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ABSTRACT 

 

CHARACTERIZING AMMONIA CONCENTRATIONS AND DEPOSITION IN THE 

UNITED STATES 

 

Rapid development of agricultural activities and fossil fuel combustion in the United States led to 

a great increase of reactive nitrogen (Nr) emissions in the second half of the twentieth century. 

These emissions have been linked to excess nitrogen (N) deposition in natural ecosystems through 

dry and wet deposition pathways that can lead to adverse environmental impacts. Furthermore, as 

precursors of ozone and fine particles, reactive nitrogen species impact regional air quality with 

resulting effects on human health, visibility, and climate forcing. In this dissertation, ambient 

concentrations of reactive nitrogen species and their deposition are examined in the Rocky 

Mountain region and across the country. Particular emphasis is placed on ammonia, a currently 

unregulated pollutant, despite its important contributions both to nitrogen deposition and fine 

particle formation.  

 

Continuous measurements of the atmospheric trace gases ammonia (NH3) and nitric acid (HNO3) 

and of fine particle (PM2.5) ammonium (NH4+), nitrate (NO3
-) and sulfate (SO42-) were conducted 

using a denuder/filter system from December 2006 to December 2011 at Boulder, Wyoming, a 

region of active gas production. The average five year concentrations of NH3, HNO3, NH4
+, NO3

- 

and SO4
2- were 0.17, 0.19, 0.26, 0.32, and 0.48 µg/m3, respectively. Significant seasonal patterns 

were observed. The concentration of NH3 was higher in the summer than in other seasons, 

consistent with increased NH3 emissions and a shift in the ammonium nitrate (NH4NO3) 
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equilibrium toward the gas phase at higher temperatures. High HNO3 concentrations were 

observed both in the summer and the winter. Elevated wintertime HNO3 production appeared to 

be due to active local photochemistry in a shallow boundary layer over a reflective, snow-covered 

surface. PM2.5 NH4
+ and SO4

2- concentrations peaked in summer while NO3
- concentrations peaked 

in winter. Cold winter temperatures drove the NH3-HNO3-NH4NO3 equilibrium toward particulate 

NH4NO3. A lack of NH3, however, frequently resulted in substantial residual gas phase HNO3 even 

under cold winter conditions.  

 

Concentrated agricultural activities and animal feeding operations in the northeastern plains of 

Colorado represent an important source of atmospheric NH3 that contributes to regional fine 

particle formation and to nitrogen deposition to sensitive ecosystems in Rocky Mountain National 

Park (RMNP) located ~80 km to the west. In order to better understand temporal and spatial 

differences in NH3 concentrations in this source region, weekly concentrations of NH3 were 

measured at 14 locations during the summers of 2010 to 2014 using Radiello passive NH3 

samplers. Weekly average NH3 concentrations ranged from 2.8 µg/m3 to 41.3 µg/m3 with the 

highest concentrations near large concentrated animal feeding operations (CAFOs). The annual 

summertime mean NH3 concentrations were stable in this region from 2010 to 2014, providing a 

baseline against which concentration changes associated with future changes in regional NH3 

emissions can be assessed. Vertical profiles of NH3 were also measured on the 300 m Boulder 

Atmospheric Observatory (BAO) tower throughout 2012. The highest NH3 concentration along 

the vertical profile was always observed at the 10 m height (annual average concentration is 4.63 

µg/m3), decreasing toward the surface (4.35 µg/m3 at 1 m) and toward higher altitudes (1.93 µg/m3 

at 300 m). Seasonal changes in the steepness of the vertical concentration gradient were observed, 
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with the sharpest gradients in cooler seasons when thermal inversions restricted vertical mixing of 

surface-based emissions. The NH3 spatial distributions measured using the passive samplers are 

compared with NH3 columns retrieved by the Infrared Atmospheric Sounding Interferometer 

(IASI) satellite and concentrations simulated by the Comprehensive Air quality Model with 

extensions (CAMx), providing insight into the regional performance of each. 

 

U.S. efforts to reduce NOx emissions since the 1970s have substantially reduced nitrate deposition, 

as evidenced by strongly decreasing trends in long-term wet deposition data. These decreases in 

nitrate deposition along with increases in wet ammonium deposition have altered the balance 

between oxidized and reduced nitrogen deposition. Across most of the U.S., wet deposition has 

evolved from a nitrate dominated situation in the 1980s to an ammonium dominated situation in 

recent years. Recent measurements of gaseous NH3 concentrations across several regions of the 

U.S., along with longer-established measurements of gas phase nitric acid, fine particle ammonium 

and nitrate, and wet deposition of ammonium and nitrate, permit new insight into the balance of 

oxidized and reduced nitrogen in the total (wet + dry) U.S. reactive nitrogen deposition budget. 

Utilizing observations from 37 monitoring sites across the U.S., we estimate that reduced nitrogen 

contributes, on average, approximately 65 percent of the total inorganic N deposition budget. Dry 

NH3 deposition plays an especially key role in N deposition compared with other N deposition 

pathways, contributing from 19% to 65% in different regions. With reduced N species now 

dominating the wet and dry reactive N deposition budgets in much of the country and future 

estimates suggesting growing ammonia emissions, the U.S. will need to consider ways to actively 

reduce NH3 emissions if it is to continue progress toward reducing N deposition to sustainable 

levels defined by ecosystem critical loads.  
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1. INTRODUCTION 

 

Nitrogen (N) is an essential element for terrestrial and aquatic ecosystems. Since the last century, 

emissions of anthropogenic reactive nitrogen (Nr) have accelerated dramatically due to fossil fuel 

combustion and intensive agricultural activities (Erisman et al., 2011; Galloway and Cowling, 

2002; Galloway et al., 2008; Liu et al., 2013). Atmospheric reactive nitrogen compounds are 

deposited to terrestrial and aquatic ecosystems on the earth through dry and wet atmospheric 

processes. This has raised world-wide concerns due to the adverse environmental impacts of 

reactive nitrogen, such as decreases in biological diversity, soil acidification and lake 

eutrophication (Clark and Tilman, 2008; Galloway et al., 2004; Holtgrieve et al., 2011; Janssens 

et al., 2010; Phoenix et al., 2012). In addition, atmospheric reactive nitrogen (as a primary 

precursor of ozone and fine particles) has been linked with climate change and human health 

degradation by many scientific studies (Davidson et al., 2012; Galloway et al., 2004; Gruber and 

Galloway, 2008).  

 

1.1 Reactive Nitrogen in the Atmosphere 

 

Reactive nitrogen as discussed in this dissertation includes all photochemically reactive and 

biologically active nitrogen compounds within the Earth's atmosphere in gaseous and particulate 

form (Wolfe and Patz, 2002). Figure 1.1 summarizes the key sources and processes of reactive 

nitrogen in the atmosphere. In the gaseous phase, it includes ammonia (NH3), nitrogen monoxide 

(NO), nitrogen dioxide (NO2), nitrous oxide (N2O), nitrous acid (HNO2), nitric acid (HNO3), 

various forms of organic nitrogen, such as peroxyacetyl nitrate (PAN), amines, acetonitrile, alkyl 



2 
 

nitrates, and peroxynitrates; in the particulate phase, it includes ammonium (NH4
+), nitrate (NO3

-) 

and various forms of organic nitrogen. Reactive nitrogen species exist as inorganic reduced forms 

of nitrogen (e.g., NH3, NH4
+), inorganic oxidized forms (e.g., NOx, HNO3, N2O, NO3

-), and organic 

compounds (e.g., urea, amines, proteins, nucleic acids) (Galloway et al., 2004). In this study, we 

specifically focus on several major inorganic compounds of reduced (NH3 and NH4
+) and oxidized 

(NOx, HNO3 and NO3
-) nitrogen.  

 

 
Figure 1.1 Key sources and processes of reactive nitrogen in the atmosphere. 
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1.1.1 NH3 

As the most abundant reactive and basic gas in the atmosphere, ammonia (NH3) can neutralize 

ambient acidic species, such as sulfuric acid (H2SO4) and nitric acid (HNO3), which are the most 

important acidic species in many (especially polluted) environments. It is widely believed that 

agriculture (livestock waste and fertilizer application) represents the largest source of NH3 

globally. Clarisse et al. (2009) estimate that atmospheric NH3 is emitted primarily from livestock 

waste (39%) and volatilization of NH3-based fertilizers (17%), while the U.S. Environmental 

Protection Agency (EPA) attributes over 85% of NH3 emissions in the U.S. to the agricultural 

sector (EPA, 1998). Hertel et al.  

(2006) also found that deposition of atmospheric NH3 near an intensive agricultural area would 

dominate the overall load of reactive nitrogen from the atmosphere. Agricultural NH3 emissions 

have become one of the most significant air pollution problems in recent years and have attracted 

growing concern from environmental scientists and government regulators (Aneja et al., 2006). 

 

In recent years, there have been a number of studies on NH3 in urban and rural areas around the 

world (Figure 1.2 and Table 1.1). From a global perspective, the lowest NH3 concentrations were 

observed at remote areas which were away from anthropogenic activities (agricultural and 

industrial). Ammonia concentrations can be similar between urban and rural areas. For example, 

the average NH3 concentration near a hog farm (10.5 µg/m3) in eastern North Carolina, U.S., was 

comparable to the concentration in Beijing, China (16.6 µg/m3), one of the largest megacities in 

the world with 19.6 million residents. The NH3 concentration observed mainly depends on the 

distance from a major source, such as livestock feedlots, sewage plants or a traffic center. Usually 

the NH3 near a coastal area (e.g. Morehead, Thessaloniki, Hong Kong) is lower than the 
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concentration in an inland area (e.g. Lahore, Xinken, Beijing), reflecting the dilution effect of sea 

and land breezes.  
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Figure 1.2 Comparison of selected measurements of the average concentrations of reactive nitrogen species (gaseous NH3 and HNO3 
and particulate NH4+ and NO3

-). Y-axes are the same for all the plots except the last 3 urban sites. More detailed information on the 
location and concentration for each site can be found in Table 1.1 
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Seasonal patterns have been found in long-term NH3 observations, with lower concentrations in 

winter than in summer (Bari et al., 2003; Gong et al., 2011; Ianniello et al., 2010; Lee et al., 1999; 

Lin et al., 2006; Meng et al., 2011; Perrino et al., 2002). This implies that air temperature is one 

important factor determining NH3 emissions. However, Vogt et al. (2005) found no such trend in 

their observations in Münster, Germany. They believed this was due to a great influence of local 

sources and, therefore, NH3, HNO3 and NH4NO3 had not reached equilibrium. Elevated NH3 

concentrations were found at rural sites, especially nearby agricultural areas such as a hog farm 

(McCulloch et al., 1998), indicating the significant impacts of agricultural activities on the NH3 

concentration. Meanwhile, in urban areas, the sources of NH3 mainly include humans (sweat, 

breath, smoking), animals, sewage, industrial combustion and road transportation (Sutton et al., 

2000). Recently, a number of studies (Carslaw and Rhys-Tyler, 2013; Gong et al., 2011; Huai et 

al., 2003; Kean et al., 2000; Liu et al., 2014; Loflund et al., 2002; Perrino et al., 2002; Whitehead 

et al., 2007; Yao et al., 2013) have highlighted the important role that the transportation sector 

plays in contributing to NH3 emission, with the widespread application of three-way catalytic 

converters in motor vehicles since the 1980s producing NH3 through the reaction between NO and 

Hydrogen (H2) as shown in Eqn.1.1 (Kean et al., 2000). However, the emission factor of NH3 from 

road traffic remains uncertain.  

 

2NO + 5H2 → 2NH3 + 2H2O        (Eqn.1.1) 

 

After finding a significant correlation between the ratio of NH3 to carbon monoxide (CO) (mainly 

from the traffic sources) and air temperature, Perrino et al. (2002) concluded that ammonia in 

urban sites depended on three factors: traffic intensity, atmospheric mixing in the boundary layer 
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and air temperature. Reche et al. (2015) claim that important NH3 sources in urban environments 

include vehicular traffic, biological sources (e.g. garbage containers), waste (water and solid) 

treatment plants and industry. 

 

In the United States (U.S.), a set of Class 1 areas (including National Parks and Wilderness Areas) 

has been identified for protection from visibility impairment through the Regional Haze Rule. 

Because oil and gas production regions of the western U.S. are often located near these visibility-

protected areas, close attention is paid to their emissions of fine particle precursors. In order to 

reduce NOx emissions from natural gas drilling and production activities, for example, selective 

catalytic reduction (SCR) can be installed on drill rigs. While SCR can yield large reductions of 

NOx emissions, there is a risk of increased NH3 emission to the atmosphere from injected urea or 

NH3 that is not completely consumed, especially as the catalyst ages. 
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Table 1.1 Ambient gaseous NH3, HNO3 and particulate NH4+, NO3
- concentrations in µg/m3 summarized for each site presented in 

Figure 1.2 

 

 

Site 

 

Latitu

de 

(degr

ees) 

 

Longitude 

(degrees) 

 

Period 

Reactive Nitrogen Species 

(unit: µg/m3)  

Reference 

NH3 HNO3 NH4
+ NO3

- 

 

Rural 

Boulder, USA 42.72 -109.75 12/2006 ~ 12/2011 0.2 0.2 0.3 0.3 (Li et al., 2014) 

Rocky Mountain 

National Park, USA 

 

40.30 

 

-105.69 

11/2008 ~ 11/2009 

0.2 0.1 0.2 0.2 (Benedict et al., 2013c) 

Clinton,USA 35.01 -78.32 01/2000 ~ 12/2000 5.3 0.8 1.8 1.7 (Walker et al., 2004) 

Sequoia National Park, 

USA 

 

36.52 

 

-118.56 

05/1999 ~ 11/1999 

4.5 2.1 1.3 1.3 (Bytnerowicz et al., 2002) 

Eastern North 

Carolina,USA 
35.59 -77.89 

09/1997 ~ 12/1997 
10.5 0.2 1.1 0.6 (McCulloch et al., 1998) 

Deurne, Netherlands 51.69 5.80 10/1987 ~ 4/1990 11.6 0.7 3.4 5.7 (Hoek et al., 1996) 

Bilthoven, Netherlands 52.14 5.21 10/1987 ~ 4/1990 3.9 0.3 3.3 5.2 (Hoek et al., 1996) 

Erzgebirge, Germany 50.78 13.70 10/2001 ~ 04/2003 0.5 0.8 1.6 2.2 (Plessow et al., 2005) 

Chunchon, South 

Korea 
37.94 127.75 

09/1996 ~ 12/2000 
3.1 1.7 2.8 5.7 (Hong et al., 2002) 
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Anmyon-do, South 

Korea 
36.57 126.34 

05/1997 ~ 08/1998 
2.0 2.9 N/A 6.1 (Hong et al., 2002) 

Wolkersdorf, Austria 48.39 16.51 11/1990 ~ 10/1991 1.5 1.8 4.5 4.6 (Puxbaum et al., 1993) 

Mt. Oyama, Japan 35.42 139.26 09/1996 ~ 12/2000 0.8 0.8 2.3 1.8 (Igawa et al., 1998) 

Rampur, India 27.17 78.08 
Summer & Winter, 

2002 
6.7 0.7 1.0 1.1 (Gupta et al., 2003) 

          

 

 

 

 

 

 

Urban 

Morehead, USA 34.73 -76.73 01/2000 ~ 12/2000 0.6 0.2 0.9 1.1 (Walker et al., 2004) 

Kinston, USA 35.27 -77.58 05/2000 ~ 12/2000 2.5 0.3 1.3 1.4 (Walker et al., 2004) 

Chicago,USA 41.89 -87.63 04/1990 ~ 03/1991 1.6 0.8 2.7 4.2 (Lee et al., 1993) 

Manhattan,USA 40.79 -73.97 07/1999 ~ 06/2000 3.7 1.7 N/A* N/A* (Bari et al., 2003) 

Hamilton, Canada 43.25 -79.89 09/1994 ~ 12/1994 4.3 2.0 2.5 1.1 (Brook et al., 1997) 

Aveiro, Portugal 40.76 8.67 08/1988 ~ 05/1989 3.46 0.79 2.2 2.4 (Pio et al., 1991) 

Rome, Italy 41.92 12.49 
01/2004 ~ 12/2004 

5.6 1.2 1.4 1.2 
(Perrino and Catrambone, 

2004) 

Thessaloniki, Greece 40.65 22.90 
04/2002 ~ 03/2003 

2.3 0.8 2.7 2.9 
(Anatolaki and Tsitouridou, 

2007) 

Küçük Çalticak, 

Turkey 
36.80 30.57 

08/1995 ~ 04/1996 
1.0 0.4 2.2 2.3 

(Soner Erduran and Tuncel, 

2001) 

Sasaguri, Japan 33.63 130.53 05/2006 ~ 04/2007 0.8 2.2 3.1 2.0 (Chiwa, 2010) 
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Nara, Japan 34.69 135.81 
06/1994 ~ 05/1995 

2.4 1.6 1.7 2.1 
(Matsumoto and Okita, 

1998) 

Taichung, Taiwan 24.14 120.67 01/2002 ~ 12/2002 11.4 2.6 4.6 5.0 (Lin et al., 2006) 

Hsinchu,Taiwan 24.82 120.96 06/1994 ~ 05/1995 8 0.7 3 2.8 (Tsai and Perng, 1998) 

Seoul, South Korea 37.57 126.98 10/1996 ~ 09/1997 4.3 1.1 4.2 6.0 (Lee et al., 1999) 

Hongkong, China 22.44 114.09 Autumn, 2000 2.1 1.3 2.4 1.0 (Yao et al., 2006) 

Lahore,Pakistan 31.57 74.34 12/2005 ~ 02/2006 50.1 1.0 16.1 18.9 (Biswas et al., 2008) 

Xinken, China 22.65 113.61 10/2004 ~ 11/2004 7.3 6.3 7.2 9.2 (Hu et al., 2008) 

Beijing,China 39.99 116.31 

06/2002 ~ 08/2002 

& 

06/2003 ~ 08/2003 

16.6 1.9 8.9 14.6 (Wu et al., 2009) 

* ”N/A” means data were not available in the study 
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1.1.2 HNO3 

 

Gaseous nitric acid (HNO3) is one of the most important acidic gases in the atmosphere and a 

major product of photochemical reactions. During the daytime, the primary source of HNO3 is 

through atmospheric oxidation of nitrogen oxides (NOx = NO + NO2), such as the reaction of NO2 

with hydroxyl radical (OH) (Eqn. 1.2); during the nighttime, HNO3 can be formed through the 

heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) and NO2 on the surface of ambient 

aerosol (Eqn. 1.3 and Eqn 1.4) and reactions of the nitrate radical (NO3) (Eqn. 1.5 and Eqn 1.6) 

(Bari et al., 2003; Dentener and Crutzen, 1993; Lin et al., 2006). The atmospheric lifetime of HNO3 

is only a few days (McElroy, 2002). Because of its water-soluble and sticky characteristics, HNO3 

is efficiently removed from the atmosphere through dry and wet deposition processes.  

  

NO2 + OH → HNO3                                        (Eqn. 1.2) 

N2O5 + H2O → 2HNO3                                   (Eqn. 1.3) 

2NO2 + H2O → HNO2 + HNO3                       (Eqn. 1.4) 

NO3 + H2O → HNO3                                       (Eqn. 1.5) 

NO3 + HONO → HNO3 + NO2                       (Eqn. 1.6) 

 

Higher HNO3 concentrations are usually observed in urban and suburban areas compared to rural 

areas (Figure 1.2 and Table 1.1). For example, the average HNO3 concentration in Manhattan, 

New York was 1.6 μg m−3, two times higher than the concentration measured at a forest site in 

Germany (0.8 μg m−3) (Plessow et al., 2005). This difference can be explained by increased 

emissions of NOx from industrial and traffic sectors in the urban area. The seasonal pattern of 
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HNO3 concentrations suggest that HNO3 is typically highest in summer and lowest in the winter 

due to intensive photochemical activity in the summer, which generates higher OH concentrations, 

as well as increased decomposition of NH4NO3 particles at warmer temperatures (Bari et al., 2003; 

Lin et al., 2006; Plessow et al., 2005).  

 

1.1.3 Particulate NH4
+, NO3

- and Gas/Particulate Partitioning 

 

In the particulate phase, NH4
+ and NO3

- are important inorganic constituents in rural, suburban and 

urban areas. Due to its alkaline nature, NH3 commonly acts to neutralize acidic compounds such 

as HNO3 and H2SO4 and form submicron ammonium nitrate (NH4NO3) and ammoniated sulfate 

(NH4HSO4, (NH4)2SO4, or other forms) particles (Eqn. 1.7 and Eqn 1.8), respectively. Normally, 

the diameters of these particles are less than a  

 

HNO3(g) + NH3(g) ↔ NH4NO3(p)                              (Eqn. 1.7) 

H2SO4(p) + 2NH3(g) → (NH4)2SO4(p)                        (Eqn. 1.8) 

 

micrometer and measured within PM2.5. These submicron particles have longer atmospheric 

lifetimes than their gas-phase counterparts (on the order of several days), allowing them to be 

transported to remote areas away from sources before being deposited through dry and wet 

processes (Aneja et al., 2001; Fowler et al., 1998). PM2.5 has been linked to adverse effects on 

human health, regional visibility, and radiative forcing (Davidson et al., 2005; Ianniello et al., 

2010; Langridge et al., 2012; Park et al., 2006; Parry, 2007; Schwartz and Neas, 2000). 
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In this neutralization process, NH3 is thermodynamically preferred to react first with H2SO4 to 

form non-volatile ammoniated sulfate aerosol species. Any remaining NH3 can participate in gas-

particle partitioning with HNO3 (Asman et al., 1998; Bari et al., 2003; Ellis et al., 2011; Sharma 

et al., 2007). The gas-particle partitioning reaction between NH3, HNO3 and NH4NO3 is highly 

dependent on temperature and relative humidity. In an environment with high temperature and low 

relative humidity, NH3 and HNO3 will mostly stay in the gas-phase, but low temperature and high 

relative humidity enhance NH4NO3 formation (Stelson and Seinfeld, 1982). Several studies (Hand 

et al., 2012; Ianniello et al., 2010; Lee et al., 1999; Lee et al., 2008b; Li et al., 2014; Sharma et al., 

2007) have shown high concentrations of NH3 and HNO3 in summer and elevated concentrations 

of NH4
+ and NO3

- in winter are partially due to the shift of this reversible equilibrium between 

particulate and gas phases. For the same reason, formation of NH4NO3 is expected to be more 

favorable during nighttime than daytime as observed in many locations (Du et al., 2010; Ellis et 

al., 2011; Sharma et al., 2007; Walker et al., 2004; Wen et al., 2015).  

 

Additionally, HNO3 can react with CaCO3 in soil particles and NaCl in sea salts to form nitrate in 

coarse particles (particulate matter with aerodynamic diameter in the range from 2.5 to 10 µm) 

(Eqn. 1.9 and Eqn 1.10) (Lee et al., 2008a; Pakkanen, 1996; Yeatman et al., 2001).  

 

HNO3(g)+ NaCl(p) →HCl(g) + NaNO3(p)                                  (Eqn. 1.9) 

2HNO3(g)+ CaCO3(p) →Ca(NO3)2(p)+ H2O(aq)+ CO2(g)          (Eqn. 1.10) 
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1.2 Nitrogen Deposition  

 

Atmospheric reactive nitrogen sources are dominated by emissions of nitrogen oxides (NOx 

=NO+NO2) and ammonia (NH3) (Galloway et al., 2004). NOx is produced by fuel combustion 

from vehicles, electric power generation, and industrial sources and also has natural sources 

including wildfires, lightning and soil emissions. Emitted NOx can be oxidized to HNO3 within a 

short timescale (less than one day) in the atmosphere. For NH3, Reis et al. (2009) attributed over 

80% of NH3 emissions in the U.S. to the agricultural sector, including emissions from livestock 

waste and volatilization of N-based fertilizer. Through wet and dry deposition, HNO3 and NH3 are 

rapidly removed from the atmosphere and enter the natural ecosystems in the form of nitrate (NO3
-) 

and ammonium (NH4+), respectively. HNO3 and NO3
- are generally referred to as oxidized 

nitrogen while NH3 and NH4
+ are regarded as reduced N, but both are significant reactive nitrogen 

inputs in natural ecosystems (Fowler et al., 1998; Galloway et al., 2002). 

 

Both oxidized and reduced nitrogen species are removed from the atmosphere and deposited to 

aquatic and terrestrial ecosystems, comprising important components of nitrogen deposition. 

Generally, the removal mechanisms can be divided into dry deposition and wet deposition. Many 

studies have demonstrated that emissions from human activities increasingly dominate the nitrogen 

deposition budget at global and most regional scales (Galloway et al., 2004; Liu et al., 2013; 

Vitousek et al., 1997). National network observations and model simulation studies have shown 

that within the United States, nitrogen deposition generally exceeds 8 Kg N ha-1 a-1 in the eastern 

part and ranges from 1 to 4 Kg N ha-1 a-1 over most regions in the west, with maxima from 30 to 

90 Kg N ha-1 a-1 downwind of urban and agricultural areas (Fenn et al., 2003; Zhang et al., 2012).  



16 
 

1.2.1 Dry Nitrogen Deposition 

 

Dry deposition is the process by which reactive nitrogen species (gaseous and particulate) are 

transferred directly from the atmosphere to the surface of the Earth without precipitation. The 

transport rate between the air and the surface depends, for various species, on atmospheric 

characteristics as well as the physical and/or chemical properties of the species and the surface. 

For instance, because of its high solubility, NH3 can easily be absorbed by the dew or thin water 

film on leaves and be taken up through the stomata of plants. These are believed to be major 

pathways for surface uptake of NH3 (van Pul et al., 2009). Generally speaking, there are many 

factors that can affect the dry deposition process, including environmental conditions (e.g. relative 

humidity), characteristics of the deposited surface (e.g. grass or lake) and the characteristics of the 

species being deposited (e.g. gas or particle), which make the estimation of dry deposition even 

today a challenging scientific research topic.  

 

Micrometeorological methods for the direct measurement of dry deposition have been developed 

and applied in many previous studies; these include eddy correlation methods and gradient flux 

methods (Nicholson, 1988; Pryor et al., 2002; Stocker et al., 1993). The principle disadvantages 

of the micrometeorological methods lie in the high instrument complexity and cost, which means 

micrometeorological methods are often impractical for acquiring spatial patterns and trends, 

especially in national and regional observation networks (van Pul et al., 2009). 

 

As an alternative approach, the inference method can be used to estimate dry deposition (Hicks, 

1985; Ruijgrok et al., 1997). In this method, the flux (or rate) of dry deposition (F) is assumed as 
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a product of the ambient concentration of the species (C) and its deposition velocity (Vd)( Eqn. 

1.11). 

 

F = C × Vd                                                        (Eqn. 1.11) 

 

To describe gas dry deposition, the deposition velocity (Vd) is defined as the reciprocal of the sum 

of three resistance factors (Eqn. 1.12), which are the aerodynamic  

 

Vd = (Ra + Rb + Rc)-1
                              (Eqn. 1.12) 

 

resistance (Ra), quasi-laminar resistance (Rb), and surface or canopy resistance (Rc), respectively 

(Wesely and Hicks, 2000). To describe particle dry deposition, the surface resistance is often 

assumed to be zero (Rc = 0) because particles are believed to usually adhere to the surface on 

contact. Additionally, the gravitational settling velocity of particles (Vs) as a function of particle 

size and density cannot be neglected during the deposition process. Therefore, the particle dry 

deposition velocity (Vd) can be described as Eqn. 1.13 (Seinfeld and Pandis, 2012) :  

 

Vd = (Ra + Rb + RaRbVs)-1+ Vs                            (Eqn. 1.13) 

 

This inference method has been applied in the Clean Air Status and Trends Network (CASTNET), 

which is a national observation network operated by the U.S. Environmental Protection Agency. 

It includes 91 monitoring stations at 88 locations across the country. This network was partially 

designed to evaluate atmospheric dry deposition by combining the nitrogen species concentrations 
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(HNO3, NO3
- and NH4

+) from continuous weekly measurements and modeled deposition velocities 

(http://epa.gov/castnet/javaweb/docs/annual_report_2012.pdf). Based on the CASTNET report in 

2012, the dry nitrogen deposition (not including NH3) values at all sites were less than 2.0 Kg N 

ha-1 a-1, with four eastern sites and two western sites having dry deposition fluxes over 1.8 Kg N 

ha-1 a-1. A recent study (Schwede and Lear, 2014) has shown a significant spatial and temporal 

distribution of dry deposition in the U.S., with dry deposition constituting more than 50% of the 

total nitrogen deposition in many regions.  

 

1.2.2 Wet Nitrogen Deposition 

 

Wet nitrogen deposition is the process by which ambient nitrogen species are scavenged by 

atmospheric hydrometeors (cloud and fog drops, rain, and snow) and subsequently delivered to 

the surface (Seinfeld and Pandis, 2012). There are different kinds of atmospheric physical 

processes that contribute to wet deposition; these can be divided into two main groups: below-

cloud and in-cloud scavenging.  

 

In-cloud scavenging processes governing wet deposition of aerosols and gases include 

heterogeneous nucleation of aerosol particles, impaction and interception of aerosol particles by 

cloud drops, and diffusive scavenging of inactivated particles and soluble gases. Below-cloud 

scavenging processes include the washout of particles and gases by falling precipitation (rain and 

snow). Physical mechanisms at play include inertial impaction, interception, and diffusive uptake. 

Particle scavenging efficiency is greatly affected by the sizes of the hydrometeors and particles 

(Seinfeld and Pandis, 2012; Twomey, 1977). As secondary air pollutants, most (NH4)2SO4 and 
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NH3NO3 particles are below 1 µm. Therefore, it is generally believed that the contributions of in-

cloud scavenging processes of reactive nitrogen are more important than below-cloud scavenging 

processes (Asman, 1995), especially for particles. However, the contribution of below-cloud 

scavenging cannot be neglected, especially for soluble gases with local surface-based emission 

sources. Draaijers et al. (1989) attributed considerable NH4
+ wet deposition in forest areas to 

scavenging of NH3 emissions from agricultural sources in the vicinity. Aneja et al. (2003) found a 

significant relationship between the NH4
+ concentration in wet deposition and local NH3 emission 

density. 

 

The National Trends Network (NTN) is a national wet deposition observation network in the U.S. 

operated by the National Atmospheric Deposition Program (NADP) to provide a long-term record 

of wet deposition. NTN collects weekly samples each Tuesday morning, determines the total 

precipitation volume, and sends samples to the Illinois State Water Survey’s Central Analytical 

Laboratory (CAL) for chemical ion analysis, which includes nitrogen species (NO3
- and NH4

+) 

(http://nadp.sws.uiuc.edu/lib/data/2013as.pdf).  

http://nadp.sws.uiuc.edu/lib/data/2013as.pdf
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Figure 1.3 Distribution of wet nitrogen deposition (NO3

-+NH4
+) in the U.S in 2003 (a) and 2013 

(b) (http://nadp.sws.uiuc.edu/lib/dataReports.aspx)  
 

Figure 1.3b illustrates the current status of wet nitrogen (NO3
-+NH4

+) deposition across the U.S. 

There is significant spatial variability in the wet deposition. Compared with the results from 2003 

(Figure 1.3a), wet deposition for many regions of the western U.S. was larger in 2013 than 2003. 

2013(b)

2003(a)

http://nadp.sws.uiuc.edu/lib/dataReports.aspx
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This is especially true in the Rocky Mountain region (Fenn et al., 2003; Lehmann et al., 2005), 

indicating possible influence from increases in urbanization, population, N-fertilizer application 

and concentrated animal feeding operations. 

 

1.3 Research Objectives 

 

Due to the critical roles of atmospheric nitrogen species in particulate formation and nitrogen 

deposition, it is imperative to increase understanding of their atmospheric concentrations in the 

United States. This is especially true for ammonia, which historically has not been regulated and 

seldom measured, and for locations in the western U.S. where measurements are sparse and 

contributions of reactive nitrogen species to visibility degradation and nitrogen deposition can be 

substantial and appear to be growing. Several investigations were undertaken as part of this 

research to help improve knowledge in these areas. 

 

In order to fully investigate the spatial, seasonal, and inter-annual variations of reactive nitrogen 

species and their gas-particle partitioning, multi-year observations were conducted in western 

Wyoming and northeastern Colorado. In addition, nitrogen species data from several regional and 

national observation networks have been used to investigate reactive nitrogen deposition 

nationwide. This analysis includes study of regional contributions of various deposition pathways 

(e.g., dry vs. wet, oxidized vs. reduced N) and their changes over time. In summary, the major 

research objectives in this dissertation are to: 
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 Investigate concentrations of NH3, HNO3, and fine particles in a rural gas production region, 

by providing a multi-year observational dataset of seasonal and temporal variations of nitrogen 

species and the primary factors determining their variabilities. Characterize the major factors 

controlling the gas/particle partitioning process for NH4NO3 in this region. 

 

 Explore spatial and temporal variability of NH3 concentrations in the important NE 

Colorado agricultural production region. Compare NH3 concentrations across the region, 

considering differences between urban/suburban locations, regions of intense animal production, 

and natural grasslands. Examine the vertical distribution of NH3 concentrations and how it varies 

with season. Document inter-annual variability in NH3 concentrations in the region. Use this 

observational dataset to evaluate the ability of chemical transport models and satellite retrievals to 

accurately represent ambient regional NH3 concentrations. 

 

 Characterize the spatial and temporal patterns of both dry and wet nitrogen deposition 

across the U.S. by incorporating observations from several regional and national monitoring 

networks. Examine multi-decadal trends in oxidized vs. reduced nitrogen wet deposition. Provide, 

for the first time, a national depiction of the importance of NH3 dry deposition. Construct a total 

inorganic reactive nitrogen deposition budget and consider the relative contributions of oxidized 

and reduced nitrogen species to this budget by region and season. 
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2. EXPERIMENTAL METHODS  

2.1 Sampling Site Locations 

2.1.1 Boulder, Wyoming 

 

Western Wyoming is one region of active recent gas development where several air quality 

concerns have been raised (McMurray et al., 2013). Emissions of NOx have been of concern both 

because of possible impacts on regional haze and, especially, due to documented impacts on severe 

winter O3 episodes (Schnell et al., 2009). SCR implementation in the region has been active in 

recent years as one effort to limit winter O3 episodes. While these winter O3 episodes are believed 

to be local in nature, NOx emission impacts on regional haze may be more widespread. 

Unfortunately, few measurements exist in the region of NH3, and haze impact assessments are 

generally forced to rely on assumed background NH3 concentrations. 

 

Measurements were made southwest of Boulder, Wyoming (42.719oN, -109.753oW) in the 

northwestern part of the Pinedale anticline area. Two visibility-protected areas, Bridger Wilderness 

Area and Fitzpatrick Wilderness Area, are located within 100 km. The Boulder area and nearby 

natural gas fields are situated on a high plateau between the Wind River Range to the east and the 

Wyoming Range to the west. Strong surface-based inversions, with inversion pools intersecting 

topography levels down to 50 m above ground (Schnell et al., 2009), are common in the region, 

especially during wintertime. The population density in Boulder, Wyoming is sparse with only 8.9 

people per square km. The Jonah Gas Field and the Pinedale Anticline Gas Field, together 

representing one of the largest gas production regions in the U.S., are close to the sampling site 

with several active gas wells located approximately 3 km west of the sampling site. In 2008, there 
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were more than 500 permitted wells in the Jonah Gas Field and an additional 3100 wells are 

expected to be drilled in this field over the next 75 years. Total production in this region in 2011 

was nearly 171 billion cubic feet of natural gas and 1.5 million barrels of oil 

(http://www.encana.com/pdf/communities/usa/JonahField-FactSheet.pdf). NOx from the gas 

extraction operations and transportation emissions are the largest contributors to local NOx 

emissions (Figure 2.1a). For NH3 emissions, there are not many large sources in this immediate 

area. However, the Snake River Valley to the west (200 km) of the measurement site is a large 

area of intense agricultural activity with elevated NH3 emissions and concentrations (Clarisse et 

al., 2009) (Figure 2.1b). Installation of more SCR systems in the Jonah-Pinedale region could 

elevate local NH3 concentrations, contributing to more particle formation and visibility 

degradation. 

 

 
Figure 2.1 Annual emissions (in tons) by county for a) NOx and b) NH3 from the 2008 National 
Emissions Inventory (NEI-2008) (http://www.epa.gov/ttnchie1/net/2008inventory.html). The 
sampling sites are indicated by a (+) sign.

http://www.epa.gov/ttnchie1/net/2008inventory.html
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2.1.2 Northeastern Plains of Colorado 

 

The northeastern plains of Colorado are an intensive agricultural area with many CAFOs, 

including beef cattle feedlots and dairy operations. The densely populated Front Range urban 

corridor is also located in this area. In order to gain information about spatial variability of NE 

Colorado ammonia concentrations, fourteen monitoring sites were selected in the region according 

to land use categories and distance from known, major NH3 sources (Table 2.1 and Figure 2.2). 

Five suburban monitoring sites located in the western part of NE Colorado are representative of 

areas with little local agricultural influence, especially from animal feeding operations: Louisville 

(LE), western Fort Collins (FC_W), Loveland (LD), Loveland Golf Course (LGC) and the Boulder 

Atmospheric Observatory (BAO) tower. Three rural sites (Nunn, NN; Briggsdale, BE; and Ranch, 

RH), close to the northern boundary of Colorado with Wyoming, are grassland sites with minimal 

local agricultural influence. Three suburban sites (eastern Fort Collins, FC_E; Severance, SE; and 

Greeley, GY) as well as three rural sites (Ault, AT; Kersey, KY; and Brush, BH) represent areas 

close to and likely under strong influence from agricultural activities, including animal feeding 

operations. For example, the KY site is located approximately 0.4 km from a large beef cattle 

feedlot (about 100,000 cattle capacity).  
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Table 2.1 Information on sampling sties 
ID Site Name Type Latitude Longitude Elevation(m) Year* Sampler type 

LE Louisville Suburban 39.987 -105.151 1698 11 Passive 

FC_W Fort Collins_West Suburban 40.589 -105.148 1570 10,11,12, 13,14 Passive/URG 

LD Loveland Suburban 40.438 -105.127 1582 10,11,12, 13,14 Passive 

BAO BAO Tower Suburban 40.050 -105.004 1584 12 Passive/URG 

GC Golf Course Golf course 40.426 -105.107 1551 10,11, 12, 13,14 Passive 

FC_E Fort Collins_East Suburban –

agricultural 

40.591 -104.928 1562 12, 13 Passive 

SE Severance Suburban –

agricultural 

40.572 -104.836 1550 12, 13,14 Passive 

GY Greeley Suburban –

agricultural 

40.389 -104.751 1492 10,11, 12, 13,14 Passive 

NN Nunn Rural 40.821 -104.701 1644 11,12, 13,14 Passive 

BE Briggsdale Rural 40.635 -104.330 1481 10,11,12,13,14 Passive 
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RH Ranch Rural 40.473 -104.317 1475 10 Passive 

AT Ault Rural-agricultural 40.612 -104.709 1514 11,12,13,14 Passive 

KY Kersey Rural-agricultural 40.377 -104.532 1403 10,11, 12, 13,14 Passive 

BH Brush Rural-agricultural 40.313 -103.602 1286 10,11, 12,13,14 Passive/URG 

* Sampling period: 05/20/2010-09/02/2010; 06/02/2011-08/31/2011; 06/21/2012-08/29/2012; 05/30/2013-08/29/2013; 05/29/2014-08/28/2014 
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Figure 2.2 The locations of 14 observation sites in northeastern Colorado (red, green and yellow 
colors stand for suburban, agricultural and rural sites, respectively). Sites that did not sample all 
five years, 2010-2014, have the sampling years indicated. 
 

The BAO tower is a 300 m meteorological tower situated in the southern part of the sampling area 

(40.050°N, 105.004°W) (Figure 2.2 and Figure 2.3). It has been owned and operated by the 

National Oceanic and Atmospheric Administration (NOAA) for more than 25 years 

(http://www.esrl.noaa.gov/psd/technology/bao/). The tower is surrounded by natural grass and 

wheat fields, and is approximately 400 m west of Interstate 25 and 30 km north of downtown 

Denver. 
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Figure 2.3 Photograph and location of the BAO tower 
(http://www.esrl.noaa.gov/psd/technology/bao/)  
 

2.1.3 CASTNET, Pilot IMPROVE NHx, AMoN and NTN Network 

 

Weekly precipitation concentrations of NH4
+ and NO3

- were obtained from the NADP National 

Trends Network (NTN; http://nadp.isws.illinois.edu/ntn/). Weekly gaseous HNO3 concentrations 

and particulate NH4+ and NO3
- concentrations were obtained from the Clean Air Status and Trends 

Network (CASTNET; http://epa.gov/castnet/javaweb/index.html). Bi-weekly concentrations of 

gaseous NH3 were taken from the NADP Ammonia Monitoring Network (AMoN; http://nadp.isws. 

illinois.edu/AMoN/). In order to gain greater spatial coverage of NH3 concentrations, especially in 

the western U.S., NHx (NH3+NH4
+) measurements with a 1-in-3 day sampling period made in a 

pilot Interagency Monitoring of Protected Visual Environments (IMPROVE) NHx monitoring 

http://www.esrl.noaa.gov/psd/technology/bao/
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network (Chen et al., 2014) were also used. More detailed information about these observation 

networks can be found in Table 2.2. 

 

Wet deposition data were obtained from NTN sites for the periods 1990-1992 and 2010-2012. The 

number of sites changed due to network development over this period. From 1990-1992 there were 

195 sites; 238 sites were available for the 2010-2012 period. Sites were not included if data were 

unavailable for one or more years in either period examined. 

 

Oxidized and reduced N gas and particle concentrations were obtained for 37 sites (see Table 2.2) 

where NTN and CASTNET sites were co-located with AMoN and/or IMPROVE NHx sites. At 30 

of these locations two years of measurements (July 2011 to June 2013) were available. The 

remaining 7 sites had data availability of at least one year.  
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Table 2.2 Summary of data from U.S. national networks used in the study 
Network Deposition 

Species 
Data 

Period 
Source 

AMoN1 Dry Deposition: 
gaseous NH3 

2011-2013 http://nadp.isws.illinois.edu/AMoN 

    

CASTNET2 Dry Deposition: 
gaseous HNO3, 

particulate 
NH4

+, NO3 

 

2011-2013 http://epa.gov/castnet/javaweb/index.html 

    

NTN3 Wet Deposition: 
NH4

+, NO3
- 

 

1990-2013 http://nadp.isws.illinois.edu/NTN 

    

IMPROVE 
NHx4 

Dry Deposition: 
gaseous NH3, 

particulate 
NH4

+, NO3
- 

2011-2012 Chen et al., 2014 

1       The Ammonia Monitoring Network (AMoN) is operated by the National Atmospheric Deposition Program 

(NADP), which measures biweekly NH3 concentrations using passive diffusion (RadielloTM) samplers. 

2       The Clean Air Status and Trends Network (CASTNET), funded by the Environmental Protection Agency 

(EPA) and National Park Service (NPS), which measures weekly HNO3 and particulate NH4
+ and NO3

- 

concentrations using 3-stage filter pack samplers. 

3      The National Trends Network (NTN) is operated by the National Atmospheric Deposition Program (NADP), 

which measures NH4
+, NO3

- concentrations in weekly precipitation samples. 

4      The Interagency Monitoring of Protected Visual Environments (IMPROVE) NHx study, conducted from April 

2011 to August 2012, measured the sum of gaseous NH3 and fine particle NH4+ concentrations using a single, acid-

coated filters with 1-in-3 day sampling periods. Co-located measurements of NH4
+, NO3

- and sulfate (SO42-) 

collected on nylon filters provide two methods to determine the split of measured NHx between gaseous NH3 and 

fine particle NH4
+; here we assume that fine particle NO3

- and SO4
2-are fully neutralized by NH4+ to estimate the 

NH4
+ concentration which was then subtracted from the NHx concentration to obtain a lower bound estimate of the 

NH3 concentration (Chen et al., 2014). 
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2.2. Sampling Instruments 

2.2.1 URG Denuder/Filter System 

 

Denuder/filter pack samplers were used to collect gas and particle phase species at Boulder, WY 

and at select NE Colorado sites. Concentrations of gaseous NH3 and HNO3 and PM2.5  inorganic 

ions (NH4
+, SO4

2−, NO3
−, K+, Mg2+ and Ca2+) were sampled using a URG denuder/filter system 

(Model 3000CA) ( 

Figure 2.4), which was installed at 1.5 m height, followed by laboratory extraction and analysis by 

ion chromatography. The URG sampling system has been widely used because of its good 

performance in sampling gases and particles (Bari et al., 2003; Beem et al., 2010; Edgerton et al., 

2007; Lee et al., 2004; Lin et al., 2006). Air was drawn through a Teflon-coated PM2.5 cyclone 

followed by two 242 mm annular denuders connected in series, a 47-mm filter pack containing a 

nylon filter (Nylasorb, 1μm pore size, Pall Corporation) and another annular denuder (from Dec. 

2006 through July 11th 2008, samples were collected used a backup coated filter rather than a 3rd 

denuder). Air flow was maintained at a constant mass flow rate by means of a mass flow controlled 

pump (URG Inc.).  
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Figure 2.4 Schematic of a dual channel URG annular denuder/filter pack system 

 

For the project in Boulder, Wyoming, The total flow rate through the system was nominally 10 L 

min−1 at ambient conditions. Actual sample volumes were determined using a dry gas meter 

corrected for sample pressure drop. The first denuder was coated with sodium chloride (NaCl) to 

collect gaseous HNO3 and the second was coated with phosphorous acid (H3PO3) to collect 

gaseous NH3. The last denuder (or coated filter) was phosphorous acid-coated to collect any NH3 

re-volatilized from NH4
+ salt particles collected on the filter. Nylon filters have been shown to 

retain volatilized HNO3, but loss of NH4+ can be significant (Yu et al., 2006). The sample trains 

were prepared in the lab at Colorado State University (CSU), and then shipped weekly and installed 

by a local site operator. Samples were typically collected twice a week (one 4 day sample and one 

3 day sample). After sampling, the sample train was shipped back to the lab at CSU. The denuders 
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were extracted with 10 ml deionized water, and the extracts refrigerated before analysis. Nylon 

filters were ultrasonically extracted for 55 min in 6 ml of high purity deionized water. 

Meteorological data, including temperature, relative humidity and wind speed, were obtained from 

a co-located weather station (2 m height) operated by Air Resource Specialists, Inc. 

 

For the project in northeastern of Colorado, the URG sampling system was used as a reference 

method for evaluating the performance of the NH3 passive samplers. During the same sampling 

periods as the NH3 passive samplers, URG denuder/filter-pack sampling systems were also 

installed at the FC_W, GY and BAO tower sites to measure the concentrations of gaseous NH3 

and HNO3, as well as fine particulate inorganic ions (NH4
+, K+, Na+, Mg2+, Ca2+, SO4

2-, NO3
- and 

Cl-). Air was drawn first through a Teflon-coated PM2.5 cyclone (D50=2.5 µm) at the inlet, followed 

by two annular denuders connected in series. The first denuder was coated with sodium carbonate 

(Na2CO3) solution (10 g of Na2CO3 and 10 g of glycerol dissolved in 500 ml of deionized water 

(18.2 Mohm-cm) and 500 ml methanol) to collect gaseous HNO3 and sulfur dioxide (SO2). The 

second denuder was coated with a phosphorous acid (H3PO3) solution (10 g of H3PO3 dissolved in 

100 ml of deionized water and 900 ml methanol) to collect gaseous NH3. The air was then drawn 

through a filter pack containing a 47-mm nylon filter (Nylasorb, pore size 1 µm, Pall Corporation) 

to collect fine particles, followed by a backup H3PO3-coated denuder to capture any NH3 re-

volatilized from NH4
+ salt particles collected on the nylon filter. The air flow rate was controlled 

by a URG mass flow-controlled pump; the total flow rate through the system was nominally 3 

L/min both at FC_W, GY and BAO.  
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2.2.2 Passive Sampler 

 

In order to obtain spatial and vertical distributions of NH3 concentrations, two sampling campaigns 

were carried out in the northeastern plains of Colorado using Radiello passive NH3 samplers and 

URG denuder/filter-pack systems. The Radiello passive NH3 sampler consists of a cartridge 

adsorbent (part number: RAD168), a blue microporous cylindrical diffusive body (part number: 

RAD1201) and a vertical adapter (part number: RAD 122) (Figure 2.5). All Radiello sampler 

components were obtained from Sigma Aldrich (http://www.sigmaaldrich.com). Measurements of 

the spatial NH3 distribution were conducted each summer from 2010 to 2014. During the first 

summer (2010), measurements were made at nine sites; in 2011, the Ranch (RH) site was removed 

and the LE and NN sites were added; in 2012, the LE site was removed; two sites, FC_E and SE, 

were added in 2013. The two site removals were due to property access issues. For the second 

campaign, measurements of vertical NH3 concentration profiles were conducted at the BAO tower 

from December 2011 to January 2013. 

 

http://www.sigmaaldrich.com/
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Figure 2.5 The Radiello passive NH3 sampler blue microporous cylindrical diffusive body (left) 

and cartridge adsorbent (right) 

 

Passive ammonia samplers have been used in several studies because of their reliability, low labor 

intensity, simplicity and lack of power requirement (Cisneros et al., 2010; Day et al., 2012; Meng 

et al., 2011; Puchalski et al., 2011; Reche et al., 2015). During sample collection, the sampler was 

protected from precipitation and direct sunlight by an inverted plastic bucket. Ambient NH3 

diffuses through a microporous diffusive body surface and is captured as ammonium ion by a 

cartridge impregnated with phosphoric acid (H3PO4). A weekly sampling campaign period was 

implemented in each summer during the study: May 20th to September 2nd 2010, June 2nd to August 

31st 2011, June 21st to August 29th 2012, May 30th to August 29th 2013, and May 29th to August 

28th 2014. At the BAO tower, NH3 was sampled at nine heights: 1 m, 10 m, 22 m, 50 m, 100 m, 



37 
 

150 m, 200 m, 250 m and 300 m. Vertical profiles were measured across two week sampling 

periods from December 13th 2011 to January 9th 2013, except that weekly measurements were 

conducted during the summer from June 19th to August 30th 2012 when higher concentrations were 

anticipated. Passive samplers were prepared in an ammonia-free laminar flow hood (Envirco 

Corporation) and sealed for transport to the field. More detailed information can be obtained at 

Day et al. (2012). 

 

The ambient NH3 concentration was calculated based on the characteristics of the passive sampler 

and the diffusivity of NH3 in the atmosphere (DNH3), which is a function of local temperature (T) 

and ambient pressure (P), and can be expressed using Eqn. 2.1:  

,�ଷሺ��ܦ  ܲሻ = ଴,ଵܦ × ሺ௉0௉ ሻ × ሺ ��0ሻଵ.଼ଵ               (Eqn. 2.1)   

 

Where D0,1 = 0.1978cm2s-1 at T0 = 273K(0 oC) and P0 = 1 atm (Massman, 1998). Then, the 

diffusional flow rate through the NH3 passive sampler (QNH3) is given by Eqn. 2.2: 

 ܳ��ଷ = ,�ଷሺ��ܦ ܲሻ × �∆�                                 (Eqn. 2.2)                 

 

where A is the passive sampler effective cross-sectional area and ΔX is the passive sampler 

diffusion distance. For the Radiello NH3 passive sampler, A/ΔX represents the geometric constant 

for radial flow and has been reported to be 14.2 cm, based on actual physical measurements (Day 

et al., 2012) which differs from the manufacturer’s description 

(http://www.radiello.com/english/nh3_en.htm). Finally, the NH3 concentration in the air (CNH3) is 
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calculated from the diffusional flow rate (QNH3), the duration of sampling time (t) and the mass of 

NH3 collected on the cartridge (mNH3) as shown below: 

ଷ��ܥ  = ���3�×ொ��3                                                      (Eqn. 2.3)                                          

 

For the northeastern plains network, hourly temperature data were obtained from nearby 

CoAGMET weather stations (http://www.coagmet.com/) (Table 2.3). The average meteorological 

record was fairly consistent from year-to-year. The ambient pressure was calculated based on the 

elevation of each site. At the BAO tower, temperature and relative humidity were measured by 

battery-powered sensors (EBI20-TH1, EBRO Inc. Ingolstadt, Germany; 

http://shop.ebro.com/chemistry/ebi-20-th.html), which were co-located with the NH3 passive 

samplers at each sampling height (Figure 2.6). 

  

http://www.coagmet.com/
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Table 2.3 Meteorological information near the sites during the sampling period in each year. 
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Figure 2.6 Photograph of the installation of the passive sampler (a) and temperature sensor (b) on 
the BAO tower 
 

2.2.2 Ion Chromatography 

 

Ion chromatography using a Dionex dual channel system was used to analyze the denuder and 

filter extracts and passive sampler extracts. Cations (Na+, NH4
+, K+, Mg2+ and Ca2+) in the samples 

were separated with a methanesulfonic acid eluent on a Dionex CG12A guard column and CS12A 

separation column followed by a CSRS ULTRA II suppressor and detected by a Dionex 

conductivity detector. Anions (Cl−, NO3
−, SO4

2−) in the samples were separated with a 

carbonate/bicarbonate eluent on a Dionex AG14A guard column and AS14A separation column 

followed by an ASRS ULTRA II suppressor and detected using a Dionex conductivity detector. 

 

 

 

a) b)
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2.3 Quality Assurance and Quality Control 

 

For the measurement in Boulder, Wyoming, sample recovery was high, although there were 

occasional periods where samples could not be collected on the normal schedule (e.g., from bad 

weather affecting sampler shipment or operator access). Field and laboratory blanks were collected 

throughout the study and used to determine the method detection limit (MDL) and to blank-correct 

results. The MDLs for NH3, HNO3, NH4
+, SO4

2−, NO3
−, K+, Mg2+ and Ca2+ were determined as 

0.012, 0.012, 0.002, 0.017, 0.001, 0.005, 0.007 and 0.023 μg m−3, respectively. Replicate extract 

analyses yielded measurement precisions of 5.4%, 3.8%, 3.5%, 0.8%, 2.1%, 4.9%, 7.6%, and 6.2% 

(relative standard deviation) for NH3, HNO3, NH4
+, SO4

2−, NO3
−, K+, Mg2+ and Ca2+, respectively. 

 

Replicate Radiello passive samples were collected at FC_W (2011, weekly), BH (2012, 2013 and 

2014, weekly), Greeley (2014, weekly), Kersey (2014, weekly) and three different heights (1 m, 

100 m and 300 m) of the BAO tower (biweekly; weekly in summer) during the campaign to 

evaluate the performance of NH3 passive samplers under different NH3 concentrations and 

sampling periods. Comparison of replicate samples yielded good precision (Figure 2.7) with a 

pooled relative standard deviation of 8.4%. The weekly and  
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Figure 2.7 Comparison of ammonia concentrations measured by replicate passive samplers. The 
error bars represent the relative standard deviation of 8.4 % calculated from all 280 pooled 
replicate samples. 
 

biweekly NH3 concentrations collected by passive samplers were also in good agreement with 

measurements by co-located URG denuder samplers for the same sampling durations (a linear 

least-squares regression fit yielded a squared correlation coefficient (R2) between the two methods 

of 0.97 with a slope of 96% and a small positive intercept (0.18 µg/m3) (Figure 2.8). These findings 

are consistent with previous studies (Benedict et al., 2013b; Day et al., 2012; Puchalski et al., 

2011). Field and laboratory blanks were collected throughout the research campaign and used to 
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blank correct sample results and determine the minimum detection limits (MDL). From the field 

blanks, the MDL was calculated to be 0.27 µg/m3 for a one-week Radiello passive NH3 sample. 

 

 

Figure 2.8 Comparison of NH3 concentrations from the Radiello passive samplers and URG 
samplers
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2.4 Nitrogen Deposition Calculation 

 

Wet N deposition was determined from the amount of total precipitation and the aqueous 

concentrations of NH4+ and NO3
-, as reported by NTN. Dry N deposition was calculated for each 

species as the product of the N species concentration and a deposition velocity. The deposition 

velocities of gaseous HNO3 and particulate NH4+ and NO3
- were provided by CASTNET for each 

of its measurement sites based upon the MLM (Meyers et al., 1998), with input of on-site 

meteorology and local site characteristics. Gaps in the meteorological data were addressed by 

using the CASTNET substitution method (Bowker et al., 2011). The deposition velocity of NH3 is 

difficult to determine due to the bi-directional nature of the NH3 flux which depends strongly on 

local conditions (Massad et al., 2010) . In order to estimate NH3 deposition here, its deposition 

velocity was calculated as 70% of the HNO3 deposition velocity provided by CASTNET following 

previous estimates (Beem et al., 2010; Benedict et al., 2013b; Benedict et al., 2013c). To inform 

the potential uncertainty of this approach, this MLM deposition velocity method was compared to 

NH3 fluxes estimated using a two-layer bi-directional flux model (Nemitz et al., 2001). The bi-

directional model employs hourly CASTNET meteorology and two-week integrated AMoN NH3 

concentrations to estimate NH3 exchange with soil and vegetation, as well as net fluxes above the 

vegetation. Ammonia compensation points and leaf surface resistances were parameterized 

following the recommendations of (Massad et al., 2010) for natural vegetation. Development of 

this modeling framework, described in more detail in Appendix A, is ongoing. Thus, the 

comparison with MLM is constrained to the dominant natural vegetation type at each site for which 

the Massad et al. (2010) parameterizations are applicable. Due to a lack of data, not all Nr species 
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are included in the deposition budget. Missing compounds include inorganic (e.g., NOx and nitrous 

oxide) and organic N (e.g., peroxyacetyl nitrate and amines) species. 
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3. MULTI-YEAR OBSERVATIONS OF AMMONIA, NITRIC ACID AND FINE PARTICLES 

IN A RURAL GAS PRODUCTION REGION1 

 

While a number of recent studies have considered the role NH3 plays in the formation of fine 

particles across the United States in both urban and rural areas (Bari et al., 2003; Benedict et al., 

2013c; Edgerton et al., 2007; Gong et al., 2011; Heald et al., 2012; Nowak et al., 2010; Sharma et 

al., 2007), knowledge of atmospheric concentrations of NH3, and their seasonal variability is still 

rather limited, especially in the interior western United States. Here we present five years of 

observations of concentrations of gaseous NH3 and HNO3 and fine particle concentrations of NH4
+, 

SO4
2− and NO3

− from Boulder, Wyoming, a site in the heart of an active gas production region. 

These measurements provide the longest term record of NH3 concentration measurements in this 

part of the U.S. and provide new insight into typical NH3 concentrations in the region, their 

seasonal variability, and the gas-particle partitioning of the NH3–NH4
+–HNO3–NO3

−–SO4
2− 

system that is one important contributor to regional haze. 

                                                 
1 This chapter comprises the results and discussion and summary sections of a paper published in 

Atmospheric Environment Li, Y., Schwandner, F.M., Sewell, H.J., Zivkovich, A., Tigges, M., Raja, 

S., Holcomb, S., Molenar, J.V., Sherman, L., Archuleta, C., Lee, T., Collett Jr., J.L., 2014. 

Observations of ammonia, nitric acid, and fine particles in a rural gas production region. 

Atmospheric Environment 83, 80-89.. Yi Li is the lead author. Contributing co-authors include 

Florian M. Schwandner, H. James Sewell, Angela Zivkovich, Mark Tigges, Suresh Raja, Stephen 

Holcomb, John V. Molenar, Lincoln Sherman, Cassie Archuleta, Taehyoung Lee, Jeffrey L. 

Collett, Jr. 
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From December 2006 through December 2011, 505 samples were collected. The summary of the 

annual and seasonal mean and standard deviation for all the trace gas concentrations, particulate 

species concentrations and meteorological parameter values are summarized in Table 3.1. Because 

of the high latitude of this continental sampling site and the monthly average temperatures, the 

following months were defined as representing specific seasons, for the purpose of discussing the 

analytical results below: April and May were defined as spring; June, July and August as summer; 

September and October as fall; and November through March as winter. 
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Table 3.1 Seasonal and yearly averages and standard deviations of gases, aerosol species and meteorological parameters. 

Season 

 

 NH3 

µg/m3 

HNO3 

µg/m3 

NO3
- 

µg/m3 

SO4
2- 

µg/m3 

NH4
+ 

µg/m3 

K+ 

µg/m3 

Mg2+ 

µg/m3 

Ca2+ 

µg/m3 

T 

ºC 

RH 

% 

WS 

m/s 

Spring 

(N=80) 

Mean 0.14 0.13 0.18 0.65 0.23 0.01 0.02 0.04 4.80 56.76 5.24 

SD 0.12 0.12 0.09 0.33 0.12 0.01 0.03 0.04 4.54 11.10 1.30 

Summer 

(N=126) 

Mean 0.38 0.23 0.11 0.54 0.26 0.03 0.01 0.04 15.67 45.59 4.31 

SD 0.23 0.11 0.08 0.23 0.15 0.03 0.01 0.03 3.68 13.10 0.66 

Autumn 

(N=87) 

Mean 0.18 0.18 0.12 0.51 0.22 0.02 0.01 0.05 7.17 54.94 4.12 

SD 0.14 0.11 0.07 0.23 0.10 0.01 0.00a 0.03 5.37 14.07 1.09 

Winter 

(N=212) 

Mean 0.04 0.19 0.60 0.36 0.28 0.01 0.00b 0.02 -7.76 72.54 3.85 

SD 0.06 0.18 0.60 0.23 0.17 0.01 0.00c 0.03 5.45 8.67 1.76 

2007 

(N=105) 

Mean 0.14 0.22 0.30 0.54 0.29 0.02 0.01 0.03 3.82 57.82 4.17 

SD 0.18 0.17 0.28 0.32 0.12 0.03 0.02 0.03 11.43 17.06 1.16 

2008 Mean 0.20 0.20 0.36 0.53 0.28 0.01 0.01 0.03 2.33 59.00 4.63 
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(N=104) SD 0.27 0.19 0.47 0.31 0.20 0.02 0.02 0.04 10.69 16.91 1.68 

2009 

(N=101) 

Mean 0.23 0.17 0.29 0.47 0.23 0.02 0.00 0.03 3.04 63.27 4.14 

SD 0.21 0.10 0.43 0.23 0.12 0.01 0.01 0.04 10.10 13.96 1.22 

2010 

(N=97) 

Mean 0.15 0.17 0.27 0.38 0.22 0.01 0.01 0.03 3.97 59.66 4.25 

SD 0.15 0.12 0.41 0.20 0.12 0.01 0.01 0.02 10.58 16.25 1.53 

2011 Mean 0.13 0.18 0.37 0.47 0.27 0.02 0.01 0.04 2.46 61.2 4.0 

(N=98) SD 0.15 0.13 0.56 0.26 0.14 0.01 0.01 0.04 10.64 13.81 1.50 

a The actual value is 0.003. 
b The actual value is 0.003. 
c The actual value is 0.004. 
d N,T, RH and WS represent the number of samples, temperature, relative humidity and wind speed, respectively. 
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3.1 Concentrations of Ammonia, Nitric Acid and Fine Particle Species and Their seasonal 

Patterns 

 

Figure 3.1 shows time series of the concentrations of gaseous NH3 and HNO3 and PM2.5 NH4
+ and 

NO3
− across the five year measurement period. NH3 concentrations peak in summer while NO3

− 

concentrations peak in winter. HNO3 exhibits a distinct bimodal seasonal concentration pattern 

with summer and winter maxima. As shown in Figure 3.2, NH4
+, SO4

2− and NO3
− were the three 

most abundant inorganic ions in PM2.5 in all seasons. The concentration of NH4
+ varied least across 

seasons. During the warm season SO4
2− was the most abundant inorganic anion in PM2.5, while 

during winter the concentration of NO3
− was highest. More details concerning the trends of each 

of the trace gas and particulate species will be presented below. 
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Figure 3.1 Temporal variations of concentrations of (a) HNO3 and NO3
−, (b) NH3 and NH4

+ and (c) SO42− and K+ from 2007 through 
2011 at Boulder, Wyoming. 
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Figure 3.2 Average mass concentrations of the chemical species in PM2.5 by season across the 5 
year sampling period. 
 

Gaseous NH3 exhibited a clear seasonal concentration pattern, ranging from an average 

concentration of 0.04 μg m−3 in winter to 0.39 μg m−3 in summer (Figure 3.3a). The maximum 

quarterly NH3 average concentration was 0.47 μg m−3 in summer 2008, 15 times higher than the 

winter 2008–2009 average of 0.03 μg m−3. The significantly higher summer concentration reflects 

a strong influence of temperature. Previous studies have reported similar phenomena (Edgerton et 

al., 2007; Gupta et al., 2003; Meng et al., 2011; Plessow et al., 2005; Walker et al., 2004). Higher 

levels of NH3 in the summer are consistent with the positive influence of higher temperatures on 

NH3 emissions (e.g., from natural soils, agricultural operations, and fires) and the decomposition 
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however, there is no clear increase in local NH3 concentrations over the study. The annual mean 

concentration of NH3 did not significantly increase during the study period. From 2007 to 2011, 

the annual NH3 average concentrations in each year were 0.14, 0.20, 0.23, 0.15 and 0.13 μg m−3, 

respectively, suggesting that SCR emissions did not noticeably influence local concentrations of 

ambient NH3. 
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Figure 3.3 The monthly variation of (a) NH3, (b) HNO3, (c) NH4
+, (d) NO3

-, (e) SO4
2-, (f) K+, (g) 

N(-III) and (h) N(+V) concentrations from 2007 to 2011. The grey shading represents minimum 
and maximum concentrations and the y-error bars represent standard deviations of average 
concentrations. For panels (a) to (f) the concentrations are expressed in µg/m3; in panels (g) and 
(h) the concentrations are expressed as µg N/m3. 
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Table 3.2 shows cross-correlation coefficients for measured trace gases, particle ions and 

meteorological parameters. Some correlation was found between NH3 and K+ (r2 = 0.16). As 

illustrated by satellite fire-detect images (Figure 3.4), there were more wild fires present around 

Boulder, Wyoming in 2007 and 2008; the correlation coefficients (r2) between NH3 and K+ in those 

two years were 0.33 and 0.40. As a marker of biomass burning, the correlation between NH3 and 

K+ may suggest a positive influence of fire emissions on NH3 concentrations (Anderson et al., 

2003; Hegg et al., 1988; McMeeking et al., 2009; Sutton et al., 1995). 

 

Table 3.2 Correlation coefficients (r) between concentrations of trace gases, particulate species 
and meteorological parameters based on all the data. 

Species NH3 HNO3 NO3
- SO4

2- NH4
+ K+ Ca2+ RH WS T 

NH3 1 0.23 -0.30 0.32 0.06 0.40 0.34 -0.53 0.01 0.72 

HNO3  1 0.43 0.16 0.47 0.29 0.10 -0.19 -0.31 0.12 

NO3
-   1 -0.08 0.63 -0.03 -0.19 0.44 -0.38 -0.54 

SO4
2-    1 0.45 0.35 0.46 -0.33 -0.04 0.33 

NH4
+     1 0.28 0.14 0.07 -0.36 -0.11 

K+      1 0.32 -0.46 -0.05 0.41 

Ca2+       1 -0.46 0.04 0.41 
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Figure 3.4 Satellite images of wild fires (http://earthdata.nasa.gov/data/nrtdata/firms/active-fire-
data) observed in the vicinity of the measurement site (shown as red star) in (a) 2007, (b) 2008, 
(c) 2009, (d) 2010 and (f) 2011. From 2007 to 2011, the squared correlation coefficients (r2) 
between concentrations of NH3 and K+ were 0.33, 0.40, 0.02, 0.16 and 0.03. 
 

A background NH3 mixing ratio of 1 ppbv is often assumed when estimating impacts of NOx 

emissions on visibility and regional haze in western regions of the U.S. where ambient NH3 

concentration data are sparse or unavailable. Such estimates might be made, for example, through 

plume dispersion simulations using CALPUFF or other EPA-preferred models. The 5-year 

Boulder data records provide a better basis for choosing a representative background NH3 

concentration for the Pinedale region. Figure 3.5 reveals that seasonal mean NH3 mixing ratios 

ranged between a maximum of 0.85 ppbv (in summer 2008) and 0.03 ppbv (in winter 2010). The 

average for the full 5-year study period was 0.30 ppbv, less than one-third of the typically assumed 

background level. Even if PM2.5 NH4
+ (much of which certainly reacted with sulfuric and nitric 

a) b)

c) d)

e)

http://earthdata.nasa.gov/data/nrtdata/firms/active-fire-data
http://earthdata.nasa.gov/data/nrtdata/firms/active-fire-data
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acids upwind of the measurement region) and gaseous NH3 are combined, the average mixing ratio 

(0.63 ppbv) remains well below 1 ppbv. Assumption of a 1 ppbv NH3 background concentration 

in model simulations, therefore, will lead to an overprediction of visibility impacts associated with 

local NOx emissions. 

 

 

Figure 3.5 The seasonal variations of NH3 and HNO3 mixing ratios from 2007 to 2011. The 
plotted points are the seasonal mean values and the Y-error bars represent standard deviations. 
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2003; Lee et al., 1999; Plessow et al., 2005). Increased concentrations of HNO3 are expected in 

the summer because of more intense and longer lasting photochemical activity associated with 

higher sun angles and longer days. Higher summer temperatures also promote dissociation of 

NH4NO3 back to gaseous NH3 and HNO3, as discussed above (Seinfeld and Pandis, 2012). The 

high winter concentrations observed at Boulder, by contrast, are quite unusual. The peak 

wintertime HNO3 concentration climbed as high as 1.40 μg m−3 for a single sample collected from 

February 22nd–25th in 2008. A closer look at the HNO3 timeline in Figure 3.1 reveals frequent 

winter periods of elevated HNO3 concentrations. Other measurements at Boulder reveal that this 

area is frequently subject to periods of elevated winter ozone (Schnell et al., 2009) that occur 

during sunny winter periods when snow covers the ground. Strong nocturnal and morning 

temperature inversions that set up under these conditions trap local emissions of NOx and volatile 

organic compounds, associated largely with local energy production activities, in a shallow mixing 

layer while daytime photochemical activity is enhanced by strong reflectance from the bright snow 

surface. The photochemical reactions that generate ozone concentrations well in excess of the U.S. 

National Ambient Air Quality Standard (NAAQS) can also lead to substantial oxidation of the 

locally emitted NOx to HNO3. While cold winter conditions favor reaction of HNO3 with NH3 to 

form fine particle NH4NO3 (as evidenced by the winter NH4NO3 spikes in Figure 3.1), the Boulder 

observations reveal that all gaseous NH3 has often been consumed during these episodes leaving 

a substantial fraction of the HNO3 “trapped” in the gas phase. 

 

Ambient NH4
+ concentrations at Boulder exhibited little seasonal pattern (Figure 3.3c). The annual 

mean concentrations for 2007 to 2011 were also similar to each other at 0.29, 0.28, 0.23, 0.22 and 

0.27 μg m−3, respectively. Formation of fine particle NH4
+ is influenced by a variety of factors, 
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including the availability of gaseous NH3 and the availability of acidic sulfate aerosol and gaseous 

HNO3. Increases in NH3 and SO4
2− at Boulder during warmer months of the year will tend to 

increase NH4+ concentrations as well. Formation of fine particle NH4NO3, however, is favored in 

winter. As previously discussed, the formation of NH4NO3 is thermodynamically favored by high 

relative humidity and low temperatures. During the winter in Boulder, the average temperature 

was −7.8 °C and average relative humidity was 72.5%. These offsetting seasonal patterns appear 

to result in an overall NH4+ concentration pattern that shows little seasonality at Boulder. 

 

The annual average concentrations of PM2.5 NO3
− measured at Boulder were 0.30, 0.36, 0.29, 0.27 

and 0.37 μg m−3 in 2007 through 2011, respectively. The NO3
− concentrations exhibited a strong 

seasonality, with maximum values in winter and minimum values in summer (Figure 3.3d). 

Because NH4NO3 formation is not favored under the warm, dry conditions of summer, the mean 

summer NO3
- concentration was only 0.11 μg m−3. In winter, it increased to 0.60 μg m−3, as 

NH4NO3 formation was more strongly favored. As indicated in Figure 3.3d, considerable 

variability was also observed in winter NO3
− concentrations, similar to the pattern discussed above 

for HNO3, with maximum observed concentrations exceeding 2.0 μg m−3 in December, January, 

February, and March. 

 

SO4
2− shows a seasonal cycle with maximum values in the warm season (Figure 3.3e). This 

seasonal pattern is typical of SO4
2−, due to enhanced photochemical activity and higher 

concentrations of hydroxyl radical, which can oxidize SO2 to SO4
2− (Behera and Sharma, 2010). 

In-cloud oxidation of SO2 to SO4
2− can also be enhanced in summer when hydrogen peroxide 
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(H2O2) concentrations are typically higher (Shen et al., 2012). Annual average concentrations of 

SO4
2− at Boulder in 2007 through 2011 were 0.54, 0.53, 0.47, 0.38, and 0.47 μg m−3. 

 

In addition to anthropogenic emissions of nitrogen and sulfur species, wild and prescribed fires 

also contribute significantly to fine particle concentrations in the western U.S. (Jaffe et al., 2008; 

Malm et al., 2004). Water soluble potassium ion concentrations, one marker of biomass burning 

(ANDREAE, 1983; Duan et al., 2004), were elevated in summer (Figure 3.3f). The average 

concentration of K+ in the summer was 0.03 μg m−3, which was nearly three times higher than the 

value in the winter (Table 3.1). Not surprisingly, summer K+ concentrations varied substantially; 

inter-annual variability in fire occurrence and the influence of emissions from fires that do occur 

on air quality at Boulder are expected. Across the sampling period, a number of wild fires occurred 

upwind of the site in summer. 

 

3.2 Gas-Particle Partitioning 

 

To investigate the seasonal phase changes of NH3/NH4
+ and HNO3/NO3

−, we define the ammonia 

gas fraction (FNH3 = the NH3 gas concentration divided by the sum of the NH3 gas and fine particle 

NH4
+ concentrations) and the nitric acid gas fraction (FHNO3 = the HNO3 gas concentration divided 

by the sum of the HNO3 gas and fine particle NO3− concentrations), where all concentrations are 

expressed in molar units. The monthly average partitioning for the reduced and oxidized inorganic 

nitrogen forms is plotted in Figure 3.6. There was a gradual transition from the cooler months, 

when the particle phase was favored, to the warmer months, when the gas phase was favored, for 

both species. A maximum monthly average in the gas phase fraction of NH3 occurred in July 
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(0.64). This was more than 10 times higher than the minimum monthly average of 0.06 which 

occurred in January. Similarly, the HNO3 gas fraction (FHNO3) was found to be highest in summer 

(0.73 in July) and lowest in winter (0.24 in January). The high summer level of FNH3 reflects greater 

NH3 emissions and the thermodynamic tendency for NH4NO3 to dissociate to NH3 and HNO3 at 

high temperature. The higher summer value of FHNO3 also reflects the tendency for NH4NO3 to 

dissociate at higher temperatures. The still appreciable winter FHNO3 level, which is not typical of 

previous results (Bari et al., 2003; Gupta et al., 2003; Sharma et al., 2007), reflects the continued 

photochemical production of HNO3 at levels which exceed the amount of NH3 available to 

participate in NH4NO3 formation 

 

Figure 3.6 Monthly variation of the ammonia conversion ratio (FNH3) and nitric acid conversion 
ratio (FHNO3). 
 

Shifts in the equilibrium partitioning among gaseous NH3 and HNO3 and particulate NH4NO3 

depend on relative humidity (RH), temperature (T) and the concentrations of NH3 and HNO3. 

Ambient relative humidity at the Boulder measurement site was usually less than the deliquescence 

relative humidity (DRH) of NH4NO3 so that we can simplify matters and consider here formation 
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of solid NH4NO3. Under this condition, this reaction's equilibrium constant (Kp) is the expected 

product of the NH3 and HNO3 concentrations and is given by the empirical formula (Eqn. 3.1) in 

below: 

 ln �� = 84.6 −  ଶସଶ଴଴� −  6.1 × ln �ଶଽ଼                                  (Eqn. 3.1) 

 

where Kp is in units of ppbv2 and T is measured ambient temperature in Kelvin (Stelson and 

Seinfeld, 1982). The measured, apparent reaction constant (Km) can be described as Eqn. 3.2: �� = [ܰ�ଷ] × [�ܱܰଷ]                                 (Eqn. 3.2)           

 

where [NH3] is the gaseous NH3 mixing ratio (ppbv) and [HNO3] is the gaseous HNO3 mixing 

ratio (ppbv). NH4NO3 formation is favored when Km exceeds Kp. Figure 3.7 shows the variation 

of both the theoretical equilibrium constant (shown as a solid line) and measured constant values 

(for each sample) with temperature (1000/T) across all seasons. This presentation of the data 

clearly illustrates that NH4NO3 formation is only favored during wintertime; even then, it is not 

favored during all sample periods. At warmer times of the year, the product of NH3 and HNO3 

concentrations is insufficient to yield NH4NO3 formation at seasonal temperatures. 
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Figure 3.7 Comparison of the measured [NH3 (gas)][HNO3(gas)] product with the theoretical 
equilibrium constant for NH4NO3 as a function of temperature across the different seasons. 
 

3.2. Comparison with other measurements 

 

Figure 3.8 presents a comparison of observations from this study with other observations from the 

Clean Air Status and Trends Network (CASTNET; http://www.epa.gov/castnet/), the Interagency 

Monitoring of Protected Visual Environments (IMPROVE; 

http://vista.cira.colostate.edu/improve), the National Atmospheric Deposition Program Ammonia 

Monitoring Network (AMoN; http://nadp.sws.uiuc.edu/amon/) and seven sets of ambient 
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Palo Duro, Texas. They were also significantly lower than concentrations measured closer to more 

populated areas, such as those at Sequoia National Park, California, Joshua Tree National Park, 

California, and Loveland, Colorado. Boulder, Wyoming NH3 concentrations were substantially 

lower than NH3 concentrations measured at sites more strongly impacted by regional 

agriculture/animal feeding operations, such as Brush, Colorado. Overall concentrations were fairly 

similar, however, between Boulder and other remote sites in central and western Colorado and in 

western Wyoming, suggesting some regional representativeness of the concentrations measured in 

Boulder (aside from the winter ozone episodes). Although the Boulder measurement site is only 

approximately 65 km from the Snake River Plain Valley, an area of intense agricultural activity 

with high NH3 emissions (Clarisse et al., 2009), the low NH3 concentrations observed at Boulder 

suggest that the Wyoming (Palisades) Mountain Range blocks at least the most direct transport of 

these emissions while other local NH3 emissions are limited in their contributions to ambient NH3 

concentrations.
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Figure 3.8 Comparison of average levels of gases and aerosol species concentrations for this study and other sampling locations in the 
western U.S. There was no measurement of NH4

+ and HNO3 at Craters of the Moon National Monument, Idaho. Concentrations are in 
µg/m3. More information about the comparison data can be found in Table 3.3.
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Table 3.3 Site information, data sources and sampling period for Figure 3.8. 

Site State 

HNO3 NH4
+ 

Period 

NO3
- SO4

2- 

Period 

NH3 

Period 
Source Source Source 

Chiricahua 
NM 

AZ CASTNETa 01/02/2007~01/03/2012 IMPROVEb 01/03/2007~12/31/2010 AMoNc 03/15/2011~01/31/2012 

Joshua 
Tree NPd 

CA CASTNET 01/02/2007~01/03/2012 IMPROVE 01/06/2007~12/31/2010 AMoN 03/01/2011~01/31/2012 

Sequoia 
NP 

CA CASTNET 01/02/2007~01/03/2012 IMPROVE 01/03/2007~12/31/2010 AMoN 03/22/2011~01/31/2012 

Yosemite 
NP 

CA CASTNET 01/02/2007~01/03/2012 IMPROVE 01/03/2007~12/31/2010 AMoN 03/15/2011~01/31/2012 

Cherokee 
Nation 

KS CASTNET 01/02/2007~01/03/2012 IMPROVE 01/03/2007~12/31/2010 AMoN 10/30/2007~01/31/2012 

Mount 
Rainier 

NP 
WA CASTNET 01/02/2007~01/03/2012 IMPROVE 01/03/2007~12/31/2010 AMoN 03/17/2011~01/31/2012 

Craters of 
the Moon 

NMe 
ID N/A N/A IMPROVE 01/03/2007~12/31/2010 AMoN 06/07/2010~01/31/2012 

Palo Duro TX CASTNET 04/24/2007~01/03/2012 CASTNET 04/24/2007~01/03/2012 AMoN 10/30/2007~01/31/2012 
Konza 
Prairie 

KS CASTNET 01/02/2007~01/03/2012 CASTNET 01/02/2007~01/03/2012 AMoN 03/01/2011~01/31/2012 

Santee SD CASTNET 01/02/2007~01/03/2012 CASTNET 01/02/2007~01/03/2012 AMoN 07/05/2011~02/15/2012 

Gore Pass CO 
CSU(Beem et 

al., 2010) 

03/15/2006~04/28/2006 
& 

07/06/2006~08/11/2006 
CSU 

03/15/2006~04/28/2006 
& 

07/06/2006~08/11/2006 
CSU 

03/15/2006~04/28/2006 
& 

07/06/2006~08/11/2006 
Rock 

Mountain 
NP 

CO 
CSU(Benedict 
et al., 2013c) 

12/01/2008~12/01/2009 CSU 12/01/2008~12/01/2009 CSU 12/01/2008~12/01/2009 

Boulder CO 
CSU(Benedict 
et al., 2013b) 

12/01/2006~12/31/2011 CSU 12/01/2006~12/31/2011 CSU 12/01/2006~12/31/2011 

Driggs ID 
CSU(Benedict 
et al., 2013b) 

04/06/2011~09/21/2011 CSU 04/06/2011~09/21/2011 CSU 04/06/2011~09/21/2011 

Targhee 
Base 

WY 
CSU(Benedict 
et al., 2013b) 

04/21/2011~09/21/2011 CSU 04/21/2011~09/21/2011 CSU 04/21/2011~09/21/2011 
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NOAA 
Climate 
Center 

WY 
CSU(Benedict 
et al., 2013b) 

05/04/2011~09/21/2011 CSU 05/04/2011~09/21/2011 CSU 05/04/2011~09/21/2011 

Brush CO 
CSU(Benedict 
et al., 2013c) 

12/11/2008~12/03/2009 CSU 12/11/2008~12/03/2009 CSU 12/11/2008~12/03/2009 

Loveland CO 
CSU(Benedict 
et al., 2013c)  

12/11/2008~12/03/2009 CSU 12/11/2008~12/03/2009 CSU 12/11/2008~12/03/2009 

a CASTNET (The Clean Air Status and Trends Network, http://epa.gov/castnet/). 
b IMPROVE (Interagency Monitoring of Protected Visual Environments, http://vista.cira.colostate.edu/improve/). 
c AMoN (The Ammonia Monitoring Network, http://nadp.sws.uiuc.edu/amon/). 
d NP means National Park. 
e NM means National Monument. 
f CSU means Colorado State University. 
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3.3. Interspecies correlations, the measured ion charge balance, and the importance of organic 

acids 

 

Figure 3.9 illustrates the correlation between fine particle NH4
+ and SO4

2− in different seasons. 

Significant correlations were found in all seasons except in winter. The highest correlation (r2 = 

0.84) was in the fall and the lowest was in the winter (r2 = 0.15). The weak correlation in winter 

results from substantial NH4NO3 formation during this time period. If one plots the excess NH4
+ 

(the amount beyond that needed to fully neutralize fine particle SO4
2−), one finds it to be strongly 

correlated with fine particle NO3- during winter (r2 = 0.76; slope of 0.81), modestly correlated in 

fall (r2 = 0.31; slope of 1.01), and showing almost no correlation in spring and summer (Figure 

3.10). 

 

 

Figure 3.9 Seasonal relationships of NH4
+ versus SO42- concentrations. 
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Figure 3.10 Seasonal relationships of excess NH4
+ versus NO3- concentrations. 

 

Overall, on the basis of the seasonal variation of comparisons between NH4
+ and SO4

2− and excess 

NH4
+ and NO3

-, one can conclude that most fine particle NH4
+ in summer exists as (NH4)2SO4 

while both (NH4)2SO4 and NH4NO3 are found in fine particles in winter. An excess of NH4
+ in 

summer when NO3− concentrations are low, however, suggests that other unmeasured anionic 

species might also be important components of the fine particles. This pattern also appears in some 

fall and spring samples. This issue can be further evaluated by considering the overall ionic charge 

balance of measured fine particle anion (NO2
−, NO3

−, SO4
2−) and cation (NH4+, Na+, K+, Mg2+, 
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Ca2+) concentrations. Figure 3.11 presents the seasonal variation of the ionic charge balance. 

During spring and winter, the charge balance is very close to 1:1. During fall and, especially, 

summer, however, the charge balance generally indicates a deficiency of anions. Previous studies 

(Barsanti et al., 2009; Trebs et al., 2005) have reported that organic acids such as oxalic acid can 

be important contributors to the charge balance of fine mode aerosols. The warm season anion 

deficit observed here is consistent with higher organic acid concentrations during summer, 

coinciding with periods of enhanced photochemical production of secondary organic aerosols and 

increased biomass burning. Future measurements of summertime Boulder fine particle 

concentrations will include analysis of oxalate. 
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Figure 3.11 Seasonal charge balance, where the different colors represent the various sampling 
periods. 
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3.4 Summary 

 

A five-year study of concentrations of gaseous NH3 and HNO3 and of fine particle inorganic ions 

was conducted in an active gas production region in Boulder, Wyoming. The five-year annual 

mean concentrations of NH3, HNO3, NH4
+, NO3

- and SO4
2- were 0.17, 0.19, 0.26, 0.32, and 0.48 

μg m−3, respectively. NH3 exhibited a strong seasonal variation, with higher concentrations during 

the summer and lower concentrations during the winter. The low annual average NH3 mixing ratio 

of 0.30 ppb suggests that the default value of 1 ppb often used in regional assessments of visibility 

impacts from NOx source emissions is higher than necessary. Observed NH3 concentrations 

correlated well with ambient temperature indicating the important influence of temperature on 

emissions and, likely, the greater long distance transport of those emissions during warmer times 

of year when mixing layers deepen. By contrast, higher concentrations of particulate NO3
- were 

observed in the winter when lower temperatures favor formation of NH4NO3. HNO3 

concentrations showed an unusual bimodal seasonal variation with higher levels both in summer 

(an expected result of active photochemical oxidation and a tendency for NH4NO3 to decompose 

at higher temperatures) and in winter. The unusual winter HNO3 peak appears to be the result of 

active photochemical processing of local NOx emissions in a shallow boundary layer during 

periods of snow cover and a lack of NH3 to fully tie up HNO3 through fine particle NH4NO3 

formation. Examination of the equilibrium thermodynamics of NH4NO3 formation, seasonal local 

temperatures, and available concentrations of gaseous NH3 and HNO3, indicates that NH4NO3 

should be expected primarily in winter, as observed. 
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4. SPATIAL AND VERTICAL VARIABILITY OF AMMONIA IN NORTHEASTERN 

COLORADO2 

 

4.1 Spatial distributions of NH3 

 

Large spatial differences in NH3 concentrations were found in the northeastern plains of Colorado 

with mean NH3 concentrations ranging from 2.83 µg/m3 to 41.33 µg/m3 as illustrated in Figure 

4.1. Also included in Figure 4.1 are estimated NH3 emissions from major feedlots in northeastern 

Colorado. The feedlots were classified into categories based on the type of animals raised (data 

were provided by the Colorado Department of Public Health and Environment) and NH3 emissions 

were calculated following Eqn. 4.1: 

 

NH3 Emission =∑ (Population × Emission Factor)      (Eqn. 4.1) 

 

where the NH3 emissions are the total NH3 emitted from each feedlot in tons per year (converted 

from kg to tons for Figure 4.1). Population is the animal population in each feedlot and the 

emission factor was specified for each kind of animal: 44.3, 38.1, 3.37, 0.27, 6.50 and 12.2 kg 

NH3/head/year, for beef cattle, dairy cows, sheep, poultry, swine and horses, respectively (Todd 

                                                 
2 This chapter is an expanded draft of material for the results and discussion and summary sections 

of a planned journal manuscript submission. Yi Li will be the lead author. Contributing co-authors 

include Xi Chen, Martin Van Damme, Tammy M. Thompson, Derek Day, Alexandra Boris, Amy 

P. Sullivan, Bonne Ford, Jay Ham and Jeffrey L. Collett, Jr. 
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et al., 2013; USEPA, 2004). 73% of the total regional feedlot emissions are contributed by beef 

feedlots. Many large sources are located within several 10s of km to the south, east, and north of 

Greeley. Other large sources are located further east along the South Platte River with some smaller 

sources (mostly dairies) located further west in the sampling region, closer to the urban corridor. 

 

Figure 4.1 NH3 concentrations and feedlot distribution in northeast Colorado. All sites indicated 
by circles include at least 3 years measurement in summer. NH3 concentrations at the RH, LE 
and BAO sites (squares) were only measured in the summers of 2010, 2011 and 2012, 
respectively. The color of each measurement site indicator (circle or square) represents the NH3 
average concentration (unit: µg/m3) at each site determined by the passive samplers. The color of 
each diamond represents the predicted annual NH3 emissions (unit: ton/year) based on the 
equation above. 
 

The lowest average ambient NH3 concentrations in the sampling network were found at remote 

grassland sites such as NN and BE: 2.82 µg/m3 and 3.14 µg/m3, respectively. Concentrations of 

NH3 at suburban sites were somewhat higher than at these remote, rural sites, indicating possible 

impacts of human activities, such as emissions from vehicles equipped with three-way catalytic 

converters, local waste treatment, and fertilization of yards and parks, on local NH3 concentrations. 
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The measured weekly average NH3 concentration at the Loveland golf course (GC) site was 5.12 

µg/m3 with a range of 1.81 µg/m3 to 7.87 µg/m3, showing only slightly elevated values compared 

to NH3 concentrations at other nearby suburban sites (FC_W and LD), suggesting that golf course 

fertilization at this location is probably not a major, regional NH3 source. The highest ambient NH3 

concentrations were consistently observed at sites near extensive animal feeding operations. 

Compared to the remote sites (NN and BE), an approximately 2-5 fold increase in NH3 

concentrations was observed at BH and AT (6.29 and 13.9 µg/m3), rural sites under the influence 

of nearby animal feeding operation emissions. A 13-fold increase in NH3 concentrations was 

observed from the grassland NN and BE sites (2.82 and 3.14 µg/m3) to KY (41.33 µg/m3), 0.4 km 

from a feedlot with almost 100,000 cattle. 

 

The average summertime NH3 concentrations sampled at each site spanning several years did not 

exhibit any statistically significant (p<0.1) inter-annual trends (Figure 4.2), except for BH which 

exhibits a decreasing trend. Trend analysis was conducted using Theil regression (Theil, 1992) and 

the Mann-Kendall test (Gilbert, 1987; Marchetto et al., 2013). We define an increasing trend as 

the slope of Theil regression greater than zero and a decreasing trend as a negative slope, while 

the statistical significance of a trend was determined by the Mann-Kendall test (p-value). A 90th 

percentile significance level (p<0.10) was assumed as in a previous study (Hand et al., 2012). The 

power of these analyses are limited by the relatively small number of measurement years to date; 

additional power for assessing interannual trends will become available as more years of 

measurements are completed. Data from the Colorado Agricultural Statistics Report (2014, 

http://www.nass.usda.gov/Statistics_by_State/Colorado/Publications/Annual_Statistical_Bulletin

/Bulletin2014.pdf ) indicate that Weld, Larimer, and Morgan counties (three major counties 

http://www.nass.usda.gov/Statistics_by_State/Colorado/Publications/Annual_Statistical_Bulletin/Bulletin2014.pdf
http://www.nass.usda.gov/Statistics_by_State/Colorado/Publications/Annual_Statistical_Bulletin/Bulletin2014.pdf
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located in the northeastern plains of Colorado) did not show significant growth in livestock 

numbers between 2009 and 2013. The total annual numbers of beef cows, milk cows, cattle and 

calves in these counties were 985, 974, 996, 1039 and 991 thousand head, respectively, in the four 

years from 2009 to 2013. A number of best management practices (BMPs) are under evaluation to 

help agricultural producers in the region reduce NH3 emissions as part of efforts to reduce reactive 

nitrogen deposition in Rocky Mountain National Park. The baseline regional concentration 

information gathered here will be critical in helping to evaluate the success of future efforts to 

reduce NH3 emissions. 

 

 

Figure 4.2. Average concentrations of NH3 in each summer (approximately June through 
August) across the nine sites. In 2006 (07/06-08/10), ambient NH3 concentrations were sampled 
by a URG system (daily) at the BH site; in 2009 (06/11-08/27) ambient NH3 concentrations were 
sampled by a URG system (weekly) at the GC and BH sites; in 2010 (06/17-09/02), 2011 (06/16-
08/31), 2012 (06/21-08/29), 2013 (06/20-08/29) and 2014(06/19-08/28), ambient NH3 
concentrations were all sampled by Radiello ammonia passive samplers across all the sites. The 
slope of the Theil regression and “p-value” for each site are labeled in black and blue, 
respectively  
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Weekly average atmospheric NH3 concentrations at each observation site are plotted for summers 

2010-2014 in Figure 4.3. These observations again show the general similarity, at a given location, 

of summertime concentrations across several years. Some variation from week to week is expected 

due to differences in meteorology. Emissions, for example, are influenced by temperature, 

dispersion is influenced by turbulence and mixing layer depths, and removal is influenced by 

precipitation and turbulence. One clear outlier period is the elevated NH3 concentrations observed 

at FC_W at the beginning of summer 2012 (Figure 4.3c). The maximum weekly average NH3 

concentration at this site (8.55 µg/m3) was measured during June 21-28, 2012. This was more than 

double the average NH3 concentration in 2010 (4.13 µg/m3) and 2011 (3.76 µg/m3) (see Table 4.1). 

During this elevated concentration period, the High Park Fire, one of the largest fires recorded in 

Colorado history at 353 km2 burned, was burning in the mountains west of Fort Collins and the 

city was frequently impacted by smoke. The fire was first spotted on June 9, 2012 and declared 

100% contained on June 30, 2012 (http://en.wikipedia.org/wiki/High_Park_fire). During the 

wildfire period, on-line instruments (Picarro NH3 analyzer and Teledyne CO analyzer) were also 

set up to measure CO and NH3 concentrations near the FC_W site. A significant correlation 

between CO and NH3 was found during the wildfire (Prenni et al., 2012). Elevated NH3 

concentrations in the High Park Fire plume are evidence of the importance of wild and prescribed 

burning as a source of atmospheric NH3, reinforcing similar findings from previous studies 

(Coheur et al., 2009; Prenni et al., 2014; Sutton et al., 2000).  
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Table 4.1 Summary of summer NH3 concentrations (units: µg/m3) measured from 2010 to 2014 

 

Site All years 2010 

05/20-09/02 

2011 

06/2-08/31 

2012 

06/21-08/29 

2013 

05/30-08/29 

2014 

05/29-08/28 

 Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min 

LE 3.33 5.23 2.27 -- -- -- 3.33 5.23 2.27 -- -- -- -- -- -- -- -- -- 

FC_W 4.12 8.55 1.95 4.13 5.88 3.02 3.76 4.72 2.79 4.63 8.55 2.92 4.45 6.13 1.95 3.78 4.98 2.39 

LD 4.45 10.37 2.29 4.17 6.29 2.67 4.81 6.94 3.61 4.57 10.37 2.55 5.08 7.16 2.29 3.68 5.82 2.83 

BAO 5.09 7.84 2.85 -- -- -- -- -- -- 5.09 7.84 2.85 -- -- -- -- -- -- 

GC 5.12 7.87 1.81 4.85 7.68 3.01 5.30 7.87 3.87 5.22 7.27 3.74 5.34 7.11 1.81 4.92 6.18 4.07 

FC_E 8.56 11.38 5.52 -- -- -- -- -- -- 8.36 10.84 5.52 8.30 11.25 5.80 8.99 11.38 6.92 

SE 9.19 13.79 4.52 -- -- -- -- -- -- 9.34 13.14 6.24 8.52 12.67 4.52 9.70 13.79 7.10 

GY 11.30 19.02 5.19 10.39 13.11 7.94 12.90 19.02 8.40 11.07 14.51 6.68 10.52 12.54 5.19 11.72 14.95 9.35 

NN 2.82 4.01 1.43 -- -- -- 2.78 3.88 1.51 2.59 3.54 1.68 3.01 3.95 1.69 2.84 4.01 1.43 

BE 3.14 5.40 1.42 3.18 4.48 1.90 3.33 4.90 2.55 2.99 4.58 2.12 3.00 3.62 1.42 3.15 5.40 2.24 

RH 3.27 5.01 1.90 3.27 5.01 1.90 -- -- -- -- -- -- -- -- -- -- -- -- 

AT 13.94 20.47 6.56 12.55 16.16 9.13 13.78 18.61 8.82 13.70 19.27 9.25 15.13 20.47 6.56 14.49 19.03 10.44 

KY 41.33 73.78 23.30 31.05 42.82 23.30 45.96 73.78 30.32 41.65 53.55 25.93 42.67 68.61 25.20 46.57 68.82 29.22 

BH 6.29 10.83 3.59 6.54 9.67 3.67 7.26 10.83 5.09 5.45 8.52 3.80 5.99 7.80 3.59 5.62 6.79 4.47 
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Figure 4.3 Temporal variations of NH3 concentrations (unit: µg/m3) at each site from 2010 
through 2014. Note the differences in the y-axis values.
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4.2 Vertical distribution of NH3 

 

While surface measurements of NH3 concentrations remain uncommon, measurements of vertical 

profiles of NH3 concentrations above the surface are extremely rare. Time series of vertical profiles 

of ambient NH3 concentrations measured at the BAO tower across the full year of 2012 are shown 

in Figure 4.4. During most sampling periods, the NH3 concentration exhibited a maximum at 10 

m decreasing both toward the lowest (1 m) measurement point and with height above 10 m. The 

minimum concentration was observed at the highest measurement point at the top (300 m) of the 

BAO tower. While the major sources of NH3 are surface emissions, it is not surprising to see a 

gradient of decreasing concentration near the surface at this location where local emissions are 

expected to be small and the net local flux represents surface deposition (van Pul et al., 2009). The 

long time average (1-2 weeks) measured in this study precludes a determination of surface removal 

rates based on the observed concentration gradient.  
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Figure 4.4 Time series of vertical distribution of NH3 concentrations and surface temperature measured at the BAO tower from 
12/13/2011 to 01/09/2013.  
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Seasonal variations in the vertical profile of NH3 are depicted in Figure 4.5 with March, April and 

May defined as spring; June, July and August as summer; September, October and November as 

fall; and December, January and February as winter. Vertical concentration differences were 

greatest in winter (from an average concentration greater than 4 µg/m3 near the surface to 

approximately 1 µg/m3 at 300 m) followed by fall. Low level temperature inversions which trap 

emissions closer to the surface are common in both seasons (fall and winter). The highest 

concentrations across the profile were observed in summer, when emissions increase due to higher 

temperatures and vertical mixing is enhanced. Increased NH3 concentrations in summer also may 

reflect a shift in thermodynamic equilibrium of particulate NH4NO3 toward its gas phase precursors 

NH3 and HNO3. Previous studies have reported increased concentrations in summer and/or reduced 

concentrations in winter due to the seasonal changes of NH3 emissions and gas-particle partitioning 

(Li et al., 2014; Meng et al., 2011; Plessow et al., 2005; Walker et al., 2004; Zbieranowski and 

Aherne, 2012). Day et al. (2012) previously suggested that trapping of regional NH3 emissions in 

a shallow winter boundary layer can produce elevated surface concentrations. The BAO tower 

observations in Figure 4.5a provide further evidence in support of this hypothesis, as 

concentrations are elevated near the surface but fall off quickly at heights greater than 10-20 m. 

Evidence of winter temperature inversions is present even in the average winter temperature profile 

shown in Figure 4.5b.  
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Figure 4.5 Comparison of seasonal average vertical profiles of (a) NH3 and (b) temperature 
measured at the BAO tower from 12/13/2011 to 01/09/2013. 
 

In order to explore the influence of inversion layers on the vertical distribution of NH3 

concentrations, the temperature and NH3 vertical profiles from 10 to 150 m were analyzed in 

greater detail. The frequency (%) of inversion layer (T100 - T10 > 0) occurrence between 100 (T100) 

and 10 (T10) m was calculated based on the continuous temperature recording on the tower during 

each sampling period. A linear regression was applied between the altitude and NH3 concentration 

and the resulting gradient of the NH3 vertical profile was expressed as the slope (k). A negative 
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the slope, the bigger the concentration change with height from 10 m to 150 m. Clear positive 

correlation was found between the frequency of inversion layer occcurrence and the concentration 

slope (k) during the fall (R2=0.39) and especially during winter (R2=0.66), with only low 

correlation in the spring (R2=0.01) and summer (R2=0.15) (Figure 4.6). This suggests that the steep 

decline in concentration between 10 and 150 m observed in fall and winter is likely associated 

with prevalent thermal inversions in those seasons that trap NH3 emissions near the surface. 

 

Figure 4.6 Seasonal relationships of the inversion layer frequency versus the vertical 
concentration gradient (slope k), measured on the BAO tower. See text for description. 
 

Several long-term measurements have shown a strong correlation between NH3 concentrations and 

ambient temperature, due to enhanced NH3 emissions from soil and volatilization from NH4NO3 
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particulate matter (Bari et al., 2003; Ianniello et al., 2010; Lin et al., 2006; Meng et al., 2011). 

Almost no correlation (R2= 0.02) between NH3 and temperature was observed at 1 m height in the 

current study; higher correlation (R2= 0.65) was found at the top of the tower (Figure 4.7a). The 

correlation coefficients increase substantially with height (Figure 4.7b), particularly above 50 m, 

suggesting that temperature might strongly influence ambient NH3 concentrations at this location 

at higher altitude but is not a dominant factor at the surface (Figure 4.7b). This pattern might reflect 

the prevalence of typically greater vertical mixing during warmer periods, as discussed above. 

 

In order to investigate the possible influence of changes in NH4NO3 aerosol-gas partitioning on 

vertical NH3 concentration profiles, thermodynamic simulations were performed using the 

ISORROPIA II model (Fountoukis and Nenes, 2007) (Figure 4.8). Model inputs included BAO 

site URG denuder/filter-pack surface measurements of key species (gaseous NH3 and HNO3 and 

PM2.5 NH4
+, NO3

-, and SO4
2-) and measurements of temperature and relative humidity at each 

tower measurement height. Because vertical differences in temperature and relative humidity were 

generally small, little change was predicted with height in the thermodynamic partitioning of the 

NH3-HNO3-NH4NO3 system. Consequently, a shift in partitioning toward the particle phase as 

temperatures cool at higher altitudes appears not to account for much of the observed decrease in 

NH3 concentration with height. For this location and for the lowest 300 m of the atmosphere, the 

vertical thermal structure of the atmosphere and associated mixing, ambient dilution, and NH3 

surface deposition appear to be the major factors determining vertical distributions of atmospheric 

NH3. 
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Figure 4.7 (a) NH3 concentration versus temperature at 10 m and 300 m and (b) correlation 
coefficients between NH3 concentration and temperatures at different heights of the BAO tower. 
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Figure 4.8 Seasonal average vertical profiles of NH3 measured at the BAO tower (solid line) and 
ISORROPIA II model results (dashed line) in 2012. The x-error bars represent the relative 
standard deviation of NH3 concentrations. 
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4.3 Comparison with Satellite Observations 

 

Several recent studies have used surface NH3 measurements to evaluate or improve remote sensing 

techniques for retrieving NH3 concentrations and determining distributions (Heald et al., 2012; 

Pinder et al., 2011; Van Damme et al., 2015; Zhu et al., 2013). The Infrared Atmospheric Sounding 

Interferometer (IASI) is a passive infrared Fourier transform spectrometer onboard the MetOp 

platforms, operating in nadir (Clerbaux et al., 2009). IASI provides a quasi-global coverage twice 

a day with overpass times at around 9:30 am and 9:30 pm (when crossing the equator) at a 

relatively small pixel size (circle with 12 km diameter at nadir, distorted to ellipse-shaped pixels 

off-nadir). The combination of low instrumental noise (~0.2K at 950 cm-1 and 280K), a medium 

spectral resolution (0.5 cm-1 apodized) and a continuous spectral coverage between 645 and 2760 

cm-1 make IASI a suitable tool to measure various constituents of the atmosphere (Clarisse et al., 

2011). 

 

The IASI-NH3 data set is based on a recently developed retrieval scheme presented in detail in 

Van Damme et al. (2014a). The first step of the retrieval scheme is to calculate a so-called 

Hyperspectral Range Index (HRI) for each IASI spectrum, which is representative of the amount 

of NH3. This HRI is subsequently converted into NH3 total columns using look-up tables built on 

numerous simulations performed at various atmospheric conditions. The main advantages of the 

retrieval scheme are that it is very fast and it provides an associated error estimate for each 

observation. The main drawbacks are the fixed profile shape used for the simulations over land 

and the fact that only clear-sky scenes (cloud cover below 25%) are processed. It is worth noting 
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that the distribution and time-series presented in the following are weighted by the relative error 

associated with each IASI observation. 

 

The IASI-NH3 data set has been evaluated against model simulations over Europe and has shown 

its consistency (Van Damme et al., 2014b). The first steps of the validation work have been 

performed and highlighted the need to expand the NH3 monitoring network to achieve a more 

complete validation of the NH3 satellite observations (Van Damme et al., 2015). The comparison 

here is a contribution to that effort and benefits from a relatively high spatial density of monitoring 

sites in a region with substantial ammonia emission and concentration gradients.  

 

In Figure 4.9, IASI-retrieved column distributions are compared with the Radiello passive NH3 

surface concentration measurements in northeastern Colorado. Three years of data were selected 

for comparison in the latitude range from 39.8°N to 41.0°N and longitude range from 103.4°W to 

105.3°W. Overall, the IASI observations and Radiello passive measurements show similar spatial 

patterns. The IASI columns exceed 3x1016 molec/cm2 around the KY site and decrease moving 

away from concentrated agricultural areas. 
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Figure 4.9 Radiello passive sampler surface measured averaged NH3 concentrations (µg/m³, left 
color bar) plotted on top of IASI-NH3 satellite column distributions (×1016 molec /cm², right 
color bar). The average for 2012, 2013 and 2014 shown on the bottom and the cumulative 3 
years average shown on the top. The BAO site was only sampled in the summer of 2012. 
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Figure 4.10 Time series of weekly averaged IASI-NH3 satellite column (top, blue) and surface 
concentrations measured by Radiello passive sampler (below, red) at the FC_W site. 
 

In order to further explore the temporal concentration variability, including the postulated 

contributions from wildfire to local ambient NH3 concentrations, weekly averages of IASI 

measurements (based on Radiello passive sampling periods) above the FC_W site are shown in 

Figure 4.10. In general, similar temporal trends are found between the Radiello passive 

measurements and IASI observations. Elevated NH3 concentrations during the High Park Fire 

period in June 2012 are seen in both the satellite and surface measurements. It is also interesting 

to note that the high satellite total column NH3 measured at the beginning of June 2011 (2.87×1016 

molec /cm²) might be linked with wildfire plumes at higher altitude (Figure 4.11a) transported 

from other areas and not captured by the surface measurements. A peak in the satellite observations 

July 25th to 31st, 2014 occurred due to the combined impacts of low IASI observations (high cloud 

coverage) and a fire plume crossing the satellite footprint (Figure 4.11b).  
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Figure 4.11 Satellite image of the wildfire plume (a) and high cloud coverage with wildfire plume (b) over northeastern Colorado 
caught by the Moderate Resolution Imaging Spectroradiometer (MODIS) (Image downloaded at http://loatec.univ-
lille1.fr/TerreEtCiel/module.php?lang=us). The FC_W site is indicated by a yellow star. 
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4.4 Comparison with CAMx Model Simulations  

 

Models frequently have a difficult time accurately simulating spatial concentrations of NH3 

concentrations. In addition to the typical model difficulties in accurately simulating transport, NH3 

emissions are not well constrained and the parameterization of NH3 deposition is challenging. 

Measurements are compared here to modeled concentrations of ammonia estimated using the 

Comprehensive Air quality Model with extensions (CAMx, 

http://www.camx.com/files/camxusersguide_v6-20.pdf). CAMx is a photochemical model that 

simulates the emissions, transport, chemistry and removal of chemical species in the atmosphere. 

CAMx is one of US EPA’s recommended regional chemical transport models and is often used by 

the US EPA for air quality analysis (EPA, 2007, 2011). The 2011 modeling episode presented here 

(version base_2011a), including inputs representing emissions and meteorology, was developed 

for the Western Air Quality Data Warehouse (WAQDW), and details on modeling protocol and 

model performance are available on the WAQDW website (http://www.wrapair2.org/).  

 

Simulations with CAMx version 6.1 were performed with two-way nested domains with horizontal 

grid size resolutions of 36 km, 12 km, and 4 km as shown in Figure 4.12. The outermost domain 

includes the continental United States, southern Canada, and northern Mexico, the 4-km domain 

extends over Colorado, Wyoming and Utah, while the 12-km domain extends over the western 

states. The Weather Research & Forecasting Model (WRF), Advanced Research WRF (ARW) 

v3.5.1, was used to develop meteorological inputs to the air quality model (Skamarock et al., 

2005). The input meteorological data represent conditions as they occurred in 2011. A performance 

evaluation of the WRF data was conducted by The University of North Carolina at Chapel Hill 
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(Three-State Air Quality Modeling Study (3SAQS) – Weather Research Forecast 2011 

Meteorological Model Application/Evaluation available at: 

http://vibe.cira.colostate.edu/wiki/Attachments/Modeling/3SAQS_2011_WRF_MPE_v05Mar20

15.pdf). 

 

The Sparse Matrix Operator Kernel Emissions (SMOKE) processing system ( 

https://www.cmascenter.org/smoke/documentation/3.1/html/) (Houyoux et al., 2000) was used to 

prepare the emissions inventory data in a format that reflects the spatial, temporal, and chemical 

speciation parameters required by CAMx. The emissions inventory is based on the 2011 National 

Emissions Inventory (NEI) v1 

(http://www.epa.gov/ttn/chief/net/2011nei/2011_nei_tsdv1_draft2_june2014.pdf). Important 

updates to the 2011 NEI included a detailed oil and gas inventory, and the spatial allocation of 

livestock emissions using latitude/longitude location data of livestock facilities (WAQDW). 

Boundary conditions were developed using the Model for Ozone and Related chemical Tracers 

(MOZART) and represent the 2011 modeling period (Emmons et al., 2010). 

 

https://www.cmascenter.org/smoke/documentation/3.1/html/
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Figure 4.12 The 36-km horizontal grid resolution outer domain, represented by the extent of the 
larger box, covers the contiguous United States, northern Mexico, and southern Canada. The 12-
km domain includes states surrounding Colorado. The inner 4-km domain extends over 
Colorado, Utah, Wyoming and portions of surrounding states. 
 

Figure 4.13 illustrates an evaluation of stimulated NH3 concentrations by the CAMx model both 

spatially and across time. Generally speaking, CAMx reasonably reproduces observed NH3 in the 

northeastern plains of Colorado. However, CAMx generally performs better near the major NH3 

sources (e.g., Kersey and Greeley), but underestimates NH3 concentrations at sites further away 

from feedlot locations (Figure 4.14). The modest overestimation of NH3 concentration at the KY 

site is likely an artifact of model resolution and the assumption that emissions are immediately and 

homogeneously dispersed throughout the grid cell in which they are emitted. A model-

measurement mismatch moving away from ammonia source locations could result from a number 

4km 

12km 

36km 
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of factors, including smaller and/or non-agricultural sources (e.g., suburban N-fertilization or 

transportation) underrepresented in the emissions inventory, possible overestimation of NH3 

deposition in the model, which does not account for the bidirectional nature of ammonia exchange 

with the surface, or a tendency for the model to more actively move surface ammonia emissions 

aloft during downwind transport than occurs in the real atmosphere.  
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Figure 4.13 Comparison of spatial patterns (a) and time series (b) of average NH3 concentrations 
measured by passive sampler and modeled by CAMx in the summer of 2011(06/02/2011-
08/31/2011). The time series represent the average NH3 concentrations modeled and measured at 
the surface monitoring locations. 
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Figure 4.14 Time series of weekly NH3 concentrations measured (red) and modeled (green) in the summer of 2011(06/02/2011-
08/31/2011) at all the sites. 
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Figure 4.15 shows both measured (measurements taken in 2012) and modeled (2011) vertical 

concentrations of NH3 at the BAO Tower location. Although these comparisons are for two 

adjacent years, the results presented above demonstrate that seasonal average concentrations 

across the region are typically similar from year to year. Modeled vertical NH3 concentrations are 

reported from the lowest 6 levels of the model, up to approximately 325 m above the surface. The 

model height represented by the value plotted on the y-axis in Figure 4.16 represents the top of the 

layer from which the corresponding concentration is reported (ie: the surface or lowest model layer 

is reported at 24 meters – the approximate height of the surface layer). Model layer height is based 

on the meteorological model and modeled pressure and is not fixed 

(http://vibe.cira.colostate.edu/wiki/Attachments/Modeling/3SAQS_2011_WRF_MPE_v05Mar20

15.pdf). The vertical concentrations are homogeneous within each model layer. Therefore, the 

model is not able to capture the detailed vertical pattern shown from 0 to 10 to 20 meters by the 

observations. 

 

The model-measurement comparisons of vertical profiles demonstrate a significant 

underprediction by the model at all elevations in all four seasons. The underprediction at the 

surface is consistent with the observation above that the model tends to underestimate ammonia 

concentrations farther from the major regional feedlot sources. The fact that the model also 

underpredicts ammonia aloft suggests that the surface mismatch is not simply a result of excess 

vertical transport of ammonia in the model. Normalized model vertical NH3 concentration profiles 

are shown in Figure 4.16. These profiles suggest that the model does a fairly reasonable job of 

capturing the shape of the observed vertical concentration gradient, although the relative 

concentration decrease with height in the model is a bit stronger than observed in each season. 

http://vibe.cira.colostate.edu/wiki/Attachments/Modeling/3SAQS_2011_WRF_MPE_v05Mar2015.pdf
http://vibe.cira.colostate.edu/wiki/Attachments/Modeling/3SAQS_2011_WRF_MPE_v05Mar2015.pdf
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Figure 4.15 Comparison of seasonal 2012 NH3 passive measurements (solid lines) and 2011 
CAMx modeling results (dashed lines). 
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Figure 4.16 Comparison of seasonal normalized NH3 passive measurements (solid lines) and 
CAMx modeling results (dashed lines). Each profile is normalized such that the concentration at 
the lowest level is set to 100.
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4.5 Summary 

Five years of observed NH3 concentrations revealed strong spatial gradients in NH3 concentrations 

in northeastern Colorado. Summer average weekly NH3 concentrations ranged from 2.8 µg/m3 to 

41.3 µg/m3. The lowest average NH3 concentration always occurred at a remote prairie site, while 

NH3 concentrations nearly a factor of 13 greater were observed at a site near a large animal feeding 

operation. No clear regional trends are present in NH3 concentrations in NE Colorado across the 

study period, consistent with relative stability in regional livestock headcounts and similarity in 

meteorological conditions. The NH3 concentration levels observed in this study, however, are 

expected to provide an important reference point for evaluating the success of future efforts to 

mitigate regional NH3 emissions through voluntary implementation of BMPs as part of a strategy 

to reduce nitrogen deposition levels and impacts in Rocky Mountain National Park.  

 

Measurement of NH3 at the BAO meteorological tower near Erie, Colorado provide the first long-

term insights into vertical gradients of NH3 in the region and some of the first long-term 

measurements of this type anywhere in the world. A general pattern of decreased NH3 

concentrations with height above 10 m was observed in all seasons as was a decrease in 

concentration below 10 m height. Surface deposition, vertical dilution, and the formation of 

thermal inversions that limit the vertical mixing of regional, surface-based NH3 emissions appear 

to have greater influence than temperature and humidity-driven changes in NH4NO3 gas-particle 

partitioning on the observed vertical concentration profiles.  

 

Comparison of measured NH3 spatial and vertical distributions with IASI satellite retrieved NH3 

columns reveals that IASI is able to accurately capture some of the spatial variability observed in 
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the lower atmosphere, even in the presence of strong spatial gradients. Spatial gradients throughout 

NE Colorado were represented reasonably well by the satellite measurements.  Some periods of 

poorer agreement were associated with the detection of NH3 rich elevated smoke plumes observed 

by the satellite but not by the surface measurement stations. 

 

A comparison of measured NH3 concentrations with concentrations simulated by the CAMx model 

reveal both strengths and weaknesses of the model simulation. Extra effort spent accurately 

locating large NH3 emission sources resulted in relatively close agreement between model and 

measurement in source-rich regions. The model, however, underestimated concentrations 

substantially at locations further from large CAFO sources. This underestimation, observed 

throughout the lower atmosphere, may come from underestimation of non-agricultural ammonia 

emissions and/or from a tendency to overpredict ammonia surface deposition in the model.  Future 

efforts to include bidirectional treatment of ammonia surface exchange in chemical transport 

models are expected to reduce net deposition rates and, therefore, should improve model-

observation agreement at greater distance from major source. 
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5. THE INCREASING IMPORTANCE OF DEPOSITION OF REDUCED NITROGEN IN 

THE UNITED STATES3 

 

Analyses of wet deposition records provide important insight into the shift from oxidized to 

reduced nitrogen deposition across the contiguous U.S. Recently expanded measurements of gas 

and particle phase reactive nitrogen species permit an assessment of current contributions of 

oxidized and reduced nitrogen to the U.S. Nr dry deposition budget. By combining these analyses, 

we gain a clear picture of the importance of both oxidized and reduced nitrogen to the total (wet + 

dry) Nr deposition budget across much of the U.S. 

 

5.1 Oxidized vs. Reduced N in Wet N Deposition 

 

Figure 5.1 compares percentage contributions of NH4
+ to wet inorganic N (NH4+ + NO3

-) 

deposition across the U.S. in the 3-yr periods centered on 1991 and 2011. To help visualize spatial 

patterns, isopleths in Figure 5.1 were produced by interpolating NH4
+ mole percentages at 

individual monitoring sites using a cubic inverse-distance weighting of all sites within 500 km of 

each observation station in ESRI ArcMap 10.3. While wet N deposition was dominated by 

oxidized N (NO3
-) across much of the country in the early 1990s, most locations now receive a 

                                                 
3 This chapter is a draft of material for the results and discussion and conclusion sections of a 

planned journal manuscript submission. Yi Li will be the lead author. Contributing co-authors 

include Bret A. Schichtel, John Walker, Donna B. Schwede, Xi Chen, Christopher Lehmann, 

Melissa Puchalski, David Gay, and Jeffrey L. Collett, Jr. 
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majority of their wet N deposition as reduced N (NH4
+), a trend also recently reported by Du et al. 

(2014). During the period 1990-1992, 69% of the observation sites saw oxidized N contributions 

in excess of 50%; twenty years later 69% of the sites instead saw wet deposition of reduced N in 

excess of 50%. 
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Figure 5.1 Comparisons of the 3-year average NH4
+ mole ratio (as a percentage of wet inorganic 

nitrogen) across the U.S. in 1990-1992 (above) and 2010-2012 (below). NH4
+ percentage (NH4+ 

%) = (NH4
+-N)/(NO3

--N+NH4
+-N)×100%. The circles on the map represent locations 
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Changes in fractional contributions of oxidized and reduced N depend on the combined changes 

in wet deposition fluxes of NH4
+ and NO3

-. Figure 5.2 examines these changes for 45 of the 48 

contiguous United States with available data. In every state but North Dakota, nitrate wet 

deposition fluxes decreased, with an average decrease of 29%. The nationwide decrease of 

oxidized N in wet deposition is consistent with the downward trend of U.S. NOx emissions. With 

the successful implementation of the Clean Air Act (CAA) and the 1990 Amendments, NOx 

emissions have been estimated to decline by 36% between 1990 and 2008 (Davidson et al., 2012). 

Nitrate wet deposition decreases were largest in the northeastern U.S., an area where large NOx 

emissions reductions were implemented. Lehmann and Gay (2011) examined trends in nitrate 

concentrations in U.S. wet deposition in detail for a slightly earlier period, ending in 2009, and 

also highlight large reductions in the northeastern U.S. In contrast to decreasing nitrate, many sites 

experienced an increase in ammonium wet deposition. Thirty seven of the 45 states shown in 

Figure 5.2 saw an increase in ammonium wet deposition over the past two decades; for these states 

the average increase was 22%. Increases in ammonium wet deposition were especially common 

in the northern plains states, including Nebraska, Wyoming, Montana, the Dakotas, and Minnesota; 

relatively large increases were also seen in North Carolina, Kentucky, Maryland, and New Jersey. 

Substantial increases in ammonium ion concentrations in precipitation in the central and western 

U.S. were previously reported through 2004 by Lehmann et al. (2007). Increases in both 

ammonium ion concentrations in precipitation and ammonium wet deposition are not surprising 

given the increases in U.S. ammonia emissions.  
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Figure 5.2 (a) Percentage change and (b) absolute wet deposition flux change of NH4
+ and NO3

- in wet N deposition across the 
country. C10~12 is the average NH4

+ or NO3
- flux (Kg N/ha/yr) in each state between 2010 and 2012 and C90~92 is the average NH4

+ 
or NO3

- flux (Kg N/ha/yr) between 1990 and 1992. Only sites in Figure 5.1 with both 1990-1992 and 2010-2012 data available are 
used to calculate the average flux for each state
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5.3 Oxidized vs. Reduced Dry Inorganic N Deposition  

 

Gas phase nitric acid and ammonia and particulate ammonium and nitrate are potentially important 

contributors to dry inorganic N deposition, especially in dry climates. Limited historical 

measurements, especially for ammonia, prevent an analysis of long-term trends of oxidized vs. 

reduced dry inorganic nitrogen deposition like those presented above for wet deposition. Recent 

efforts to more routinely measure gas phase ammonia concentrations by AMoN and the IMPROVE 

NHx pilot network, however, allow a comparison of the current balance between oxidized and 

reduced inorganic N dry deposition. We focus here on characterizing spatial patterns for the period 

2011-2013. Figure 5.3 ill ustrates (by circle size) the current status of dry inorganic N deposition 

across the U.S. Significant spatial variability is seen from site to site, reflecting differences in 

species concentrations. Estimated annual sums of dry deposition by gaseous ammonia and nitric 

acid and particulate ammonium and nitrate range from 0.49 kgN ha-1 a-1 (WY08) to 13.4 kgN ha-1 

a-1 (NE98). Reduced N contributes more than 50% of the total calculated dry inorganic N 

deposition at all sites except Mesa Verde National Park (CO99) (44%) in southwest Colorado. 

This remote, arid site is expected to have relatively small agricultural impacts (Chen et al., 2014) 

but greater influence of NOx emitted from nearby oil and gas development (Rodriguez et al., 2009) 

and the Four Corners and San Juan power plants, two of the largest coal-fired power plants in the 

western U.S. The highest fractional and absolute reduced N contributions are seen, not surprisingly, 

in areas with substantial agricultural activity, including sites in Illinois (site IL37 exhibits the 

highest reduced N fraction at 90%), Nebraska, and the Central Valley of California. 
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Figure 5.3 Spatial and temporal trends in dry inorganic N deposition at 37 locations across the U.S. Included are deposition of gaseous 
nitric acid and ammonia and PM2.5 ammonium and nitrate. Fractional reduced N contributions are represented by circle color. The 
total deposition from these four species is indicated by circle size. The bar charts depict monthly average contributions of individual 
dry reduced and oxidized N deposition pathways for 8 selected regions. The total dry inorganic N deposition flux in different regions 
are shown by the number in each figure. 
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To examine overall dry deposition patterns, sites were grouped into eight regions (by proximity 

and similar trends) as follows (see Table 5.1): Region I (Washington), Region II (Montana and 

northern Wyoming), Region III (Western South Dakota, Southern Wyoming , Colorado), Region 

IV  (Wisconsin, Illinois, eastern Kansas, eastern Nebraska), Region V (New York, Connecticut, 

New Jersey, Pennsylvania, Ohio, West Virginia), Region VI (Kentucky, Virginia, Tennessee, 

North Carolina, Georgia, Alabama, Arkansas), Region VII (Florida), and Region VIII (California 

and southern Arizona). Regional site assignments are grouped as indicated by the boxes in Figure 

5.3. The lowest regional average value of dry N deposition was found in Region I (0.51 kg 

N/ha/year) and the highest value was found in Region IV (7.0 kg N/ha/year), one of the nation’s 

primary food production areas with large NH3 emissions from livestock and fertilizer use. In most 

regions, dry ammonia and nitric acid deposition display strong seasonal patterns, with higher 

values in summer and lower values in winter. These seasonal patterns are driven mostly by 

seasonal concentration patterns rather than seasonal changes in deposition velocity. Ammonia 

emissions increase with warmer summertime temperatures due to enhanced volatilization (Brunke 

et al., 1988; Sommer et al., 1991). Active summertime photochemistry speeds conversion of 

emitted NOx to nitric acid while warmer summertime temperatures reduce the formation of fine 

particle ammonium nitrate, leaving more nitric acid and ammonia in the gas phase (Li et al., 2014). 

Interestingly, there is still considerable dry NH3 deposition estimated during the winter in the 

central U.S. (Region IV). Higher winter ammonia concentrations in this region might reflect 

trapping of cold season ammonia emissions (from livestock and/or winter fertilizer application) 

near the surface by a shallow boundary layer (Chen et al., 2014). Dry N deposition exhibits a 

winter seasonal maximum in Florida. Increased summertime precipitation here suppresses 

summertime atmospheric concentrations, and therefore dry deposition, of reduced and oxidized N 
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species. Ammonia and nitric acid are both quite soluble at typical precipitation pH values while 

fine particle nitrate and ammonium can be efficiently scavenged by heterogeneous nucleation in 

clouds and incorporated into precipitation. Wet N deposition contributed over 75% of total (wet + 

dry) inorganic N deposition during the summer when there was more precipitation (Figure 5.4); 

dry deposition of reduced N was the dominant input during the drier winter season. The highest 

input occurs in November when precipitation reached an annual minimum.  
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Table 5.1 Locations of network sites and period of record plotted in Figure 5.3 and Figure 5.5 
Group Site_ID Site Name State Latitude(oN) Longitude(oW) Period of record AMoN site CASTNET site NTN site IMPROVE NHx site 

Region I WA99 Mount Rainier National Park WA 46.7582 -122.124 07/11~06/13 WA99 MOR409 WA99  
 

Region II 
MT05 Glacier National Park MT 48.5105 -113.997 07/11~06/12*  GLR468 MT05 GLACS 

WY08 Yellowstone National Park WY 44.5653 -110.4 07/11~06/12*  YELL408 WY08 YELLS 

 
 
 

Region 
III  

CO10 Gothic CO 38.9561 -106.986 09/12~06/13**  CO10 GTH161 CO10  

CO88 Rocky Mountain National Park CO 40.2778 -105.545 07/11~06/13 CO88 ROM406 CO19  

CO99 Mesa Verde National Park CO 37.1984 -108.491 07/11~06/12*  MEV405 CO99 MEVES 

SD04 Wind Cave SD 43.5576 -103.484 07/11~06/12*  WNC429 SD04 WICAS 

WY95 Brooklyn Lake WY 41.3647 -106.241 07/12~06/13* WY95 CNT169 WY95  
 
 
 

Region 
IV  

IL11 Bondville IL  40.0528 -88.3719 07/11~06/13 IL11 BVL130 IL11  

IL37 Stockton IL  42.2869 -89.9997 07/11~06/13 IL37 STK138 IL18  

IL46 Alhambra IL  38.8689 -89.6219 07/11~06/13 IL46 ALH157 IL46  

KS31 Konza Prairie KS 39.1022 -96.6092 07/11~06/13 KS31 KNZ184 KS31  

NE98 Santee NE 42.8292 -97.8541 07/11~06/13 NE98 SAN189 SD99  

WI35 Perkinstown WI 45.2064 -90.5978 07/11~06/13 WI35 PRK134 WI35  
 
 
 

Region 
V 

CT15 Abington CT 41.84 -72.0101 07/11~06/13 CT15 ABT147 CT15  

NJ98 Washington Crossing NJ 40.3125 -74.8729 07/11~06/13 NJ98 WSP144 NJ99  

NY20 Huntington Wildlife NY 43.9731 -74.2231 07/12~06/13* NY20 HWF187 NY20  

OH54 Deer Creek State Park OH 39.6359 -83.2606 07/11~06/13 OH54 DCP114 OH54  

PA00 Arendtsville PA 39.9231 -77.3078 07/11~06/13 PA00 ARE128 PA00  

PA29 Kane Experimental Forest PA 41.5978 -78.7675 07/11~06/13 PA29 KEF112 PA29  

WV18 Parsons WV 39.0897 -79.6622 07/11~06/13 WV18 PAR107 WV18  

 
 
 
 
 

Region 
VI 

AL99 Sand Mountain Research & 
Extension Center 

AL 34.2886 -85.9699 07/11~06/13 AL99 SND152 AL99  

AR03 Caddo Valley AR 34.1795 -93.0992 07/11~06/13 AR03 CAD150 AR03  

GA41 Georgia Station GA 33.1805 -84.4103 07/11~06/13 GA41 GAS153 GA41  

KY03 Mackville KY 37.7047 -85.0489 07/11~06/13 KY03 MCK131 KY03  

KY98 Cadiz KY 36.7841 -87.8499 07/11~06/13 KY98 CDZ171 KY99  

NC06 Beaufort NC 34.8846 -76.6207 07/11~06/13 NC06 BFT142 NC06  

NC25 Coweeta NC 35.0605 -83.4305 07/11~06/13 NC25 COW137 NC25  

NC26 Candor NC 35.2632 -79.8365 07/11~06/13 NC26 CND125 NC36  

TN01 Great Smoky Mountains National 
Park 

TN 35.6331 -83.9422 07/11~06/13 TN01 GRS420 TN01  

VA24 Prince Edward VA 37.1652 -78.3073 07/11~06/13 VA24 PED108 VA24  
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Region 

VII 

FL11 Everglades National Park FL 25.39 -80.68 07/11~06/13 FL11 EVE419 FL11  

FL19 Indian River FL 27.8492 -80.4554 07/11~06/13 FL19 IRL141 FL99  

 
 

Region 
VIII 

AZ98 Chiricahua National Monument AZ 32.0097 -109.389 07/11~06/13 AZ98 CHA467 AZ98  

CA44 Yosemite National Park CA 37.7133 -119.706 07/11~06/13 CA44 YOS404 CA99  

CA67 Joshua Tree National Park CA 34.0695 -116.389 07/11~06/13 CA67 JOT403 CA67  

CA83 Sequoia National Park CA 36.4894 -118.823 07/11~06/13 CA83 SEK430 CA75  

*   The record period of data was one year  
** The record period of data was one year  
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Figure 5.4 Pie charts of seasonal N deposition species pathways (top) and total monthly measured precipitation (bottom) in Florida 
(FL 11 and FL19) 
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To assess the potential uncertainty in the MLM deposition velocity approach used for the NH3 dry 

deposition assessment (the NH3 dry deposition velocity is set equal to 0.7 times the MLM modeled 

HNO3 deposition velocity), this method was compared to the more mechanistically representative 

bi-directional flux model (Figure 5.5). At the annual scale, deposition rates estimated using the 

MLM approach are larger than those derived from the bi-directional model by a factor of 1.68 

(median of 35 sites listed in Figure 5.5). Model differences result from stomatal and ground 

compensation points, as well as the effects of surface acidity, represented in the bi-directional 

framework. The net result of these processes is to reduce the gradient in NH3 concentration, and 

therefore the flux, between the atmosphere and land surface relative to the unidirectional 

(deposition velocity) MLM approach, which assumes a zero surface concentration. This reduction 

in NH3 dry deposition rates, relative to the unidirectional flux framework, was also observed upon 

implementation of NH3 bi-directionality in the Community Multiscale Air Quality Model. 
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Figure 5.5 Ratio of annual NH3 dry deposition rates estimated using the MLM versus bi-directional approaches. Regions are indicated 
at top of graph 
* Due to lack of meteorological data, bi-directional flux model is not parametrized appropriately for the KY98 site. 
** Due to feature of surface plants, bi-directional flux model is not parametrized appropriately for the IL11 site 
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Across regions (Figure 5.5), there is considerable variability in the difference between MLM and 

bi-directional estimates among sites. In some cases, bi-directional flux estimates exceed MLM 

estimates. However, MLM estimates consistently exceed bi-directional flux estimates in regions 

III, VII, and VIII. In regions VII and VIII, this is largely due to relatively low atmospheric 

concentrations of SO2 and HNO3 (see acid ratio, Appendix A), which in turn yields less acidic 

vegetation surfaces under the bi-directional framework and corresponding lower rates of NH3 

deposition to leaf cuticles than would occur on more acidic surfaces. In region III, model 

differences arise from a combination of processes. Site CO99 experiences very low NH3 air 

concentrations. During warm conditions, the stomatal compensation point exceeds the atmospheric 

NH3 concentration, resulting in a net stomatal emission that offsets deposition to the leaf cuticle 

and ground, thereby producing a low net annual deposition flux. Similar competing flux processes 

are observed at sites SD04 and WY95, particularly during warm months. 
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5.4 Fractional Reduced N contributions to the Total Inorganic N Deposition Budget  

 

With wet and dry deposition estimates available for 37 locations, the total wet plus dry nitrogen 

deposition fractions can be estimated across the U.S. by regions (Figure 5.6). Fractional deposition 

contributions by each wet and dry deposition pathway for each of the 8 defined deposition regions 

are illustrated in the inset pie charts in Figure 5.6. Fractional wet plus dry inorganic N deposition 

contributions by reduced species are indicated by the color of the circle for each measurement site. 

With most U.S. sites exhibiting a majority of both wet and dry inorganic N deposition attributable 

to reduced N species, as discussed above, the combined deposition budget is again dominated by 

reduced N inputs. Reduced N deposition fractions in the eight regions range from 58% (Region I) 

to 78% (Region VIII), with dry NH3 deposition alone contributing between 19% (Region II) and 

63% (Region VIII). Fractional reduced N contributions at individual sites range from 42% at CO99 

(Mesa Verde National Park) to 84% at CA83 in California’s Central Valley. The largest ammonia 

dry deposition fraction was also observed at CA83 (74%) while the smallest was at PA27 (11%). 

The spatial patterns of reduced N deposition fraction generally reflect spatial variations in 

agricultural activity including animal husbandry. Assuming that the biases between the MLM 

deposition velocity and bi-directional flux approaches shown in Figure 5.5 are generally 

representative, a full assessment using the bi-directional approach would, at many sites, reduce 

overall deposition rates and the relative fraction of NH3 dry deposition. However, the general 

pattern observed in Figure 5.6 remains consistent; NHx continues to dominate inorganic N 

deposition budgets at the national scale.  
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Figure 5.6 Spatial trends in total reactive inorganic N deposition across the U.S. from July 2011 to June 2013. Fractional reduced N 
contributions to total N deposition (dry + wet) at the 37 sites are represented by circle color. The total inorganic nitrogen deposition is 
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indicated by circle size. The pie charts show average fractional contributions of individual reduced and oxidized N deposition 
pathways for the same 8 regions identified in Table 5.1, with each pie area proportional to the average total inorganic nitrogen 
deposition listed under each pie chart. 
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The site-specific circle sizes in Figure 5.6 indicate the combined wet plus dry inorganic N 

deposition fluxes. Some regions exhibit majority dry deposition (e.g., dry deposition contributions 

of 58% and 79% in Regions IV and VIII, respectively) while others are more strongly influenced 

by wet deposition (e.g., wet deposition contributions of 66% and 72% in Regions I and VI). Note 

that the largest deposition fluxes at individual sites tend to be observed at locations where 

fractional reduced N contributions are large. The maximum regional average inorganic N 

deposition flux (12.1 kg N/ha/year) was observed in the Midwest region (Region IV); relatively 

large deposition fluxes were also observed for California and the eastern U.S. These spatial 

patterns are similar to those identified in recent model simulations (Bash et al., 2013; Schwede and 

Lear, 2014).  

 

5.5  Summary 

 

Rapid development of agricultural activities and fossil fuel combustion in the United States has 

led to a great increase in reactive nitrogen (Nr) emissions in the second half of the twentieth century. 

These emissions have been linked to excess nitrogen (N) deposition (i.e. deposition exceeding 

critical loads) in natural ecosystems through dry and wet deposition pathways. U.S. efforts to 

reduce nitrogen oxides (NOx) emissions since the 1970s have substantially reduced nitrate 

deposition, as evidenced by decreasing trends in long-term wet deposition data. These decreases 

in nitrate deposition along with increases in wet ammonium deposition have altered the balance 

between oxidized (nitrate) and reduced (ammonium) nitrogen deposition. Across most of the U.S., 

wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium 

dominated in recent years. Because ammonia has not been a regulated air pollutant in the U.S., it 
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has historically not commonly been measured. Recent measurement efforts, however, provide a 

more comprehensive look at ammonia concentrations across several regions of the U.S. These data, 

along with more routine measurements of gas phase nitric acid and fine particle ammonium and 

nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + 

dry) U.S. inorganic reactive nitrogen deposition budget. Utilizing two years of N-containing gas 

and fine particle observations from 37 U.S. monitoring sites, we estimate that reduced nitrogen 

contributes, on average, approximately 65 percent of the total inorganic N deposition budget. Dry 

deposition of ammonia plays an especially key role in N deposition compared with other N 

deposition pathways, contributing from 19% to 65% in different regions. With reduced N species 

now dominating the wet and dry reactive N deposition budgets in much of the country, the U.S. 

will need to consider ways to reduce ammonia emissions if it is to continue progress toward 

reducing N deposition to sustainable levels defined by ecosystem critical loads.  
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

A five-year study of concentrations of gaseous NH3 and HNO3 and of fine particle inorganic ions 

was conducted in an active gas production region in Boulder, Wyoming. The five-year annual 

mean concentrations of NH3, HNO3, NH4
+, NO3

- and SO4
2- were 0.17, 0.19, 0.26, 0.32, and 0.48 

µg/m3, respectively. NH3 exhibited a strong seasonal variation, with higher concentrations during 

the summer and lower concentrations during the winter. The low annual average NH3 mixing ratio 

of 0.30 ppb suggests that the default value of 1 ppb often used in regional assessments of visibility 

impacts from NOx source emissions is higher than necessary. 

 

Observed NH3 concentrations correlated well with ambient temperature indicating the important 

influence of temperature on emissions and, likely, the greater long distance transport of those 

emissions during warmer times of year when mixing layers deepen. By contrast, higher 

concentrations of particulate NO3
- were observed in the winter when lower temperatures favor 

formation of NH4NO3. HNO3 concentrations showed an unusual bimodal seasonal variation with 

higher levels both in summer (an expected result of active photochemical oxidation and a tendency 

for NH4NO3 to decompose at higher temperatures) and in winter. The unusual winter HNO3 peak 

appears to be the result of active photochemical processing of local NOx emissions in a shallow 

boundary layer during periods of snow cover and a lack of NH3 to fully tie up HNO3 through fine 

particle NH4NO3 formation. Examination of the equilibrium thermodynamics of NH4NO3 

formation, seasonal local temperatures, and available concentrations of gaseous NH3 and HNO3, 

indicates that NH4NO3 should be expected primarily in winter, as observed. 
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Five years of observed NH3 concentrations revealed strong spatial differences in NH3 

concentrations in northeastern Colorado. Summer average weekly NH3 concentrations ranged 

from 2.8 µg/m3 to 41.3 µg/m3. The lowest average NH3 concentration always occurred at a remote 

prairie site, while average NH3 concentrations nearly a factor of 13 greater were observed at a site 

near a large animal feeding operation. Based on several years of available data, no significant inter-

annual trends can be detected in NH3 concentrations in the region except BH site, consistent with 

similar seasonal meteorological conditions and relative stability in regional livestock headcounts 

over the period. The NH3 concentration levels observed in this study provide an important 

reference point for evaluating the success of future efforts to mitigate regional NH3 emissions 

through voluntary implementation of BMPs as part of a strategy to reduce nitrogen deposition 

levels and impacts in Rocky Mountain National Park. 

 

Measurement of NH3 at the BAO meteorological tower near Erie, Colorado provide the first long-

term insights into vertical gradients of NH3 concentrations in the region and some of the first long-

term measurements of this type anywhere in the world. A general pattern of decreased NH3 

concentrations with height above 10 m was observed in all seasons as was a decrease in 

concentration below 10 m height. Moderate average concentrations were observed in winter at the 

surface along with a steeper vertical concentration gradient. Higher average concentrations were 

observed in summer at all altitudes along with a shallower vertical concentration gradient. Surface 

deposition, vertical dilution, and the formation of thermal inversions that limit the vertical mixing 

of regional, surface-based NH3 emissions appear to have greater influence than temperature and 

humidity-driven changes in NH4NO3 gas-particle partitioning on the observed vertical 

concentration profiles.  
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Comparison of measured NH3 spatial distributions with IASI satellite retrieved NH3 columns 

reveals both monitoring techniques capture similar spatial and temporal variability in northeastern 

Colorado. Some temporal differences at the FC_ W site appear to reflect NH3 in elevated wildfire 

plumes that are observed from the satellite but are not sampled at the surface. This highlights the 

value of satellite measurements and the need for more comprehensive NH3 datasets such as NH3 

vertical profile measurements.  

 

Measured spatial distributions of NH3 concentrations also provide a good basis for comparison to 

regional air quality model simulations. A comparison with CAMx simulations finds that the model 

does a fairly good job capturing ammonia concentrations in source regions, but underpredicts 

concentrations at locations further from major regional feedlot sources. A comparison of measured 

and modeled vertical profiles in a non-source region reveals an undeprediction of modeled 

ammonia from the surface up to 300 m in all seasons. The mismatch aloft provides evidence that 

the model difficulty reproducing surface observations away from sources is not a simple result of 

excess vertical mixing of ammonia emissions in the model. Rather, the model emission inventory 

may be missing or underpredicting smaller or non-agricultural ammonia sources or, perhaps more 

likely, the model may be overpredicting surface ammonia deposition due to the absence of 

bidirectional treatment of ammonia atmosphere-surface exchange. Although additional research is 

definitely needed, we expect the NH3 concentrations and spatial/vertical differences presented here 

to be useful in constraining future simulated concentrations of atmospheric NH3 in chemical 

transport models. 
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Increases in agricultural emissions of ammonia and the success of regulatory policies to reduce 

NOx emissions over the past two decades are changing the face of U.S. reactive nitrogen deposition. 

While U.S. wet inorganic N deposition was once dominated by nitrate, wet inorganic N deposition 

now comes mostly from ammonium at nearly 70% of U.S. monitoring sites. Although estimates 

of dry deposition fluxes of inorganic N inherently contain more uncertainty, dry and total (wet plus 

dry) inorganic N deposition fluxes also appear to be dominated by reduced N in most parts of the 

country. Reductions in wet and dry deposition fluxes of oxidized inorganic N species are expected 

to continue into the future as the U.S. continues to reduce NOx emissions. Current projections of 

ammonia emissions growth, meanwhile, suggest that reduced N deposition levels will grow in the 

future. While ammonia emissions have been regulated since 2001 in Europe, U.S. air quality 

regulators have thus far chosen not to regulate ammonia air emissions. In addition to the adverse 

impacts of reduced N deposition on ecosystem health, ammonia is an important precursor to fine 

particle formation. Fine particles decrease visibility (Malm, 1999) and negatively impact human 

health and increase health care costs (Paulot and Jacob, 2014; Stokstad, 2014). Reductions in U.S. 

ammonia emissions from agricultural and non-agricultural sources, whether by regulation or 

voluntary actions (e.g., agricultural producer adoption of best management practices), would yield 

a variety of positive benefits for ecosystems and society. Increased study of atmospheric ammonia 

concentrations and improved measures of ammonia dry deposition fluxes are needed to design 

optimal strategies for achieving such benefits. 

 

Even though the results from field studies, model simulations, and national network observations 

reported here provide many new insights into the characteristics of NH3 concentrations and 
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deposition in the United States, there are still many aspects we can work on to expand our 

knowledge of NH3 and its impacts. Here are several suggestions for future research efforts: 

 

 Continued measurements of ammonia are needed in northeastern Colorado for trend 

analysis.  The measurements reported to date provide an important baseline against which effects 

of ongoing regional efforts to reduce emissions can be evaluated.  Exploring correlations between 

emissions from nearby sources and observed NH3 concentrations, such as studying how weekly 

NH3 concentrations vary at the Kersey site in conjunction with changing numbers of cattle in the 

nearby feedlot, will aid in identifying factors controlling NH3 concentrations at local scales. Online 

measurements and mobile sampling are also highly recommended in this area to better depict 

spatial variability across this important source region and determine how emitted NH3 is carried 

by upslope winds to contribute to reactive nitrogen deposition in Rocky Mountain National Park.  

Recent implementation of continuous ammonia measurements at Greeley and Loveland are a good 

step in this direction.  By combining these with mobile sampling, we could better determine the 

spatial structure of ammonia plumes being carried westward toward the mountain. Use of all of 

this information to better determine what sources (agriculture, transportation and industry) 

contribute to NH3 in northeastern Colorado and how emitted ammonia evolves during downwind 

transport would aid in the design of better strategies to reduce reactive nitrogen deposition to 

sensitive alpine ecosystems.  

 

 While the BAO vertical profile measurements of NH3 are novel and helpful for evaluating 

model simulations and satellite measurements, the low time resolution associated with the passive 

sampler measurements precludes a clear determination of surface deposition rates via gradient 
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methods.  It would be very helpful to make high time resolution measurements near the surface to 

gain knowledge about NH3 deposition or emission.  For example, two online NH3 samplers (such 

as the Picarro G2103 Analyzer) could be installed at 1m and 10m heights on the BAO tower, 

respectively. With high time-resolution NH3 concentration measurements at different heights, we 

could use gradient flux determination techniques to estimate surface deposition/emission of NH3.   

 

 Model simulations did not fully represent NE Colorado NH3 distributions measured here 

by passive samplers.  In prior work, it has also been seen that models do not adequately account 

for ammonia transported from this region to Rocky Mountain National Park. One known limitation 

to current model treatments is a lack of capacity to treat bidirectional exchange with the surface; 

this should be added to future model simulations. Preliminary results from Community Multiscale 

Air Quality (CMAQ) modeling work incorporating bidirectional exchange show that its addition 

helps reduce the gap between model results and measurements at most sites in northeastern 

Colorado (Figure 6.1). 
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Figure 6. 1 Time series of weekly NH3 concentrations measured and preliminary modeled 
(CMAQ) including the bidirectional processes in the summer of 2011(06/02/2011-08/31/2011) at 
all the sites.  Simulation results provided by Tammy Thompson, CIRA. 
 

 There are only 37 sites in 23 states within the US that currently have enough measured 

information to fully represent dry and wet deposition budgets of oxidized and reduced inorganic 

nitrogen.  The biggest shortcoming is the availability of gas phase ammonia measurements to 

determine ammonia dry deposition budgets. The expansion of routine ammonia monitoring efforts, 

such as those within AMON, would greatly help nationwide nitrogen deposition budget estimates.  

More sites in areas such as Texas, Utah, North Dakota and Minnesota, would be especially helpful 

in improving spatial coverage. Furthermore, organic nitrogen wet deposition and dry deposition of 
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of organic nitrogen is an important constituent of reactive nitrogen deposition, as reported in 

several previous studies such as RoMANS and GrandTReNDS (Benedict et al., 2013a; Benedict 

et al., 2013b). To better understand dry and wet deposition of reactive nitrogen, more routine 

measurements are needed at several sites across the United States. 

 

 Expansion of ammonia monitoring efforts is also needed to better represent background 

ammonia concentrations regionally and their contributions to fine particle formation and visibility 

degradation.  The Wyoming dataset reported here has already drawn significant interest from 

industry and from air quality regulators because it provides previously unavailable information 

concerning ammonia concentrations in the rural western U.S.  More measurements like this would 

help to better predict impacts of NOx emissions from anthropogenic sources on visibility.  By 

including measurements of both gas and particle phase species, such datasets would also be very 

useful for evaluating model simulations of the total concentration and phase partitioning of NHx 

and help assess the likely effectiveness of future regional efforts to reduce fine particle 

concentrations. 

 

 One major limitation in computing deposition budgets is the lack of understanding of 

appropriate deposition velocities for ammonia. While models are being developed to treat 

bidirectional exchange of ammonia with surfaces, detailed observations of NH3 deposition at high 

time resolution in a variety of ecosystem types and at a variety of ambient ammonia concentration 

levels are needed to improve our understanding of NH3 bidirectional exchange in the real world 

and to support better parameterizations and estimation of NH3 deposition in models. 
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 Evidence presented in this dissertation concerning contributions of biomass burning to 

ammonia emissions, joins a small but growing body of literature on discussing this issue. A more 

thorough investigation of this phenomenon is needed both to elucidate the magnitude of emissions 

and to examine whether increases in ammonium deposition observed, for example, in the western 

U.S. may be a result of an increase in wild and prescribed fires in the region.  
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APPENDIX A INFORMATION ABOUT BI-DIRECTIONAL AMMONIA FLUX MODEL 

 

Dry deposition velocities used in this dissertation were obtained from CASTNET application of 

the MLM model. NH3 deposition velocities were scaled to HNO3 deposition velocities, as 

described below. In order to evaluate the accuracy of the NH3 deposition velocity scaling 

assumption, Dr. John Walker and Dr. Donna Schwede of USEPA helped construct and run a bi-

directional NH3 flux model. The following model description was provided by Dr. John Walker. 

 

A1. Bi-directional ammonia flux model 

 

The net air-surface flux of NH3 above natural terrestrial ecosystems is governed by the competing 

processes of emission and deposition within the underlying vegetation and soil. Vegetation (i.e., 

apoplast) and soil pore water contain dissolved NH4
+ and a corresponding NH3 gas phase 

equilibrium, therefore exhibiting a “compensation point” relative to the surrounding atmosphere 

(Farquhar et al., 1980; Langford et al., 1992). The NH3 compensation point is the atmospheric 

concentration at which the net surface exchange is zero, i.e., the NH3 concentration at which the 

atmosphere is at equilibrium with the underlying surface. The surface is a sink for atmospheric 

NH3 when the atmospheric concentration exceeds the compensation point and emits NH3 to the 

atmosphere under the opposite condition. Though there are many instances where NH3 only 

deposits to or emits from the surface (i.e., unidirectional flux), from a mechanistic standpoint NH3 

air-surface exchange is considered “bi-directional”. 
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Bi-directional NH3 flux is calculated using the two-layer canopy compensation point model 

developed by Nemitz et al. (2001), which relates the net canopy-scale NH3 flux (Ft) to the net 

emission potential of the canopy (i.e., foliage and soil), or surface concentration ((zo)), which is 

in turn related to the canopy compensation point (c). The system of equations describing the net 

canopy flux (Ft), as well as component vegetation [i.e., stomatal (Fs), cuticular (Fw)] and ground 

(Fg) fluxes, is given by Nemitz et al. (2001). The model requires inputs of atmospheric NH3 

concentration along with parameterizations for atmospheric [aerodynamic resistance (Ra) and 

boundary layer (Rb)], in-canopy [aerodynamic (Rac), boundary-layer resistances (Rbg) and ground 

(Rg = Rac + Rbg)], and leaf-level [stomatal (Rs) and cuticular (Rw)] resistances as well as stomatal 

(s) and ground (g) emission potentials. Here the ground emission potential does not distinguish 

between soil and litter layers but is rather a bulk property of the surface. 

 

The aerodynamic resistance is calculated as a function of the standard deviation of the measured 

wind direction (), and wind speed (u) according to Hicks et al. (1987), assuming that the 

atmosphere is considered unstable when global radiation (G) exceeds 100 W m-2 (Meyers et al., 

1998). The boundary-layer resistance is calculated according to Hicks et al. (1987) where friction 

velocity (u*) is calculated from the near-neutral approximation as a function of Ra and u. The in-

canopy aerodynamic (turbulent) resistance (Rac) is calculated according to Massad et al. (2010) as 

a function of u* and canopy height. The additional boundary layer resistance (Rbg) at the ground is 

calculated according to Schuepp (1977) where the ground friction velocity assumes the form of 

Bash et al. (2010). For calculating Rbg, the upper limit of the logarithmic profile of wind speed just 

above the ground surface is taken as 0.01m for grassland and 0.1 for other surfaces. The sum of 

Rac and Rbg establishes the total ground resistance (Rg). 
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The bulk stomatal resistance to NH3 transfer (Rs) is assumed equal to that of water vapor (H2O) 

corrected for differences in molecular diffusivity. Stomatal resistance to H2O is calculated as a 

function of G, air temperature (T), and the vegetation specific minimum resistance (Rsmin) 

according to the rather simple parameterization of Wesely (1989). Minimum stomatal resistances 

assume the same values specified for the Multi-Layer Model (MLM) (Meyers et al., 1998). 

Parameterization of the cuticular resistance (Rw) is calculated according to Massad et al. (2010) as 

a function of relative humidity, surface type (forest, semi-natural, grassland), and the atmospheric 

acid ratio (AR). Site-specific values of AR were calculated seasonally using CASTNET measured 

concentrations of SO2 and HNO3, AMoN measured NH3 concentrations, and assuming an 

atmospheric HCl concentration of 0.005 µmol/m3. 

 

The stomatal (i.e. vegetation) emission potential s was parameterized according to Massad et al. 

(2010) as a function of total nitrogen deposition assuming the “un-managed” case and a value of 

g = 20 was assigned for the ground emission potential. Emission potentials are calculated for each 

AMoN site using collocated NADP/NTN wet deposition and CASTNET dry deposition data 

averaged over a five year period between 2006 and 2010. Vegetation and soil emission potentials 

are then used to calculate vegetation (χs) and ground (χg) compensation points (in units of µg m-3 

to represent air concentration) as a function of temperature following (Nemitz et al., 2001). Note 

that N deposition derived from NADP/NTN wet deposition and CASTNET dry deposition does 

not include dry deposition of NH3 or deposition of organic N compounds and therefore represents 

a lower limit for total N deposition and thus the vegetation emission potential. Canopy height and 

leaf area index assume the same values used for the MLM. Roughness length is specified as 
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0.15×canopy height. Zero plane displacement is estimated using the Stanhill approximation (Arya, 

2001). 

 

A2. Implementation of bi-directional NH3 model 

 

Similar to the MLM, the bi-directional NH3 model was run at an hourly time step using hourly 

CASTNET meteorology and assuming an hourly NH3 air concentration equivalent to the 

corresponding two-week integrated AMoN concentration. Note that for this analysis, AMoN and 

CASTNET are collocated. Hourly fluxes are summed over time to produce seasonal and annual 

total (net, Ft) and component (Fs, Fw, and Fg) fluxes.  

 

A3. Comparison of bi-directional and unidirectional NH3 dry deposition models 

 

The net flux estimated from the bi-directional NH3 model was directly compared to the 

unidirectional (deposition) flux estimated by multiplying the AMoN NH3 concentration by 0.7 × 

the MLM (CASTNET) derived deposition velocity for HNO3. Common inputs of hourly 

CASTNET meteorology, AMoN NH3 concentrations, and canopy physical characteristics were 

used to compare seasonal and annual fluxes for the dominant vegetation type at each collocated 

CASTNET/AMoN site. The objective of this exercise was to examine the relative differences in 

fluxes to inform the potential uncertainty of the scaled MLM HNO3 approach. The comparison is 

only valid for the natural surfaces for which the bi-directional NH3 model has been parameterized, 

which excludes fertilized and nitrogen fixing crops and other surfaces specified by CASTNET 

including, water, sand, and rock.  
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Meteorological data were discontinued at CASTNET sites in 2010 at all but 5 sites. For this reason, 

the meteorological dataset for each site was chosen based on 90% completeness for the required 

variables starting at 2009 and working backward until the 90% annual completeness criteria was 

met. This meteorological dataset was then matched with AMoN NH3 concentration data for the 

year of 2012 ( NH3 Data in 2013 was used for GTH161 and CNT169 site). Because the objective 

was to compare the models using common inputs, it was not necessary to match the year chosen 

for meteorology with that of the chemical inputs (AMoN, NADP). At each site, the models assume 

the dominant vegetation type as specified by the CASTNET site characteristics for MLM. 

 

A4. Seasonal differences in MLM versus bi-directional NH3 dry deposition estimates 

 

Differences in MLM versus bi-directional model estimates are generally greatest in summer 

(Figure 2.9). Though highest atmospheric NH3 concentrations typically occur during the hottest 

months, the temperature driven stomatal and soil compensation points are also at a maximum, 

yielding lower deposition rates via these pathways than is predicted under the assumption of a zero 

compensation (i.e., unidirectional MLM approach) point. In some cases (e.g., WV18 and GA41), 

the exponential relationship between temperature and compensation point produces net emissions 

during summer. Furthermore, atmospheric acidity generally reaches a minimum during summer 

owing to seasonally lower concentrations of SO2 and higher concentrations of NH3. Leaf surfaces 

are therefore less acidic, resulting in lower cuticular deposition rates relative to what would be 

observed for that same atmospheric NH3 concentration in other seasons. The bi-directional model 

yields larger fluxes relative to the MLM approach during winter when compensation points are 

lowest and surfaces are more acidic (i.e., larger acid ratios).  
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Figure A1 Seasonal ratios of MLM (0.7× Vd,HNO3) versus bi-directional NH3 dry deposition estimates 
* Due to lack of meteorological data, bi-directional flux model is not parametrized appropriately for the KY98 site. 
** Due to feature of surface plants, bi-directional flux model is not parametrized appropriately for the IL11 site

12

11

10

9

8

7

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

M
L

M
 v

s
 B

iD
i 
R

a
ti
o

W
A

9
9

M
T

0
5

W
Y

0
8

C
O

1
0

C
O

8
8

C
O

9
9

S
D

0
4

W
Y

9
5

IL
1

1
**

IL
3

7

IL
4

6

K
S

3
1

N
E

9
8

W
I3

5

C
T

1
5

N
J
9
8

N
Y

2
0

O
H

5
4

P
A

0
0

P
A

2
9

W
V

1
8

A
L

9
9

A
R

0
3

G
A

4
1

K
Y

0
3

K
Y

9
8

*

N
C

0
6

N
C

2
5

N
C

2
6

T
N

0
1

V
A

2
4

F
L

1
1

F
L

1
9

A
Z

9
8

C
A

4
4

C
A

6
7

C
A

8
3

 Spring
 Summer
 Fall
 Winter



167 
 

APPENDIX B COMPARISON OF NE COLORADO AMMONIA OBSERVATIONS WITH 

TROPOSPHERIC EMISSIONS SPECTROMETER (TES) SATELLITE RETRIEVALS 

 

Several recent studies have used surface NH3 measurements to evaluate or improve remote sensing 

techniques for retrieving NH3 concentrations and determining distributions (Heald et al., 2012; 

Pinder et al., 2011; Zhu et al., 2013). The Tropospheric Emissions Spectrometer (TES) is a high-

resolution infrared Fourier transform spectrometer carried by NASA’s Aura satellite that has been 

shown to be capable of detecting the spatial and vertical distribution of NH3 from space (Beer et 

al., 2008). The TES products and retrieved NH3 used in this study are available from 

NASA(http://avdc.gsfc.nasa.gov/index.php?site=635564035&id=10&go=list&path=/NH3). TES 

has a footprint of 5.3 x 8.3 km and an ascending overpass at 13:30 mean solar time. The vertical 

sensitivity of the NH3 retrieval peaks between 900 and 700 hPa, although this varies based on 

thermal contrast, NH3 concentration, and cloud cover. Because the degrees of freedom (DOF) are 

generally less than 1; in this study, the Representative Volume Mixing Ratio (RVMR) is used for 

spatial distributions. The RVMR is a boundary layer averaged value weighted by TES sensitivity 

and reduced reliance on the a priori choice (Shephard et al., 2011) and provides a helpful indicator 

for comparing with surface measurements. Since DOFs decrease with increasing cloud optical 

depths, observations are only used when cloud optical depths are ˂ 1.0. Pinder et al. (2011) show 

that TES NH3 RVMRs strongly correspond to spatial and seasonal variations in surface 

measurements in North Carolina and even find significant correlations with number of livestock 

facilities. Here TES NH3 RVMRs are compared with the results from the NH3 spatial 

measurements in northeastern Colorado. We are also able to provide a novel look at the TES-

retrieved vertical NH3 concentration profile using the vertical measurements on the BAO tower. 

http://avdc.gsfc.nasa.gov/index.php?site=635564035&id=10&go=list&path=/NH3
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TES observations for the period of May through August from 2010 to 2012 were selected for the 

spatial comparison within the latitude range from 39.9°N to 41.2°N and the longitude range from 

103.4°W to 105.3°W (Figure B1). Due to cloud depth filtering and geographic and time sampling 

limitations, there are only a few valid TES NH3 observations in northeastern Colorado. Pinder et 

al. (2011) note that due to several limitations and sampling differences, for example daily 

variations of NH3, perfect agreement will not be found by direct comparison between weekly 

surface measurement and the satellite retrieval. However, both spatial NH3 measurements from 

this study and TES data showed a generally similar spatial distribution of NH3 in NE Colorado. 

When the retrieval locations were away from concentrated agricultural areas, TES NH3 

concentrations were below 10 ppb, similar to NH3 concentrations measured at ground observation 

sites.  

 

 

Figure B1 TES NH3 data from 2010 to 2012 (bowties, diamonds, and triangles) and passive 
sampler three-year (2010 - 2012) surface measured NH3 average concentrations (circles). The 
passive NH3 concentrations were converted from μg/m3 to a mixing ratio (ppb) using ambient 
pressure calculated by the elevation of each site and mean temperature measured at FC_W.  
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There were only 3 (bowtie), 2 (diamond) and 36 (triangle) valid TES data points in the region 
between May and August in 2010, 2011 and 2012, respectively. 
 

The locations of TES data points for the vertical comparisons were selected within the 1o × 1o 

latitudinal and longitudinal grid of the BAO tower (40.05±0.5°N, 105.00±0.5°W). Fifteen 

profiles are available in this area, all from August 2012. Ambient pressure (P) for the BAO tower 

is calculated as following based on the altitude above sea level (h):    

P = 101325 × (1 - 2.25577 × 10-5× h)5.25588 

TES profiles provide concentration estimates at only two vertical layers (825.45 and 834.79 mb) 

within the BAO tower measurement from 806.27 to 836.67 mb. Figure B1 shows that the vertical 

passive sampler and satellite measurements of NH3 concentrations were similar near the ground 

level. However, as height increased, the NH3 concentrations measured on the tower decreased 

somewhat more rapidly than those in the TES retrievals. 
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Figure B2 Comparison of TES NH3 data and BAO tower vertical NH3 measurements in August 
2012. The x-error bars represent the relative standard deviation of measured and retrieved NH3 
concentrations. 
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APPENDIX C BOULDER WYOMING MEASUREMENT DATA FROM URG SAMPLING (2007-2011) 
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* b.d means the concentration was below the detection limits 
** The gap between the rows means there was no data available during that sampling period  
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APPENDIX D NH3 DATA IN NORTHEASTERN COLORADO FROM RADIELLO PASSIVE SAMPLING 

D1. Spatial NH3 Data  
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D2. Vertical NH3 Data 

 


