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Second threshold condition in the case of Q switching by
self-focusing
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In a recent paper [Opt. Lett. 10, 402 (1985)] we presented a novel passive technique for obtaining giant laser-pulse
emission. In this paper we present a more sophisticated model based on Kirchhoff-Fresnel diffraction theory that
confirms the aberrationless Gaussian model used before. Also, a simple criterion for short-pulse generation in the Q
switch by the self-focusing technique is derived. A set of equations is obtained that permits the evaluation of the
critical parameters that govern the laser dynamics. The second threshold condition is derived, and some typical
examples are pointed out.

In a recent paperl we presented a novel passive Q-switching
technique. This new technique makes use of the self-focus-
ing effect in a liquid with a high nonlinear refractive index
placed in contact with one of the cavity mirrors of an unsta-
ble resonator. At high intensities the self-focusing reduces
the diffraction losses by changing the effective power of the
mirror, creating a stable-resonator configuration and caus-
ing Q switching to occur. In this analysis, we use the Gauss-
ian mode approximation to describe the Q-switching tech-
nique. With this formalism, the round-trip matrix and the
geometric approximation can be used in order to obtain the
loss coefficient L. This geometrical formalism provides a
limited description of the system. More-detailed knowl-
edge of the system evolution must be obtained by solving the
Kirchhoff-Fresnel integral.2 3 We will consider the propa-
gating wave that is reflected back and forth in the cavity
equivalent to the transmission of this wave through limiting
apertures defined by the laser mirrors. This is the usual
approximation in the diffraction analysis of resonant laser
cavities. Figure 1 shows the passive cavity that we use and
the equivalent scheme used for the analysis. From a given
initial intensity profile in the focusing cell u(r), it is possible
to obtain the intensity distribution after one round trip u'(r).
These two spatial profiles are related by the propagator of
the cavity4

u'(r2) = 2iri~2 rIl ~ 2 1
X(20-F2 ) [ - (2 -F 2 )J

X |u(r,) \6r, -

X exp[i0,(rl)]Jot 2r (2 - r2r, rldrl, (1)
X J u~ri) ~ X (2~ - F2 )]

where t is the inverse of the cavity length L,,Fi is the inverse
of the mirror focal length, 0k(r) is the phase shift introduced
by the focusing cell, 4(r, A) = exp[-(i-r/X)Ar2 ], and A* (r, A)
is the complex conjugate of I(r, A). The integral must be
calculated over the limiting aperture of the mirror E1 with
curvature radius R1. The eigenfunctions of this propagator
will define the stable oscillating modes, and the respective
eigenvalues will be the round-trip magnification of the cavi-

ty. The stable-mode profile will be a function of the geo-
metrical cavity configuration, and this configuration de-
pends on the focusing characteristics of the cell. As the
phase shift introduced by the focusing cell depends on the
cavity intensity, the stable modes will also be intensity de-
pendent.

We made numerical calculations to compute such stable
modes. The numerical simulations compute the spatial
profile in each round trip by using Eq. (1). The profile
obtained in each round trip is normalized at a given peak
intensity and is compared with the previous normalized pro-
file. This sequence continues until the two profiles coin-
cide. For different normalizing peak intensities, different
stable modes are obtained. The same stable intensity dis-
tribution is obtained when starting from different initial
profiles.

For the initial profile we used a plane-front wave with a
constant amplitude and a plane-front wave with a Gaussian
amplitude distribution. The same stable mode is obtained
with both initial profiles, but in the latter case the solution is
reached faster.

In the aberrationless formalism used in Ref. 1, the spot
size of the stable lower-order mode is fixed by the cavity
geometry. The spot size in the mirror E1 is thus given by 5

4 =(XR,2 R2 -L L,
al (

7r R, -L R + R2-L,

In Eq. (2) R1 can be replaced by its expression as a function
of the field intensity. In this way, a quadratic equation for
a2 is obtained. Solving this equation, we obtain the curve
plotted in the Fig. 2. This curve represents the spot size in
the mirror E1 as a function of the circulating intensity in the
cavity, if we assume that the focusing cell acts as a spherical
thin lens. In our simulations we use a Gaussian profile with
a spot size given by Eq. (2) as the initial intensity distribu-
tion. For small intensity values, a broad profile characteris-
tic of unstable resonators is obtained. This is reasonable
because, at lower intensities, the influence of the focusing
cell must be negligible. At higher intensities, the profile
approaches a Gaussian distribution except in the tails at
lower intensities.
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Fig. 1. a, Passive-cavity scheme: 1, focusing cell; 2, divergent
mirror; 3, convergent mirror. b, Equivalent optical system. The
initial and the final profiles are shown.

An important result may be obtained from this diffraction
formalism. For the stable mode, it is possible to obtain the
round-trip loss coefficient as the ratio between the peak
intensities of the initial and final profiles. In Fig. 3 the
round-trip loss coefficient as a function of the intensity (in
watts per square centimeter) for the Gaussian-model ap-
proach (dashed lines) and the diffraction formalism (circles)
is plotted. For intensities corresponding to a stable-cavity
configuration, reasonable agreement between the two mod-
els is obtained, both for the loss and for the phase shift. In
the high-energy-loss branch (negative-branch resonators)
the apparent difference between the two models can be ex-
plained by taking into account that in the first model
(Gaussian approach) the spot size is considered a constant.
By changing this value within the values shown in Fig. 2, a
better fit can be obtained. The validity of the numerical
results obtained for the intensity evolution with the simpli-
fied model of Ref. 1 is thus justified. Moreover, the numeri-
cal predictions are confirmed by the experimental results.

Another important subject that we discuss in this paper is
the conditions that must be fulfilled in order to achieve Q
switching. As was shown by New and O'Hare,6 a second

threshold condition exists in short-pulse generation by pas-
sive techniques.7 In order for single-pulse emission to be
obtained by Q switching the cavity, the initial increase in the
net gain coefficient resulting from loss reduction must be
larger than the initial decrease resulting from amplifier de-
pletion by stimulated emission. Hence the giant-pulse con-
dition can be expressed as

dt dt
(3)

where L is the diffraction loss coefficient. In the self-focus-
ing method that we consider here, the diffraction-loss coeffi-
cient L is intensity dependent through the cavity parameter
g. The loss coefficient per round trip L can be obtained
from the cavity configuration that is intensity dependent':

L = 2 ln[g + (g2
- 1)1/2], (4)

where + and - correspond to positive- and negative-branch
resonators, respectively, and g is the cavity parameter. 89

The parameter g determines the stability characteristics of
the cavity, which will be stable for 0 < g < 1.

The intensity dependence of g can be obtained from the
cavity configuration, and this configuration can be described
by using the matrix formalism.10 11 This simple formalism
is an aberrationless approach that is in good agreement with
more-realistic models and with experimental results, as was
pointed out before. In this case we obtain

g = go- hvo, (5)

where go is the initial value of parameter g defined by the
initial cavity configuration, is the photon-flux density in
the cavity, and is a parameter that describes the nonlinear
characteristics of the focusing medium. In the definition of
the parameter , the nonlinear characteristics of the focus-
ing medium and the cavity configuration are both included.
As was defined in Ref. 1,
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Fig. 2. Spot size versus the circulating cavity intensity (watts per square centimeter) in the Gaussian mode approach.
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/3 = 2La-y(1 - Lc/Ri). (6)

In this definition, a = 2d/a2 , where d is the focusing-cell
length and the parameter a is the spot size in the cell. Lc is
the cavity length, and y = 4.19 X 10-3 n2 /no (cm2 /W) (Ref.
12) taking into account the nonlinear characteristics of the
cell. In this expression, Ri is the curvature radius of the
mirror that is not in contact with the focusing cell. When
this dependence is taken into account, the diffraction-loss
coefficient as a function of time can be expressed as

dL L g o (7)
dt g od at

Replacing the partial derivatives in Eq. (7), we obtain

dL 2 3hv(A - L -r)/Ta, (8)
dit - (g - 1)1/

where r is the linear loss coefficient (external coupling, scat-
tering, absorption, etc.) and Tcav is the round-trip time. By
substituting Eq. (8) into expression (3) the Q-switching con-
dition is given by

L A 2fh(A-L-r) < P (9)
Vg - 1" 2 TcavJ

where is the amplifier cross section and P is the pumping
rate. The first term of inequality (9) represents the amplifi-
er depletion by stimulated emission, and the second term is
the diffraction-loss reduction. In order to obtain a more
general expression of inequality (9), we use dimensionless
variables. We define the dimensionless photon flux At and
the dimensionless time k as

= hv0/Igo - 1, (lOa)

k = Tcav. (lOb)

The rate equations for the photon flux, the amplification

coefficient, and the cavity parameter g expressed with these
dimensionless variables are

d" = (A - L -r),,

dA iUG*ATcav

dk= g-Io hv

g = g -Igo- iIA.

(lla)

(lib)

(lic)

The laser dynamics in the Q-switching process can be ana-
lyzed in three distinct stages: (1) The linear amplification
stage begins when the system crosses the laser threshold and
continues until the time when the reduction in the cavity
losses by the self-focusing begins to be significant; (2) the
loss saturation stage starts when the intensity reaches a
value for which the change in the diffraction losses are sig-
nificant; (3) the gain saturation stage occurs when, because
of the high intensity in the cavity, the amplifier medium is
depleted and the laser action ends.

The linear amplification stage concludes when the reduc-
tion of the losses is significant and the net gain grows quick-
ly, i.e., in a few round trips. This moment defines a time kat
that depends on the cavity configuration and the nonlinear
characteristics of the focusing cell. We obtain an expression
for ksat and evaluate the different parameters included in the
second threshold equation at this stage. The slope of the
loss coefficient L is a monotonically decreasing function of 
until the cavity becomes stable, and that ensures that the
second threshold condition [expression (3)] will be fulfilled
at higher intensities if it is fulfilled at ksat. In the linear
amplification stage, we can consider

A = AO + Pk, (12a)

(12b)

.
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If we substitute Eqs. (12a) and (12b) into Eq. (Ila) an equa-
tion that describes the photon flux evolution in the first
stage is obtained:

d- = (Pk + bp),u, (13)
dk

where we used the threshold condition
Equation (13) can be expressed as

dx -= (Pk + x)x,
dk

where x = b.

log(x+Pk)

AO - Lo- r = o.

In Fig. 4 the numerical results of Eq. (14) for the net gain
(Pk + x) are plotted, changing the initial photon flux xo and
the pumping rate P. Figure 4a shows the solution for differ-
ent values of the initial photon flux x0. In this case, the ksat
(when the net gain grows during a few round trips) has
nearly the same value for the different values of xo consid-
ered. Figure 4b shows the results for different pumping
rates P and shows the strong dependence of ksat on the
pumping rate P. The pumping rate P will be the dominant
parameter in Eq. (13).

Substituting 6 = 1/x into Eq. (14), we obtain

= Pkb - 1.
dk

Solving Eq. (15), we obtain

( = exp(_ P)[-J exp( 2 )dk' + 6]

(15)

(16)

Equation (16) is the solution of the Eq. (13), and it has two
terms. The first one (Pk) is the net gain increase by the
pumping rate. The second one (by) is the gain increase by
the diffraction-loss reduction. At low intensities, the first
term is the dominant one, and this regime defines the linear
amplification stage. Because of the high nonlinear effect in
the focusing cell, the second term begins to be important at
high intensities. We can assume that the end of the linear
amplification stage will be defined by the moment when
these two terms have the same value. With the condition
that Pk = by, Eq. (16) gives

2

round trip k
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(17)-(2P)1/ 2D (/k)k + Pbo exp(-Pk2 /2)k = 1,

where D(x) is a Dawson integral, defined as'3

D(x) = exp(-x 2 ) et 2dt.
X

(18)

Using the asymptotic value for D(x) = 0.5197/x (for x > 4.5),
4 we obtain

-1.04 + PkO exp(-Pk 2 /2) = 1. (19)

Finally, from Eq. (19) it is possible to derive an expression
for ksat:

-2.

(20)
b

round trip k

60 220 380 * 540
Fig. 4. Net gain (x + Pk) versus the round-trip number k. a, For
different values of the initial photon density x0: 1, xo = 12 X 10-8; 2,
xo = 8 X 10-8; 3, xo = 4 X 10-8; 3, xo = 10-8. b, For different values of
the pump rate P: 1, P = 5 X 10-

4
; 2, P = 2 X 10-4; 3, P = 10-4; 4, P =

5 X 10-5.

which can be solved by iterations. The dominant parameter
in this expression, as was mentioned before, is the pumping
rate P. Figure 5 shows the solution of Eq. (20) for different
values of the initial photon flux xo. The ksat values obtained
from Fig. 4b are indicated by circles. The agreement be-
tween the asymptotic approximation [Eq. (20)] and the nu-
merical simulations is within 5%.

The last parameter that must be evaluated in order to
obtain a complete set of equations is the parameter b in Eq.
(12b). If we evaluate dL/da, for the first stage withv << 1 we
obtain

dL _ aL ag _4(g 0 -1)1/ 2
_

d _aga [ _ +1 = -b (21)

Now it is possible to evaluate the critical parameters that
govern the laser dynamics in the end of the linear amplifica-
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Fig. 5. Solution of Eq. (20). The curves represent the saturation time kat as a function of the pumping rate P for different values of the initial
photon flux x0: top curve, x0 = 10-9; middle curve, x0 = 10-8; bottom curve, xo = 10-7. The circles are the ksat values obtained from Fig. 4b.

tion stage by using Eqs. (20) and (21) and the following three
equations that can be obtained from Eqs. (4), (12a), and (16):

L = 2 n[go + go -11 at (go2 - 1)], (22a)

A = A + Pk, (22b)

I exp(-Pk2 /2) _ \4.DJ4k) (22c)

In the Eq. (22a) the + or - must be used if an initial
positive- or negative-branch configuration, respectively, is
considered.

Equations (22) allow us to evaluate the second threshold
condition, which, expressed as a function of the dimension-
less parameter ,u, is

uTcavAIg-1 11_ 2(A-L ) < 1 (23)
O3hvP Igo + 1/2

I IP
g-1

Expression (23) must be fulfilled in order to obtain the Q
switching of the cavity. The fulfillment of this condition
will depend on the laser-amplifier characteristics and on the
cavity configurations. The initial cavity configuration de-
fines the go value and the initial loss per round trip. If a
Nd:glass system is used, the maximum value for L will be
about 30% per round trip. As an example, we discuss the
design criteria for a cavity length of about 1 m with two
totally reflecting mirrors similar to that described in Ref. 1.
The maximum initial loss admissible sets the initial value of
the cavity parameter go = 1.016. This value can be obtained
with two configurations: (a) with one divergent and one
convergent mirror (curvature radius R = 2 m, R2 = -1 m,
and a cavity length L = 0.985 m) for the positive-branch

configuration; (b) with two convergent mirrors (curvature
radius R1 = 1 m, R2 = 2 m, and a cavity length L, = 1.016 m)
for the negative-branch configuration.

In the positive-branch configuration, the focusing cell can
be placed in contact with the convergent mirror E1 or with
the divergent mirror E2. In Fig. 6, the g parameter as a
function of the equivalent focal length of the focusing cell Zf
is plotted. Only the stable zone (0 < g < 1) for the two
possibilities mentioned before is plotted. With the cell
touching the convergent mirror El, the system rapidly
reaches a unstable configuration. This would drastically
reduce the energy obtainable. In case (b) (negative-branch
resonator), the focusing cell must be placed in contact with
mirror E2 (radius of curvature 2 m). This is a unique choice
in this case because the cell in contact with the mirror E1 will
give a cavity that becomes more unstable as the intensity
grows. With the negative-branch configuration, the cavity
parameter g has a slight dependence on the field intensity.
If we evaluate the function dg/dgt, it can be demonstrated
that in case (b) this variation rate is about 100 times smaller
than in positive-branch configuration. For this reason [see
Eq. (7)] the second threshold condition cannot be fulfilled.

The stability condition, as we mentioned before, is

0 < = g 1g2 1, (24)

where gi = 1 - L/Ri.
The stable boundary zones can be plotted in the 1-g2

plane. In Fig. 7, the g1-g2 plane with the cavity evolution for
the three cases discussed is plotted. The two initial configu-
rations are also shown: point A for the positive-branch
resonator and point B for the ngative-branch resonator. In
case (b), the cavity evolution is along a straight line with a
small gl, and thus the g parameter has a low intensity depen-

Marconi et al.



Vol. 3, No. 12/December 1986/J. Opt. Soc. Am. B 1635

1

0.9

0.8

' 0.7

E0.6

X 0.5E

C50.5

X 0.3

0.2

0.1

9
1
2

Zf m)

5 10 15 20 25 30 35 40 45 50
Fig. 6. Cavity parameter g as a function of the focal length zf of the focusing cell: 1, with the cell in contact with the divergent mirror E2; 2,
with the cell in contact with the convergent mirror El.
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Fig. 7. Stable frontier zones in the g1-g2 plane. The initial configurations are plotted with the cavity evolution for the different cases
discussed. A, Initial configuration for the positive-branch resonator. 1 is the cavity evolution obtained with the focusing cell in contact with
the divergent mirror and 2 is that when the cell is in contact with the convergent mirror. B, Initial configuration for the negative-branch
resonator. 3 is the cavity evolution in this case.

dence. As can be concluded, the best choice for the cavity
design is a positive-branch resonator with the focusing cell in
contact with the divergent mirror.

Finally, we present some numerical examples using the
design equations in order to evaluate the Q-switching condi-

tion [expression (23)] for a Nd:glass system, with both con-
figurations (positive- and negative-branch) and for a
Nd:YAG amplifier.

For a Nd:glass amplifier we consider AO = 1.3, a = 0.4 X
10-19 cm 2, P = 10-4, 3 = 10-8 cm2/W, k0 = 1018 cm-2 sec', go

Marconi et al.
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= 1.016, and Tcav = 6 nsec. The 3 value was evaluated using
phenyl salicylate14 as the nonlinear medium. With these
initial values, using Eqs. (21), (lOa), and (20), we obtain b =
0.178, go = 1.156 X 10-7, and kat = 530. Substituting these
values into Eqs. (22), we obtain the laser parameters at the
end of the linear amplification stage: A = 1.353, A = 0.273,
and L = 0.349. Finally, substituting these values into ex-
pression (23), we obtain

7 - 145 < 1.

In this case dL/dt is 20 times larger than dA/dt, and in this
way the second threshold condition is fulfilled. If we con-
sider a positive-branch resonator with the focusing cell in
contact with the convergent mirror, we must change the
value of the parameter 13. In this case, 13 is four times larger
than in the former case. With these values of the initial
parameters we obtainpu = 4.612 X 10-7 and the same values
for the other parameters. Substituting these values into
expression (23), we obtain

4 - 310 < 1.

In this case also the second threshold condition is fulfilled.
The last example that we will consider with a Nd:glass am-
plifier is the negative-branch configuration. In this case, we
obtain gl =-0.016, g2 = 0.492, and then go =-1.016. With
this value for the initial cavity parameter, we obtain b =
22.45, /io = 9.17 X 10-10, and kat = 530. When these values
are substituted into Eqs. (22), the laser parameters at the
end of the linear amplification stage are A = 1.353, , = 0.002,
and L = 0.301. If we substitute them into expression (23) we
obtain

214 - 134 > 1.

In this case, as we pointed out before, the Q-switching condi-
tion is not achieved.

If a Nd:YAG laser system is used, the emission cross sec-
tion is about 20 times larger than for the Nd:glass laser.
Moreover, as the net gain is about 20 times higher, the initial
cavity configuration must be strongly unstable, and the ini-
tial cavity parameter go can be as large as 15 instead of 1.016.
This adds a factor of 800 in the term Igo - 11. In the YAG
system, the gain decrease by stimulated emission [the first
term in expression (23)] will always be larger than the loss
decrement [the second term in expression (23)]. The loss
saturation stage cannot be achieved, and a giant pulse is not
emitted.

The parameter that defines the characteristics of the am-
plifier in the second threshold condition is the amplifier
cross section . This value determine the saturation inten-
sity of the amplifier medium and is the reason why a
Nd:YAG amplifier cannot be used. Because of their low
cross sections, Cr+ active materials such as ruby, alexan-
drite, and other chromium garnet lasers should easily meet
the second threshold condition.

Equation (9) and expression (23) are both necessary and
sufficient conditions for obtaining the Q switching of the

cavity in a self-focusing Q-switching system. The pumping
rate P is a negligible quantity in the majority of practical
cases, compared with the two terms of Eq. (9) and expression
(23). Hence it is possible to obtain a simpler expression by
neglecting this quantity, and we obtain a necessary but in-
sufficient condition as

Tc.,A(go - 1)1/2 2(A - L - r) <0.
13hv (go + )1/2

(25)

It must be pointed out that the pumping rate P must be
considered a crucial parameter in ksat evaluation and there-
fore in the amplification and loss coefficients A and L.

We have presented a master equation that defines the Q-
switching condition in a self-focusing Q-switching system.
This equation includes the principal laser parameters that
can be evaluated a priori with a complete set of equations.
By using the condition derived, it was shown that with the
nonlinear material used in the previous work (phenyl salicy-
late), the second threshold condition cannot be achieved for
a Nd:YAG laser. For a Nd:glass laser the best configuration
is with a positive-branch resonator. The second threshold
condition cannot be achieved with a negative-branch resona-
tor. The equation presented can easily be applied to other
nonlinear materials or amplifier media in order to determine
if the Q-switching operation can be obtained.
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