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ABSTRACT

RANDOMIZATION TESTS FOR EXPERIMENTS EMBEDDED IN COMPLEX SURVEYS

Embedding experiments in complex surveys has become increasingly important. For scien-

tific questions, such embedding allows researchers to take advantage of both the internal validity

of controlled experiments and the external validity of probability-based samples of a population.

Within survey statistics, declining response rates have led to the development of new methods,

known as adaptive and responsive survey designs, that try to increase or maintain response rates

without negatively impacting survey quality. Such methodologies are assessed experimentally. Ex-

amples include a series of embedded experiments in the 2019 Triennial Community Health Survey

(TCHS), conducted by the Health District of Northern Larimer County in collaboration with the

Department of Statistics at Colorado State University, to determine the effects of monetary in-

centives, targeted mailing of reminders, and double-stuffed envelopes (including both English and

Spanish versions of the survey) on response rates, cost, and representativeness of the sample.

This dissertation develops methodology and theory of randomization-based tests embedded in

complex surveys, assesses the methodology via simulation, and applies the methods to data from

the 2019 TCHS.

An important consideration in experiments to increase response rates is the overall balance of

the sample, because higher overall response might still underrepresent important groups. There

have been advances in recent years on methods to assess the representativeness of samples, includ-

ing application of the dissimilarity index (DI) to help evaluate the representativeness of a sample

under the different conditions in an incentive experiment (Biemer et al. [2018]). We develop theory

and methodology for design-based inference for the DI when used in a complex survey. Simula-

tion studies show that the linearization method has good properties, with good confidence interval
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coverage even in cases when the true DI is close to zero, even though point estimates may be

biased.

We then develop a class of randomization tests for evaluating experiments embedded in com-

plex surveys. We consider a general parametric contrast, estimated using the design-weighted

Narain-Horvitz-Thompson (NHT) approach, in either a completely randomized design or a ran-

domized complete block design embedded in a complex survey. We derive asymptotic normal

approximations for the randomization distribution of a general contrast, from which critical values

can be derived for testing the null hypothesis that the contrast is zero. The asymptotic results are

conditioned on the complex sample, but we include results showing that, under mild conditions,

the inference extends to the finite population. Further, we develop asymptotic power properties

of the tests under moderate conditions. Through simulation, we illustrate asymptotic properties of

the randomization tests and compare the normal approximations of the randomization tests with

corresponding Monte Carlo tests, with a design-based test developed by van den Brakel, and with

randomization tests developed by Fisher-Pitman-Welch and Neyman. The randomization approach

generalizes broadly to other kinds of embedded experimental designs and null hypothesis testing

problems, for very general survey designs.

The randomization approach is then extended from NHT estimators to generalized regression

estimators that incorporate auxiliary information, and from linear contrasts to comparisons of non-

linear functions.

iii



ACKNOWLEDGEMENTS

I give major thanks F. Jay Breidt for his consistent advice and encouragement as I worked

through my dissertation. I thank my committee, Steve Ogle, Julia Sharp, and Tianjian Zhou for

their efforts reading this dissertation and offering helpful suggestions to make it better. Major

thanks also go to the Health District of Northern Larimer County and Susan Hewitt, Suman Mathur,

and Angela Castillo for allowing Jay and I to help design their survey and use their data in my dis-

sertation. Lastly, thanks go to Elliott Forney for creating the Colorado State dissertation template

in LATEX.

iv



DEDICATION

I would like to dedicate this thesis to my parents, Russell and Kathy, my brother, Michael, and all

of the friends I made in Fort Collins that helped me grow into the person I am continually

becoming.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Survey Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Randomization Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Experiments in Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contribution and Chapter Outlines . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 An Incentive Experiment Embedded in a Community Health Survey . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Survey Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Response Rate and Mode . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Survey Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Representativeness of Response . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 3 Survey Design-Based Inference for the Dissimilarity Index . . . . . . . . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 The Dissimilarity Index in the Survey Context . . . . . . . . . . . . . . . 37

3.3 Survey Design-Based Variance Estimation . . . . . . . . . . . . . . . . . 38

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Simulated Population and Frames . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Estimators Considered . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Simulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.5 Discussion of Simulation Study . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 4 Randomization Test for Completely Randomized Experiments Embedded in

Complex Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Notation and Sources of Randomness . . . . . . . . . . . . . . . . . . . . 58

4.3 Treatment Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Hypergeometric Argument for Mean and Variance Computations . . . . 60

vi



4.4 Randomization Distribution and Test . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Randomization Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Central Limit Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Introductory Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.2 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Treatment Assignment and Randomization: Power . . . . . . . . . . . . . 78

4.6.1 Power Conditioned on the Sample . . . . . . . . . . . . . . . . . . . . 81

4.7 Extending Inference to the Finite Population . . . . . . . . . . . . . . . . 88

4.7.1 Notation and Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8.1 Simulated Population . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8.2 Variables and Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8.3 Overview of Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8.4 Sampling Plan and Treatment Assignment . . . . . . . . . . . . . . . . 94

4.8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.9 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 5 Randomization Test for Randomized Complete Block Experiments Embed-

ded in Complex Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Notation and Treatment Assignment . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Treatment Assignment and Variance . . . . . . . . . . . . . . . . . . . 104

5.3 Randomization Distribution and Test . . . . . . . . . . . . . . . . . . . . 106

5.4 Central Limit Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Treatment Assignment and Randomization: Power . . . . . . . . . . . . . 111

5.6 Extending to Finite Population . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7.1 Population and Variables . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7.2 Overview of Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7.3 Sampling Plan and Treatment Assignment . . . . . . . . . . . . . . . . 118

5.7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.8 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 6 Extensions of Randomization Tests for Experiments Embedded in Complex

Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 The Monte Carlo Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 The Generalized Regression Estimator . . . . . . . . . . . . . . . . . . . 126

6.3.1 GREG and the Treatment Assignment Distribution . . . . . . . . . . . . 127

6.3.2 Variance Estimation with GREG . . . . . . . . . . . . . . . . . . . . . 128

6.4 Linearization of the Randomization Test . . . . . . . . . . . . . . . . . . 130

6.4.1 Notation and Treatment Assignment Distribution . . . . . . . . . . . . 131

6.4.2 Randomization Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

vii



6.4.3 Extension to Functions of Contrasts . . . . . . . . . . . . . . . . . . . 134

6.4.4 Linearization Using GREG . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Difficulties of Real Surveys . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.1 Adjusting for Nonresponse . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 144

viii



LIST OF TABLES

2.1 Demographics of the adult population of Larimer County, Colorado excluding census

tract 6, along with design-weighted estimates from the survey and from each incen-

tive treatment ($2pre and $1+$5web) and each response mode (paper and online).

Design-weighted estimates are not corrected for survey nonresponse. Standard errors

are computed from the survey design, where the experimental treatments are treated

as separate surveys, and the paper and online responses are treated as domain estimates. 13

2.2 Treatments assignment of eligible addresses in the 2019 Larimer County TCHS overall

and by the auxiliary variables Hispanic Surname Flag, Tenure, Dwelling Type, and

Income. NG means “not given”, S means “single-family”, M means “multi-family”,

and PO means “POBOX only way to get mail.” . . . . . . . . . . . . . . . . . . . . . 17

2.3 Total numbers of eligible addresses, responses, response rates, and web response rates

(conditional on response) by incentive treatment overall and by categories of auxiliary

variables. Response rates and web response rates are weighted to reflect sampling

design of the TCHS. Inference was based on the asymptotic randomization distribution

of the treatment assignment conditioned on the sample. Significance tests were one-

sided to test if the $1+$5web incentive improved response or web response compared

to the $2pre incentive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Estimated model coefficients, standard errors (SE), and p-values (for testing the hy-

pothesis that a single model coefficient is zero) for the mixed-effect logistic regression

models to examine the effect of the incentive on survey response (1 = responded, 0 =

did not respond). Coefficients are estimated using weighting to reflect the true design

of the survey and the standard error are estimated using the delete-a-group jackknife

allowing for small strata [Kott, 2001] with 20 jackknife replicates, and the tests for

each of the model coefficients was a t-test with 19 degrees of freedom. . . . . . . . . . 26

2.5 Estimated model coefficients, standard errors (SE), and p-values (for testing the hy-

pothesis that a single model coefficient is zero) for the mixed-effect logistic regression

models to examine the effect of the incentive on mode of response (1 = web, 0 = mail),

conditioned on responding. Coefficients are estimated using weighting to reflect the

true design of the survey and the standard error are estimated using the delete-a-group

jackknife allowing for small strata [Kott, 2001] with 20 jackknife replicates, and the

tests for each of the model coefficients was a t-test with 19 degrees of freedom. . . . . 27

2.6 Incentive cost per response (in dollars) of different incentives overall and for sub-

groups identified by the auxiliary variables. The costs only include the cost of the

incentive and mailing the $5 incentive to each of the web-respondents. Costs not in-

cluded include downstream cost differences due to earlier response times and potential

cost savings of not needing to process as many paper surveys. Significance tests are

based on the randomization distribution of treatment assignment and are two-sided to

identify any difference in costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



2.7 Dissimilarity indices by treatment and differences of the dissimilarity index between

treatments with standard errors (SE(diff)), test statistics (z) and p-values (p) for a test

of a difference between treatments for age, sex, race, Hispanic ethnicity, education,

health insurance, and income. Hypothesis test is two-sided and standard errors are

calculated using the randomization distribution of the treatment assignment. . . . . . . 30

2.8 Dissimilarity indices by response mode and differences of the dissimilarity index be-

tween response modes with standard errors (SE(diff)), test statistics (z) and p-values

(p) for a test of a difference between response mode for age, sex, race, Hispanic ethnic-

ity, education, health insurance, and income. Hypothesis test is two-sided and standard

errors are calculated using the sampling distribution for the survey design. . . . . . . . 31

3.1 Demographics for each of the sampling frames used in the simulation study of different

estimators of the DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Sample allocations by PUMA for stratified simple random sampling in the simulated

replicate samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Simulation results for sample size n = 200 with 1000 replicated samples at each

setting. For DI point estimates, “truth” refers to the true DI of the frame. For variance,

“MC” refers to the Monte-Carlo variances of the estimates. Also, “est” is the mean

of the estimates, and “rbias” is the mean % relative bias (bias/truth) of the estimates

compared to “truth", and “rRMSE” is the relative mean-squared error of the variance

estimates. For 95% CIs, “cover” is empirical coverage of the true DI by the interval,

and “width” is the mean width of the interval. To save space, marital status and internet

access are not shown in this table, and we restrict the focus to λ = 0.1, 1.0. . . . . . . . 51

3.4 Simulation results for sample size n = 1000 with 1000 replicated samples at each

setting. For DI point estimates, “truth” refers to the true DI of the frame. For variance,

“MC” refers to the Monte-Carlo variances of the estimates. Also, “est” is the mean

of the estimates, and “rbias” is the mean % relative bias (bias/truth) of the estimates

compared to “truth", and “rRMSE” is the relative mean-squared error of the variance

estimates. For 95% CIs, “cover” is empirical coverage of the true DI by the interval,

and “width” is the mean width of the interval. To save space, marital status and internet

access are not shown in this table, and we restrict the focus to λ = 0.1, 1.0. . . . . . . . 52

x



LIST OF FIGURES

2.1 Flowchart showing the determination of addresses judged less likely to respond based

on available vendor data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Response curves for all different treatments in the survey experiment. The lighter

grey vertical lines indicate when the $2pre group received additional intervention, and

the darker grey vertical lines indicate when the $1+$5web group received additional

intervention, as noted in the text box (target mailing, survey mailing or double stuff). . 23

2.3 Response curves for the difference between treatment and control for the incentive

experiment. The actual curve is in darker green, and curves from other simulations

are in lighter green. The apparent dips in the actual curve are an artifact of the $2

incentives being mailed 4 days late. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Relative bias squared error (relbias) for the linearization variance estimator plotted

against population level DI for each variable at different levels of the parameter λ,

with larger values of λ corresponding to higher DI. Points in the green band have less

than 10% relbias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Coverage rates for 95% confidence intervals plotted against the true DI. The green line

represents 95% coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Curves showing the normal approximation to the statistic, and a kernel density estimate

of the Monte Carlo distribution. The Monte Carlo distribution is simulated with 1000

draws. The rows are different statistics (top-bottom: difference of means, difference

of log odds, odds ratio, and difference of DIs), and the columns are different sample

sizes (left-right: 20, 39, and 60). The second sample size is 39 rather than 40 due to

an outlier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Scatterplot of the means of each of the EUs versus the total weights of the EUs in the

sample of 40 EUs for the CRD normality simulation. . . . . . . . . . . . . . . . . . . 98

4.3 Distribution of the difference of means for m = 40, including the outlier. . . . . . . . . 99

4.4 Curves showing power of all the methods for two-sided hypothesis tests at the α =
0.05 level. The green dashed lines represents a rejection rate of 0.05. Each power

calculation used 1000 replicates. The statistics are in rows (top-bottom: difference of

means, difference of log odds, odds ratio, and difference of DIs). The columns are two

different settings of the effect of the treatment on the response (left is no relationship,

right is a large relationship). The a and b in the axis labels refer to equation (4.12) . . . 101

5.1 Curves showing the normal approximation to the statistic, and a kernel density esti-

mate of the Monte Carlo distribution in the RCBD. The Monte Carlo distribution is

simulated with 1000 draws. The rows are different statistics (top-bottom: difference

of means, difference of log odds, odds ratio, and difference of DIs), and the columns

are different sample sizes (left-right: 16, 32, and 48 blocks). . . . . . . . . . . . . . . 120

xi



5.2 Curves showing power of all the methods for two-sided hypothesis tests at the α =
0.05 level in the RCBD. The green dashed lines represents a rejection rate of 0.05.

Each power calculation used 1000 replicates. The statistics are in rows (top-bottom:

difference of means, difference of log odds, odds ratio, and difference of DIs). The

columns are two different settings of the effect of the treatment on the response (left

is no relationship, right is a large relationship). The a and b in the axis labels refer to

equation (4.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xii



Chapter 1

Introduction and Preliminaries

Now is a time of major growth and change in the field of survey statistics. A positive develop-

ment has been the explosion of technologies that make it easier to gain auxiliary information. But

there has also been a long trend of declining survey response rates (RRs) (Steeh [1981], Brick and

Williams [2013], Peytchev [2013], National Research Council [2013]). This has led to increased

focus on different strategies to try to improve response quality. These methods include adaptive and

responsive survey designs (Wagner [2008], Groves and Heeringa [2006], Schouten et al. [2018])

and integration with non-probability samples (Elliott and Valliant [2017]). Concerns with data

quality have also led to a renewed focus on the use of experiments embedded in surveys (Lavrakas

et al. [2019]). In this dissertation, we develop a new method, based in randomization theory, to

analyze experiments embedded in complex surveys accounting for both the survey design and the

experimental design.

Before delving into the new material in this dissertation, we will start with a brief introduc-

tion to survey statistics, randomization inference, and experiments in surveys. We then finish the

introduction with a review of the major contributions and an overview of the structure of this dis-

sertation.

1.1 Survey Statistics

A major theme throughout statistics is trying to understand how and when you can generalize

inference from a sample to a more general population, and additionally understanding how uncer-

tain you are about the population values inferred. While in many other fields of statistics, models

are used to approximate the data generation process, in survey statistics, the dominant mode of

inference has been design-based inference (see Smith [1976] or Fienberg and Tanur [1987]) for

more in depth discussion). In this section, we provide a brief review of some of the major concepts

in design-based inference, starting with the Narain-Horvitz-Thompson (NHT) estimator (Narain

1



[1951], Horvitz and Thompson [1952]). Some recent books that explain the methodology of sur-

vey statistics include Heeringa et al. [2017] and Wu and Thompson [2020].

We will start out this discussion with a finite population U = {1, 2, . . . , N} consisting of N

units. From here we consider a sampling design p(S) which assigns probabilities for the selection

of any possible subset S ⊂ U . In general when examining statistics with surveys, directly using the

probabilities of drawing each sample is often not particularly useful. The standard framework of

design-based inference involves expressing survey designs in terms of their first and second order

inclusion probabilities.

For an arbitrary unit i ∈ U , the first-order inclusion probability (denoted πi) is the probability

that unit i is included in the selected sample, and satisifies πi =
∑

{S:i∈S} p(S). Similarly, for ar-

bitrary units i, j ∈ U , the second-order inclusion probability (πij) is the probability that both units

i and j are included in the selected sample, and satisfies πij =
∑

{S:i,j∈S} P (S) (implying that

πii = πi). Inclusion probabilities reflect how representative the sample is of a finite population.

One simple requirement of sampling is that each element of the population has a chance of appear-

ing in the sample, or πi > 0 for each i ∈ U . A design satisfying this property is called a probability

sampling design, and admits unbiased estimation of finite population totals (Särndal et al. [1992]

Section 1.3). Another valuable property related to inclusion probabilities is a measurable sampling

design. A measurable sampling design is a design where any two elements in the population have a

positive probability of both being selected, or πij > 0 for all i and j in the population. Measurable

designs admit unbiased variance estimators (Särndal et al. [1992] p. 33).

To define the NHT estimator, we assume a sample S ⊂ U is drawn via a probability sampling

design, and the data Yi for i ∈ S are observed and measured without error. Define the sampling

weights as wi = π−1
i . The NHT estimator for the sampling design is then

Ŷ =
∑

i∈S

Yi

πi

=
∑

i∈S
wiYi.

2



The NHT estimator is unbiased under the sampling design because, if ES denotes expectation over

all possible random selections under the sampling design,

ES

[

∑

i∈S

Yi

πi

]

=
N
∑

i=1

πi
Yi

πi

=
N
∑

i=1

Yi.

This follows because πi is the probability that unit i will be included in the sample. If the sample is

a measurable sampling design, then the variance of the NHT estimator has an unbiased estimator.

The NHT estimator can be extended to more general cases, including multiple stages of sam-

pling and stratification. When considering multiple stages of sampling, the units selected at the first

stage are called called primary sampling units (PSUs) are selected from the population. Subsam-

pling within PSUs then proceeds in one or more additional stages of selection, until the sampling

stops with the ultimate sampling units, from which data are obtained. Information from the earlier

stages of sampling may be used in later stages.

To write the estimator with multiple stages of selection, we index the PSUs by i = 1, . . . ,M

in the population, and denote the sample of PSUs by S, where the sample size is |S| = m. We

denote the estimate for the total within the ith PSU as Ŷi+. For the overall estimator to be an NHT

estimator, the estimate Ŷi+ should be an NHT estimator conditioned on i being a sampled PSU. In

this case, the NHT estimator can be written as

Ŷ =
∑

i∈S
wiŶi+.

We also note that using an estimator other than the NHT for the PSU total estimates may still

give an estimator with good statistical properties, but the resulting estimator will not be an NHT

estimator. For example, estimators of PSU totals may incorporate auxiliary information, as is the

case for generalized regression estimators (GREG; reference Chapters 6-8 of Särndal et al. [1992])

and more general calibration estimators (Deville and Sarndal [1992]).

Many surveys incorporate stratification, in which the population U is partitioned into disjoint

(and, ideally, homogeneous) strata U = ∪H
h=1Uh, and then samples are selected independently
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from each stratum, Sh ⊂ Uh. Then the NHT estimator is

Ŷ =
∑

h=1

∑

i∈Sh

whiYhi.

It should also be noted that clustered sampling can occur within each stratum. If we then let Ŷhi+

denote NHT estimators of totals within each PSU, the NHT estimator for the full sample can then

be written as

Ŷ =
H
∑

h=1

∑

i∈Sh

whiŶhi+.

One caveat about notation needs to be given now. Throughout the rest of this dissertation, the

notation h = 1, . . . , H will be used to refer to blocks in a randomized complete block experiment

embedded in a complex survey. It is possible that these blocks will correspond to strata used in the

sampling, but this does not need to be true.

An important topic in complex surveys is variance estimation, in part because of the heavy

reliance on normal approximations for the distribution of estimators under the sampling design.

As noted above, the NHT estimator admits an unbiased variance estimator under a measurable

sampling design, and accurate approximations are commonly used for multistage designs, alter-

native estimators like GREG, and nonlinear statistics. Related topics in variance estimation under

randomized treatment assignment for experiments embedded in surveys will be addressed in Chap-

ters 4 and 5, and 6 of this dissertation.

1.2 Randomization Inference

When trying to extract information from a sample, there are many philosophical frameworks

that statisticians use to understand the data. The two most well known are frequentist inference and

Bayesian inference. Another philosophy that has shown to be useful due to its lack of distributional

assumptions is the philosophy of randomization inference. Randomization inference is useful in

situations where data are in different groups, possibly assigned in an experimental design, and

focuses on how the data are influenced by the group membership.
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Within randomization inference, there is a distinction between permutation tests and random-

ization tests that is not consistently observed (see, for example, Ernst [2004] or Onghena [2017]).

We will follow the language used in Onghena [2017] to describe the differences between these

two procedures. Permutation tests view the data as coming from multiple populations, and the test

is to make inferences about differences between the populations. With a randomization test, the

data are viewed as coming from a single population, usually having been assigned treatments in

an experiment, and inferences are made about the difference between the treatment effects on the

population. One recent example of a permutation test in surveys is a test proposed by Toth [2020]

to investigate differences in population domain parameters in a complex survey. This dissertation

will discuss randomization tests for survey experiments.

Within randomization tests, there have also been two major approaches that have been taken:

an approach originally attributed to Fisher [1971] (first edition 1935) and expanded by Pitman

[1937a, 1937b, 1938] and Welch [1937], and an approach suggested by Neyman (Splawa-Neyman

et al. [1990] (translation of work published in 1923), Neyman et al. [1935]). A good introduction

to these approaches and a comparison between them is presented in Ding [2017]. We briefly

introduce these tests, starting with the method proposed by Neyman.

The Neyman randomization method posits a model of potential outcomes for each experi-

mental unit (EU) in the sample. Specifically, for each unit i, there are K potential outcomes,

Y
(1)
i , . . . , Y

(K)
i corresponding to each of the possible K treatments that could be assigned. This

model depends on the stable unit treatment value assumption (SUTVA; Rubin [1980]), which is

that the observed values for a given unit depend only on the treatment that unit was assigned. Us-

ing this model, Neyman computes variances within each treatment, and uses these to compute an

upper bound on the variability of the difference.

The Fisher-Pitman-Welch (FPW) randomization method uses a strong null hypothesis to derive

a reference distribution for the test statistic when the treatment has no effect. This null hypothesis

is that for each unit i and treatment k, Y
(k)
i = Yi, no matter how the treatments are assigned,

which is stronger than SUTVA. The reference distribution for the FPW method is the distribution
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of the elements of the sample with the treatments randomly relabeled by the same distribution of

the original treatment assignment. If the null hypothesis is true, and there really is no difference

between the treatments, this reference distribution exactly corresponds to the distribution of the

test statistic under different randomizations of the original experiment.

There are two major differences between the two methodologies. One difference is that be-

cause the FPW method involves only relabeling the treatment assignments, it generally admits a

test based on Monte Carlo simulation of the reference distribution under its null hypothesis. The

Neyman method depends on an assumption about the differences between the observations as-

signed each treatment, and thus only lends itself to statistics that can be well approximated by

differences between the two treatments. Additionally, also because of the approximation of the

variance components between the two treatments, the Neyman method usually has better power

than the FPW method (Ding [2017]). This is because by relying on the relabeling of treatments,

the FPW method includes the treatment effect in the estimate of the variability of the statistic, when

such treatment effect exists. The Neyman method, on the other hand, only considers the variability

within each of the treatments in estimating the variability of the estimated treatment effect.

1.3 Experiments in Surveys

There is a long history of experiments embedded in complex surveys (e.g. Mahalanobis [1958],

Fienberg and Tanur [1987], and Fienberg and Tanur [1988]). More recently, since survey RRs have

been falling for decades (Steeh [1981] National Research Council [2013]), there has been a push

for adaptive and responsive designs for improving response and data quality, which can involve

embedded experimentation. Additionally, there has been a push for “population-based experi-

ments” in the social sciences (Mutz [2011]). These population-based experiments are experiments

embedded in population-based surveys to try to leverage both the internal validity of experiments

and the external validity of surveys.

With the development of experiments embedded in surveys, some researchers have thought

about analyzing experiments in surveys, but the literature on such methods is not very large. Smith
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[1983] used likelihood theory to argue that when the sample selection does not depend on the

value of the response of inference, then the sampling procedure can be ignored in model-based

inferences. Fienberg and Tanur [1988] (Section 6) discuss three different approaches for analyzing

such experiments: standard model-based experimental methods, survey-based methods treating

each treatment as a different sample, and methods viewing the experiment as a sample in the

population of all survey experiments. Van den Brakel in a series of papers (van den Brakel and

Renssen [1998], van den Brakel [2001], van den Brakel and van Berkel [2002], van den Brakel

and Renssen [2005], van den Brakel [2008], van den Brakel [2013], and van den Brakel [2019])

has developed a method using a design-based procedure. Van den Brakel [2001] further argued

in Section 2.5 that standard model-based methods may work for analyzing experimental impacts

on certain survey features such as response rates, but that methods that take into account both the

survey and experimental designs are valuable for analyzing differences in survey trends.

Van den Brakel’s method is based on a contrast statistic CŶ , where C 6= 0 is a matrix such

that C1K = 0 and Ŷ is a K × 1 vector of estimated totals for the K treatments. In reality, van

den Brakel discusses means rather than totals, but the difference is immaterial; we use means here

for consistency with the discussion of the randomization test in this dissertation, which uses totals.

Van den Brakel computed the variance of the contrast statistic using the design-based variance for

the three sources of error present in experiments in surveys: sampling from the finite population,

assigning the treatments, and measuring the responses. Using these computation, van den Brakel

computes a design-based variance estimator that allows for inference to be conducted using a

Wald test. Van den Brakel’s methodology can be viewed as an extension of the Neyman style

randomization tests, and additionally accounts for measurement error in the responses.

In this dissertation, we will provide theory for extending the FPW randomization methodology

to experiments embedded in complex surveys. We additionally provide theoretical justification for

the use of a Wald test under moderate conditions (Chapters 4–6).

We conclude with another note on language. In the rest of this dissertation, when we talk

about a “randomization test” or “randomization procedures” we will be talking about the FPW
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randomization test, or its extension to complex surveys described in this dissertation. We will

always specify Neyman’s name when referring to the Neyman randomization test, and we will refer

to the test proposed by van den Brakel [2001] as a “design-based” method, consistent with how

van den Brakel has referred to the test in his writings. When referring to design-based inference

only applying to sample surveys, we use the descriptor “survey design-based.”

1.4 Contribution and Chapter Outlines

The main contribution in this dissertation is the development of new methodologies for eval-

uating experiments embedded in complex surveys based on randomization procedures, and appli-

cation of these methodologies to experiments embedded in the 2019 Triennial Community Health

Survey conducted by the Health District of Northern Larimer County. Additionally, we provide

theoretical justification of the Wald test in this randomization method and in the design-based

method proposed by van den Brakel [2001]. We also propose a method for survey design-based

inference of the dissimilarity index to evaluate the representativeness of survey samples.

In Chapter 2, we discuss the Health District survey, and apply our new methodologies in the

analysis of that data. In Chapter 3, we describe our methodology for survey design-based infer-

encs for the dissimilarity index. In Chapter 4, we introduce the randomization test for experiments

embedded in complex surveys in completely randomized experiments. In Chapter 5, we extend

the randomization methodology for randomized complete block designs. In Chapter 6, we discuss

some extensions of the randomization methodology to calibration estimators and nonlinear statis-

tics and some practical issues of using the randomization methodology for experiments embedded

in complex surveys. We conclude in Chapter 7 with discussion of contributions of this dissertation,

and future directions of research to extend this methodology.
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Chapter 2

An Incentive Experiment Embedded in a

Community Health Survey

2.1 Introduction

Household survey response rates (RRs) have been falling for decades (see, for example, Steeh

[1981], Brick and Williams [2013], Peytchev [2013] and National Research Council [2013]). Ac-

cordingly, survey practitioners have tried various methods to increase or maintain RRs (see Kanuk

and Berenson [1975] or Edwards et al. [2009] for reviews). As described in Schouten [2018] (pp.

19-25), these methods can be studied with randomized experiments embedded within surveys, and

experimental results may be used to identify effective protocols for future waves within the same

survey (responsive designs; Groves and Heeringa [2006]) or for future surveys (adaptive designs;

Wagner [2008]).

Methods that focus on increasing RRs may increase nonresponse bias or other survey errors

(Groves [2006], Groves and Peytcheva [2008]). There is some evidence in the literature that pro-

viding incentives may reduce nonresponse bias, though perhaps not for all variables. Kanuk and

Berenson [1975] suggest that incentives are effective at increasing response rates across income

levels. Groves and Peytcheva [2008] (p. 176) say there is evidence people with lower incomes are

more sensitive to incentives than people with higher incomes, which may induce bias on variables

related to income. There is also evidence incentives may help increase RRs among those surveyed

who may be less intrinsically interested in the survey topic (Groves et al. [2006], Peytchev [2013]

p. 97).

Monetary incentives, especially when provided with the survey packet, have consistently been

shown effective at increasing RRs (Bevis [1948], Kanuk and Berenson [1975], Church [1993],

Avdeyeva and Matland [2013], Singer and Ye [2013], Zhang et al. [2018]). While there is a good
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body of research on pre-incentives and post-incentives individually (Rao [2020], Church [1993]),

very little research exists comparing the effects of combined pre- and post-incentives versus pre-

or post- incentives alone (Beydoun et al. [2006], Avdeyeva and Matland [2013] and Coopersmith

et al. [2016] are examples), or on push-to-web incentives (Biemer et al. [2018] is an example).

The previous literature on pre- and post- incentives is sparse and inconclusive. Church [1993]

found in a meta-analysis that there is an effect on response from pre-incentives, but not an effect

from conditional incentives. Avdeyeva and Matland [2013] found that a post-incentive had no

improvement in response after a pre-incentive had been given. Rao [2020] found a higher RR with

a pre-incentive only than higher post-incentives alone. Beydoun et al. [2006] and Coopersmith

et al. [2016] both tested pre- and post-incentives vs. post-incentives alone and do not find much

evidence of a difference between the incentive groups in terms of contact (in the case of Beydoun

et al. [2006]) or response (in the case of Coopersmith et al. [2016]). Beydoun et al. [2006] did

find some evidence that contact rates were improved with the early incentive when they did not

have a telephone number on file. Biemer et al. [2018] found some evidence that providing a $20

post-incentive can increase RR compared to a $10 post-incentive, and that an incentive to complete

the survey online can greatly increase web response over no such incentive when both mail and

web options are provided concurrently. Biemer et al. [2018] also found the highest overall RRs

with the push-to-web incentive, though not enough to provide solid statistical evidence on its own,

and found no evidence that the different incentive structures they tried had any impact on the

representativeness of the sample.

Previous literature on mixed-mode surveys shows that higher RRs are obtained when surveys

offer a mail option first, and then a web option, and that higher web RRs are obtained from having

a web option first (Messer and Dillman [2011], Millar and Dillman [2011], Patrick et al. [2018]).

Research into whether a concurrent design has higher RRs than a sequential design has mixed re-

sults, with Millar and Dillman [2011] finding the sequential design led to higher RRs, and Biemer

et al. [2018] and Mauz et al. [2018] finding higher RRs in the concurrent design. Patrick et al.

[2018] found that sequential mixed-mode surveys had lower cost-per-response than mail-only sur-
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veys. These studies have not shown evidence that sequential mixed-mode surveys are more or less

representative than other designs.

Since 1995, the Health District of Northern Larimer County (Colorado) has surveyed the adult

population of the county every three years about health status, needs, and behaviors. The ninth

iteration of Larimer County’s Triennial Community Health Survey (TCHS) was fielded in the fall

of 2019, using an address-based sample of 12,000 randomly selected addresses and a six-wave,

push-to-web approach. The TCHS design has been modified over time to maintain validity and

control costs, from random-digit dialing with mail follow-up to a push-to-web design in 2019. We

assessed the effectiveness of the push-to-web incentive with a randomized experiment, compar-

ing a $1 prepaid incentive with a promise of $5 for online survey completion ($1+$5web) to the

$2 prepaid incentive only ($2pre) given in previous waves of the TCHS. Additional experiments

embedded in the survey assessed the effectiveness of a targeted postcard reminder and of “double-

stuffed” mailings of paper questionnaires printed in English and Spanish. These adaptive strategies

seek to increase (or at least maintain) survey RRs and assure that those who complete the survey

represent Larimer County’s adult population, while reducing costs by pushing respondents online.

Based on American Community Survey (ACS) 5-year estimates from 2018, the population of

Larimer County (excluding census tract 6) is predominantly White (92.7%), and relatively highly

educated (41.7% with Bachelor’s degrees; Table 2.1). Respondents from the survey skew older,

female, and more educated than the general population (Table 2.1). The demographics provided for

survey respondents in Table 2.1 are not adjusted for nonresponse, though nonresponse adjustments,

including a propensity model based on auxiliary variables and calibration to census data, were

performed for reporting the official statistics from the 2019 TCHS.

In this chapter, we focus on the incentives study and compare the effects of combined pre- and

post-incentives versus pre-incentives alone on RRs, on the representativeness of the respondents,

and on cost-effectiveness of the survey. Specifically, we focus in three main questions: 1) does the

$1+$5web incentive treatment lead to a higher RR than the $2pre incentive treatment, 2) how do
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the incentive treatments compare in terms of cost-effectiveness, and 3) does the incentive treatment

affect how well the sample represents the adult population of Larimer County.
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Table 2.1: Demographics of the adult population of Larimer County, Colorado excluding census tract

6, along with design-weighted estimates from the survey and from each incentive treatment ($2pre and

$1+$5web) and each response mode (paper and online). Design-weighted estimates are not corrected for

survey nonresponse. Standard errors are computed from the survey design, where the experimental treat-

ments are treated as separate surveys, and the paper and online responses are treated as domain estimates.

Category Pop Survey $2pre $1+$5web Paper Online

Age

18-24 16.3 3.0 (0.4) 2.7 (0.6) 3.4 (0.7) 1.1 (0.5) 3.6 (0.6)

25-34 18.3 8.8 (0.6) 8.7 (0.8) 8.9 (1.0) 8.2 (1.2) 9.0 (0.7)

35-44 15.6 11.7 (0.7) 11.8 (0.9) 11.6 (1.1) 9.7 (1.2) 12.4 (0.8)

45-54 14.7 13.7 (0.7) 13.3 (0.9) 14.1 (1.2) 10.4 (1.3) 14.8 (0.9)

55-64 16.3 23.8 (0.9) 24.3 (1.2) 22.8 (1.5) 23.4 (1.9) 23.9 (1.1)

65-74 11.5 25.4 (0.9) 24.9 (1.2) 26.4 (1.5) 27.5 (1.9) 24.8 (1.0)

75-84 5.1 10.9 (0.7) 11.6 (0.9) 9.7 (1.0) 14.3 (1.5) 9.7 (0.7)

85+ 2.1 2.8 (0.3) 2.6 (0.4) 3.2 (0.6) 5.4 (0.9) 1.9 (0.3)

Sex

Female 50.4 62.3 (1.0) 62.2 (1.3) 62.5 (1.7) 69.2 (2.0) 60.0 (1.2)

Male 49.6 37.7 (1.0) 37.8 (1.3) 37.5 (1.7) 30.8 (2.0) 40.0 (1.2)

Race

White 92.7 93.9 (0.5) 94.1 (0.7) 93.6 (0.9) 95.7 (0.8) 93.4 (0.6)

Black 1.0 0.4 (0.1) 0.3 (0.2) 0.5 (0.2) 0.2 (0.2) 0.5 (0.2)

AIAN 0.7 0.6 (0.2) 0.7 (0.2) 0.5 (0.2) 0.4 (0.2) 0.6 (0.2)

API 2.2 1.3 (0.3) 1.4 (0.3) 1.1 (0.4) 1.6 (0.5) 1.3 (0.3)

Other 1.3 2.3 (0.3) 2.2 (0.4) 2.4 (0.6) 2.1 (0.6) 2.3 (0.4)

More than one 2.1 1.5 (0.3) 1.2 (0.3) 2.0 (0.5) 0.0 (0.0) 2.0 (0.4)

Hispanic

Yes 9.4 5.4 (0.5) 5.1 (0.6) 5.9 (0.8) 3.8 (0.9) 5.9 (0.6)

No 90.6 94.6 (0.5) 94.9 (0.6) 94.6 (0.8) 96.2 (0.9) 94.1 (0.6)

Education

Less than High School 4.6 1.1 (0.2) 1.1 (0.2) 1.1 (0.4) 2.0 (0.5) 0.9 (0.2)

High School Graduate 19.8 8.0 (0.6) 7.3 (0.7) 9.0 (1.0) 9.3 (1.2) 7.6 (0.7)

Some Coll./Assoc. 33.8 25.1 (0.9) 26.4 (1.2) 23.1 (1.5) 28.6 (1.9) 24.0 (1.0)

Bachelor’s or more 41.7 65.8 (1.0) 65.1 (1.3) 66.7 (1.6) 60.2 (2.1) 67.6 (1.1)

Health Insurance

Yes 93.3 96.6 (0.4) 96.3 (0.5) 97.1 (0.6) 96.7 (0.8) 96.6 (0.5)

No 6.7 3.4 (0.4) 3.7 (0.5) 2.9 (0.6) 3.3 (0.8) 3.4 (0.5)

Income

<$25,000 16.8 12.4 (0.6) 11.9 (0.8) 13.4 (1.1) 16.1 (1.5) 11.3 (0.7)

$25,000-49,999 21.4 19.3 (0.8) 19.8 (1.0) 18.5 (1.3) 21.1 (1.7) 18.8 (0.9)

$50,000-99,999 31.1 34.3 (1.0) 33.9 (1.2) 34.9 (1.6) 29.5 (1.9) 35.7 (1.1)

≥$100,000 30.7 34.0 (1.0) 34.4 (1.2) 33.3 (1.6) 33.3 (2.0) 34.2 (1.1)
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2.2 Methods

2.2.1 Survey Methods

In the 2019 TCHS, 12000 addresses were sampled using an address-based sample from 72 of

the 73 census tracts comprising Larimer County, Colorado (Census tract 6, which corresponds to

Colorado State University, was excluded; additionally there was only one address sampled from

census tract 28.03, which is a National Park). Three census tracts (13.04, 13.06, and 17.04) were

oversampled at 2-3 times the rate of the other census tracts to increase representation of Hispanics

and younger people, who were known to have lower RRs from previous surveys. To allow for this

oversampling and ensure representation of multi-family addresses from the sample, these census

tracts were stratified out, and strata were also created by dwelling type (single-family, multi-family,

and only way to get mail (OWTGM) PO Box). As OWTGM PO boxes were not present in the over-

sampled census tracts, this led to a total of 9 strata. Additionally, some addresses in Fort Collins

were removed from consideration as they were sampled by another organization conducted a sur-

vey simultaneously. In addition to the list of addresses, the auxiliary variables Hispanic surname,

dwelling type, housing tenure, and income were purchased for the sampled addresses. This was

a web-mail mixed mode survey, meaning addresses were initially only able to respond online and

paper surveys were mailed in wave 4 of data collection (with the double-stuff experiment).

The 2019 TCHS included embedded experiments to assess survey design features aimed at

improving survey outcomes, especially response. These adaptive features included differential

treatments for different addresses in the sample. In the first embedded experiment, addresses in

one-third of the census tracts were randomly assigned to receive the $1+$5web incentive, while

addresses in the other two-thirds of the census tracts received the $2pre incentive, which had been

standard practice for the TCHS in the past. To improve balance in the treatment assignments, the

census tracts were divided into blocks of about 3 census tracts each by geography, education, and

census tract population. The differential incentives were assigned at the tract level to minimize the

chances of sampled neighbors comparing their incentives.
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The other experiments in the survey were designed to increase RRs for lower-income groups.

A targeted mailing was sent to approximately 5000 addresses thought to be less likely to respond

based on the auxiliary variables. Addresses flagged as having a Hispanic surname were thought

to be less likely to respond, and a categorical variable with three levels was created to identify

addresses not flagged as having a Hispanic surname thought to be less likely to respond. The level 0

addresses were considered the most likely to respond and the level 2 addresses were considered the

least likely to respond (see Figure 2.1 for details). The targeted mailing was sent to approximately

one-half of the addresses flagged as having a Hispanic surname, one-half of the level 1 addresses

and three-quarters of the level 2 addresses. The level 0 addresses did not receive the targeted

mailing. This does mean that the treatment was not assigned to the entire sample. This was

done because the Health District was more interested in understanding how the targeted mailing

worked for addresses thought to be less likely to respond and improving balance in response than

on understanding how the targeted mailing worked for the entire population. Approximately 1000

of the targeted addresses that had not responded by wave 6 received another targeted mailing close

to the end of survey collection.

Is the address 

flagged as having a 

Hispanic surname?

Is address classified as 

single family, owner, 

and above median 

income?

Hispanic Flag

Is the previous “No” 
for at least two of the 

previous categories?

Yes

No

No Hispanic Flag 

Level 0

No Hispanic Flag 

Level 1

No Hispanic Flag 

Level 2

Yes Yes

NoNo

Is the address 

classified as multi 

family, renter, or at 

most median income?

No Hispanic Flag 

Level 1

No

Yes

Figure 2.1: Flowchart showing the determination of addresses judged less likely to respond based on avail-

able vendor data.
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To improve response of Hispanics in the TCHS, a “double-stuffed” mailing packet was mailed

to approximately half the addresses flagged as having a Hispanic surname, and approximately 300

additional addresses as a control. The double-stuffed mailing was to include one questionnaire

printed in English and one in Spanish. Due to a printing error, the addresses assigned to the

double-stuff treatment received two mailings: the first mailing contained only a Spanish-language

questionnaire with some pages missing, and the second mailing contained the correctly printed

packet with both questionnaires.

To avoid issues of confounding between the factors, the incentive, targeted mailing, and double-

stuff treatments were assigned in an approximately balanced manner (Table 2.2). Taken as a whole

the experimental design of the experiments embedded in the 2019 TCHS form a split-plot design,

with incentive, being assigned at the census tract level, as the “whole-plot” factor, and the targeted

mailing and double-stuff, being assigned at the address level, as the “split-plot” factors. In the

remainder of this chapter we will focus solely on the incentive experiment. Since the census tracts

were divided into blocks before assigning treatments, the design for the incentive experiment alone

is a randomized complete block design.

2.2.2 Statistical Methods

To reflect the sampling design used in the survey, addresses were assigned weights inverse to

the probability of being sampled. Analyses in this chapter using these weights will be referred to as

“design-weighted” and do not use additional corrections for nonresponse. Weights were computed

by dividing the number of addresses in each stratum by the number of responses in each stratum.

For weighting purposes the strata were separated by inside/outside of Fort Collins to account for

avoiding addresses sampled for another survey being conducted simultaneously by another organi-

zation. Additional weighting to adjust for nonresponse was conducted for analyzing the responses

to this survey. As we focus on response behavior as opposed to responses to the survey, the addi-

tional weighting was not used in the analyses in this paper and is not further discussed here. All

statistical analyses were conducted in R version 3.6.3 (R Core Team [2020]).

16



Table 2.2: Treatments assignment of eligible addresses in the 2019 Larimer County TCHS overall and by the auxiliary variables Hispanic Surname

Flag, Tenure, Dwelling Type, and Income. NG means “not given”, S means “single-family”, M means “multi-family”, and PO means “POBOX only

way to get mail.”

Treatment Target Double Number Hispanic Dwelling

Group Incentive Mailing Stuff Assigned Surname Flag Tenure Type Income

Yes No Rent Own NG S M PO Given NG

1 $2pre No No 4061 138 3923 351 3253 457 3460 601 0 3863 198

2 $2pre No Yes 240 125 115 35 178 27 168 72 0 237 3

3 $2pre Yes No 3145 156 2989 880 1218 1047 1726 1419 0 2661 484

4 $2pre Yes Yes 234 148 86 62 109 63 122 112 0 217 17

Subtotal $2pre 7680 567 7113 1328 4758 1594 5476 2204 0 6978 702

5 $1+$5web No No 2181 58 2123 155 1738 288 1879 289 13 2031 150

6 $1+$5web No Yes 99 46 53 16 66 17 78 21 0 94 5

7 $1+$5web Yes No 1544 54 1490 427 543 574 808 718 18 1253 291

8 $1+$5web Yes Yes 94 50 44 25 45 24 46 47 1 87 7

Subtotal $1+$5web 3918 208 3710 623 2392 903 2811 1075 32 3465 453

Total 11598 775 10823 1951 7150 2497 8287 3279 32 10443 1155
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Survey-weighted analyses were conducted to examine differences in RRs, response modes,

survey costs, and representativeness between the groups receiving each of the survey incentives.

To study RRs, subgroup design-weighted RRs were calculated for categories defined by the

auxiliary variables purchased for this study. Hypothesis testing was performed using a randomiza-

tion distribution of the treatment assignments conditioned on the sample (Chapters 4 through 6).

To examine trends of RRs throughout the survey fielding period, design-weighted cumulative re-

sponse curves were used to visualize the differences in response behavior for all protocols used in

this survey. A design-weighted curve showing the difference in cumulative RRs between the incen-

tive treatments is shown with curves in the background drawn from the randomization distribution

of the treatment assignment to provide a sense of scale for the differences. A survey-weighted log-

rank test (Rader [2014]) was also used to analyze the difference between these response curves,

with inference based on the randomization distribution of the treatment assignment conditioned on

the sample though a Monte Carlo test (Section 6.2).

To account for potential covariates, a design-weighted logistic regression model was used as

well. The effects of the incentive structure on survey response (encoded as the binary variable 1

= responded, 0 = did not respond) and on mode of response (encoded as 1 = web response, 0 =

mail, given that the address responded) were studied with design-weighted mixed-effects logistic

regression models. These models included additive fixed effects to account for incentive type and to

control for demographic characteristics, using the auxiliary variables housing tenure (own/rent/not

given), dwelling type (single-family, multi-family, or OWTGM PO box: post office box as only

way to get mail), income (given/not given) and Hispanic surname. Income was coded by given or

not given because the auxiliary income variable did not correspond well to the reported income

from the survey among the respondents. Random effects were used to account for the tract-level

treatment assignment. Further, logistic regression models including interactions between incentive

structure and each of the demographic variables were also fit for both response and web response.

Inference was based on the randomization distribution conditioned on the sample. Confidence
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intervals were calculated using a Robins-Munro algorithm as described in Garthwaite [1996]. The

tests for alternative hypotheses were modified from Gail et al. [1988].

To analyze cost-effectiveness, design-weighted estimates of incentive costs per response asso-

ciated with both incentive treatments were computed overall and within demographic groups iden-

tified using the auxiliary variables. This analysis involved comparing design-weighted costs of the

incentive and associated mailing costs divided by the design-weighted estimate of the number of

responses in each incentive treatment, which can be analyzed using the linearization discussed in

Section 6.4 applied to a ratio. The analysis for cost was assuming that the cost per response in each

census tract will be the same under both treatments, and thus only the cost under the assigned treat-

ment was considered. The randomization test, as suggested by the theory (Chapter 5), only altered

the labels under different randomizations, using the cost estimates under the original treatment.

This analysis of costs excludes costs associated with later waves of the survey. See Section 2.4 for

further discussion of technical details in analyzing cost per response.

To analyze the representativeness of the responses, the RRs and the proportion of online re-

sponses were examined for each treatment within several demographic categories identified from

the auxiliary variables. Analyses on interaction effects in the logistic regression were also used

to investigate this question. Lastly, we compared the survey-weighted differences in demographic

variable between the responding addresses of the 2019 TCHS and the 2018 American Communi-

ties Survey (ACS) 5-year estimates by each of incentive and response mode using the dissimilarity

index (DI, see also Biemer et al. [2018]). The DI is calculated for a categorical variable with G

categories by D̂ = 1/2
∑G

g=1 |p̂g − αg|, where p̂g is the estimated proportion within category g

and αg is the proportion of the category from the 2018 ACS 5-year estimates. The DI can take

values in the range [0,1), and is described further in Chapter 3). A linearization was applied to

estimate standard errors for differences in the DI by incentive treatment using the randomization

distribution of the treatment assignment conditioned on the sample (Section 6.4). Variation in the

DI by response mode was quantified using a linearization approach for sampling distribution of the
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survey (Chapter 3). This is because the only randomization in the response mode analysis was the

sampling mechanism.

2.3 Results

2.3.1 Response Rate and Mode

To consider differences in response rate between the treatments, we looked at overall response

rate, differences in response rate across groups, and used a design-based regression model to de-

termine differences accounting for subgroups. Additionally, we examined response curves to de-

termine differences over time between treatments.

We compared RRs between addresses in census tracts receiving the $2pre and $1+$5web in-

centives according to auxiliary demographic variables purchased for the addresses: Hispanic sur-

name flag, housing tenure (coded as rent, own, not given), dwelling type (coded as single-family,

multi-family, PO Box), and income (coded as given, not given). In each of these comparisons, the

empirical RR is higher for the $1+$5web group than the $2pre group (Table 2.3).

Overall, there was a slightly higher RR from the $1+$5web incentive (24.8%) than the $2pre

incentive (22.2%, standard error of difference [SE(diff)] = 1.4%, p = 0.029). Within each of the

subgroups, there was a slightly higher RR to the $1+$5web incentive versus the $2pre incentive.

The differences appeared to be larger among groups from which less information was known in

the auxiliary variables. When tenure was not given, the RR was 3.3 percentage points higher

for addresses receiving the $1+$5web incentive than the $2pre incentive ($2pre RR = 14.2%,

$1+$5pre RR = 17.5%, SE(diff) = 1.5%, p = 0.016). When income was not given, the RR

was 3.5 percentage points higher for addresses receiving the $1+$5web incentive than the $2pre

incentive ($2pre RR = 10.8%, $1+$5pre RR = 14.4%, SE(diff) = 2.0%, p = 0.037).
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Table 2.3: Total numbers of eligible addresses, responses, response rates, and web response rates (condi-

tional on response) by incentive treatment overall and by categories of auxiliary variables. Response rates

and web response rates are weighted to reflect sampling design of the TCHS. Inference was based on the

asymptotic randomization distribution of the treatment assignment conditioned on the sample. Significance

tests were one-sided to test if the $1+$5web incentive improved response or web response compared to the

$2pre incentive.

Resp Diff z Web Web Diff z

Group Incentive Tot Resp Rate SE p Resp Rate SE p

Overall

$2pre 7680 1666 0.222 0.026 1.913 1234 0.743 0.025 1.400

$1+$5web 3918 966 0.248 0.014 0.028 741 0.768 0.018 0.081

Hispanic

Surname Flag

Yes $2pre 567 69 0.130 0.010 0.383 58 0.863 -0.106 -1.204

$1+$5web 208 29 0.140 0.025 0.351 22 0.757 0.088 0.886

No $2pre 7113 1597 0.228 0.027 1.853 1176 0.739 0.030 1.729

$1+$5web 3710 937 0.254 0.014 0.032 719 0.769 0.017 0.042

Housing Tenure

Own $2pre 4758 1146 0.267 0.033 2.116 922 0.741 0.009 0.437

$1+$5web 2392 713 0.300 0.016 0.017 534 0.750 0.020 0.331

Rent $2pre 1328 197 0.152 0.001 0.071 150 0.768 0.054 1.142

$1+$5web 623 96 0.154 0.019 0.472 78 0.822 0.048 0.127

Not Given $2pre 1594 223 0.142 0.033 2.137 162 0.732 0.087 1.660

$1+$5web 903 157 0.175 0.015 0.016 129 0.819 0.052 0.048

Dwelling Type

Multi Family $2pre 2204 310 0.142 0.031 1.859 227 0.739 0.096 2.465

$1+$5web 1075 185 0.173 0.017 0.032 153 0.835 0.039 0.007

Single Family $2pre 5476 1356 0.251 0.026 1.715 1007 0.744 0.009 0.451

$1+$5web 2811 773 0.277 0.015 0.043 582 0.753 0.020 0.326

POBOX $2pre 0 0 0

$1+$5web 32 8 0.25 6 0.75

Income

Given $2pre 6978 1593 0.233 0.029 2.024 1180 0.743 0.019 1.026

$1+$5web 3465 901 0.262 0.014 0.021 685 0.762 0.018 0.152

Not Given $2pre 702 73 0.108 0.035 1.787 54 0.746 0.114 1.658

$1+$5web 453 65 0.144 0.020 0.037 56 0.860 0.069 0.049

Among addresses not receiving the double-stuff mailing, those receiving the $1+$5web incen-

tive responded at a higher rate than addresses receiving the $2pre incentive. Among addresses

that did receive the double-stuff mailing, however, there was a higher RR among the $2pre in-

centive group than the $1+$5web group (Figure 2.2). Formal testing reveals evidence at the
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α = 0.05 level of higher response in the $1+$5web group (RR = 28.1%) than the $2pre group

(RR = 24.9%) among addresses not receiving either the double-stuff or target mailing treatments

(SE(diff) = 1.6%, p = 0.025). There is also evidence at the α = 0.1 level of higher response in the

$1+$5web group (RR = 20.2%) than the $2pre group (RR = 18.2%) among addresses receiving

the targeted mailing but not the double-stuff (SE(diff) = 1.3%, p = 0.057). There was not evi-

dence of differences in response rates between incentives in groups that received the double-stuff

mailing (received targeted mailing p = 0.535, did not receive targeted mailing p = 0.759).

When only observing the incentive group, there appears to be evidence of higher RRs overall

among addresses receiving the $1+$5web treatment than the $2pre treatment (Figure 2.3). Between

days 30 and 40 the $2pre treatment response seems to surpass the RR in the $1+$5web treatment

for a few days, but this is an artifact of the data collection that should be disregarded by viewers

of the graph. This artifact appears because the mailing of the $2pre treatment was delayed by four

days due to issues obtaining two-dollar bills for the $2pre treatment. When adjusted so that the

timelines for both treatments start with day 0 being the first mailing, the treatment effects appear

four days earlier in the $2pre treatment.
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Figure 2.2: Response curves for all different treatments in the survey experiment. The lighter grey vertical

lines indicate when the $2pre group received additional intervention, and the darker grey vertical lines

indicate when the $1+$5web group received additional intervention, as noted in the text box (target mailing,

survey mailing or double stuff).
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Figure 2.3: Response curves for the difference between treatment and control for the incentive experiment.

The actual curve is in darker green, and curves from other simulations are in lighter green. The apparent

dips in the actual curve are an artifact of the $2 incentives being mailed 4 days late.

The randomization-based survey-weighted log-rank test provided evidence at the α = 0.1 level

that the $1+$5web incentive may have more and/or faster response to the survey than the $2pre

incentive (χ2 = 7.854, p = 0.068).

The randomization-based logistic regression analysis did not show evidence of interactions be-

tween the demographic variables and the incentive treatment (F5,15 = 1.168, p = 0.369; Table 2.4,

Model 2), therefore we proceeded with inference using the model without interactions. The logistic

regression analysis for incentive structure provided evidence at the α = 0.05 level that addresses

that received the $1+$5web incentive responded at a higher rate than the addresses that received

the $2pre incentive (Odds ratio (OR) = 1.183, 95% confidence interval (CI) = (1.011, 1.384),

p = 0.037; Table 2.4, Model 1).
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There was evidence at the α = 0.1 level that there may be interaction between the auxiliary

variables and the incentive treatment (F5,15 = 2.820, p = 0.054; Table 2.5, Model 2), suggesting

that odds ratios of response mode by incentive may be different for members of some demographic

groups represented in the auxiliary variables than for members of other demographic groups. When

examining interactions individually, there was evidence at the α = 0.1 level that the push-to-web

impact of receiving the $1+$5web incentive is less for Hispanics than for non-Hispanics (OR =

0.365, 95% CI = (0.115, 1.155), p = 0.083). There was no evidence found for interactions among

other groups identified with the auxiliary variables (min p = 0.326). From the model without inter-

actions (Model 1), there was not evidence of differences in response mode by incentive treatment

(OR = 1.295, 95% CI = (0.927, 1.810), p = 0.122; Table 2.5, Model 1). There was evidence

at the α = 0.1 level that addresses flagged as Hispanic are more likely to respond by web than

addresses not flagged as Hispanic (OR = 1.639, 95% CI = (0.974, 2.758), p = 0.062), but there

is not evidence of differences in response mode by any of the demographic variables (smallest

p = 0.445).
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Table 2.4: Estimated model coefficients, standard errors (SE), and p-values (for testing the hypothesis that

a single model coefficient is zero) for the mixed-effect logistic regression models to examine the effect of

the incentive on survey response (1 = responded, 0 = did not respond). Coefficients are estimated using

weighting to reflect the true design of the survey and the standard error are estimated using the delete-a-

group jackknife allowing for small strata [Kott, 2001] with 20 jackknife replicates, and the tests for each of

the model coefficients was a t-test with 19 degrees of freedom.

Model 1 Model 2

Coefficient B SE p B SE p
Intercept -1.286 0.044 <0.001 -1.355 0.064 <0.001

Incentive - $1+$5web 0.168 0.075 0.037 0.350 0.148 0.029

Tenure - Rent -0.620 0.081 <0.001 -0.568 0.116 <0.001

Tenure - Not Given -0.430 0.075 <0.001 -0.440 0.071 <0.001

Dwelling Type - Single 0.329 0.043 <0.001 0.407 0.073 <0.001

Dwelling Type - PO Box 0.582 0.507 0.266 0.458 0.531 0.399

Income - Not Given -0.391 0.116 0.003 -0.413 0.107 0.001

Hispanic Surname Flag -0.606 0.135 <0.001 -0.541 0.160 0.003

($1+$5web) x Tenure Rent -0.154 0.216 0.484

($1+$5web) x Tenure Not Given 0.019 0.161 0.907

($1+$5web) x Single -0.204 0.140 0.162

($1+$5web) x PO Box NA* NA* NA*

($1+$5web) x Income Not Given 0.026 0.203 0.899

($1+$5web) x Hispanic Flag -0.181 0.289 0.538

Tract Standard Deviation 0.280 0.025 0.280 0.025

Interactions Test F5,15 = 1.168, p = 0.369

In summary, there was evidence of a slightly higher response rate for addresses assigned the

$1+$5web incentive than for addresses assigned the $2 incentive. We observed higher response

rates in all groups based on auxiliary variables, but the differences may have been slightly higher in

groups from which less auxiliary information was known. Looking at response rates over time, we

see that the difference in response between the incentive treatments started early, and was main-

tained throughout the fielding period. There was some evidence from analyzing response mode

that Hispanics may be more likely to respond by web and are less affected (or perhaps negatively

affected) by push-to-web incentives, but more research would need to be done to confirm these

results.
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Table 2.5: Estimated model coefficients, standard errors (SE), and p-values (for testing the hypothesis that a

single model coefficient is zero) for the mixed-effect logistic regression models to examine the effect of the

incentive on mode of response (1 = web, 0 = mail), conditioned on responding. Coefficients are estimated

using weighting to reflect the true design of the survey and the standard error are estimated using the delete-

a-group jackknife allowing for small strata [Kott, 2001] with 20 jackknife replicates, and the tests for each

of the model coefficients was a t-test with 19 degrees of freedom.

Coefficient Model 1 Model 2

B SE p B SE p
Intercept 0.934 0.188 <0.001 0.852 0.195 <0.001

Incentive - $1+$5web 0.259 0.160 0.122 0.452 0.325 0.181

Tenure - Rent 0.120 0.172 0.493 0.067 0.160 0.682

Tenure - Not Given 0.052 0.134 0.703 -0.056 0.173 0.749

Dwelling Type - Single 0.142 0.183 0.445 0.270 0.216 0.226

Dwelling Type - PO Box -0.390 1.000 0.701 -0.765 1.092 0.492

Income - Not Given 0.210 0.332 0.535 0.040 0.354 0.912

Hispanic Surname Flag 0.494 0.249 0.062 0.838 0.358 0.030

($1+$5web) x Tenure Rent 0.170 0.262 0.523

($1+$5web) x Tenure Not Given 0.298 0.414 0.481

($1+$5web) x Single -0.312 0.309 0.326

($1+$5web) x PO Box NA* NA* NA*

($1+$5web) x Income Not Given 0.357 0.591 0.553

($1+$5web) x Hispanic Flag -1.009 0.551 0.083

Tract Standard Deviation 0.485 0.094 0.484 0.093

Interactions Test F5,15 = 2.820, p = 0.054

2.3.2 Survey Costs

Overall, estimated incentive cost per response were similar for the $1+$5web incentive than

for the $2pre incentive ($2pre: $9.01, $1+$5web: $8.80; SE(diff) = 0.45, p = 0.644; Table 2.6).

Breaking down the costs by the auxiliary variables, we find $1+$5web incentive requires a similar

incentive cost per response to the $2pre incentive for higher-response groups but cheaper for some

lower-response groups, namely addresses classified as multi-family housing units, without income

given, or without tenure given. For example, giving the incentive to addresses listed as owner-

occupied cost $7.49 per response when given the $2pre incentive and $7.99 per response with the

$1+$5web incentive (SE(diff) = 0.35, p = 0.151), providing the incentive to addresses listed as

renter-occupied cost $13.13 per response with the $2pre incentive and $11.61 per response with the

$1+$5web incentive (SE(diff) = 1.48, p = 0.305), and providing the incentive to addresses with-
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out a tenure given cost $14.09 with the $2pre incentive and $10.80 with the $1+$5web incentive

(SE(diff) = 1.23, p = 0.007).

In summary, the incentive cost per response from the $1+$5web incentive is similar to the $2pre

incentive only for addresses that are more likely to respond, but lower than the $2pre incentive for

some addresses that are less likely to respond, such as addresses classified as multi-family housing

units, without income given, or without tenure given.

Table 2.6: Incentive cost per response (in dollars) of different incentives overall and for subgroups identified

by the auxiliary variables. The costs only include the cost of the incentive and mailing the $5 incentive to

each of the web-respondents. Costs not included include downstream cost differences due to earlier response

times and potential cost savings of not needing to process as many paper surveys. Significance tests are based

on the randomization distribution of treatment assignment and are two-sided to identify any difference in

costs.

Group $2pre cost $1+$5web cost Difference cost (SE) z p

Overall 9.01 8.80 -0.21 (0.45) -0.811 0.417

Hispanic Flag

Yes 15.30 11.82 -3.48 (2.46) -1.413 0.158

No 8.79 8.70 -0.09 (0.45) -0.189 0.850

Income

Given 8.58 8.55 -0.03 (0.41) -0.067 0.946

Not Given 18.50 12.31 -6.19 (2.44) -2.537 0.011

Dwelling Type

Multi-Family 14.04 10.96 -3.08 (1.39) -2.207 0.027

Single-Family 7.97 8.29 0.32 (0.40) 0.795 0.426

POBOX

Tenure

Own 7.49 7.99 0.50 (0.35) 1.437 0.151

Rent 13.13 11.61 -1.52 (1.48) -1.026 0.305

Not Given 14.09 10.80 -3.29 (1.23) -2.680 0.007

2.3.3 Representativeness of Response

In this section, we review and quantify differences in what types of people were represented

in the respondents when given a $2pre incentive compared to when given a $1+$5web incentive.

We first review the results from the logistic regression analyses discussed in Section 2.3.1 from
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the lens of representativeness. Additionally, we consider evidence from comparing differences in

deviation from American Communities Survey (ACS) estimates, as measured by the dissimilarity

index (DI), between the treatments.

From the logistic regression analyses, we found evidence that minorities and people of lower

socioeconomic status are underrepresented in the respondents to the TCHS. Renter-occupied ad-

dresses (OR = 0.538, 95% CI = (0.454, 0.638), p < 0.001; Table 2.4, Model 1) or addresses

whose tenure was not given (OR = 0.651, 95% CI = (0.556, 0.761), p < 0.001) were less

likely to respond than owner-occupied addresses. Single-family addresses (OR = 1.389, 95%

CI = (1.269, 1.521), p < 0.001) were more likely to respond than multi-family addresses. Res-

idents of addresses whose income was not provided (OR = 0.676, 95% CI = (0.530, 0.862),

p = 0.003) were less likely to respond than residents whose income was provided. Residents of

addresses flagged as Hispanic (OR = 0.546, 95% CI = (0.411, 0.724), p < 0.001) were less likely

to respond than residents of addresses not flagged as Hispanic.

For both treatment groups, the proportion of survey respondents who responded by web was

over 70% for any subgroup examined based on auxiliary variables. Somewhat surprisingly, among

addresses flagged as having a Hispanic surname, addresses receiving the $2pre incentive were

more likely to respond online (86.3%) than addresses receiving the $1+$5web incentive (75.7%;

SE(diff) = 8.8%, p = 0.886; Table 2.3), though there is not evidence to conclude a difference

for the subpopulation of flagged Hispanic addresses. Among addresses not flagged as having a

Hispanic surname, there was evidence that addresses receiving the $2pre incentive were less likely

to respond online (73.9%) than addresses receiving the $1+$5web incentive (76.9%, SE(diff) =

1.7%, p = 0.042). For the other auxiliary variables, we found higher web RRs for the $1+$5web

incentive than the $2pre incentive, and the differences appear to be greater in the categories with

lower RRs.

The interactions between the incentive type and the auxiliary variables in the logistic regression

models, as previously noted, were not found to be significant (Table 2.4).
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Between the two incentive treatments, we did not find evidence of differences in deviation

from proportions from the ACS the DIs in any of the variables that we measured (min p = 0.404;

Table 2.7). This is consistent with Table 2.1, where the demographics look similar between the two

treatment columns. However, we did see differences when we examined responses by response

mode. The dissimilarity index is lower for online respondents than paper respondents for age

(Paper = 0.35, Online = 0.25, SE(diff) = 0.02, p < 0.001), sex (Paper = 0.19, Online = 0.10,

SE(diff) = 0.02, p < 0.001), race (Paper = 0.04, Online = 0.02, SE(diff) = 0.01, p = 0.007) and

Hispanic ethnicity (Paper = 0.35, Online = 0.25, SE(diff) = 0.02, p = 0.035). We found evidence

that the dissimilarity index was higher for online respondents than paper respondents for education

(Paper = 0.18, Online = 0.26, SE(diff) = 0.02, p = 0.002; Table 2.8) and income (Paper = 0.03,

Online = 0.08, SE(diff) = 0.02, p = 0.014). Closer examination into the demographics reveal

that for age, online respondents tend to be younger, more male, less White and more Hispanic than

paper respondents, making them closer to the general population in those categories (Table 2.1).

We also see that paper respondents include more people without college experience, fewer people

with Bachelor’s degrees, and more people with incomes less than $25,000 than online respondents,

making paper respondents more representative of the population in those categories.

Table 2.7: Dissimilarity indices by treatment and differences of the dissimilarity index between treatments

with standard errors (SE(diff)), test statistics (z) and p-values (p) for a test of a difference between treatments

for age, sex, race, Hispanic ethnicity, education, health insurance, and income. Hypothesis test is two-sided

and standard errors are calculated using the randomization distribution of the treatment assignment.

Variable $2pre $1+$5web Difference SE(diff) z p

Age 0.28 0.27 -0.01 0.03 -0.350 0.727

Sex 0.12 0.12 0.00 0.02 0.121 0.904

Race 0.02 0.02 -0.00 0.01 -0.381 0.703

Hispanic 0.04 0.04 -0.01 0.01 -0.834 0.404

Education 0.24 0.25 0.01 0.03 0.448 0.654

Health Insurance 0.03 0.04 0.01 0.01 0.829 0.407

Income 0.07 0.06 -0.01 0.03 -0.183 0.855
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Table 2.8: Dissimilarity indices by response mode and differences of the dissimilarity index between re-

sponse modes with standard errors (SE(diff)), test statistics (z) and p-values (p) for a test of a difference

between response mode for age, sex, race, Hispanic ethnicity, education, health insurance, and income. Hy-

pothesis test is two-sided and standard errors are calculated using the sampling distribution for the survey

design.

Variable Paper Online Difference SE(diff) z p

Age 0.35 0.25 -0.10 0.02 -4.547 <0.001

Sex 0.19 0.10 -0.09 0.02 -4.002 <0.001

Race 0.04 0.02 -0.02 0.01 -2.699 0.007

Hispanic 0.06 0.04 -0.02 0.01 -2.105 0.035

Education 0.18 0.26 0.07 0.02 3.108 0.002

Health Insurance 0.03 0.03 -0.00 0.01 -0.085 0.933

Income 0.03 0.08 0.06 0.02 2.454 0.014

2.4 Discussion

In this chapter, we discussed the analysis of the incentive experiment in a web-mail mixed-

mode survey with six waves of data collection and treatments assigned before the start of data

collection. Embedded in the survey were three experiments: an incentive treatment ($2pre or

$1+$5web) assigned at the census tract level at the beginning of the survey, a targeted mailing

sent to some of the addresses thought to be less likely to respond at wave 3, and a double-stuffed

survey packet (including English-language and Spanish-language surveys) sent out with the survey

mailing at wave 4. We focused our analysis on the incentive experiment from the beginning of the

survey with the goal of evaluating whether the $1+$5pre incentive improved RRs and changed the

cost-per-response while maintaining the representativeness of the $2pre design.

We found that in the 2019 Larimer County TCHS, addresses receiving the $1+$5web incentive

responded at higher rates relative to addresses receiving the $2pre incentive. The increased re-

sponse is seen in all subgroups of the population, as identified by the auxiliary variables. We found

no evidence of different incentive costs per response overall for the $1+$5web incentive compared

to the $2pre incentive, but found some evidence that the $1+$5web incentive provided more re-

sponses per dollar of incentive given than the $2pre incentive for addresses that were multi-family
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housing units, did not have an income listed, or did not have the tenure listed. There was also no

evidence that the representativeness of response, measured as a deviation from ACS statistics using

the DI, was different between the incentive structures.

This suggests that overall the $1+5web incentive is more effective than the $2pre incentive for

the adult population in Larimer County, Colorado, because it resulted in slightly higher response

rates, and did not substantially change the demographic makeup of who responded. However,

there were some changes in the mode by which people responded on this setup. Specifically, online

respondents were more representative of the population in terms of age, sex, race and ethnicity, and

paper respondents were more representative of the population in terms of income and education.

We also note that measures of response quality were not taken into account for this study, but

would be useful for decided what type of incentive to use.

For the analysis of incentive costs per response, we did not include costs related to later waves

of the survey and processing mail responses. This is because we did not have precise cost infor-

mation on how early response affected costs of later waves of the survey, including information on

how quickly respondents were removed from the mailing lists and the costs of processing paper

surveys vs. online surveys.

We had initially considered an analysis of incentive costs that examined the costs by changing

the label to reflect the cost for the treatment it was randomly relabeled as in the randomization

test. This method, however, does not lead to a randomization distribution with mean zero. It is

possible to adjust the distribution to have mean zero, but the form of the test in that case has a more

complicated interpretation, and does not seem to analyze the question of cost per response. For

this reason, we decided to only change the labels and not change costs. If the costs per response

are not different between treatments, then a randomization that only changes the labels will not

change the mean by a large amount when the labels are changed. This method is also consistent

with how other variables are measured.

As mentioned above, the analysis did not consider the downstream costs from the incentives.

However, we can make some guesses based on online responses, and when people who received
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each of the incentive structures responded. The rate of online response was similar for the two

incentive treatments but was slightly higher in the $1+$5web incentive group than the $2pre group.

There were also more early responses in the $1+$5web group than in the $2pre group. Both

observations suggest that the $1+$5web treatment may be even more cost-effective relative to the

$2pre treatment than reported.

The similarity of the dissimilarity indices between the two survey treatments means that we

found no evidence that the respondents differed on measurable demographic characteristics based

on the incentives they received. This confirms the result of not having significant interaction effects

in the model evaluating response by treatment. This information, combined with the information

that there may be cost savings (per response) for at least some subgroups and that the RRs were

higher for the $1+$5web incentive than with the $2pre incentive, suggests that, at least for sub-

groups thought to be less likely to respond, the $1+$5web incentive may be better than the $2pre

incentive, at least for Larimer County.

Comparing our results with previous literature, we find that our work aligns with some of the

previous literature. Agreeing most closely with Biemer et al. [2018], our results suggest that in

Larimer County, Colorado, an incentive to respond online can result in slightly higher RRs. We

did not find evidence of higher web RRs with the $1+$5web incentive; however, in this survey, the

only way to respond at the start of fielding was by web. Web RRs have consistently been found

to be higher with a web-first design than a mail-first or concurrent design (Messer and Dillman

[2011], Millar and Dillman [2011], Patrick et al. [2018], Biemer et al. [2018]), so it is possible that

the web first design may have been more successful at pushing people to web than the incentive.

When thinking about the differences in the dissimilarity index on web response, we noticed

more balance in web response on the variables of sex and age. One interesting finding is that we

found better representation of Hispanic ethnicity and race, but less representation among education

level and income among web respondents. This could be an incidental finding, but it would be

interesting to see if similar patterns hold in other studies.
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A key issue with analyzing these data were that not many methodologies had been developed

for analyzing embedded experiments in surveys. We developed new methodologies to analyze

these experiments. One possible approach to analyze these data that was available in the literature

was the approach proposed by van den Brakel [2001]. Van den Brakel’s approach will work for

many of the analyses used in the 2019 TCHs, including comparison of response rates, incentive

cost per response, and the dissimilarity index. Van den Brakel’s approach, however, does not allow

for studying statistics, such as the log-rank test, that do not have an asymptotic normal distribution.

It also does not allow for plots like those in Figure 2.3, which show the distribution of different

samples. In order to allow researchers to make comparisons based on arbitrarily complicated

statistics derived from experiments embedded in surveys, new methodology was needed, which is

presented in Chapters 4–6 of this dissertation.
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Chapter 3

Survey Design-Based Inference for the Dissimilarity

Index

3.1 Introduction

The dissimilarity index (DI) was originally proposed by Jahn et al. [1947], and brought into

the literature with major early contributions by Williams [1948] and Duncan and Duncan [1955].

The original problem was to measure segregation between Black and White Americans in cities by

totaling up differences between the Black and White populations within each city, but it has been

generalized to measure the difference between the two row conditional distributions in any 2× G

table, one at each level of a binary variable. The DI has been applied to surveys by Biemer et al.

[2018] to evaluate the representativeness of response in the national pilot of the Energy Information

Administration’s Renewable Energy Consumption Survey.

In conjunction with the rise of adaptive and responsive survey designs, there has been a push to

propose estimators to evaluate how well the respondents of surveys using such designs represent

the target population of the survey (“representativeness”; Groves et al. [2008]). These and help

researchers understand who is not responding to surveys to try to see where to target efforts to

improve response. This development led to the R indicator (Schouten et al. [2009]), the fraction

of missing information (Wagner [2010]), and several imbalance indicators proposed by Särndal

[2011]. These have been discussed both as measures of response quality at the end of the survey

and as ways to monitor and target responses (for example Lundquist and Särndal [2013], Wagner

and Hubbard [2014]). These indicators are fairly diverse, and some of these indicators are based

on propensity models (R indicator), or are specific to response variables (fraction of missing infor-

mation), meaning that they can serve different purposes. The DI is a good addition to this toolkit

as a simple indicator of representativeness for a categorical auxiliary variable.
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When using a statistical measure, one natural question is how to describe the variability in that

measure. Cortese et al. [1976] develop some theory for the distribution of the dissimilarity index

under the case of no segregation based on the hypergeometric distribution. Some properties of the

central limit theory for the DI were studied in more generality by Ransom [2000] and Allen et al.

[2015]. Ransom derived asymptotics using a multinomial distribution for the number of persons

with each characteristic in each group of interest (Ransom [2000]). Allen et al. also derived central

limit theory for the dissimilarity index under a conditional multinomial model (Allen et al. [2015]).

While Ransom considered the population distribution of all combinations of the binary variable

and the categorical variable, Allen et al. considered the distributions of the categorical variable

conditioned on the levels of the binary variable. While Ransom’s model treated the binary variable

as varying, Allen et al. treated the binary variable as a fixed characteristic.

While progress has been made on the distribution of the dissimilarity index in general, the

survey context requires different derivations to obtain relevant reference distributions. We will

consider this problem for examining the difference between the available sample and the general

population in surveys. We will use the term “available sample” to indicate the subset sampled from

the frame and/or for whom responses were collected. Using this term allows for discussion of

problems of coverage, nonresponse, or a combination of both. We will also use the term “available

population” to refer to the part of the population that is in the frame and/or will provide a response,

considering a fixed response model. In other words, the available population is the part of the

population from which information can be obtained from researchers, and the available sample is

the part of the sample that provides such information. We will derive an expression for the DI

allowing for linearization variance estimation for complex survey designs, under the hypothesis

that the group membership probabilities for the sample differ from those in the population in all

categories. To do this, we will first focus on the DI for the population, and then generalize to create

measures for a DI for subgroups that one might want to compare. We begin by discussing the DI

as it has been traditionally used and in the context of surveys in Section 3.2. The derivation and
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assumptions for the DI variance calculations are discussed in Section 3.3. A simulation study is

discussed in Section 3.4.

3.2 The Dissimilarity Index in the Survey Context

The DI was originally formulated to analyze segregation in American cities Jahn et al. [1947],

and has historically been used to measure the degree of economic and social segregation in various

contexts (see Ransom [2000] for some examples). In surveys, the DI is used to determine how

representative a survey sample is compared to the general population. Specifically, in surveys,

the DI examines the dissimilarity between the available population and a known reference to the

finite population of interest. Because of some differences in these problems, the DI is expressed

differently in the context of surveys than it is in the traditional social science context.

We now define notation and describe the dissimilarity index as it has been used in the tradi-

tional social science context, and how it has been used in surveys. Let g = 1, . . . , G be levels

of a categorical variable (traditionally jobs or census tracts, in the survey context race or level of

education, for example), and let h = 0, 1 be a state (traditionally white/non-white or male/female,

in surveys respondents/nonrespondents or in-frame/out-of-frame). Further, let phg be the proportion

of individuals in category g out of all individuals having state h (or the conditional proportion of

having category g given state h).

D =
1

2

G
∑

g=1

|p1g − p0g|. (3.1)

This formulation works when good information is available about individuals in both state

h = 0 and h = 1. In the problem of survey representativeness, we do not have information

on one of the states because they are unavailable, either due to not being in the frame or not

responding. There are, however, often good references for the complete population of interest in

survey problems. Therefore, for surveys, we use reference proportions α1, . . . , αg in calculations.

If we let h = 1 denote the available population and h = 0 denote the unavailable population, then,

37



following Biemer et al. [2018], we write the version of the DI used in surveys as

D =
1

2

G
∑

g=1

|p1g − αg|. (3.2)

We note that these formulations (3.1) and (3.2) are not mathematically equivalent. However, if

we use the fact that αg is the proportion of the overall population of size N , it follows that if N0 is

the number of individuals with h = 0 and N1 is the number of individuals with h = 1, then

1

2

G
∑

g=1

|p1g − αg| =
1

2

G
∑

g=1

|p1g −
N0

N
p0g −

N1

N
p1g|

=
N0

N

1

2

G
∑

g=1

|p1g − p0g|.

3.3 Survey Design-Based Variance Estimation

Let U = {1, 2, . . . , N} denote the finite population, S ⊂ U denote the set of respondents,

and Ag ⊂ U denote the set of units having level g of a categorical variable of interest, where

U = ∪G
g=1Ag. Let the (known) distribution of the categorical variable in the population of interest

be denoted by αN = (αN,1, . . . , αN,G), the (unknown) distribution in the available population as

pN = (pN,1, . . . , pN,G). The available population may be the population in the frame, or the popu-

lation among respondents in the population, depending on the context. We denote the estimates of

the distribution of the finite population from a sample of size n = n(N) by p̂N = (p̂N,1, . . . , p̂N,G).

We also let wi denote sampling weights. We will drop the subscript N from the sample distribu-

tions in the sequel, unless it is relevant in context to view these as a sequence.

The DI is D = 1
2

∑G
g=1 |pg − αg|, which can be estimated by

D̂ =
1

2

G
∑

g=1

|p̂g − αg|.

To derive an expression that can be used for variance estimation, we rewrite the DI to remove

the absolute value. First, p̂g − αg = (p̂g − pg) + (pg − αg). From equation (2.9) in Breidt et al.
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[2006], we see

1

2

G
∑

g=1

|(p̂g − pg) + (pg − αg)| =
1

2

G
∑

g=1

[ |pg − αg|+ (p̂g − pg)sign(pg − αg) +

2(p̂g − αg)(I(0 < αg − pg < p̂g − pg)− I(p̂g − pg < αg − pg < 0)) ] ,

where I(B) = 1 if the event B is true, and 0 otherwise.

In the expression above, let eg = (p̂g−αg)(I(0 < αg−pg < p̂g−pg)−I(p̂g−pg < αg−pg < 0)),

e =
∑G

g=1 eg and R = 1
2

∑G
g=1(p̂g − pg)sign(pg − αg). This gives

D̂ = D +R + e.

where D is the population DI as defined above, e is a random expression with negligible variance

contribution that converges in probability to 0, and R can be written as

R =
G
∑

g=1

1

2
(p̂g − pg)sign(pg − αg)

=
G
∑

g=1

1

2

(
∑

i∈U wiI(i ∈ Ag)I(i ∈ S)
∑

i∈U wiI(i ∈ S)
− pg

)

sign(pg − αg)

=

∑

i∈U wiI(i ∈ S)
[

1
2

∑G
g=1 I(i ∈ Ag)sign(pg − αg)

]

∑

i∈U wiI(i ∈ S)
−

G
∑

g=1

1

2
pgsign(pg − αg),

a ratio of two estimated population totals plus a constant. Hence, the variance can be approximated

and estimated using standard procedures for an estimated ratio. To use this variance estimator in

practice, we replace the term in square brackets in the numerator sum,

mi =
1

2

G
∑

g=1

I(i ∈ Ag)sign(pg − αg),

by its plug-in estimator,

m̂i =
1

2

G
∑

g=1

I(i ∈ Ag)sign(p̂g − αg),
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giving the expression

R̂ =

∑

i∈U wiI(i ∈ S)m̂i
∑

i∈U wiI(i ∈ S)
.

The variance can now be estimated by svymean or svyratio in R (or similar commands in

other survey software) by the estimated variance of the finite population mean of m̂i.

We now introduce assumptions to formalize the arguments about the asymptotic variance of

the DI. Suppose that Γ̂N is the estimate of the design-based covariance matrix of p̂N . Assume

there is a sequence of populations and designs, indexed by N , such that the following assumptions

hold as N → ∞:

D1 nV ar(p̂N) → Γ, where Γ is a positive definite G×G matrix.

D2 n1/2(p̂N − pN)
d−→ NG(0,Γ).

D3 Γ̂N
p−→ Γ.

D4 For each g = 1, . . . , G, there is an ǫ > 0 such that either pN,g − αN,g > ǫ for all N or

αN,g − pN,g > ǫ for all N .

Assumption D1 means that the normalized covariance matrix of the point estimates of the

proportions approaches an asymptotic limit. Assumption D2 says the point estimate for the pro-

portions is asymptotically normal, and that the asymptotic variance is the limit of the covariance

matrix. Assumption D3 states that the estimated covariance matrix of the estimated proportions

is consistent. Assumption D4 states that the expected proportions from the available sample are

bounded away from the true population proportions in every level of the categorical variables. This

assumes away issues raised in Allen et al. [2015] that the asymptotic distribution of the DI will not

be normal when pg − αg = O(n−1/2). We will consider this case later.

Note that p̂N − pN

p−→ 0, by Assumption D2 above.

We will now show some results about the asymptotic distribution of RN .
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Theorem 3.3.1. Let a = sign(pN − αN), âN = sign(p̂N − αN), VR = a′
Γa and V̂R,N =

â′
N Γ̂N âN (note VR > 0 as Γ is positive definite and a 6= 0). Then under Assumptions D1–D4

above, nV ar(RN) → VR, n1/2RN
d−→ N(0, VR), and V̂R,N

p−→ VR as N → ∞.

Proof. Since RN = a′(p̂N − pN), we have nV ar(RN) = a′nV ar(p̂N)a → a′
Γa = VR by

Assumption D1 and n1/2RN
d−→ N(0, VR) by Assumption D2.

To show V̂R,N
p−→ VR we need to show that â

p−→ a. This involves showing that P (sign(p̂N,g −

αN,g) 6= sign(pN,g − αN,g)) → 0 for each g ∈ {1, . . . , G}.

To prove this, suppose we are given a g and without loss of generality pN,g − αN,g > ǫ under

Assumption D4. Then the events {sign(p̂N,g − αN,g) 6= sign(pN,g − αN,g)} and {p̂N,g < αN,g} are

equivalent. Using Chebyshev’s inequality, we find

P (p̂N,g < αN,g) ≤ P (|p̂N,g − pN,g| > αN,g − pN,g) ≤
V ar(p̂N,g)

(αN,g − pN,g)2
.

By Assumption D1, we know that V ar(p̂g) = O(n−1). As (αN,g − pN,g)
2 is bounded from below,

we find P (p̂N,g < αN,g) → 0 as desired.

Having shown â
p−→ a, an application of Slutsky’s theorem and Assumption D3 gives that

V̂R = â′
N Γ̂N âN

p−→ a′
Γa = VR.

Since R = a′p, the above theorem shows that the calculated variance of R̂ = â′p̂ from the

survey package, 1
4
â′
Γ̂â, is a consistent estimator for the sampling variance of R̂ under Assump-

tions D1–D4.

We next show that the remainder term eN is negligible under our regularity conditions.

Theorem 3.3.2. Under Assumptions D1–D4, n1/2eg
ms−→ 0 for each g, and thus n1/2eN

ms−→ 0 as

N → ∞.

Proof. Assume without loss of generality and using Assumption D4 that α̃g = αg − pg > 0 and

define Yg = |Yg| = n(p̂g − pg)
2, which is uniformly integrable by Assumptions D1 and D2 and
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Lemma 1.4B (p. 15) of Serfling [1980]. Hence,

E[ne2g] = E
[

n(p̂g − αg)
2I(p̂g > αg)

]

≤ E
[

n(p̂g − pg)
2I(p̂g > αg)

]

= E
[

YgI
(

n1/2(p̂g − pg) > n1/2(αg − pg)
)]

≤ E
[

YgI
(

Yg > nα̃2
g

)]

≤ sup
m

E
[

Yg,mI
(

Yg,m > nα̃2
g

)]

→ 0 as n → ∞.

Theorems 3.3.1 and 3.3.2 show that the DI D̂N has an asymptotic normal distribution. For-

mally, if

n1/2(R−R)
d−→ (0, VR),

then

n1/2(D̂ −D) =n1/2(R + e)

d−→N(0, VR)

as n1/2RN
d−→ N(0, VR) and n1/2eN

p−→ 0.

The above discussion supposes Assumption D4, that the proportions from the available pop-

ulation are bounded away from the true population proportions in every level of the categorical

variables. There may be many cases in real surveys where the categories match for some levels, ei-

ther by happenstance or because the survey has good representation for that variable. In these cases

the asymptotic contribution to the DI for this is not normal but folded normal. If X ∼ N(µ, σ2),

then we say Y = |X| has a folded normal distribution, denoted Y = |X| ∼ FN(µ, σ2) (Leone

et al. [1961] ). The folded normal asymptotics were stated without proof in Allen et al. [2015]; a

proof is given below.
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Theorem 3.3.3. Suppose that samples of size n are drawn from a sequence of populations of size N

where the vector of proportions of the categorical variable in the available population is denoted

pN , Assumptions D1–D3 above hold and Assumption D4 is replaced with the following assumption

for some level g:

D4’ n1/2(pN,g − αN,g) → cg, with |cg| < ∞.

Then n1/2|p̂g − αg| converges in distribution to a folded normal distribution with parameters µ =

|cg| and σ2 = γgg, the gth diagonal element of Γ.

Proof. Note that

n1/2(p̂g − αg) = n1/2(p̂g − pg) + n1/2(pg − αg)

In the right hand side of the above expression, the first piece is asymptotically normal from As-

sumption D2, and the second piece is a nonrandom sequence converging to cg by Assumption D4’.

Thus we see that

n1/2(p̂g − αg)
d−→ N(cg, γgg)

Since the absolute value is a continuous transformation, and the absolute value of a normal is

defined as a folded normal distribution, the continuous mapping theorem implies that

n1/2|p̂g − αg| = |n1/2(p̂g − αg)| d−→ FN(|cg|, γgg).

The distribution theory for the sum of these components is beyond the scope of this chapter.

However, there are some theoretical results on the folded normal distribution that are useful to this

discussion. Consider a random variable X ∼ N(µ, σ2) and Y = |X| ∼ FN(µ, σ2). From Leone
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et al. [1961],

E[Y ] =

√

2

π
σ exp{− µ2

2σ2
}+ µ[1− 2Φ(−µ

σ
)] (3.3)

V ar(Y ) = µ2 + σ2 − (E[Y ])2. (3.4)

Since E[|X|] > E[X], we know that E[Y ] > µ, which also implies that V ar(Y ) < σ2.

This means that when pg − αg is small for some g, we will expect that the plug-in estimator will

be positively biased. Specifically, we see that for the half-normal distribution (µ = 0, σ2 = 1),

E[Y ] =
√

2/π. A linearization based estimator assumes a normal distribution when pg − αg is

small, rather than the folded normal. Thus we expect that in this case a linearization variance

estimator will overestimate the variance of the dissimilarity index.

We will compare point and interval estimates for the DI in a simulation study. This study

includes robustness to Assumption D4.

3.4 Simulation Study

While the dissimilarity index can be used to quantify coverage bias, nonresponse bias, or a

combination of the two, we will consider coverage bias in our simulation to avoid discussion of

nonresponse adjustments. In the setting of coverage bias, the above theory shows that a normal

approximation to the DI can work very well if frame proportions for a categorical variable differ

at all levels from the corresponding population proportions. There may be cases in practice where

frame proportions match population proportions at some levels. To understand the implications for

such cases, we conduct a simulation study below.

3.4.1 Simulated Population and Frames

We created an artificial population and artificial frames with coverage error to study properties

of the DI. The population was based on data downloaded from the US Census Bureau’s Public Use

Microdata Sample (PUMS) (U.S. Census Bureau [2021]), including Public Use Microdata Areas
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(PUMAs) 100, 103, 300, and 400 in Northern Colorado. These PUMAs correspond respectively

to Northeast Colorado (Eastern Plains); Northern Larimer County; South Central Weld County

(Greeley, Evans, and Windsor); and Eagle, Summit, Grand and Jackson Counties. Available vari-

ables are age, sex, race, Hispanic origin, marital status, personal income, level of education, and

access to high-speed internet, along with individual weights and household weights. Records were

deleted for persons under the age of 18 and for households with household weight of 0, to simulate

the population of interest as the adult, noninstitutionalized population, which is a common target

population for surveys. Person weights were treated as the number of individuals in the population

having a given set of characteristics.
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Table 3.1: Demographics for each of the sampling frames used in the simulation study of different estima-

tors of the DI

Variable Level Population λ = 0.0 λ = 0.1 λ = 0.5 λ = 1.0

Age 18-34 33.4 33.4 31.3 24.1 18.9

35-49 24.6 24.6 24.4 24.3 24.6

50-64 23.7 23.6 25.0 29.2 32.0

65+ 18.3 18.3 19.3 22.3 24.5

Sex Male 50.8 50.9 49.2 44.1 40.8

Female 49.2 49.1 50.8 55.9 59.2

Race White 91.8 91.9 92.1 93.0 93.5

Black 1.0 1.0 0.9 0.7 0.6

AIAN 1.1 1.1 1.0 0.9 0.8

API 1.7 1.6 1.7 1.6 1.6

Other 2.3 2.3 2.2 1.8 1.5

Multi 2.2 2.1 2.1 2.0 1.9

Hispanic No 81.4 81.3 82.5 86.0 88.5

Yes 18.6 18.7 17.5 14.0 11.5

Marital Married 54.8 54.8 56.3 61.4 65.2

Widowed 4.3 4.3 4.5 5.2 5.7

Divorced 10.7 10.7 10.8 11.4 11.9

Separated 0.9 0.9 0.9 0.9 0.9

Single 29.3 29.4 27.5 21.1 16.4

Income Negative 7.7 7.7 7.6 7.2 6.8

Under $15K 19.1 19.2 18.7 17.8 16.7

$15-50K 39.9 39.9 39.7 38.9 38.5

$50-100K 23.5 23.5 23.8 24.8 25.6

$100K or More 9.8 9.7 10.1 11.4 12.5

Education < High School 9.3 9.2 8.6 6.5 5.0

High School/Eq 21.6 21.6 21.1 19.2 18.2

Some Coll/Assoc 32.3 32.4 32.3 32.5 32.3

Bachelors 23.5 23.4 24.0 25.3 26.4

Advanced 13.3 13.4 14.1 16.4 18.1

Internet NA 7.0 7.0 6.4 4.8 3.8

Yes 77.0 77.0 78.1 81.3 83.2

No 16.0 16.0 15.5 13.9 12.9

PUMA 100 15.9 15.9 15.5 14.3 13.5

103 34.2 34.2 34.7 36.2 36.8

300 30.0 30.1 30.2 30.7 31.1

400 19.8 19.9 19.6 18.9 18.5
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To simulate frames with varying degrees of coverage bias, we constructed a stochastic model

in which the probability of frame inclusion for individual i is

pi(λ) = expit{4.8 + (1− λ)(−2.9) + λ[−2.8(Age18-34)− 1.6(Age35-49)− 1.6(SexMale)−

0.4(RaceBlack)− 0.4(RaceAIAN)− 0.1(RaceAPI)− 0.1(RaceOther)−

0.1(RaceMulti)− 1.0(HispanicYes)− 0.1(MaritalWidowed)−

0.6(MaritalDivorced)− 0.6(MaritalSeparated)− 1.0(MaritalSingle)−

0.2(IncomeNegative)− 0.1(Income0-15K)− 0.1(Income>100K)−

1.5(EducNoHS)− 1.0(EducHS/Equiv)− 0.3(EducSomeCollege/Assoc)−

0.2(EducBachelor)− 2.5(HispeedNA)− 1.0(HispeedNo)− 0.9(PUMA100)−

0.9(PUMA400)]}.

Representativeness of the frame for the target population is determined by the parameter λ. Four

frames were generated, with λ equal to 0, 0.1, 0.5, or 1. The frames with λ close to zero represent

frames that are very representative of the population, and the frames with high levels of λ have

more dissimilarity from the population (Table 3.1). Because the derivation of the variance estimator

for the DI depends on the proportions in the frame not being equal to the population totals, it is

expected that the variance estimator will perform better in frames with high λ.

In creating these frames, we did intentionally keep some categories close to their true pop-

ulation values. These categories were the age category 35-49 and the education category some

college or Associate’s degree. This was done to ensure that the simulation study includes cases

where Assumption D4 is not satisfied.
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3.4.2 Estimators Considered

We considered four estimators of DI, along with their respective variance estimators and con-

fidence intervals. The first DI estimator was the plug-in estimator,

1

2

G
∑

g=1

|p̂g − αg|.

As shown theoretically above and noted in many sources (e.g. Cortese et al. [1976], Ransom

[2000], Allen et al. [2015]), this estimator is consistent and asymptotically normal when |pg − αg|

is “large” for all g (Assumption D4), but can be positively biased and non-normal when |pg−αg| is

“small” for some g (Assumption D4’). Theory also suggests heuristically that the variance estima-

tor will be positively biased in the latter case. To attempt to correct for these biases, we consider

two additional DI estimators that set the gth term of DI equal to zero and the corresponding variance

contribution equal to zero when the gth sample estimate is close to the corresponding population

proportion. The two estimators differ in the definition of “close”: the “cut-SE” estimator modifies

the gth contribution if |p̂g−αg| < SE(p̂g), and the “cut-Z” estimator modifies those contributions if

|p̂g − αg| < z0.975SE(p̂g). Additionally, we consider a bias-corrected estimator proposed by Allen

et al. [2015]. This estimator starts, like the previous estimators, by computing |p̂g −αg| for each g.

Then, as noted in Allen et al. [2015] and proved above, |p̂g − αg| asymptotically follows a folded

normal distribution when |pg − αg| = O(n−1/2). The DI is then computed as the sum over levels

g of the values where this folded normal distribution is maximized. That is, if we let fg denote the

pdf of each of these folded normal distributions, the estimate of the DI is
∑G

g=1 argmaxxfg(x). For

this fourth estimator, we do not use normal theory but instead use a parametric bootstrap to find

the confidence intervals. For the parametric bootstrap confidence intervals, the bootstrap replicate

probability vectors are drawn from the multivariate normal distribution with mean vector p̂ and

covariance matrix calculated using standard survey arguments. The variance estimator is then the

variance of the DIs calculated from the bootstrap values. The confidence interval is computed with
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a percentile bootstrap taking the 0.025 and the 0.975 quantiles of the bootstrap distribution as the

confidence limits.

3.4.3 Simulation Methods

As a comparison and to check confidence interval (CI) coverage, the population DI was cal-

culated. The simulation study consisted of 1000 replicated samples each of size n = 200 and

n = 1000, drawn from each of the four frames. Each sample was selected via stratified simple

random sampling, with PUMAs as strata, with stratum allocations given in Table 3.2. From each

sample the DI and its sampling variance were estimated using each of the four estimators as de-

scribed above. From these replicates, we computed relative bias (relbias) of the point estimators,

relative root mean squared error (relRMSE) of the variance estimators, and coverage rates and

mean widths of confidence intervals.

Table 3.2: Sample allocations by PUMA for stratified simple random sampling in the simulated replicate

samples.

PUMA 100 103 300 400

n = 200 78 45 26 51

n = 1000 390 225 130 255

3.4.4 Results

In the study, the cut-Z estimator overcorrected for the positive bias of the plug-in estimator

when the DI is somewhat small. This led to worse coverage properties than the other estimators,

so we do not include the cut-Z estimator in the tables or discuss it further.

For DI point estimation, we notice that the cut-SE and Allen estimators, as expected, had

less bias than the plug-in estimator, especially in the harder cases (lower sample size, lower DI),

consistent with Allen et al. [2015]. For variance estimation, we see that the plug-in linearization

estimator, as expected, had a noticeable positive bias when the true DI was lower. We also notice
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that the cut-SE linearization variance estimator is negatively biased particularly when the true DI

is low. The Monte Carlo variance is higher for the Allen and cut-SE estimators than for the plug-in

estimator.

For confidence intervals, we see that all estimators had less than nominal coverage when the DI

is close to zero. The best coverage properties are from the plug-in linearization confidence inter-

val, and the Allen-bootstrap confidence interval, with noticeably worse performance in the cut-SE

linearization confidence interval. This may be explained by noting that the linearization variance

overestimates the true variance when the estimate is positively biased. The cut-SE linearization

confidence interval uses a less biased point estimator, but with a negatively biased variance estima-

tor in many cases. We see that the dissimilarity index needs to be relatively high (>10%) before the

variance estimators have low bias (<10%) when the sample size is 200. The variance estimators

have low bias in the sample size of 1000 when the true DI is greater than 5.

This simulation suggests that although the plug-in estimator is biased when the DI is small, the

linearization confidence interval from the plug-in point estimator has reasonable coverage proper-

ties most of the time, and is no wider than the other confidence intervals considered.
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Table 3.3: Simulation results for sample size n = 200 with 1000 replicated samples at each setting. For

DI point estimates, “truth” refers to the true DI of the frame. For variance, “MC” refers to the Monte-Carlo

variances of the estimates. Also, “est” is the mean of the estimates, and “rbias” is the mean % relative bias

(bias/truth) of the estimates compared to “truth", and “rRMSE” is the relative mean-squared error of the

variance estimates. For 95% CIs, “cover” is empirical coverage of the true DI by the interval, and “width” is

the mean width of the interval. To save space, marital status and internet access are not shown in this table,

and we restrict the focus to λ = 0.1, 1.0.

DI Point Estimate Variance of DI Est. 95% CI

Variable λ Estimator truth est rbias MC est rbias rRMSE cover width

Age 0.1 Plug-in 2.30 6.28 173.3 7.58 16.34 115.7 120.5 0.898 13.62

Cut-SE 2.30 4.05 76.2 11.91 5.90 -50.4 65.0 0.647 7.42

Allen 2.30 3.69 60.4 11.30 14.48 28.1 37.2 0.934 13.93

1.0 Plug-in 14.55 16.18 11.2 11.58 15.34 32.5 46.7 0.932 15.20

Cut-SE 14.55 15.24 4.7 13.91 12.25 -11.9 24.3 0.912 13.62

Allen 14.55 15.00 3.1 14.36 16.15 12.5 25.9 0.948 15.63

Sex 0.1 Plug-in 1.59 3.61 127.0 7.27 18.10 149.2 149.3 0.969 11.82

Cut-SE 1.59 2.30 44.5 11.47 6.14 -46.4 87.1 0.315 5.03

Allen 1.59 2.07 30.3 10.75 15.19 41.4 59.5 0.993 12.05

1.0 Plug-in 9.99 9.80 -2.0 16.81 18.53 10.2 11.5 0.956 15.75

Cut-SE 9.99 9.55 -4.4 20.73 16.74 -19.3 32.5 0.884 14.71

Allen 9.99 9.43 -5.7 22.03 20.87 -5.3 16.0 0.966 16.62

Race 0.1 Plug-in 0.24 3.12 1195.7 1.37 3.75 173.6 262.6 0.677 6.09

Cut-SE 0.24 1.90 689.9 2.09 1.04 -50.1 94.8 0.397 2.86

Allen 0.24 1.74 625.4 1.88 3.29 75.4 130.9 0.241 6.48

1.0 Plug-in 1.66 3.47 108.9 1.40 2.74 95.5 194.3 0.691 5.23

Cut-SE 1.66 2.42 45.6 2.45 0.80 -67.5 78.9 0.546 2.81

Allen 1.66 2.28 37.3 2.40 2.62 9.3 60.7 0.733 5.90

Hispanic 0.1 Plug-in 1.11 2.80 152.5 4.35 10.74 146.9 152.8 0.952 9.06

Cut-SE 1.11 1.84 65.4 6.83 3.46 -49.4 86.5 0.310 3.85

Allen 1.11 1.70 53.5 6.47 8.90 37.5 57.6 0.984 9.27

1.0 Plug-in 7.16 7.07 -1.1 8.10 8.58 5.9 26.4 0.951 10.53

Cut-SE 7.16 6.85 -4.3 10.70 7.26 -32.2 43.2 0.843 9.55

Allen 7.16 6.78 -5.3 11.17 9.34 -16.4 28.2 0.955 10.99

Income 0.1 Plug-in 0.66 6.35 868.8 6.28 15.70 149.8 157.3 0.793 13.55

Cut-SE 0.66 3.88 491.7 9.81 5.10 -48.1 66.1 0.561 7.05

Allen 0.66 3.49 431.9 9.05 13.61 50.4 58.6 0.737 13.81

1.0 Plug-in 4.78 7.74 61.7 8.33 16.56 98.7 107.2 0.948 14.57

Cut-SE 4.78 5.41 13.1 12.60 6.62 -47.4 61.1 0.760 8.78

Allen 4.78 5.01 4.7 12.02 15.09 25.5 36.3 0.963 14.78

Education 0.1 Plug-in 1.21 6.45 434.3 5.96 15.81 165.2 171.2 0.835 13.66

Cut-SE 1.21 3.88 221.3 9.34 4.92 -47.3 64.4 0.631 7.02

Allen 1.21 3.51 190.6 8.61 13.61 58.1 64.2 0.797 13.89

1.0 Plug-in 7.68 10.22 33.0 9.51 15.96 67.8 75.6 0.924 15.19

Cut-SE 7.68 8.35 8.6 14.23 8.25 -42.1 51.0 0.836 10.71

Allen 7.68 7.94 3.4 14.25 15.37 7.8 20.5 0.956 15.11
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Table 3.4: Simulation results for sample size n = 1000 with 1000 replicated samples at each setting. For

DI point estimates, “truth” refers to the true DI of the frame. For variance, “MC” refers to the Monte-Carlo

variances of the estimates. Also, “est” is the mean of the estimates, and “rbias” is the mean % relative bias

(bias/truth) of the estimates compared to “truth", and “rRMSE” is the relative mean-squared error of the

variance estimates. For 95% CIs, “cover” is empirical coverage of the true DI by the interval, and “width” is

the mean width of the interval. To save space, marital status and internet access are not shown in this table,

and we restrict the focus to λ = 0.1, 1.0.

DI Point Estimates Variance of DI Est. 95% CI

Variable λ Estimator truth est rbias MC est rbias rRMSE cover width

Age 0.1 Plug-in 2.30 3.40 47.8 1.94 3.31 70.5 73.3 0.956 6.48

Cut-SE 2.30 2.54 10.4 2.99 1.59 -46.7 57.2 0.778 4.26

Allen 2.30 2.37 3.0 2.95 3.12 5.6 18.8 0.955 6.64

1.0 Plug-in 14.55 15.14 4.0 2.76 3.02 9.2 26.4 0.946 6.77

Cut-SE 14.55 14.88 2.3 2.91 2.60 -10.8 20.6 0.938 6.29

Allen 14.55 14.83 1.9 2.89 2.98 3.1 18.5 0.949 6.71

Sex 0.1 Plug-in 1.59 2.03 27.5 1.93 3.61 87.1 87.1 0.982 5.64

Cut-SE 1.59 1.56 -2.1 3.03 1.75 -42.2 72.8 0.469 3.26

Allen 1.59 1.45 -8.8 2.98 3.34 12.3 35.9 0.992 5.78

1.0 Plug-in 9.99 10.12 1.3 3.49 3.69 5.8 6.2 0.953 7.53

Cut-SE 9.99 10.12 1.3 3.49 3.69 5.8 6.2 0.953 7.53

Allen 9.99 10.12 1.3 3.49 3.70 6.2 8.9 0.957 7.50

Race 0.1 Plug-in 0.24 1.43 493.3 0.28 0.77 170.0 197.2 0.802 2.98

Cut-SE 0.24 0.89 270.0 0.45 0.25 -44.9 74.5 0.685 1.57

Allen 0.24 0.80 234.7 0.42 0.67 58.8 80.3 0.656 3.05

1.0 Plug-in 1.66 2.11 27.4 0.50 0.70 39.0 58.2 0.917 3.11

Cut-SE 1.66 1.72 3.7 0.79 0.39 -50.7 57.1 0.736 2.27

Allen 1.66 1.65 -0.5 0.81 0.69 -14.9 22.8 0.918 3.17

Hispanic 0.1 Plug-in 1.11 1.48 33.6 1.09 2.15 96.5 97.5 0.977 4.27

Cut-SE 1.11 1.11 0.3 1.71 0.94 -44.9 75.0 0.437 2.31

Allen 1.11 1.04 -6.7 1.66 1.91 15.2 35.1 0.989 4.38

1.0 Plug-in 7.16 7.16 0.1 1.67 1.70 1.6 11.0 0.942 5.10

Cut-SE 7.16 7.16 0.1 1.67 1.70 1.6 11.0 0.942 5.10

Allen 7.16 7.16 0.1 1.67 1.72 2.6 14.3 0.942 5.11

Income 0.1 Plug-in 0.66 2.90 342.4 1.15 3.16 175.5 180.5 0.860 6.16

Cut-SE 0.66 1.79 173.0 1.77 1.06 -40.2 62.7 0.691 3.30

Allen 0.66 1.61 145.8 1.64 2.76 68.5 75.4 0.872 6.26

1.0 Plug-in 4.78 5.29 10.6 2.49 3.37 35.3 42.0 0.963 7.10

Cut-SE 4.78 4.62 -3.5 3.56 2.10 -41.1 49.7 0.819 5.47

Allen 4.78 4.47 -6.7 3.57 3.39 -5.1 18.9 0.977 7.11

Education 0.1 Plug-in 1.21 3.09 155.7 1.21 3.19 164.1 168.6 0.912 6.28

Cut-SE 1.21 1.99 64.8 1.92 1.12 -41.6 59.3 0.769 3.52

Allen 1.21 1.81 50.2 1.80 2.80 55.2 60.7 0.920 6.35

1.0 Plug-in 7.68 8.45 10.0 2.49 3.11 24.7 32.7 0.946 6.88

Cut-SE 7.68 8.00 4.2 3.09 2.30 -25.7 32.8 0.892 5.88

Allen 7.68 7.90 2.9 3.18 3.19 0.3 15.2 0.954 6.92
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Figure 3.1: Relative bias squared error (relbias) for the linearization variance estimator plotted against pop-

ulation level DI for each variable at different levels of the parameter λ, with larger values of λ corresponding

to higher DI. Points in the green band have less than 10% relbias.

3.4.5 Discussion of Simulation Study

The simulation results show that although the linearization variance estimator is biased when

the DI is close to zero, confidence intervals formed using the linearization variance and the plug-in

DI estimator performed well except in the toughest of cases. Additionally, attempts to improve on

the performance of the linearization confidence interval were not successful.

It is worth considering how the DI estimators performed across the different variables. In

interpreting this, it is relevant to note that the impact of estimating the DI depends more on the

values within each category than what the categories represent. In this sample, we see the worst

coverage in the variables Race and Income. This makes sense because these variables also have
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Figure 3.2: Coverage rates for 95% confidence intervals plotted against the true DI. The green line repre-

sents 95% coverage.

the lowest DIs. We see that the coverage properties and biases of the variance estimators for all

variables follow a similar pattern based on the value of the true DI (Figures 3.2 and 3.1). This

even holds true for the variables Age and Education, for which one category was intentionally held

close to the truth.

When dealing with categorical variables, it is always important to consider the coding of the

variables. The results above suggest that the true value of the DI is the main determinant of cover-

age properties and variance estimation accuracy. Since interpretation is important, the categories

should be coded in a way that is highly relevant to the researcher, not necessarily in a way to give

the best statistical properties. That said, we also note that the race variable had several small cat-

egories, and also had among the worst bias and coverage properties of the variables. Given that

estimating small proportions is often difficult, and estimation is less good when the true value is
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near to the truth, categories that are as coarse as practical may be a good way to go. We will also

note that there are characteristics of our population that may not generalize to other populations

(for example, our population was 91.8% white).

It is valuable to consider ways to improve interval estimation for the DI. With the linearization

estimators, it is noted that the true distribution is not asymptotically normal when proportions

of categories in the available population approximate categories in the target population, but the

good coverage properties of the uncorrected linearization estimator in this case suggest that the

normal approximation may be adequate. As the variances of the corrected linearization estimators

are underestimates of the true variance when the variable is close to zero, setting the variance

equal to zero for each proportion when the point estimate is close to the truth appears to be an

overcorrection. It could be worth investigating if there is a multiplicative factor in (0,1) that can

result in as good coverage as and smaller interval width than the uncorrected estimator when the

point estimates for several categories are close to the truth.

There is also potential for improvement of the estimator developed by Allen et al. [2015]. The

DI is a sum over levels of a categorical variable between estimates in a sample and the truth. In

the approach from Allen et al. [2015], each of the categories is treated separately in the maximum

likelihood estimation. One promising possibility is to apply the Allen et al. [2015] method to the

sum of the components of the multivariate folded normal distributions (Chakraborty and Chatterjee

[2013]) of the deviations of each level of the categorical variable. Investigation into the distribu-

tion of the sum of the folded multivariate normal components may also improve inference for the

linearization estimators.

The bootstrap confidence intervals may also have room for improvement. When computing

confidence intervals using the bootstrap, we used the 0.025 and 0.975 quantiles of the bootstrap

distribution (percentile bootstrap). Another common method for bootstrap confidence intervals

involves pivoting a t-style statistic around the true values. One issue with the t-style bootstrap CIs

for this problem is that if the point estimate for the DI is 0, then the CI is {0}.
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3.5 Summary and Future Work

In this chapter, we further developed theory for the dissimilarity index (DI). We established a

mathematical connection between the DI as used in the social sciences, and how it is now being

used in surveys. We also derived survey design-based linearization variance expressions for the

DI, and showed their usefulness for real data in a simulation. We also pointed out some potential

ways to improve interval estimation of the DI.

We derived a survey design-based expression for the variance of the DI. This expression allows

the DI to be discussed more fully as a measure of representativeness from a survey sample. Ex-

pressing the degree of uncertainty is a key contribution of statistics to the practice of science, so

having a design-based expression for the variance of the DI keeps it on the same footing as other

statistics, like the R indicator (Shlomo et al. [2012]).

Properties of point and interval estimates for the DI were tested in a simulation study. Results

from this study showed, as expected, that the plug-in estimator for the DI was found to be positively

biased when the proportion of some levels of the categorical variable in the available population

and target population were similar. This bias could be greatly reduced, though not eliminated,

by either using the maximum-likelihood estimator DI described by Allen et al. [2015], or by the

similar cut-Z estimator, setting the category-level difference equal to zero when the difference is

within one standard error of zero. For interval estimation, the plug-in estimator and associated

linearization estimator performed as well as any other estimator in terms of coverage and interval

width. This is partially because setting the variance contribution to zero for of categories when

the cut-Z estimator was set to zero underestimated the variance. Additionally, more research could

be done to improve bootstrap methods for estimating the distribution of the estimator proposed by

Allen et al. [2015].

We also recognize that there is room for improvement on interval estimation for the DI. One

key idea would be learning more about the distribution of the multivariate folded normal to have a

better established CI. Another idea involves improvements to the bootstrap CI and connecting with

the literature about statistics near a boundary (for example Self and Liang [1987]).
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Chapter 4

Randomization Test for Completely Randomized

Experiments Embedded in Complex Surveys

4.1 Introduction

Experimental design and survey inference have a long history. Randomization tests were first

developed in the context of agricultural statistics in the 1920s and 30s (Fisher [1971] (first edition

1935), Pitman [1937a], Welch [1937]). Randomization inference has been promoted by scholars

like Kempthorne (Kempthorne [1955], Kempthorne and Doerfler [1969]) in the mid 20th century,

and has had a resurgence recently in evaluating clinical trials because of its adaptability to complex

designs and lack of distributional assumptions (see, for example Proschan and Dodd [2019], Wang

and Rosenberger [2020]).

In this chapter, we will review randomization inference and extend it to experiments embedded

in complex surveys. This chapter will focus on developing theory for randomization tests that

can be used for experiments using a completely randomized design (CRD) conditioned on the

sample, with inferential targets estimated using the Narain-Horvitz-Thompson (NHT) approach.

We will develop theory for a normal approximation for the randomization tests and show how such

inference is valid for not just the sample, but also the finite population from which the sample was

drawn. In Chapter 5, we develop parallel results for randomized complete block experiments. In

Chapter 6, we consider extensions including use of the generalized regression (GREG) estimator

and inferential targets that are differentiable functions of finite population totals.

In this chapter, we will first define notation and discuss the sources of randomness in Sec-

tion 4.2. We will then derive expressions for the mean and variance of the treatment assignment

in Section 4.3. We explain the randomization test in Section 4.4. We describe central limit the-

ory for a normal approximation in Section 4.5. We consider the sampling distribution and extend
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the results to the finite population in Section 4.7. We describe the distribution of the test statistic

under both procedures and power properties of the randomization test in Section 4.6. We discuss

simulation studies in Section 4.8, and we conclude with a summary and discussion of future work

in Section 4.9.

4.2 Notation and Sources of Randomness

Randomization tests are a relatively simple way to ensure valid inference from a finite popula-

tion. These tests are based on rerandomizing the experimental units (EUs) to treatments based on

the distribution of the original randomization. If the treatment has no effect, then the test statistic

will be the same under this rerandomization distribution as it was under the original randomization

of treatments. This rerandomization provides a reference distribution that can be used in a simple

test of whether the treatment had an effect. In order for this inference to make sense, however, one

needs to ensure that there is enough variability in the treatment randomization (Basu [1980]).

In the context of randomization tests for complex surveys, there are three sources of random-

ness that need to be considered: randomness due to drawing a sample, which will be denoted

with a subscript S; randomness due to assigning the treatments for each experimental unit in the

experiment, denoted with a subscript T ; and randomness due to relabelling the treatments in a

null-hypothesis randomization test, denoted with a subscript R. In this chapter, we ignore issues

of nonresponse and assume that all units sampled for the survey respond. There will be discussion

of nonresponse and other issues with practical surveys in Section 6.5. The randomization test will

condition on the S and T distributions, and focus on the R distribution, which is used to simulate

the T distribution. We will discuss the S distribution to explain how inference is extended to the

finite population from which the original sample was drawn.

To investigate a CRD embedded in a survey, we assume that we have m experimental units

(EUs) sampled from a finite population of M elements (EUs) indexed 1, . . . ,M , that have been

assigned treatments k = 1, . . . , K by a CRD. We assume that the M elements consist of all possible
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sampling units at some stage of a multi-stage sampling design. We first consider the test statistic,

and then calculate the distribution under the randomization distribution.

We consider an experimental design embedded in a survey where the EUs assigned each treat-

ment are sampling units at some stage in the sampling design. The observational units (OUs) are

the ultimate sampling units of the survey. The treatment assignment, through a CRD in this case,

can be viewed as the second phase of a two-phase sampling design. In a two-phase sampling

design, a subsample is drawn in the second phase from a preliminary sample (drawn in the first

phase). In this example, the first phase will be drawing the EUs from the population, and the sec-

ond phase, for each treatment, will be assigning a random subsample of the EUs from the original

sample to be exposed to the specified treatment. To denote this, we denote the treatments using

superscripts k = 1, . . . , K. We further let T
(k)
i be the indicator that treatment k was assigned to

experimental unit i, and we let m(k) be the number of experimental units assigned treatment k.

Therefore the NHT estimator for the subsample exposed to experimental treatment k is

Ŷ (k) =
m

m(k)

∑

i∈S
wiŶi+T

(k)
i =

∑

i∈S
wiŶi+Ť

(k)
i ,

where Ť
(k)
i = m

m(k)T
(k)
i . The treatment total estimate Ŷ (k) is a unbiased estimator of the NHT

estimator of the finite population Y -total conditioned on the sample, if the entire sample were

exposed to treatment k. Therefore it is an unbiased estimator of finite population Y -total, if the

entire population were exposed to treatment k. To allow for general contrasts of treatment totals,

we let Ŷ be the K-vector of the treatment total estimates for the finite population, that is Ŷ =

(Ŷ (1), Ŷ (2), . . . , Ŷ (K))′.

In survey practice, all the weights are typically accrued to the observational unit, but we are

using EU-level weights for generality to the case when EUs are OUs. This randomization test can

still be performed with all of the weights on the observational unit level. The survey weighted totals

within each experimental unit can be computed as the sum of the survey weighted experimental

unit values.
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4.3 Treatment Assignment

Randomization procedures are based on simulating the distribution that the response variable

would have under different treatment assignments. To introduce how this works, we will begin by

computing how the test statistic could vary with different treatment assignments (henceforth the

“treatment assignment distribution”). Design-based approaches to inference estimate the distribu-

tion analytically. The randomization approach uses the data more directly to simulate what would

happen if the treatment had no effect (henceforth the “randomization distribution”). Though we

will be using a randomization approach in this chapter, we consider differences in the treatment

effects across units in this section for more generality and to allow for power calculations. In the

next section, we will specialize this approach to the randomization test.

In the previous section, we derived the formula for the test statistic under a random treatment

assignment. We will now begin a statistical examination of this statistic, starting with computing

the mean and the variance under the treatment assignment distribution.

We begin the development of the theory with general contrasts of treatment totals. Let C be a

L×K matrix with the property that C1 = 0, where 1 is a K × 1 vector of ones, so that

CŶ =
K
∑

k=1

c(k)Ŷ (k) =
K
∑

k=1

c(k)
∑

i∈S
wiŤ

(k)
i Ŷ

(k)
i+

(where c(k) is a row of C) is a L× 1 vector of contrasts. Another way to write this expression is

CŶ = C

∑

i∈S
wiŶ i+ ◦ Ť i,

where ◦ signifies the Hadamard (element-wise) product, and Ŷ i+ is the column-vector with the

kth entry of Ŷ
(k)
i+ .

4.3.1 Hypergeometric Argument for Mean and Variance Computations

We will now use hypergeometric arguments to compute some expectations and covariances of

treatment assignment indicators, leading up to the vector versions. We will also define some addi-
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tional notation. Let d(k) be the treatment assignment weights, that is d(k) = m/m(k). Additionally

let d = vec(d(k)) be the K-vector with elements d(k) and D = diag(d) be the diagonal matrix with

diagonal entries d(k).

The expectation averaging over all possible treatment assignments, holding other stochastic el-

ements fixed, is ET [T
(k)
i ] = m(k)/mk, and thus ET [Ť

(k)
i ] = 1. If we allow m = [m(1), . . . ,m(K)]′,

we get ET [T i] = m/m and ET [Ť i] = 1. The expectation of a product is

ET [T
(k)
i T

(k′)
i′ ] =



































m(k)

m
k = k′, i = i′

m(k)(m(k)−1)
mh(mh−1)

k = k′, i 6= i′

0 k 6= k′, i = i′

m(k)m(k′)

m(m−1)
k 6= k′, i 6= i′

. (4.1)

Thus the covariances are

CovT (T
(k)
i , T

(k′)
i′ ) =



































m(k)(m−m(k))
m2 k = k′, i = i′

−m(k)(m−m(k))
m2(m−1)

k = k′, i 6= i′

−m(k)m(k′)

m2 k 6= k′, i = i′

m(k)m(k′)

m2(m−1)
k 6= k′, i 6= i′

. (4.2)

If we let Ť
(k)
hi = mh

m
(k)
h

T
(k)
hi , then we see that the covariances are

CovT (Ť
(k)
i , Ť

(k′)
i′ ) =



































(m−m(k))

m(k) k = k′, i = i′

− (m−m(k))

m(k)(m−1)
k = k′, i 6= i′

−1 k 6= k′, i = i′

1
m−1

k 6= k′, i 6= i′

. (4.3)
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We next allow D to be the diagonal matrix with entries d(k) = m/m(k). Taking these results

and applying them to vectors gives

CovT (T i,T i′) =











D
−1 − mm

′

m2 : i = i′

−1
m−1

(

D
−1 − mm

′

m2

)

: i 6= i′
(4.4)

and

CovT (Ť i, Ť i′) =











D− J : i = i′

−1
m−1

(D− J) : i 6= i′
, (4.5)

where J is the K ×K matrix where each element is 1.

We also use a result about Hadamard products. It can be easily shown that if a, b are fixed

vectors and X,Y are random vectors, then Cov(a ◦X, b ◦ Y ) = ab′ ◦ Cov(X,Y ).

Using these results, we can compute the expectation and variance of the contrast under the

treatment assignment distribution.

Let

Ẏ (k) =
∑

i∈S
wiŶ

(k)
i+

be the vector of estimated finite-population totals, as if all elements of the sample had been assigned

treatment k. Further let Ẏ = [Ẏ (1), . . . , Ẏ (K)] be the K-vector of these estimated totals. Let

V̂wŶ =
1

2m(m− 1)

∑

i∈S

∑

i′∈S
(wiŶ i+ − wi′Ŷ i′+)(wiŶ i+ − wi′Ŷ i′+)

′

be the sample covariance matrix of the weighted EU, and let the diagonal elements of V̂wŶ be

s2
wŶ (k) =

1

2m(m− 1)

∑

i∈S

∑

i′∈S
(wiŶ

(k)
i+ − wi′Ŷ

(k)
i′+ )2,

the sample variances of the EU totals as if they had received treatment k.
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Lemma 4.3.1. If C is a contrast matrix, then, assuming additivity 4.6, the mean and variance

under the treatment assignment distribution in a CRD are given by

ET [CŶ ] = CẎ

VarT (CŶ ) = mC

[

V̂wŶ ◦ (D− J)
]

C
′.

Proof. We will use the vector versions of the above results to prove this theorem.

Recall that

Ŷ =
∑

i∈S
wiŶ i+ ◦ Ť i.

From the fact that the vector 1 is the identity element under Hadamard multiplication, we find that

ET [Ŷ ] = ET

[

∑

i∈S
wiŶ i+ ◦ Ť i

]

=
∑

i∈S
wiŶ i+ ◦ 1 =

∑

i∈S
wiŶ i+ = Ẏ .

To compute the variance, observe

VarT (Y ) = VarT

(

∑

i∈S
wiŶ i ◦ Ť i

)

=
∑

i∈S

∑

i′∈S
wiwi′CovT (Ŷ i+ ◦ Ť i, Ŷ i′+ ◦ Ť i′)

=
∑

i∈S

∑

i′∈S
wiwi′Ŷ i+Ŷ

′
i′+ ◦ CovT (Ť i, Ť i′).

From equation (4.5) above, it follows that

VarT (Y ) =
∑

i∈S
w2

i Ŷ i+Ŷ
′
i+ ◦ (D− J)− 1

m− 1

∑

i∈S

∑

i′∈S\{i}
wiwi′Ŷ iŶ

′
i′ ◦ (D− J)

=
1

m− 1

∑

i∈S

∑

i′∈S
wiŶ i+(wiŶ i+ − wi′Ŷ i′+)

′ ◦ (D− J)

= mV̂wŶ ◦ (D− J),

as desired.
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In this dissertation, we will derive further results under the alternative hypothesis using the

simplifying assumption that the treatments are additive at the observational unit level. This means

that each treatment results in an equal additive shift for all observational units. When weighted up

to the EU level, this can be written as

Ŷ
(k)
i+ = Ŷ ∗

i+ + β(k)N̂i. (4.6)

In this expression, Ŷ ∗
i+ is the intrinsic (estimated) value of the response on EU i, N̂i is the weighted

sum of the number of OUs in EU i, used to estimate the total number of OUs within EU i.

We introduce new notation to explain these results. Let DwŶ be the diagonal matrix with entries

d
(k)

wŶ
= d(k)s2

wŶ (k) .

Under this assumption, we modify the above result in the following lemma.

Lemma 4.3.2. If C is a contrast matrix and we assume additivity 4.6, the mean and variance under

the randomness due to treatment assignment in a completely randomized experiment embedded in

a complex survey are given by

ET [CŶ ] = N̂Cβ (4.7)

VarT (CŶ ) = mC
[

DwŶ − s2
wN̂

ββ′]
C

′. (4.8)

Proof. For the expectation, we have

Ẏ =
∑

i∈S
wiŶ i+ =

∑

i∈S
wi(Ŷ

∗
i+1+ N̂iβ) =

(

∑

i∈S
wiŶ

∗
i+

)

1+ N̂β.

From this it follows that

ET [CŶ ] = C

[(

∑

i∈S
wiY

∗
i+

)

1+ N̂β

]

= N̂Cβ.
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To simplify this expression, we will consider the form of V wŶ assuming (4.6):

V̂wŶ =
1

2m(m− 1)

∑

i∈S
(wiŶ i+ − wi′Ŷ i′+)(wiŶ i+ − wi′Ŷ i′+)

′

=
1

2m(m− 1)

∑

i∈S

∑

i∈S
[(wiŶ

∗
i+ − wi′Ŷ

∗
i′+)1+ (wiN̂i − wi′N̂i′)β]

[(wiŶ
∗
i+ − wi′Ŷ

∗
i′+)1+ (wiN̂i − wi′N̂i′)β]

′

=
1

2m(m− 1)

∑

i∈S

∑

i∈S
(wiŶ

∗
i+ − wi′Ŷ

∗
i′+)

2
JK +

(wiŶ
∗
i+ − wi′Ŷ

∗
i′+)(wiN̂i − wi′N̂i′)(1β

′ + β1′) +

(wiN̂i − wi′N̂i′)
2ββ′.

Examining the term CV̂h,wŶC
′ using this form, we note that CJKC

′, C1β′
C

′, and Cβ1′
C

′

are all 0 because C is a contrast matrix. Thus

CV̂h,wŶC
′ =

1

2m(m− 1)

∑

i∈S

∑

i′∈S
(wiN̂i − wi′N̂i′)

2
Cββ′

C
′ = s2

wN̂
Cββ′

C
′.

Therefore, we have that assuming additivity 4.6

VarT

(

CŶ
)

= mC(DwŶ − s2
wN̂

ββ′)C′,

as desired.

For the randomization test, we will be interested in examining the distribution of the observed

data under the null hypothesis (H0) of no treatment effect. When we set β = 0, we find that under

H0,

ET [CŶ ] = 0

VarT (CŶ ) = mCDwŶC
′.
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4.4 Randomization Distribution and Test

The key idea of randomization procedures is to compare the test statistic obtained to the distri-

bution of test statistics that could have been obtained under different labels of the treatments. This

tests the null hypothesis

H0 : Ŷ
(k)
i+ = Ŷ

(k′)
i+ ∀i, k, k′. (4.9)

Randomization procedures are valuable for making inference when there is not a lot of previous

information on the phenomenon you are studying, the experimental design is quite complex and

hard to model using other means, or when a researcher does not want to use outside knowledge to

provide a more unbiased analysis due to standards in their field (Lane [1980], Kempthorne [1980],

Proschan and Dodd [2019], for example). Embedding an experiment in a complex survey with

its stratification, clustering and unequal probabilities of selection inherently makes experimental

designs within surveys complex and hard to model, and survey practitioners are often in a setting

where analysis is expected to be as model free as possible, due to the multipurpose nature of the

surveys. Hence, randomization inference fits naturally in the context of complex surveys.

In this section, we will explain how the randomization procedure works in the context of a

CRD embedded in a survey. In a general randomized experiment, one can reassign the treatment

labels and recompute the statistic several times (using the same observed data) to get an idea of

the range of plausible values that the statistic may take if the treatment had no effect. With small

sample sizes, it may be feasible to enumerate the complete randomization distribution of all possi-

ble treatment assignments. With moderate or large sample sizes, this randomization distribution is

infeasible to compute exactly but can be approximated via Monte Carlo or an asymptotic normal

distribution.

To describe the randomization distribution for a linear statistic in a survey, we use the notation

R
(k)
i (and Ř

(k)
i = m

m(k)R
(k)
i ) to represent the randomized treatment labels. We use different, but

parallel, notation than the treatment assignment to emphasize that the randomized labels are inde-

pendent of the original treatment assignments T
(k)
i , but follow the same distribution. In fact, the

randomization test is conducted conditioned on the original treatment assignment. We denote the
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randomization total for each treatment as

Ỹ (k) =
m

m(k)

∑

i∈S
wiŶi+R

(k)
i =

∑

i∈S
wiŶi+Ř

(k)
i .

Using this notation, the original contrast is denoted CŶ and the randomization version is denoted

CỸ .

The rest of this section will be devoted to explaining the logic of the randomization test and

finding the mean and variance of the randomization distribution that we have described. The latter

computations are used in subsequent sections for our normal-theory approximations.

4.4.1 Randomization Test

We now describe the randomization procedure for experiments embedded in surveys. The null

hypothesis 4.9 discussed above is equivalent to additivity (4.6) with β = β1, for some constant β.

Since we could change the intrinsic values of the response on EUs to match an additive shift in β

by a multiple of 1, we can assume without loss of generality that under H0, β = 0. In this case,

we have that for any i, k, Ŷ
(k)
i+ = Ŷ ∗

i+ = Ŷi+.

Thus, under H0, the distribution of the response vector

Ŷ =
∑

i∈S
wiŶi+Ť i

under random treatment assignment (conditioned on the sample) is the same as the distribution of

Ỹ =
∑

i∈S
wiŶi+Ři

under randomization of treatment labels (conditioned on the sample and the original treatment

assignment), since the Ť i have the same distribution as the Ři. Hence, the randomization distribu-

tion of the statistic recreates the treatment assignment distribution under H0, providing a basis for

randomization inference.
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4.4.2 Mean and Variance

To use a randomization test, one can always simulate results under the randomization distribu-

tion. However, it is often computationally and practically convenient to have a normal approxima-

tion for the null distribution. We derive the mean and variance for the test statistic here. Because

the distribution of the treatment labels is the same as the original distribution of the treatments, we

can reuse much of the work from the previous section.

Theorem 4.4.1. The randomization contrast

CỸ = C

∑

i∈S
wiŶi+Ři

has mean and variance under the randomization distribution given by

ER[CỸ ] = 0

VarR(CỸ ) = ms2
wŶ

CDC
′,

where

s2
wŶ

=
1

2m(m− 1)

∑

i∈S

∑

i′∈S\{i}
(wiŶi+ − wi′Ŷi′+)

2

is the variance of the observed responses at the EU level.

Proof. From the same arguments in Lemma 4.3.1, we find that

ER[Ỹ ] =
∑

i∈S
wiŶi+1.

Thus we have

ER[CỸ ] = C1

∑

i∈S
wiŶi+ = 0

as C is a contrast matrix.

Similarly, we see that

VarR(Ỹ ) = ms2
wŶ

(D− J),
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yielding

VarR(CỸ ) = ms2
wŶ

C(D− JK)C
′ = ms2

wŶ
CDC

′,

again using the fact that C is a contrast matrix.

4.5 Central Limit Theory

In this section, we will provide conditions under which the randomization distribution approxi-

mately follows a normal distribution. This proof is based heavily on results from Hoeffding [1951].

We will first prove some lemmas in Section 4.5.1, and then show the main result in Section 4.5.2.

4.5.1 Introductory Lemmas

Before proving the central limit theorem, there are lemmas that need to be established. The

first is a lemma that is adapted from Theorem 1 in Hoeffding [1951]

Lemma 4.5.1. Let an,i, i = 1, . . . , n, n = 1, 2, . . . be a double sequence such that for some δ > 0,

n−1
∑n

i=1 |an,i|2+δ = O(1). Then

1. limn→∞ n−1/2 max{|an,i|, i = 1, . . . , n} = 0

2. limn→∞ n−(2+γ)/2
∑n

i=1 |an,i|2+γ = 0 for all γ > 0

Proof. Let bn,i = n−1/2an,i and Bn = max{|bn,i| : i = 1, . . . , n}.

By the hypothesis, there is some δ > 0 such that

B2+δ
n ≤

n
∑

i=1

|bn,i|2+δ → 0

as n → ∞. This proves conclusion 1.

To prove conclusion 2, notice by the hypothesis, we have n−1
∑n

i=1 a
2
n,i =

∑n
i=1 b

2
n,i = O(1).

Thus there is some F > 0 such that
∑n

i=1 b
2
n,i ≤ F for all n > 0. Now for any γ > 0,

n
∑

i=1

|bn,i|2+γ ≤ Bγ
n

n
∑

i=1

b2n,i ≤ FBγ
n → 0
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as n → ∞.

The next two lemmas work to provide a lower bound to variance expressions in the denomina-

tors when the additivity assumption (4.6) is used.

Lemma 4.5.2. Let v ∈ R
d, and let ai > 0, i = 1, . . . , d be constants such that

∑d
i=1 ai = 1. Let

w ∈ R
d be the vector with elements wi = a−1

i v2i . Then it follows that the matrix

diag(w)− vv′

is nonnegative definite, and the vector with elements aiv
−1
i is in its null space.

Proof. Let X ∈ R
d be the random vector that has a−1

i vi in the ith position (and all other elements

0) with probability ai, giving

E[X] = v

E[XX ′] = diag(w),

and therefore

Var(X) = diag(w)− vv′.

Since we have expressed diag(w) − vv′ as a covariance matrix of a random variable, it must be

nonnegative definite.

To show the vector with elements aiv
−1
i is in the null space of diag(w)− vv′ we evaluate the

kth element in the product of this matrix and vector is

d
∑

i=1

[wiI(i = k)− vivk] aiv
−1
i =

d
∑

i=1

(v2i a
−1
i )(aiv

−1
i )I(i = k)− aivk

= vk − vk

d
∑

i=1

ai.

This is zero by the assumption that
∑d

i=1 ai = 1.
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We note that the vectors Řhi and Ť hi have the same properties of the vector X in the proof of

Lemma 4.5.2, with a ∈ R
K satisfying a(k) = m(k)/m and v = 1K .

Lemma 4.5.3. Let c ∈ R
K be an arbitrary contrast vector, then

c′(DwŶ − s2
wN̂

ββ′)c =

(

K
∑

k=1

(c(k))2
m

m(k)
s2
wŶ (k)

)

− (c′β)2s2
wN̂

≥
K
∑

k=1

(c(k))2
m

m(k)
s2
wŶ ∗

(1− r2),

where r, the correlation between the wiŶ
∗
i+ and the wiN̂i, is

r =

∑

i∈S
∑

i′∈S(wiŶ
∗
i+ − wi′Ŷi′+)(wiN̂i − wi′N̂i′)

2m(m− 1)swŶ ∗swN̂

,

if swŶ ∗swN̂ > 0, and r = 0 otherwise (s2
wŶ (k) was defined in Lemma 4.3.1).

Proof. The left-hand side of the above expression can be written using covariances as

(

K
∑

k=1

(c(k))2
m

m(k)

(

s2
wŶ ∗

+ 2β(k)rswŶ ∗swN̂ + (β(k))2s2
wN̂

)

)

−
(

K
∑

k=1

c(k)β(k)

)2

s2
wN̂

.

If swŶ ∗swN̂ = 0, then either swŶ ∗ = 0 or swN̂ = 0. In the former case, the right hand side of

the above is 0 and the left hand side is

K
∑

k=1

(c(k))2
m

m(k)
(β(k))2s2

wN̂
−
(

K
∑

k=1

c(k)β(k)

)2

s2
wN̂

=

s2
wN̂





K
∑

k=1

m

m(k)
(c(k)β(k))2 −

(

K
∑

k=1

c(k)β(k)

)2


 .

This is nonnegative by Lemma 4.5.2. In the latter case, we see that the both the left and right hand

sides of the above expression equal

K
∑

k=1

(c(k))2
m

m(k)
s2
wŶ ∗

,

by the definition that r = 0.
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Now we consider the cases where swŶ ∗swN̂ > 0. Taking the partial derivative of the left hand

side with respect to β(k) (for arbitrary k), we find that

∂

∂β(k)
VarT (c

′Ŷ h) = 2mh(c
(k))2

mh

m
(k)
h

(rhsh,wŶ ∗sh,wN̂ + β(k)s2
h,wN̂

)− 2mhs
2
h,wN̂

K
∑

k′=1

c(k)c(k
′)β(k′)

Now we will check that the Hessian matrix is everywhere non-negative definite, ensuring that

the solution obtained by setting this derivative equal to zero will be a global minimum.

Note

∂2

∂(β(k))2
VarT (c

′Ŷ ) = 2m(c(k))2
m

m(k)
s2
h,wN̂

− 2s2
wN̂

c(k)c(k
′)

∂2

∂β(k)∂β(k′)
VarT (c

′Ŷ ) = −2mswN̂c
(k)c(k

′).

Expressing the above as a matrix, we find that the Hessian is

∂2

∂β2VarT (c
′Ŷ ) = 2ms2

wN̂

[

diag
(

(c(k))2
m

m(k)

)

− cc′
]

.

Since
∑K

k=1
m(k)

m
= 1,

diag
(

(c(k))2
m

m(k)

)

− cc′

is everywhere non-negative definite by Lemma 4.5.2. Since 2ms2
wN̂

> 0, we have verified that the

Hessian is everywhere non-negative definite.

We now set the gradient with respect to β equal to zero to find a minimum. Recall that

∂

∂β(k)
VarT (c

′Ŷ ) = 2mswN̂

[

(c(k))2
mh

m
(k)
h

(rswŶ ∗ + β(k)swN̂)− swN̂

K
∑

k′=1

c(k)c(k
′)β(k′).

]

Taking all terms involving β to one side of the equation, and combining these equations into a

system, we see that

[

diag
(

(c(k))2
m

m(k)

)

− cc′
]

β = −rswŶ ∗

swN̂

vec
(

(c(k))2
m

m(k)

)

.
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Since c is a contrast vector, β = −rswŶ ∗/swN̂1 is a solution. From Lemma 4.5.2, we know

that there are other solutions of the form

β = −rswŶ ∗

swN̂

1+ avec

(

m(k)c(k)

m

)

,

for any constant a ∈ R. Since the gradient of the function is 0 on this subspace, the value of

the variance of the numerator of the test statistic will be the same for all treatment effects in this

subspace.

Substituting this solution into the original equation, we see that

VarT (c
′Ŷ ) = m

[(

K
∑

k=1

(c(k))2
m

m(k)

(

s2
wŶ ∗

+ 2β(k)rswŶ ∗swN̂ + (β(k))2s2
wN̂

)

)

−

(

K
∑

k=1

c(k)β(k)

)2

swN̂





≥ m

K
∑

k=1

(c(k))2
m

m(k)
(s2

wŶ ∗
− 2r2s2

wŶ ∗
+ r2s2

wŶ ∗
)

= m

K
∑

k=1

(c(k))2
m

m(k)
s2
wŶ ∗

(1− r2)

completing the proof.

Lastly, here is a lemma bounding central moments.

Lemma 4.5.4. For all q ≥ 1 we have that for any r ∈ R,

n
∑

i=1

|yi − ȳ|q ≤ 2q
n
∑

i=1

|yi − r|q.

Proof. First notice
n
∑

i=1

|yi − ȳ|q =
n
∑

i=1

|yi − r + r − ȳ|q.
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By Jensen’s inequality, we have that

∣

∣

∣

∣

1

2
[(yi − r) + (r − ȳ)]

∣

∣

∣

∣

q

≤ 1

2
[|yi − r|q + |r − ȳ|q],

or

|yi − r + r − ȳ|q ≤ 2q−1 [|yi − r|q + |r − ȳ|q] .

Substituting in the original form, and applying Jensen’s inequality again, we obtain

n
∑

i=1

|yi − ȳ|q ≤ 2q−1

[(

n
∑

i=1

|yi − r|q
)

+ n|r − ȳ|q
]

= 2q−1

[(

n
∑

i=1

|yi − r|q
)

+ n

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(yi − r)

∣

∣

∣

∣

∣

q]

≤ 2q−1

[(

n
∑

i=1

|yi − r|q
)

+
n

n

n
∑

i=1

|yi − r|q
]

= 2q
n
∑

i=1

|yi − r|q,

as desired.

4.5.2 Main Theorem

In Chapter 5, we will consider the case of randomized complete block designs. Two asymptotic

formulations are of potential interest in block designs: a fixed number of blocks with an increasing

number of EUs within each block, or an increasing number of blocks with a fixed number of

EUs within each block. In Chapter 5, we consider the second asymptotic setting of an increasing

number of blocks. Here, we consider a completely randomized design with an increasing number

of EUs, noting that the extension to the first asymptotic setting of a fixed number of blocks is

immediate, because the CRD is a block design with one block.

To show asymptotic normality in the increasing block size case (m → ∞), sufficient conditions

are
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A1 There are A,B < ∞ such that
maxk{m(k)}
mink{m(k)} < B when m > A.

A2 There are A, b, B ∈ R
+ such that for all i b < wi < B when m > A.

A3 For some δ > 0, there are A,B < ∞ such that m−1
∑

i∈S |N̂i|2+δ ≤ B when m > A.

A4 For some δ > 0, there are A,B < ∞ such that m−1
∑

i∈S |Ŷ ∗
i+|2+δ ≤ B when m > A.

A5 Let r be as defined in Lemma 4.5.3. There are A < ∞ and b > 0 such that if m ≥ A, then

s2
wŶ ∗

(1− r2) ≥ b.

Notes on Assumptions: Assumption A1 guarantees that the treatment assignment is relatively

balanced, with the bound between treatment assignment proportions bounded. This is a desirable

property of CRDs, and would be expected to hold. Assumption A2 ensures that the weights are

bounded and not terribly imbalanced. This should be a goal of survey designs. However, if the

weights are adjusted for nonresponse, differential nonresponse can result in large variations be-

tween weights. Assumption A3 ensures that the estimated EU sizes are not too variable, which is

desirable and should hold in practice with good survey and experimental design. Assumption A4

states that the distribution of the EU totals has some moment beyond a variance, which is a standard

assumption in survey analysis. Assumption A5 is a technical assumption that rules out cases where

the variance of the treatment assignment distribution becomes arbitrarily small. Overall, these as-

sumptions are fairly standard, and should hold in many cases for real surveys, barring excessive

nonresponse.

This theorem shows the asymptotic normality of the treatment assignment procedure under

additivity (4.6). This implies the asymptotic normality of the randomization procedure, because

this is a special case under the null hypothesis.

Theorem 4.5.1. Under Assumptions A1–A5 above, we have that as m → ∞

[

mC(DwŶ − s2
wN̂

ββ′)C′]−1/2
[

CŶ −CβN̂
]

d−→ N (0, I).

75



Proof. First, note that by the Cramér-Wold Device, it suffices to show that for any contrast vector

v,

[

mv′
C(DwŶ − s2

wN̂
ββ′)C′v

]−1/2
[v′

CŶ − v′
CβN̂ ]

d−→ N (0, 1).

Since v′
C is always a contrast vector when C is a contrast matrix, it suffices to show that for any

contrast vector c we have

[

mc′(DwŶ − s2
wN̂

ββ′)c
]−1/2

[c′Ŷ − c′βN̂ ]
d−→ N (0, 1).

Now we will complete the proof by considering Theorem 3 from Hoeffding [1951], and apply-

ing it to c′Ŷ .

To simplify notation of this proof, we will reindex the Ŷ i+ so that i ranges from 1 to m,

ignoring the original indexing from the finite population.

We will begin by defining, using the additivity assumption (4.6),

cm(i, j) = c(k)
m

m(k)
wiŶ

(k)
i+ = c(k)

m

m(k)
wi(Ŷ

∗
i+ + N̂iβ

(k))

where k = k(j) = min{k∗ :
∑k∗

k=1 m
(k) > j}. Then we see that if πm(·) is a random function

permuting the numbers 1, . . . ,m, then the treatment assignment distribution of c′Ŷ is the same as

the distribution under the randomness defined by πm of

m
∑

i=1

cm(i, πm(i)),

by construction.

Let

dm(i, j) = cm(i, j)−m−1

m
∑

i′=1

cm(i
′, j)−m−1

m
∑

j′=1

cm(i, j
′) +m−2

m
∑

i′=1

m
∑

j′=1

cm(i
′, j′).
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Substituting the values for cm(i, j) in the above and simplifying gives that

dm(i, j) =
m

m(k)
c(k)

(

wiŶ
∗
i+ − 1

m

∑

i′∈S
wi′Ŷ

∗
i′+

)

+

( m

m(k)
c(k)β(k) − c′β

)

(

wiN̂i −
1

m

∑

i′∈S
wi′N̂i′

)

.

Now to complete the proof, by Theorem 3 in Hoeffding [1951], it suffices to show that for any

γ > 0, we have that as m → ∞

m−1
∑m

i=1

∑m
j=1 |dm(i, j)|2+γ

[

m−1
∑m

i=1

∑m
j=1{dm(i, j)}2

](2+γ)/2
→ 0.

At this step, we examine the expression m−1
∑m

j=1 |dm(i, j)|2+γ:

1

m

m
∑

j=1

|dh(i, j)|2+γ ≤
K
∑

k=1

m(k)

m
21+γ





( m

m(k)

)2+γ

|c(k)|2+γ

∣

∣

∣

∣

∣

wiŶ
∗
i+ − 1

m

∑

i′∈S
wi′Ŷ

∗
i′+

∣

∣

∣

∣

∣

2+γ

+

∣

∣

∣

m

m(k)
ckβ(k) − c′β

∣

∣

∣

2+γ

∣

∣

∣

∣

∣

wiN̂i −
1

m

∑

i′∈S
wi′N̂i′

∣

∣

∣

∣

∣

2+γ


 .

From Assumptions A1 and A2 and Lemma 4.5.4, there are constants BY and BN (which may

depend on γ, but not m) such that m−1
∑m

i=1

∑m
j=1 |dm(i, j)|2+γ ≤∑m

i=1 BY |Ŷi+|2+γ+BN |N̂i|2+γ .

Additionally, Theorem 2 of Hoeffding [1951] gives that

Var

(

m
∑

i=1

cm(i, πh(i))

)

=
1

m− 1

m
∑

i=1

m
∑

j=1

{dm(i, j)}2.

This implies, using Lemma 4.5.3 that

1

m

m
∑

i=1

m
∑

j=1

{dm(i, j)}2 = (m− 1)c′(DwŶ − s2
wN̂

ββ′)c

≥ (m− 1)
K
∑

k=1

(c(k))2
m

m(k)
s2
wŶ ∗

(1− r2).
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By Assumptions A1 and A5, there is some ǫ > 0 such that m−1
∑m

i=1

∑m
j=1{dm(i, j)}2 ≥ ǫm.

Using the bounds derived above, we obtain

m−1
∑m

i=1

∑m
j=1 |dm(i, j)|2+γ

[

m−1
∑m

i=1

∑m
j=1{dm(i, j)}2

](2+γ)/2
≤
∑m

i=1 BY |Ŷ ∗
i+|2+γ +BN |N̂i|2+γ

(ǫm)(2+γ)/2
.

Assumptions A3 and A4 and Lemma 4.5.1 give that the right hand side of the above goes to zero

for all γ > 0, completing the proof.

4.6 Treatment Assignment and Randomization: Power

Previously, we considered the variance computations for contrasts under the randomization dis-

tribution, conditioned on the sample and treatment assignment. In this subsection, we will consider

the variance computations under both treatment assignment and randomization. Understanding the

distribution under both of these sources of variability allows us estimate power, conditioned on the

sample.

To begin, we will partition the variance to understand the variation of the randomization distri-

bution averaged over all possible treatment assignments. This yields

VarTR(CỸ ) = VarT (ER[CỸ ]) + ET [VarR(CỸ )].

We have already shown that ER[CỸ ] = 0, so the first term is 0 and we need only to focus on the

second term.

From Theorem 4.4.1, we know that

VarR(CỸ ) = ms2
wŶ

CDC
′

78



where mCDC
′ is fixed. Therefore we need only focus on s2

wŶ
, for which

ET [s
2
wŶ

] = ET

[

1

2m(m− 1)

∑

i∈S

∑

i′∈S
(wiŶi+ − wi′Ŷi′+)

2

]

.

When i = i′, wiŶi+ − wi′Ŷi′+ = 0, so we restrict our focus to deriving ET [(wiŶi+ − wi′Ŷi′+)
2]

when i 6= i′. Note

ET

[

(wiŶi+ − wi′Ŷi′+)
2
]

= ET

[

(

wi(Ŷ
∗
i+ + N̂iT

′
iβ)− wi′(Ŷ

∗
i′+ + N̂i′T

′
i′β)
)2
]

= (wiŶ
∗
i+ − wi′Ŷ

∗
i′+)

2 + 2(wiŶ
∗
i+ − wi′Ŷ

∗
i′+)(wiN̂iET [T

′
iβ]− wi′N̂i′ET [T

′
i′β]) +

ET [(wiN̂iT
′
iβ − wi′N̂i′T

′
i′β)

2].

Now we focus on the third term,

ET [(wiN̂iT
′
iβ − wi′N̂i′T

′
i′β)

2] = w2
i N̂

2
i β

′ET [T iT
′
i]β − wiwi′N̂iN̂i′β

′ET [T iT
′
i′ + T i′T

′
i]β +

w2
i′N̂

2
i′β

′ET [T i′T
′
i′ ]β.

We define β̄ = ET [T
′
iβ] = m−1

∑k
k=1 m

(k)β(k). Recall that d = (m/m(1), . . . ,m/m(K))′ and

D = diag(dh). Also, let m = (m1, . . . ,m(K))′. Using results from (4.1), we obtain

ET [T iT
′
i] = D

−1

ET [T iT
′
i′ ] =

m

m− 1

(

mm′

m2
− D

−1

m

)

.

If we let

β2 = β′
D

−1β = m−1

K
∑

k=1

m(k)(β(k))2
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then

ET [(wiN̂iT
′
iβ − wi′N̂i′T

′
i′β)

2] = (w2
i N̂

2
i + w2

i′N̂
2
i′)β

2 −

2wiwi′N̂iN̂i′
m

m− 1
(β

2 −m−1β2)

= (wiN̂i − wi′N̂i′)
2β2 + 2wiwi′N̂iN̂i′

m

m− 1
(β2 − β

2
).

Putting this all together, we have

ET

[

(wiŶi+ − wi′Ŷi′+)
2
]

= (wiŶ
∗
i+ − wi′Ŷ

∗
i′+)

2 + 2β(wiŶ
∗
i+ − wi′Ŷ

∗
i′+)(wiN̂i − wi′N̂i′) +

β2
h(wiN̂i − wi′N̂i′)

2 + 2wiwi′N̂iN̂i′
m

m− 1
(β2 − β

2
).

Thus

ET [s
2
wŶ

] =
1

2m(m− 1)

∑

i∈S

∑

i′∈S\{i}
(wiŶ

∗
i+ − wi′Ŷ

∗
i′+)

2 + 2β(wiŶ
∗
i+ − wi′Ŷ

∗
i′+)(wiN̂i − wi′N̂i′) +

β2(wiN̂i − wi′N̂i′)
2 + 2

wiwi′N̂iN̂i′

m− 1
(β2

h − β
2

h)

=
1

2m(m− 1)

∑

i∈S

∑

i′∈S\{i}

[

(

wi(Ŷ
∗
i+ + N̂iβ)− wi′(Ŷ

∗
i′+ + N̂i′β)

)2

+

(

(wiN̂i − wi′N̂i′)
2 + 2wiwi′N̂iN̂i′

m

m− 1

)

(β2 − β
2
)

]

.

This is the variance of the weighted Ŷ ∗
i+, including the average treatment effect, plus the variance

of the weighted estimated EU sizes multiplied by the variance of the treatment effects, plus an ad-

ditional term involving the weighted estimated EU sizes multiplied by the variance of the treatment

effects.

Notice that we could define β = 0 here, but we will not impose this constraint to preserve

generality for cases with multiple blocks where the treatment may not be balanced. However, if
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we define

s2
wŶ ∗

adj
=

1

2m(m− 1)

∑

i∈S

∑

i′∈S

(

wi(Ŷ
∗
i+ + N̂iβ)− wi′(Ŷ

∗
i+ + N̂i′β)

)2

,

we observe that the above can be rewritten as

ET [s
2
wŶ

] = s2
wŶ ∗

adj
+ (β2 − β

2
)s2

wN̂
+

β2 − β
2

(m− 1)2

∑

i∈S

∑

i′∈S\{i}
wiwi′N̂iN̂i′ .

Therefore we have

ET [VarR(CỸ )] = m



s2
wŶ ∗

adj
+ (β2 − β

2
)s2

wN̂
+

β2 − β
2

(m− 1)2

∑

i∈S

∑

i′∈S\{i}
wiwi′N̂iN̂i′



CDC
′.

(4.10)

4.6.1 Power Conditioned on the Sample

Conditioned on the sample, we will follow methods in Robinson [1973] which followed Ho-

effding [1952]. This approach will involve showing that the variance (when scaled appropriately)

converges in probability to a constant.

Conditioned on the sample, there are still two sources of randomness: the randomness due

to experimental treatment assignment and variance due to randomizing treatment labels for the

randomization test.

To simplify computation, we consider the case where experimental units are sampled with

probability proportional to the size of the experimental unit so that the product of the experimental

unit weight and the estimated sample size is constant. We write this as

wiN̂i = W (4.11)

for all i ∈ Sh (we assume also that whi does not depend on the sample that was selected). One

example of this is a common self-weighted design scheme for two-stage samples, where the first
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stage is selected with probability proportional to the number of experimental units, and the second

stage is selected as a stratified simple random sample with constant size. In this case, the second

stage selection probabilities will be such that N̂i = Ni for each i, but in some other cases there

may be calibration to ensure this equality.

Lemma 4.6.1. Assuming (4.6) and (4.11), we have that under the treatment assignment distribu-

tion, the randomization distribution of an arbitrary entry of the randomization covariance matrix

satisfies

ET [CovR(c
′
1Ỹ , c′2Ỹ )] = m

[

s2
wŶ ∗

+
W 2m

m− 1
(β2 − β

2
)

]

c′1Dc2

VarT (CovR(c
′
1Ỹ , c′2Ỹ )) =

4W 2m3

(m− 1)2
s2
wŶ ∗

(β2 − β
2
)(c′1Dc2)

2.

Proof. We know from earlier calculations that

CovR(c
′
1Ỹ , c′2Ỹ ) = ms2

wŶ
c′1Dc2,

and the only randomness in this expression is from the term s2
wŶ

.

From (4.10), we know that

ET [CovR(c
′
1Ỹ , c′2Ỹ )] = m



s2
wŶ ∗

adj
+ (β2 − β

2
)s2

wN̂
+

β2 − β
2

(m− 1)2

∑

i∈S

∑

i′∈S\{i}
wiwi′N̂iN̂i′



 c′1Dc2.

Assuming equation (4.11), it can be shown that s2
wŶ ∗

adj

= s2
wŶ ∗

and s2
wN̂

= 0, and thus the above

expression simplifies to

ET [CovR(c
′
1Ỹ , c′2Ỹ )] = m

[

s2
wŶ ∗

+
W 2m

m− 1
(β2 − β

2
)

]

c′1Dc2.
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To discuss the treatment assignment variance of CovR(c
′
1Ỹ , c′2Ỹ ), we again focus on the s2

wŶ

term. Specifically, we note that we can rewrite 2m(m− 1)s2
wŶ

as

∑

i∈S

∑

i′∈S
(wiŶi+ − wi′Ŷi′+)

2 =
∑

i∈S

∑

i′∈S
(wiŶ

∗
i+ − wi′Ŷ

∗
i′+)

2 +

2(wiŶ
∗
i+ − wi′Ŷ

∗
i′+)(wiN̂iT

′
iβ − wi′N̂i′T

′
i′β) +

(wiN̂iT
′
iβ − wi′N̂i′T

′
i′β)

2.

In this expression, the first term is not random. Additionally, if we assume (4.11), we see by

counting terms that the last term is

∑

i∈S

∑

i′∈S
W 2(T ′

iβ − T ′
i′β)

2 = W 2

K
∑

k=1

K
∑

k′=1

m(k)m(k′)(β(k) − β(k′))2,

which is also not random. Therefore we will focus on the middle term for the rest of this argument.

Assuming (4.11), this is

2W
∑

i∈S

∑

i′∈S
(wiŶ

∗
i+ − wi′Ŷ

∗
i′+)(T

′
iβ − T i′β).

Taking the covariances term-by-term (and ignoring for now the constant of 2W ), we find

VarT

(

∑

i∈S

∑

i′∈S
(wiŶ

∗
i+ − wi′Ŷ

∗
i′+)(T

′
iβ − T ′

i′β)

)

=
∑

i∈S

∑

i′∈S

∑

j∈S

∑

j′∈S
(wiŶ

∗
i+ − wi′Ŷ

∗
i′+)(wjŶ

∗
j+ − wj′Ŷ

∗
j′+)CovT (T

′
iβ − T ′

i′β,T
′
jβ − T ′

j′β)

=
∑

i∈S

∑

i′∈S

∑

j∈S

∑

j′∈S
[wiŶ

∗
i+wjŶ

∗
j+ − wiŶ

∗
i+wj′Ŷ

∗
j′+ − wi′Ŷ

∗
i′+wjŶ

∗
j+ + wi′Ŷ

∗
i′+wj′Ŷ

∗
j′+] •

[β′CovT (T i,T j)β − β′CovT (T i,T j′)β − β′CovT (T i′ ,T j)β + β′CovT (T i′ ,T j′)β],

where • denotes multiplication across lines.
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Using the covariance expressions in (4.4), we find that, if β2 = m−1
∑K

k=1 m
(k)(β(k))2,

β′CovT (T i,T i′)β =











β2 − β
2

: i = i′

−1
m−1

(β2 − β
2
) : i 6= i′.

To understand this notation, notice that the signs in the first term correspond to the signs in the

second term, so that the sum just obtained is the sum of four copies of the same expression. We

will proceed by evaluating the first of these copies, and will later multiply the result by four:

∑

i∈S

∑

i′∈S

∑

j∈S

∑

j′∈S
[wiŶ

∗
i+wjŶ

∗
j+ − wiŶ

∗
i+wj′Ŷ

∗
j′+ − wi′Ŷ

∗
i′+wjŶ

∗
j+ + wi′Ŷ

∗
i′+wj′Ŷ

∗
j′+] •

β′CovT (T i,T j)β

= (β2 − β
2
)
∑

i∈S



m2w2
i (Ŷ

∗
i+)

2 − 2mwiŶ
∗
i+

∑

i′∈S
wi′Ŷ

∗
i′+ +

(

∑

i′∈S
wi′Ŷ

∗
i′+

)2


− (β2 − β
2
)

m− 1

∑

i∈S

∑

j∈S\{i}



m2wiŶ
∗
i+wjŶ

∗
j+ −m(wiŶ

∗
i+ + wjŶ

∗
j+)
∑

i′∈S
wi′Ŷ

∗
i′+ +

(

∑

i′∈S
wi′Ŷ

∗
i′+

)2




=
m2(β2 − β

2
)

m− 1

[

(m− 1)2s2
wŶ ∗

−

∑

i∈S

∑

j∈S\{i}

(

wiŶ
∗
i+ − 1

m

∑

i′∈S
wi′Ŷ

∗
i′+

)(

wjŶ
∗
j+ − 1

m

∑

i′∈S
wi′Ŷ

∗
i′+

)



 ,

where we have used

s2
wŶ ∗

=
1

m− 1

∑

i∈S

(

wiŶ
∗
i+ − 1

m

∑

i′∈S
wi′Ŷ

∗
i′+

)2

.

Additionally, since

∑

i∈S

∑

j∈S
(yi − ȳ)(yj − ȳ) =

[

∑

i∈S
(yi − ȳ)

]2

= 0,
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we have that the expression above equals

m2(β2 − β
2
)

m− 1
[(m− 1)2s2

wŶ ∗
+ (m− 1)s2

wŶ ∗
] = m3s2

wŶ ∗
(β2 − β

2
).

Replacing the constants that have been ignored, we see

VarT (s
2
wŶ

) = 4

(

2W

2m(m− 1)

)2

m3s2
wŶ ∗

(β2 − β
2
) =

4W 2m

(m− 1)2
s2
wŶ ∗

(β2 − β
2
).

Therefore we conclude that

VarT (CovR(c
′
1Ỹ , c′2Ỹ )) = (mc′1Dc2)

2VarT (s
2
wŶ

) =
4W 2m3

(m− 1)2
s2
wŶ ∗

(β2 − β
2
)(c′1Dc2)

2.

Using the above results, we state the following theorem providing the following conclusions

when m is large, under the moderate assumptions we have been using: the expected value of the

randomization variance for any given treatment assignment is close to the expected randomization

variance averaging over all possible treatment assignments, and the variation in the estimated cor-

relations are negligible. This suggests that for large samples, the computed correlation matrix for

the randomization distribution will have asymptotically negligible variation under the treatment

assignment distribution.

Theorem 4.6.1. Assume (4.6) and (4.11), and Assumptions A1–A5. Then for any nonzero contrast

vectors c, c1, and c2, we have

1.

VarR(c
′Ỹ )

ET

[

VarR(c′Ỹ )
]

p−→ 1.

2.
√

VarT

(

CovR(c′1Ỹ , c′2Ỹ )
)

√

VarR(c′1Ỹ )VarR(c′2Ỹ )

p−→ 0.
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Proof. From the previous lemma,

ET [CovR(c
′
1Ỹ , c′2Ỹ )] = m

[

s2
wŶ ∗

+
W 2m

m− 1
(β2 − β

2
)

]

c′1Dc2,

VarT (CovR(c
′
1Ỹ , c′2Ỹ )) =

4W 2m3

(m− 1)2
s2
wŶ ∗

(β2 − β
2
)(c′1Dc2)

2.

Before the asymptotic analysis, we will show that ET

[

VarR(c
′Ỹ )
]

6= 0. From the expression,

we see that the expectation can only be zero if c′Dc = 0 or if both s2
wŶ ∗

= 0 and β = β1 for some

β ∈ R. Since c is nonzero and D is positive definite, we have that c′Dc > 0. Also, Assumption A5

implies that s2
wŶ ∗

is bounded away from zero. Thus we conclude the denominator is nonzero.

Based on the formulas above, we obtain

√

VarT

(

VarR(c′Ỹ )
)

ET

[

VarR(c′Ỹ )
] =

2W
√
m

m−1
swŶ ∗

√

β2 − β
2

s2
wŶ ∗

+W 2 m
m−1

(β2 − β
2
)

=
1√

m− 1





2swŶ ∗W
√

m
m−1

(β2 − β
2
)

s2
wŶ ∗

+W 2 m
m−1

(β2 − β
2
)



 .

If we let a = s2
wŶ ∗

> 0 and b = W 2 m
m−1

(β2 − β
2
) > 0, the expression in parantheses is

2
√
ab/(a+ b). Since for positive real numbers the arithmetic mean is always greater than or equal

to the geometric mean, as m → ∞

√

VarT

(

VarR(c′Ỹ )
)

ET

[

VarR(c′Ỹ )
] ≤ 1√

m− 1
→ 0.

It follows from Chebyshev’s inequality that this is a sufficient condition for

VarR(c
′Ỹ )

ET

[

VarR(c′Ỹ )
]

p−→ 1.
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For the second part,

√

VarT

(

CovR(c′1Ỹ , c′2Ỹ )
)

√

VarR(c′1Ỹ )VarR(c′2Ỹ )
=

√

VarT

(

CovR(c′1Ỹ , c′2Ỹ )
)

√

ET

[

VarR(c′1Ỹ )
]

ET

[

VarR(c′2Ỹ )
]

√

ET

[

VarR(c′1Ỹ )
]

ET

[

VarR(c′2Ỹ )
]

√

VarR(c′1Ỹ )VarR(c′2Ỹ )
.

By the result just proven, we know that the second part converges in probability to 1. Therefore,

we focus on the first part.

For the standard error,

√

VarT

(

CovR(c′1Ỹ , c′2Ỹ )
)

√

ET

[

VarR(c′1Ỹ )
]

ET

[

VarR(c′2Ỹ )
]

=
2swŶ ∗W

√
m

m−1

√

β2 − β
2

s2
wŶ ∗

+W 2 m
m−1

(β2 − β
2
)

c′1Dc2
√

(c′1Dc1)(c′2Dc2)

≤ 1√
m− 1

→ 0

by the arguments above and properties of inner products.

If we consider a single contrast and a one sample test, the above result implies

PT





c′Ŷ − 0
√

VarR(c′Ỹ )
≥ Φ−1(1− α)



 .

Under the treatment assignment distribution, c′Ŷ approximately follows a normal distribution

with mean c′βN̂ and variance VarT (c
′Ŷ ), defined earlier. Thus we find the power is

PT





c′Ŷ − c′βN̂
√

VarT (c′Ŷ )
≥

Φ−1(1− α)
√

VarR(c′Ỹ )− c′βN̂
√

VarT (c′Ŷ )



 .
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From the above result, we can derive the following approximate formula for power, which can be

known from the sample and the true treatment effect size, and is fixed conditioned on the sample:

Power ≈ 1− Φ





Φ−1(1− α)
√

ET [VarR(c′Ỹ )]− c′βN̂
√

VarT (c′Ŷ )



 .

For a two sided test, one can replace α with α/2 and add the two pieces corresponding to both

sides of the test.

4.7 Extending Inference to the Finite Population

In the previous chapters, we showed that the test conditioned on the sample admits a central

limit theorem conditioned on the sample. In this section, we will argue that this inference can be

extended to the finite population as well. To do this, we will demonstrate the distribution of the

estimators given a finite population.

The finite population limit theorem corresponds to the following infeasible test on the finite

population: 1) take a sample of size m from a population of size M using a probability sampling

design, 2) assign treatments to the sampled units in a completely randomized design, 3) randomize

the treatment labels independently of and with the same distribution as the true treatment assign-

ment (the randomized treatment labels will not be independent of each other, just independent of

the true treatment assignments). We will also assume in this discussion that the sampling design is

a fixed-size design, at least at the experimental unit level.

4.7.1 Notation and Lemmas

To simplify notation, we will denote N as the size of the finite population and n as the size

of the sample drawn. As shown above, the expected value of the contrast test statistic under the

treatment assignment distribution is

ET [CŶ ] = Cβ
∑

i∈S
wiN̂i = CβN̂ ,
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or the contrast of treatment effects multiplied by the estimated number of observational units in

the population. The contrast of treatment effects is a constant, and under many sampling designs,

the estimated total number of observational units in the sample is asymptotically normal. This

leads to the reasonable assumption that mM−2VarS(
∑H

h=1

∑

i∈Sh
whiN̂hi) = σ2

N . The full list of

assumptions to prove asymptotic normality is below.

A1* The ratio of treatment assignments is not too unbalanced, i.e. there is a B < ∞ such that

maxk m
(k)/mink m

(k) < B for all possible sequences of samples.

A2* The sampling design is such that there is a b > 0 and A,B < ∞ for which b < wi < B for

all experimental units i in the finite populations, uniformly for all m > A.

A3* There is some B < ∞ such that the sequence of finite populations and sampling designs

satisfies
∑∞

m=1 P
(

m−1
∑

i∈S |N̂i|2+δ ≥ B
)

< ∞.

A4* There is some B < ∞ such that the sequence of finite populations and sampling designs

satisfies
∑∞

m=1 P
(

m−1
∑

i∈S |Ŷ ∗
i+|2+δ ≥ B

)

< ∞.

A5* For some ǫ > 0, the sequence of finite populations and sampling designs satisfies

P
(

s2
wŶ ∗

(1− r2) < ǫ
)

< ∞.

A6* The sampling design is such that the estimator of the number of observational units (OUs)

in the population is asymptotically normal.

m1/2

M
(N̂ −N)

d−→ N (0, σ2
N).

The variance in the limiting normal distribution is allowed to be zero.

The condition on the weights is already a condition on the sampling design, and the assump-

tions on independence of blocks and balance of treatments only apply to the experimental design.

Therefore, if we have that for almost all sequences of samples drawn from the sampling design
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the assumptions on the distributions of Ŷ ∗
hi+, N̂hi, and the assumption ensuring that the variance

is positive hold for all “large” m, that will suffice to show that the conditional CLT will hold for

almost all sequences of samples as well.

Given that we have shown above that the test statistic (conditioned on the sample) converges

to a normal distribution, we can show that under sampling designs satisfying Assumption A6*, the

distribution of the test statistic (conditioned on the finite population) is asymptotically normal as

well. This result is stated in the following lemma.

Lemma 4.7.1. From Theorem 1.3.6 in Fuller [2009].

Let {FN} be a sequence of finite populations and {SN} be a sequence of samples, and let θ̂N be a

function of the elements of the sample, θ̃N be θ̂N calculated on a permuted version of the sample,

and θN be a sequence of functions of the elements of FN . Then suppose that we have, conditionally

on the sequence {FN}

s−1
1,N(θ̃N − θ̂N)|SN

d−→ N (0, 1) almost surely

s−1
2,N(θ̂N − θN)|FN

d−→ N (0, 1)

where in the first line, the randomness is induced by the possible sequences of samples drawn from

the sequences of finite population.

It then follows that

(s21,N + s22,N)
−1/2(θ̃N − θN)|FN

d−→ N (0, 1).

Now that we have proven the preliminary results, we can state and prove the main theorem.

Theorem 4.7.1. Under Assumptions A1*–A6* above, the distribution of CŶ is asymptotically

normal with respect to both the sampling distribution and the treatment assignment distribution.

Proof. The proof is an application of Theorem 1.3.6 in Fuller [2009].
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It is clear that Assumptions A1* and A2* state that Assumptions A1 and A2 hold for almost

all sequences of samples. Assumptions A3*–A5* verify through the first Borel-Cantelli lemma

that almost surely, under the randomness due to the sampling design, there will be some A > 0

such that Assumptions A3–A5 will hold for all m > A. Assumption A6* shows that the asymp-

totic distribution of the estimated population size is normal. This implies that the estimate of the

treatment effect CβN̂ is asymptotically normal as well, completing the required assumptions for

Lemma 4.7.1.

Since β = 0 under the null hypothesis, the additional variance added due to sampling under

the null hypothesis is exactly 0. Thus the above theorem shows that when the null hypothesis is

true, the asymptotic distribution of the randomization test conditioned on the sample is the same

as the asymptotic distribution of the test statistic for an infeasible experiment where a sample is

repeatedly drawn from a population and experiments are assigned for each sample. This result

shows that inference conditioned on the sample does actually apply to the finite population when

a probability sample is selected.

One interesting consequence of this lemma is that if Var(N̂) = o(M2m−1), then the variance

due to sampling is negligible. This implies that, when the normality assumptions are met, the

procedure of randomizing the treatment assignments is asymptotically equivalent in distribution

to a procedure that involves taking a random sample from the population several times, and then

assigning treatments each time.

4.8 Simulation Experiments

We investigate the theory above, for linear contrasts in completely randomized designs, via

simulation. For simplicity of exposition, we include in this section additional simulation results

for nonlinear test statistics, the theory for which is discussed in Chapter 6.
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4.8.1 Simulated Population

As in Section 3.4, we created an artificial population based on data downloaded from the public

use microdata sample (PUMS) dataset (U.S. Census Bureau [2021]) for four PUMAs in northeast-

ern Colorado. Data were recoded using the same methods as in Section 3.4. Most importantly, the

Hispanic ethnicities were recoded into a binary flag for Hispanics. A propensity to respond was

then computed for each record, using record-level data in the following model:

pi = expit{2.5− 1.0(Age18-34)i − 0.5(Age35-49)i − 0.5(RaceBlack)i − 0.5(RaceAIAN)i −

0.2(RaceAPI)i − 0.2(RaceOther)i − 0.2(RaceMulti)i − 0.5(HispanicYes)i −

0.5(MaritalDivorced)− 0.5(MaritalSeparated)i − 1.0(MaritalSingle)i −

0.3(IncomeNegative)i − 1.0(Income0-15K)i − 0.6(Income15-50K)i −

0.2(Income50-100K)i − 1.0(EducNoHS)i − 0.8(EducHS/Equiv)i −

0.3(EducSomeCollege/Assoc)i − 0.1(EducBachelor)i − 2.0(HispeedNA)i −

1.2(HispeedNo)i − 0.9(PUMA100)i − 0.9(PUMA400)i + 2Zi]},

where Zi is a standard normal random variable. After the propensities were calculated, data were

cut using a procedure to generate 615 artificial “districts” of at least 500 people each. Out of the

615 districts, 105 were in PUMA 100, 215 were in PUMA 103, 180 were in PUMA 300, and 115

were in PUMA 400. The study was designed so that there was no correlation between district size

and any of the variables in the district.

4.8.2 Variables and Settings

We considered both weighted and unweighted analysis of the experiment. Weighted analy-

sis is expected to be important when weights are related to the study variables of interest in the

experiment, and not already accounted otherwise (e.g., via blocking in the design or analysis of

covariance). Accordingly, we created study variables with different amounts of correlation with
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the weights, via the equation

yi = 300 + 5a+ 2ab
wi − w̄

w̄
+ 35zi, (4.12)

where w̄ is the mean of the weights, sw is the standard deviation of the weights, zi is a standard

normal random variable, and a and b are constants that determine the treatment effect and the

variation of the treatment effect based on the weights. While the construction of these variables is

artificial, it is common in practice to have variables that are correlated with the weights.

This simulation included 4 settings each for a and b: a = 0, 1, 2, 3 and b = 0, 1, 2, 3. The

setting where a = 0 corresponds to no treatment effect for all values of b. The setting a = 3 gives

an average treatment effect of 12 across all elements. The setting b = 0 corresponds to the case

where the treatment is constant for all units. The setting b = 3 corresponds to a treatment effect

that varies greatly with weights, with larger treatment effects with larger weights. Setting a or b

equal to 1 or 2 represent intermediate cases.

Binary variables were also created for this study and were defined as 1 if yi > 350 and 0

otherwise.

4.8.3 Overview of Studies

We used the simulated population in two studies. In the first study, we compared two ap-

proximations for the randomization distribution (the distribution of the the test statistic under ran-

domized treatment labels): the Monte Carlo approximation based on 1000 randomizations and the

asymptotic normal approximation given by Theorem 4.5.1 above. In the second study, we com-

pared the size and power properties of the survey-weighted randomization test proposed here to

other competing methods.

For both studies, we considered four different test statistics: difference in means, difference in

log odds, odds ratio, and difference in the dissimilarity index. For the power curves, we compared

the survey weighted methods to their non-weighted equivalents. The methods included in this study

are Van den Brakel’s design-based method (VdB), the randomization method included in this paper
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(both the normal approximation, Rdmz, and the Monte Carlo version, Rdmz MC), and versions of

both of these methods ignoring the survey weights (VdB uw and Rdmz uw). Additionally, for

the difference in means tests, we also included differences of estimated totals using both van den

Brakel’s design-based method (VdB tot) and the randomization test discussed in this dissertation

(Rdmz tot).

4.8.4 Sampling Plan and Treatment Assignment

For the simulation study evaluating asymptotic normality, we started with three different sam-

ples with treatments assigned. The samples were a two-stage samples. The first-stage sample of

20, 40, or 60 districts with probability proportional to the proportion of Hispanics in the district.

The second stage was a sample of 10, 20, or 30 individuals, respectively, within each district by

simple random sampling. Treatments were assigned to districts by assigned half (10, 20, or 30,

respectively) of the districts to the treatment, and the other half to the control.

The asymptotic normality was tested by repeatedly randomizing treatment labels and comput-

ing the test statistic, fora total of 1000 statistics. This Monte Carlo distribution was compared to

the theoretical distribution derived in Theorems 4.4.1 and 4.5.1. The variables used in this study

were from generated from equation (4.12) with a = b = 2.

For the simulation study evaluating power, we evaluated the methods by repeatedly drawing a

sample from a population, assigning treatments, and conducting a hypothesis test. In each repeti-

tion we again selected a two-stage sample. The first-stage sample of 60 districts with probability

proportional to the proportion of Hispanics in the district. The second stage was a sample of 30

individuals within each district by simple random sampling.

Treatments were assigned to districts by a completely randomized design, randomly assigning

30 districts to the treatment and 30 districts to the control. Experimental units (EUs) are then

districts and observational units (OUs) are individuals.

The simulation study for power consisted of 1000 replications of the full process of drawing a

sample, assigning treatments, and analyzing the results with each of the methods discussed. Power
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curves were generated by using different variables generated by equation (4.12), varying a from 0

to 3 with a fixed value of b.

4.8.5 Results

Asymptotic Normality

To assess asymptotic normality, we included three settings with sample sizes of 20, 40, and

60 EUs total for each of the four statistics. Figure 4.1 shows the normal approximation (solid

curve) from Theorem 4.4.1 and a kernel density estimate (KDE) for the Monte Carlo approximation

(dashed curve). For all four statistics (rows), the KDE is a good approximation to the normal

distribution for the largest number of EUs, shown in the last column. The approximation is not as

good at the smallest number of EUs, shown in the first column.

One complication in this study is that in the middle case, m = 40, there was a district that was

an outlier that had the largest value and a weight that was about two and a half times the size of

the next smallest weight (Figure 4.2). Including this outlier resulted in a bimodal distribution for

all of the statistics (Figure 4.3 is a representative example). Therefore, the outlier was removed

in the final figures. The removal of the outlier is justified in this case because Assumption A2 for

asymptotic normality requires that the weights are bounded. Therefore, the inclusion of unusually

large weights would not be theoretically guaranteed to provide asymptotic normality.

Additionally, we notice a spike in the kernel density estimate at the maximum and minimum

of the distributions for the difference in DI at size m = 39. While it is surprising that this effect is

not also seen at size m = 20, one possible explanation for this behavior has to do with a property

of the DI that we now discuss.

Borrowing notation from Chapter 3, the difference in the DI for a variable with two categories

and an experiment with two treatments between groups that were randomly relabeled is

D̃(1) − D̃(2) =
1

2

(

|p̃(1)1 − α1|+ |p̃(1)2 − α2| − |p̃(2)1 − α1| − |p̃(2)2 − α2|
)

.
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Since there are only two proportions, we have p̃
(k)
1 + p̃

(k)
2 = α1 + α2 = 1, for k = 1, 2. Thus this

expression simplifies to

D̃(1) − D̃(2) = |p̃(1)1 − α1| − |p̃(2)1 − α1|.

Now if p̃
(1)
1 and p̃

(2)
1 are both on the same side of α1, or sign(p̃

(1)
1 − α1) = sign(p̃

(2)
1 − α1), the

absolute value has the same effect on both terms, and the above expression becomes D̃(1)− D̃(2) =

sign(p̃
(1)
1 − α1)(|p̃(1)1 | − |p̃(2)1 |). However, when sign(p̃

(1)
1 − α1) 6= sign(p̃

(2)
1 − α1), the absolute

value has a different effect on both terms, and thus we have

D̃(1) − D̃(2) = sign(p̃
(1)
1 − α1)(p̃

(1)
1 + p̃

(2)
1 − 2α1).

To see how these calculations affect the graphical results, we recall that p̃
(1)
1 and p̃

(2)
1 are both

proportions of randomly assigned groups from the same sample. Thus if the sample did not align

with the target population, the means of the distributions of p̃
(k)
1 , which would approximately be

the sample mean p̂1, would be on the same side of α1. However, if the sample mean p̂1 were close

to α1, then the sampling variability would push to a situation where α1 is between p̃
(1)
1 and p̃

(2)
1 . If

the sample were approximately balanced, then p̃
(1)
1 + p̃

(2)
1 ≈ 2p̂1 for all samples. This would set the

extreme values of this distribution at approximately ±|2p̂1− 2α1|, which would give a distribution

like that seen in the case m = 39.
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Figure 4.1: Curves showing the normal approximation to the statistic, and a kernel density estimate of

the Monte Carlo distribution. The Monte Carlo distribution is simulated with 1000 draws. The rows are

different statistics (top-bottom: difference of means, difference of log odds, odds ratio, and difference of

DIs), and the columns are different sample sizes (left-right: 20, 39, and 60). The second sample size is 39

rather than 40 due to an outlier.
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Figure 4.2: Scatterplot of the means of each of the EUs versus the total weights of the EUs in the sample of

40 EUs for the CRD normality simulation.
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Figure 4.3: Distribution of the difference of means for m = 40, including the outlier.

Power Curves

For all of the statistics, the unweighted methods outperform the weighted methods on each

of the statistics in the case where the weights are unrelated to the variables of interest (b = 0;

Figure 4.4). By contrast, when there is a large positive relationship between the effect and the

weights in the second column (b = 3), the effect is reversed. We additionally see that the weighted

methods maintain size in all of the statistics except for the difference of DIs.

While the methods held size for most of the statistics, only the Monte Carlo test held size for

the difference of DIs. One reason of this is that the null case was a situation where the popu-

lation dissimilarity index was close to 0 for both treatment and control, which is a difficult case

to linearize the DI (see Chapter 3 for more discussion). The Monte Carlo test does not rely on
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linearization, and thus can do fine. As one of the estimates gets further from 0, the linearization

works better, and we thus see the power increase.

It may be surprising to some that the unweighted tests held their size when there was no treat-

ment effect for all statistics except for the difference in DIs. One explanation for this has to do

with the nature of experimental designs embedded in surveys. Since the treatments are assigned

randomly, on a dataset, if there is a bias due to weighting in estimating totals, such bias will be

equally present in all treatments. This means that if the null hypothesis (4.9) holds that there is no

difference between the treatment and the control groups, the bias in estimating the totals for each

group will be removed by multiplying by a contrast.

The observation of weighted randomization tests having better power when there is a strong

positive relationship between the weights and the treatment effect can be explained by looking at

the correlations. When there is a strong positive correlation between the treatment effect and the

weights, then units with a stronger treatment effect are less likely to be sampled, so the unweighted

analysis will underestimate the treatment effect. This underestimation leads to smaller contrasts,

which makes it harder to reject the null hypothesis. The power curves are similar at different levels

of relationship between weights and treatment effect for the weighted tests, but there is lower

power when the positive relationship between the weights and the treatment effect is stronger for

the unweighted test.

In this simulation study, all cases of no average treatment effect were the null hypothesis (4.9)

of no difference between treatments. It is interesting to consider, however, what happens when

there is no average treatment effect in the population, but the effect is correlated with the survey

weights. This correlation analysis above suggests that if there is no average treatment effect, but

the treatment effect for individual elements varies with weights, the unweighted tests may not get

the correct size. This is because the estimation of the treatment effect would be biased, suggesting

that there is a treatment effect when, overall, there is not one.
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Figure 4.4: Curves showing power of all the methods for two-sided hypothesis tests at the α = 0.05 level.

The green dashed lines represents a rejection rate of 0.05. Each power calculation used 1000 replicates. The

statistics are in rows (top-bottom: difference of means, difference of log odds, odds ratio, and difference

of DIs). The columns are two different settings of the effect of the treatment on the response (left is no

relationship, right is a large relationship). The a and b in the axis labels refer to equation (4.12)
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4.9 Summary and Future Work

In this section, we derived a randomization test conditioned on the sample for a CRD embedded

in a complex survey. We derived expressions for the mean and variance of the components under

randomization of treatment labels. We showed that under mild conditions, contrasts of totals have

an asymptotic normal distribution under the distribution of treatment assignments, and therefore

also under randomization of labels. We showed that under moderate conditions, the randomization

variance does not vary too much under the treatment assignment distribution, making power cal-

culations feasible. We also showed that under mild conditions, the asymptotic normality extends

to the finite population as well. Through simulations, we confirmed these results, and showed

that when there is positive correlation between weights and the treatment effect, then the weighted

methods have more power to detect the differences than unweighted methods do.

In the simulation studies presented in this chapter, the only cases tested where there was no

average treatment effect followed the null hypothesis (4.9) of zero treatment effect for each unit.

Simulation studies would be useful to further examine the case where there is no average treatment

effect, but the treatment effect varies with the weights. While the randomization test invokes

the null hypothesis (4.9) that there is no difference in the treatment effect, there is no reason to

believe that randomization tests will have power to detect deviations on average. I would suspect

that unweighted methods would have biased estimated for the average treatment effect due to

the correlation with weights, and have incorrect size, while the weighted methods would have

appropriate size in this case, providing stronger rationale for the use of weighted analyses.
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Chapter 5

Randomization Test for Randomized Complete

Block Experiments Embedded in Complex Surveys

5.1 Introduction

While CRDs are a good place to start for examining experiments, due to their simplicity, ex-

periments embedded in surveys are frequently more complex. Often, the survey design will have

clustering and/or stratification. These features can make for natural blocks for experiments us-

ing a randomized block design. In this chapter, we consider randomized complete block designs

(RCBDs), in which every block contains every level of the treatment.

In this chapter, we will generalize the theory developed in the last chapter to extend to random-

ized complete block experiments embedded in complex surveys. We introduce the notation for the

block structure, and generalize the results for the treatment assignment distribution in Section 5.2.

In Section 5.3, we extend the mean and variance results for the randomization distribution. Asymp-

totic normality is established for the case of an increasing number of small blocks in Section 5.4.

Power properties conditioned on the sample are discussed in Section 5.5. In Section 5.6, results

are extended to the finite population. We discuss simulation studies in Section 5.7, and conclude

with a summary and directions for future work in Section 5.8.

5.2 Notation and Treatment Assignment

Before calculating the variances, we describe the adjustments to the notation for randomized

complete block designs.

For a randomized complete block design, we assume the sample is divided into H subsamples

S1, . . . , SH , which will serve as blocks for the experiment. These blocks could be strata used in

sampling, clusters used at an early stage in a multi-stage sampling design, or something else. For
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purposes of simplifying notation in this manuscript, we will assume additionally that the partition

1, . . . , H can also be used to represent the entire population. It is possible that blocks could be

sampled from a larger population of blocks in a randomized complete block design, but that would

make no difference for inference on the sample, and would still extend to the population by the

arguments to be discussed in Section 5.6.

Using the partitioned structure, the NHT estimator can be written as

Ŷ+ =
H
∑

h=1

Ŷh =
H
∑

h=1

∑

i∈Sh

whiŶhi+.

Now we consider the sampling design. We denote the number of EUs assigned each treatment

as |Sh| = mh. The number of these mh experimental units sampled in block h that were assigned

treatment k is m
(k)
h . Analogous to the completely randomized design, we include treatment assign-

ment indicators T
(k)
hi , and define Ť

(k)
hi = mh

m
(k)
h

T
(k)
hi . This gives the NHT estimator for the total as if

everyone had been assigned treatment k as

Ŷ
(k)
+ =

H
∑

h=1

mh

m
(k)
h

∑

i∈Sh

whiŶhi+T
(k)
hi =

H
∑

h=1

∑

i∈Sh

whiŶhi+Ť
(k)
hi .

We write the vector of these results as

Ŷ + =













Ŷ
(1)
+

...

Ŷ
(K)
+













.

In the rest of this section we will study the distribution of the contrast CŶ +.

5.2.1 Treatment Assignment and Variance

As in the CRD, we consider the distribution of the vector Ŷ + under the random treatment

assignment. For the RCBD, the experimental units are assigned to all of the treatments by a

CRD within each block. This assignment is done in each block without regard to the assignments
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in other blocks, meaning that the treatment assignment indicators T
(k)
hi and T

(k)
h′i′ are independent

when h 6= h′.

Because the assignment of treatments in a RCBD is a CRD within each block, and the assign-

ment is independent across blocks, we have that the distribution of the statistic Ŷ h from a single

block of an RCBD can be calculated using the distribution of the CRD derived in Chapter 4.

Before stating these results, we introduce additional notation. Let the sample covariance matrix

of the weighted estimates under all treatment assignments be denoted

V̂h,wŶ =
1

2mh(mh − 1)

∑

i∈Sh

∑

i′∈Sh

(whiŶ hi+ − whi′Ŷ hi′+)(whiŶ hi+ − whi′Ŷ hi′+)
′,

and let the diagonal elements of this matrix be denoted as

s2
h,wŶ (k) =

1

2mh(mh − 1)

∑

i∈Sh

∑

i′∈Sh

(whiŶ
(k)
hi+ − whi′Ŷ

(k)
hi′+).

Additionally, and also similar to the notation in Chapter 4, we define treatment assignment weights

as dh = (d
(1)
h , . . . , d

(K)
h ) = (mh/m

(1)
h , . . . ,mh/m

(K)
h ).

Now we state the following corollaries, which provide formulas for the mean and variance of

the contrast test statistic under the treatment assignment distribution with and without assuming

additivity of treatment effects at the observational unit level. This can be expressed in blocks as

Ŷ
(k)
hi = Ŷ ∗

hi + N̂hiβ
(k). (5.1)

Corollary 5.2.1. If C is a contrast matrix, then the mean and variance under the randomness due

to treatment assignment in a RCBD are given by

ET [CŶ +] = CẎ +

VarT (CŶ +) =
H
∑

h=1

mhC[V̂h,wŶ ◦ (Dh − J)]C′
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where Ẏ is the NHT estimator for the sample vector without treatments being assigned, and Dh =

diag(dh) is the diagonal matrix with the kth diagonal element d
(k)
h .

Corollary 5.2.2. If C is a contrast matrix, then, assuming additivity (5.1), the mean and variance

under the randomness due to treatment assignment in a RCBD are given by

ET [CŶ +] = CβN̂+

VarT (CŶ +) =
H
∑

h=1

mhC(Dh,wŶ − s2
h,wN̂

ββ′)C′

where N̂+ =
∑H

h=1

∑

i∈Sh
whiN̂hi is the estimated number of OUs in block h and Dh,wŶ is the

diagonal K ×K matrix with the kth diagonal element d
(k)
h s2

h,wŶ (k) .

5.3 Randomization Distribution and Test

Similar to the previous chapter, we explain a hypothesis test comparing the test statistic CŶ +

to the distribution obtained from randomizing the treatment labels on the observed dataset. To do

this comparison, we examine the distribution of the randomization contrast CỸ +, where Ỹ + is

the K-vector defined by

Ỹ
(k)
+ =

H
∑

h=1

mh

m
(k)
h

∑

i∈Sh

whiR
(k)
hi Ŷhi+ =

H
∑

h=1

∑

i∈Sh

whiŘhiŶhi+.

As in the previous section, we can directly apply results from the last chapter because the

treatment assignments in different blocks do not depend on each other.

Corollary 5.3.1. Conditioned on the sample, the randomization contrast CỸ + has mean and

variance given by

E[CỸ +] = 0

Var(CỸ +) =
H
∑

h=1

mhs
2
h,wŶ

CDhC
′,
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where

s2
h,wŶ

=
1

2m(m− 1)

∑

i∈Sh

∑

i′∈Sh\{i}
(whiŶhi+ − whi′Ŷhi′+)

2

is the variance of the observed responses from the experimental units level in block h.

5.4 Central Limit Theory

In this section, we will prove central limit theory for the treatment assignment contrast in

the situation where there are many blocks, each with few experimental units. In the previous

chapter, we proved asymptotic normality where there was one block with an increasing number of

experimental units. Because of the independence of blocks, this argument could also work if there

are a small (fixed) number of blocks, and increasing numbers of experimental units within each

block.

The central limit theory from the previous chapter provides a theoretical basis for a normal

approximation in an experiment in a survey where there are a few large regions that could be used

as blocks. The central limit theory in the this section provides such justification in a case where

there are many regions that can be divided into blocks. An example of this might be the Health

District survey (Chapter 2), where census tracts were divided into 24 blocks of approximately 3

census tracts each, and the census tracts are considered the experimental units for this study.

A third situation that could arise in surveys is an RCBD where both the block size and number

of blocks are increasing. A central limit theorem could be established for this case in the future.

5.4.1 The Central Limit Theorem

Since the treatment assignments are independent between the blocks, we can develop cen-

tral limit theory based on the Lyapunov central limit theorem for independent but not identically

distributed random variables. We now discuss conditions on the contrast vectors, the treatment

assignment, the weights, the block size, and the response. We condition on a sequence of samples

in which the Hth sample of the sequence is divided into H blocks and all levels of treatment are

randomly assigned within each block. The following assumptions hold as H → ∞.
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B1 For any blocks h, h′, the treatment assignment in block h is independent of the treatment

assignment in block h′.

B2 There exist A,B < ∞ such that k ≤ mh for all h when H > A.

B3 There are b > 0 and A,B < ∞ such that b < whi < B for all h, i when H > A.

B4 There exist δ > 0 and A,B < ∞ such that

∑H
h=1

∑

i∈Sh
|N̂hi|2+δ

∑H
h=1 mh

< B.

for all H > A

B5 There exist A,B > ∞ such that for some δ > 0,

∑H
h=1

∑

i∈Sh
|Ŷ ∗

hi+|2+δ

∑H
h=1 mh

< B)

for all H > A.

B6 Let

rh =

∑

i∈Sh
(whiŶ

∗
hi+ − whi′Ŷ

∗
hi′)(whiN̂hi − whi′N̂hi′)

2mh(mh − 1)sh,wY ∗sh,wN

For some A < ∞, b, ǫ > 0, we have

H−1

H
∑

h=1

I
(

s2
h,wŶ ∗

(1− r2h) > ǫ
)

> b.

for all H > A.

Notes on Assumptions: Assumption B1 states that the treatment assignment is independent

across blocks, which is standard for RCBDs. The next two assumptions are about weights and

block size. Assumption B2 ensures that the blocks are not too variable in size. Assumption B3

ensures that the weights are bounded and not too unbalanced, like was assumed in the previous
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chapter. This ensures the setting of many small blocks, and is useful for the Lyapunov assump-

tion to ensure that one block cannot be too big and dominate the variance term. The next two

assumptions guarantee the Lyapunov condition for the response variable under any of the treat-

ments. Assumption B4 establishes that the estimated number of observational units in each block

has a finite moment beyond the second moment. This is important because this is what is added

to the base response value to get responses under a given treatment under additivity (5.1). As-

sumption B5 establishes the same bound on the intrinsic response values. The final assumption,

Assumption B6, ensures that there is no situation where a few blocks dominate because the block

variance goes to zero for reasons not addressed in previous assumptions. While this could happen

in theory with probability proportional to size sampling, this is not a situation likely to occur in

practice, but needs to be ruled out for formality.

Theorem 5.4.1. Assuming the additivity condition 5.1 and Assumptions B1–B6 above, we have,

conditioned on the sample, that

[

H
∑

h=1

mhC(Dh,wŶ − s2
h,wN̂

ββ′)C′

]−1/2 H
∑

h=1

(CŶ h −CβN̂h)
d−→ N (0, I)

as H → ∞.

Proof. For any column-vector v and contrast matrix C, v′
C is a contrast row-vector. Therefore,

by the Cramér-Wold Device it suffices to show that for any contrast vector c, we have

[

H
∑

h=1

mhc
′(Dh,wŶ − s2

h,wN̂
ββ′)c

]−1/2 H
∑

h=1

(c′Ŷ h − c′βN̂h)
d−→ N (0, 1).

Because treatments are assigned independently across blocks (Assumption B1), we can apply

the Lyapunov CLT using assumptions on each block, that is show that for some δ > 0

[

VarT (cŶ +)
]−(2+δ)/2

H
∑

h=1

ET

[

|c′Ỹ h − c′βN̂h|2+δ
]

→ 0.

109



We first focus on the overall variance term of the Lyapunov condition. Recall

VarT (cŶ +) =
H
∑

h=1

mhc
′(Dh,wŶ − s2

h,wN̂
ββ′)c.

From Lemma 4.5.3 and mh/m
(k)
h ≥ 1 for each k, we have

VarT (cŶ +) =
H
∑

h=1

mhc
′(Dh,wŶ − s2

h,wN̂
ββ′)c

≥
H
∑

h=1

mh

K
∑

k=1

(c(k))2
mh

m
(k)
h

s2
h,wŶ ∗

(1− r2h)

≥ ‖c‖22
H
∑

h=1

mhs
2
h,wŶ ∗

(1− r2h).

From Assumptions B2, B6, we have that for some b, ǫ > 0,

H
∑

h=1

mhs
2
h,wŶ

(1− r2h) ≥ Hbǫ.

We now focus on the sum
∑H

h=1 ET [|c′Ŷ h − c′βN̂h|2+δ]. Applying Jensen’s inequality gives

|c′Ŷ h − c′βN̂h|2+δ ≤ (|c′Ŷ h|+ |c′βN̂h|)2+δ

≤ 21+δ(|c′Ŷ h|2+δ + |c′βN̂h|2+δ)

= 21+δ

∣

∣

∣

∣

∣

∑

i∈Sh

mhwhi(Ŷ
∗
hi+ + N̂hiT

′
hiβ)

∣

∣

∣

∣

∣

2+δ

+ 21+δ|c′βN̂h|2+δ.

Applying Jensen’s inequality again, we learn that

∣

∣

∣

∣

∣

∑′
i∈Sh

mhwhi(Ŷ
∗
hi+ + N̂hiT

′
hiβ)

∑

i∈Sh
mhwhi

∣

∣

∣

∣

∣

2+δ

≤
∑

i∈Sh
mhwhi|Ŷ ∗

hi+ + N̂hiT
′
hiβ|2+δ

∑

i∈Sh
mhwhi

≤ 21+δ

∑

i∈Sh
mhwhi(|Ŷ ∗

hi+|2+δ + |N̂hi maxk β
(k)|2+δ)

∑

i∈Sh
mhwhi

.
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We note that, conditioned on the sample, there is nothing random in the final expression, so the

expectation can be dropped.

Using the Assumptions B3 and B2 to bound the weights and the block sizes and noting that the

treatment effects are uniformly bounded, we find that there are constants BY , BN < ∞ such that

H
∑

h=1

|c(k)Ŷ h|2+δ ≤ BY

H
∑

h=1

∑

i∈Sh

|Y ∗
hi+|2+δ +BN

H
∑

h=1

∑

i∈Sh

|N̂hi|2+δ.

Putting everything together, we have that under the conditions stated above

VarT (c
′Ŷ +)

−(2+δ)/2

H
∑

h=1

ET [|c′Ỹ h − c′βN̂h|2+δ]

≤
BY

∑H
h=1

∑

i∈Sh
|Y ∗

hi+|2+δ +BN

∑H
h=1

∑

i∈Sh
|N̂hi|2+δ

(Hbǫ)(2+δ)/2

≤ H−δ/2
BY

∑H
h=1

∑

i∈Sh
|Y ∗

hi+|2+δ +BN

∑H
h=1

∑

i∈Sh
|N̂hi|2+δ

H(bǫ)(2+δ)/2
.

Now since δ > 0 and the expression after H−δ/2 is O(1), we have that this expression converges

to 0, verifying the Lyapunov condition.

To complete the proof, we note that the centering and scaling of each block were verified in

Lemma 4.3.1.

We will later revisit asymptotic normality with respect to the general population.

5.5 Treatment Assignment and Randomization: Power

In this section, we examine both the treatment assignment and randomization distributions to

understand how to estimate the power of a randomization test for a randomized complete block

design experiment. As in Section 4.6, we will show that the variation of the randomization distri-

bution under different treatment assignments is asymptotically negligible. However, like in Sec-

tion 5.4, the asymptotics here will depend on the number of blocks increasing, rather than the
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number of EUs within blocks getting larger. We will also explain how these results and the results

from Section 4.6 can be used to calculate power for many RCBDs embedded in surveys.

As in Chapter 4, we add an assumption that experimental units are sampled with probability

proportional to size. Using the new notation to allow for blocks, this can be written as

For each block h, whiN̂hi = Wh. (5.2)

Theorem 5.5.1. Assume (5.1), (5.2), and Assumptions B1–B6. Then for any nonzero contrast

vectors c, c1, and c2,

VarR(c
′Ỹ +)

ET

[

VarR(c′Ỹ +)
] =

∑H
h=1 VarR(c

′Ỹ h)
∑H

h=1 ET

[

VarR(c′Ỹ h)
]

p−→ 1,

and
√

VarT

(

CovR(c′1Ỹ +, c′2Ỹ +)
)

√

VarR(c′1Ỹ +)VarR(c′2Ỹ +)

p−→ 0.

Proof. Recall, assuming (5.1), (5.2), and the independence of treatment assignment across blocks

(B1) that

ET [VarR(c
′Ỹ +)] =

H
∑

h=1

mh

[

s2
h,wŶ ∗

+
W 2

hmh

mh − 1
(β2

h − β
2

h)

]

c′Dhc

VarT

(

VarR(c
′Ỹ +)

)

=
H
∑

h=1

4W 2
hm

3
h

(mh − 1)2
s2
h,wŶ ∗

(β2
h − β

2

h)(c
′
Dhc)

2.

Under the assumptions above, we have established that the terms are such that uniformly for

all H > A, there are constants B, b, and ǫ such that

mh

[

s2
h,wŶ ∗

+
W 2

hmh

mh − 1
(β2

h − β
2

h)

]

c′Dhc ≤ B
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and that

1

H

H
∑

h=1

I

(

mh

[

s2
h,wŶ ∗

+
W 2

hmh

mh − 1
(β2

h − β
2

h)

]

c′Dhc ≥ b

)

≥ ǫ.

By the fact that arithmetic means are larger than geometric means, we have that

VarT

(

VarR(c
′Ỹ h)

)

= 2mhsh,wŶ ∗

Wh
√
mh

mh − 1

√

β2 − β
2
(c′Dhc)

≤ mh

[

s2
h,wŶ ∗

+
W 2

hmh

mh − 1
(β2

h − β
2

h)

]

c′Dhc.

Thus we find
√

√

√

√

H
∑

h=1

VarT

(

VarR(c′Ỹ h)
)

≤

√

√

√

√

H
∑

h=1

B2 = B
√
H.

Using Assumption B3, we obtain

√

∑H
h=1 VarT

(

VarR(c′Ỹ h)
)

∑H
h=1 ET

[

VarR(c′Ỹ h)
] ≤ B

√
H

bǫH
= O(H−1/2) → 0.

Now we will show the result about the correlation matrix. As in the proof of Theorem 4.6.1,

the result just proven means that it suffices to show that

VarT

(

CovR(c
′
1Ỹ +, c

′
2Ỹ +)

)

ET

[

VarR(c′1Ỹ +)
]

ET

[

VarR(c′2Ỹ +)
]

p−→ 0.

Here,

VarT

(

CovR(c
′
1Ỹ h, c

′
2Ỹ h)

)

= 2mhs
2
h,wŶ ∗

W 2
hm

2
h

(mh − 1)2
(β2 − β

2
)c′1Dhc2

and

ET

[

VarR(c
′
1Ỹ +)

]

=
H
∑

h=1

mh

[

s2
h,wŶ ∗

+
W 2

hmh

mh − 1
(β2

h − β
2

h)

]

c′1Dhc1.
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Since Dh is a diagonal matrix with all entries greater than 1, we have that for all h, c′1Dhc1 ≥

c′1c1 ≥ min{c′1c1, c′2c2}. Therefore, we have

ET

[

VarR(c
′
1Ỹ +)

]

ET

[

VarR(c
′
2Ỹ +)

]

≥
(

H
∑

h=1

mh

[

s2
h,wŶ ∗

+
W 2

hmh

mh − 1
(β2

h − β
2

h)

]

)2

min{c′1c1, c′2c2}.

Now from similar arguments to above, there are constants B, b, and ǫ such that, for H > A,

VarT

(

CovR(c
′
1Ỹ +, c

′
2Ỹ +)

)

ET

[

VarR(c′1Ỹ +)
]

ET

[

VarR(c′2Ỹ +)
] ≤ HB

H2bǫ
= O(H−1)

p−→ 0,

completing the proof.

The above results show that the variance of any single randomization contrast converges the

expectation under treatment assignment of that variance in the sense that the ratio between the two

statistics converges to 1. We also showed that the variance of the correlations is asymptotically

negligible. We will now use these results to discuss power computations for many RCBDs.

In Section 4.6, we derived the asymptotic power of the one-sided test for a single contrast for a

CRD, under the stated conditions. Those computations apply analogously to show that under the

conditions in the hypothesis of Theorem 5.5.1,

PT





c′Ŷ + − c′βN̂+
√

VarT (c′Ŷ +)
≥

Φ−1(1− α)
√

VarR(c′Ỹ +)− c′βN̂+
√

VarT (c′Ŷ +)



 .

Applying the above theorem, we obtain an approximate formula for power in RCBDs with

many small blocks (or few large blocks by the results from Section 4.6). Assuming (5.1), (5.2),
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and Assumptions B1–B6, the power is approximately

1− Φ





Φ−1(1− α)
√

ET [VarR(c′Ỹ +)]− c′βN̂+
√

VarT (c′Ŷ +)



 .

These terms can be approximated by investigator knowledge of the variability of the phenomenon

being investigated, the expected effect size, and the formula provided above for ET [VarR(c
′Ỹ +].

5.6 Extending to Finite Population

In this section we show how the randomization methodology can be extended to the finite

population. As in Chapter 4, we apply Theorem 1.3.6 from Fuller [2009]. To apply this theorem,

we need to restate the assumptions to guarantee that the conditional asymptotic normality occurs

in almost all sequences of samples from the sequence of finite populations.

B1* For all possible sampling designs, the block sizes are bounded, meaning that there is a B <

∞ such that for all H , maxh mh < B.

B2* The sampling design admits a b > 0 and A,B < ∞ such that uniformly for all H > A,

b < whi < B

for all experimental units hi in the finite population.

B3* There exist B < ∞, δ > 0 and a sequence ǫH > 0 where
∑∞

H=1 ǫH < ∞ such that for all H

P

(

∑H
h=1

∑Mh

i=1 |N̂hi|2+δ

∑H
h=1 Mh

< B

)

> 1− ǫH .

B4* There exist B < ∞, δ > 0 and a sequence ǫH > 0 where
∑∞

H=1 ǫH < ∞ such that for all H

P

(

∑H
h=1

∑Mh

i=1 |Ŷ ∗
hi+|2+δ

∑H
h=1 Mh

< B

)

> 1− ǫH .
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B5* For some ǫ > 0 and b > 0, we have that the sequence of finite populations and sampling

designs satisfies

PS( lim
H→∞

H−1

H
∑

h=1

I(s2
h,wŶ ∗

(1− r2h) ≥ ǫ) ≥ b) = 1,

where PS is the probability with respect to the randomness induced by the sampling designs.

B6* The sampling design is such that the estimator of the number of observational units (OUs)

in the population is asymptotically normal, that is

m1/2

M
(

H
∑

h=1

∑

i∈Sh

whiN̂hi −
H
∑

h=1

Mh
∑

i=1

Nhi)
d−→ N (0, σ2

N),

as H → ∞. The variance in the limit is allowed to be zero.

Now that the assumptions have been appropriately modified, we state the theorem.

Theorem 5.6.1. Under the Assumptions B1*–B6* above, the distribution of CŶ + is asymptoti-

cally normal with respect to both the sampling distribution and the treatment assignment distribu-

tion.

Proof. The proof is an application of Theorem 1.3.6 in Fuller [2009].

Assumptions B1* and B2* show that Assumptions B2 and B3 hold for all samples. Assump-

tions B3* and B4* show via the first Borel-Cantelli Lemma that Assumptions B4 and B5 hold

almost surely. Lastly Assumption B6* above guarantees that the the expected value of the contrast

under treatment assignment at the sample level is a consistent and asymptotically normal estimate

for the value of the contrast as if it were applied to the whole population. This completes the

necessary conditions for Theorem 1.3.6 in Fuller [2009], from which the result follows.

We additionally note here, as in the previous chapter, that because we consider the variation of

both treatment assignment and sampling, Theorem 5.6.1 does apply to show asymptotic normality

for the design-based test statistic proposed by van den Brakel [2001], with respect to all stochastic

elements except for the measurement error model.
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5.7 Simulation Experiments

5.7.1 Population and Variables

The population used for this simulation study was the same as that used in the simulation

study for the CRD case in Section 4.8 based on US Census Bureau data from four PUMAs in

northeastern Colorado, grouped into artificial districts within the PUMAs by a propensity score

method. The study variables for this experiment were created using the same methods as in the

previous chapter, but with different weights, reflecting a different sampling design. The continuous

response variable was created to be positively correlated with weights, following equation (4.12).

The binary variables were again created by an indicator of whether the continuous variable was

greater than 350. For more details, see Section 4.8.

5.7.2 Overview of Studies

We used the simulated population in two studies. In the first study, we compared two ap-

proximations for the randomization distribution (the distribution of the the test statistic under ran-

domized treatment labels): the Monte Carlo approximation based on 1000 randomizations and the

asymptotic normal approximation given by Theorem 5.4.1 above. In the second study, we com-

pared the size and power properties of the survey-weighted randomization test proposed here to

several alternative methods.

For both studies, we considered four different test statistics: difference in means, difference in

log odds, odds ratio, and difference in the dissimilarity index. For the power curves, we compared

the survey weighted methods to their non-weighted equivalents. The methods included in this study

are van den Brakel’s design-based method (VdB), the randomization method included in this paper

(both the normal approximation, Rdmz, and the Monte Carlo version, Rdmz MC), and versions of

both of these methods ignoring the survey weights (VdB uw and Rdmz uw). Additionally, for

the difference in means tests, we also included differences of estimated totals using both van den

Brakel’s design-based method (VdB tot) and the randomization test discussed in this dissertation

(Rdmz tot).
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5.7.3 Sampling Plan and Treatment Assignment

For both of the simulation studies, the sample was a two-stage sample with stratified sam-

pling in both stages. The first stage is sample of districts, stratified by PUMA. Six districts were

selected within each PUMA with probability proportional to the number of individuals in the dis-

trict. Within each district, individuals were stratified based on a noisy indicator of Hispanic origin.

A noised Hispanic origin variable was created to mimic the noise found in auxiliary variables pur-

chased in real surveys. This noised variable was created so that people were Hispanic had an 80%

chance of being labeled as Hispanic and people who were not Hispanic had a 4% chance of being

labeled as Hispanic. The second-stage sample within each district was then a stratified sample of

30 individuals labeled Hispanic and 30 individuals labeled non-Hispanic. For the size and power

study, the sample was redrawn each time. For the normality study, only one sample was drawn and

the test involved testing the normality of the randomization distribution.

For the assessment of normal approximation of the randomization test distribution, we used

the same general sampling design described for the size and power experiment, but considered

three different sample sizes. As with the CRD experiment, variables are considered with setting

a = b = 2. The sample sizes considered were 2, 4 and 6 districts in each of the four PUMAs at

the first stage, corresponding to 16, 32 or 48 blocks (predicted Hispanic/non-Hispanic strata within

district). Within these blocks, there were, respectively, 10, 20, or 30 individuals per block.

For the size and power study, treatments were assigned to districts by a randomized complete

block design where the experimental units were individuals and the blocks were strata within

districts, divided by whether the sampled individuals were labeled Hispanic. Within each block,

15 EUs were assigned the treatment and 15 EUs were assigned the control. Power curves were

generated by evaluating power for variables as a increased from 0 to 3 for each fixed value of b, as

in the CRD case.
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5.7.4 Results

Normal Approximation

Figure 5.1 shows the normal approximation from Theorem 5.6.1 and a kernel density estimate

based on 1000 Monte Carlo draws from the randomization distribution. The normal approximation

appears to work well for all statistics at the largest number of blocks tested in the third column (48

blocks), though a small amount of skewness may be present for testing odds ratios. The figure

provides empirical support for Theorem 5.6.1.

In the smaller sample sizes, we see that the difference of means is very close to the normal

distribution even with only 16 blocks. The difference of log odds has some abnormal deviation

from normality at 16 blocks, but appears normal at 32 and 48 blocks. The deviation at 16 blocks

may be due to the discrete nature of binary data. The odds ratio is very skewed at 16 blocks, and

becomes more normal, with only slight skew present at 48 blocks. This is unsurprising as the

odds ratio is the exponent of the difference in log odds (see discussion in Section 6.4), which is

symmetric at all sample sizes. As there is more variability in the statistics at smaller sample sizes

than larger sample sizes (all else held constant), the smaller range makes the skew disappear.

The randomization distribution of difference in DI is poorly approximated by the normal dis-

tribution at the smallest sample size, as was the case at the middle sample size in the CRD case

described in Section 4.8.5. As the sample size gets larger, the precision of the estimates improves

so the estimates of the difference are no longer impacted by the bounding effect explained in Sec-

tion 4.8.5.
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Figure 5.1: Curves showing the normal approximation to the statistic, and a kernel density estimate of

the Monte Carlo distribution in the RCBD. The Monte Carlo distribution is simulated with 1000 draws.

The rows are different statistics (top-bottom: difference of means, difference of log odds, odds ratio, and

difference of DIs), and the columns are different sample sizes (left-right: 16, 32, and 48 blocks).

Power Curves

From examining the power curves in Figure 5.2, all of the methods maintain good size when

there is actually no difference between the treatments, except for the difference of DIs. All of the

tests have increasing power with greater sample size, which confirms that the methodology works.

These confirm in the setting of an RCBD the results obtained in the CRD setting in Section 4.8.5.
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For the randomization tests, we see the same story as in the CRD case, where we see lower

power with little relationship between the weights and the treatment effects, but much more power

when there is a large positive relationship between weights and treatment effects.

In the RCBD case, we also see that there is very little difference in power between the ran-

domization test and the test proposed by van den Brakel (except in the case of the odds ratio).

This is different from what was seen in a CRD. This may be because blocking reduced some of

the variation. More investigation would be needed to determine what factors affect differences in

power between these two methodologies.

For the odds ratio, the difference in power has to do with properties of the exponential function.

The linearization is based on exponentiating the difference of log odds, and in this study, the

difference in log-odds was positive. The slope of the exponential function at the true odds ratio (the

center of linearization for the van den Brakel method) is greater than at 0 (the center of linearization

for the randomization method). This means the estimated variance is higher for van den Brakel’s

method, which explains why the randomization method in this dissertation had more power in this

situation. This suggests that if the odds ratio were less than 1, van den Brakel’s method would have

more power detecting such a difference. This would be worth checking in future simulations.
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Figure 5.2: Curves showing power of all the methods for two-sided hypothesis tests at the α = 0.05 level

in the RCBD. The green dashed lines represents a rejection rate of 0.05. Each power calculation used 1000

replicates. The statistics are in rows (top-bottom: difference of means, difference of log odds, odds ratio,

and difference of DIs). The columns are two different settings of the effect of the treatment on the response

(left is no relationship, right is a large relationship). The a and b in the axis labels refer to equation (4.12)
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5.8 Summary and Future Work

In this chapter, we extended the theory on the FPW style randomization test, conditioned on the

sample, for randomization tests embedded in complex surveys to apply for randomized complete

block designs. We derived expressions for the mean and variance of the treatment assignment dis-

tribution of the contrast and of the randomization contrast, and showed theory justifying a normal

approximation in cases of a few large blocks, and of many small blocks. We further showed power

properties of this method, and showed that the inference extended to the finite population. We

concluded with simulation studies confirming asymptotic normality and comparing this method to

other methods that had been proposed using power curves.

We have established asymptotic normality in the case of a few blocks of large size by adapting

results from Chapter 4. We also developed more theory in this chapter to provide central limit

theory to cases with many blocks of small size. More work could be done to fill the gap in the case

of many blocks with large size. Additionally, providing a central limit theory for other experimental

designs, including split-plot designs and incomplete block designs remains an open problem.

Simulation studies showed that the power loss compared to the design-based method proposed

by van den Brakel [2001] is minimal in the case with many blocks. More investigation should be

taken to understand why this may be. It would also be useful to have future simulation studies

comparing these methods in experiments in surveys, analogous to the study undertaken by Ding

[2017].
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Chapter 6

Extensions of Randomization Tests for Experiments

Embedded in Complex Surveys

6.1 Introduction

In the previous two chapters, we introduced randomization tests conditioned on the sample, and

proved that the distribution of contrasts of totals satisfies a normal distribution both conditioned

on the sample and unconditionally. Theory was developed for completely randomized designs

(Chapter 4) and randomized complete block designs (Chapter 5), while using the NHT estimator

for surveys.

In this chapter, we extend some of the theory and discuss some issues that can be present

when using a randomization test in practice. We first discuss the Monte Carlo randomization test

in more detail in Section 6.2. We then discuss how these randomization tests can be used with

the generalized regression (GREG) estimator in Section 6.3, and how linearization techniques can

work with the randomization methodology in Section 6.4. We discuss potential practical hurdles

to randomization procedures with special focus on the presence of nonresponse in Section 6.5. We

conclude in Section 6.6 with a summary of the contributions in this chapter and some directions

for future research.

6.2 The Monte Carlo Test

While the previous chapters focused primarily on developing theory for a normal approxima-

tion to the randomization test for linear statistics, there are some cases in which the estimators

may be nonlinear, and may not have asymptotic normal distributions. While many commonly

used statistics can be approximated by a linear expression (cases like this are discussed in Sec-
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tion 6.4), there are some statistics that cannot. It could also be that the experimental design is very

complicated, or that a linear approximation may not be good enough for the investigators’ needs.

To review, a Monte Carlo randomization test is a test that computes a test statistic over the

randomization of treatment assignments for a large number of the possible treatment assignments

that are possible for the given finite population. If there were no difference between treatments,

then one would expect the statistic calculated from the original treatment assignment to be within

the range of statistics calculated when the treatment assignments were randomized. Therefore

if there are very few randomizations that give a statistic more “extreme” than obtained initially,

there is evidence that the treatment had an effect. This theory also is the basis of the normal

approximations discussed in Chapters 4 and 5.

The Monte Carlo test is a flexible test that can be used for any type of statistic that an investi-

gator may be interested in. In some modern surveys, experiments can be designed in complicated

ways. For example, in the targeted mailing for the Health District survey (discussed in Chapter 2),

addresses that were assigned to receive the targeted mailing were disproportionately from groups

that were thought to be less likely to respond. Without accounting for the complicated designs, the

effect on the results would be difficult to measure.

In some cases, a statistic may not be able to be linearized. For example, if an investigator

is interested in comparing log-rank tests under different survey treatments, then a linearization is

impossible. It was also seen in the simulation studies (Sections 4.8 and 5.7) that linearization of

the difference in DIs fails when the DIs are within a few standard errors of zero.

The simulations for both a completely randomized design and a randomized complete block

design involved comparing inferences from the normal approximation to the randomization test to

a Monte Carlo test. As a review, these results showed similarity between the randomization test

and MC for the Hájek-type ratio estimator and the estimator of the difference of log-odds. We saw

bigger differences in power for the odds ratio and the dissimilarity index.

This discussion shows that a Monte Carlo test can be a useful way to evaluate a wide va-

riety of statistics for many types of randomized experiments. This is a major advantage of the
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randomization method described in this dissertation over the design-based test of van den Brakel

[2001]. Because van den Brakel’s methodology requires the approximation the distribution of the

test statistic with normal theory, it may not work for very complicated statistics or experimental

design. Because the randomization test described in this dissertation relies on the treatment ran-

domization conditioned on the sample, it allows for a Monte Carlo test that can be used in many

situations.

6.3 The Generalized Regression Estimator

The generalized regression (GREG) estimator is one example of a calibration estimator (Deville

and Sarndal [1992]). A calibration estimator of a survey total that allows for use of auxiliary

information in the form of population totals of variables collected in the sampling. This often

improves efficiency when estimating survey totals.

The GREG estimator for the full sample, ignoring the treatments, is

Ŷ+GR =
H
∑

h=1

∑

i∈Sh

whiŶhi+ +
H
∑

h=1

Mh
∑

i=1

(xhi − whiI(i ∈ Sh)xhi)
′b̂,

where b̂ is the estimated value of the regression coefficient for the sample, specifically

b̂ =

(

H
∑

h=1

∑

i∈Sh

whixhix
′
hi

)−1 H
∑

h=1

∑

i∈Sh

whixhiŶhi+.

Here, only the sample weights are included in estimation of the coefficient vector, for ease of nota-

tion. It is straightforward to include an additional term to account for heteroscedasticity (Chapter 6

of Särndal et al. [1992], for example).

Considering a specific treatment, k, the GREG estimator for the population total from the

subsample assigned treatment k is

Ŷ
(k)
+GR =

H
∑

h=1

∑

i∈Sh

whiŤ
(k)
hi Ŷhi+ +

H
∑

h=1

Mh
∑

i=1

(xhi − whiI(i ∈ Sh)Ť
(k)
hi xhi)

′b̂
(k)
,
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where b̂
(k)

is the estimated regression coefficient on the subsample assigned treatment k, meaning

b̂
(k)

=

(

H
∑

h=1

∑

i∈Sh

whiŤ
(k)
hi xhix

′
hi

)−1 H
∑

h=1

∑

i∈Sh

whiŤ
(k)
hi xhiŶ

(k)
hi+.

As with the NHT estimator, we can consider a randomization version of this estimator to use

in the randomization test. This is

Ỹ
(k)
+GR =

H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi Ŷhi+ +

H
∑

h=1

Mh
∑

i=1

(xhi − whiI(i ∈ Sh)Ř
(k)
hi xhi)

′b̃
(k)
,

where b̃
(k)

is the estimated value of the regression coefficient for the subsample randomly labeled

with treatment k, denoted

b̃
(k)

=

(

H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi xhix

′
hi

)−1 H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi xhiŶ

(k)
hi+.

This will have the same distribution of test statistic under the null hypothesis (4.9) that the treatment

had no effect.

Also like the NHT estimator, we can write the estimated totals under all treatments as a vec-

tor and consider contrasts. That is, we can write Ŷ +GR = (Ŷ
(1)
+GR, . . . , Ŷ

(1)
+GR)

′ and Ỹ +GR =

(Ỹ
(1)
+GR, . . . , Ỹ

(1)
+GR)

′, which leads to investigation of the test statistic CŶ +GR with the randomiza-

tion distribution of CỸ +GR via a randomization test.

6.3.1 GREG and the Treatment Assignment Distribution

From the above, the estimated total using GREG for treatment k is

Ŷ
(k)
+GR =

H
∑

h=1

∑

i∈Sh

whiŤ
(k)
hi Ŷhi+ +

H
∑

h=1

Mh
∑

i=1

(xhi − whiI(i ∈ Sh)Ť
(k)
hi xhi)

′b̂
(k)
.

In this section, we investigate the variance of this term under the treatment assignment distribution.

The expected value of the regression coefficients under the treatment assignment distribution is
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approximately

ḃ
(k)

=

(

H
∑

h=1

∑

i∈Sh

whixhix
′
hi

)−1 H
∑

h=1

∑

i∈Sh

whixhiŶ
(k)
hi+,

which is the estimated regression coefficient had everyone in the sample received treatment k.

Therefore we can rewrite Ŷ
(k)
+GR as

Ŷ
(k)
+GR =

H
∑

h=1

∑

i∈Sh

whiŤ
(k)
hi Ŷhi+ +

H
∑

h=1

Mh
∑

i=1

(xhi+ − whiI(i ∈ Sh)Ť
(k)
hi x̂hi+)

′ḃ
(k)
+

H
∑

h=1

Mh
∑

i=1

(xhi+ − whiI(i ∈ Sh)Ť
(k)
hi x̂hi+)

′(b̂
(k) − ḃ

(k)
).

Due to random treatment assignment, b̂
(k)

will often be close to ḃ
(k)

in large samples. There-

fore, we approximate

Ŷ
(k)
+GR ≈

H
∑

h=1

∑

i∈Sh

whiŤ
(k)
hi Ŷhi+ +

H
∑

h=1

Mh
∑

i=1

(xhi+ − whiI(i ∈ Sh)Ť
(k)
hi x̂hi+)

′ḃ
(k)

=
H
∑

h=1

Mh
∑

i=1

xhi+ḃ
(k)

+
H
∑

h=1

∑

i∈Sh

whiŤ
(k)
hi (Ŷhi+ − x̂′

hi+ḃ
(k)
).

In this statement, the first term is nonrandom, and the second term looks just like a total estimate

under treatment k for the random variable ê
(k)
hi = Ŷ

(k)
hi+ − x̂′

hi+ḃ
(k)

.

6.3.2 Variance Estimation with GREG

We begin with a brief review of the randomization distribution of the GREG estimator. Re-

call the following expression for the randomized version of the regression estimator for a single

treatment label k:

Ỹ
(k)
+GR =

H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi Ŷhi+ +

H
∑

h=1

Mh
∑

i=1

(x̂hi+ − whiI(i ∈ Sh)Ř
(k)
hi x̂hi+)

′b̃
(k)
,
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where b̃
(k)

is the regression coefficient obtained by treating the subsample randomly labelled with

treatment k as a probability sample from the finite population.

We can rewrite this as

Ỹ
(k)
+GR =

H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi Ŷhi+ +

H
∑

h=1

Mh
∑

i=1

(xhi+ − whiI(i ∈ Sh)Ř
(k)
hi x̂hi+)

′b̂+

H
∑

h=1

Mh
∑

i=1

(xhi+ − whiI(i ∈ Sh)Ř
(k)
hi x̂hi+)

′(b̃
(k) − b̂),

where b̂ is the regression coefficient obtained from the full sample, ignoring treatment labels, as

defined above. In large samples, b̃
(k)

will be approximately equal to b̂ due to random treatment

assignment. Therefore, in large samples,
∑H

h=1

∑Mh

i=1(xhi+ − whiI(i ∈ Sh)Ř
(k)
hi x̂hi+)

′(b̃
(k) − b̂)

will often be negligible. Therefore, one can approximate the regression estimator as

Ỹ
(k)
+GR ≈

H
∑

h=1

∑

i∈Sh

wiŘ
(k)
i Ŷhi+ +

H
∑

h=1

Mh
∑

i=1

(xhi+ − whiI(i ∈ Sh)Ř
(k)
hi x̂hi+)

′b̂

=
H
∑

h=1

Mh
∑

i=1

x′
hi+b̂+

H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi (Ŷhi+ − x̂′

hi+b̂)

An argument like the one presented in Särndal et al. [1992] sec. 6.6 shows that this is actually the

Taylor linearization. This approximation can be used to derive a variance estimator.

Under the randomization distribution of treatment labels, the first term is not random. Standard

sampling theory reveals that the variance of Ỹ
(k)
+GR is approximately

H
∑

h=1

mh(mh −m
(k)
h )

m
(k)
h

1

2mh(mh − 1)

∑

i∈Sh

(whiêhi+ − whi′ êhi′+)
2,

where êhi+ = Ŷhi+ − x̂′
hi+b̂.

We approximate the covariances involved in the linearization randomization test with the co-

variances of this linear approximation. Knowing that the blocks are independent, we will compute
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the covariances within a block. When k 6= k′, we have

CovR

(

∑

i∈Sh

whiŘ
(k)
hi êhi+,

∑

i∈Sh

whiŘ
(k′)
hi êhi+

)

=
∑

i∈Sh

∑

i′∈Sh

whiwhi′ êhi+êhi′+CovR(Ř
(k)
hi , Ř

(k′)
hi′ )

=
∑

i∈Sh

w2
hiê

2
hi+CovR(Ř

(k)
hi , Ř

(k′)
hi ) +

∑

i∈Sh

∑

i′ 6=i

whiwhi′ êhi+êhi′+CovR(Ř
(k)
hi , Ř

(k′)
hi′ )

=
∑

i∈Sh

w2
hiê

2
hi+(−1) +

∑

i∈Sh

∑

i′ 6=i

whiwhi′ êhi+êhi′+(
1

mh − 1
)

=
−1

mh − 1

∑

i∈Sh

∑

i′∈Sh

(w2
hiê

2
hi+ − whiwhi′ êhi+êhi′+)

= −mh
1

2mh(mh − 1)

∑

i∈Sh

∑

i′∈Sh

(whiêhi − whi′ êhi′+)
2

This derives an estimated covariance matrix of Ỹ +GR as

V̂arR(Ỹ +GR) =
H
∑

h=1

mhs
2
h,wê(Dh − J),

which is the same as the covariance matrix under the NHT estimator with êhi+ replacing Ŷhi+.

6.4 Linearization of the Randomization Test

Many finite population parameters of interest that are not totals can be expressed as an explicit

function of population totals. When a parameter of interest is an explicit function of finite popu-

lation totals, a natural estimator is obtained by plugging in NHT-estimated totals to the function

of totals. One common approach to estimate the design variance of this NHT plug-in estimator is

to linearize the function. The linearization yields a “Taylor deviate”, which has the property that

the variance estimate for the “total” of the Taylor deviate approximates the variance of the original

total. In this section, we explain how this linearization can be applied to estimate a contrast of

nonlinear functions of experimental totals in the context of a randomization test for an experiment

embedded in a complex survey.
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We start the discussion with the difference of log odds, which is also known as the log odds

ratio. If N̂ (k) is the estimated total of OUs in the population based on the subsample assigned

treatment k and Ŷ
(k)
+ is the number of EUs receiving treatment k that had some outcome, then the

odds ratio for that outcome between treatments k and k′ is

Ŷ
(k)
+ (N̂ (k′) − Ŷ (k′))

(N̂ (k) − Ŷ (k))Ŷ
(k′)
+

.

If we take the logarithm of this expression, we get the difference of log odds of

log

(

Ŷ
(k)
+ (N̂ (k′) − Ŷ (k′))

(N̂ (k) − Ŷ (k))Ŷ
(k′)
+

)

= log

(

Ŷ
(k)
+

N̂ (k) − Ŷ
(k)
+

)

− log

(

Ŷ
(k′)
+

N̂ (k′) − Ŷ
(k′)
+

)

.

Thus, we see a contrast (a difference of two treatments in this case) of the same function of two

survey totals, f(y1, y2) = log(y1/(y2 − y1)), evaluated first at (y1, y2) = (Ŷ
(k)
+ , N̂

(k)
+ ), and second

at (y1, y2) = (Ŷ
(k′)
+ , N̂

(k′)
+ ).

Now that we have seen an example of how to identify the function, we will examine the theory

of linearization for the case of general contrasts of functions.

6.4.1 Notation and Treatment Assignment Distribution

For notation, suppose there is a differentiable function f(y1, . . . , yP ), and that

Ẏ (k)
p =

H
∑

h=1

∑

i∈Sh

whiŶ
(k)
p,hi

Ŷ (k)
p =

H
∑

h=1

∑

i∈Sh

whiŶp,hi+Ť
(k)
hi .

In this notation, Ẏ
(k)
p is the estimator of the total from the entire sample as if each element of the

sample had been assigned treatment k. These quantities is not observable from the sample data for

any k or p because not all of the experimental units were assigned the same treatment. Following

previous notation, Ŷ
(k)
p is the estimator for the total from the part of the sample that was assigned
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treatment k in the experimental design. These quantities are observable after the treatment has

been assigned for all k and p. Both of these quantities can be expressed as vectors for each variable

p as Ẏ p = (Ẏ
(1)
p , . . . , Ẏ

(K)
p ) and Ŷ p = (Ŷ

(1)
p , . . . , Ŷ

(K)
p )

In order to define a contrast, we will define a vector-valued function with P vector arguments.

We define f (k)(y1, . . . ,yP ) = f(y
(k)
1 , . . . , y

(k)
P ), and we define f(y1, . . . ,yp) to be the K vector

with the kth element f (k)(y1, . . . ,yP ). Expressed in context, the kth element of f(y1, . . . ,yP )

is the original function evaluated at the estimated totals under the kth treatment in the survey

experiment.

We now investigate the treatment assignment distribution of Cf(Ŷ 1, . . . , Ŷ P ). Let c(k) be the

kth column of C. Then we have

Cf(Ŷ 1, . . . , Ŷ P ) =
K
∑

k=1

c(k)f(Ŷ
(k)
1 , . . . , Ŷ

(k)
P ).

Linearizing about the full-sample totals for each treatment, we have

f(Ŷ
(k)
1 , . . . , Ŷ

(k)
P ) ≈ f(Ẏ

(k)
1 , . . . , Ẏ

(k)
P ) +

P
∑

p=1

[

∂f

∂yp
(Ẏ

(k)
1 , . . . , Ẏ

(k)
P )

]

(Ŷ (k)
p − Ẏ (k)

p )

= a(k) +
H
∑

h=1

∑

i∈Sh

whiŘhi

P
∑

p=1

[

∂f

∂yp
(Ẏ

(k)
1 , . . . , Ẏ

(k)
P )

]

Ŷ
(k)
p,hi+,

where a(k) is a basket for all additive terms that are non-random conditioned on the sample. Let

z
(k)
hi =

∑P
p=1[

∂f
∂yp

(Ẏ
(k)
1 , . . . , Ẏ

(k)
P )]Ŷ

(k)
p,hi+. Then this can be expressed as

f(Ŷ
(k)
1 , . . . , Ŷ

(k)
P ) ≈ a(k) +

H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi z

(k)
hi .

At this point, we can analyze this like a standard treatment assignment distribution. To estimate

the variance from the sample, we would replace z
(k)
hi with ẑ

(k)
hi =

∑P
p=1[

∂f
∂yp

(Ŷ
(k)
1 , . . . , Ŷ

(k)
P )]Ŷ

(k)
p,hi+.
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6.4.2 Randomization Test

For the randomization test, the test statistic is the function of the totals from the initial treatment

assignment, as above. To compute the variance, we compute the Taylor deviate, and treat it like a

study variable. The randomization distribution is derived under the null hypothesis of no treatment

effect. Therefore, as in the randomization test for linear contrasts discussed in Chapters 4 and 5,

the linearization totals will be based on randomized treatment labels ignoring the original treatment

assignment and any treatment effects. That is, the randomization statistic for a total is

Ỹ (k)
p =

H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi Ŷp,hi+.

We center the linearization of the function evaluated at the expected values of all totals under the

randomization distribution, conditioned on the sample and treatment assignment, which is

Ỹ (•)
p =

H
∑

h=1

∑

i∈Sh

whiŶp,hi+.

This gives

f(Ỹ
(k)
1 , . . . , Ỹ

(k)
P ) ≈ f(Ỹ

(•)
1 , . . . , Ỹ

(•)
P ) +

P
∑

p=1

[

∂f

∂yp
(Ỹ

(•)
1 , . . . , Ỹ

(•)
P )

]

(Ỹ (k)
p − Ỹ (•)

p )

= a+
P
∑

p=1

[

∂f

∂yp
(Ỹ

(•)
1 , . . . , Ỹ

(•)
P )

] H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi Ŷp,hi+

= a+
H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi

P
∑

p=1

[

∂f

∂yp
(Ỹ

(•)
1 , . . . , Ỹ

(•)
P )

]

Ŷp,hi+,

where a is a catch-all term for everything nonrandom. Note there is no superscript k as this term

does not depend on k here. The Taylor deviate is thus z̃hi =
∑P

p=1[
∂f
∂yp

(Ỹ
(•)
1 , . . . , Ỹ

(•)
P )]Ŷp,hi+.

Then we have

f(Ỹ
(k)
1 , . . . , Ỹ

(k)
P ) ≈ a+

H
∑

h=1

∑

i∈Sh

whiŘ
(k)
hi z̃hi.

From here, we see that the standard theory works to get a variance estimate.
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To do this, we note that (since a does not depend on k)

Cf(Ỹ 1, . . . , Ỹ P ) ≈
H
∑

h=1

∑

i∈Sh

CRhiwhiz̃hi.

Then, from the randomization distribution, we see that the mean is approximately 0, and the vari-

ance can be approximated by

VarR(Cf(Ỹ 1, . . . , Ỹ P )) ≈
H
∑

h=1

mhs
2
h,wz̃CDhC

′,

where s2h,wz̃ is the variance of the weighted Taylor deviates, following previous notation.

6.4.3 Extension to Functions of Contrasts

Sometimes a researcher may be interested in functions of contrasts of functions. Returning to

our earlier example, this may be relevant if a researcher was studying the odds ratio, rather than

the difference of log odds. Using the notation in the introduction we have that the odds ratio can

be expressed as

ORk,k′ =
Ŷ

(k)
+ (N̂ (k′) − Ŷ

(k′)
+ )

(N̂ (k) − Ŷ
(k)
+ )Ŷ

(k′)
+

= exp

{

log

(

Ŷ
(k)
+

N̂ (k) − Ŷ
(k)
+

)

− log

(

Ŷ
(k′)
+

N̂ (k′) − Ŷ
(k′)
+

)}

.

Thus

ORk,k′ = g
(

f(Ŷ
(k)
+ , N̂ (k))− f(Ŷ

(k′)
+ , N̂ (k′))

)

,

where g(γ) = exp(γ) and f(y1, y2) = log(y1/(y2−y1)), and the argument of g is clearly a contrast

of two functions.

We now consider the linearization of functions of contrasts in general. For ease of notation,

we restrict ourselves to a contrast vector in this case; notes on how the notation can be extended

to a contrast matrix are included at the end of this section. Extending notation from the previous

sections, let

θ̂(y1, . . . ,yP ) = g (c′f(y1, . . . ,yP )) ,
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where g : R → R is a function with argument γ and each yp is a K-vector of terms y
(k)
p corre-

sponding to estimates of the value of variable p for the observations receiving treatment k. The

chain rule yields

∂θ̂

∂y
(k)
p

(y1, . . . ,yP ) =
∂

∂y
(k)
p

g (c′f(y1, . . . ,yP ))

=

[

dg

dγ
(c′f(y1, . . . ,yP ))

]

c(k)
∂f

∂y
(k)
p

(y
(k)
1 , . . . , y

(k)
P ).

In this expression, note that the first term (the derivative of g evaluated at the contrast) does

not depend on k. This means that if we write out the linearization for the treatment assignment

distribution, we have

θ̂(Ŷ 1, . . . , Ŷ P ) ≈ θ̂(Ẏ 1, . . . , Ẏ P ) +
K
∑

k=1

P
∑

p=1

[

∂θ̂

∂y
(k)
p

(Ẏ 1, . . . , Ẏ P )

]

(Ŷ (k)
p − Ẏ (k)

p )

= a+
K
∑

k=1

P
∑

p=1

[

dg

dγ

(

c′f(Ẏ 1, . . . , Ẏ P )
)

]

c(k)
∂f

∂y
(k)
p

(Ẏ
(k)
1 , . . . , Ẏ

(k)
P )Ŷ (k)

p

= a+

[

dg

dγ

(

c′f(Ẏ 1, . . . , Ẏ P )
)

] K
∑

k=1

c(k)
P
∑

p=1

∂f

∂y
(k)
p

(Ẏ
(k)
1 , . . . , Ẏ

(k)
P )Ŷ (k)

p .

Here, we see that the expression is a nonrandom constant plus the derivative evaluated at the value

of the contrast as if measurements had been taken on the entire population. In an a priori power

calculation, one could use the desired difference, or an estimate of what the difference is as a

position to evaluate the derivative.

Similarly, we find that for the randomization distribution:

θ̂(Ỹ 1, . . . , Ỹ P ) ≈ a+

[

dg

dγ

(

c′f(Ỹ
(•)
1 1, . . . , Ỹ

(•)
P 1

)

] K
∑

k=1

c(k)
P
∑

p=1

∂f

∂y
(k)
p

(Ẏ
(k)
1 , . . . , Ẏ

(k)
P )Ŷ (k)

p

= a+

[

dg

dγ
(0)

] K
∑

k=1

c(k)
P
∑

p=1

∂f

∂y
(k)
p

(Ẏ
(k)
1 , . . . , Ẏ

(k)
P )Ŷ (k)

p ,
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by the definition of f and the fact that c′1 = 0. Thus for the randomization test, the constant

multiplied by the linearization of the function is just g′(0)!

As noted, we have thus far only discussed functions a single contrast. For functions of a contrast

matrix, one can define a vector-valued function g(γ), in a way similar to how f was defined from

f , and evaluate the multiplier for each contrast individually. For power calculations, you can use

the estimated difference in each contrast. For the randomization test, one would simply use a vector

version of g(0). The multiplier would end up being g′(0)1.

6.4.4 Linearization Using GREG

Many modern surveys use calibration estimators to improve precision. We now consider prob-

lems of linearization where the point estimate of the treatment totals is estimated using the GREG

estimator rather than the NHT estimator. Considering the treatment assignment distribution, this

leads to the expression

f(Ŷ
(k)
GR,1, . . . , Ŷ

(k)
GR,P ) ≈ f(Ẏ

(k)
GR,1, . . . , Ẏ

(k)
GR,P ) +

P
∑

p=1

[

∂f

∂yp
(Ẏ

(k)
GR,1, . . . , Ẏ

(k)
GR,P )

]

(Ŷ
(k)
GR,p − Ẏ

(k)
GR,p)

where

Ẏ
(k)
GR,p =

H
∑

h=1

Mh
∑

i=1

x′
hi+ḃ

(k)
+

H
∑

h=1

∑

i∈Sh

whi(Ŷ
(k)
hi+ − x̂′

hi+ḃ
(k)
)

is the estimated total using the generalized regression estimator had all experimental units been

assigned treatment k. Note that Ẏ
(k)
GR,p is not random, conditioned on the sample.

If we only look at the parts of the linear approximation that are random conditioned on the

sample, we find that

f(Ŷ
(k)
GR,1, . . . , Ŷ

(k)
GR,P ) ≈ a(k) +

P
∑

p=1

[

∂f

∂yp
(Ẏ

(k)
GR,1, . . . , Ẏ

(k)
GR,P )

]

Ŷ
(k)
GR,p

≈ a(k) +
H
∑

h=1

∑

i∈Sh

whiŤhi

P
∑

p=1

[

∂f

∂yp
(Ẏ

(k)
GR,1, . . . , Ẏ

(k)
GR,P )

]

(Ŷhi+ − x̂′ḃ
(k)
).
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Now if we let

ẑ
(k)
hi =

P
∑

p=1

[

∂f

∂yp
(Ẏ

(k)
GR,1, . . . , Ẏ

(k)
GR,P )

]

(Ŷhi+ − x̂′ḃ
(k)
),

we can calculate the variance using standard arguments.

For the randomization distribution, a similar argument works to derive

f(Ỹ
(k)
GR,1, . . . , Ỹ

(k)
GR,P ) ≈ a+

H
∑

h=1

∑

i∈Sh

whiŘhi

P
∑

p=1

[

∂f

∂yp
(Ỹ

(•)
GR,1, . . . , Ỹ

(•)
GR,P )

]

(Ŷhi+ − x̂′b̂),

with

Ỹ
(•)
GR,p =

H
∑

h=1

Mh
∑

i=1

x′
hi+b̂+

H
∑

h=1

∑

i∈Sh

whi(Ŷhi+ − x̂′
hi+b̂).

The variance can then be derived by standard arguments using

z̃hi =
P
∑

p=1

[

∂f

∂yp
(Ỹ

(•)
GR,1, . . . , Ỹ

(•)
GR,P )

]

(Ŷhi+ − x̂′
hib̂).

6.5 Difficulties of Real Surveys

In the previous chapters of this dissertation, we have ignored several important aspects of sur-

veys, including nonsampling errors (nonresponse, coverage errors, etc.) and modern survey de-

signs (including adaptive or responsive designs).

With undercoverage error, care will be needed when generalizing results from the sample to

the population, because some members of the population cannot be in the sample. For determining

inference from the experiment to the sample, however, undercoverage does not present any addi-

tional issues because the coverage error only affects inference from the sample to the population.

Nonresponse errors can cause issues by removing some experimental units from the sample, lead-

ing to a missing data problem. Some weighting approaches to deal with this issue are presented

in Section 6.5.1. Another potential issue is measurement error. Measurement error could occur

with experiments in surveys when an experimental treatment changes a respondent’s response. In
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some cases (for example, chapters 7, 8, and 17–20 of Lavrakas et al. [2019]), this measurement

error could be what the experiment is trying to measure. However, as the goal of many surveys is

to get accurate measurements of the population, this is something to be aware of when considering

embedding experiments in a survey.

6.5.1 Adjusting for Nonresponse

The theory presented thus far in the dissertation, like much theory in survey statistics, was

derived under the situation of perfect response from the sample. If the experiment is based on

estimating response rates or survey costs per response, then all the relevant information may be ob-

tained whether or not individuals respond to the survey. However, in many embedded experiments,

nonresponse leads to loss of information, so additional assumptions will need to be formulated to

conduct any analysis on survey experiments that involve major nonresponse. Before starting to

discuss nonresponse, one point needs to be made. If nonresponse occurs below the level of the ex-

perimental units, then that nonresponse can be taken into account in the EU total estimates, which

will not have any effect on the methodology described thus far in this dissertation. However, in this

case, an analysis of this differential nonresponse would be useful in understanding the effects of

the treatments. In the remainder of this subsection, we focus on estimators for the randomization

distribution in the case of EU level nonresponse, which can be a problem if the experimental units

are households or individuals.

To motivate the approaches for nonresponse adjustment, we consider a simple example. Sup-

pose there is a block with 20 units, 10 of which were assigned the treatment and 10 of which were

assigned a control. Suppose that out of the treatment group, there were 8 responses, and out of the

control group, there were 4 responses. If we are to perform a randomization test on data including

nonresponse, we would need to condition on who responds in some sense. There are still two

options in how to adjust for response: we could ignore the relationship between the treatment and

response, or condition on the number of responses within each treatment.
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One method to deal with nonresponse is to treat nonresponse as a factor that is fixed with treat-

ment, but unknown at the time of original assignment. In this method, the treatment randomization

will be treated at the level of the sample, but only the set of respondents will be used in the anal-

ysis. In the example started above, this would involve randomizing the treatments to all 20 units,

and then limiting each randomized dataset to the 12 units that responded. Another method is to

condition on the number of responses within each treatment, and only randomize treatments on the

set of respondents. In this method, we would consider only the 12 units that responded, and con-

sider randomizations that assign 8 of these units to treatment, and 4 to control. In the remainder of

these sections, we will explore the mathematical properties of these methods. We will call the first

method described in this paragraph the “sample randomization method” and the second method

described in the paragraph the “response set randomization method.”

To aid in the mathematical discussion, we introduce some new notation for the randomization

test with these methods used for nonresponse adjustment. We let Sr denote the set of respondents

from the population, mr
h be the total number of respondents within each block h, and m

r(k)
h be

the number of respondents within each treatment/block combination. We also introduce a version

of the treatment randomization indicator for randomization of treatment label on the response

set: Ř
r

hi =
mr

h

m
r(k)
h

Rhi. We additionally include two nonresponse adjustments. We introduce a

nonresponse-adjusted weight to weight from the response set to the finite population, denoted

wr
hi(S

r), and we allow a nonresponse adjustment to weight from the response set within a given set

of EUs labeled as receiving the same treatment to all such EUs in the sample, denoted qhi(S
r,R).

R is the matrix containing the randomized treatment labels of all EUs in the sample (regardless

of whether they responded). The former weight is a nonresponse-adjusted weight for the sample,

while the latter is an adjustment factor to ensure the effects of nonresponse between the treatments

are similar in all randomizations. Before showing the two estimators using the above notation, we

will show the estimator ignoring nonresponse for comparison:

Ŷ =
H
∑

h=1

∑

i∈Sh

whiŶ hi ◦ Řhi.
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The sample randomization method yields the estimator

Ŷ samp =
H
∑

h=1

∑

i∈Sh

I(hi ∈ Sr)whiqhi(S
r,R)Ŷ hi ◦ Řhi,

and the response set randomization method yields the estimator

Ŷ resp =
H
∑

h=1

∑

i∈Sr
h

wr
hi(S

r)Ŷ hi ◦ Řr

hi.

The sample randomization estimator takes the original estimate, ignoring nonresponse, and

then provides a nonresponse adjustment within each treatment label group for each randomization.

The response set randomization estimator conditions on the response set, and uses a nonresponse

adjustment that ignores experimental treatment randomization, but uses an implicit nonresponse

adjustment by adjusting the sizes of the response sets within each treatment.

The sample randomization method allows for the examination of differences in nonresponse-

adjusted estimators between the treatments. It allows for different nonresponse adjustment on each

randomization, so it sees how the estimates will change based on rerunning the experiment on the

sample many times. One disadvantage of the sample randomization method is that it can lead to

situations where there are no respondents for a given treatment in a block for the randomized com-

plete block design. Allowing for a nonresponse adjustment for each treatment randomization can

also lead to complexity, but this complexity could potentially be overcome by easily linearizable

calibration estimator like GREG.

The response set randomization method is a good simple method that can work on any response

set that still has complete blocks. In this case, response set is analyzed as if it were the sample,

and the treatment design is analyzed as if it were designed on the response set. To go from the

overall responses to the responses within a treatment, the totals are multiplied by their inclusion

probabilities based on their proportions in the response set. This acts like a built-in nonresponse

adjustment across treatments. This can detect differences in the responses between both treatments.

This is useful for determining differences in response behavior between each treatment, but is less
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useful if the goal is to determine differences between nonresponse adjusted estimators between the

treatments.

There is a case, however, where the response set randomization estimator gives the same an-

swer as the sample randomization estimator with a nonresponse adjustment within each treatment,

provided that we additionally restrict the sample randomization estimator to cases where the num-

ber of units in the response set assigned each treatment remains unchanged. If the nonresponse

adjustment for the sample involves a weighting cell adjustment where the cells are the blocks used

in the experimental design, this method will automatically adjust that cell adjustment to as if it

were done within both blocks and treatments.

To better explain how the response set randomization estimator can mimic a weighting cell ad-

justment, we return to the example started above. Recall that we were assuming a block of 20 units,

with responses from 8 out of 10 units assigned treatment and 4 out of 10 units assigned control.

We will perform the nonresponse adjustment in two ways. The first will be performing a nonre-

sponse adjustment within block and treatment, followed by assigning treatment weights based on

how the treatments were assigned in the sample, as in the sample randomization estimator, in the

case where the number of responses within treatment and control stays at 8 and 4 respectively. The

second will involve performing a weighting cell adjustment within the block, ignoring treatment,

and then performing the treatment adjustment on the EUs in the response set, using the response

set randomization estimator. For mathematical simplicity, we assume the sampling design was

self-weighting, so whi = 1 for all EUs.

The weighting cell adjustment within block and treatment gives a weight of 10/8 = 5/4 in the

treatment group (to weight from 8 respondents to 10 sampled units assigned the treatment) and

10/4 = 5/2 in the control group. Weighting again for treatment multiplies both of these weights

by 2 as half of the sampled EUs were assigned each treatment, giving final weights for the sample

randomization estimator (if treatment assignment levels are maintained) of whiqhi(S
r,R)Ř

(1)
hi =

5/2 for responding EUs in the treatment group (k = 1) and whiqhi(S
r,R)Ř

(0)
hi = 5 for responding

EUS in the control group (k = 0). The overall block weighting cell adjustment gives weights in
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each block of 20/12 = 5/3. The weighting cell adjustment within each treatment would then be

12/8 = 3/2 in the treatment group and 12/4 = 3 in the control group. This gives final weights

of wr
hi(S

r)Ř
(1)
hi = 5/2 in the treatment group (k = 1) and wr

hi(S
r)Ř

(0)
hi = 5 in the control group

(k = 0), which are the same as the results as the sample randomization estimator.

It is also worth mentioning that in the above discussion, we restricted the sample randomization

method to cases where the number of responses in both treatments was the same as the original

study. It is a reasonable guess that this method will always give the same result as the response set

randomization estimator, because this new restriction results in the same sample sizes of treatment

and control in both cases. However, in the above discussion, we were using a weighting cell

adjustment, which only depends on the number of responses in each block or each treatment. For

more complicated nonresponse adjustments that use auxiliary information on each individual, the

estimators will not necessarily give the same answer, even if the number of responses within each

treatment in the sample randomization estimated is restricted.

Our final recommendation is that the method for nonresponse adjustment can depend on the

problem. If you are analyzing an experiment where you really want to see the effect on nonresponse

adjusted estimators between two treatments, it may be worth it to use the sample randomization

estimator. This is especially true if the nonresponse adjustment is based on an easily lineariz-

able calibration estimator like the GREG. If computing time is a factor, or the weighting method

involves weighting class adjustment at the level of blocks, then the response set randomization es-

timator may make more sense. More investigation will be needed in the cases where nonresponse

is significant enough to remove a treatment from a block. Another important avenue for future

work would be simulation studies on methods of dealing with nonresponse to determine which

methods are more robust to extreme nonresponse, and to see how they perform at solving different

problems.
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6.6 Conclusions

In this chapter, we extended the methodology of the randomization test for use with the GREG

estimator, and for nonlinear statistics. While there was no theory developed in this chapter, this

chapter helps illuminate the broad applicability of this method.

As experiments and surveys become more complicated, and the focus on data quality becomes

more important, it is useful to have methods that can detect differences in any situation where the

randomization can be described. A Monte-Carlo randomization test is a flexible method that can

be applied to many situations.

Additionally, there may be situations where researchers need a simple method to understand

results. Using linearization methods can be useful to give valid results that do not require additional

summarization of results.

More work should be done on understanding how randomization methods work in the pres-

ence nonresponse. Given that randomization methods are based on the initial randomization of

the sample to different treatments, nonresponse is likely to be a major problem. More simulations

investigating the robustness of randomization methods to nonresponse, and the potential improve-

ments of different nonresponse adjustment methods, will be crucial.
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Chapter 7

Conclusions and Future Work

In this dissertation, we introduced randomization tests for experiments embedded within com-

plex surveys. We also derived a linearization variance approximation for the nondifferentiable

dissimilarity index. We provided applications of our new methodologies in simulation studies, and

in practice with a survey conducted by the Health District of Northern Larimer County.

While a design-based test for experiments in surveys does exist (van den Brakel [2001]), it

is important to have other options. While there are situations where the randomization test has

less power than the design-based test, in some cases, the power loss is not very large. Also, the

randomization test admits a Monte Carlo version that can be used in situations where an asymptotic

approximation may not be applicable or desirable.

Our findings confirm what has been said by van den Brakel [2001] (Section 2.5) and Smith

[1983]. When the goal of an experiment is to determine information about the conduct of the

survey or to determine effectiveness on measures of data quality, a model-based analysis can work

well. However, when the goal is to compare population statistics conditioned on the sample, an

approach that explicitly accounts for the sampling design is preferable.

The simulation results also provided valuable insight for randomization tests of experiments

embedded in complex surveys in practice. The results directly examining a contrast of totals re-

vealed that while examining results comparing uncalibrated estimates of totals can be useful when

deriving theory, such tests do not always work well in practice. The test comparing totals directly

for the CRD had almost no power for the sizes of differences tested (Figure 4.4), though it per-

formed as well as the test of means in the RCBD (Figure 5.2). It is thus useful to use some sort

of calibration when comparing statistics in practice, so that the variation in the estimated popula-

tion size between the treatments does not overwhelm the treatment effect. This calibration could

involve normalization to the estimated population size N̂+ (as in the ratio estimator), or using the

GREG estimator.
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This dissertation has created an option for randomization theory to be used in survey experi-

ments, more development of the theory can be made. One avenue is developing theory for different

experimental designs. Examples include split-plot, fractional factorial, Latin square, or incomplete

block designs. It could also valuable to develop theory for analyzing the experiments designed with

more complicated adaptive procedures. In these cases, even the Monte Carlo test may not be obvi-

ous (for example, Example 8 in Proschan and Dodd [2019]).

Another avenue for development is to drop or relax assumptions. One assumption to poten-

tially relax is the assumption of additivity (4.6 and 5.1). One may consider cases where there is

variation of the treatment effects between individuals, like what we used in our simulation studies

(Sections 4.8 and 5.7). Another assumption to relax is the assumption used for power calculations

that the EUs are drawn with probability proportional to size (4.11,5.2). Another way to state this

assumption is that there is no variance in the weighted EU sizes. One could naturally consider

cases where this variation is not very large. A third example is the assumption that survey weights

are uniformly bounded (Assumption A2 or B3). As people react differently to different types of

treatment, and nonresponse issues often create fairly unbalanced weights in surveys, relaxing this

strict bound would be very useful for many practical problems.

Another avenue for advancement is in simulation studies. One very realistic situation is differ-

ential nonresponse between the two treatments. This situation would be of interest to maintaining

data quality for a survey switching modes. It would be useful for survey practice to know if the

test can detect when there is no difference in nonresponse adjusted estimators.

It would also be valuable to develop theory about how the Monte Carlo test extends to the

general population. The test proposed is a test conditioned on the chosen sample. Our current

results show that, under some conditions, asymptotically normal test results can be extended to

the finite population. However, some questions of potential interest may not have asymptotically

normal estimators. In these cases, the Monte Carlo test is a valuable tool that can provide inference

for the sample. However, there is no general theory extending this inference to the finite population.

Such a result will be valuable for extending these results.
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Lastly, it would be valuable to have a literature review on methods for evaluating experiments

embedded in surveys. There can be many different types of response variables, and many ways

to analyze the outcomes. It would be useful to understand when model-based inferences may be

acceptable, and when randomization or design-based methods are preferred.
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