorine 

dioxide was found most effective, although none of the oxidants were able to remove geosmin 

and MIB by more than 40 to 60 percent. Chlorine-based weaker oxidants (and disinfectants) such 

as chlorine dioxide (ClO2) and chloramines have been used as alternative to chlorine but found 

ineffective due to their low reaction kinetic constant, k (Rodriquez et. al 2005, 2007, Kull et al. 

2006). Oxidants such as chloramines and chlorine dioxide are not plausible options for the 

removal of MC from natural waters, due to their low reactivity with these oxidants (Acero et al., 
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2005; Kull et al., 2004). ClO2 as an oxidant in drinking water treatment will have only a small or 

negligible impact on dissolved microcystins if these toxins are present in the raw water (Kull et. 

al 2006).  

2.3.4 POTASSIUM PERMANGANATE (KMnO4) 

Permanganate (KMnO4) is a strong oxidizing agent that has been used to control taste and 

odor, remove color, control biological growth in treatment plants and remove iron and 

manganese. Typical dosages of KMnO4 vary from 0.25 to 20 mg/l for oxidation of grassy odors, 

however, it does a poor job of removing GSM and 2-MIB (Crittenden, 2012). KMnO4 (≤3 mg/l) 

may be used for pre-oxidation in the presence of cyanobacteria without impacting cell 

membranes which is a benefit over other oxidants (Fan et al. 2013).  Studies indicate that the 

application of permanganate was found to be effective for the removal of dissolved MC-LR, 

although with live intact cells toxin removal was much poorer, suggesting that permanganate was 

unable to effectively penetrate or lyse the cells (Rositano, 1996). Hall et al. (2000) reported that 

permanganate is a possible treatment for dissolved MC-LR in waters with low oxidant demand 

and must be applied before sedimentation/filtration of treatment train in order to control final 

manganese concentrations. However, the dose of permanganate must be controlled since the high 

doses might cause cell lysis and toxin release in raw water containing algal cells (Knappe et al., 

2004; Pietsch et al., 2002). Around 1–1.25 mg/L of permanganate was enough to reduce the 

concentration of MCs below the WHO guideline value of 1 µg/L in the experiments performed 

with surface water. Therefore, permanganate is a feasible option for the oxidation of MCs in 

natural waters prior to coagulation-sedimentation steps (Rodriquez et. al 2007). 



 

13 

 

2.3.5 CHLORINE (Cl2) 

Chorine is a very effective method for taste and odor control, but its use must be 

evaluated carefully due to the formation of carcinogenic disinfection by-products when organics 

are present. Reactivity of chlorine with toxins is influenced by pH of the water and by the 

presence of NOM. Contact time (CT) values required for destruction of microcystins with free 

chlorine may be many times higher than required for the surface water treatment rule depending 

on specific water quality conditions (Ohio EPA, AWWA, 2011). Even though chlorine is 

effective at removing odorants, it is ineffective at removing microcystins. One study showed that 

even a 5 mg/L was ineffective for destroying the algal toxin extracts (Hoffman, 1976). A second 

study demonstrated that combined treatment processes which included chlorination at 0.5 mg/L 

were also ineffective (Keijola et al., 1988; Himberg et al., 1989). A third study showed 

chlorination achieved negligible reduction in microcystin levels of 0.3-0.5 μg/L in treated water 

(Lambert et al., 1996). However, chlorination was very effective at destroying microcystin-LR 

and nodularin with free chlorine residual of 0.5 mg/L after 30 minutes contact time with pH < 8 

(Nicholson et al., 1994). Dissolved microcystin-LR and anatoxin-a concentrations in the range 5-

10 μg/L, using a chlorine residual of 0.7 mg/L at pH 5, yielded a removal of more than 93 % 

within 30 minutes but at pH 7 removal reached only 88 % after 22 hours (Carlile, 1994; Croll 

and Hart, 1996; Hart et al., 1997).  

2.3.6 MIXED OXIDANTS (MIOX) 

The mixed-oxidants (MIOX) disinfection system appears to provide a reasonable 

alternative for small distribution systems as a safe, reliable, and cost effective technology that is 

easy to operate and is readily compatible with other treatment systems. However, it hasn’t been 

used to treat odorants or toxins. 
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Figure 2-9: MIOX Equipment Setup 

 

2.4 DATA ANALYSIS 

Response Surface Methodology (RSM) is a statistical method for heuristic optimization, 

which is basically a combination of design of experiments (DOE), regression analysis and 

statistical inferences. It is a very useful technique for modeling and analysis of problems in 

which a response of interest is influenced by several variables. Factorial design is particularly 

used in the early stages of experimental work, when there are likely to be many factors to be 

investigated. 

Stat-Ease makes it easy to perform statistical design of experiments (DOE) with Design 

Expert software. Design Expert helps to design, run, and analyze a few real experiments in a 

short amount of time. Design Expert offers multilevel factorial screening designs to help find the 

critical factors that lead to breakthrough improvements. Using response surface methodology, it 

helps to optimize the process and display optimum performance with 3D plots (Figure.5.2). The 

software is being used in wide fields of research as well as industries to help in reducing the 
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chemicals consumption, cost and the time spent in carrying out numerous experiments 

(conventional practice) to optimize the results.  

 

Figure 2-10: A view of graph plotted in Design Expert 

Design Expert identifies the breakthrough factors for process or product improvement 

and helps to set up and analyze general factorial, two-level factorial, fractional factorial (up to 31 

variables) and Plackett-Burman designs (up to 31 variables). The software can also carry out 

numerical optimization and with these designs; the critical factors and their interactions can be 

easily screened (Figure.5-3).  

 

Figure 2-11: A view of graph plotted in Design Expert 
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Design-Expert offers rotatable 3D plots to aid in visualizing the response surface and 

explore the 2D contours, setting flags along the way to identify coordinates and predict 

responses. The sweet spot where all your requirements are met can be found via the program's 

numerical optimization function, which finds the most desirable factor settings for multiple 

responses simultaneously.  

 

Figure 2-12: A view of factorial design plotted in Design Expert 
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3 : MODELLING OF TASTE & ODOR AND TOXIN REMOVAL WITH 
VARIOUS WATER TREATMENT METHODS 

3.1 SYNOPSIS 

The cyanobacteria, also known as blue-green algae, owe their name to the presence of 

photosynthetic pigments. Cyanobacteria are a major group of bacteria that occur throughout the 

world. Freshwater cyanobacteria may accumulate in surface water supplies as "blooms" posing 

as an environmental hazard because of the release of water soluble toxic compounds, called 

cyanotoxins. Especially massive blooms of blue–green algae in the surface waters used as 

drinking water resources may lead to taste and odor problems during the summer and fall, they 

may also produce cyanotoxins. Since the taste and odor compounds, Geosmin (GSM) and 2-

Methylisoborneol (2-MIB) can be easily detected by the human nose at low concentrations of 2-5 

ng/L, the surveillance of harmful toxins such as microcystin-LR may be easily performed by 

sensory analyses due to the likely co-occurrences of the two types of metabolites. This research 

focused on removal of taste and odor compounds (GSM, 2-MIB) and microcystin-LR with five 

oxidants: chlorine, chlorine dioxide, potassium permanganate, ozone, mixed oxidants (MiOX) 

and powdered activated carbon (PAC) using Ralston Reservoir water as reagent water collected 

in early April, 2014. The objective of the study was to develop a bench scale treatment process 

efficacy information that Denver Water can utilize to decide on a treatment technique for taste 

and odor control. The Design Expert software was used to determine the optimum dose of the 

oxidants for an acceptable treatment level. 

3.2 INTRODUCTION 

Over the last few decades, water scarcity and quality of water have become issues of 

major concern. Major source waters are deteriorating in quality, especially in the developed 

countries. Eutrophication has accelerated in reservoirs used for drinking water supply and has 
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often lead to cyanobacteria (blue-green algae) and actinomycetes (bacteria) blooms. Sustained 

loading of nutrients to surface waters leads to eutrophication (Correll, 1999). Some of the issues 

related to eutrophication include increased algal biomass, low dissolved oxygen (DO), increased 

fish mortality, reduced water transparency and frequent incidences of toxic phytoplankton 

(Burkholder et al., 1992; Carpenter et al., 1998; Smith, 1998). Most of the aquatic systems have 

very low concentration of nutrients and small shifts can result in dramatic changes in the ecosystem 

(Dodds and Welch, 2000; Rabalais, 2002, Miltner and Rankin, 1998;). Increases in algal biomass can 

disturb the natural ecosystem and cause severe environmental degradation through means other 

than oxygen depletion, such as toxic blooms associated with certain species and concentrations 

of algae (Smith et al., 1999). Toxic algal blooms can also disrupt tourism due to foul odors, 

unsightly views, and fish mortality events (Howarth et al.,2000).  Release of algal metabolites 

cause great concern for drinking water authorities. In addition to taste and odor compounds, 

some cyanobacteria produce toxic compounds called cyanotoxins. The occurrence of these 

compounds in water bodies, has a strong impact towards the quality and safety of drinking water. 

Reducing the non-point discharge of phosphorus helps to control eutrophication which in turn 

minimizes the algal blooms and hence the occurrence of algal metabolites.   

Taste-and-odor (T&O) is a concern for any water treatment plant (WTP) using a surface 

water source. The odors are predominantly caused by the presence of 2-MIB and Geosmin. Both 

2-MIB and Geosmin are algal byproducts and typically come in brief, but potent, T&O events. 

Geosmin, which accounts for “earthy” odor complaints, while the “musty” odor caused by 2-

MIB and they usually occur during the late summer or early fall. Each compound is difficult to 

treat due to their low thresholds of odor detection. Historically, T&O events have become a 

persistent and ongoing challenge. Consumers do not want their water smelling and tasting like 

dirt and hence utilities spend billions of dollars to treat them. Detrimental economic side effects 
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of algal blooms are also seen in expensive water treatment, habitat restoration and human health 

costs at a national scale (EPA, 2015). 

Geosmin, chemically known as 1,2,7,7-tetramethyl-2-norborneol, is an organic 

compound that is responsible for the earthy smell that causes the unpleasant flavor in drinking 

water which is often associated with fresh-turned dirt.  Geosmin is a tertiary alcohol, fairly water 

soluble and has a Henry’s law constant (at 20°C) of 0.0023; molecular weight of 182.305 g/mol; 

and water solubility of 150.2 mg/L (at 20 °C) (Bruce et al., 2002; Omur-Ozbek and Dietrich, 

2005). The production of GSM by cyanobacteria is considered to be a secondary metabolite of 

cellular growth. GSM is detectable by the human nose at a concentration of as low as 4ng/L in 

water (David et al. 2008), therefore the removal of GSM from drinking water is critical for water 

providers globally. 2-Methylisoborneol (MIB) is a derivate of borneol. 2-MIB has a musty odor 

that can be defined as a damp basement (Gerber et al. 1965) and has a Henry’s law constant (at 

20°C) of 0.0027; molecular weight of 154.25 g/mol; and water solubility of 194.5 mg/L (at 20 

°C) (Omur-Ozbek and Dietrich, 2005). Its odor detection threshold is almost 7-15 ng/L (David et 

al. 2008), and it is one of the chemicals (also GSM) with major influence on 

the quality of drinking water.  

The widespread occurrence of cyanotoxins in the available water resources and finished 

drinking waters around the globe has not only led to livestock deaths but also several cases of 

human hepatoenteritis and even deaths (Byth, 1980; Francis, 1878; Gugger et al., 2005; 

Jochimsen et al., 1998). The hepatotoxic microcystins (MC), the most widespread cyanotoxin 

group, are known to be produced by the members of several cyanobacterial genera including 

Microcystis, Anabaena, Planktothrix, Anabaenopsis, Nostoc, and Hapalosiphon (Skulberg et al., 

1993; Sivonen and Jones, 1999). Typical dissolved microcystin concentrations in surface waters 

http://en.wikipedia.org/wiki/Borneol
http://en.wikipedia.org/wiki/Odor_detection_threshold
http://en.wikipedia.org/wiki/Water_quality
http://en.wikipedia.org/wiki/Drinking_water
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rich in toxic cyanobacteria are 0.1-10 µg L-1, but the concentration can be much higher if a 

major bloom is breaking down (Sivonen Jones, 1999). Toxic algal blooms in Lake Erie, 2014 

have left the residents in Toledo, Ohio without drinking water for days (Ecowatch, 2014). Utah 

Lake was closed due to huge toxic bloom which caused big problems for people who used the 

lake for swimming, fishing and agriculture (The Guardian, 2016). 

 

Figure 3-1: Bloom of the Microcystis aeruginosa in Lake Erie in Oct 2011 (NASA,2011) 

The occurrence of MCs in natural water bodies become a major concern for production of 

drinking water due to their severe acute and sublethal toxicities. Although over 80 microcystin 

variants are known, the most common is microcystin LR (MC-LR), which has been identified 

together with other commonly found MC variants such as MC-LA, MC-RR and MC-YR in 

natural water samples (Falconer et al., 1999; Spoof et al., 2003). Microcystin-LR (MC-LR) is 

one of the most toxic variants, with a mouse LD50 of 50 mgkg-1 (Chorus and Bartram, 1999). 

The molecular structure of Microcystin-LR is show below in the figure 2-3.  
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Figure 3-2: Structure of Microcystin-LR (Eva Rodriguez et al. 2007) 

For this reason, the Environmental Protection Agency (EPA) has set a provisional 

drinking water guideline of 0.3 µg/L for microcystins for bottlefed infants and young children of 

preschool age. For school-age children through adults, the health advisory (HA) value for 

drinking water is 1.6 µg/L. The HA values are based on exposure for ten days (EPA, 2015). 

For control of taste and odor compounds as well as toxins in drinking water treatment 

plants, the application of conventional water treatment technologies like coagulation 

flocculation/sedimentation, filtration have been reported to be effective for removal of 

cyanobacterial cells but ineffective for removal of extracellular MCs (Himberg et al., 1989; 

Chow et al., 1999; Hrudey et al., 1999). Thus, alternative treatment options such as use of 

adsorbents like activated carbon (both powdered and granular) and oxidants such as ozone, 

chlorine-di-oxide, potassium permanganate and MIOX (Rodriguez et al, 2007, 2008, Dixon et 

al., 2010) need to be incorporated into the water treatment processes to remove these 

compounds. With respect to oxidation rate, the following general trend is typically observed: 

O3> H2O2> HOCl > ClO2> KMnO4> Cl2. However, discrepancies have been observed depending 

on the type of compound that is oxidized. Previous studies have demonstrated the efficiency of 

different oxidants potassium permanganate (Rodriguez et al., 2007a) and ozone (Onstad et al., 
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2007), as well as Advanced Oxidation Processes (Cornish et al., 2000; Qiao et al., 2005) to 

oxidize extracellular MC. 

Among the treatment options listed, PAC is most commonly utilized for control of taste 

and odor compounds as it has a lower cost and can be used in existing water treatment plant 

without any major adaptations and additional capital costs. Depending upon the season, the use 

of PAC can be applied intermittently and at varying doses for the control of microcystins.  For an 

initial MIB concentration of 250 ng/l and PAC dosage of 40 mg/l, the MIB removal efficiency 

was 70% whereas the MIB removal efficiency lowered for experiments that included both 

processes of coagulation i.e. ferric sulphate and adsorption (Seckler et al. 2013). Micro pollutant 

removal efficiency increased by using recycled waste PAC and the optimum PAC used for the 

removal ranged between 15 and 20 mg/l (Boehler et al. 2012). Most of the studies pertaining to 

PAC adsorption of cyanotoxins have been conducted on the microcystins, in particular, MCLR 

(Falconer et al., 1989; Donati et al., 1994; Pendleton et al., 2001; Cook and Newcombe, 2002, 

2008; Campinas and Rosa, 2010a,b). Experiments carried out by Cook and Newcombe (2002) 

for PAC adsorption on four variants of microcystin showed the differences in the adsorption of 

each variant with the ease of removal following the order: MCRR > MCYR > MCLR > MCLA. 

It was concluded by Margarida Campinas et al. (2010) that for low concentrations of 

microcystins (5 µg/L), 10mg/L of PAC effectively controlled the microcystins in a model water 

with M. aeruginosa culture whereas a PAC dose of 15 mg/L was necessary when the NOM 

surrogate concentration doubled. For high concentrations of microcystins (20 µg/L),15 mg/L of 

PAC were unable to achieve the WHO guideline-value.  

Advanced oxidation processes (AOPs) involve the use of ozone and a hydroxyl radical. 

AOPs are strong oxidizing processes that have been used for organic matter oxidation. Ozone 
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has been used to control taste and odor, remove color, and control biological growth in 

treatments plants. AOPs have great potential for oxidation of double bonds and amines found in 

toxins, and that makes them useful in microcystin degradation (Brooke et.al 2006, Onstad et. al 

2007). The ozonation process is favored for the treatment of drinking water because of its high 

oxidation efficiency by a direct pathway (O3 direct reaction) and an indirect pathway (OH 

radical reaction). The initial concentrations of MIB and GSM were varied between 43 and 220 

ng/l, then removal efficiency of MIB rapidly increased in proportion to O3 dosage and removal 

up to 84.8% for 2-MIB occurred at 3.8 mg/l for 6.4 minutes contact time (Jung et al. 2004). 

Collivignarelli and Sorlini, (2004) reported that a complete removal geosmin and MIB can be 

obtained only with the combination of ozone (conc. of 1.5–3 mg/l and contact time of 2–3 mins) 

with UV radiation (dose of 5,000–6,000 J/m2). Yuan et al. (2013) identified that ozonation can 

lead to 99.9% of GSM removal rate within 30 min at the ozone dosage of 4.19 mg/l. The 

ozonation process led to the algae removal of 91.2% within 60 mins under the ozone dosage of 

5 mg/l and the algae could not survive the dosage of 3 mg/l (Miao et al. 2004). Suffet et al. 

(1986) found that ozone is generally the most effective oxidant for use in taste and odor 

treatment, ozone doses of 2.5 to 2.7 mg/L and 10 minutes of contact time (residual 0.2 mg/L) 

significantly reduce levels of taste and odors.  

Cheng et al. (2011) reported that better removal of MIB and GSM were observed with 

just chlorine dioxide (ClO2) at an optimum dosage of 5 mg/l, in comparison to a mixture of ClO2 

and coagulant (poly. Aluminum chloride). Lalezary et al. (1986) used chlorine, chlorine dioxide, 

ozone, and permanganate to treat earthy-musty smelling compounds.  In that study, chlorine 

dioxide was found most effective, although none of the oxidants were able to remove geosmin 

and MIB by more than 40 to 60 percent. Han et al. (2008) and Wu et al. (2012) found that with a 
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contact time of 30 minutes using ClO2, removal of Coliform, Benzopyrene, COD, NH3-N and 

colour was possible at a dosage of 7.12 mg/l and 5 mg/l respectively. Chlorine-based weaker 

oxidants (and disinfectants) such as chlorine dioxide (ClO2) and chloramines have been used as 

alternative to chlorine but found ineffective due to their low reaction kinetic constant, k (Eva 

Rodriquez et. al 2005, 2007, Kull et al. 2006). Oxidants such as chloramines and chlorine 

dioxide are not plausible options for the removal of MC from natural waters, due to their low 

reactivity with these oxidants (Acero et al., 2005; Kull et al., 2004). ClO2 as an oxidant in 

drinking water treatment will have only a small or negligible impact on dissolved microcystins if 

these toxins are present in the raw water (Kull et. al 2006).  

Permanganate (KMnO4) is a strong oxidizing agent that has been used to control taste and 

odor, remove color, control biological growth in treatment plants and remove iron and 

manganese. Typical dosages of KMnO4 vary from 0.25 to 20 mg/l for sulfide oxidation o grassy 

odors, however, it does a poor job of removing GSM and 2-MIB (MWH's Water Treatment: 

Principles and Design, John C. Crittenden). KMnO4 (≤3 mg/l) may be used for pre-oxidation in 

the presence of cyanobacteria without impacting cell membranes which is a benefit over other 

oxidants (Fan et al. 2013).  Studies indicate that the application of permanganate was found to be 

effective for the removal of dissolved MC-LR, although with live intact cells toxin removal was 

much poorer, suggesting that permanganate was unable to effectively penetrate or lyse the cells 

(Rositano, 1996). Hall et al. (2000) reported that permanganate is a possible treatment for 

dissolved MC-LR in waters with low oxidant demand and must be applied before 

sedimentation/filtration of treatment train in order to control final manganese concentrations. 

However, the dose of permanganate must be controlled since the high doses might cause cell 

lysis and toxin release in raw water containing algal cells (Knappe et al., 2004; Pietsch et al., 
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2002). Around 1–1.25 mg/L of permanganate was enough to reduce the concentration of MCs 

below the WHO guideline value of 1 µg/L in the experiments performed with surface water. 

Therefore, permanganate is a feasible option for the oxidation of MCs in natural waters prior to 

coagulation-sedimentation steps (Eva Rodriquez et. al 2007). 

Chorine is a very effective method for taste and odor control, but use as a control 

chemical must be evaluated carefully due to the formation of THMs and chlorophenol when 

organics are present. Reactivity of chlorine with toxins is influenced by pH of the water and by 

the presence of NOM. Contact time (CT) values required for destruction of microcystins with 

free chlorine may be many times higher than required for the surface water treatment rule 

depending on specific water quality conditions (Ohio EPA, AWWA,2011). One study showed 

that even a 5 mg/L was ineffective for destroying the algal toxin extracts (Hoffman, 1976). A 

second study demonstrated that combined treatment processes which included chlorination at 0.5 

mg/L were also ineffective (Keijola et al., 1988; Himberg et al., 1989). A third study showed 

chlorination achieved negligible reduction in microcystin levels of 0.3-0.5 μg/L in treated water 

(Lambert et al., 1996). However, chlorination was very effective at destroying microcystin-LR 

and nodularin with free chlorine residual of 0.5 mg/L after 30 minutes’ contact time with pH < 8 

(Nicholson et al., 1994). Dissolved microcystin-LR and anatoxin-a in the range 5-10 μg/L, using 

a chlorine residual of 0.7 mg/L showed at pH 5, removal was more than 93 % within 30 minutes 

but at pH 7 removal reached only 88 per cent after 22 hours (Carlile, 1994, Croll and Hart, 1996, 

Hart et al., 1997). Courchene and Chapman (1975) have stated that a free chlorine residual of 

0.2-1.0 mg/L was very effective against most of the taste and odor or filter-clogging algae. 

The mixed-oxidants (MIOX) disinfection system appears to provide a reasonable 

alternative for small distribution systems as a safe, reliable, and cost effective technology that is 
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easy to operate and is readily compatible with other treatment systems. A 5 mg/l dose of mixed 

oxidants reduced the mouse infectivity of C. parvum oocysts by >99.9 to >99.99% after 4 hours. 

Under the same conditions, the infectivity of C. perfringens spores was reduced by >99.5% 

(Venczel et al. 1997). 

3.3 MATERIALS AND METHODS 

3.3.1 Reagents and Supplies. 

The high purity chemical microcystin-LR (CAS 101043-37-2) was purchased from 

Sigma Aldrich (Pittsburg, PA). Geosmin, 2-Methyl Isoborneol and 2,4,6-Trichloroanisole (CAS 

16423-19-1) was purchased from Supelco (Belafonte, PA). Optima grade methanol (CAS 67-56-

1) was obtained from; Fisher Scientific (Fair lawn, NJ). Standard solution of microcystin-LR 

were prepared in methanol at 10 mg/L, 50, 25, 10, 5 and 1 ug/L. Standard solutions of geosmin 

were prepared in methanol at 4 and 0.04 mg/L, 50, 25, 10, 5, and 1 ng/L. Standard solutions of 2-

Methyl Isoborneol were prepared in methanol at 4 and 0.04 mg/L, 50, 25, 10, 5, and 1 ng/L. 

Standard solutions of 2,4,6-Trichloroanisole were prepared in methanol at 4 and 0.04 mg/L. 

The lignite coal based Hydrodarco-B (PAC) was supplied by Norit America Inc. 

(Marshall, TX). The PAC solution was prepared using reverse osmosis (RO) water and PAC, 

bringing the concentration to 10g/L. The PAC dosages tested were 5, 10, 20, 40 and 60 mg/L.  

Chlorine-di-oxide (ClO2) (CAS 10049-04-4) was supplied by CDG Environmental 

(Bethlehem, PA). The concentration was measured using amperometrictitrator, bringing the 

concentration to 3035 mg/L. The ClO2 dosages tested were 0.5, 0.9 and 1.3 mg/L. 
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Chlorine (Cl2) was supplied by Hach (Loveland, CO). The stock solution was prepared 

RO water and ampules with 25-30mg/L as Cl2. The Cl2 dosages tested were 0.5, 1.0 and 2.0 

mg/L. 

Potassium permanganate (KMnO4) was supplied by Fischer Chemical (Fair lawn, NJ). 

The stock solution was prepared using nano pure water and bringing the concentration to 1g/L. 

The KMnO4 dosages tested were 0.5, 1.0 and 2.0 mg/L. 

Mixed oxidants (MIOX) was prepared on-site using the MIOX generator (Rio Zuni 2.0, 

MIOX corporation inc.) the concentration was measured to be 2350 mg/L. The MIOX dosages 

tested were 0.5, 1.0 and 2.0 mg/L.  

Ozone (O3) was prepared on-site using the Ozone generator (APG Del Ozone generator) 

the concentration was measured for every run. The O3 dosages tested were 0.3, 0.7 and 1/1.5 

mg/L.  

Sodium Thio-sulfate was supplied by Fischer Chemical (Fair lawn, NJ). The stock 

solutions were prepared using nano pure water and bring the concentration to 1g/L. Thio solution 

was mainly used for quenching the oxidants. 

1-L Pyrex beakers, Whatman glass fiber filters, 40 ml amber glass (VOA) vials and 20ml 

glass vials were purchased from Fisher Scientific Inc. Solid-phase microextraction (SPME) 

fibers (65μm PDMS/DVB cross-linked) and holders were purchased from (Supelco, (Bellefonte, 

PA) were used in the geosmin/MIB analysis. 
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3.3.2 Water Samples 

Raw water samples used in the experiments were provided by the Moffat WTP in blue 

plastic storage drums beginning in early April 2014 and stored at 4 oC for use. The basic water 

quality parameters such as dissolved organic carbon (DOC), pH, dissolved oxygen (DO), 

turbidity and conductivity were measured at CSU using Hach® sensIon 156 multi-parameter 

meter Hach turbidimeter. The water samples (500ml) were placed in 1 L glass beakers with 

Teflon coated stir bars. The beakers were spiked with odorants and treatment chemicals at 

selected concentrations. The samples were stirred to allow for complete mixing without creating 

a vortex for the selected contact time. Each run was duplicated to verify the validity of the 

experimental results. A sample solution of 100 mL was collected from the beaker at the selected 

contact time, and was either filtered through Whatman glass fiber 1.2 um filters to remove the 

PAC or was quenched using sodium thio sulphate to remove the oxidant present in the samples. 

The samples were placed into two 40 mL amber glass vials with open top screw caps lined with 

PTFE rubber septum to be stored at 4 oC for analysis. 

3.3.3 Coagulation and Jar Tests 

1-liter glass beakers were filled with (500ml) the source water and spiked with geosmin 

or 2-methylisoborneol or microcystin-LR to achieve levels that correspond to common bloom 

events. Total microcystin-LR concentrations tested were 10, 25 and 50 ug/L, total geosmin and 

concentrations tested were 10, 25 and 50 ng/L and total 2-Methylisoborneol concentrations 

tested were 10, 25 and 50 ng/L for the jar tests. The respected amount of PAC solution or the 

oxidant was then added to achieve desired concentrations. The experimental plan and levels of 

metabolites and adsorbent/oxidants are given in table 3-1. 
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Table 3-3-1: Experimental matrix for metabolite removal 

Odorant 

(ng/L) 

PAC 

(mg/L) 

ClO2 

(mg/L) 

KMnO 4 

(mg/L) 

O3 

(mg/L) 

MIOX 

(mg/L) 

Cl2 

(mg/L) 

10 5, 10, 20 0.5, 0.9, 1.3 0.5, 1.0, 2.0 0.7, 1.5 0.3, 0.7, 1.0 0.5, 1.0, 2.0 

25 10, 20, 40 0.5, 0.9, 1.3 0.5, 1.0, 2.0 0.7, 1.5 0.3, 0.7, 1.0 0.5, 1.0, 2.0 

50 10, 20, 40 0.5, 0.9, 1.3 0.5, 1.0, 2.0 0.7, 1.5 0.3, 0.7, 1.0 0.5, 1.0, 2.0 

 

 

MC-LR 

(ug/L) 

PAC 

(mg/L) 

ClO2 

(mg/L) 

KMnO 4 

(mg/L) 

O3 

(mg/L) 

MIOX 

(mg/L) 

Cl2 

(mg/L) 

10 5, 10, 20 0.5, 0.9, 1.3 0.5, 1.0, 2.0 0.3, 0.7, 1.0 0.3, 0.7, 1.0 0.5, 1.0, 2.0 

25 10, 20, 40 0.5, 0.9, 1.3 0.5, 1.0, 2.0 0.3, 0.7, 1.0 0.3, 0.7, 1.0 0.5, 1.0, 2.0 

50 10, 20, 60 0.5, 0.9, 1.3 0.5, 1.0, 2.0 0.3, 0.7, 1.0 0.3, 0.7, 1.0 0.5, 1.0, 2.0 
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Figure 3-3 Experimental Setup for Toxin and T&O Sample Analysis 

A batch of four jars tests were simultaneously ran on a Fischer scientific magnetic stirrer 

using Teflon coated stir bars. The solutions in the beakers were spiked with geosmin/2-MIB and 

microcystin-LR, and the beakers were mixed for specific contact time to ensure proper mixing of 

the algal metabolites. Samples were drawn from each jar at approximately 1.5 inches below the 

water surface and were filtered by a 0.45 um glass filter or immediately quenched using thio 

solution (depending on the oxidant) and collected into in 40 mL amber glass vials for storage at 4 

oC until analysis.  

3.3.4 Solid Phase Microextraction coupled with GC/MS for T&O Analysis 

The headspace solid phase micro-extraction (SPME) coupled with GC/MS method was 

adopted from procedures laid out by Omur-Ozbek and Dietrich, (2005) and Saito, (2008) for 

analysis. To improve odorant recovery by the SPME fiber and to increase the headspace 

concentrations, the 20 mL samples were placed in 40 mL amber vials, received 3 g of sodium 

chloride (NaCl) and was heated up to 65 oC (+ 2 oC). After 10 minutes of equilibration, the 

SPME fiber was inserted and exposed to the headspace of the vial for an adsorption time of 20 
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minutes. Calibration curve samples were prepared in 40 mL glass amber vials with 20 mL 

Geosmin/2-MIB standard solutions at 1, 5, 10, 20 and 50 ng/L.  

 

Figure 3-4: Sample Extraction with SPME 

 

Figure 3-5 GC/MS Equipment Setup 

The same extraction and analysis procedure was applied to the standard curve samples to 

quantify the GC/MS results. Trichloroanisole (TCA) was used as an internal standard, and all the 

samples were spiked with 20uL of 0.04 mg/L of TCA. Odorants extracted by the SPME fiber 

were analyzed by GC/MS. For the experiments, Agilent 5890 GC connected to an Agilent 5973 

MS was employed. The SPME fiber was placed into the injection port of the GC set to 250 °C 
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and the odorants were desorbed in splitless mode for 3 minutes. The GC column selected was a 

DB-5 MS, (30 m, 0.25 mm ID., 0.25 µm) supplied by Agilent Technologies. The GC was 

programmed to start at an initial temperature of 100°C, and then the temperature was ramped up 

to 210 °C at a rate of 20 °C/min. The carrier gas was helium operated at a rate of 1 mL/min at a 

pressure of 145 kPa. The MS was set for selected ion monitoring (m/z 112, 125 and 182 for 

geosmin; and m/z 95, 107 and 168 for 2-MIB) to increase sensitivity of detection. The detection 

limit of odorants was at 0.5 ng/L. For the taste and odor analysis carried out with different 

oxidants/adsorbent, all samples were run as triplicates to validate the research. 

3.3.5 LC/MS/MS Analysis for Microcystin-LR 

Microcystin-LR was detected and quantified by liquid chromatography-mass 

spectrometry-mass spectrometry (LC/MS/MS) following the method by Triantis et al. (2010). 

Two different LC/MS/MS equipment were used depending on the availability. The parameters 

used for both are described below. 

The LC/MS/MS was running on an Agilent eclipse plus C18 coupled with an Agilent 

5973 mass spectrometer equipped with an ESI source in the positive mode (Agilent, Santa Clara, 

CA).  



 

33 

 

 

Figure 3-6 Analysis tray for toxin samples 

 

Figure 3-7 LC/MS Equipment Setup 

The compound Microcystin-LR was separated on an Agilent Eclipse Plus C18 column 

(2.1 x 50mm, 1.8 um particle size) at 30 oC. A sample volume of 20 μL was injected and a binary 

mixture of ammonium formate in 0.1% (v/v) formic acid (A) and CAN 0.1% (v/v) formic acid in 

LC grade water (Sigma, Pittsburg PA) (B) at a flow rate of 0.4 mL/min was passed through the 

column. The solvent gradient used was 15% B at start, increased to 100% at 3.5 min. The 
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ionization source conditions used were as follows: nebulizer gas flow of 8 L/min at 20 psi. 

Sheath gas temperature was set at 400 oC and sheath gas flow of was set to 10 L/min. The 

optimized fragmentor was set at 200 V with a cell accelerator voltage of 7 V. The precursor ion 

was set at 995.6 m/z and product ions of 70.1 and 135.0 m/z per produced with a collision energy 

of 90 V. The collection and processing of chromatograms was performed by using the Agilent 

Mass Hunter software (v B.04.01). The detection limit of microcystin-LR was at 0.5 ug/L. For 

the toxin analysis carried out with different oxidants/adsorbent, all samples were run as 

triplicates to validate the research. 

When the other LC/MS/MS was utilized, it was performed on a Waters Acquity M-Class 

UPLC coupled to a Waters Xevo TQ-S triple quadrupole mass spectrometer. Chromatographic 

separations were carried out on a Waters BEH C18 stationary phase iKey separation device (150 

µm x 50 mm, 1.7 µM). Mobile phases were 99.9% acetonitrile, 0.1% formic acid (B) and water 

with 0.1% formic acid (A). The analytical gradient was as follows: time = 0 min, 0.5 % B; time = 

2.0 min, 3.0 % B; time = 6 min, 97 % B; time = 7.5 min, 97 % B; time 8.0 min, 0.5 % B; time 11 

min, 0.5 % B. Flow rate was 5.0 µL/min and injection volume was 5.0 µL. Samples were held at 

4ᵒ C in the autosampler, and the iKey device was operated at 70ᵒ C.  The MS was operated in 

selected reaction monitoring (SRM) mode, where a parent ion is selected by the first quadrupole, 

fragmented in the collision cell, then a fragment ion selected for by the third quadrupole. Product 

ions, collision energies, and cone voltages were optimized for each analyte by direct injection of 

individual synthetic standards. Inter-channel delay was set to 3 ms. The MS was operated in 

positive ionization modes with the capillary voltage set to 3.6 kV. Source temperature was 120ᵒ 

C and desolvation temperature 500ᵒ C. Cone gas flow was 150 L/hr, and collision gas flow was 

0.15 mL/min. Nebulizer pressure (nitrogen) was set to 7 Bar. Argon was used as the collision 
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gas. The precursor ion was set at 498.6 & 995.6 m/z and product ions of 135 and 125, 135.0 m/z 

per produced with a collision energy of 13,90 &75 V respectively. All Raw data files were 

imported into the Skyline open source software package[1]. Each target analyte was visually 

inspected for retention time and peak area integration. Peak areas were extracted for target 

compounds detected in biological samples and normalized to the peak area of the appropriate 

internal standard. Normalized peak areas were exported to Excel and absolute quantitation was 

obtained by using the linear regression equation generated for each compound from the 

calibration curve.  Limits of detection (LOD) and limits of quantification (LOQ) were calculated 

as 3 times or 10 times the standard deviation of the blank divided by the slope of the calibration 

curve respectively[2, 3]. 

3.3.6 Data Analysis 

Collected data was analyzed with the Stat-Ease® Design Expert® (Version 10.0.2) to 

determine the optimum PAC/oxidant dosing for various odorant/toxin concentrations, 

experimental design, data analysis, quadratic model buildings, and graph (three-dimensional 

response surface and contour) plotting. 

3.4 RESULTS AND DISCUSSIONS 

3.4.1 TASTE AND ODOR REMOVAL 

Results for metabolite removal are shown in tables 3-2 through 3-13 as percent removal 

as a function of PAC or oxidant dosage. Percent removal was calculated relative to the average 

residual GSM and MIB concentration at the 0 mg/L dose of PAC or oxidant. Raw data is also 

summarized in Table 5-1. 

https://skyline.gs.washington.edu/labkey/project/home/software/Skyline/begin.view?
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A.Powdered Activated Carbon (PAC) as Adsorbent 

 

Figure 3-8: Interaction of GSM at different PAC dosages at different initial concentrations 

 

Figure 3-9: Interaction of MIB at different PAC dosages at different initial concentrations 
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Table 3-2 Average percent removal of GSM & MIB as a function of PAC dosage 

Initial 
Conc. of 
Geosmin  

Initial 
Conc. 
of 2-
MIB  

PAC 
Dosage Contact 

Time  
Removal of 
Geosmin 

Std. 
Deviation Removal of 2-

MIB  

Std. 
Deviation 

(ng/l) (ng/l) (mg/l) (mins) %   %   

10 10 20 

30 

80.80 7.41 
 

56.08 7.57 

25 25 40 91.76 2.50 69.73 5.28 

50 50 40 92.13 2.41 87.74 2.06 

 

The results from the bench scale study were higher compared to the results from other 

researchers or studies. For the study with an initial 2-MIB concentration of 250 ng/l and PAC 

dosage of 40 mg/l, the MIB removal efficiency was 70% whereas the 2-MIB removal efficiency 

was lower for experiments that included both processes of coagulation i.e. ferric sulphate and 

adsorption (Seckler et al. 2013). The study by Omur-ozbek and Kirk (2011) suggest that 96% 

removal of Geosmin is possible with PAC at a dose of 20 mg/L with an initial conc. of 20ng/L, 

although, it should be noted that PAC/Geosmin concentrations combination matrix and TOC 

levels do affect the removal rates. Higher levels of TOC have a negative impact on removal of 

GSM and 2-MIB since the pores of PAC gets hindered by presence of NOM thereby reducing 

the efficiency of removal. The research carried out by Matthew (2004) towards his dissertation 

on two different source waters show that 87% and 62% removal of MIB was achieved with PAC, 

owing the difference in the removal rates to difference in fractionation of the NOM present. 
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B. Chlorine Dioxide (ClO2) as Oxidant 

 

Figure 3-10: Interaction of GSM at different ClO2 dosages at different initial concentrations 

 

Figure 3-11: Interaction of MIB at different ClO2 dosages at different initial concentrations 



 

39 

 

Table 3-3:Average percent removal of GSM&MIB as a function of ClO2 dosage 

Initial 
Conc. of 
Geosmin  

Initial 
Conc. 
of 2-
MIB 

ClO2 
Dosage  

Contact 
Time  

Removal 
of 

Geosmin 

Std. 
Deviation Removal 

of 2-MIB 

Std. 
Deviation 

(ng/l) (ng/l) (mg/l) (mins) %   %   

10 10 

1.3 30 

27.24 21.83 4.86 0.78 

25 25 58.97 5.33 51.19 12.75 

50 50 49.16 1.71 51.24 18.46 

 

Lalezary et al. (1986) found that chlorine dioxide was not able to remove geosmin and 2-

MIB by more than 40 to 60 %. Chlorine-based weaker oxidants (and disinfectants) such as 

chlorine dioxide (ClO2) have been used as alternative to chlorine but found ineffective due to 

their low reaction kinetic constant, k (Rodriquez et. al 2005, 2007, Kull et al. 2006). The results 

from this analysis also indicate the same results as found by other studies. 
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C. Potassium Permanganate (KMnO4) as Oxidant 

 

Figure 3-12: Interaction of GSM at different KMnO4 dosages at different initial concentrations 

 

Figure 3-13: Interaction of MIB at different KMnO4 dosages at different initial concentrations 
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 Table 3-4: Average percent removal of GSM & MIB as a function of KMnO4 dosage 

Initial 
Conc. of 
Geosmin  

Initial 
Conc. 
of 2-
MIB 

KMnO 4 
Dosage  

Contact 
Time  

Removal 
of 

Geosmin 

Std. 
Deviation 

Removal 
of 2-
MIB 

Std. 
Deviation 

(ng/l) (ng/l) (mg/l) (mins) %   %   

10 10 

2 30 

21.7 2.86 15.12 19.47 

25 25 33.63 10.68 46.26 9.86 

50 50 68.3 3.16 71.18 2.26 

The studies from other researchers show that typical dosages of KMnO4 vary from 0.25 

to 20 mg/l for sulfide oxidation of grassy odors, however, it does a poor job of removing GSM 

and 2-MIB (Crittenden, 2012). KMnO4 (≤3 mg/l) may be used for pre-oxidation in the presence 

of cyanobacteria without impacting cell membranes which is a benefit over other oxidants (Fan 

et al. 2013).  This study showed a removal of 65-70% of GSM and 2-MIB which can be utilized 

as a pre-oxidant in many plants due to it easy maintenance and cost of use. 
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D. Mixed Oxidant (MIOX) as Oxidant 

 

Figure 3-14: Interaction of GSM at different MIOX dosages at different initial concentrations 

 

Figure 3-15: Interaction of MIB at different MIOX dosages at different initial concentrations 
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Table 3-5: Average percent removal of GSM & MIB as a function of MIOX dosage 

Initial 
Conc. of 
Geosmin  

Initial 
Conc. 
of 2-
MIB 

MIOX 
Dosage  

Contact 
Time  

Removal 
of 

Geosmin 

Std. 
Deviation 

Removal 
of 2-
MIB 

Std. 
Deviation 

(ng/l) (ng/l) (mg/l) (mins) %   %   

10 10 

2 30 

43.88 10.95 39.39 12.78 

25 25 74.15 1.76 83.06 4.17 

50 50 81.89 0.48 84.09 0.72 

MIOX performed really well for the removal of GSM and 2-MIB, but the further studies 

need to be carried out like its effect on pH, TOC etc. to make it a reliable oxidant for use in 

plants. From the above table, MIOX clearly indicates that though it can’t be used as a primary 

oxidant as it does not bring the odor levels below the threshold but definitely can be considered 

as a pre-oxidant in the water treatment process. 
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E. Ozone (O3) as Oxidant 

 

Figure 3-16:Interaction of GSM at different O3 dosages at different initial concentrations 

 

Figure 3-17:Interaction of MIB at different O3 dosages at different initial concentrations 
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Table 3-6: Average percent removal of GSM as a function of O3 dosage 

Initial 
Conc. of 
Geosmin  

Initial 
Conc. 
of 2-
MIB 

O3 
Dosage  

Contact 
Time  

Removal 
of 

Geosmin 

Std. 
Deviation 

Removal 
of 2-
MIB 

Std. 
Deviation 

(ng/l) (ng/l) (mg/l) (mins) %   %   

10 10 

1 10 to 15 

97.90 4.91 60.04 8.41 

25 25 96.68 6.55 83.04 1.1 

50 50 94.03 1.11 86.32 1.07 

Collivignarelli and Sorlini, (2004) reported that a complete removal geosmin and 2-MIB 

can be obtained only with the combination of ozone (conc. of 1.5–3 mg/l and contact time of 2–3 

mins) with UV radiation (dose of 5,000–6,000 J/m2). Yuan et al. (2013) identified that ozonation 

can lead to 99.9% of GSM removal rate within 30 min at the ozone dosage of 4.19 mg/l. The 

results also show that ozone is very good oxidant for removal of GSM. Removal of 2-MIB is 

also considerably high but with higher dosage or contact time, rate of removal will be equal to 

GSM. 
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F. Chlorine (Cl2) as Oxidant 

 

Figure 3-18:Interaction of GSM at different Cl2 dosages at different initial concentrations 

 

Figure 3-19:Interaction of MIB at different Cl2 dosages at different initial concentrations 
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Table 3-7: Average percent removal of GSM & MIB as a function of Cl2 dosage 

Initial 
Conc. of 
Geosmin  

Initial 
Conc. 
of 2-
MIB 

Cl2 
Dosage  

Contact 
Time  

Removal 
of 

Geosmin 

Std. 
Deviation Removal 

of 2-MIB 

Std. 
Deviation 

(ng/l) (ng/l) (mg/l) (mins) %   %   
10 10 

2 30 
50.26 5.82 41.65 10.06 

25 25 70.70 1.96 63.93 9.37 
50 50 78.51 3.72 79.16 4.58 

Chorine is a very effective method for taste and odor control, but use as a control 

chemical must be evaluated carefully due to the formation of THMs and chlorophenol when 

organics are present. Courchene and Chapman (1975) have stated that a free chlorine residual of 

0.2-1.0 mg/L was very effective against most of the taste and odor. A second study demonstrated 

that even combined treatment processes which included chlorination at 0.5 mg/L were also 

ineffective (Keijola et al., 1988; Himberg et al., 1989). Chlorine is available easily in all water 

treatment plants so it can be quite effective when used as pre-oxidant but its dose needs to be 

monitored as seen in literature due to its harmful byproducts. 
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3.4.2 TOXIN REMOVAL 

Toxins were analyzed using liquid chromatography mass spectrometry (LC-MS) for PAC 

and oxidant tests. Analysis of water samples was carried out using duplicates or quadruplicates 

after the reaction with oxidants or an adsorbent for a given contact time. Results are shown in 

below figures as percent removal as a function of PAC or oxidant dosage. 

A. Powdered Activated Carbon (PAC) as Adsorbent 

 

Figure 3-20:Interaction of MC-LR at different PAC dosages at different initial concentrations 

Table 3-8: Average percent removal & Conc. of MC-LR as a function of PAC dosage 

Initial Conc. of MC-LR  PAC Dosage  Contact 
Time  

Removal 

Std. 
Deviation 

(ug/l) (mg/l) (mins) %   

10 20 
30 

55.27 21.01 
25 40 76.25 9.6 
50 60 80.65 10.35 
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In comparison to the above results, Campinas et al. (2010) showed that for low 

concentrations of microcystins (5 µg/L), 10 mg/L of PAC effectively controlled the microcystins 

in a model water with M. aeruginosa culture whereas a PAC dose of 15 mg/L was necessary 

when the NOM surrogate concentration doubled. Also, GAC filtration and PAC with 

conventional treatment in full scale application were both generally observed to reduce raw 

water microcystins by more than 80 % except when raw water levels dropped below 0.5 µg/L 

(Lambert et. al 1996). 

B. Chlorine Dioxide (ClO2) as Oxidant 

 

Figure 3-21: Interaction of MC-LR at different ClO2 dosages at different initial concentrations 
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Table 3-9: Average percent removal & Conc. of MC-LR as a function of ClO2 dosage  

Initial Conc. of 
MC-LR  

ClO2 Dosage  Contact Time  Removal 
Std. 

Deviation 

(ug/l) (mg/l) (mins) %   
10 1.5 

30 
24.11 10.44 

25 32.24 6.03 

50 28.05 5.03 

The results clearly show that ClO2 is not a good oxidant for the removal of microcystins 

which is substantiated with the literature. Oxidants such as chloramines and chlorine dioxide are 

not plausible options for the removal of MC from natural waters, due to their low reactivity with 

these oxidants (Acero et al., 2005; Kull et al., 2004). ClO2 as an oxidant in drinking water 

treatment will have only a small or negligible impact on dissolved microcystins if these toxins 

are present in the raw water (Kull et. al 2006). 

C. Potassium Permanganate (KMnO4) as Oxidant 

 

Figure 3-22: Interaction of MC-LR at different KMnO4 dosages at different initial concentrations 



 

51 

 

Table 3-10: Average percent removal & Conc. of MC-LR as a function of KMnO4 dosage 

Initial Conc. of 
MC-LR  

KMnO 4 Dosage  Contact Time  Removal 
Std. 

Deviation 

(ug/l) (mg/l) (mins) %   
10 2 

30 

100.00 0.01 
25 100.00 0.03 

50 100.00 0.01 

Rodriquez et. al (2007) state in his research that around 1–1.25 mg/L of permanganate 

was enough to reduce the concentration of MCs below the WHO guideline value of 1 µg/L in the 

experiments performed with surface water. Hall et al. (2000) reported that permanganate is a 

possible treatment for dissolved MC-LR in waters with low oxidant demand and must be applied 

before sedimentation/filtration of treatment train in order to control final manganese 

concentrations. However, the dose of permanganate must be controlled since the high doses 

might cause cell lysis and toxin release in raw water containing algal cells (Knappe et al., 2004; 

Pietsch et al., 2002). 
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D. Mixed Oxidant (MIOX) as Oxidant 

 

Figure 3-23: Interaction of MC-LR at different MIOX dosages at different initial concentrations 

Table 3-11: Average percent removal & Conc. of MC-LR as a function of MIOX dosage 

Initial Conc. of 
MC-LR  MIOX Dosage  Contact Time  Removal 

Std. Deviation 

(ug/l) (mg/l) (mins) %   

10 
2 

30 

32.81 7.45 

25 38.56 7.5 

50 39.09 3.21 
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MIOX can be used as pre-oxidant for removal of microcystin-LR as it is little effective 

for its removal. Further research needs to be carried out to see the reliability and other factors 

influencing the removal using MIOX as oxidant. 

E. Ozone (O3) as Oxidant 

 

Figure 3-24: Interaction of MC-LR at different O3 dosages at different initial concentrations 

Table 3-12: Average percent removal & Conc. of MC-LR as a function of O3 dosage 

Initial Conc. of 
MC-LR  O3 Dosage  Contact Time  Removal 

Std. 
Deviation 

(ug/l) (mg/l) (mins) %   

10 
1 

10 

100.00 0.13 

25 94.98 2.88 

50 100.00 0.01 

Momani et. al (2008) and Rodriguez et. al (2007) stated that ozone was very efficient for 

any type of toxin degradation. Total toxin degradation was obtained by an ozone dosage of less 
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than 2 mg/L and a reaction time of 144s (Momani et. al 2010). The ozonation process led to the 

algae removal of 91.2% within 60 mins under the ozone dosage of 5 mg/l and the algae could not 

survive the dosage of 3 mg/l (Miao et al. 2004). Ozone has been very effective for taste and odor 

compounds and toxin removal as shown in many studies carried out by Momani et. Al (2010) 

and Rodriguez et al. (2007). 

F. Chlorine (Cl2) as Oxidant 

 

Figure 3-25: Interaction of MC-LR at different Cl2 dosages at different initial concentrations 

Table 3-13: Average percent removal & Conc. of MC-LR as a function of Cl2 dosage 

Initial Conc. of 
MC-LR  

Cl2 Dosage  Contact Time  Removal 

Std. 
Deviation 

(ug/l) (mg/l) (mins) %   

10 0.5 

30 
57.26 23.73 

25 1 80.58 10.45 

50 2 87.28 0.69 
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Studies by Nicholson et al., (1994) indicate that chlorination was very effective at 

destroying microcystin-LR with free chlorine residual of 0.5 mg/L after 30 minutes contact time. 

Dissolved microcystin-LR in the range 5-10 μg/L, using a chlorine residual of 0.7 mg/L showed 

at pH 5, removal was more than 93 % within 30 minutes but at pH 7 removal reached only 88 

per cent after 22 hours (Carlile, 1994), (Croll and Hart, 1996) (Hart et al., 1997). The results 

indicate that chlorine is quite effective though the removal rate of MC-LR doesn’t fall below the 

WHO guidelines, it can be used as pre-oxidant but its dose needs to be monitored as seen in 

literature due to its harmful byproducts.   

3.5 RESPONSE SURFACE METHODOLOGY (RSM) ANALYSIS USING DESIGN 

EXPERT® 

Stat Ease® Design Expert® (version 10.0.2) was employed to create a model for the 

GSM, 2-MIB, and MC-LR removal and oxidant combinations for this study. For this study, a 

multifactor Response Surface Model (RSM) was utilized to determine the model or equation for 

obtaining the remaining conc. of the metabolite and thereby, optimize the dosage of oxidant. 

Unrealistic combinations suggested by the software were eliminated from the identified matrix. 

Two important parameters, initial concentration and oxidant dose, were considered for the 

model. The 54 data points obtained from the laboratory measurements for the twelve different 

combinations of the matrix at three doses of oxidant were entered into the software. 

The data obtained from the experimental runs were used to create a model in Stat-Ease® 

Design Expert® (version 10.0.2) software to predict remaining GSM, 2-MIB, and MC-LR 

concentrations. The model predicted all the tested values within the measured GSM, 2-MIB, and 

MC-LR concentrations, mostly predicting a higher value for the GSM, 2-MIB, and MC-LR 

remaining. The results showed that Design Expert® underestimates the amount of toxin or T&O 
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compounds removed. This will give confidence to the water utilities in predicting their toxin 

removal and will account for any error in oxidant dosing, initial concentration, or contact time. 

Though, contact time has been kept constant for this bench scale study it will be considered 

depending on the site conditions and requirements. Linear, 2FI (2-factor interaction), and 

quadratic models were analyzed for all the analysis to predict the remaining MC-LR 

concentrations. 

For RSM analysis carried out by Design Expert, the results of both T&O and toxin 

removal have been established only for those oxidants which could effectively remove the 

compounds. For the oxidants whose effective removal is low or moderate from the experimental 

analysis, only the equation from the model is generated so that the water treatment operators can 

use them if the oxidant is planned for use as a pre-oxidant for a cost effective and efficient 

removal method. 

3.5.1 T&O ANALYSIS 

From the experimental results, it is very much clear that PAC and Ozone were very 

effective in the removal of geosmin and 2-MIB and lowering their concentration below the odor 

thresholds i.e. 4 ng/L and 7 ng/L respectively. 

Among the various models analyzed by the Design Expert, the Quadratic model had the 

best fit for the actual versus predicted data for both PAC and Ozone as it contained additional 

interaction terms in the equation obtained for prediction. A regression analysis by the Design 

Expert® (R2=0.89 and R2=0.96 respectively) showed that there was no significant difference 

between the measured and the predicted values. 
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Figure 3-26: Graph of predicted and measured remaining conc. of GSM and the contour plots for PAC 

 

 

 

 

 

Figure 3-27: Graph of predicted and measured remaining conc. Of GSM and the contour plots for Ozone 

A simple equation was obtained from the Design Expert® model for remaining geosmin 

concentration predictions using the initial geosmin concentration, PAC/Ozone dosage and 

keeping a constant contact time. The equation created by the quadratic model (that includes the 

interactions between the parameters) may guide the water utilities in quickly determining 
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PAC/Ozone dosages and contact times to best treat geosmin their source waters and is given 

below: 

Remaining Concentration of Geosmin  = + 7.21760  

               + 0.71620 * Initial Conc. of GSM 

                -1.12298 * Dosage of PAC 

           - 0.019926 * Dosage of PAC* Initial Conc. of GSM 

           - 1.54757E-003 * (Initial Conc. of GSM)^2 

                + 0.028710 * (Dosage of PAC)^2 

Remaining Concentration of Geosmin  = + 7.74338  

       + 0.32762 * Initial Conc. of GSM 

      - 28.93243 * Dosage of O3 

            - 0.60683 * Dosage of O3* Initial Conc. of GSM 

     + 8.881525E-003 * (Initial Conc. of GSM)^2 

         + 19.58036* (Dosage of O3)^2 

As can be observed from the equation, dosage of PAC/Ozone and Initial conc. of 

geosmin are important parameters in predicting the remaining geosmin concentration. The above 

figures demonstrate how well the predicted and measured data correlate, as well as the contour 

plots to be used for prediction. The red data points indicate the measured values for the 

remaining geosmin concentrations 

A simple equation was obtained from the Design Expert® model for remaining 2-MIB 

concentration predictions using the initial 2-MIB concentration, PAC dosage and keeping a 

constant contact time (for the values within: PAC concentrations of 5 to 40 mg/L, initial 2-MIB 

concentrations of 10 to 50 ng/L, and contact time of 30 minutes). The equation created by the 

quadratic model (that includes the interactions between the parameters) may guide the water 
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utilities in quickly determining PAC dosages and contact times to best treat MIB their source 

waters and is given below: 

Remaining Concentration of MIB  = -0.20732  
      +1.29035 * Initial Conc. of MIB 
     -0.59219 * Dosage of PAC 

    - 0.023795 * Dosage of PAC* Initial Conc. of MIB 
    - 7.41648E-003 * (Initial Conc. of MIB)^2 

     + 0.018209 * (Dosage of PAC)^2 

Remaining Conc. of MIB = 

+5.02920 
 

-14.30200 * Dosage of O3 

+0.68272 * Ini.Conc. of MIB 

-0.59947 * Dosage of O3 * Ini.Conc. of MIB 

+10.54709 * Dosage of O32 

+3.37037E-003 * Ini.Conc. of MIB2 

 

 

 

 

 

 

 

Figure 3-28: Graph of predicted and measured remaining conc. Of MIB and the contour plots for PAC 
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Figure 3-29: Graph of predicted and measured remaining conc. Of MIB and the contour plots for Ozone 

As can be observed from the equation, dosage of PAC and Initial conc. of MIB are 

important parameters in predicting the remaining MIB concentration. The above figures 

demonstrate how well the predicted and measured data correlate, as well as the contour plots and 

3-D plots to be used for prediction. The red data points indicate the measured values for the 

remaining MIB concentrations. 

3.5.2 TOXIN ANALYSIS 

From the experimental results, it is very much clear that PAC and Ozone were very 

effective in the removal of microcystin-LR and lowering its concentration below the WHO 

guidelines i.e. 1 ug/L. Among the various models analyzed by the Design Expert, the Quadratic 

model had the best fit for the actual versus predicted data for both KMnO4 and ozone as it 

contained additional interaction terms in the equation obtained for prediction. The Quadratic 

model had the best fit for the actual versus predicted data as it contained additional interaction 
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terms in the equation obtained for prediction. A regression analysis by the Design Expert® 

(R2=0.94 and R2=0.92 respectively) showed that there was no significant difference between the 

measured and the predicted values. The equation created by the quadratic model (that includes 

the interactions between the parameters) may guide the water utilities in quickly determining 

PAC dosages and a contact time to best treat MC-LR from their source waters and is given 

below: 

Remaining Concentration of MC-LR =  + 8.25526  

     - 24.81417 * Dosage of KMnO4 

     + 0.77418 * Initial Conc. of MC-LR 

 - 0.40893* Dosage of KMnO4* Initial Conc. of MC-LR 

+10.83208 * (Dosage of KMnO4)^2 

      -7.73519E-004 * (Initial Conc. of MC-LR)^2 

Remaining Concentration of MC-LR =  + 4.96721  

     - 44.42235 * Dosage of O3 

     + 0.79976 * Initial Conc. of MC-LR 

 - 0.76835* Dosage of O3* Initial Conc. of MC-LR 

+41.24184 * (Dosage of O3)^2 

      -1.61537E-003 * (Initial Conc. of MC-LR)^2 

As can be observed from the equation, dosage of KMnO4/ Ozone and Initial conc. of 

MC-LR are important parameters in predicting the remaining MC-LR concentration. The below 

figures demonstrate how well the predicted and measured data correlate, as well as the contour to 

be used for prediction. The red data points indicate the measured values for the remaining MC-

LR concentrations.  
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Figure 3-30: Graph of predicted and measured remaining conc. Of MC-LR and the contour plots for 
KMnO4 

 

 

 

 

 

 

 

 

 

Figure 3-31: Graph of predicted and measured remaining conc. Of MC-LR and the contour plots for 
Ozone 

For ClO2, 2FI model had the best fit for the actual versus predicted data as it contained 

additional interaction terms in the equation obtained for prediction. A regression analysis by the 
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Design Expert® (R2=0.97) showed that there was no significant difference between the 

measured and the predicted values. 

                        Remaining Conc. of MC-LR = 

-1.14301 
 

+1.01502 * Conc. of MC-LR 

+0.094372 * Dosage of ClO2 

-0.20606 * Conc. of MC-LR * Dosage of ClO2 

 

For MIOX, 2FI model had the best fit for the actual versus predicted data as it contained 

additional interaction terms in the equation obtained for prediction. A regression analysis by the 

Design Expert® (R2=0.97) showed that there was no significant difference between the 

measured and the predicted values. 

                           Remaining Conc. of MC-LR = 

-0.73878 
 

+1.00244 * Conc. of MC-LR 

+1.45291 * Dosage of MIOX 

-0.44434 * Conc. of MC-LR * Dosage of MIOX 

 

 
 

For PAC, the quadratic model had the best fit for the actual versus predicted data as it 

contained additional interaction terms in the equation obtained for prediction A regression 

analysis by the Design Expert® (R2=0.96) showed that there was no significant difference 

between the measured and the predicted values. 
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Remaining Concentration of MC-LR =  

+ 3.45774  

     - 0.11680 * Dosage of PAC 

     + 0.40312 * Initial Conc. of MC-LR 

- 9.74001E-003 * Dosage of PAC* Initial Conc. of MC-LR 

- 1.36453E-003 * (Dosage of PAC)^2 

+ 0.010972 * (Initial Conc. of MC-LR)^2 
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3.6 CONCLUSIONS AND RECOMMENDATIONS 

A summary of trends for removal of GSM, 2-MIB and MC-LR using various oxidants and adsorbent is shown in Figures 3-14 

and 3-16 below. The dose of reactants (oxidants/adsorbent) are delineated as low, medium, and high based on the range studied.

 

Figure 3-32: Average final concentration of GSM as a function of dosage of reactants 
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Figure 3-33: Average final concentration of MIB as a function of dosage of oxidants 
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Figure 3-34: Average percent removal of MC-LR as a function of dosage of oxidants
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The results from the bench scale study carried out show that ozone is the best oxidant for 

removal of taste, odor and toxin compounds in the event of occurrence for Denver Water. 

Powdered activated carbon (PAC) is also effective for removal at low and high concentrations of 

the T&O compounds and has the benefit of being able to be used for individual taste and odor 

events with minimal start-up time. Potassium Permanganate (KMnO4) is also effective for 

removal of all concentrations of the toxin compounds and has the benefit of being able to be used 

for individual events with minimal start-up time.  

Using ozone episodically may be difficult because bio-filtration is often desired after the 

oxidation to control by-products and this process requires a relatively long period of acclimation. 

The capital and operating costs associated with ozone are high so use of PAC for removal of 

G0SM and MIB is recommended, due to smaller footprint, cost effectiveness and the occurrence 

of taste and odor compounds being seasonal. The use of chlorine and KMnO4 can be established 

based on the site conditions and requirements. They can be used a pre-oxidant, especially 

chlorine as it is available in most of the plants. MIOX can potentially become a good oxidant but 

lot of studies and research needs to be carried out. Training is essential for its effective use by 

operators. 
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5 APPENDIX 

5.1 Design Expert® INFORMATION 

The various factors represented in a Central composite design model are explained as 

follows: 

Replicates of factorial points: This is the number of times each factorial run will be 

performed. Replicating the factorial point improves the estimates of the model coefficients, but 

will increase the axial distance required to achieve the rotatable and orthogonal properties listed 

below.  

Replicates of axial (star) points: This is the number of times each axial run will be 

performed. Replicating the axial points improves the estimates of the model coefficients, and 

will reduce the axial distance required to achieve the rotatable and orthogonal properties listed 

below.  

Center points: This is the number of center points that will be in the design. The default 

is the minimum suggested number of center points. Reducing this number can severely impact 

the prediction precision of the interior of the experiment. Increasing the number of center points 

improves the prediction precision, while increasing the axial distance required toachieve the 

orthogonal quadratic property.  

Alpha values: The distance from the center to place the axial runs in coded scale. 

Rotatable (k<6): the default setting for up to 5 factors, this creates a design that has the 

standard error of predictions equal at points equidistant from the center of the design. 
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Orthogonal blocks: Only present when the CCD is built with blocks. The use of this 

axial setting causes any block effects to be estimated independently of model coefficients.  

Spherical: This puts all factorial and axial points on the surface of a sphere of radius = 

square root of k (the number of factors) 

Orthogonal Quadratic: The alpha distance where the quadratic terms are independently 

estimated from the other terms. 

Practical (k>5): This is the default for designs that have 6 or more factors. The alpha 

value is the 4th root of the number of factors. This has been shown to produce axial values that 

can practically be run, and yet the design still has sound statistical properties. 

Face Centered: Pull the axial points into the faces of the cube - at +/- 1 levels. This 

produces a design where each factor only has 3 levels. It is used when the area of interest is 

nearly as large as the area of operability.  

Other:  Specify any alpha value desired. We recommend you check Design Evaluation 

before completing the runs. 
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If the practical alpha is too large consider using "Other" with a value of no less than 1.5. 

This alpha distance will provide a more realistic range for the experiment than practical alpha 

while providing better estimating properties than a face centered alpha range.   

 

 

 

Figure 5-1: View if inputs in CCD model as seen in Design Expert 
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5.2 EXPERIMENTAL DATA 

Table 5-1 Quality of Raw Water as received from Denver Water 

Raw Water Data(n=3) Avg. Std. 
Deviation 

pH 6.3 6.5 6.2 6.33 0.15 

DOC (mg/L) 4.8 4.5 4.3 4.53 0.25 

Conductivity (µs/cm) 146.4 144.5 147.6 146.17 1.56 

Turbidity (NTU) 2.73 2.8 3.01 2.85 0.15 

Dissolved Oxygen (mg/L) 5.6 5.1 5.5 5.40 0.26 
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5.2.1TASTE AND ODOR REMOVAL 

A. Powdered Activated Carbon (PAC) as Adsorbent 

Table 5-2: Results of PAC Analysis 

Initial Conc. 
(ng/L) 

PAC 
Dosage 
(mg/L) 

Contact 
Time 
(mins) 

Trial-1 Final 
Conc. (ng/L) 

Trial-2 Final 
Conc. (ng/L) 

Trial-3 Final 
Conc. (ng/L) 

Trial-4 Final 
Conc. (ng/L) 

 Avg. Final 
Conc. (ng/L) %Removal 

GSM  MIB  GSM  MIB  GSM  MIB  GSM  MIB  GSM  MIB  GSM  MIB  GSM MIB  

10 10 

0 

30 

6.8 7.2 7.2 6.8 9.9 9.8 9.7 10.1 8.33 8.83 0 0 

5 5.2 6 6 6.2 6.1 8.3 6.7 8.7 6.02 7.48 27.80 15.32 

10 - - 2.4 4.7 2.5 6.8 2.4 6.1 2.50 5.58 70.00 36.89 

20 1.7 3.8 1.8 3.5 1.2 4.7 0.9 3.9 1.60 3.88 80.80 56.08 

25 25 

0 19.2 21.2 20.5 22.5 24.9 24.7 - - 22.77 23.13 0.00 0.00 

10 9.5 17.4 10.1 16 10.5 17.4 11.1 18.1 10.62 18.00 53.37 22.16 

20 6 11.9 6.5 12.3 5.4 12.4 5.8 12.2 6.22 13.60 72.68 41.19 

40 2.4 7.9 2 7.2 1.5 6.1 1.9 5.6. 1.88 7.00 91.76 69.73 

50 50 

0 42.3 43.8 43.3 44.5 49.8 50.2 49.2 49.9 46.80 47.48 0.00 0.00 

10 21.5 22.2 - - 13.1 35.1 14.2 36.8 12.90 35.58 72.44 25.07 

20 9.2 13.4 8.2 12.9 5.4 12.1 5.9 11.6 6.35 12.92 86.43 72.79 

40 3.7 6.8 4.5 5.8 2.6 5.3 2.1 4.9 3.07 5.82 93.45 87.74 
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B.Chlorine Dioxide (ClO2) as Oxidant 

Table 5-3: Results of ClO2 Analysis 

Initial Conc. 
(ng/L) ClO2 

Dose 
(mg/L) 

Contact 
Time 
(mins) 

Trial-1 
 Final Conc. 

(ng/L) 

Trial-2 
 Final Conc. 

(ng/L)  

Trial-3 
 Final Conc. 

(ng/L)  

Avg. Final Conc. 
(ng/L) % Removal 

GSM MIB  GSM MIB  GSM MIB  GSM MIB  GSM MIB  GSM MIB  

10 10 

0 

30 

9.9 10 9.6 9.7 10.1 9.8 9.85 9.78 0 0 

0.5 - - 9.3 9.5 9.1 9.7 9.77 9.53 0.85 2.56 

0.9 7.1 9.6 8.7 9.2 - - 8.07 9.27 18.10 5.20 

1.3 4.7 10.3 8.2 8.9 8.6 9.1 7.17 9.30 27.24 4.86 

25 25 

0 24.8 23.1 24.6 24.8 24.2 25.1 24.53 24.08 0.00 0.00 

0.5 23.8 19.8 - - 23.9 22.4 23.85 23.70 2.79 1.56 

0.9 17.7 10.2 17.9 19.7 15.8 18.6 15.75 16.60 35.80 31.05 

1.3 9.3 5.9 - - 10.9 - 10.07 11.75 58.97 51.19 

50 50 

0 48.9 43.6 49.5 49.9 50.1 48.9 49.50 47.17 0.00 0.00 

0.5 45.3 15.5 46.8 45.4 44.2 46.1 44.83 30.80 9.44 34.70 

0.9 43 7.8 34.6 37.1 - - 27.27 22.48 44.92 52.35 

1.3 25.8 8 24.5 24.8 25.2 24.9 25.17 23.00 49.16 51.24 
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C.Potassium Permanganate (KMnO4) as Oxidant 

Table 5-4: Results of KMnO4 Analysis 

Initial 
Conc. 
(ng/L) 

KMn
O4 

Dosag
e 

(mg/L) 

Conta
ct 

Time 
(mins) 

Trial-1 
Final 
Conc. 
(ng/L) 

Trial-2 
Final 
Conc. 
(ng/L) 

Trial-3 
Final 
Conc. 
(ng/L) 

Trial-4 
Final 
Conc. 
(ng/L) 

Trial-5 
Final 
Conc. 
(ng/L) 

Trial-6 
Final 
Conc. 
(ng/L) 

Avg. Final 
Conc. 
(ng/L) 

%Removal 

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M 

MI
B 

10 10 

0 

30 

9.9 9.8 9.7 10.2 8.1 8.5 7.1 7.6 9.5 10.2 - - 9.02 9.26 0 0 

0.5 - - - - 7.5 8.9 7.7 6.6 9.3 9.5 9.1 9.7 8.86 8.68 1.74 6.32 

1 10.2 7.2 9.9 8 8.4 5.6 6.7 6.4 7.9 8.1 7.6 8.4 8.46 7.53 6.17 
18.7

4 

2 7.4 10 7.8 9.7 6 4.8 - - 7.2 7.3 6.9 7.5 7.06 7.86 
21.7

0 
15.1

2 

25 25 

0 - - 24.3 23.2 22.9 22.7 21.1 22.1 24.8 24.9 24.7 24.4 
23.7

2 
23.2

3 
0.00 0.00 

0.5 - - - - 19.9 22.5 18.6 - 23.5 22.9 23.9 22.4 
21.4

8 
23.1

8 
9.45 0.22 

1 28.3 22.8 28.1 22.5 16 19 - - 21.4 21.2 21.6 20.8 
23.0

8 
21.2

6 
2.68 8.46 

2 17.4 10 17.9 9.4 - - 9.9 13.1 16.4 15.2 17.1 14.7 
15.7

4 
12.4

8 
33.6

3 
46.2

6 

50 50 

0 49.9 42.9 49.6 42.5 45.4 44.2 43.5 45.3 49.4 50.1 49.5 49.8 
47.4

8 
45.8

0 
0.00 0.00 

0.5 24.8 20.3 24.5 19.8 29.8 24.2 27.6 25.4 32.5 35.1 34.1 34.8 
29.1

4 
26.8

4 
38.6

3 
41.4

0 

1 23 11.7 22.8 11.8 19.7 13.7 20.5 14.4 21.2 22.4 21.9 22.3 
21.5

2 
16.9

2 
54.6

8 
63.0

6 

2 14.2 11.3 14.7 10.7 14.6 13.3 16.3 11.7 15.4 14.9 15.1 14.8 
15.0

5 
13.2

0 
68.3

0 
71.1

8 
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D.Mixed Oxidant (MIOX) as Oxidant 

Table 5-5: Results of MIOX Analysis 

Initial 
Conc. 
(ng/L) 

MIO
X 

Dosa
ge 

(mg/
L)  

Conta
ct 

Time 
(mins

) 

Trial- 1 
Final 
Conc. 
(ng/L) 

Trial- 2 
Final 
Conc. 
(ng/L) 

Trial- 3 
Final 
Conc. 
(ng/L) 

Trial- 4 
Final 
Conc. 
(ng/L) 

Trial- 5 
Final 
Conc. 
(ng/L) 

Trial- 6 
Final 
Conc. 
(ng/L) 

Avg. Final 
Conc. 
(ng/L) 

Standard 
Deviation 

%Remova
l 

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GSM MIB GS
M 

MI
B 

10 10 

0 

30 

7.9 8.1 7.3 7.8 9.5 
10.
2 

9.8 - 9.9 9.8 9.7 
10.
1 

9.02 8.98 
1.12 1.16 

0 0 

0.3 6.5 8.8 6.7 8.6 7.6 8.3 7.4 8.9 7.1 8.7 7.4 8.9 7.12 8.7 
0.44 0.23 

21.0
7 

3.06 

0.7 - - 5.9 6.5 6.1 6.8 - 6.2 5.8 6.7 6 6.3 5.9 6.4 
0.13 0.25 

34.5
7 

28.6
9 

1 5.1 5.6 5.4 6.1 4.8 4.9 4.4 5 5.1 5.4 4.9 5.2 5.06 5.44 
0.34 0.44 

43.8
8 

39.3
9 

25 25 

0 23.2 
22.
9 

- - 25 
24.
5 

24.8 
25.
2 

24.9 
24.
7 

25.4 - 
24.6

6 
24.8 

0.85 0.99 
0 0 

0.3 18.1 
15.
4 

18.7 
16.
3 

17.1 
17.
4 

16.7 
17.
2 

18.4 - 18.8 
16.
9 

17.9
7 

16.6
4 0.87 0.81 

27.1
4 

32.9 

0.7 - - 10.5 4.9 9.8 
12.
4 

9.5 
11.
9 

10.9 8.6 10.5 8.4 
10.4

3 
8.58 

0.57 3.04 
57.7

3 
65.4

2 

1 6.3 4.4 6 3.8 6.9 5.9 7.1 5.4 6.1 3.9 5..8. 3.5 6.38 4.2 
0.49 0.96 

74.1
5 

83.0
6 

50 50 

0 47.3 49 - - 49.4 
50.
1 

49.5 
49.
8 

49.8 
50.
2 

49.2 
49.
9 

49.4
8 

49.8 
1 0.47 

0 0 

0.3 - - 30.5 
23.
6 

32.5 
35.
1 

32.1 
34.
6 

31.5 
28.
7 

31 
28.
2 

31.3
8 

28.9 
0.81 4.82 

36.5
8 

41.9
7 

0.7 19.7 
16.
9 

- - 17.4 
12.
1 

17.1 
12.
3 

18.2 
14.
2 

17.8 
13.
7 

18.0
4 

13.0
8 1.02 1.93 

63.5
4 

73.7
4 

1 - - 9.5 8 9.1 8.4 8.9 8 8.8 7.6 8.5 7.7 8.96 7.93 
0.37 0.31 

81.8
9 

84.0
9 
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E.Ozone (O3) as Oxidant 

Table 5-6: Results of O3 Analysis 

Initial 
Conc. 
(ng/L) 

O3 
Dosag

e 
(mg/L

) 

Conta
ct 

Time 
(mins) 

Trial-1 
Final 
Conc. 
(ng/L) 

Trial-2 
Final 
Conc. 
(ng/L) 

Trial-3 
Final 
Conc. 
(ng/L) 

Trial-4 
Final 
Conc. 
(ng/L) 

Trial-5 
Final 
Conc. 
(ng/L) 

Trial-6 
Final 
Conc. 
(ng/L) 

Avg. Final 
Conc. 
(ng/L) 

% 
Removal 

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M 

MI
B 

10 10 

0 30 8.9 9.1 - - 9.8 9.8 9.6 9.7 10.1 9.8 9.6 9.9 9.52 9.66 0 0 

0.7 15 1.5 8.3 2.4 8 1.8 6.9 2.4 6.7 2.9 8.1 2.6 7.6 2.27 7.60 
76.1

8 
21.3

3 

1.5 15 - - 1 5.8 0 4.2 0 3.9 0 2.9 0 2.5 0.20 3.86 
97.9

0 
60.0

4 

25 25 

0 30 24.7 24.6 24.1 24 24.8 24.6 25 24.5 24.8 25.2 24.7 25 
24.6

8 
24.6

5 
0.00 0.00 

0.7 15 0.7 6.5 - - 2.1 8.6 2.2 8.2 1.8 9.1 2.1 8.8 1.58 8.24 
93.5

9 
66.5

7 

1.5 15 - - 0.4 4.4 0 4.3 0 4 0 3.9 3.7 4.3 0.82 4.18 
96.6

8 
83.0

4 

50 50 

0 30 - - - - 49.8 49.1 49.5 49.9 50.1 48.9 49.6 49.8 
49.6

0 
49.2

8 
0.00 0.00 

0.7 15 
9.1 17.5 9.9 16.2 10.1 18.2 9.2 17.7 10.8 19.2 11 

18.9 
10.1

8 
17.9

5 
79.4

8 
63.5

8 

1.5 15 - - 2.3 8.5 2.9 6.4 2.7 5.8 3.2 6.9 3.8 
6.1 

2.96 6.74 
94.0

3 
86.3

2 
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F.Chlorine (Cl2) as Oxidant 

Table 5-7: Results of Cl2 Analysis 

Initial 
Conc. 
(ng/L) 

Cl2 
Dosag

e 
(mg/L

) 

Conta
ct 

Time 
(mins) 

Trial-1 
Final 
Conc. 
(ng/L) 

Trial-2 
Final 
Conc. 
(ng/L) 

Trial-3 
Final 
Conc. 
(ng/L) 

Trial-4 
Final 
Conc. 
(ng/L) 

Trial-5 
Final 
Conc. 
(ng/L) 

Trial-6 
Final 
Conc. 
(ng/L) 

Avg. Final 
Conc. 
(ng/L) 

%Removal 

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

GS
M  

MI
B  

10 10 

0 

30 

9.8 9.9 9.6 10.2 9.8 9.8 9.6 9.7 10.1 9.8 9.6 9.9 9.75 9.88 0 0 

0.5 7.4 8.2 7.5 8 7.9 8.1 7.3 8.8 - 9.1 7.8 9.5 7.58 8.62 
22.2

6 
12.8

2 

1 6.3 6.9 6.5 6.1 5.9 7.2 6.5 7.8 6.5 8.8 6.7 8.6 6.4 7.57 
34.3

6 
23.4

4 

2 4.5 4.9 3.9 4.5 5.4 6.1 4.8 5.6 5.1 6.6 5.4 6.9 4.85 5.77 
50.2

6 
41.6

5 

25 25 

0 24.6 24.8 24.2 24.1 24.7 24.3 24.8 24.6 25 24.5 24.8 25.2 
24.6

8 
24.5

8 
0.00 0.00 

0.5 16.9 18.1 17.2 18 19.9 - 18.6 22.5 15.4 18.1 16.3 - 
17.3

8 
19.1

8 
29.5

7 
22.0

0 

1 9.7 - 9.2 13.1 10.5 14.7 11.1 15 10.3 12.2 9.9 12.9 
10.1

2 
13.5

8 
59.0

1 
44.7

6 

2 6.9 5.7 6.8 6.1 7.9 10 7.8 9.7 6.8 10.6 7.2 11.1 
7.23

3 
8.87 

70.7
0 

63.9
3 

50 50 

0 50.1 49.8 49.5 49.4 49.9 50 49.6 49.8 49.2 49.9 49.5 49.1 
49.6

3 
49.6

7 
0.00 0.00 

0.5 31.7 34.9 32.3 34.6 30.2 33.8 29.7 34.2 - 32.5 28.9 31.4 
30.5

6 
33.5

7 
38.4

3 
32.4

2 

1 17.7 12.9 17.7 - 19.1 17.2 19.9 18 21.1 22.5 21.7 22.8 
19.5

3 
18.6

8 
60.6

4 
62.3

9 

2 8.8 8.1 8.2 7.8 11.1 9.4 11.2 11.1 12.9 13.1 11.8 12.6 
10.6

7 
10.3

5 
78.5

1 
79.1

6 
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5.2.2TOXIN REMOVAL 

A.Powdered Activated Carbon (PAC) as Adsorbent 

Table 5-8: Results of PAC Analysis 

Initial 
Conc. of 
MC-LR  

PAC 
Dosage  

Contact 
Time  

Remaining Concentration of MC-LR Avg. 
Conc. 

Of MC-
LR 

Std. 
Dev 

Removal 
Run  1.1 Run 1.2 Run 2.1 Run 2.2 Run 3.1 Run 3.2 

(ug/l) (mg/l) (mins) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l)   %  

10 

0 

30 

8.31 7.94 9.82 9.49 9.38 9.34 9.05 0.74 - 
5 6.56 6.42 8.94 9.44 9.3 9 8.28 1.40 8.5 

10 - 6.19 5.83 4.74 4.24 4.69 5.14 0.83 43.2 
20 5.83 5.52 5.17 2.64 2.59 2.53 4.05 1.61 55.27 

25 

0 14.52 16.64 23.33 23.7 25.4 24.04 21.27 4.51 - 

10 11.12 10.01 18.15 17.14 15.32 16.83 14.76 3.39 30.61 
20 8.4 7.04 12.62 12.4 12.96 11.96 10.9 2.52 48.77 

40 1.14 2.24 7.21 7.18 5.74 6.8 5.05 2.68 76.25 

50 

0 41.75 42.45 49.97 48.03 46.71 - 45.78 3.56 - 

20 41 30.18 40.55 40.38 44.07 37.98 39.03 4.75 14.75 
40 25.54 20.2 29.85 28.06 29.52 25.04 26.37 3.62 42.4 

60 15.74 10.27 6.63 7.57 6.44 6.5 8.86 3.67 80.65 
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B.Chlorine Dioxide (ClO2) as Oxidant 

Table 5-9: Results of ClO2 Analysis 

Initial 
Conc. of 
MC-LR  

ClO2 
Dosage  

Contact 
Time  

Remaining Concentration of MC-LR Avg. 
Conc. 

Of MC-
LR  

Std. 
Dev 

Removal 
Run 1.1 Run 1.2 Run 2.1 Run 2.2 Run 3.1 Run 3.2 

(ug/l) (mg/l) (mins) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l)   %  

10 

0 

30 

7.77 6.75 10.12 9.82 9.38 9.5 8.89 1.33 - 
0.5 6.38 6.41 9.67 9.32 8.74 8.92 8.24 1.47 7.31 

1 4.6 4.96 7.68 8.96 8.42 8.47 7.18 1.91 19.22 
1.5 - 4.23 7.42 7.09 8.25 - 6.75 1.75 24.11 

25 

0 23.83 23.09 24.55 25.39 24.12 - 24.2 0.85 - 

0.5 16.88 16.87 23.03 22.12 21.71 19.53 20.02 2.70 17.24 
1 16.95 - 20.51 18.82 19.29 18.97 18.91 1.28 21.85 

1.5 14.2 15.42 18.62 17.74 17.18 15.2 16.39 1.71 32.24 

50 

0 46.95 - 48.55 46.44 - 47.39 47.33 0.90 - 

0.5 44.28 43.27 46.22 46.02 44.1 41.36 44.21 1.81 6.6 
1 37.05 39.96 45.14 44.85 38.35 37.76 40.52 3.60 14.4 

1.5 30.49 32.74 34.84 35.69 35.69 34.9 34.06 2.05 28.05 
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C.Potassium Permanganate (KMnO4) as Oxidant 

Table 5-10: Results of KMnO4 Analysis 

Initial 
Conc. of 
MC-LR  

KMnO 4 
Dosage  

Contact 
Time  

Remaining Concentration of MC-LR Avg. 
Conc. 

Of MC-
LR  

Std. 
Dev 

Removal 
Run 1.1 Run 1.2 Run 2.1 Run 2.2 Run 3.1 Run 3.2 

(ug/l) (mg/l) (mins) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l)   %  

10 

0 

30 

10.19 9.51 9.63 10.01 9.96 10.1 9.9 0.27 0 
0.5 4.4 4.22 4.66 4.96 6.09 7.57 5.32 1.29 46.29 

1 BQL BQL 1.91 1.6 BQL BQL 1.76 0.91 82.24 
2 BQL BQL BQL BQL BQL BQL 0 0.00 100 

25 

0 23.96 25.11 19.63 18.32 24.94 24.29 22.71 2.95 0 

0.5 15.14 13.18 14.8 16.08 13.15 13.2 14.26 1.26 37.22 
1 BQL BQL 2.97 2.8 5.46 5.17 4.1 2.38 81.96 

2 BQL BQL BQL BQL BQL BQL 0 0.00 100 

50 

0 47.67 49.39 50.03 45.62 49.19 50.23 48.69 1.75 0 

0.5 20.49 21.17 35.46 35.95 12.81 12.92 23.13 10.37 52.49 
1 5.49 3.17 10.86 9.7 3.48 3.31 6 3.44 87.67 

2 BQL BQL BQL BQL BQL BQL 0 0.00 100 



 

90 

 

D.Mixed Oxidant (MIOX) as Oxidant 

Table 5-11: Results of MIOX Analysis 

Initial 
Conc. of 
MC-LR  

MIOX 
Dosage  

Contact 
Time  

Remaining Concentration of MC-LR Avg. 
Conc. 

Of MC-
LR  

Std. 
Dev 

Removal 
Run 1.1 Run 1.2 Run 2.1 Run 2.2 Run 3.1 Run 3.2 

(ug/l) (mg/l) (mins) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l)   %  

10 

0 

30 

9.04 9.09 9.82 9.49 9.38 9.3 9.35 0.29 0 
0.3 8.41 8.8 6.95 7.96 8.66 7.68 8.08 0.69 13.62 

0.7 6.53 6.25 7.05 6.94 8.06 7.82 7.11 0.71 23.99 
1 6.1 6.23 6.12 7.35 6.72 5.2 6.28 0.72 32.81 

25 

0 24.04 25.88 23.96 23.33 23.7 21.6 23.75 1.38 0 

0.3 20.57 - 20.64 20.31 20.56 20.29 20.47 0.16 13.8 
0.7 16.23 15.17 23.07 16.82 17.99 20.61 18.32 2.98 22.88 

1 12.87 13.58 15.26 14.87 17.19 13.78 14.59 1.54 38.56 

50 

0 43.54 45.1 49.97 48.03 42.18 43.53 45.39 3.01 0 

0.3 39.51 41.03 44.15 43.84 41.66 40.57 41.79 1.85 7.93 
0.7 35.41 34.56 42.46 38.06 34.7 34.02 36.54 3.23 19.51 

1 28.24 26.34 30.84 30.84 24.55 25.08 27.65 2.78 39.09 
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E.Ozone (O3) as Oxidant 

Table 5-12: Results of O3 Analysis 

Initial 
Conc. of 
MC-LR  

O3 
Dosage  

Contact 
Time  

Remaining Concentration of MC-LR Avg. 
Conc. 

Of MC-
LR  

Std. 
Dev 

Removal 
Run 1.1 Run 1.2 Run 2.1 Run 2.2 

Run 
Run 3.2 

3.1 

(ug/l) (mg/l) (mins) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l)   %  

10 

0 

10 

6.56 6.45 9.82 9.49 9.5 9.3 8.52 1.57 0 
0.3 BQL BQL BQL BQL BQL BQL 0 0.00 100 

0.7 BQL BQL BQL BQL BQL BQL 0 0.00 100 
1 BQL BQL BQL BQL BQL BQL 0 0.00 100 

25 

0 18.85 20.15 24.04 23.96 23.09 24.36 22.41 2.33 0 

0.3 - 6.91 9.37 9.05 8.16 8.4 8.38 0.95 62.6 
0.7 2.21 2.13 BQL BQL BQL BQL 2.17 1.12 90.32 

1 1.12 1.13 BQL BQL BQL BQL 1.13 0.58 94.98 

50 

0 42.64 43 50.54 49.25 - 49.64 47.01 3.86 0 

0.3 3.51 12.3 13.27 14.46 12.14 13.7 11.56 4.04 75.41 
0.7 1.87 4.23 5.79 5.65 4.77 5.76 4.68 1.51 90.05 

1 BQL BQL BQL BQL BQL BQL 0 0.00 100 
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F.Chlorine (Cl2) as Oxidant 

Table 5-13: Results of Cl2 Analysis 

Initial 
Conc. of 
MC-LR  

Cl2 
Dosage  

Contact 
Time  

Remaining Concentration of MC-LR Avg. 
Conc. 

Of MC-
LR  

Std. 
Dev 

Removal 
Run 1.1 Run 1.2 Run 2.1 

Run  
Run 3.1 Run 3.2 

2.2 

(ug/l) (mg/l) (mins) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l)   %  

10 

0 

30 

9.89 9.51 9.46 10.42 8.43 - 9.54 0.73 - 
0.5 6.82 7.11 7.67 7.79 5.87 5.49 6.79 0.94 28.82 

1 4.4 4.22 4.56 5 5.27 4.83 4.71 0.39 50.6 
2 0 0 4.02 4.43 3.9 3.96 4.08 2.11 57.26 

25 

0 24.6 25.51 25.42 26.14 - 25.45 25.42 0.55 - 

0.5 15.97 17.09 18.86 - 19.59 20.57 18.42 1.87 27.56 
1 13.75 13.56 13.05 13.44 10.69 11.24 12.62 1.32 50.36 

2 0 0 4.09 5.09 5.14 5.43 4.94 2.59 80.58 

50 

0 49.61 51.2 49.24 - 49.65 49.32 49.8 0.80 - 

0.5 37.82 39.87 36.11 31.86 40.64 36.55 37.14 3.14 25.42 
1 21.21 20.99 22.11 20.29 18.5 21.51 20.77 1.26 58.3 

2 5.8 6.1 6.54 7.02 6.47 6.08 6.33 0.43 87.28 
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