
DISSERTATION

Characterization of Multiple Time-Varying Transient Sources from

Multivariate Data Sequences

Submitted by

Neil Wachowski

Department of Electrical and Computer Engineering

In partial fulfullment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2014

Doctoral Committee:

Advisor: Mahmood R. Azimi-Sadjadi

F. Jay Breidt
Kurt Fristrup
Ali Pezeshki



Copyright by Neil Wachowski 2014

All Rights Reserved



Abstract

Characterization of Multiple Time-Varying Transient Sources from Multivariate

Data Sequences

Characterization of multiple time-varying transient sources using sequential multivariate data

is a broad and complex signal processing problem. In general, this process involves analyzing new

observation vectors in a data stream of unknown length to determine if they contain the signatures

of a source of interest (i.e., a signal), in which case the source’s type and interference-free signatures

may be estimated. This process may continue indefinitely to detect and classify several events of

interest thereby yielding an aggregate description of the data’s contents. Such capabilities are

useful in numerous applications that involve continuously observing an environment containing

complicated and erratic signals, e.g., habitat monitoring using acoustical data, medical diagnosis

via magnetic resonance imaging, and underwater mine hunting using sonar imagery.

The challenges associated with successful transient source characterization are as numerous as

the application areas, and include 1) significant variations among signatures emitted by a given

source type, 2) the presence of multiple types of random yet structured interference sources whose

signatures are superimposed with those of signals, 3) a data representation that is not necessarily

optimized for the task at hand, 4) variable environmental and operating conditions, and many

others. These challenges are compounded by the inherent difficulties associated with processing

sequential multivariate data, namely the inability to exploit the statistics or structure of the entire

data stream. On the other hand, the complications that must be addressed often vary significantly

when considering different types of data, leading to an abundance of existing solutions that are each

specialized for a particular application. In other words, most existing work only simultaneously

considers a subset of these complications, making them difficult to generalize.
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The work in this thesis was motivated by an application involving characterization of national

park soundscapes in terms of commonly occurring man-made and natural acoustical sources, using

streams of “1/3 octave vector” sequences. Naturally, this application involves developing solutions

that consider all of the mentioned challenges, among others. Two comprehensive solutions to

this problem were developed, each with unique strengths and weaknesses relative to one another.

A sequential random coefficient tracking (SRCT) method was developed first, that hierarchically

applies a set of likelihood ratio tests to each incoming vector observation to detect and classify up

to one signal and one interference source that may be simultaneously present. Since the signatures

of each acoustical event typically span several adjacent observations, a Kalman filter is used to

generate the parameters necessary for computing the likelihood values. The SRCT method is also

capable of using the coefficient estimates produced by the Kalman filter to generate estimates of

both the signal and interference components of the observation, thus performing separation in a

dual source scenario. The main benefits of this method are its computational efficiency and its

ability to characterize both components of an observation (signal and interference).

To address some of the main deficiencies of the SRCT method, a sparse coefficient state track-

ing (SCST) approach was also developed. This method was designed to detect and classify signals

when multiple types of interference are simultaneously present, while avoiding restrictive assump-

tions concerning the distribution of observation components. This SCST method uses generalized

likelihood ratios tests to perform signal detection and classification during quiescent periods, and

quiescent detection whenever a signal is present. To form these tests, the likelihood of each signal

model is found given a sparse approximation of an incoming observation, which makes the temporal

evolution of source signatures more tractable. Robustness to structured interference is incorporated

by virtue of the inherent separation capabilities of sparse coding. Each signal model is characterized

by a Bayesian network, which captures the dependencies between different coefficients in the sparse

approximation under the associated hypothesis.
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In addition to developing two complete transient source characterization systems, this thesis

also introduces several concepts and tools that may be used to aid in the development of new sys-

tems designed for similar tasks, or supplement existing ones. Of particular note are a comprehensive

overview of existing general approaches for detecting changes in the parameters of sequential data

streams, a new method for performing fusion of sequential classification decisions based on a hid-

den Markov model framework, and a detailed analysis of the 1/3 octave data format mentioned

above. The latter is especially helpful since this data format is commonly used in audio analysis

applications.

A comprehensive study is carried out to evaluate the performance of the developed methods for

detecting, classifying, and estimating the signatures of signals using 1/3 octave soundscape data

that is corrupted with multiple types of structured interference. The systems are benchmarked

against a Gaussian mixture model approach that was adapted to handle the complexities of the

soundscape data, as such approaches are frequently used in acoustical source recognition applica-

tions. Performance is mainly measured in terms of the receiver operator characteristics (ROC) of

the test statistics implemented by each method, the improvement in signal-to-noise ratio they offer

when estimating signatures, and their overall ability to accurately detect and classify signals of

interest. It was observed that both the SRCT and SCST methods perform exceptionally on the na-

tional park soundscape data, though the latter performs best in the presence of heavy interference

and is more flexible in new environmental and operating conditions.
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CHAPTER 1

Introduction

1.1. Problem Statement and Motivations

The ability to characterize multiple time-varying transient sources from sequential multivariate

data has a myriad of applications including speech recognition [1–7], habitat monitoring [8–16],

medical diagnosis [17], and battlefield surveillance [18–21]. A transient source is one whose sig-

natures are not continually present in the data, and hence, new observations in a sequential data

stream must be constantly monitored to detect each source’s time of arrival and subsequently (or

simultaneously) extract more detailed information about its properties, such as its duration and

class (i.e., type of source). Although detection and classification of the transient sources is the

primary goal of this research, another desirable capability is estimating the signatures of a given

source under conditions of significant background noise and/or the presence of competing sources,

thereby parsing composites of source signatures into isolated representations.

Transient source characterization is often complicated by many factors that depend on the

particular application. These factors include time-varying source signatures, a large number of

possible source types, variable number of sources that may be simultaneously present leading to

superimposed signatures, unknown arrival times and parameters (e.g., Doppler shift), the presence

of ambient noise as well as environmental and operational variations, and variable structure and du-

ration even among those sensed events associated with a single source type. The latter complication

is due to the random nature of many sources, and can lead to 1) between-class similarities where

sources belonging to different classes may produce acoustical signatures that are similar within a

given time interval, and 2) within-class diversity where signatures can vary significantly enough

such that it is difficult to describe them with a single model or set of parameters. Superimposed
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signatures are typically caused by the simultaneous presence of sources that are extrinsic and in-

trinsic to the sensed environment. Throughout this thesis these two categories are associated with

the more general terms of signal and interference, respectively, whereas the term source means

anything that produces signatures that do not fit the ambient noise model. An event refers to the

signatures of a single source that often span several observations, due to the extent of such signa-

tures often exceeding the temporal resolution of the observation sequence. In general, interference

sources are generally considered a nuisance, as they hinder signal detection by shifting or obstruct-

ing discriminatory features, and hence, robustness to interference is a significant consideration of

the research in this thesis.

The research in this thesis is motivated by a cooperative agreement (#H2370094000) with

the Natural Sounds Program of the National Park Service (NPS) for enhancing the effectiveness

of acoustical monitoring efforts in national parks. The Natural Sounds Program was established

to manage acoustical environments in a way that balances access to parks with their long-term

preservation as well as expectations of visitors. This program provides services to parks in the form

of recreational planning assistance, acoustical data collection and analysis, and research projects

in the areas of acoustical and social sciences. These services ultimately advance the overreaching

purpose of national parks, which is to conserve the natural state of resources therein.

Establishing a scientific basis for the state of acoustical resources involves determining the

composition of national park soundscapes in terms of commonly (and simultaneously) occurring

man-made (e.g., aircraft) and natural (e.g., weather effects) sources. To accomplish this task,

monitoring stations are typically deployed in certain locations in parks for months at a time to

constantly record the soundscapes. However, due to the complexity of the soundscapes [22], the

current approach to source characterization involves manual post observation and evaluation of large

volumes of acoustical recordings. This process can be tedious and prohibitively time-consuming,

which results in circumstances where the majority of the data remains unanalyzed, thereby limiting
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the ability of the NPS to achieve its assessment goals. Therefore, the developments in this thesis

were designed to prevent such manual analysis.

Historically, a particular type of lossy data reduction has been used for efficient storage of

acoustical information. This data reduction involves transforming consecutive windows of the

streaming audio data by using a bank of filters and forming a “1/3 octave data vector” (see

Appendix A) based on the energy in the filtered waveforms. Although storage limitations are

no longer a large concern, the research in this thesis remains focused on solutions that suit the 1/3

octave data format so that a unified approach for analyzing new data, as well as data collected in

the past, may be used. Furthermore, the NPS intends to implement one of the automated source

characterization algorithms directly on monitoring stations for future deployment in national parks,

and the computational savings offered by methods that operate on a lossy data format make this

goal more realistic. Finally, developing methods to operate on sequential multivariate data allows

for their application to other types of problems (such as those mentioned above) that inherently

use this general data format. On the other hand, as detailed in Chapter 2, performing source

characterization tasks using this data format presents a unique set of challenges above and beyond

those associated with using raw audio data for the same purpose.

The remainder of this chapter is organized as follows. Below in Section 1.2 a survey of related

previous work on transient source characterization is provided. Section 1.3 provides a comprehen-

sive list of properties of effective solutions that are deemed necessary for conducting automated

soundscape analysis. An outline of the objectives and contributions of this research follows in

Section 1.4. Finally, an overview of the organization of this thesis is presented in Section 1.5.

1.2. Survey of Previous Work

This section presents a survey of previous research on the fundamental capabilities required

to perform characterization of time-varying transient sources using sequential multivariate data.

Work in the broad field of transient detection is first discussed, followed by methods for signal
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classification. Lastly, a survey on comprehensive systems that attempt to offer solutions to similar

source characterization problems is presented.

1.2.1. Transient Detection

Transient detection involves determining if and when an abrupt change to some characteristic

properties of the data occurs. This definition is vague, since what constitutes a change of interest

may vary according to the application. In some cases, changes are not necessarily observed directly,

but instead may be associated with some set of latent variables or parameters. Moreover, the

temporal characteristics of a transient are application specific, e.g., it may be assumed the data

changes permanently, or decays monotonically after a rapid onset. In this thesis a transient source

is one whose signatures are not continually present in the data, but appear at some unknown time

k1, and cease to be extant at some other unknown time k0 > k1.

Although transient detection is generally used to constantly monitor an incoming stream of

sequential data, some approaches analyze an entire data segment to determine whether a relevant

change occurs at some point within [23–28]. For instance, the method in [23] applies a wavelet

packet transform to an entire time series and identifies transients using the likelihood of a Hidden

Markovian Tree that models transform coefficients. The method in [24] detects multiple transients

by forming a likelihood ratio for a known family of transient parameterizations, given the entire data

sequence. While these methods can potentially be applied to segments extracted from a sequential

data stream, such as those used for the present soundscape characterization problem, this approach

is unpractical since frequent splitting of acoustical events between segments is likely. Additionally,

since the data in Chapter 2 has a low temporal resolution (one observation per second), using such

approaches can result in a significant lag between the time an event occurs and when it is reported,

since several hours of data would be needed before it could be analyzed. Some other methods

assume multiple realizations of the data are available, i.e., that the environment is recorded using

an array of microphones. For example, the work in [29] considers detection of a tapered, complex,
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transient oscillation observed coherently in two time series. Detection is performed by calculating

a normalized cross-wavelet spectrum between the two time-series to perform a binary hypothesis

test. Such methods cannot be applied to the soundscape data in this thesis, since only a single

microphone is used to generate one realization of the acoustical scene.

Another very common approach to transient detection is to simply look for anomalies in the data

based on some model of quiescent observations [30–32]. For instance, in [30] arbitrary transients are

detected in audio waveforms by evaluating time-scale coefficients of wavelet atoms, and assuming

the contributions of transients are characterized by a monotonic decay in the energy of these

coefficients over time, regardless of their source. Another study [32] exploits the distribution of

individual time-frequency components in a spectrogram, which is then transformed to a space

appropriate for segmenting time-frequency slices containing noise only from those containing noise

plus an unknown signal. However, for the present application, detection of arbitrary changes is

not the goal, since the soundscape data is typically subject to continuous variations owing to

the intermittent presence of many sources and phenomenon (see Chapter 2). For example, it is

sometimes desirable to detect only signals (sources of extrinsic sound), while ignoring interference

(sources of intrinsic sound).

Due to the high variability of signatures associated with any given source considered in this

thesis, they can generally be considered as random. Consequently, the idea here is to look for a

change in the model parameters of the data. The prevalence of fault detection applications, e.g.,

for quality control in manufacturing, has motivated the development of many transient detection

methods that operate by estimating an unknown time when the parameters of the data change,

using scalar observations and stopping after detection. Comprehensive coverage of this particular

type of problem under various assumptions about sources of interest and environmental properties

can be found in [33]. Perhaps the most fundamental tool for this type of transient detection is the

classical Page’s Test [34], also known as the cumulative sum (CUSUM) procedure, for determining
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a change from one independent distribution to another. Page’s Test has min-max optimality in

terms of average run length of the test, meaning it minimizes the worst case delay to detection

given a constraint on the average delay between false alarms.

Despite the optimality of CUSUM, the assumed independence of observations prevents applica-

tion in its original form to problems involving sources with signatures that span several observations.

In [35], a version of Page’s test that operates on dependent observations was implemented using

a pair of Hidden Markov Models (HMM) [36] to characterize the distribution of the observations

before and after the unknown change time, thus allowing for less restrictive assumptions on the

structure of the transient signal and noise. An alternative approach was presented in [37] that mod-

els observations after the change time using the superposition of an HMM that is always present

with a new HMM. This approach has greater utility when the signatures of the transient source

are occluded by persistent interference of a single type. In [38], the generalized likelihood ratio

test (GLRT) was reformulated for cases where the signal parameters are unknown, and the a priori

signal distributions are used. While most of the mentioned methods are not designed to inherently

perform simultaneous detection and classification, detect multiple transients within the same se-

quence, operate on multivariate observations, exploit temporal dependencies between observations,

and/or offer robustness to interference, many of them can be extended to offer such features. The

existing transient detection approaches that are most relevant to the soundscape characterization

problem are discussed in more detail in Section 3.2.

1.2.2. Classification Using Sequential data

Once a transient source has been detected, it must be assigned a class label, which here denotes

the type of acoustical source that produced the detected event. If detection considers both signal

and interference sources, both may be assigned labels. Another common scenario is designing a

detector to only be sensitive to signal sources, e.g., by filtering out interference or incorporating
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robustness capabilities, in which case only signal labels are assigned. The discussion here will

mostly focus on the latter case.

The main difficulties associated with signal classification in the present application are that a

single event often spans multiple adjacent observations, has unknown duration, and the types of

interference that are simultaneously present may change. A rather simple way to perform clas-

sification under such circumstances is to analyze and assign a label to each observation within a

detected event separately [15, 39, 40], and subsequently fuse the preliminary decisions [41–43] to

yield a consistent event-wide class label. The matched subspace classifier [40, 44] is a common

choice for assigning labels to vector observations, as it consists of a set of uniformly most powerful

detectors and can operate in the presence of known subspace interference, though it assumes signals

are deterministic but unknown. A subspace classifier that is robust to non-Gaussian noise [40] can

be formed by weighting the residuals between a set of observations and their corresponding sub-

space approximations to minimize a user-specified discriminant function. Gaussian mixture models

(GMM) can also be used for single-observation classification, which are common for applications

involving environmental sound [15], wildlife call [13], and speech [45] recognition. It is the abil-

ity of GMMs to model arbitrary distributions with multiple modes that makes them suitable for

recognizing features extracted from inconsistent acoustical signatures that are a mainstay of these

applications. The main disadvantage of this type of approach is that the temporal dependencies

between source signatures present in different observations is not directly exploited, which can

offer significant discriminatory information. This problem may be alleviated to a degree through

the use of template-based methods, e.g., the spectral-band matched filter in [46], especially if dy-

namic time-warping is used [12]. However, these latter methods typically require making even more

limiting assumptions about the structure of acoustical events, due to the inflexibility of templates.

A more convenient way to perform classification using sequential data is to look for segments of

data with similar properties so that a unified label may be assigned to a cluster of observations. One
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way this can be accomplished is by extending methods that looks for a change in the parameters of

the data to accommodate an unknown parameter after the change [33]. The generalized likelihood

ratio (GLR) algorithm [34] for composite or multiple hypothesis tests can be implemented as a direct

extension of CUSUM, where the parameter associated with the null hypothesis is fixed, but that

associated with the alternative hypothesis is unknown and assumed to be a member of known set of

parameterizations. The different alternative hypothesis parameters correspond to different source

types, and simultaneous detection and classification can be performed by replacing the unknown

parameter with its maximum likelihood (ML) estimate, i.e., the assigned label corresponds to the

ML source type. A variation of this approach, known as the weighted CUSUM algorithm [47],

uses the cumulative distribution function of a probability measure for the unknown parameter to

weight the likelihood ratio w.r.t. all possible values of the alternative parameter, thus incorporating

a priori class probabilities. The main drawback to these CUSUM-based approaches is that there

may be many parameterizations of the data under the alternative hypothesis, especially when

multiple types of interference are intermittently present, leading to potentially frequent parameter

switching that necessitates reinitializing the detection test statistic(s). Furthermore, there is no

standard procedure for extending these methods to constantly detect and classify multiple sources.

Sparse representations have recently been employed [48–53] for performing detection and/or

classification from multivariate observations by using only a few atoms from an overcomplete dic-

tionary to represent sources of interest [54]. In [51], separate dictionaries are learned using K-SVD

[55], that are capable of sparsely representing different classes of audio signals, and a support vector

machine (SVM) is used to directly classify sparse coefficient vectors. A related approach is to use

a dictionary that consists of training templates for different classes and assign a class label based

on which sparse subset of templates provides the smallest reconstruction error. This approach was

adopted in [48] for face recognition and extended to handle multiple observations in [49], though the

latter assumes consistency of sparse representations among different observations. However, these
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methods process either a single observation or an ensemble of observations simultaneously, and

hence, may be insufficient for continually detecting and classifying multiple signals using sequential

data.

A natural way to extend methods that perform classification in a sparse domain to handle

sequential multivariate data is to model the dependencies between atom coefficients [56–59] ex-

tracted from different observations. For instance, [56] proposes a general framework for modeling

the structure of wavelet coefficients for natural signals using HMMs. Dependencies between the

wavelet functions at different scales and translations are modeled using a Hidden Markov Tree and

a Hidden Markov chain, respectively. The work in [58] performs source estimation from an audio

waveform by modeling sparse coefficients in a way that exploits their prior distributions as well

as their dependencies through the use of activity variables, where the latter also controls sparsity.

This coefficient modeling concept can be used to extend many classification methods that are based

on sparse coefficients, though most existing work only applies to time series data, does not consider

simultaneous detection and classification, and/or does not consider the presence of interference.

1.2.3. Comprehensive Acoustical Source Characterization Systems

As detailed in Section 2.2, source characterization using natural soundscape data carries many

unique challenges and, prior to the development of the methods introduced in this thesis, few

if any approaches existed that simultaneously address all of them. The approach in [60] is per-

haps the most applicable since it also considers environmental sound classification and is based

on the 1/3 octave data format. In this work, a self-organizing map is used along with a locally-

excitatory/globally-inhibitory oscillator network to identify co-occurring sound features extracted

from a spectral representation and group sound fragments, respectively. The main disconnect rel-

ative to the goals in this thesis is that [60] detects any novel acoustical event, rather than specific

sources of interest. Furthermore, the simultaneous presence of multiple sources is not considered,
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and each 1/3 octave vector is analyzed separately, meaning the overall structure of an entire acous-

tical event is not exploited.

Many studies attempt to perform source characterization using common generalized approaches

[1, 7, 11, 12, 15, 20], such as those described above. HMMs are frequently used to directly model

acoustical signatures or other types of data sequences with high variability [1, 8, 12, 56] due to their

flexibility and exploitation of observation dependencies. In [1] mixture autoregressive HMMs are

used to perform speech recognition, while [12] compares the effectiveness of HMMs with dynamic

templates for recognizing bird song elements. The work in [15] applies a GMM (see Section 6.2)

to features extracted using a matching pursuit framework [61] to perform environmental sound

recognition, while in [11] artificial neural networks are applied directly to features extracted from

acoustical waveforms for animal identification. As is evident from the application areas addressed

by each of these studies, generalized methods typically fail to account for all of the complexities

of natural soundscape data (e.g., the simultaneous presence of multiple source types), and hence,

they usually only perform well on simple data when used by themselves. Alternatively, a significant

amount of preprocessing can be performed to condition the data such that certain assumptions are

satisfied, e.g., interference-free.

Many approaches have been developed that take a more targeted approach to acoustical source

characterization [2–4, 9, 13, 16], by developing feature extraction, detection, and classification ca-

pabilities that directly exploit the properties of sources of interest. Methods for robust speech

recognition are proposed in [2–4], where each study applies a well-known classification framework

(e.g., HMM) to unique feature sets. For instance [3] proposes a peak selection method, as well as

a new integration method for extracting periodicity information across different frequency chan-

nels, while [2] extracts features that are a combination of subband power and dominant subband

frequency information. Bird species recognition is performed in [13] by posing the problem as

one of parameter estimation. Three different parameterizations are compared including sinusoidal
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modeling, Mel-cepstrum parameters, and a vector of various descriptive features unique to each

species. Although none of these methods account for the simultaneous presence of multiple types

of interference, they are also fundamentally incompatible with the 1/3 octave data considered in

this thesis since they presume access to the raw audio data.

Since time-frequency data representations (such as 1/3 octave vector sequences) are commonly

used for acoustical source characterization tasks, several approaches have been developed specifically

to operate on this type of data [5, 6, 8, 10, 18]. One common approach to such problems is to

identify novel portions of time-frequency data based on certain features or statistical properties.

The work in [5] identifies speech patterns using 2-D patches that are extracted from spectrograms

and projected onto a 2-D discrete cosine basis. In [8], a framework is presented for automated

detection and classification of sounds from birds, crickets, and frogs using a HMM to represent

sequences of statistical features extracted from spectrograms. Classification of bird vocalizations is

performed in [10] by developing a sum-of-sinusoids model for each vocalization type and calculating

the degree to which parameters extracted from the data match a set of stored templates. Despite

being somewhat compatible with the 1/3 octave data format, most of these methods are incapable

of recognizing any general source type and are not robust to the presence of structured interference;

such capabilities are essential for the problem at hand.

1.3. Objectives and Requirements

Clearly, there are many possible approaches for accomplishing the required source characteriza-

tion tasks. Before explaining the contributions and contents of this thesis, it is helpful to establish

those traits that are beneficial and/or necessary for a method to possess in order to ensure it is

capable of offering acceptable performance when applied to the natural soundscape data. In no

particular order, these traits are:
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• Operates on sequential data, both for efficient processing of long data segments in post-

mission analysis scenarios, and for direct implementation on acoustical monitoring stations

for in-situ soundscape characterization.

• Inherently takes advantage of the multivariate nature of the data sequence by fully exploit-

ing all available information within an observation, as well as the dependencies between

them.

• Exploits the random and time-varying nature of source signatures in order to remain

robust to significant within-class diversity and inconsistent signatures that are a mainstay

of acoustical sources in natural environments.

• Accounts for the simultaneous presence of signal and interference, leading to superimposed

signatures, either by treating the latter as a unique source to be characterized or remaining

robust to its effects, thereby maximizing performance of the system for detecting and

classifying signals.

• Capable of recognizing any general source type given adequate training data, as opposed

to being designed from the ground up to exploit specific properties of certain sources that

are difficult to generalize [5, 8, 10, 13]. This capability is especially important in light of

the fact that different sites that are monitored by the NPS often contain different types

of signals and interference, and hence, the system must be easily adaptable to unspecified

environments.

• Capable of performing transient source detection and classification using a cohesive frame-

work. As discussed in Section 1.2.1, a wide variety of techniques exist for performing

transient detection alone, but many of these cannot be easily modified to incorporate

classification capabilities, without simply appending a disjoint classifier.

As outlined in the next section, the contributions of this thesis were all developed with the intension

of meeting or exceeding these requirements.
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1.4. Contributions of the Present Work

1.4.1. A New Sequential Random Coefficient Tracking Method

As mentioned in the previous section, there is no prior work in the area of source characterization

that satisfies all of the requirements for effective solutions. This is in spite of the fact that many

real source characterization problems are also burdened with similar challenges, e.g., variable source

signatures and heavy interference, due to uncontrolled environments. Therefore, the primary goal

of this work is to develop methods that indeed meet the mentioned requirements and can be

realistically implemented on acoustical monitoring stations for source characterization in national

parks. First, a sequential random coefficient tracking (SRCT) framework is developed that applies

a hierarchy of log-likelihood ratio tests to individual observations to determine their composition in

terms of different source signatures. These signatures are modeled as random to capture variability

between different events associated with the same source type. The parameters of the test statistics

are generated by incorporating information from previous observations, thereby exploiting known

dependency models. This allows for detection and classification of one type of signal and one type

of interference that may be simultaneously present within an observation. The SRCT method

also performs separation of the signal and interference portions of the measurement and produces

estimates of their signatures in isolation; a property that is not shared by other methods mentioned

before.

Since the SRCT method assigns class labels to each observation separately, this thesis also

develops a HMM-based sequential decision fusion framework both to reduce detection/classification

errors and to provide event-wide class labels, as desired by the NPS. This process finds the likelihood

that a certain signal type is present, given a sequence of preliminary labels, using a procedure that

is based on the CUSUM-like method proposed in [35]. This method is general in that it may be

applied to a preliminary decision sequence generated by any sequential detection and classification

framework. When applied to decision sequences made by classifiers that do not consider information
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in temporally adjacent observations (e.g., GMMs), this fusion provides a means to incorporate

dependencies between the decisions.

1.4.2. A New Sparse Coefficient State Tracking Method

While the SRCT method performs very well when applied to data that adheres to the assumed

source model, it has a few shortcomings that lead to reduced performance in certain situations.

Specifically, the SRCT method assumes that only one type of interference may be present at a time.

Additionally, the assumed subspace model may not be appropriate for some source types, especially

for other similar applications. Lastly, since the SRCT method assigns class labels to individual

observations separately, decision fusion must be performed to obtain event-wide class labels, which

makes in-situ implementation of this method more difficult (though still feasible). To address these

concerns, this thesis introduces a sparse coefficient state tracking (SCST) method, which also meets

all of the requirements in Section 1.3. This approach draws from the concepts of classification in a

sparse domain and modeling of sparse atom coefficients to yield a cohesive framework that places

very few restrictions on the structure of the observations. The main advantage of this method

is its applicability to data containing signal, interference, and noise components that may not

necessarily follow models based on convenient parametric distributions, e.g., multivariate Gaussian.

Instead, the idea is to simplify the data representation for realistic and accurate modeling and

likelihood calculation. The SCST method can operate on observations that contain multiple types

of interference, and inherently detects and classifies entire acoustical events without the need for

decision fusion. The main disadvantages of the SCST method compared to the SRCT method

is that the former is not capable of detection and classifying interference sources, and it is more

computationally intensive.

The benefits of the proposed algorithms for detecting, classifying, and estimating the signatures

of sources of interest are demonstrated using real NPS soundscape data. Results are presented in

terms of the receiver operator characteristics of test statistics associated with each method, their
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overall ability to detect and classify entire acoustical events, and their ability to improve the

SNR of 1/3 octave signal events corrupted with interference. Both the SRCT and SCST methods

demonstrate exceptional performance in all aspects of the benchmarking, though each exhibits

particular strengths and weaknesses. Importantly, these experiments represent the first successful

comprehensive application of any source characterization method to an NPS soundscape data set,

which is a testament to their ability to simultaneously perform a combination of functions that

cannot be claimed by any other approach.

Development of the proposed source characterization methods also involved a rigorous analysis

of the 1/3 octave data format collected by NPS acoustical monitoring stations. For this reason,

this thesis also presents what is perhaps the first comprehensive analysis of the properties of 1/3

octave data, with a focus on its utility for representing natural acoustical environments. A general

discussion on the benefits and deficiencies of this data format is presented in Section 2.2, while

more detailed and rigorous information that is not essential for understanding the proposed source

characterization algorithms is presented in Appendices A–C. This information is included since

many audio scientists use 1/3 octave data representations to perform source characterization for

reasons that are detailed in Section 2.2, and yet very little is understood about the properties of

this data format as they pertain to developing rigorous detection and classification algorithms.

1.5. Thesis Organization

This thesis is organized as follows. Chapter 2 describes the acoustical monitoring stations and

process used to collect the 1/3 octave soundscape data. This chapter also discusses the properties of

the two data sets used to generate experimental results. Chapter 3 provides an introduction to the

main concepts and approaches associated with detecting and classifying nonstationary acoustical

sources using sequential data, both to introduce the fundamental ideas in the context of relative

simple problems and to provide material that can be used as building blocks for constructing more

comprehensive solutions. The proposed SRCT and SCST source characterization frameworks are
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detailed in Chapters 4 and 5, respectively. In Chapter 6, comprehensive results are presented

that are obtained by applying the SRCT, SCST, and benchmark GMM-based methods to the two

soundscape data sets. Finally, Chapter 7 concludes the studies carried out in this research and

discusses possible directions for future work.
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CHAPTER 2

Soundscape Data Collection and Properties

2.1. Introduction

To characterize a diverse set of natural soundscapes, the National Park Service (NPS) deploys

numerous acoustical monitoring stations in various remote settings throughout the U.S. parks.

Currently, these monitoring stations collect single channel acoustical information stored as both

compressed audio waveforms (e.g., MP3) and as a representative but lossy 1/3 octave vector se-

quence [62], where for older missions only the latter format was collected due to storage constraints.

Soundscapes are monitored for extended periods of time — often months — before the stations

are retrieved so that the recorded data can be manually analyzed. This chapter discusses all of

the relevant information pertaining to the soundscape monitoring process and the resulting data.

This is important because this soundscape data strongly motivated the development of the source

characterization methods discussed in this thesis, and understanding the data collection system and

monitored environments are instrumental in developing algorithms capable of providing automatic,

accurate, and robust detection and classification of acoustical sources (mainly signals).

The outline of this chapter is as follows. Section 2.2 discusses the characteristics of the current

acoustical monitoring setup, the data collection process, and properties of typical source types as

well as their interactions in the acoustical environment. Section 2.3 provides details unique to the

two data sets used in this study to generate experimental results, including a discussion on the

types of sources captured, specific characteristics of the soundscapes, and associated challenges

inhibiting successful signal detection and classification. Conclusions are then made in Section 2.4.
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2.2. Overview of Acoustical Monitoring

2.2.1. Data Collection Process

To collect acoustical data for a given soundscape, a team of NPS employees physically transport

a monitoring station to a desired location within a park. The primary goal for site selection is to

use an area that is representative of the main attributes of an acoustical zone within a park,

i.e., an area with unique acoustical properties owing to the presence of specific types of wildlife,

weather patterns, air traffic density, etc. Section 2.2.3 presents examples of acoustical zones and

variations between them. A site that has plenty of sunlight for solar panel use, and one that

provides reasonable protection from high winds, is also desirable. An acoustical monitoring station

consists of the following equipment: 1) Larson Davis 831 sound level meter [63] 2) single microphone

with environmental shroud 3) preamplifier 4) ten 12 V lantern cell batteries 4) anemometer 5) MP3

recorder and 6) meteorological data logger (e.g., wind speed from the anemometer). Photos showing

deployed acoustical monitoring stations can be seen in Figs. 2.1(a) and 2.1(b).

(a) KEFJ004 monitoring station. (b) GRSA001 monitoring station.

Figure 2.1. Photos of the acoustical monitoring stations that collected the data
used in this study.

The Larson Davis 831 sound level meter [63] is perhaps the single most important piece of

equipment in the current data collection process, as it generates a 1/3 octave vector sequence
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Figure 2.2. Example 1/3 octave data sequence and representation of some common
acoustical events.

[62] from observed acoustical waveforms and stores it for subsequent analysis. More specifically,

a 1/3 octave vector is extracted from every non-overlapping one-second time segment and has

N = 33 elements that represent the average energy in different 1/3 octave frequency bands for the

corresponding one second interval. An example of a 1/3 octave vector sequence captured by a NPS

monitoring station is shown in Fig. 2.2, which also highlights a few signal and interference sources

that are captured. Note that the vertical and horizontal axes in this figure represent frequency

band (from lowest at the bottom to highest at the top) and time, respectively, while the color

of each pixel in the representation denotes a specific sound pressure level (in dB). These display

conventions will remain consistent throughout this thesis. More explicit details on this data format

can be found in Appendix A. Note that storage of compressed audio (MP3 format) has recently

become feasible, but this data format is not used in this thesis for reasons mentioned earlier in

Section 1.1.

The 1/3 octave data format was adopted by the NPS for several reasons, namely because it

is representative of how humans perceive sound, i.e., pitch is perceived as changing with the ratio

of frequencies, rather than a linear increase [62]. More importantly, 1/3 octave data provides a

convenient data reduction and more efficient representation for manual post-analysis of soundscape

data. This is due to the fact that most common signal and interference sources tend to have
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1/3 octave signatures that are easily distinguishable by humans, and is important since manual

analysis was the only reliable way to analyze the data used in this thesis before the advent of the

algorithms developed in Chapters 4 and 5. Another primary motivation behind using 1/3 octave

data for soundscape characterization is a significant reduction in required storage capacity when

compared to raw audio, i.e., 33 rather that 51,200 [63] samples are recorded every second. Beyond

storage advantages, it is clear that it takes significantly fewer computational resources to process

a 1/3 octave vector when compared to raw audio, which is especially important for sensor-level

processing needed for analyzing sequential data in the field.

On the other hand, a typical approach to processing raw audio would be to first extract a set

of salient features to represent each time segment, that are optimized for the intended tasks. In

contrast, the samples that are retained in the 1/3 octave format are not necessarily the 33 features

that are most useful for detection, classification, or estimation of transient acoustical sources. First

off, as explained in Appendix A, the bandwidth of each 1/3 octave band grows exponentially with

frequency [64], and hence, the low frequency resolution in each vector is far higher than the high

frequency resolution. While this property is not inherently unfavorable when using orthogonal

transforms such as wavelets, it may be detrimental for characterization of some sources in this

study whose signatures are condensed to one or two bands, despite the fact that their signatures

may undergo subtle variations that could be exploited. For instance, the first element of each 1/3

octave data vector collected by the sound level meter has a center frequency of 12.5 Hz and a

bandwidth of 2.9 Hz, whereas the last element of each vector has a center frequency of 20 kHz

and a bandwidth of 4.6 kHz. Since many of the sources of interest (signals) have signatures that

lie within the mid-frequency range around 100 Hz - 1000 Hz (see next subsection), and the low

frequency signatures of signals are often obstructed by interference, there is a significant amount

of information in each vector that has very limited use for signal characterization. Looking at the

bigger picture, the frequency domain might not be even the best elementary domain to work in for
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the mentioned tasks. Ideally, data reduction would involve the use of basis functions that provide

separable representations of different source types to be characterized [65]. Finally, it has not been

established that the average energy measure that each vector element represents [66] is indeed

optimum for the tasks at hand. These concerns are exacerbated by the fact that the 1/3 octave

transformation is obviously not invertible and many useful discriminatory features are lost in the

process. Nonetheless, as shown in Chapter 6, 1/3 octave data does provide sufficient discriminatory

information to use for the source characterization tasks.

2.2.2. General Source Properties

In order to successfully detect and classify sources of extrinsic sound (signals) in national parks,

it is essential to understand the properties of their corresponding 1/3 octave signatures, as well as

those of competing interference sources, that hinder these efforts. Note that, only generic properties

of common signal and interference sources are discussed here, whereas the next section provides

details on the sources that are captured in the data sets used for the performance evaluations

presented in this thesis.

The primary challenge in soundscape characterization is that nearly every source type consid-

ered in this study (both signal and interference) emits nonstationary, highly variable, and often

erratic 1/3 octave signatures. This causes within-class diversity where acoustical events associated

with the same source type can be dramatically different, to the point where even an untrained

human may have trouble making such associations. Examples of such scenarios can be seen in

Figs. 2.3(a) and 2.3(b), for the propeller plane signal class and weather-related interference class

(e.g., rain, thunder), respectively. As can be seen, each event shares some features with others

within its respective category, but various phenomena (discussed below) cause glaring inconsisten-

cies. For this reason, it is difficult or impossible to successfully employ techniques that assume

deterministic source signatures.
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(a) Propeller plane signal events. (b) Weather-related interference events.

Figure 2.3. Examples of within class diversity.

(a) Signal events. (b) Interference events.

Figure 2.4. Examples of 1/3 octave signatures of different source types.

Perhaps the most measurable cause of within class diversity for 1/3 octave events associated

with signals is their movement w.r.t. the receiver which, depending on the speed and distance

of the source relative to the receiver, causes a varying degree of nonlinear Doppler shift of the

frequencies of the received acoustical waveforms. The specific impacts of Doppler are detailed

in Appendix C but, suffice to say here, it is the cause of the momentary but severe increase in

bandwidth near the middle of recorded events witnessed in many cases, as seen in Fig. 2.3(a).

Of course, sources can have extremely different positions and motion parameters relative to the

receiver, which not only causes variations in the Doppler effects described above, but also in the

amplitude and duration of the signatures of such sources. The last event shown in Fig. 2.3(a) likely

displays limited bandwidth variability because its trajectory was such that its velocity w.r.t. the

receiver did not change drastically within a short time interval.

There are many additional causes of nonstationary signatures for signal sources, many of which

are unique to specific signal classes. These signature characteristics are exemplified by the events

shown in Fig. 2.4(a). For instance, some signal sources, such as helicopters, emit highly directional

sounds so a received waveform may gradually increase in amplitude as the source approaches the

receiver, but die off quickly once the source passes the receiver. Since many signals of interest
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are propeller-based aircraft, a significant portion of the acoustical signatures they produce is of

aerodynamic origin due to the flow of air around the blades, which produces harmonics and has

very complicated dynamics in general. Helicopters in particular have more complicated acoustical

signatures due to blade-vortex interaction, where their blades create turbulence as they pass behind

one another in their own wakes.

Perhaps the main challenge of characterizing, or being robust to many types of interference

sources is that they emit erratic signatures owing to the lack of a consistent operational mode. For

instance, as seen in the example in Fig. 2.4(b), individual bird song calls often appear similar, but

the overall order or spacing between successive calls in a song can be unpredictable. This problem

is exacerbated by the 1/3 octave data format since bird calls are often short in duration (only 5–10

ms for some species), so the signatures of either many calls or just a few may be present in a single

vector. Similar behavior is witnessed for thunder, as shown in Fig. 2.3(b), owing to the lack of

predictability of its occurrence and properties. Another example of an erratic natural sound is rain,

which often inconsistently changes in intensity despite the fact that its frequency characteristics

are often very consistent compared to most other interference types.

Further complications arise from severe between-class similarities, i.e., when events associated

with different signal classes appear similar in many respects. Fig. 2.5 demonstrates such a situation

by showing propeller plane and helicopter events that share many of the same features, e.g., the

consistent high energy in the eighth and ninth 1/3 octave bands, and the weaker broadband energy

present in approximately the first 2/3 and last 1/2 of the plane and helicopter events, respectively.

While the low frequency components present in the latter are enough to classify this event as

helicopter, the spectral signatures of both events overlap in many other bands, meaning there are

limited features that may be used to distinguish them. As discussed in more detail below, the

problem becomes even more challenging when these limited discriminatory features are obscured

by competing interference. In any case, given that the signatures of two different types of sources
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Figure 2.5. Example illustrating potential similarities between propeller plane and
helicopter signatures in the 1/3 octave domain.

can be identical for a subset of the vectors that are contained within their respective events, it is

often the case that successful source characterization cannot be accomplished by analyzing each

1/3 octave vector independently. Instead, the composite temporal structure of each 1/3 octave

event must be considered.

2.2.3. Soundscape Compositions

Beyond the properties of specific source signatures, the unique aspect of NPS soundscape data is

the complex interactions between sources and the acoustical environments they are present in. First

off, it is clear that most if not all sources have unpredictable times of arrival (ToA), hence the utility

of sequential detection methods. Additionally, multiple acoustical events are frequently concurrent

within a soundscape. The simultaneous presence of a signal and some type(s) of interference is

the most common scenario, as the latter source types are part of the natural environment and

therefore ubiquitous. This is especially true for acoustical signatures resulting from weather effects

and bird/insect calls, which persist regardless of the presence of extrinsic sources. Examples of

1/3 octave sequences containing the superimposed signatures of a signal and interference source

are shown in Fig. 2.6. As can be seen, sometimes the presence of interference has little impact

on detection and classification of signals, such as the simultaneous presence of birdsong and a

plane with little associated Doppler shift (center bottom of Fig. 2.6). On the other hand, some

circumstances lead to a very difficult source characterization problem, such as when the signatures

of a jet and thunder are superimposed, as they both tend to occupy the low-mid frequency bands.

Clearly, a successful approach to this problem must be capable of characterizing a given signal both
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Figure 2.6. Examples of superimposed signal and interference.

in the presence and absence of different types of interference that might reasonably be present at

the same time. Fortunately, for many data collection sites it is highly unlikely for certain pairs of

signals to be present at the same time due to the rarity of one or both types, e.g., the simultaneous

presence of a jet and helicopter in Kenai Fjords, Alaska. Soundscape characterization can be

simplified by excluding such possibilities, since detecting the simultaneous presence of two signals

of interest amidst the other mentioned complications is a very difficult problem.

Also of significance are changes in acoustical conditions owing to operational and environmental

variations between different data collection sites, as well as within data collected at a single site.

Ambient background noise (see Appendix B), defined as the components of an observation vector

that are not associated with signal or interference sources, is caused by light wind, water flow,

sensor noise, or any phenomenon that is continually present and mostly random, and as such has a

continuous impact on the data. Such noise not only inhibits proper source characterization, but is

also subject to statistical variations. As a rule, it can be safely assumed that little variation in the

ambient noise exists locally at a given site within a time span of say, a few hours, but slightly more

variations can be expected across a larger span of time at a given site. Naturally, one can expect

larger noise variation between different sites at the same park, and a huge amount of variation

between sites associated with different parks.

There are also different source types to consider at different sites and especially different parks.

For instance, there may be two acoustical monitoring stations located within different zones in a
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single park, e.g., one in a forest, and the other in an alpine setting. Not only will different types of

wildlife be present in these two environments, but also the signatures of the same source may be

different owing to factors such as varying elevation and dampening medium such as a forest canopy,

or different types of soil. Interference caused by strong winds blowing on the microphone baffle is

also far more common in an alpine setting due to more frequent inclement weather and a lack of

objects that obstruct airflow.

For sites from different parks, entirely different source types often need to be considered. For

instance, in Everglades National Park, FL there are many types of insects and other wildlife that

are not typically present at other parks. At Kenai Fjords National Park, Alaska certain types of

propeller planes can often be heard that are otherwise rare, since they offer utilities (e.g., supply

drops) that are typically not needed in other places. If every source type from every park (especially

interference) was a candidate for each witnessed event then the classification task would be difficult

if not impossible, since there would be an increasingly diminished set of features that could be used

to distinguish between the signatures of different source types. Thus, an enlightened approach to

this problem considers the fact that only certain source types may be observed within a given park

and the system used for analysis designed accordingly.

Finally, it is possible that new sources not accounted for when training the system could be

encountered. Such sources may include those that are present infrequently in the vicinity of a

particular site, or those that are obscure or erratic enough that their consideration is not worth

the added complications. An example of the latter type of source is human speech for very remote

backcountry sites which, apart from the frequency range of its signatures, is highly erratic in most

respects. Discretion concerning which sources are worthwhile to model is key here, by considering

factors such as how frequently a source is expected to appear, based on historical data and/or

intuition about a particular acoustical zone, and the potential for an increase in classification

errors (and computational complexity) due to the inclusion of an additional source model.
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2.3. Experimental Setup

In this thesis, two separate data sets are used for the development, testing, and analysis of

the proposed source characterization methods. Although identical acoustical monitoring stations

were used to collect both data sets, the noise variations between parks, as well as the differences in

source types that are encountered, implies that the two data sets need to be analyzed separately

using systems that are trained to operate in the appropriate local environment. The specifics of

these two data sets are discussed below.

2.3.1. Kenai Fjords Site 4 Data Set and Properties

The first data set contains 1/3 octave vector sequences representing recordings of a soundscape

associated with a relatively remote site within Kenai Fjords National Park, Alaska. The NPS refers

to this data set as “KEFJ004”, where ”004” corresponds to the site number (out of four total),

which is the label that will be used throughout the remainder of this thesis. A photo of this data

collection site is displayed in Fig. 2.1(a), which shows that the acoustical monitoring station was

deployed in a forested area. What this photo does not show is that site four is located relatively

close to a river, but very far from roads or other infrastructure. In total, the soundscape was

recorded for approximately 19 full days from July 22nd – August 15th, 2008, where no data was

collected from August 1st – 6th due to the monitoring station being damaged in a bear attack. As

a reminder, a single 1/3 octave vector was recorded every second, meaning a day of data consists

of 86,400 observation vectors.

The types of signal and interference sources that were frequently captured in KEFJ004 are

listed in Table 2.1, along with brief descriptions of the general structures of their corresponding

1/3 octave signatures, durations of typical associated events, and example events for each source

type. By far the most frequently occurring type of signal events were caused by propeller planes,

which commonly operate in the Alaskan wilderness for transportation and to drop off supplies for

27



backcountry travelers with extended itineraries. The signatures of a stationary plane are normally

confined to one or two 1/3 octave frequency bands, but are heavily influenced by Doppler when

the plane is in motion, leading to the shift in frequency as the event progresses as well as the

prominent broadband signatures (see Appendix C). Helicopters are also fairly common in the

KEFJ004 data and have perhaps the most erratic signatures due to complicated mechanics that

cause, e.g., the blade-vortex interactions described in Section 2.2.2. Helicopter signatures are also

highly directional, leading to asymmetric 1/3 octave signatures, that can be exploited by certain

source characterization methods. Unfortunately, apart from the broadband signatures present in

the middle of a helicopter event, most signatures of this signal type are low-frequency, meaning

they are susceptible to overlap from the most prominent types of interference whose signatures

occupy the same frequency bands. The last type of signal considered for the KEFJ004 data is

jet (of unknown type), which have a fairly low occurrence rate relative to the other signal types.

Similar to helicopters, the signatures of jets are highly directional and predominantly low frequency,

especially for the latter half of an event as the jet moves away from the sensors.

Only two types of interference are common enough to consider for the KEFJ004 data, namely

birdsong and rain/thunder, where the latter also includes light wind since it appears similar to

weak thunder in the 1/3 octave domain. The former typically introduces few complications to

signal classification, mainly because signatures are exclusively high frequency, and no signals have

signatures that lie only within these associated bands. On the other hand, rain/thunder presents

significant challenges to the detection and classification of signals. Rain can resemble the broadband

signatures within plane and helicopter events, while thunder tends to be similar to the low frequency

signatures present in helicopter and jet events. This can lead to either false detection of signals

when interference alone is present or missed signals when both signal and interference are present.

Moreover, due to the climate of Kenai Fjords, rain persists for a large percentage of the soundscape

recordings. Although the monitoring station is close to a river, the resulting acoustical signatures
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Table 2.1. Characteristics of different source types in the KEFJ004 data set.

Source Typical Event Description
Typical
Duration

Example

S
ig
n
a
l

Propeller
Plane

Signatures evolve from mid-frequency narrow-
band to wideband, and revert back to narrow-
band.

30–240 s

Helicopter
Signatures evolve from low-frequency narrow-
band to very wideband, and revert back to nar-
rowband.

40–400 s

Jet
Starts with low-to-mid frequency signatures, with
the mid-frequency signatures slowly fading ap-
proximately half-way through the event.

80–260 s

In
te
rf
e
re

n
c
e Birdsong

Signatures are restricted to high frequency bands
and have erratic temporal patterns.

1 s – several
hours

Rain/
Thunder

Rain has mid-to-high frequency broadband signa-
tures, while thunder is often superimposed with
rain and adds impulsive, low-to-mid frequency
signatures.

few seconds
– several
days

are consistently present, and resemble elevated ambient background noise levels rather than a

unique type of interference.

Very rarely, there were novel source types that contributed to the KEFJ004 soundscape, e.g.,

wildlife activity or human speech, that are generally not of interest due to their rarity and con-

sequent low impact on the soundscape. Such source types are not highlighted in Table 2.1 or

considered when training a system for source characterization since, as mentioned above, designing

a system around sources that are possible but extremely rare adds significant complications to the

source characterization tasks, with very few benefits.

Due to the complexity of the KEFJ004 soundscape, manual annotation of the data was pre-

viously the only available approach for locating and labeling sources. Therefore, such annotations

existed before the development of the methods proposed in this thesis, and serve as the truth that

is used to generate results in Chapter 6. In particular, two well-trained operators visually inspected

the data to identify acoustical events associated with signals of interest, which are those listed in
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Table 2.1, as they occur most frequently and prominently in this particular site. Only the presence

of interference (not its type) was annotated since it was present a large portion of the time and

such sources are viewed as a nuisance for the present application. The KEFJ004 data set also has

corresponding compressed audio data (MP3 format) available for the same time period that 1/3

octave data was recorded. For reasons mentioned in Section 1.1, the 1/3 octave format is still used

exclusively for source characterization in this thesis, though the raw audio was used to aid the

annotation process by allowing the operators to hear the actual acoustical events, when needed.

In summary, above and beyond the mentioned challenges inherent with characterizing national

park soundscapes using 1/3 octave data, there are several properties of the KEFJ004 data set that

further complicate this task. These issues, in order of importance, are as follows.

• A large number of weak signal events are present throughout the data, possibly due to

wildly varying trajectories of different aircraft that are present, and an apparent lack of

obstacles to inhibit propagation of sounds from distant sources. Proper detection of such

signals while maintaining a relatively low false alarm rate presents a significant challenge.

• A large variety of plane types, each with unique mechanics, leads to greater within-class

diversity for plane events than would normally be encountered for any one signal source

in a national park soundscape. This amplifies problems caused by within-class diversity

and between-class similarities, that were mentioned above.

• Rain and thunder of varying intensity are present throughout a large portion of the record-

ings, leading to often severe overlap with signal events. These complications are exacer-

bated by the fact that most signals have 1/3 octave signatures that appear similar to

rain/thunder for some portions of their associated events.

• Related to the above, the relative rarity of witnessing a signal event that is not superim-

posed with interference means there are fewer events to use for training, where the use of

such “clean” events is often necessary.

30



• The forest canopy in the vicinity of the monitoring station leads to increased noise through

interaction with falling rain.

• There are constant water flow sounds due to the monitoring station’s close proximity to a

river, which leads to a fairly high ambient noise level.

Clearly, these challenges indicate that successful automated analysis of the KEFJ004 data set

requires development of robust methods that account for extreme variations in environmental and

operating conditions. These complications are representative of those that are encountered for

many data sets collected in different sites and parks, hence the reason KEFJ004 was selected for

performance evaluations. On the other hand, KEFJ004 represents a relatively low-traffic park,

where an average of only two or three signal events per hour is common. Nonetheless, the sec-

ond data set introduced below contains some additional challenges, such as extremely frequent

signal events, that are common for some other NPS soundscape data sets, e.g., Grand Canyon and

Yosemite National Parks.

2.3.2. Great Sand Dunes Site 1 Data Set and Properties

The second data set contains 1/3 octave vector sequences representing recordings of a sound-

scape within Great Sand Dunes National Park, Colorado. Only one site (and one monitoring

station) was used to collect acoustical data within this park, and hence, the NPS refers to this data

set as “GRSA001”, which is the label that will be used throughout the remainder of this thesis.

A photo of this data collection site is displayed in Fig. 2.1(b), which shows that the acoustical

monitoring station was deployed in a rather open and arid area. As with KEFJ004, the GRSA001

monitoring site is also far from infrastructure, thereby reducing susceptibility to, e.g., ground vehi-

cle traffic, though the ambient noise level is generally lower in the GRSA001 data since no river is

near the site. In total, the soundscape was recorded for approximately 17 full days from September

24th – October 10th, 2008.
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The types of signal and interference sources that were frequently captured by this monitoring

station are listed in Table 2.2, along with the same characteristic information that was provided

for sources in the KEFJ004 data set. The two signal sources that are of interest for GRSA001, due

to their frequent occurrence, are propeller planes and jets (of unknown type but likely commercial

airline). Since these signal types were also of interest for the KEFJ004 data set, their properties will

not be elaborated on here, though it is important to note that a typical plane event in the GRSA001

data has a slightly different structure from the typical KEFJ004 plane event, most probably because

different models/makes are common in these two areas. The reason being that planes in KEFJ004

are generally used for utilitarian purposes (e.g., supply drops), whereas planes in GRSA001 are

most probably used for hobbyist purposes (e.g., air tours). Also of importance is the fact that jet

events are extremely common in the GRSA001 data; more so than the combined occurrences of

all signal events in the KEFJ004 data set, though jet signatures present in both data sets appear

rather similar. Conversely, plane events are rather rare in the GRSA001 data set.

As seen from Table 2.2, the types and behavior of interference sources in the GRSA001 data

set represents the largest difference from the KEFJ004 data. Birdsong and rain are also present in

the GRSA001 data, but are less common due to the drastic differences in climate and terrain (lack

of trees). However, these interference types still occur frequently enough to warrant consideration

by any source characterization method. Elk calls are unique to the GRSA001 data set and occur

frequently since acoustical monitoring was performed during mating season. Such interference

is similar in character to a broadband version of birdsong signatures, but is more disruptive to

the detection and classification of signals since it is typically higher magnitude and broadband.

Though strong wind was occasionally present in the KEFJ004 data, in short bursts it appears

similar to thunder, and hence, lumping it into that interference category makes sense for that data

set. Conversely, wind is extremely loud and common in the GRSA001 data, mostly due to the fact

that the flat and open area where the monitoring station was placed is conducive to rapid airflow.
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Table 2.2. Characteristics of different source types in the GRSA001 data set.

Source Typical Event Description
Typical

Duration
Example

S
ig

n
a
l

Propeller
Plane

Signatures evolve from mid-frequency narrow-
band to wideband, and revert back to narrow-
band.

30–240 s

Jet
Starts with low-to-mid frequency signatures, with
the mid-frequency signatures slowly fading ap-
proximately half-way through the event.

80–260 s

In
te

rf
e
re

n
c
e

Birdsong
Signatures are restricted to high frequency bands
and have erratic temporal patterns.

1 s – several
hours

Rain/
Thunder

Rain has mid-to-high frequency broadband signa-
tures, while thunder is often superimposed with
rain and adds impulsive, low-to-mid frequency
signatures.

few seconds
– several

hours

Strong
Wind

Impulsive low-to-mid frequency signatures ap-
pearing similar to thunder, but typically more
relentless.

few seconds
– several

days

Elk Calls
Similar to birdsong, but has broadband signa-
tures in the mid-to-high frequency region and is
typically higher magnitude.

few seconds
– several

hours

Strong wind causes high energy low-to-mid frequency signatures that have high variability and

can extend for long periods of time, making it the most disruptive type of interference for proper

detection and classification of signals (jets in particular).

As with the KEFJ004 data, manual annotation existed before the development of the methods

proposed in this thesis, and serves as the truth that is used to generate results in Chapter 6. The

same annotation process was used for both data sets presented in this section. The GRSA001 data

set presents many of the same challenges as the KEFJ004 data set, while offering some new ones.

In order of importance, the main challenges associated with detecting and classifying signals in the

GRSA001 data set are as follows.

• Strong wind is dominant throughout a large percentage of the recordings, and its signatures

commonly overlap with those of signals. At times, wind is violent enough to saturate the
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microphone and cause a “skipping” effect that can be heard when listening to the raw

audio.

• There are many different types of interference to contend with, making it difficult to

incorporate robustness to each of them simultaneously, especially since each type is unique

in the frequency bands it occupies and temporal patterns it exhibits.

• As a consequence of prominent interference, it is rare to witness a signal event in isolation

that may be used to properly train a system to detect such a signal. This is especially a

problem for planes, which were not frequently present.

• Jets pass over the monitoring site so frequently that it is common to have several hours of

data where jet signatures are present a higher percentage of time than absent, i.e., this is

a very high-traffic monitoring site. In some cases the signatures of multiple jets may even

overlap in time and frequency.

As can be seen, the GRSA001 data truly represents a complicated soundscape that would test

the limits of any source characterization framework. Together with the KEFJ004 data, very diverse

acoustical conditions are represented that provide excellent opportunities to determine whether

or not a given approach can provide acceptable detection and classification performance for real

soundscape monitoring applications. Owing to the challenges presented by this data, it is clear

that developed methods should exploit the structure of the data as much as possible.

2.4. Conclusions

This chapter discusses the details pertaining to the national park soundscape data that mo-

tivated the development of the source characterization methods introduced in this thesis. An

overview of the acoustical monitoring process was first given, including details on the data collec-

tion procedure using monitoring stations, general properties of extrinsic and intrinsic sources that

are typically encountered in soundscapes, and the interactions of sources with each other and the
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natural environment. It was shown that this monitoring process yields data that presents unique

source characterization challenges including highly nonstationary signals that leads to extreme

within-class diversity and between-class similarities, complicated and strong structured interfer-

ence that is often simultaneously present with signals, and a data format that is sufficient, but not

optimal for performing the required tasks.

Two data sets were then introduced, that are used to conduct performance evaluations in this

thesis. The challenges presented by these data sets are realizations of the more general compli-

cations discussed before, and offer an abundance of scenarios to appropriately stress test source

characterization algorithms. For instance, the KEFJ004 data set contains many weak signal events

owing to the varying trajectories of associated sources, making them difficult to detect and classify.

Moreover, ambient noise levels are fairly high in this data set, and rain and thunder that obstruct

the signals to be detected are present a high percentage of the time. The GRSA001 data set, on

the other hand, presents a somewhat different (though not disjoint) set of challenges, including

extremely strong and persistent wind noise, an abundance of different interference types, and very

frequent occurrence of jet events.

The discussion in this chapter underlines the need for robust methods to simultaneously de-

tect and classify highly erratic and nonstationary signals in the presence of prominent competing

interference, using sequential multivariate data, which is a problem that has not been addressed

before in a comprehensive fashion. In the next chapter, some of the more fundamental approaches

to these individual tasks will be introduced both to provide helpful preliminary information, and

because they serve as building blocks for the complete source characterization systems introduced

in Chapters 4 and 5.
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CHAPTER 3

An Introduction to Detection and Classification of

Transient Sources

3.1. Introduction

Detection and classification of transient sources is a broad area of research that has resulted in

a variety of effective solutions, many of which are tailored to specific applications or assumptions

about the data. As indicated in Section 1.2, many common approaches to this task [23–27, 29–

31, 49] are not applicable to the soundscape characterization problem considered in this thesis,

mainly due to incompatible assumptions about the data and/or sources. Here, a transient source

is one whose signatures are not continually present in the data, but appear at some unknown

time k1, and cease to be extant at some other unknown time k0 > k1. Therefore, this process

involves estimating the onset time k1, duration k0 − k1 − 1, and class of each new acoustical event

as new multivariate observations arrive. Additionally, due to the properties of acoustical sources

introduced in Chapter 2, their signatures must be modeled as random. Therefore, in this thesis

transient detection is generally performed by looking for a change in the model parameters that

best fit the data [33, 35] from those associated with a quiescent period (absence of signal) to

those associated with a signal of interest. Classification can typically be performed using a direct

extension of the detection approach, namely by determining which class-specific model parameters

are most likely given the data.

The main goal of this chapter is to provide an overview of existing techniques that are useful

for detecting, and sometimes simultaneously classifying, the aforementioned types of transient

sources. The utility of this information is two-fold. First, it provides an introduction to the

underlying mechanics of typical transient source characterization methods, so that fundamental

concepts may be discussed before considering more complicated scenarios in subsequent chapters,

36



e.g., observations containing superimposed signal and interference source signatures. Second, many

of the concepts discussed in this chapter are extended or used as building blocks to form the

more complete source characterization systems developed in Chapters 4 and 5. Introducing the

established concepts in this chapter, therefore, simplifies the descriptions of these new systems.

Consequently, none of the ideas discussed in this chapter offer a complete solution to the soundscape

characterization problem at the core of this thesis, as each fails to address certain facets of this

problem. In an attempt to keep the concepts general, methods that assume the data follows a very

specific structure, e.g., piecewise autoregressive (AR) [67], are not covered. Focusing on generalized

concepts ensures the covered materials can be extended or repurposed for use in more advanced

algorithms that remain flexible, as intended.

This chapter is organized as follows. Section 3.2 discusses the fundamental transient detection

approaches that are relevant to the problem considered in this thesis, namely the sequential proba-

bility ratio test (SPRT), cumulative sum (CUSUM) procedure, and generalized likelihood ratio test

(GLRT) for detection (and classification) from individual observations. Section 3.3 introduces a

new method for fusing a sequential stream of classification decisions using Hidden Markov Models

(HMM) [36] so that entire detected acoustical events are assigned a unified class label. This deci-

sion fusion is often necessary when applying methods that make separate decisions on individual

observations. Conclusions are then drawn in Section 3.4.

3.2. Detection Using Sequential-Based Methods

This section introduces some fundamental concepts for detecting a change in the parameters

of the data. When appropriate, assigning class labels to detected events is also discussed, which

involves determining the parameterization of the data that is most likely. The main detection

statistic of interest, which is the log-likelihood ratio (LLR), and the SPRT that uses this statistic,

are described first. It is then shown how repeated SPRTs can be used to implement a CUSUM

procedure for detecting the onset of a transient event. Finally, use of the LLR for detecting and
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classifying specific combinations of source signatures from individual observations is discussed. Note

that many of the concepts and terminologies introduced in this section are drawn from [33, 35].

3.2.1. Sequential Probability Ratio Test

Denote yk ∈ RN as an observation vector at time k, and consider the vector sequence Yn
1 =

{yk}nk=1, where n = 1, 2, . . . increases as new data arrives. A SPRT, also called Wald’s test [68],

continually updates a LLR test statistic for each incoming yn in order to test between two hypothe-

ses about the arbitrary model parameter set Θ, given the data Yn
1 . Such a hypothesis test can be

written as

H0 : Θ = Θ0

H1 : Θ = Θ1 (3.1)

where Θ0 and Θ1 are the model parameter sets under the null and alternative hypotheses, respec-

tively. Note that this definition of Θ is general, e.g., it may contain parameters of a HMM (as in

Section 3.3) or parameterize a distribution for the data, so long as it may be used to generate a

probability measure based on Yn
1 . In detection literature the null and alternative hypotheses are

typically associated with the absence and presence of a signal in the observation, respectively. For

instance, the matched subspace detector [44] in Appendix D defines Θ as a set of subspace coordi-

nate vectors for signal and interference components. The alternative hypothesis uses estimates of

these coordinates that are the projection of the observation onto the associated (known) subspace,

whereas the null hypothesis assumes the signal coordinate vector is equal to zero. Clearly, a binary

hypothesis test such as (3.1) is insufficient for the data in Chapter 2, but is helpful to introduce

the fundamental concepts.

Define ` (Θ; Yn
1 ) as the likelihood of Θ ∈ {Θ0,Θ1} given the data Yn

1 , and fΘ(·) as the param-

eterized distribution function used to evaluate ` (Θ; Yn
1 ). A SPRT implements (3.1) using the LLR
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L(n) = ln

(
` (Θ1; Yn

1 )

` (Θ0; Yn
1 )

)
= ln

(
fΘ1 (Yn

1 )

fΘ0 (Yn
1 )

)
(3.2)

= ln

(
fΘ1 (y1)

fΘ0 (y1)

)
+

n∑
k=2

ln

(
fΘ1 (yk|yk−1, . . . ,y1)

fΘ0 (yk|yk−1, . . . ,y1)

)
(3.3)

where (3.2) can be decomposed to yield (3.3) owing to the probability chain rule and possible

dependence between yk’s. The conditional distribution fΘ (yk|yk−1, . . . ,y1) can be difficult to

generate in practice unless certain assumptions about the data are made, since the number of

previous observations used continually increases until the SPRT concludes. One common approach

to simplifying (3.3) is to assume yk’s are statistically independent and identically distributed (IID),

meaning (3.3) becomes

L(n) =

n∑
k=1

ln

(
fΘ1 (yk)

fΘ0 (yk)

)
.

This IID assumption will be used throughout the remainder of this section for simplicity, though

one technique for maintaining observation dependence is discussed in Section 3.3. The term

sk = ln

(
fΘ1 (yk)

fΘ0 (yk)

)
(3.4)

is the sufficient statistic for the test in (3.1), i.e., information about the unknown parameter Θ

that is contained in yk is concentrated in sk [33]. In other words, basing the SPRT on sk ensures

all relevant evidence is being used to discriminate between the different hypotheses in (3.1). Note

that even the marginal distribution fΘ (yk) can be difficult to form when using vector observations

without making further assumptions due to the complexity of observation compositions associated

with certain hypotheses. Therefore, the SPRT is typically presented in terms of scalar observations

[33]. Specific approaches for handling vector observations are discussed in Chapters 4 and 5.

A SPRT concludes whenever L(n) crosses one of the thresholds given by the real numbers A

and B, with −∞ < B < 0 < A < ∞, which are chosen based on acceptable error probabilities as
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explained below. The stopping time at which a final decision is made is given by

n∗ = min {n ≥ 1 : L(n) ≥ A or L(n) ≤ B}

where L(n∗) ≥ A and L(n∗) ≤ B correspond to accepting H1 and H0, respectively. As in binary

hypothesis tests with fixed n, the parameters used to control performance of a SPRT are the false

alarm rate α and probability of a missed detection β, given by

α = Pr (L(n∗) ≥ A|H0)

β = Pr (L(n∗) ≤ B|H1) .

In [68], relationships between the LLR thresholds and the error probabilities were established as

the following approximations

A ≈ 1− β
α

B ≈ β

1− α

with an underlying assumption that L(n∗) will be exactly equal to one of the two thresholds when

the test concludes.

Since the SPRT is sequential, the performance measures that are of primary interest are the

average run length under each hypothesis, given by

T ∗ ≈ EH0 [n∗]

D∗ ≈ EH1 [n∗]

where EHi denotes the expectation over an ensemble of observation sequences belonging to Hi, i ∈

{0, 1}. The SPRT is important for sequential detection since it is optimal in terms of average run
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length under each hypothesis, given fixed values of error probabilities [68], assuming observations

are independent. That is to say, the SPRT decides between H0 and H1 using the fewest number of

samples possible for given values of α and β. In practice, the SPRT also work well when reformulated

to consider dependent observations [35], as in (3.3) (assuming the conditional distributions can be

properly formed), though currently no rigorous mathematical proof exists showing optimality in

this case. Note that a SPRT is closed [35], meaning Pr(n∗ < ∞) = 1 due to the antipodality

condition

EH0 [sk] < 0

EH1 [sk] > 0.

Since the SPRT assumes all of the observations in Yn
1 belong to one of two hypotheses, it cannot

be used by itself to perform transient detection, where the parameters of the data change at some

unknown time. However, the concepts introduced by the SPRT can be used as building blocks to

construct appropriate transient detection schemes, as discussed below.

3.2.2. Change Detection using CUSUM

The CUSUM procedure [69], also known as Page’s test, is an efficient method for detecting a

change in the parameters of a model/distribution governing a data sequence. CUSUM implements

the following binary hypothesis test

H0 : yk = vk, 1 ≤ k ≤ n

H1 : yk =


vk, 1 ≤ k < k1

zk, k1 ≤ k ≤ n

(3.5)

where k1 is the unknown change time, and vk and zk are independent vectors from separate IID

vector sequences with associated probability measures fΘ0(·) and fΘ1(·), respectively. In other
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words, (3.5) is applicable when the model (or distribution) of observations yk’s before and after

some unknown time k1 is different, and the goal is to estimate k1 as quickly as possible. As with the

SPRT, there is no inherent restriction on the meaning of the parameters Θ0 and Θ1. The CUSUM

procedure is relevant to simplified scenarios considered in this thesis (see Section 1.3), as it can

be 1) used to process sequential data “on-line”, 2) used to detect random sources, 3) extended to

handle dependent observations and an unknown parameter after the change.

Denote Lnk as the LLR given Yn
k , i.e.,

Lnk = ln

(
fΘ1 (Yn

k )

fΘ0

(
Yn
k

)) .
Due to a change in distribution at the unknown time k1 in (3.5), it is easy to see that

Ln1 = ln

 fΘ0

(
Yk1−1

1

)
fΘ1

(
Yn
k1

)
fΘ0

(
Yk1−1

1

)
fΘ0

(
Yn
k1

)


=
n∑

k=k1

ln

(
fΘ1 (yk)

fΘ0 (yk)

)
= Lnk1 . (3.6)

This leads to Page’s decision rule [69], which can be derived from the GLRT, used to find the

stopping time (i.e., estimated change time)

k∗1 = arg min
n

{(
max

1≤k≤n
Lnk

)
≥ η

}
(3.7)

where η is a predetermined detection threshold. This decision rule essentially states that a change

in the model parameters should be declared (accept H1) whenever any segment of Ln1 increases by

at least η, and the estimated change time should be the earliest sample where this level of increase

is observed. This concept is demonstrated by the solid line in Fig. 3.1, where the presence of a

signal in the 1/3 octave data sequence (see Chapter 2) causes the LLR in (3.6) to increase. The
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Figure 3.1. Examples of the standard LLR and CUSUM test statistics used in
(3.6) and (3.9), respectively, along with the corresponding conditions for acceptance
of H1 when η = 100.

signal is detected at time k∗1 when the LLR increases by at least η as measured from the minimum

value it achieves.

Given that observations are assumed to be IID (for now), it can be seen that

max
1≤k≤n

Lnk = Ln1 − min
1≤k≤n

Lk−1
1 (3.8)

meaning an equivalent detection statistic can be derived by ignoring the first 0 ≤ k ≤ n−1 samples

prior to the minimum value of Ln1 . Consequently, the standard recursion that implements the

CUSUM procedure can be written as [35]

S(n) = max{0, S(n− 1) + sn}, n = 1, 2, . . . (3.9)

where S(0) = 0 and the update nonlinearity sn is given in (3.4). The stopping time is then

k∗1 = arg min
n

{S(n) ≥ η} . (3.10)
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Equation (3.9) specifies that the statistic S(n) should be reset whenever it falls below zero, and

implements the concept shown in (3.8) where the segment of the LLR leading to its minimum value

is ignored, i.e., the associated observations are said to belong to H0.

The dashed line in Fig. 3.1 shows an example of the test statistic S(n) and the equivalence

of using (3.7) and (3.10) for estimating k1. The CUSUM statistic is clamped at zero while Ln1

decreases below zero, and starts to increase after Ln1 reaches its minimum value. A change is

detected whenever S(n) exceeds η, making CUSUM much simpler to interpret than the decision

rule in (3.7), despite their equivalence [35]. Operationally, the CUSUM procedure is equivalent to

a series of SPRTs with upper and lower thresholds A = η and B = 0, respectively. That is to say,

CUSUM functions as if repeated SPRTs are run that all end in accepting H0, with the exception

of the final test that ends in accepting H1.

The standard implementation of CUSUM seen here also differs from the SPRT and traditional

fixed sample detectors since, assuming the test is closed (Pr(k1 <∞) = 1), there is no probability

of detection, i.e., H1 is always accepted eventually [35]. Therefore, the performance of CUSUM

is measured in terms of the mean number of samples between false alarms T , and the delay to

detection D. The goal is then to achieve large T and small D, which is managed by the choice of

threshold η. The merit of CUSUM is that, when using the LLR as the update nonlinearity (as in

(3.9)), it has min-max optimality in terms of average run length, i.e., it minimizes the worst case

D for a given level of T [34]. This property follows from the minimum average run length property

of the SPRT, and the equivalence of CUSUM to a series of SPRTs. This means that the delay to

detection will be the same for these procedures, given the same data and threshold. Deriving an

explicit expression for these average run length measures in terms of η is difficult even in the IID

case, and it is thought that no feasible solution exists in the case of dependent observations [33].

Instead, approximations to these measures are often made, as in [35]. Nonetheless, a small D is

important for the soundscape characterization problem considered in this thesis, as it determines
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the extent to which event durations are underestimated. Furthermore, if events are short enough,

they may be missed entirely if D is too large. These risks must be balanced with the occurrence of

false signal detections, which are controlled by T .

Direct application of the original CUSUM method to the data in Chapter 2 is infeasible unless it

is extended. This is because the CUSUM procedure can only detect the onset of events of interest,

i.e., it does not inherently perform classification or estimate the duration of events. As discussed

in Section 3.3 and Chapter 5, classification using the CUSUM procedure can be accomplished by

allowing the parameters of the data model after the change to vary, and using their maximum

likelihood (ML) estimates to assign labels.

3.2.3. Detection of Transient Events Using Decisions on Individual Observations

While the CUSUM procedure is effective for detecting a change in the parameters of the data,

Chapter 2 showed that the data considered in this thesis contains observations whose parameters

change frequently owing to different combinations of sources (signals and interference of different

types) being present at different times. If interference sources are not suppressed in particular (see

Chapter 5), then changes are often so rapid that the CUSUM statistic rarely has time to accumulate.

Moreover, a LLR must be found given the same set of observations for each hypothesis [33], but

the set of observations that can reasonably occur under each hypothesis is often not identical. One

approach to addressing these problems is to assign class labels to each yn separately, as opposed to

accumulating evidence to make a decision based on the likelihood of observing the entire sequence

Yn
1 . Detection using individual observations can be implemented by using a modified version of

the log-likelihood ratio test (LLRT) statistic in (3.4). Use of the LLRT can be justified by the

Neyman-Pearson lemma, which demonstrates that it has the highest power among all competitors

[70]. The unique aspect to this work is determining which sources are of interest for detection

(signal and/or interference), and what combinations of them can realistically occur simultaneously

(see Chapter 2).
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Denote T as the set containing the general parameters Θ1’s corresponding to the alternative

hypothesis, i.e., those parameters for observation models containing specific types of sources that

we wish to detect. For example, a given Θ1 ∈ T may model observations containing one type p

signal source and one type q interference source, as in Chapter 4. Since the parameter of yn under

the alternative hypothesis is unknown, the problem now involves the composite hypothesis test

H0 : Θ = Θ0 6∈ T

H1 : Θ ∈ T . (3.11)

Here, Θ0 is the known parameter under H0 and models yn’s that do not contain source signatures of

interest, e.g., it may be noise alone or interference plus noise if we are only interested in detecting

signals. Detection can then be performed via the well-known GLRT, which uses the maximum

likelihood estimates of unknown parameters [33]

max
Θ1∈T

ln

(
` (Θ1; yn)

` (Θ0; yn)

) yn ∈ H1

≥
<

yn ∈ H0

η (3.12)

where η is a predetermined detection threshold. A specific example of a detector based on the GLRT

is the matched subspace detector [44] in Appendix D, which assumes the signal lies in some known

subspace, and the unknown (but deterministic) parameters are the coordinates of the observation

relative to this subspace.

A typical and simple classification strategy to use under the detection framework in (3.12) is

to estimate which sources are present based on the ML parameter, i.e. find

Θ̂1 = arg max
Θ1∈T

ln

(
` (Θ1; yn)

` (Θ0; yn)

)
. (3.13)

The class labels assigned to yn would be those corresponding to source types that are assumed to

always be present in observations parameterized by Θ̂1. In essence, (3.13) implements a multiple
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hypothesis test. A caveat to this ML classification strategy is that it may only be used when the

complexity of the observation model (number of parameters) does not vary between the hypotheses

that are considered, as this leads to a bias in favor of more complex hypotheses [39]. For instance,

matched subspace classifiers [40], which use this ML principle by applying a separate matched

subspace detector for each class, guarantees the same number of parameters for each signal class by

assuming each signal subspace has the same dimensionality. This can be inferred from Appendix

D, since an increase in the dimensionality of the signal subspace can only increase the amount

of observation energy that lies in this subspace, which leads to a larger detection test statistic.

However, when the number of sources that may be present changes frequently, assuming that each

Θ1 has the same number of parameters is often unrealistic. Circumventing these issues associated

with varying complexities of hypotheses is outside the scope of the preliminary material discussed in

this chapter, and is instead covered in Chapter 4, where a hierarchical testing scheme is introduced.

Note that the framework in this subsection implies that detection and classification are per-

formed on individual observations separately, but it does not preclude the use of past informa-

tion/observations for making such decisions. This can be accomplished, e.g., by modifying the

parameter Θ1 based on such prior information, as in Chapter 4. The approach in this subsec-

tion is most appropriate in situations where the goal is to discover the exact composition of yn

in terms of the types of signal and interference sources that may be present, and further there is

a known parameterization of each possible combination. Unfortunately, encountering observation

compositions whose parameterization is not defined by a member of T may lead to errors, and the

cardinality of this set can increase dramatically with the number of possible signal and interference

types. Additionally, since many signals of interest have signatures that always span a cluster of

adjacent observations, a sequential decision fusion scheme is often needed to improve detection and

classification accuracy; a topic that is discussed next.
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3.3. HMM-Based Sequential Decision Fusion

Since the soundscape characterization problem addressed in this thesis primary involves detec-

tion and classification of signal sources that are extant for approximately 20–240 observations (with

one observation per second), it is critical to assign consistent class labels to entire acoustical events

produced by such sources. However, most soundscapes have consistently evolving compositions

due to intermittently presents sources, meaning certain approaches must make decisions on and

assign labels to individual observations separately, e.g., methods related to the general framework

discussed in Section 3.2.3. In this section, such approaches are said to produce a sequence of pre-

liminary signal class labels {c̃k}nk=1, with c̃k ∈ [0, P ], for the corresponding set of observations. In

particular, c̃k = p and c̃k = 0 are labels associated with a type p signal and no signal, respectively,

where P is the total number of signal types. In order to reduce inaccuracies in a given decision

sequence {c̃k}nk=1, as well as ensure assigned labels are temporally dependent regardless of the

classifier used, this section introduces a new method for sequential decision fusion based on HMMs

[35, 36]. More specifically, given some {c̃k}nk=1, the idea is to generate a final sequence of class

labels {ck}nk=1 by aggregating the information of c̃k’s over time. This results in one ck per yk, that

denotes the signal type estimated to be present at time k. The approach discussed below will be

the sole method of decision fusion used to produce the results in Chapter 6 for any method that

assigns class labels separately to individual observations.

Note that the particularly unique aspect to this work is that decisions for multiple transient

signals must be sequential fused, meaning we must “detect” the onset time of a cluster of final

decisions corresponding to a particular class. Therefore, many existing fusion strategies [71, 72]

that use fixed-length data, and/or assign a unified label to all observations, cannot be used for the

present problem. The decision fusion considered here involves a sequential multi-hypothesis test, for

which an optimal solution exists [73] (albeit impractical) in the case of independent observations,

and when all of the data is assumed to belong to a single hypothesis, as in the SPRT in Section 3.2.1.
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In contrast, since the types of signals in the observation sequence change over time, the adopted

approach uses an extension of the CUSUM-based procedure in Section 3.2.2, since it is optimal

in terms of average run length. The main difference here is that observations (i.e., decisions) are

no longer considered independent, and hence, HMMs are used to generate likelihoods [35], as they

are well-suited for calculating conditional probabilities using sequential data. A brief review of the

HMM is first presented in the context of decision fusion, since familiarity with these fundamentals

is important for understanding the proposed framework. An excellent and thorough tutorial on

HMMs can be found in [36].

3.3.1. HMM Review

A HMM is a type of stochastic model for a data sequence whose distribution at a given time

is dependent on the value of an associated hidden state, which itself is part of a Markov chain.

HMMs are frequently used to model speech or other types of acoustical signatures as well as

other data sequences with high variability [1, 8, 12, 56] due to their flexibility and exploitation of

observation dependencies. Unfortunately, HMMs are difficult to directly apply to the soundscape

data considered in this thesis due to the intermittent presence of multiple types of interference, as

frequent switching between an abundance of HMMs (possibly with significant overlap) would be

required to model the variations in the data. On the other hand, they are well-suited for processing

a discrete sequence such as the preliminary decisions {c̃k}nk=1 to yield a more accurate estimate of

the type of signal that was present in the data when these decisions were made.

A HMM for the pth signal type models the preliminary decisions {c̃k}nk=1 generated by a given

classification method when the signatures of this signal are actually present. The states of the pth

HMM are denoted by {z(p)
k }

n
k=1, with z

(p)
k ∈ [1, L], and are latent variables (not observable) that

permit modeling sequences whose distribution changes over time. For decision fusion, these HMM

states do not have any specific physical interpretation, but correspond to different preliminary

decision distributions resulting from changes in the behavior of a given classification method when
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applied to highly variable observations. This means that state transitions typically occur when

the structure of an acoustical event being evaluated changes (see examples in Section 2.3), as the

preliminary decisions may also change. Ultimately, the idea is to perform decision fusion by finding

the likelihood of each HMM given {c̃k}nk=1.

A HMM for discrete decision sequences associated with the pth signal type is specified by the

parameter set

Θp = {A(p),B(p),π(p)} (3.14)

where

A(p) =
[
a

(p)
ij

]
=
[
Pr(z

(p)
k+1 = j|z(p)

k = i)
]
, i, j = 1, . . . , L

is the state transition matrix whose (ij)th element denotes the probability that the data is in the

jth state at time k + 1 given it was in the ith state at time k. The emission probability matrix is

given by

B(p) =
[
b
(p)
i (c̃k)

]
, i = 1, . . . , L (3.15)

where b
(p)
i (c̃k) = Pr(c̃k = p|z(p)

k = i), i.e., the probability that the pth class label was preliminarily

assigned at time k, given the data was in the ith state. As can be seen, for decision fusion

applications, c̃k’s are used in place of what are normally referred to as observations [36, 72]. Finally,

the prior probability the data was initially (at time k = 1) in each state is encoded by the vector

π(p) =
[
π

(p)
i

]
=
[
Pr(z

(p)
1 = i)

]
, i = 1, . . . , L.

Given a preliminary decision sequence, the elements of a HMM can be used to find the value

of the forward variable [36] at time k and for state i, i.e.

α
(p)
k (i) = fΘp(c̃k, . . . , c̃1, zk = i)
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where fΘp(·) is a probability density function for the HMM Θp. The name forward variable comes

from the fact that they can be computed recursively over time using

α
(p)
k+1(j) =

[
L∑
i=1

α
(p)
k (i)a

(p)
ij

]
b
(p)
j (c̃k+1)

and initialized as α
(p)
1 (j) = π

(p)
j b

(p)
j (c̃1), which uses all elements of the HMM defined in (3.14). An

important property of the forward variable is the ability to find the likelihood of Θp given a decision

sequence as

`(Θp; c̃k, . . . , c̃1) = fΘp(c̃k, . . . , c̃1)

=

L∑
i=1

α
(p)
k (i) (3.16)

meaning we can easily compute conditional probabilities as

fΘp(c̃k|c̃k−1, . . . , c̃1) =

L∑
i=1

α
(p)
k (i)

L∑
i=1

α
(p)
k−1(i)

. (3.17)

However, since the likelihood in (3.16) decreases monotonically as additional c̃n arrive, the following

scaled forward is typically used in its place

ξ
(p)
k+1(j) =

[
L∑
i=1

ξ
(p)
k (i)a

(p)
ij

]
b
(p)
j (c̃k+1)

L∑
i=1

ξ
(p)
k (i)

with ξ
(p)
1 (i) = α

(p)
1 (i), ∀i. Use of ξ

(p)
k (i)’s still allows for sequential updating of the conditional

likelihood since

fΘp(c̃k|c̃k−1, . . . , c̃1) =
L∑
i=1

ξ
(p)
k (i) (3.18)
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just as in (3.17), but without the numerical underflow issues associated with using α
(p)
k (i)’s. Now

that it has been shown how to find the conditional likelihood of a HMM, the decision fusion

framework can be presented, which detects changes from one HMM to another.

3.3.2. HMMs for Decision Fusion

The sequential decision fusion method introduced here is based on the generalized likelihood

ratio (GLR) for change detection [33], with an unknown HMM Θp after the change, which can be

implemented by extending the CUSUM procedure in Section 3.2.2. For sequential decision fusion,

detecting a single HMM change and stopping, as with the standard CUSUM procedure [35], is

insufficient since multiple signals are assumed to be present in the data. This can be remedied by

adopting a two phase approach for processing preliminary decisions: 1) detect the time when a

signal becomes extant (i.e., ck 6= 0) while it is assumed that none are present (i.e., ck = 0), and

2) detect the time when the signal is no longer extant while it is assumed that one is present.

These are referred to as signal and quiescent detection phases, respectively. Estimating the onset

time of ck = 0 decisions effectively estimates the duration of the most recent sequence of final class

labels corresponding to ck 6= 0, and the process can revert back to looking for a new sequence of

signal class labels. The actual values of the labels are only determined after the event duration is

estimated for reasons explained below.

Since segments of final decisions corresponding to ck 6= 0 are being continually detected, it is

helpful to adopt notation for the various stopping time estimates relative to the current time n.

Let k0 and k1 denote the unknown onset times of ck = 0 and ck 6= 0 labels, respectively, and let k̂0

and k̂1 denote the estimated onset times for the most recently detected periods where ck = 0 and

ck 6= 0, respectively. Fig. 3.2 demonstrates the two-phase concept by showing the circumstances

under which each phase is implemented, as well as the previously estimated stopping times relative

to the current time n. This figure also provides example preliminary and final decision sequences

that are the input and output to the proposed sequential decision fusion process, respectively, and

52



Table 3.1. Correspondence between colors used in decision strips and each signal type.

Signal Type None Plane Helicopter Jet
Color Code

were generated by the method in Chapter 4 for the data sequence shown at the bottom. The color

of the “decision strip” at a given point in time indicates the assigned preliminary/final class label,

according to the key in Table 3.1. As can be seen, several errors in the preliminary decision sequence

are corrected to yield a unified class label for each signal event, including some misclassifications of

observations at the beginning and end of the first and second signal events, respectively, and some

missed detections at the beginning and end of the second signal event.
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Figure 3.2. Illustration of the two phase decision fusion approach, where the du-
rations of several phases are shown above part of a 1/3 octave observation sequence
and corresponding preliminary and final decision sequences. The unknown and es-
timated onset times for each hypothesis are shown relative to the current time n.

The first phase of the proposed decision fusion process is characterized by the following hypoth-

esis test concerning the final decision sequence

H0 : ck = 0, k̂0 ≤ k ≤ n (3.19)

H(p)
1 : ck =


0, k̂0 ≤ k < k1

p, k1 ≤ k ≤ n

.
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As can be seen, under H(p)
1 the onset of final decisions indicating the presence of a signal ck = p, k ∈

[k1, n] occurs at the unknown time k1, and the goal is to find the new estimate k̂1. Therefore, an

underlying assumption is that only one signal source may be present at a time. Additionally, to

accommodate the two phase approach mentioned above, it is assumed that temporally adjacent

observations do not have class labels corresponding to two different signals, but rather, final class

labels can only switch from ck = p to ck = 0 or vice versa.

As before, (3.19) may be implemented using the CUSUM procedure and a set of test statistics

based on the LLR, that correspond to the different signal types. The main difference here is that the

temporal pattern of preliminary decisions is considered for fusion, meaning c̃k’s are not considered

independent. The LLR is therefore [35]

Ln
k̂0

(Θp, k1) = ln

(
`(Θp; c̃n, . . . , c̃k̂0)

`(Θ0; c̃n, . . . , c̃k̂0)

)

= ln

(
fΘ0(c̃k1−1, . . . , c̃k̂0)fΘp(c̃n, . . . , c̃k1)

fΘ0(c̃k1−1, . . . , c̃k̂0)fΘ0(c̃n, . . . , c̃k1 |c̃k1−1, . . . , c̃k̂0)

)

= ln

(
fΘp(c̃k1)

fΘ0(c̃k1 , |c̃k1−1, . . . , c̃k̂0)

)
+

n∑
k=k1+1

ln

(
fΘp(c̃k|c̃k−1, . . . , c̃k1)

fΘ0(c̃k, |c̃k−1, . . . , c̃k̂0)

)
(3.20)

where Θ0 is the HMM under H0. The second equality in (3.20) comes from assuming that, under

H(p)
1 , the preliminary decisions before and after the change (onset of the signal) are independent

of each other. The LLR in (3.20) is a function of the HMM Θp as well as the unknown change

time k1 since observations are dependent, meaning the subscript k̂0 is used to keep track of earliest

observation under consideration.

As in Section 3.2.2, a recursive test statistic for the pth signal can be used [35] in place of (3.20),

that is given by

Bp(n) = max{0, Bp(n− 1) + bp(n, kr)}, n = k̂0, k̂0 + 1, . . .

54



with Bp(k̂0−1) = 0, ∀p and where kr is the time step immediately after the last reset of Bp(k̂0−1)

to zero. For decision fusion, the update nonlinearity uses conditional probabilities, calculated using

the HMM Θp, i.e. [35]

bp(n, kr) = ln

(
fΘp(c̃n|c̃n−1, . . . , c̃kr)

fΘ0(c̃n|c̃n−1, . . . , c̃kr)

)
= ln


L∑
i=1

ξ(p)
n (i)

L∑
i=1

ξ(0)
n (i)

 (3.21)

where the second equality is due to (3.18). Whenever Bp(n) < 0 we set kr = n and reinitialize

the scaled forward variables as ξ
(p)
kr

(j) = π
(p)
j b

(p)
j (c̃kr). There is a notable difference between the

conditional likelihoods in (3.20) and bp(n, kr) in (3.21), namely that in the latter both the numerator

and the denominator are conditioned on the same set of preliminary decisions c̃n−1, . . . , c̃kr . This

is made possible by assuming that the HMM Θ0 is stationary [35], meaning the distribution of

the initial state in the hidden sequence follows the stationary distribution of the HMM states.

Detection of the time when class labels no longer follow H0 is then performed using

max
p

Bp(n)

cn 6= 0

≥
<

cn = 0

η

where η is a predetermined threshold. As can be seen, since the update nonlinearity in (3.21) is

based on a conditional likelihood, Bp(n) represents the likelihood of Θp given the entire preliminary

decision sequence since the last reset.

Continuing with the two-phase approach, once a sequence of signal class labels is detected at

time k̂1, the process reverts to detecting a sequence of ck = 0 final decisions according to

H(p)
1 : ck = p, k̂1 ≤ k ≤ n (3.22)

H0 : ck =


p, k̂1 ≤ k < k0

0, k0 ≤ k ≤ n
.
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Using the same principles as in (3.20), the LLR for implementing this test is a function of the

unknown change time k0 given by

Fn
k̂1

(Θp∗ , k0) = ln

(
`(Θ0; c̃n, . . . , c̃k̂1)

`(Θp∗ ; c̃n, . . . , c̃k̂1)

)

= ln

(
fΘ0(c̃k0)

fΘp∗ (c̃k0 |c̃k0−1, . . . , c̃k̂1)

)
+

n∑
k=k0+1

ln

(
fΘ0(c̃k|c̃k−1, . . . , c̃k0)

fΘp∗ (c̃k|c̃k−1, . . . , c̃k̂1)

)
(3.23)

where

p∗ = arg max
p

Bp(n)

is the ML signal type at time n based on the preliminary decision sequence {c̃k}nk=1. The LLR

in (3.23) compares the quiescent HMM Θ0 with the ML signal HMM Θp∗ so that an increase in

this test statistic corresponds to the renewed dominance of H0. Therefore, the likelihood of each

Θp is tracked even during quiescent detection phases so that the ML signal type is known at each

discrete time instant. The equivalent recursive statistic [35] used to implement this test is

Tp(n) = max{0, Tp(n− 1) + tp(n, kr)}, n = k̂1, k̂1 + 1, . . .

with Tp(k̂1 − 1) = 0, ∀p, where kr denotes the time Tp(n) was last reset and

tp(n, kr) = ln


L∑
i=1

ξ(0)
n (i)

L∑
i=1

ξ(p)
n (i)


is the update nonlinearity. Final decisions corresponding to H0 are again accepted when

Tp∗(n)

cn = 0

≥
<

cn 6= 0

γ. (3.24)
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As mentioned before, to exploit all available evidence for fusing decisions, final labels are only

assigned to a set of observations after H0 is again accepted according to the test in (3.24). The

assigned final class label corresponds to the ML HMM Θp∗ at the time step immediately preceding

that where H0 was accepted. More formally, {ck}k̂0−1

k=k̂1
= p∗, where k̂0 is the new estimated time

denoting the onset of final decisions ck = 0. As can be seen, this fusion approach assigns a unified

signal class label to entire acoustical events, as desired.

As a final note, it is important to consider the increase in computational complexity for the

overall transient detection and classification process as a result of using the proposed HMM-based

sequential decision fusion, when compared to simply accepting the preliminary decision sequence

generated by a given method. In particular, this decision fusion requires O(L2P ) additional oper-

ations, since determining the likelihood of each HMM using (3.18) requires O(L2) operations [36].

Clearly, the number of states L should be small for resource intensive applications, though this is

generally advisable anyway when the number of signal types P is small since, in this case, there is

often fewer variations in preliminary decision sequences modeled by a given HMM.

3.4. Conclusions

This chapter introduced some of the fundamental concepts used to detect and possibly classify

multiple transient sources from sequential multivariate data (e.g., 1/3 octave). These baseline

approaches can often be used in simpler source characterization problems, e.g., when observations

are independent regardless of the hypothesis they are associated with, and/or when the presence

of interference is not considered. This introduction provides several key benefits for understanding

the remaining material in this thesis. First, it specifies what constitutes a change of interest for the

soundscape characterization application, and supplies the terminology used to define such changes

in the context of relatively simple problems. Additionally, the materials in this chapter motivate the

use of more sophisticated soundscape characterization frameworks discussed in subsequent chapters,
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and simplifies their descriptions since the fundamental concepts are often used as building blocks,

due to their optimality in certain conditions.

Existing approaches for detection of transient sources were first discussed. The SPRT [68]

was introduced for problems where the data in a sequence belongs to one of two hypotheses, and

the goal is to use incoming observations to determine which of these hypotheses to accept as

quickly as possible. While the formulation used by the SPRT is not representative of the natural

soundscape characterization problem, due to constant hypothesis changes in the associated data,

this test can be used as a building block for the CUSUM method [69] for detecting a change in the

parameters of the data. The standard CUSUM procedure for detecting a hypothesis switch given

IID observations was introduced, and shown to be equivalent to repeating SPRTs. Classification in

the CUSUM framework typically involves using a generalized likelihood ratio, where the parameter

under the alternative hypothesis is allowed to vary, and the assigned class label corresponds to

the parameter that maximizes the CUSUM test statistic after a change is detected. The CUSUM

method is important for the problem considered in this thesis since it is optimal in terms of average

run length, is well-suited for detecting and classifying entire events as it uses all evidence to assign

class labels (see Chapter 5), and it is very general, i.e., a variety of models can be used to form

the test statistics. On the other hand, there is an inherent delay to detection of transient sources

when using the CUSUM method, and it does not perform well when the parameters of the data

frequently change, since the test statistics do not have ample time to accumulate in these cases.

The latter means that it cannot inherently handle superimposed signal and interference sources

that are typically encountered in our problem.

A simple detection method involving a composite hypothesis test for individual observations

was also discussed for cases where the goal is to detect observations with specific compositions in

terms of signal and interference source signatures. Classification in this framework is also based on

the parameter that maximizes the LLR used for detection. This approach performs well in cases
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where the data composition (hypothesis) frequently switches, as it is based on a uniformly most

powerful detector. It can also incorporate an arbitrary number of alternative hypotheses, which

is a significant benefit for the present soundscape characterization application. Unfortunately,

this approach can only be directly applied in cases where each hypothesis has the same number

of associated parameters, and the possible combinations of sources that may be simultaneously

present must be known a priori. Furthermore, decision fusion must often be used in conjunction

with this approach, especially in cases where events contain novel signatures, leading to a potential

mixture of preliminary class labels assigned to a single acoustical event.

Finally, a HMM-based sequential decision fusion scheme was developed to address the afore-

mentioned problems associated with assigning class labels separately to individual observations.

This fusion is often necessary for the soundscape characterization problem considered in this thesis

since signal sources of interest generate acoustical events that generally span 30–240 observations,

and hence, a unified class label should be assigned to such events. Since preliminary decision se-

quences must be used to constantly detect periods of time when signals are present, this framework

uses a two-phase CUSUM approach to look for periods of ck 6= 0 labels while it is assumed that

ck = 0, and vice versa.

In Chapters 4 and 5, comprehensive solutions to the soundscape characterization problem are

introduced, that are capable of detecting and classifying multiple transient events of different types.

These approaches were specifically designed to address the main issues with applying the methods

discussed in Section 3.2 to the data in Chapter 2. More specifically, the new approaches are able to

process sequential data streams containing multiple signal events, inherently exploit the properties

of multivariate observations as well as the temporal dependencies between them, and can handle the

intermittent presence of multiple types of competing interference. These capabilities are essential

when analyzing most real data that does not follow the somewhat restrictive assumptions used by

the methods in Section 3.2, e.g., independence of observations.
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CHAPTER 4

A Sequential Random Coefficient Tracking Framework

4.1. Introduction

As mentioned in Chapter 1, an extensive amount of research exists offering solutions to var-

ious subsets of the tasks required for the transient source characterization problem addressed in

this thesis. For instance, many general methods (i.e., those not specifically designed for natural

soundscape analysis) in their original form either 1) are incapable of recognizing any general source

type [5, 8], 2) cannot handle significant within class diversity [44, 46], 3) cannot perform classifi-

cation (only detection) [32, 35], and/or 4) are not robust to the presence of structured interference

[5, 8, 32, 35, 46, 60]; all of which are essential for handling the intricacies of natural soundscapes.

See Section 1.3 for a comprehensive list of necessary capabilities for achieving acceptable source

characterization performance. Combining incomplete solutions is possible is some cases, but a lack

of cohesion between processing steps (e.g., transient detection and classification) may lead to re-

dundant computations and decreased performance, analogous to performing distributed detection

without collaboration between decision-making agents [43]. Moreover, many existing approaches

[2, 7, 11, 13, 15, 16, 20] that attempt to offer comprehensive solutions to very similar problems

are also not appropriate for this problem for various reasons, e.g., they presume access to the raw

audio data.

To address the shortcomings of existing methods for characterization of multiple transient

sources, this chapter develops a sequential random coefficient tracking (SRCT) framework that ap-

plies a hierarchy of log likelihood ratio tests (LLRT) to individual observations, each of which may

contain the signatures of a subspace signal and/or a subspace interference source, both of which

can be one of multiple types. Since class labels are assigned separately to each observation, the

SRCT method can be seen as a specific implementation of the general detection and classification
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approach in Section 3.2.3. As suggested in Section 2.2.2, source signatures are modeled as random

to capture the variability between different events associated with the same source type. A Kalman

filter that exploits known source subspace and coefficient dependency models is used to generate

the parameters of the conditional densities necessary for calculating the test statistics, where de-

pendence is on previous observations and a specific source model. It is assumed that at most one

type of signal and one type of interference are present at a given time, though as required this

SRCT method may be continuously applied to streaming data in order to detect and classify new

transient sources, possibly of different types. The method developed in this chapter is also capable

of performing separation of the signal and interference portions of the measurement to produce

estimates of their signatures in isolation.

This chapter is organized as follows. Section 4.2 introduces the observation model used as the

basis for developing the SRCT method. Section 4.3 formally introduces the problem and discusses

the entire SRCT source characterization framework, including the general form of the LLRT, the

procedure for calculating the parameters necessary to construct a LLRT, and the explicit form of

each of the LLRTs that are hierarchically applied to individual observations. Finally, Section 4.4

provides concluding remarks. The experimental results of applying the SRCT method to national

park soundscape recordings are presented in Chapter 6, together with the results produced by other

methods described in this thesis, so that effective comparisons can be made. Note that most of the

material presented in this chapter is also reported in [74].

4.2. Observation Model

The kth vector in the data sequence to be evaluated is referred to as an observation vector

and is denoted by yk = [yk[1] · · · yk[N ]]T = G(uk) ∈ RN , where uk ∈ RL is the kth time interval

(contains samples [kL+ 1, (k + 1)L]) of the original sampled audio recording, and G(·) represents

a mapping function, e.g., the 1/3 octave mapping [62] described in Appendix A. Since data is being
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constantly recorded, yk’s are continually arriving, and can be generally represented as

yk = αksk + βkhk + wk

where sk ∈ RN and hk ∈ RN are random vectors defined similar to yk, but represent the signatures

produced by the unknown signal and interference sources to be characterized, respectively; αk and

βk are binary variables that indicate the presence (αk, βk = 1) or absence (αk, βk = 0) of a signal and

interference source, respectively; and wk
IID∼ N (0,Rw) is an independent and identically distributed

(IID) measurement noise vector, where Rw ∈ RN×N is a known full-rank noise covariance matrix.

Justification for the assumed distribution of wk can be found in Appendix B for the data considered

in this thesis where G(·) is the 1/3 octave mapping. Here, zero mean noise is assumed without

loss of generality, as the noise mean can always be subtracted from each observation prior to the

application of the SRCT method. This assumed noise distribution is also valid whenever 1) the

noise in uk is IID Gaussian with zero mean and variance σ2 and 2) G(uk) = Guk, with G ∈ RN×L,

i.e., G is a linear mapping, since in this case wk
IID∼ N

(
0, σ2GGT

)
.

For reasons discussed in the next section, it is more convenient to operate on transformed obser-

vations zk = R
− 1

2
w yk with white observation noise ωk = R

− 1
2

w wk, i.e. E
[
ωkω

T
k−j

]
= INδ(j), where

IN is the N × N identity matrix. It is assumed that the transformed signal vector R
− 1

2
w sk and

transformed interference vector R
− 1

2
w hk lie in known low-dimensional subspaces, 〈Sk〉 and 〈Hk〉,

respectively, that are spanned by the columns of Sk ∈ RN×M and Hk ∈ RN×M , respectively, with

M � N . These subspaces are time-dependent since the source types may change. Specifically,

Sk ∈ {S(p)}Pp=1 and Hk ∈ {H(q)}Qq=1, meaning there are P possible signal types and Q possible

interference types. All source subspaces,
〈
S(p)

〉
’s and

〈
H(q)

〉
’s, are assumed to be linearly inde-

pendent of each other (not necessarily orthogonal) and exactly M -dimensional, where the latter

requirement is necessary for subspace classifiers [40] in order to prevent bias in favor of those source

types with larger associated subspace dimensions. The model for the transformed observation can
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therefore be written as

zk = αkSkak + βkHkbk + ωk (4.1)

where ak ∈ RM and bk ∈ RM are random signal and interference coefficient vectors. Hereafter in

this chapter, zk (rather than yk) is referred to as the observation at time k.

A subspace model is useful for acoustical source classification from sequential multivariate data

since different linear combinations of basis vectors may be used to capture various nonstationarities

that are often present in the source’s signatures. For instance, as discussed in Appendix C, when

using the 1/3 octave representation the time-frequency signatures of a Doppler shifted waveform

may change from narrowband to broadband during the time the most rapid frequency shifts occur,

and different linear combinations of basis vectors can be used to model this time-varying behavior.

Thus, to represent variations among different source events, it is assumed that ak and bk obey the

following respective vector linear autoregressive (AR) models

ak =
J∑
j=1

Φj,kak−j + ξk

bk =
J∑
j=1

Ψj,kbk−j + νk (4.2)

where Φj,k and Ψj,k are the jth AR parameter matrices for the signal and interference sources at

time k, respectively. The vectors ξk
IID∼ N (0,Rξ,k) and νk

IID∼ N (0,Rν,k) are driving processes for

the signal and interference, respectively, with known covariance matrices Rξ,k and Rν,k, that are

assumed to be independent of each other and with ωk. The time index k on the AR parameters

again indicates that they may change over time when a new source type becomes extant. Although

in (4.2) all source coefficient AR models are assumed to be of order J for notational simplicity, the

proposed method can still apply for different AR model orders for each source type.

63



4.3. Source Characterization

The SRCT method introduced in this section performs transient detection, classification, and

estimation of multiple source types by sequentially evaluating zk’s on-line, i.e., zk+j , j > 0 is not

accessible at time k. This is done by applying a hierarchy of LLRTs to each zk to test between

several hypotheses that account for each possible observation composition in terms of signal and

interference according to the model in (4.1). Specifically, these hypotheses are given by

H0 : zk = ωk or αk = βk = 0

H(p)
1 : zk = S(p)ak + ωk or αk = 1, βk = 0

H(q)
2 : zk = H(q)bk + ωk or αk = 0, βk = 1 (4.3)

H(p,q)
3 : zk = S(p)ak + H(q)bk + ωk or αk = βk = 1

where superscripts p ∈ {1, . . . , P} and/or q ∈ {1, . . . , Q} indicate dependencies of hypotheses on

source models. Thus, there are a total of P +Q+ PQ different possible hypotheses excluding H0.

The models associated with the above hypotheses are specified as

H0 : λ0

H(p)
1 : λ

(p)
1 = {S(p),Φ

(p)
1 , . . . ,Φ

(p)
J ,R

(p)
ξ }

H(q)
2 : λ

(q)
2 = {H(q),Ψ

(q)
1 , . . . ,Ψ

(q)
J ,R

(q)
ν } (4.4)

H(p,q)
3 : λ

(p,q)
3 = λ

(p)
1 ∪ λ

(q)
2

which are formed using training data prior to the application of the SRCT method.

The flow of the SRCT method is shown in the block diagram of Fig. 4.1. As can be seen, the

inputs to the system are zk, the models defined in (4.4), and a set of state parameters that allows

the system to exploit the dependency structure of each source (see Section 4.3.2). Ultimately, the
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system produces one signal and/or one interference label for zk, in addition to estimates of sk and/or

hk, if desired. The test statistics that implement the SRCT method are log likelihood ratios (LLR)

formed using the conditional probabilities of observing zk given relevant previous observations and

specific models in (4.4). The associated LLRTs are applied hierarchically to a given zk as follows:

(1) Detection and Classification: using (4.23), determine whether zk consists of noise alone or

contains the signatures of one or two sources; if the latter, then reject H0 and proceed. The

source types, p∗ and q∗, that are most likely present in zk are also estimated by (4.24).

(2) Dominant Source Test: use (4.25) to determine whether signal or interference is dominant

and, consequently, which remaining single source hypothesis (H(p∗)
1 or H(q∗)

2 ) is rejected.

(3) Source Quantity Test: use (4.26) to test the hypothesis corresponding to the dominant source

type against the two source hypothesis H(p∗,q∗)
3 in order to finally accept either H(p∗)

1 , H(q∗)
2 , or

H(p∗,q∗)
3 .

(4) Estimation: Use estimates of ak and bk, that were generated for the above LLRTs, to form

estimates of the actual source signatures. This step is optional and does not involve a LLRT.

A hierarchy of tests is applied here rather than directly finding the most likely hypothesis in (4.4).

This is done due to the fact that the complexity of the observation model (number of parameters)

varies between hypotheses, which would lead to a bias in LLRTs in favor of more complex hypotheses

[39]. A hierarchical test circumvents these issues through the use of different thresholds to compare

hypotheses with different relative complexities.

Since each main step in the SRCT process evaluates different hypotheses using the same general

form of the LLRT, this form is briefly discussed in the next subsection. Sections 4.3.2 and 4.3.3

discuss calculating distribution parameters for each hypothesis, that are used to form the LLRTs.

Explicit forms of the LLRTs are then developed in Section 4.3.4. To conclude this section, the

procedure for obtaining estimates of the signatures of detected signal and interference sources is

briefly discussed.
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Figure 4.1. Block diagram showing application of the proposed SRCT method to
the observation zk. Dashed lines indicate that a path is followed only when the
corresponding decision to accept or reject a given hypothesis is made. The dotted
boxes indicate the stage in the hierarchical process.

4.3.1. General form of a LLR

In the SRCT method, a hierarchy of tests is applied to zk, each of which is based on a likelihood

ratio having the general form

Lk(θk,θ
′
k) =

� (θk; zk)

�
(
θ′
k; zk

) , θk �= θ′
k

=
f
(
zk|Zk−1

k0
, λ

)

f
(
zk|Zk−1

k′0
, λ′

) , λ �= λ′ (4.5)

where � (θk; zk) is the likelihood function of the distribution parameter θk (describes conditional

PDFs), f is a conditional density function, λ is one of the source models in (4.4), and Zk−1
k0

=

{zk−1, . . . , zk0} is the set of observations that zk is dependent on under the hypothesis associated

with λ. In other words, if a particular source type has been present since time k0 ≤ k − 1, then zk

will be dependent on Zk−1
k0

under any hypothesis that assumes the presence of this source, owing

to dependence between source coefficient vectors at different times, as shown in (4.2).
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The statistic in (4.5) may be used for the test

Lk(θk,θ
′
k)

reject H′
≥
<

reject H

γ′ (4.6)

where H and H′ are hypotheses from (4.3) associated with the models λ and λ′, respectively,

and γ′ is a predetermined threshold. Equations (4.5) and (4.6) show that λ implicitly defines the

hypothesis a likelihood function is dependent on, as well as the distribution parameter θk. Such

tests are used to assign class labels to each zk separately, as opposed to accumulating evidence

to make a decision based on the likelihood of observing the entire sequence Zkk0 under a given

λ, as in a traditional sequential LLRT [34]. Although the latter approach is possible under the

proposed framework, it is avoided since both likelihoods in a LLRT must be found given the same

set of observations [33]. On the other hand, since the presence and types of signal and interference

change independently as new observations arrive, the set of observations that can reasonably occur

under each hypothesis is often not identical. Therefore, using a common Zkk0 , k0 < k to evaluate

all likelihoods can lead to low likelihoods for hypotheses associated with sources that are actually

present.

The next subsection shows that zk is conditionally multivariate Gaussian with mean vector µk

and covariance matrix Σk, given Zk−1
k0

and λ, owing to the fact that all observations follow the

general model introduced in the previous section. Therefore, defining θk = {µk,Σk} and taking

the natural log of (4.5) yields the LLR as

Λk(θk,θ
′
k) = ln

` (µk,Σk; zk)

`
(
µ′k,Σ

′
k; zk

) = ζk(θ
′
k)− ζk(θk) (4.7)

where

ζk(θk) =
1

2
ln det (Σk) +

1

2
(zk − µk)T Σ−1

k (zk − µk) (4.8)
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Table 4.1. Structure of the state variables for each model where 0m and 0m1×m2

are m×m and m1 ×m2 zero matrices, respectively.

Model xk F D C vk Rv

λ
(p)
1 x1,k =

[ ak
...

ak−J+1

] F
(p)
1 =[

Φ
(p)
1 · · · Φ

(p)
J

I(J−1)M 0(J−1)M×M

] [
IM

0(J−1)M×M

]
S(p)DT ξ

(p)
k R

(p)
ξ

λ
(q)
2 x2,k =

 bk
...

bk−J+1

 F
(q)
2 =[

Ψ
(q)
1 · · · Ψ

(q)
J

I(J−1)M 0(J−1)M×M

] [
IM

0(J−1)M×M

]
H(q)DT ν

(q)
k R

(q)
ν

λ
(p,q)
3

[
x1,k

x2,k

] [
F

(p)
1 0JM

0JM F
(q)
2

]  IM 0JM×M
IM

0(2J−1)M×M 0(J−1)M×M

 [S(p),H(q)
]
DT

 ξ(p)
k

ν
(q)
k

 [
R

(p)
ξ 0M

0M R
(q)
ν

]

and similarly for ζk(θ
′
k). Since all tests performed by the SRCT method use a LLR that assumes

the general form in (4.7), generating θk under different λ (i.e., different hypotheses) is an integral

step of this process, and is discussed next.

4.3.2. Generating Parameter Sets

This subsection discusses calculating ζk(θk) for a given λ, which involves calculating the asso-

ciated θk, i.e., the parameters of the conditional distribution. Beginning with the simple case of

H0 (i.e., λ = λ0), where zk = ωk, we have

H0 : µk = E
[
zk|Zk−1

k0
, λ0

]
= E [ωk] = 0

Σk = E
[
(zk − µk) (zk − µk)T |Zk−1

k0
, λ0

]
= E

[
ωkω

T
k

]
= IN

due to the fact that ωk’s are independent at different times. From (4.8), it follows that ζk(θk) =

1
2zTk zk under H0.

Finding the conditional probability of observing zk given λ 6= λ0 is accomplished by using such

a model to establish a series of state equations and applying a Kalman filter to obtain the estimates

of the time dependent source signatures. More specifically, the idea is to obtain an estimate of the

state vector xk that represents the relevant past and present source basis coefficient vectors (ak−j ’s
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and/or bk−j ’s), under a given hypothesis in (4.3). See Table 4.1 for explicit definitions of the state

variables for each model in (4.4). For a specific λ, the general forms of the state equations are given

by

xk = Fxk−1 + Dvk (4.9a)

zk = Cxk + ωk (4.9b)

where F, D, and C are matrices of appropriate forms and dimensions (see Table 4.1), and vk

is the process noise vector with known covariance matrix Rv. These equations are obtained by

arranging the observation model equations in (4.1) and (4.2) in state space form, and replacing the

parameters in the these equations with those from one of the models λ
(p)
1 , λ

(q)
2 , or λ

(p,q)
3 . Using a

given set of state equations, a standard Kalman filter can be applied to obtain the a priori and

a posteriori estimates of the source coefficients (states), denoted by x̂k|k−1 and x̂k|k, respectively.

The associated error covariance matrices are denoted by

Qk|k−1 = E
[
εk|k−1ε

T
k|k−1

]
Qk|k = E

[
εk|kε

T
k|k

]
(4.10)

where εk|k−1 = xk− x̂k|k−1 and εk|k = xk− x̂k|k are the a priori and a posteriori state error vectors,

respectively.

To find θk = {µk,Σk} for a given λ, the definitions of εk|k−1 and the state variables in Table

4.1 may be used to write (4.9b) as

zk = C
(
x̂k|k−1 + εk|k−1

)
+ ωk. (4.11)
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Standard Kalman filter theory [75] dictates that, given the past observations Zk−1
k0

, we have

εk|k−1 ∼ N
(
0,Qk|k−1

)
. Since εk|k−1 and ωk are both zero mean Gaussian, and together rep-

resent the random part of (4.11), zk is also conditionally multivariate Gaussian, given Zk−1
k0

and λ.

In particular, f
(
zk|Zk−1

k0
, λ
)

is parameterized by the mean vector [75]

µk = CE
[
xk|Zk−1

k0
, λ
]

= Cx̂k|k−1 = CFx̂k−1|k−1 (4.12)

and covariance matrix

Σk = E
[(

Cεk|k−1 + ωk
) (

Cεk|k−1 + ωk
)T |Zk−1

k0
, λ
]

= CE
[
εk|k−1ε

T
k|k−1|Z

k−1
k0

, λ
]
CT + E

[
ωkω

T
k

]
= CQk|k−1C

T + IN (4.13)

where x̂k−1|k−1 is the a posteriori state estimate found at time k − 1, and the expectation in each

case is over an ensemble set of source event realizations with a similar structure. Equation (4.12)

uses the fact that ωk is independent of the source model and previous observations (regardless of

their composition), while (4.13) exploits E
[
εk|k−1ω

T
k |Z

k−1
k0

, λ
]

= 0 due to conditional independence

of ωk and source signatures.

It is clear that a separate Kalman filter for each hypothesis in (4.3), except for H0, is needed to

generate a corresponding ζk(θk), as they all assume different observation compositions. Therefore,

a posteriori values, x̂k−1|k−1 and Qk−1|k−1, should only be used for estimating xk|k for hypotheses

associated with source types that were determined to be present at time k−1 (also see Fig. 4.1). The

state vector for every other hypothesis should be estimated using x̂k0−1|k0−1 and Qk0−1|k0−1, that

are reinitialized values of the state parameters, and are derived in the next subsection. The reason

being such hypotheses essentially assume the onset of a new source type, and hence, there are no
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valid past states to use. Thus, reinitialization sets k0 for a given hypothesis, and correspondingly

determines the past observations used to compute a likelihood, as in (4.5). This implies that, when

there are many source types, most ζk(θk) will be generated using reinitialized state parameters.

However, it is shown below that this process is simple, as the initial state error covariance and state

vector estimator have a closed form for each hypothesis.

4.3.3. Initializing State Parameters

This subsection derives explicit forms of x̂k0−1|k0−1 and Qk0−1|k0−1, that are initial values of

the state vector estimate and error covariance matrix, respectively. As mentioned before, these

initial parameters are needed for generating ζk(θk) for any hypothesis that assumes the presence

of a given source type in zk that was absent in zk−1, according to the results of applying the SRCT

method to this prior observation.

Proposition 1. The error covariance matrices under the single source hypotheses are initialized

as

H(p)
1 : Qk0−1|k0−1 = IJ ⊗

(
S(p)TS(p)

)−1
(4.14)

H(q)
2 : Qk0−1|k0−1 = IJ ⊗

(
H(q)TH(q)

)−1

where ⊗ denotes the Kronecker product. Corresponding state vectors are initialized using (4.15)

and (4.16).

Proof. The state vector estimate under a single source hypothesis can be initialized with the

linear least squares estimates (or maximum likelihood estimates (MLE) since the observation noise
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is Gaussian) of the coefficients of zk0−j , j = 1, . . . , J relative to the appropriate basis vectors, i.e.

H(p)
1 : âk0−j =

(
S(p)TS(p)

)−1
S(p)T zk0−j = S(p)†zk0−j (4.15)

H(q)
2 : b̂k0−j =

(
H(q)TH(q)

)−1
H(q)T zk0−j = H(q)†zk0−j

where S(p)† and H(q)† denote the Moore-Penrose inverses [76] of S(p) and H(q), respectively, which

always exist and may be calculated using the given explicit forms owing to the columns of S(p) and

H(q) being linearly independent, as stated in Section 4.2. Now, the state vector (see Table 4.1)

estimates are initialized using the coefficient vector estimates in (4.15) as

H(p)
1 : x̂k0−1|k0−1 =

[
âTk0−1 · · · âTk0−J

]T
(4.16)

H(q)
2 : x̂k0−1|k0−1 =

[
b̂Tk0−1 · · · b̂Tk0−J

]T
.

To derive Qk0−1|k0−1 = E
[
εk0−1|k0−1ε

T
k0−1|k0−1

]
under H(p)

1 , first note that in this case

x̂k0−1|k0−1 − xk0−1 =


S(p)†zk0−1

...

S(p)†zk0−J

−


ak0−1

...

ak0−J

 =


S(p)†ωk0−1

...

S(p)†ωk0−J

 .

Now, since E
[
ωkω

T
k−j

]
= INδ(j), from (4.10) we have

H(p)
1 : Qk0−1|k0−1 = IJ ⊗ S(p)† IN

(
S(p)†

)T

which can be reduced to (4.14). Similar steps are used to derive Qk0−1|k0−1 under H(q)
2 . �

Note that (4.15) motivates transforming the original observation to zk = R
− 1

2
w yk, as this ensures

the elements of the transformed observation noise ωk are uncorrelated and the coefficient estimators

in (4.15) have minimum variance [77].
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Proposition 2. The error covariance matrix under a dual source hypothesis is initialized as

H(p,q)
3 : Qk0−1|k0−1 =

 IJ ⊗
(
S(p)TP

(q)⊥
H S(p)

)−1
0

0 IJ ⊗
(
H(q)TP

(p)⊥
S H(q)

)−1

 (4.17)

where P
(p)⊥
S = IN−S(p)

(
S(p)TS(p)

)−1
S(p)T and P

(q)⊥
H = IN−H(q)

(
H(q)TH(q)

)−1
H(q)T project onto

the orthogonal complements of the subspaces
〈
S(p)

〉
and

〈
H(q)

〉
, respectively. The corresponding

state vector is initialized using (4.19) and (4.20).

Proof. Ideally, under H(p,q)
3 , x̂k0−1|k0−1 should contain signal and interference coefficients that

are free from the effects of each other. The MLEs of ak0−j ’s and bk0−j ’s under this two source

assumption can be obtained using oblique projection [77] matrices

E
(p,q)
S = S(p)

(
S(p)TP

(q)⊥
H S(p)

)−1
S(p)TP

(q)⊥
H

E
(p,q)
H = H(q)

(
H(q)TP

(p)⊥
S H(q)

)−1
H(q)TP

(p)⊥
S .

The matrices E
(p,q)
S and E

(p,q)
H have respective range spaces

〈
S(p)

〉
and

〈
H(q)

〉
and respective null

spaces
〈
H(q)

〉
and

〈
S(p)

〉
, and hence, we have

H(p,q)
3 : E

(p,q)
S zk0−j = S(p)ak0−j + E

(p,q)
S ωk0−j (4.18)

H(p,q)
3 : E

(p,q)
H zk0−j = H(q)bk0−j + E

(p,q)
H ωk0−j .

Now, the MLEs of the signal and interference coefficients under H(p,q)
3 are

H(p,q)
3 : âk0−j = S(p)†E

(p,q)
S zk0−j (4.19)

H(p,q)
3 : b̂k0−j = H(q)†E

(p,q)
H zk0−j
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and the state vector estimate is initialized using these coefficients as

H(p,q)
3 : x̂k0−1|k0−1 =

[
âTk0−1 · · · âTk0−J b̂Tk0−1 · · · b̂Tk0−J

]T
. (4.20)

Since steps to find Qk0−1|k0−1 under H(p,q)
3 are similar to those under H(p)

1 , we have

x̂k0−1|k0−1 − xk0−1 =



âk0−1

...

âk0−J

b̂k0−1

...

b̂k0−J


−



ak0−1

...

ak0−J

bk0−1

...

bk0−J


=



S(p)†E
(p,q)
S ωk0−1

...

S(p)†E
(p,q)
S ωk0−J

H(q)†E
(p,q)
H ωk0−1

...

H(q)†E
(p,q)
H ωk0−J


(4.21)

which follows from (4.18). Using the fact that

S(p)†E
(p,q)
S E

(p,q)T
S

(
S(p)†

)T
=
(
S(p)TP

(q)⊥
H S(p)

)−1

H(q)†E
(p,q)
H E

(p,q)T
H

(
H(q)†

)T
=
(
H(q)TP

(p)⊥
S H(q)

)−1

the covariance of the error term in (4.21) is found to be as shown in (4.17). �

Since zk’s are processed sequentially, the initial state estimates in (4.16) and (4.20) are formed

using the J observations prior to a given zk0 . While these observations might not contain strong

signatures of the sources associated with these estimates, these are the best linear estimates of the

coefficients that can be obtained.

All components necessary for generating θk for a given λ have now been provided, which may

subsequently be used to generate a corresponding ζk(θk) using (4.8). The variables ζk(θk)’s may

then be used to form test statistics for the hypothesis test in (4.3), as described next.
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4.3.4. Determining Observation Composition Using LLRTs

We may now introduce the LLRTs needed to assign a class label vector, ck =
[
α̂kp, β̂kq

]
,

with p ∈ {1, . . . , P} and q ∈ {1, . . . , Q}, consisting of one signal and one interference label, to zk.

Here “ ˆ ” denotes estimate of the indicator variables in (4.1) that determine the presence of signal

and/or interference.

Detection and Classification: As indicated by Fig. 4.1, the first steps for processing zk

are source detection, where it is decided whether to accept or reject H0, and source classification,

where estimates of the most likely signal and interference source types, p∗ and q∗, are found. This

is accomplished by forming a set of LLR, each of which may be used to test the hypothesis that

zk consists of noise alone versus the hypothesis that zk contains noise plus a type p signal source

and/or a type q interference source. Using the general form in (4.7) with θk’s generated using the

appropriate models, this LLR is given by

Λk

(
θ

(p,q)
3,k ,θ0,k

)
= ζk (θ0,k)− ζk

(
θ

(p,q)
3,k

)
(4.22)

where θ0,k and θ
(p,q)
3,k are the distribution parameters corresponding to models λ0 and λ

(p,q)
3 , respec-

tively. Detection of sources in zk is then performed using the LLRT

max
(p,q)

Λk

(
θ

(p,q)
3,k ,θ0,k

) reject H0

≥
<

accept H0

γ (4.23)

where γ is a predetermined threshold that adjusts the sensitivity of the detector. Estimates of the

signal and interference source types (classification) are then found using the test statistics already

calculated for detection as

(p∗, q∗) = arg max
(p,q)

Λk

(
θ

(p,q)
3,k ,θ0,k

)
≥ γ. (4.24)
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Assuming a transient source has been detected at time k, the dominant source and source

quantity tests outlined below can subsequently be initiated. In this case, (4.3) is reduced to testing

between H(p∗)
1 , H(q∗)

2 , and H(p∗,q∗)
3 . When hypothesis H0 is accepted, no further processing is

required for zk and the next observation zk+1 is evaluated. In this case, we have α̂k = β̂k = 0

so that ck = [0, 0]. Justification for using (4.24) to find p∗ and q∗ is based on the fact that, for

source types that were determined to be absent at time k − 1, the corresponding ζk

(
θ

(p,q)
3,k

)
’s are

found using reinitialized state variables, generated using oblique projections to remove the effects

of type q interference from the type p signal estimate and vice versa (see (4.19) in Section 4.3.3).

For sources types that were present at time k− 1, ζk

(
θ

(p,q)
3,k

)
is formed using the best (in the mean

squared error sense) linear estimates of the source signatures.

Dominant Source Test: When H0 is rejected for zk the next step involves determining

whether the dominant source is a type p∗ signal or a type q∗ interference (see Fig. 4.1). Note that

this step does not exclude the possibility that both sources are simultaneously present, but rather

it defines the most likely source in the single source case. To this end, the LLRT for determining

the dominant source is given by

Λk

(
θ

(p∗)
1,k ,θ

(q∗)
2,k

)
= ζk

(
θ

(q∗)
2,k

)
− ζk

(
θ

(p∗)
1,k

) reject H(q∗)
2

≥
<

reject H(p∗)
1

τ (4.25)

where θ
(p∗)
1,k and θ

(q∗)
2,k are the distribution parameters corresponding to models λ

(p∗)
1 and λ

(q∗)
2 ,

respectively, and τ is a predetermined threshold that may be adjusted based on the risk associated

with missing signals in a given application.

Source Quantity Test: Following the dominant source test, the remaining single source

hypothesis that has not been rejected (H(p∗)
1 or H(q∗)

2 ) is tested against the remaining dual source

76



Table 4.2. Class labels and indicator estimates under each hypothesis.

Accepted Hypothesis

H0 H(p∗)
1 H(q∗)

2 H(p∗,q∗)
3(

α̂k, β̂k

)
(0, 0) (1, 0) (0, 1) (1, 1)

ck [0, 0] [p∗, 0] [0, q∗] [p∗, q∗]

hypothesis, H(p∗,q∗)
3 . The LLRT for making this decision is

Fk

accept H(p∗,q∗)
3

≥
<

reject H(p∗,q∗)
3

η (4.26)

(
accept H(p∗)

1 or H(q∗)
2

)

where η is a predetermined threshold that should also be set based on the risk associated with

missing (weaker) signals and

Fk =


Λk

(
θ

(p∗,q∗)
3,k ,θ

(p∗)
1,k

)
, when H(q∗)

2 rejected

Λk

(
θ

(p∗,q∗)
3,k ,θ

(q∗)
2,k

)
, when H(p∗)

1 rejected

. (4.27)

This means that the single source log-likelihood value used to form Fk depends on the results of

the dominant source test in (4.25) (also see Fig. 4.1). Note that, at this stage, all ζk(θk)’s have

already been calculated for use in other LLRTs, and hence, these values may be used in (4.27) to

find Fk.

Upon completion of the source quantity test (or when no sources are detected in zk), a class

label ck may be assigned to this observation that depends on the accepted hypothesis according to

Table 4.2, which also provides the values of the estimated indicator variables, α̂k and β̂k, in each

case. The entire process in Fig. 4.1 may then be continually applied to subsequent observations

zk+j ’s indefinitely or until all available observations have been processed.
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Source Estimation: Once ck has been determined for zk, estimates of the identified source

signatures may then be obtained from the state estimates for the accepted hypothesis, if desired.

Specifically, the coefficient estimates, âk and/or b̂k, for time k, can be extracted from x̂k|k and used

in conjunction with their respective basis matrices, S(p∗) and/or H(q∗), to yield estimates of the

vectors representing the signal and interference components, denoted by ŝk and ĥk, respectively.

In particular, these estimates are found (see Table 4.1) as

H(p∗)
1 : ŝk = R

1
2
wS(p∗)DT x̂k|k

H(q∗)
2 : ĥk = R

1
2
wH(q∗)DT x̂k|k

H(p∗,q∗)
3 : ŝk =

[
R

1
2
wS(p∗) 0N×M

]
DT x̂k|k (4.28)

ĥk =

[
0N×M R

1
2
wH(q∗)

]
DT x̂k|k

where each basis matrix is premultiplied by R
1
2
w since their columns are basis vectors for the

transformed observation space. In the case H(p∗,q∗)
3 is accepted, a type of source separation is

performed by producing estimates, ŝk and ĥk, that represent the separated signal and interference

components of the original observation yk, respectively.

4.4. Conclusions

This chapter introduced the first of two methods intended to address the problem of detecting,

classifying, and estimating the signatures of random transient acoustical sources from sequential

multivariate data, where a signal and an interference source, both of unknown type, may be si-

multaneously present. In such problems, it can be difficult to quantify the effects of the presence

of one source on the detection of the other since all sources have unknown scaling and times of

arrival, and their signatures may overlap to varying degrees. The SRCT method deals with these
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complications using a series of LLRT, designed specifically to discover the composition of obser-

vations that follow the proposed model. Specifically, detection and classification are handled with

one LLRT, while two other tests determine the composition of the observation in terms of sig-

nal and interference, assuming the detection stage rejected the null hypothesis. Each test uses

the log-likelihoods of distribution parameters under specific source composition hypotheses, which

incorporate known information about the dependencies between basis coefficients for each source

type, thus yielding a cohesive framework that satisfies all of the requirements mentioned in Section

1.3. The SRCT method may also be used for estimating the signatures of sources that are deter-

mined to be present, thus performing separation of signal and interference components in the case

of superimposed signatures.

The SRCT method is the first of two approaches introduced in this thesis that offer compre-

hensive solutions to the problem at hand. The advantages and disadvantages of each method are

discussed in more detail in Chapter 6. For time time being, we note that SRCT is most useful when

priorities are relatively low computational complexity, having a relatively small number of training

parameters that must be chosen, and having the ability to assign class labels to both signal and

interference sources, rather than just the former.
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CHAPTER 5

A Sparse Coefficient State Tracking Framework

5.1. Introduction

Chapter 3 introduced two existing fundamental approaches for detecting and classifying tran-

sient sources, with the implication that they were ideal candidates to use as building blocks for

constructing more comprehensive solutions to this problem. The previous chapter introduced a

particular implementation of one of these fundamental approaches, called the sequential random

coefficient tracking (SRCT) method, that detects and classifies sources separately in individual

observations. The SRCT method satisfies all of the requirements of successful solutions to the

soundscape characterization problem outlined in Section 1.3 and, in the next chapter, is shown to

perform well on the data in Chapter 2. On the other hand, the SRCT method assumes that only

one type of interference may be present at a time, which is an impractical assumption for some

soundscape data containing an abundance of signatures associated with different types of wildlife

and weather effects. Additionally, the linear autoregressive basis coefficient model used by this

method can fail to capture subtle or novel variations in acoustical events, leading to less accurate

estimates.

This chapter introduces a new transient source characterization method based on an extension

of the other fundamental approach detailed in Chapter 3, namely the cumulative sum (CUSUM)

procedure that implements a sequential version of a log-likelihood ratio (LLR) test. This sparse

coefficient state tracking (SCST) method was designed to overcome the main issues of the SRCT

approach mentioned above, by drawing from the concepts of classification in a sparse domain [48–51]

and modeling of sparse atom coefficients [30, 56–58]. The main advantage of the SCST method is its

applicability to data containing signal, interference, and noise components that may not necessarily

follow models based on convenient parametric distributions, e.g., multivariate Gaussian. To simplify
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the data representation, sparse coding and quantization steps are first applied to each incoming

observation. This allows for using a Bayesian network (BN) [78] to model the temporal evolution

of typical acoustical events. The likelihoods of BNs corresponding to different signal types and

noise may then be used to form a set of cumulative test statistics for detection and classification

of multiple transient signal events.

This chapter is organized as follows. Section 5.2 describes the problem formulation in the

original data space, including the observation model and generalized likelihood ratios tests (GLRT)

used for detection and classification of signals. Since implementation of this framework in the

original data space is difficult and/or impractical for many applications, Section 5.3 introduces

the process for obtaining sparse coefficient state data representations, as well as the associated

reformulations of the GLRTs, thus yielding the proposed SCST method. Finally, Section 5.4

provides concluding remarks.

5.2. Detection and Classification of Transient Events - Original Data Space

The goal of this section is to develop the basic framework for performing detection and clas-

sification in the original sequential multivariate data space using an extension of the CUSUM

framework in Section 3.2.2. The benefits of simplifying the data are then discussed to motivate the

development of the SCST method in the next section, which still relies on the primary underlying

mechanics discussed below.

5.2.1. Observation Model and Detection and Classification Hypotheses

Let Yn
1 = {yk}nk=1 , n = 1, 2, . . . be the observation sequence recorded as of the current time

n, where yk ∈ RN is the observation at time k. Data arrives continually, meaning n is increasing.

Detecting and classifying multiple transient signals requires two distinct phases: 1) signal detection

to look for the presence of a signal while it is assumed that none are present, and 2) quiescent

detection to look for observations that contain no signal while it is assumed that one is present.
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The idea is to alternate between these two phases as new yn’s arrive, while performing classifica-

tion by exploiting all available information within a given detected signal event. Note that this

phase switching is conceptually similar to the approach used in Section 3.3 for sequential fusion of

classification decisions.

Since signals are continually detected and classified, it is helpful to adopt notation associated

with the onset of various detection periods, relative to the current time n. Let k0 and k1 denote

the unknown onset times of the next quiescent and signal periods, respectively, and let k̂0 and

k̂1 denote the estimated (known) onset times for the most recently detected quiescent and signal

periods, respectively. Fig. 5.1 demonstrates the two-phase concept by showing the circumstances

for implementing each phase, as well as the most recent estimated onset times relative to the current

time n. This figure also shows the test statistics for each phase, which are discussed in Section

5.2.2.

When the data has been in a quiescent period since time k̂0, signal detection and classification

is performed on each yn according to the following multiple hypotheses test

H0 : yk = βk

Q∑
q=1

h
(q)
k + wk, k̂0 ≤ k ≤ n (5.1)

H(p)
1 : yk =


βk

Q∑
q=1

h
(q)
k + wk, k̂0 ≤ k < k1

s
(p)
k + βk

Q∑
q=1

h
(q)
k + wk, k1 ≤ k ≤ n

where s
(p)
k is a random class p ∈ [1, P ] signal vector, h

(q)
k is a random class q ∈ [1, Q] interference

vector, βk is a binary variable indicating the presence (βk = 1) or absence (βk = 0) of interference,

and wk is an independent and identically distributed (IID) noise vector with E [wk] = 0. As

can be seen, under H(p)
1 the onset of signal components s

(p)
k , k ∈ [k1, n] occurs at the unknown

time k1, and the goal is to find the new estimate k̂1, as well as the class of this signal. Unlike
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Figure 5.1. Illustration of the two phase detection approach, where the durations
of several phases are shown above a 1/3 octave observation sequence (bottom), and
the corresponding test statistics used to detect signal (middle) and quiescent (top)
periods. The times where the onset of a quiescent period and a signal event were
last detected, denoted k̂0 and k̂1, respectively, are shown relative to the current time
n. A signal and quiescent period are detected when their associated LLRs increase
by at least η and γ, respectively.

in Chapter 4, interference is considered purely as a nuisance in this chapter, meaning it is not

specifically detected and classified. The summation over h
(q)
k ’s indicates that multiple types of

interference may be simultaneously present, where h
(q)
k = 0 if class q interference is absent from yk.

As mentioned in Chapter 1, interference differs from noise in several ways, namely it is 1) typically

not IID or zero mean, 2) associated with a specific set of acoustical sources that are usually not of

interest, and 3) not assumed to always be present, i.e., βk = 0 may be true.

The class label assigned to yn is denoted by cn ∈ [0, P ] at time n, where cn = 0 means yn ∈ H0

and cn = p means yn ∈ H(p)
1 . As discussed below, event-wide classification is performed, meaning

the same label is assigned to all consecutive samples for which a signal detection occurred only after

the next quiescent period has been detected. The reason for this is that, due to the assumed random
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and time-varying nature of signals, some events associated with different signal types may appear

similar for subsets of their observations. Therefore, more accurate labels are assigned when taking

into account the likelihood of each signal model over the course of all observations associated with

an event (signatures of one signal). To facilitates this classification framework it is assumed that,

under H(p)
1 , only one signal is present in yn, meaning the signatures of two signals will never be

superimposed. Furthermore, it is assumed that two different signals cannot be present in adjacent

observations, i.e., cn−1 = p⇒ cn ∈ {0, p}.

Since transient signals have finite extent, the next quiescent period must be detected before

the process of detecting the next signal can begin. Therefore, when a signal has been present since

time k̂1, the following hypothesis test is used in place of (5.1) to perform quiescent detection

H(p)
1 : yk = s

(p)
k + βk

Q∑
q=1

h
(q)
k + wk, k̂1 ≤ k ≤ n (5.2)

H0 : yk =


s

(p)
k + βk

Q∑
q=1

h
(q)
k + wk, k̂1 ≤ k < k0

βk

Q∑
q=1

h
(q)
k + wk, k0 ≤ k ≤ n

i.e., s
(p)
k ’s cease to be extant at the unknown time k0 under H0. In summary, signal and quiescent

detection are performed when yn−1 ∈ H0 and yn−1 ∈ H(p)
1 , respectively.

5.2.2. GLRTs for Hypothesis Testing

5.2.2.1. Signal Detection. Throughout the remainder of this section, it is assumed that βk =

0, ∀k in (5.1) and (5.2), i.e., interference is not present. This stems from the fact that the SCST

method addresses interference through the use of an alternate data representation, which is pre-

sented in Section 5.3. To implement the hypothesis test in (5.1) consider the log-likelihood ratio

84



(LLR) for the general null and alternative hypothesis parameter sets, denoted by λ0 and λp, re-

spectively, given the data Yn
k̂0

Ln
k̂0

(λp, k1) = ln

`
(
λp, k1; Yn

k̂0

)
`
(
λ0, k1; Yn

k̂0

)
 (5.3)

= ln

 fλ0

(
Yk1−1

k̂0

)
fλp
(
Yn
k1

)
fλ0

(
Yk1−1

k̂0

)
fλ0

(
Yn
k1

)
 = ln

 fλp
(
Yn
k1

)
fλ0

(
Yn
k1

)


where fλ

(
Yn
k̂0

)
is a general probability distribution modeled by the parameter set λ ∈ {λ0, λp}.

Note that (5.3) is similar to the LLR implemented by the CUSUM method in Section 3.2.2, except

that dependent observations are assumed here. This LLR is a function of two unknowns, namely

the change time k1 and the signal parameter set λp. The second equality in (5.3) comes from

assuming that, under H(p)
1 , yn’s before and after the unknown change time k1 are independent,

while all yn’s are independent under H0. These assumptions are the reason βk = 0 in this section,

namely since interference is typically not IID, thus invalidating the second equality when βk = 1.

To implement (5.1), consider the GLRT for change detection with an unknown signal parameter

set after the hypothesis change [33]

max
k̂0≤k≤n

max
p

Ln
k̂0

(λp, k)

yn 6∈ H0

≥
<

yn ∈ H0

η (5.4)

where η > 0 is a predetermined signal detection threshold. Double maximization makes this test

generalized and states that a signal is detected when any Ln
k̂0

(
λp, k̂0

)
(i.e., for any p ∈ [1, P ])

increases by at least η [33], and the earliest time this level of increase is witnessed marks the

estimated signal onset time k̂1. This concept is illustrated by the plot of the signal detection

statistic in the middle of Fig. 5.1, which shows the LLR for one signal type (plane) increasing as

new observations containing its signatures arrive, but decreasing otherwise.
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5.2.2.2. Quiescent Detection. Recall that a complete solution must account for the inevitably

that a detected signal will cease to be extant. This process is simplified by assuming that immediate

switching from one signal class to another will not be encountered in real-life cases. This involves

the test in (5.2), which uses the LLR

Fn
k̂1

(λp∗ , k0) = ln

 `
(
λ0, k0; Yn

k̂1

)
`
(
λp∗ , k0; Yn

k̂1

)


= ln

 fλ0
(
Yn
k0

)
fλp∗

(
Yn
k0
|Yk0−1

k̂1

)
 (5.5)

where

p∗ = arg max
p

max
k̂0≤k≤n

Ln
k̂0

(λp, k) (5.6)

is the maximum likelihood (ML) signal model at time n, i.e., λp∗ satisfies (5.4). This means that

quiescent detection is performed relative to the most likely signal class, though classification is only

performed when the ML signal is no longer extant.

The test used to implement (5.2) is

max
k̂1≤k≤n

Fn
k̂1

(λp∗ , k)

yn ∈ H0

≥
<

yn 6∈ H0

γ (5.7)

where γ > 0 is a predetermined quiescent detection threshold and maximization is performed with

respect to the unknown onset time of the next quiescent period k0. Equation (5.7) states that H0 is

again accepted for samples starting at time n (i.e. k̂0 = n) if Fn
k̂1

(
λp∗ , k̂1

)
has increased by at least

γ at this time. This concept is illustrated by the top plot in Fig. 5.1, which shows the quiescent

LLR decreasing when a signal is present, but increasing during times leading up to detection of

a quiescent period when signal components are absent. Note that this LLR is zero during signal

detection phases since it is not used during these times.
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5.2.2.3. Signal Classification. To exploit all available evidence for making classification deci-

sions, labels are only assigned to a set of observations associated with the most recently detected

event after using (5.7) to again accept H0, i.e., end of extant. The assigned label p∗ corresponds

to the ML model parameter set λp∗ (as in (5.6)) at time k̂0 − 1, i.e., the time step immediately

preceding the start of the newly detected quiescent period. More formally {ck}k̂0−1

k=k̂1
= p∗.

5.2.3. Practical Considerations

As long as a reasonable method for calculating likelihoods `
(
λp, k; Yn

k̂0

)
, ∀p can be devised,

the approach outlined in this section can be used to continually detect and classify multiple signals

in the presence of noise. The practicality of forming the required LLRs is largely dependent on the

chosen parameterization λp. Defining fλp

(
Yn
k̂0

)
as a prior probability distribution parameterized

by λp is generally infeasible without assuming independence of yn’s under each H(p)
1 , since n is

always increasing. Since the presence of interference has not yet been considered, it is possible to

fit, e.g., an HMM to yn’s under H(p)
1 , and use an approach similar to that in [35] for detecting

and classifying signals. However, as mentioned in Section 1.3, the intermittent presence of multiple

types of interference is a major consideration for the soundscape characterization problem consid-

ered in this thesis, and this leads to difficulties when using HMMs. In particular, if a single HMM

is designed to model one signal type superimposed with different combinations of interference, the

variations in the data to be modeled would be vast and difficult to capture with a set of multivariate

probability distributions. On the other hand, using separate HMMs to model each unique combi-

nation of interference could lead to an abundance of models, depending on how many interference

sources are considered, and frequent switching between these models as new observations are eval-

uated. As described in the next section, the idea behind the SCST method is to use sparse coding

to simplify the temporal dependencies in the data as well as remove a large portion of the inter-

ference components, i.e., separability of signal and interference components in the sparse domain
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is assumed. This allows for efficient likelihood calculation without making extensive assumptions

about the structure of signals to be detected.

5.3. Detection and Classification of Transient Events - Sparse Coefficient State

Space

The SCST method is implemented according to the block diagram in Fig. 5.2. As can be

seen, each incoming data vector yn is first transformed to zn using sparse coding and coefficient

quantization, in order to simplify the relationships between observations as well as the values they

can assume, respectively, as discussed in Sections 5.3.1 and 5.3.2. Essentially, these steps provide

a realistic and flexible means for calculating the likelihoods of λ’s given representative data. These

likelihood values may then be updated as detailed in Section 5.3.3. As mentioned before, in this

section it is assumed that βk = 1 in (5.1) and (5.2), meaning multiple types of interference may

be present at any time. Robustness to this interference is inherently handled during the sparse

coding stage, as the signal and interference components of the observation can be mostly separated

and associated with different atoms in the dictionary. The process then proceeds as in Section 5.2,

where LLRs are used to perform signal and quiescent detection, though here zn’s are used in place

of yn’s.

Sparse
Coding

Quantization

Update Signal
Detection LLRs

Update Quiescent
Detection LLR

Figure 5.2. Block diagram of the proposed signal detection and classification
framework. The dashed and dotted lines indicate that the connected processes

are only executed during the quiescent detection (when yn−1 ∈ H(p)
1 ) and signal

detection (when yn−1 ∈ H0) phases, respectively.
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5.3.1. Sparse Coding

To simplify the dependencies between consecutive observation vectors and make the structure

of nonstationary acoustical events more tractable, the SCST method first finds a sparse approx-

imation of yn when it arrives, denoted by xn = [x1,n · · · xi,n · · · xM,n]T ∈ RM . An underlying

assumption is that any s
(p)
n or h

(q)
n that may be observed admits a sparse representation over some

rank N dictionary matrix A = [As,Ah] ∈ RN×M , with N �M and normalized columns (atoms).

Furthermore, it is assumed that the atoms typically used to provide sparse representations of s
(p)
n ’s

are mostly disjoint from those used to represent h
(q)
n ’s, in order to provide separability of these

different components. This implies that signal and interference components can be represented in

terms of two dictionaries, i.e., As and Ah, respectively, that are relatively incoherent [79]. Note

that some overlap between the atoms used to represent these two components is inevitable in many

cases, but reasonably small overlap will typically not lead to a large decrease in performance. Fur-

ther details concerning the recommended structure for A are discussed below. Apart from signal

and interference separability, the merit of using xn’s is that they will contain many coefficients close

or equal to zero. This means xi,n will be dependent on a relatively small set of other xi′,n−j with

time lag j ≥ 0, and hence, the temporal evolution of the sequence Xn
1 = {xk}nk=1 will be easier to

model and track than that of Yn
1 .

To generate xn, consider the underdetermined linear system Av = yn, which has infinitely many

solutions v, meaning constraints are required to find a unique solution. Since sparsity is desired

and observations are noisy, an intuitive approach is to find xn using the following optimization

problem [54, 80]

xn = min
v
‖v‖0 subject to ‖yn −Av‖2 ≤ δ (5.8)

where δ ≥ 0 is an error tolerance proportional to ‖wn‖2 [54], and ‖·‖0 is the `0-norm. The

motivation for permitting a discrepancy of δ between yn and Av is to extract a xn that contains

fewer components representing wn when compared to the case of using an equality constraint.
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Roughly speaking, assuming high SNR, each xn may be viewed as a sparse representation of

yn −wn.

It is well-known [54] that (5.8) is NP-hard due to non-convexity of the `0-norm. Therefore,

approximate solutions to (5.8) are required for efficient processing. The SCST method is flexible

in that any pursuit method can be used to obtain xn. Common choices are matching pursuit

algorithms [61], which are greedy approaches that select dictionary atoms sequentially, and basis

pursuit algorithms [54, 80], which transform (5.8) into a convex problem by replacing the `0-norm

with the `1-norm. Since the criteria for selecting a proper value of δ are dependent on the approach

used to solve (5.8), literature that discusses a given sparse coding algorithm in detail should be

referenced for this purpose.

To obtain consistently sparse xn’s and maximize signal discrimination, A must be intelligently

designed relative to any signal and interference vectors that may be observed. In this chapter, it is

assumed that

A = [S1 · · · SP H1 · · · HQ] (5.9)

where Sp and Hq are subdictionaries capable of providing sparse representations of class p signal

vectors s
(p)
n ’s and class q interference vectors h

(q)
n ’s, respectively. Such subdictionaries may be

extracted by applying, e.g., K-SVD [55] or any other sparse dictionary learning algorithm (e.g.,

[81, 82]) to yn’s representing the associated signal/interference types. Parametric dictionaries (e.g.,

wavelets) may also be used by associating certain atoms with the broad categories of signal and

interference. Without loss of generality, it is assumed that the first Ms and last Mh columns of

A are associated with the composite signal and interference dictionaries, i.e., As = [S1 · · · SP ] ∈

RN×Ms and Ah = [H1 · · · HQ] ∈ RN×Mh , respectively, with M = Ms + Mh. Consequently, the

sparse coding process incorporates robustness to interference by encoding the majority of signal

and interference energy using the first Ms and last Mh coefficients in xn, respectively. Likelihoods

used for signal detection may then be based only on the Ms signal coefficients, while the Mh
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interference coefficients are ignored as seen below, i.e., valid separation between these two source

types is assumed. As explained in Section 5.3.3, the separation between these components need not

be perfect [79], as the learned signal models can account for the fact that some signal energy will

be present in {xMs+i,n}Mh
i=1, while all learned models can account for the fact that some interference

energy will be present in {xi,n}Ms
i=1. On the other hand, encoding most of the interference energy

in {xMs+i,n}Mh
i=1 allows for improved discrimination between different signal types and noise by

discarding information that is a nuisance to detection and classification.

5.3.2. Quantization of Sparse Coefficients

Just as xn is extracted from yn to simplify the dependencies between consecutive observation

vectors, the sparse coefficient state vector zn = [z1,n · · · zi,n · · · zMs,n]T ∈ RMs is in turn generated

by quantizing the coefficients in xn corresponding to signal atoms. Instead of assuming xi,n’s

obey a convenient but unlikely distribution (e.g., Gaussian [56]), quantization ensures they may be

parameterized in a simple but accurate manner using a collection of categorical (i.e., L-level discrete)

distributions, while still retaining sufficient information for signal detection and classification. More

explicitly, sparse coefficient states are obtained as

zi,n =


0, |xi,n| ≤ ε

H (xi,n) , otherwise

, i ∈ [1,Ms] (5.10)

where

H(x) = l if x ∈ (tl−1, tl] , l ∈ [1, L− 1] (5.11)

is a (L−1)-level quantization function dependent on the distribution of x under different hypotheses

(defined below), and ε is a predetermined threshold used to determine those coefficients that are

inactive (xi,n ≈ 0). The purpose of ε is to give coefficients close or equal to zero their own state in

order to exploit the sparsity of Xn
1 and simplify parameterization, as an overwhelming percentage of
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xi,n’s will be near zero assuming the matrix A is appropriately designed. Setting ε too low can lead

to zn’s that lack sparsity if yn’s contain noise and an error tolerant version of (5.8) is used, while

setting ε too high can lead to discarding important discriminatory features. Practically speaking, a

suitable value of ε can be that which produces zi,n = 0 for some large (SNR dependent) percentage

of xi,n’s extracted from observations in the training set containing noise alone.

The quantization function H(x) is characterized by transition levels t = [t0, t1, . . . , tL−1], with

−∞ = t0 < t1 < . . . < tL−1 = ∞ and L ≥ 2, and uses reconstruction levels r = [1, . . . , L− 1],

though the latter is chosen for simplicity as the actual values used for reconstruction are irrelevant

to detection and classification performance [83]. Clearly, smaller L leads to simpler parameteri-

zation of the data but a greater loss of discriminatory information. In general, L should be set

as large as possible while avoiding an abundance of sample-poor cases when forming categorical

distributions (used in Section 5.3.3) representing zi,n’s from training data. In other words, since

the true probability distributions for zi,n’s are rarely if ever available, quantization may be viewed

as a necessary step for dealing the realities of limited training data in real-world applications, while

refraining from making assumptions about these distributions. Note that, when L = 2, no quantizer

is used and zi,n ∈ {0, 1}.

On the other hand, it is important to ensure that zi,n’s contain as much information useful for

signal detection and classification as possible for a given L. To this end, the maximum J-divergence

quantizer [84] is used that, in the case of multiple hypotheses, specifies t to maximize the sum of

the pairwise divergence between sets of distributions corresponding to zi,n’s representing different

classes. The importance of J-divergence is largely attributed to results [85, 86] linking a maximum

of this measure to minimum error probabilities when discriminating between two hypotheses, i.e.,

bounds on the latter can be expressed in terms of the former [83]. In general, SCST discriminates

between different hypotheses by finding the likelihood of a given pattern of sparse coefficient states.
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However, the goal of quantization is to use a single function to generate states with marginal

distributions that are optimal (in the sense of J-divergence) for this discrimination.

Define X
(p)
i and X

(0)
i as random variables representing atom coefficients under H(p)

1 and H0,

respectively, with realizations that are sparse coefficients xi,n’s. The quantizer function H(·) in

(5.11) is characterized by the transition vector t that maximizes [84]

D(t) =

M∑
i=1

P∑
p,p′=0
p6=p′

d
(p,p′)
i (t) (5.12)

where

d
(p,p′)
i (t) =

L∑
l=1

(
r

(p′)
i,l (t)− r(p)

i,l (t)
)

ln

r(p′)
i,l (t)

r
(p)
i,l (t)


is the J-divergence between two distributions of quantized coefficients belonging to different classes,

p and p′, and

r
(p)
i,l (t) = Pr

[
tl−1 < X

(p)
i ≤ tl

]
=

∫ tl

tl−1

f
X

(p)
i

(x)dx (5.13)

is the probability that X
(p)
i , with probability density function f

X
(p)
i

(x), lies in the interval (tl−1, tl].

As can be seen, D(t) is the sum of the distances between distributions for each quantized atom

coefficient under each pair of hypotheses. The use of separate distributions for each coefficient in

(5.12) is unique to this work and is done to exploit the fact that different signals often have sparse

representations in terms of different atoms, especially for dictionaries constructed as in (5.9). In

other words, if fX(p)(x) represents the distribution of all sparse coefficients for signal type p, then

the distance between fX(p)(x) and fX(p′)(x), p 6= p′ may be small, but it can often be assumed

that the distance between some f
X

(p)
i

(x) and f
X

(p′)
i

(x), p 6= p′ for a given i is much larger. For

instance, say the ith coefficient xi,k is associated with an atom from the subdictionary Sp. Owing

to the structure of A and assumed sparsity of xk’s, it is more common in this scenario to have

xi,k 6= 0 when a class p signal is present, but xi,k = 0 when a class p′ 6= p signal is present, meaning
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f
X

(p′)
i

(0)� f
X

(p)
i

(0). Thus, finding t to maximize (5.12) allows for generating zi,k’s that are optimal

for class discrimination for a given i.

5.3.3. Probability of Coefficient State Sequences

This subsection explicitly defines the probability fλ
(
Znk1
)

of the sparse coefficient state sequence

Znk1 = {zk}nk=k1
(or Znk0), given the parameter set λ ∈ {λp, λ0}, used to form LLRs equivalent to

those in (5.3) and (5.5) for hypothesis testing under the SCST framework. In essence, it is shown

how the proposed coefficient state representation facilitates realistic formation of these tests even

for long and high dimensional data sequences. Each model parameter set defines a BN [78], denoted

by λp = {Gp,Θp}. Here, Gp is a directed acyclic graph [78, 87] with nodes Z
(p)
i,k−j , i ∈ [1,Ms], that

are categorical random variables with time delay j ∈ {0, 1} and corresponding realizations that

are sparse coefficient states zi,k−j ∈ [0, L− 1] from (5.10). Edges in Gp describe the dependencies

between Z
(p)
i,k−j ’s, i.e., the “parents” of each coefficient state. The parameters of the conditional

distributions associated with the random variables Z
(p)
i,k−j ’s are elements of the set Θp, and are

described in more detail below. A BN allows for efficiently calculating a complicated joint proba-

bility fλp
(
Znk1
)

by decomposing it into a product of conditional probabilities of zi,k’s given other

dependent states, which is much simpler to evaluate in practice. BNs are appropriate for transient

detection from multivariate observations as the graph Gp is well-suited for describing causal tem-

poral relationships owing to constraints that certain nodes (random variables) must be processed

earlier than others [78].

We first show how to decompose the probability distribution used to form the numerator of the

SCST test statistic equivalent to that in (5.3), which can be written as

fλp
(
Znk1
)

= fλp (zk1)
n∏

k=k1+1

fλp

(
zk|Zk−1

k1

)
(5.14)
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where fλp (zk1) is the prior probability of zk1 under H(p)
1 . Assuming Gp imposes a first order

dependency structure, zk is only dependent on zk−1, meaning

fλp

(
zk|Zk−1

k1

)
= fλp (zk|zk−1) (5.15)

= fλp (z1,k|zk−1)

Ms∏
i=2

fλp
(
zi,k|{zi′,k}i−1

i′=1, zk−1

)

where the second equality is a result of using the chain rule to decompose fλp (zk|zk−1) into a

product of conditional probabilities of zi,k given zk−1 and previous elements in zk. The first order

assumption in (5.15) is used for simplicity of derivations, and may be dropped if it is invalid for a

particular application.

We now exploit the fact that the dependency structure of zi,k’s can be simplified according

to the BN λp being evaluated. More specifically, owing to sparsity of zk’s, many zi′,k−j , i
′ 6= i

associated with class p′ 6= p signal atoms will be zero when a type p signal is present, meaning

the corresponding random variables Z
(p)
i′,k−j ’s for λp carry little to no information about Z

(p)
i,k ’s

associated with atoms in the same-class subdictionary Sp. While sparsity is the predominant factor

that enables a simplified dependency structure, there may be other application-specific attributes

that allow for independence of Z
(p)
i,k ’s. For instance, for the data in Chapter 2, certain broadband

components of plane signatures are typically only present after the onset of specific narrowband mid-

frequency components, meaning a node representing the former may be considered conditionally

independent of other nodes besides that representing the latter. Regardless, the idea is to measure

the dependence between pairs of coefficients during training to determine the edges that connect

nodes in a given Gp.

The above justification means (5.15) may be reduced to

fλp (zk|zk−1) =

Ms∏
i=1

f
θ
(p)
i|S

(
zi,k|S

(p)
i

)
(5.16)
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where S(p)
i =

{
zi′,k−j : J

(
Z

(p)
i,k , Z

(p)
i′,k−j

)
> µ

}
, j ∈ {0, 1} with i′ < i when j = 0 (owing to

(5.15)), and J(Z,Z ′) is a measure of dependence between random variables Z and Z ′, e.g., mutual

information is used for the results in Chapter 6. Therefore, θ
(p)
i|S ∈ Θp is a length L categorical

parameter vector for the conditional probability distribution associated with the ith coefficient state

under H(p)
1 , given S(p)

i . In other words, θ
(p)
i|S encodes the probability that Z

(p)
i,k = l for l ∈ [0, L− 1],

given that surrounding coefficient states Z
(p)
i′,k−j , that Z

(p)
i,k is found to be dependent on, are equal

to specific values zi′,k−j ∈ S
(p)
i . Clearly, there is a separate θ

(p)
i|S for each i, p, and possible set S(p)

i .

Note that dependence between Z
(p)
i,k−j ’s associated with different subdictionaries may exist.

In general, J(Z,Z ′) can be any measure that best captures the dependence of Z on Z ′ for

specific distributions of each, so long as it is easily calculated from training data to form Gp. In

terms of the graph Gp, if J
(
Z

(p)
i,k , Z

(p)
i′,k−j

)
exceeds a predetermined threshold µ then Z

(p)
i′,k−j is a

parent of Z
(p)
i,k (an edge in Gp connects them) and zi′,k−j ∈ S

(p)
i . This concept is illustrated by the

example in Fig. 5.3, which shows the dependency structure used to calculate a single term in (5.15),

and the simplified dependency structure imposed by the BN for calculating a single term in (5.16).

This figure also shows that S(p)
i ⊆

{
{zi′,k}i−1

i′=1, zk−1

}
. Selection of the threshold µ can be based

on examining the empirical probability density function of J(Z,Z ′) for training data to look for

statistically significant values. Typically, there is a high probability associated with J(Z,Z ′) ≈ 0

due to sparsity. Setting µ too high results in ignoring potentially useful discriminatory information.

Setting µ too low can lead to large sets S(p)
i , an abundance of conditional distributions, and generally

poor sampling of these distributions, thus creating a poor fit of the model λp to the training data.

To complete the decomposition of (5.14), the prior probability of observing zk1 for λp is required,

and may be written as

fλp (zk1) = fλp (z1,k1)

Ms∏
i=2

fλp
(
zi,k1 |{zi′,k1}

i−1
i′=1

)
=

Ms∏
i=1

f
φ

(p)
i|T

(
zi,k1 |T

(p)
i

)
(5.17)
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Figure 5.3. Example dependency structure imposed on Z
(p)
3,k by λp for zk ∈ R4.

Dashed lines enclose variables Z
(p)
3,k is dependent on using the decomposition in (5.15).

Dotted lines enclose the reduced set of variables Z
(p)
3,k is dependent on according to

the measure J
(
Z

(p)
3,k , Z

(p)
i′,k−j

)
(e.g., mutual information), thus defining edges in Gp

(represented by arrows) and the set S(p)
3 .

where T (p)
i =

{
zi′,k1 : J

(
Z

(p)
i,k1

, Z
(p)
i′,k1

)
> µ

}
, i′ < i and Z

(p)
i,k1

and Z
(p)
i′,k1

are random variables with

corresponding realizations zi,k1 and zi′,k1 , respectively, that are states of different coefficients in the

first observation associated with a class p signal event. As before, φ
(p)
i|T ∈ Θp is a length L categorical

parameter vector for the prior probability distribution associated with the ith coefficient state under

H(p)
1 , given T (p)

i . The prior probabilities are defined similar to the conditional probabilities in (5.16)

except they are conditioned on T (p)
i rather than S(p)

i , where the former does not contain coefficient

states zi′,k1−1’s from the previous vector. This is due to the fact that the first vector in a signal

event is independent of previous vectors and, consequently, the interelement dependency structure

of zk1 may be different from that of subsequent vectors in the event. The elements of T (p)
i are still

dictated by Gp, and hence, a given λp contains all the necessary components for calculating the
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probability of observing Znk1 under H(p)
1 . The full distribution parameter set associated with λp can

now be written as

Θp =

{{
θ

(p)
i|S

}
i,S
,
{
φ

(p)
i|T

}
i,T

}
.

We now show how to decompose the denominator of the SCST test statistic equivalent to that

in (5.3), i.e., the probability of Znk1 given λ0. Since interference terms are mostly nullified by the

sparse coding process, and since noise is IID, we can write

fλ0
(
Znk1
)

=

n∏
k=k1

fλ0 (zk) . (5.18)

Using a similar concept to that in (5.17), each term on the right side of (5.18) can be expressed as

fλ0 (zk) = fλ0 (z1,k)

Ms∏
i=2

fλ0
(
zi,k|{zi′,k}i−1

i′=1

)
=

Ms∏
i=1

f
φ

(0)
i|T

(
zi,k|T

(0)
i

)
(5.19)

where T (0)
i =

{
zi′,k : J

(
Z

(0)
i,k , Z

(0)
i′,k

)
> µ

}
, i′ < i is a set defined similar to T (p)

i , but for H0

coefficient state sequences. Naturally, φ
(0)
i|T ∈ Θ0 is a length L categorical parameter vector defined

similar to φ
(p)
i|T and the elements of T (0)

i are dictated by the edges in G0.

The required BNs, λ0 and λp’s, can be learned [78] using a set of training sequences for each

hypothesis. The dependence measure J(Z,Z ′) between random variables representing the coefficient

states is fully observable, meaning Gp has a closed form given a specific set of training data. Each

parameter vector in Θp can then be found using ML estimation by tabulating the number of

times each coefficient is equal to a specific value given the associated set of dependent coefficient

states. This training procedure allows for imperfect separation between signal and interference

when finding xn’s since λp will model the dependency structure of Znk1 when a class p signal is

present, possibly superimposed with multiple types of interference. In other words, even if Znk1
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does not fully represent all of the signal components originally present in Yn
k1

, and additionally

contains some interference components, training λp using such superimposed events accounts for

this.

5.3.4. Sequential GLRT Implementation using Sparse Coefficient States

One of the major advantages of the GLRTs in (5.4) and (5.7) is that they can be implemented

sequentially for applications where data is continually arriving and intermittently present transient

signals must be constantly detected and classified. For binary hypothesis testing problems, this

sequential updating is similar to the CUSUM procedure (see Section 3.2.2), also known as Page’s

test [34], which was originally formulated for the case of independent observations. This “CUSUM-

like” procedure [35] (so called because dependent observations are assumed) used for sequential

implementation of the GLRTs produces the same results as using the standard GLRTs in (5.4)

and (5.7), when given the same data and parameters. This subsection presents the proposed SCST

implementation of the GLRTs when using BNs and a coefficient state sequence Znk1 , rather than

general model parameter sets and the original data sequence Yn
k1

, as in Section 5.2.2.

To implement a sequential version of the signal detection phase of the SCST method, calculating

the GLRTs in (5.3) is replaced by calculating test statistics given by

Bp(n) = max{0, Bp(n− 1) + bp(n)}, n = k̂0, k̂0 + 1, . . . (5.20)

and initialized as Bp(k̂0 − 1) = 0, ∀p. This statistic is updated at time n using the nonlinearity

bp(n) =


ln

(
fλp(zn|zn−1)

fλ0(zn)

)
, Bp(n− 1) > 0

ln

(
fλp(zn)

fλ0(zn)

)
, Bp(n− 1) = 0
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where the same assumptions used in the previous subsection apply here, e.g., a first order depen-

dency structure for signals. Alternatively, bp(n) can be rewritten as

bp(n) =



Ms∑
i=1

ln

 f
θ
(p)
i|S

(
zi,n|S(p)

i

)
f
φ

(0)
i|T

(
zi,n|T (0)

i

)
 , Bp(n− 1) > 0

Ms∑
i=1

ln

fφ(p)
i|T

(
zi,n|T (p)

i

)
f
φ

(0)
i|T

(
zi,n|T (0)

i

)
 , Bp(n− 1) = 0

.

Owing to the decomposition presented in (5.14)–(5.19), Bp(n) accumulates at the same rate as the

LLR in (5.3) (when given the same data), though it resets whenever Bp(n) ≤ 0. Therefore, while in

Section 5.2.2 a signal is detected whenever any time segment of (5.3) increases by η, here a signal

is detected at time n whenever

max
p

Bp(n) ≥ η (5.21)

i.e., the cumulative value of Bp(n) simply must exceed the threshold η. More details on the

equivalence of using the test statistics in (5.3) and (5.20) can be found in Section 3.2.2.

Naturally, to implement a sequential version of the quiescent detection phase of the SCST

method, calculating the GLRTs in (5.7) is replaced by calculating test statistics

Tp(n) = max{0, Tp(n− 1) + tp(n)}, n = k̂1, k̂1 + 1, . . . (5.22)

that are initialized as Tp(k̂1 − 1) = 0, ∀p, and updated using the nonlinearity

tp(n) = ln

(
fλ0(zn)

fλp(zn|zn−1)

)
=

Ms∑
i=1

ln

fφ(0)
i|T

(
zi,n|T (0)

i

)
f
θ
(p)
i|S

(
zi,n|S(p)

i

)
 .

Unlike bp(n), the value of tp(n) does not depend on the value of the corresponding test statistic

at time n− 1 since conditional distributions are always used under H(p)
1 in the quiescent detection

phase, as shown in (5.5). As before, Tp(n) accumulates at the same rate as the LLR in (5.5),
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meaning the absence of any signal is declared at time n whenever

Tp∗(n) ≥ γ (5.23)

where

p∗ = arg max
p

Bp(n).

As in Section 5.2.2, when H0 is again accepted a class label is assigned based on the ML signal type

at time k̂0 − 1 and the process reverts back to looking for a new signal of unknown type according

to (5.1). This phase switching process can continue indefinitely or until the end of the observation

sequence has been reached, if applicable.

5.4. Conclusions

This chapter introduced a new method for detection and classification of transient acoustical

events from multivariate observations using the patterns of corresponding coefficient state sequences

to determine the likelihood of each known signal model. The motivation behind this approach

stems from the fact that coefficient state sequences provide a simple way to represent nonstationary

components and facilitate realistic calculation of likelihoods, even for lengthy vector sequences. This

is especially important for applications where acoustical events associated with a given signal type

are very erratic and have complex temporal evolutions. Furthermore, few assumptions need to be

made concerning the statistics of observation components compared to, e.g., the SRCT method in

Chapter 4. The proposed method inherently provides robustness to multiple competing interference

sources, owing to the separation capabilities of sparse coding when using an appropriately designed

dictionary. Use of this sparse coding also means that the SCST method can provide estimates of

the signal and interference components in each observation without any additional overhead.

Like the SRCT method, the SCST method satisfies all of the requirements for solutions to

the soundscape characterization problem mentioned in Section 1.3. The downsides of the SCST
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method relative to the SRCT method are its increased computational complexity (see Section 6.7

for details) and inability to provide class labels for interference sources. The SCST method is the

last of two main comprehensive solutions for the problem considered in this thesis. Therefore, the

next chapter presents an extensive benchmarking of the proposed methods with a Gaussian mixture

model approach. This will allow for a detailed discussion on the advantages and disadvantages of

each method for performing detection, classification, and estimation of transient acoustical sources.
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CHAPTER 6

Performance Evaluation

6.1. Introduction

As mentioned in Chapter 1, the development of comprehensive approaches for detection and

classification of multiple time-varying transient sources using multivariate data was strongly moti-

vated by a national park soundscape characterization application. This necessitated the inclusion of

many intrinsic processing capabilities (see Section 1.3), such as handling the simultaneous presence

of competing interference and exploiting the unique structure of sequential multivariate data. It is

therefore essential to determine the effectiveness of the developed methods for performing source

characterization tasks using the soundscape data in Chapter 2, namely detection, classification, and

estimation of signal events. More specifically, this chapter presents the results of applying the se-

quential random coefficient tracking (SRCT) and sparse coefficient state tracking (SCST) methods,

introduced in Chapters 4 and 5, respectively, to the Kenai Fjords site four (KEFJ004) and Great

Sand Dunes site one (GRSA001) data sets. Exceptional performance on these data sets would

not only indicate that the proposed methods are suitable for deployment on monitoring stations

for real-time soundscape characterization, but also that they may be appropriate for use in other

applications with similar challenges, e.g., medical diagnosis using magnetic resonance imaging [17].

This chapter is organized as follows. A brief description of the Gaussian Mixture Model (GMM)-

based method [13, 15, 45], that is used to benchmark the performance of the proposed SRCT

and SCST methods, is first presented in Section 6.2. The test setup that is used to generate

experimental results, i.e., the parameters and procedures used, is described in Section 6.3. Section

6.4 then presents an evaluation of the test statistics used by each method in order to determine

their power for detection of transient acoustical events. Section 6.5 provides the results of applying

each method to segments of 1/3 octave data from each data set to demonstrate their effectiveness
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in a practical sense, i.e., their ability to generate an accurate summary of a soundscape in terms of

the frequency of occurrence of each signal type. Section 6.6 evaluates the ability of the SRCT and

SCST methods to provide separate estimates of the signal and interference components of a given

data segment. In Section 6.7, a brief analysis of the computational complexity of each method is

provided. Finally, concluding remarks are given in Section 6.8.

6.2. Baseline Method: Gaussian Mixture Models

A GMM-based source characterization scheme is adopted as the benchmark method in this

thesis since these models are commonly used in applications involving environmental sound [15],

wildlife call [13], and speech [45] recognition. Similar to the SRCT method, the ability to calculate

the likelihood of a GMM given an observation vector allows them to be used in a hierarchy of tests

to determine the composition of an observation in terms of signal, interference, and noise. This

allows for a benchmarking of the SRCT test statistics that would otherwise be difficult, since very

few methods use such tests. For this reason, this section uses many of the same concepts, notation,

and assumptions introduced in Chapter 4. In particular, under the GMM-based framework, it is

assumed that a 1/3 octave vector at time k can generally be represented as

yk = αksk + βkhk + wk

where sk ∈ RN and hk ∈ RN are random vectors defined similar to yk ∈ RN , but represent the sig-

natures produced by the unknown signal and interference sources to be characterized, respectively;

αk and βk are binary variables that indicate the presence (αk, βk = 1) or absence (αk, βk = 0) of

a signal and interference source, respectively; and wk
IID∼ N (0,Rw) is an independent and iden-

tically distributed (IID) measurement noise vector, where Rw ∈ RN×N is a known full-rank noise

covariance matrix.
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It is the ability of GMMs to model arbitrary distributions with multiple modes that makes

them suitable for recognizing features extracted from inconsistent signatures that are a mainstay of

acoustical source characterization applications. A GMM is a weighted sum of K Gaussian densities,

and is specified by λ
(p)
s =

{
w

(p)
s,i ,µ

(p)
s,i ,Σ

(p)
s,i

}K
i=1

for signal type p, where w
(p)
s,i , µ

(p)
s,i , and Σ

(p)
s,i are

the ith component weight, mean vector, and covariance matrix, respectively. Along the same lines

as the SRCT method, interference and dual source GMMs many be similarly defined as λ
(q)
h and

λ
(p,q)
s,h , respectively, where q is the interference type. The likelihood of a given set of signal GMM

parameters, given a vector observation yk, may be found as [15]

`
(
λ

(p)
s ; yk

)
=

K∑
i=1

w
(p)
s,i f

(
yk;µ

(p)
s,i ,Σ

(p)
s,i

)
(6.1)

where f(·) represents a multivariate Gaussian density function that is parameterized by µ
(p)
s,i and

Σ
(p)
s,i .

In order to detect the simultaneous presence of signal and interference sources, a separate GMM

is needed for modeling yk’s that correspond to all of the different source composition hypotheses

(see (4.3) in Section 4.3), besides the noise alone hypothesis H0. The likelihood under H0 may

be found using a standard unimodal multivariate Gaussian likelihood function for parameters that

are the fixed and known noise statistics mentioned above. In each case, a mixture of Gaussian

densities can represent observations that contain both a random noise component, as well as the

component(s) associated with one or two random sources. A hierarchical scheme, similar to that

implemented by the SRCT method, may then be applied to each yk using likelihoods calculated

as in (6.1) for a set of log-likelihood ratio tests (LLRT). While the dominant source and source

quantity LLRTs for the GMM-based method have the same forms as those used for the SRCT

method, i.e., (4.25) and (4.26), respectively, detection and classification are performed using single
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source GMMs. More specifically, GMM-based detection is performed using the test statistic

max
λ

` (λ; yk)

` (λ0; yk)
, λ ∈ {λ(p)

s }Pp=1 ∪ {λ
(q)
h }

Q
q=1 (6.2)

where λ0 is the parameter set underH0, and P and Q are the total number of signal and interference

sources, respectively. Classification is then performed by determining the most likely source of each

type as

p∗ = arg max
p

`
(
λ

(p)
s ; yk

)
` (λ0; yk)

q∗ = arg max
q

`
(
λ

(q)
h ; yk

)
` (λ0; yk)

.

The reason for this discrepancy between the SRCT and GMM-based methods is that, in the former,

the dual source models and likelihood values can accommodate the presence of a single source, as

coefficient estimates for absent sources will be negligible (see Section 4.3.3) whereas a dual source

GMM represents observations that necessarily contain both signal and interference components.

6.3. Test Setup

This section describes the experimental setup used to evaluate the performance of the SRCT,

SCST, and GMM methods for characterizing transient acoustical sources. Although the procedures

used to apply a given method are largely the same for both the KEFJ004 and GRSA001 data sets,

they were analyzed independently, meaning the models (e.g., GMMs) and the parameters used

(e.g., detection thresholds) were unique to each data set. Unless otherwise noted, the models and

parameters discussed in this section were used to generate all the results presented in this thesis.

6.3.1. Kenai Fjords Site 4

To apply the SRCT, SCST, and GMM methods to the KEFJ004 data set (see Section 2.3.1),

disjoint training and testing sets were formed using a collection of two-hour-long data segments

found throughout the 19 days of data. In order to provide robust training and a challenging testing

environment, segments were selected for both sets that contained a relatively large number of signal
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and interferences sources and contained events with highly variable signatures. In particular, among

all the observations used in this study (training and testing), 36.7% contained noise alone, 4.62%

contained signal plus noise, 53.0% contained interference plus noise, and 5.73% contained signal,

interference, and noise. Observations containing only interference sources were more common due

to rather relentless rain and thunder at the KEFJ004 site, which is also the reason interference

was present for the majority of observations where a signal was present. The training set consisted

of 10 data segments (about 4.39% of total data) and was used to extract models and determine

proper parameter values for a given method, as described in more detail below. The testing set

consisted of 40 (about 17.5% of total data) segments and was used to evaluate the performance of

each method. No testing segments contained an event used to extract source models, and at least

one segment from each of the 19 available days of data was used.

In order to apply the SRCT method to the KEFJ004 data, the subspace and autoregressive

(AR) parameter matrix dictionaries for each source type, as well as the observation noise statistics,

need to be extracted from a set of “clean” training events that contain only the signatures of

interest for a particular model. These training events were chosen to ensure a given source model

adequately captures the diversity of the associated signatures. For example, in the KEFJ004 site, a

significant amount of within-class diversity exists for propeller plane events, not only because this

is the most commonly occurring type of signal, but also owing to the presence of different types of

planes. Consequently, more plane training events are required when compared to other signal types.

To extract a source’s subspace in (4.1), eigenvalue decomposition [88] was applied to a covariance

matrix representing the data from several clean events corresponding to that source type. The three

eigenvectors corresponding to the largest eigenvalues were then used as basis vectors for that source

model. Using the parameter identification procedure in [89], second order linear vector AR model

parameters (used in (4.2)) were also extracted from the aforementioned set of training events. Noise

statistics were estimated using observation segments that did not contain any signal or interference
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components. The detection, dominant source, and source quantity thresholds were found to be

γ = −1.07, τ = 3.63, and η = 54.6, respectively, for the SRCT method. For all methods, thresholds

were selected such that no signals in the training segments were missed.

For the GMM-based method, single source models were formed for each signal and interference

type by applying the expectation maximization (EM) algorithm [90] to the same training events

used to form the SRCT models. Dual source GMMs were extracted from observations formed by

superimposing different combinations of the clean signal and interference observations used to form

the single source GMMs. The number of components in a given GMM was selected by applying

the silhouette method [91] to the corresponding set of observations the GMM was extracted from,

and was generally between two and five. The detection, dominant source, and source quantity

thresholds were found to be γ = −4.55, τ = 19.0, and η = −22.7, respectively, for the GMM

method.

For the SCST method, the KEFJ004 training data was used to form the sparse coding dictionary

A, extract the Bayesian networks (BN) λp’s and λ0 [78] (see Section 5.3.3), and choose the detection

thresholds η = 52.3 and γ = 20.0 in (5.21) and (5.23), respectively. In particular, events within

the training segments containing the signatures of one signal source, often superimposed with one

or more types of interference, were used to learn an associated BN λp. Similarly, training events

containing only interference and noise were used to learn the BN λ0. To form A, K-SVD [55]

was applied separately to different sets of observations, each representing a single type of signal

or interference, to extract source-specific dictionaries Sp ∈ RN×25, ∀p and Hq ∈ RN×15, ∀q. The

concatenation of these atoms yields A as in (5.9). Selection of the number of atoms in each

dictionary was performed according to the guidelines outlined in [55]. Fewer atoms were extracted

for each interference source since the associated signatures are generally less diverse than those of

signals. Basis pursuit denoising [80] was used to perform sparse coding in the dictionary learning

stage (K-SVD has the same flexibility as SCST) as well as to extract each xn in (5.8). Based on
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the criterion that zi,n = 0 for 99% of sparse coefficients representing observations in the training

set containing noise alone, ε = 3.24 was selected. To determine parent-child relationships in the

BNs λp’s, mutual information was used as the dependence measure with a threshold of µ = 0.1,

which corresponds to the largest 2% of values witnessed for this measure.

As mentioned before, to maximize class discrimination, we desire L in (5.11) to be as large as

possible while avoiding sample poor distributions used to form (5.16), (5.17), and (5.19). Realis-

tically, even with an abundance of training data, there may be no available samples to form some

of the conditional distributions, e.g., in cases where a specific combination of dependent coefficient

values S(p)
i never occurs for class p signals due to the structure of their signatures. Therefore, the

criterion used in these experiments is that at least one of the conditional distributions for each

Z
(p)
i,k (every coefficient and class combination) must be formed using ≥ 4L samples. When this

criterion is met, the remaining distributions that are considered sample poor are set to uniform.

This procedure led to L = 4.

Since the data vectors used for this study represent frequency subband acoustical energy at

different times they are not zero-mean, and hence, the noise mean was subtracted from each ob-

servation as it arrived, before being processed by a given method. Also, the hidden Markov model

(HMM)-based sequential decision fusion scheme in Section 3.3 was applied to the signal detec-

tion/classification results produced by the SRCT and GMM methods, since they both assign labels

separately to individual observations, as opposed to the SCST method, which inherently makes

event-wide decisions. As a reminder, this fusion process finds the likelihood that a certain signal

type is present, given a sequence of preliminary decisions (class labels), using a procedure that is

similar to that proposed in [35]. A separate three-state HMM was learned for each signal type

using the Baum-Welch algorithm. Different HMMs were used for the SRCT and GMM methods,

and each HMM was formed using preliminary decision sequences generated by a given method for

segments in the training set. This approach is appropriate for on-line processing and is done both
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to smooth out the detection/classification results, and to associate a cluster of detections that have

the same label with a single event for more concise and meaningful classification results. In the

case of the GMM method, this HMM-based smoothing provides a means to incorporate temporal

dependencies between decisions that would otherwise be independent.

6.3.2. Great Sand Dunes Site 1

As mentioned, the same general experimental setup described above was used to apply each

method to the GRSA001 data (see Section 2.3.2), and hence, only the differences between the

two experimental setups (e.g., parameter values used) will be described here. It is important to

note that, unlike the KEFJ004 data, no annotations exist for the GRSA001 data that denote the

presence/absence of interference in each observation. This not only means that the distribution of

the GRSA001 data in terms of observation composition hypotheses is unknown, but also that this

data set cannot be used to directly evaluate the detection, dominant source, and source quantity

test statistics used by the SRCT and GMM methods. However, as will be seen, both data sets can

indeed be used to evaluate the performance of each method for detecting signal components.

The GRSA001 training and testing sets consisted of 10 data segments (about 4.90% of total

data) and 38 segments (about 18.6% of total data), respectively, and served the same purposes

as in the KEFJ004 data. At least two segments from each of the 17 available days of data were

used to form the testing set. When applying the SRCT method to the GRSA001 data, each

source was characterized by a two-dimensional subspace and a second order vector AR model, that

were extracted as described above. The SRCT detection, dominant source, and source quantity

thresholds were found to be γ = 98.0, τ = 78.8, and η = 276, respectively. For the GMM method,

these thresholds were found to be γ = 101, τ = 10.2, and η = −20.5, respectively. For the

SCST method, the signal and quiescent detection thresholds were set to η = 43.7 and γ = 20.0,

respectively. As before, the sparse coding dictionary A was formed by concatenating the source

specific dictionaries Sp ∈ RN×25, ∀p and Hq ∈ RN×15, ∀q, that were all extracted using K-SVD.
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The threshold for determining the zero state was set to ε = 8.61, L = 4 quantization levels were used

to form coefficient states, and µ = 0.1 was used to determine the edges in the BNs. HMM-based

decision fusion was also used to aggregate and smooth the signal detection/classification results

produced by the SRCT and GMM methods for the GRSA001 data.

6.4. Test Statistic Evaluation

This section presents a performance evaluation of the test statistics implemented by each

method for detecting sources in the testing segments associated with a given data set. Results

are presented in terms of receiver operator characteristic (ROC) curves, which show how the prob-

ability of detection (PD) and probability of false alarm (PFA) change as the associated decision

threshold is modified. Unlike the results presented in the next section, here performance is measured

using statistics generated for individual observations rather than entire events, i.e., the temporal

position of an observation is irrelevant and only its associated detection statistics are considered.

For this reason, the HMM-based decision fusion does not influence the results presented in this

section, as this processing step does not modify any of the test statistics.

Since the SRCT method uses three tests to determine the composition of an observation in

terms of signal, interference, and noise, the performance of each of these tests is compared with

that of the equivalent tests implemented by the GMM method. In this case, PD indicates the

probability of correctly accepting the hypothesis associated with the numerator of a given LLRT,

i.e., H(p,q)
3 , H(p∗)

1 , and H(p∗,q∗)
3 for (4.23), (4.25), and (4.26), respectively. On the other hand, PFA

indicates the probability of falsely accepting the hypothesis associated with the denominator of a

given LLRT, i.e., H0, H(q∗)
2 , and H(p∗)

1 or H(q∗)
2 for (4.23), (4.25), and (4.26), respectively.

The SCST method does not use test statistics that are equivalent to those used by the SRCT

and GMM methods, and hence, a separate evaluation metric is needed to compare the performance

of all three methods. In particular, signal detection performance is used, where PD refers to the

probability of correctly detecting the presence of a signal irrespective of any interference that may
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be present, while PFA refers to the probability of falsely detecting a signal when none is present.

Though SCST signal detection is dependent on both the signal and quiescent detection statistics,

only a single threshold may be modified to generate the ROC, and hence, the threshold for the

latter remained fixed at the value indicated in the previous section for a given data set. Similarly,

the SRCT and GMM signal detection ROCs were generated by only modifying the statistic for

the initial detection test, i.e., (4.23) and (6.2), respectively, to determine the associated impact on

signal detection performance, while the thresholds for the other tests in the hierarchy remained

fixed.

In all cases, the evaluation metrics considered in this section are the area under the ROC curve

(AUC) and the PD and PFA at its “knee-point”. The AUC is important since it represents the

discrimination ability of a test, while the knee-point corresponds to a decision threshold where

PD + PFA = 1. It is important to note a slight discrepancy in terminology between the types

of evaluations performed in this section, that is rooted in the way the SRCT and SCST methods

define their associated hypotheses. When testing the SRCT statistics directly, H(p∗)
1 strictly means

that only a type p signal and noise are present (no interference), while for the signal detection

evaluation where all three methods are compared, H(p∗)
1 means that a type p signal and noise are

present, but interference may or may not be present. See (4.3) and (5.1) for precise definitions of

the hypotheses used by the SRCT and SCST methods, respectively.

6.4.1. Kenai Fjords Site 4

The ROC curves comparing the performance of the three SRCT and GMM test statistics are

shown in Figs. 6.1(a)-6.1(c). As can be seen from Fig. 6.1(a), the knee-points of the ROC curves

for the SRCT and GMM detectors (signal and/or interference) are (PD = 96.3%, PFA = 3.7%)

and (PD = 95.3%, PFA = 4.7%), respectively, while the AUCs are 0.992 and 0.987, respectively.

Although both detectors operate similarly, the SRCT detector performs slightly better since the

source estimates used to form the likelihoods can accommodate arbitrary combinations of signal
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and interference. Nonetheless, the single source GMMs still produce sufficiently high likelihoods for

observations containing one or more sources. In both cases missed detections are primarily caused

by samples associated with mild interference, such as very light rain, as well as the presence of

novel source signatures. The latter is due to the inability of basis vectors for the SRCT method, or

distributions for the GMM method, to capture source signatures that rarely occur during training.

False alarms are mostly caused by ambient noise statistics changing slightly over time, owing to

the properties of natural soundscape data. However, this deviation is small enough such that the

detectors remain fairly robust to this temporal change.

The ROC curves in Fig. 6.1(b) for the SRCT and GMM dominant source tests exhibit knee-

points at (PD = 91.8%, PFA = 8.2%) and (PD = 91.6%, PFA = 8.4%), respectively, while the

AUCs are 0.965 and 0.968, respectively. The GMM and SRCT methods perform similarly in the

dominant source stage, as the models used by each are appropriate for classification in these single

source scenarios. This result reinforces the suitability of GMM-based methods for the interference-

free acoustical source recognition tasks that they are typically applied to, owing to the ability of

GMMs to represent complicated signatures. For both methods, dominant source errors can mostly

be attributed to closeness between some realizations of rain and thunder interference to the models

associated with helicopter and jet signal types, which occasionally leads to H(p∗)
1 being accepted

when H(q∗)
2 is true. This confusion is typically only the case when unusually strong thunder is

encountered.

Fig. 6.1(c) shows the ROC curves for the SRCT and GMM source quantity test statistics,

where the knee-points are (PD = 89.7%, PFA = 10.3%) and (PD = 78.3%, PFA = 21.7%), respec-

tively, and the AUCs are 0.953 and 0.806, respectively. The GMM source quantity ROC curve is

smoothest from PD = 19.0% to PD = 84.0% since this is the region where the dual source GMMs

produce numerically significant likelihoods, and hence, the LLRT is not affected by round off error.

These results show that the main difference between the SRCT and GMM-based methods is their
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(a) Detection test.
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(b) Dominant source test.
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(c) Source quantity test.

Figure 6.1. ROC curves for each type of test statistic produced by the SRCT and
GMM methods when applied to the KEFJ004 data.

respective performance in determining source quantity, where the SRCT vastly outperforms the

GMM-based method. This is due in part to the SRCT exploiting the dependency structure of

each source’s signatures when forming the LLRT. More importantly, the dual source GMMs have

difficulty representing the extreme variations associated with superimposed signatures from two

different sources. For instance, not only is there a significant amount of diversity between events

associated with a given source type, but both signal and interference sources present in an observa-

tion can be at different relative stages in their evolution (i.e., temporal position within an event),
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and can have arbitrary amplitudes. A given dual source GMM must capture all combinations of

these variations, leading to a lower likelihood for the GMM given any specific observation, whereas

the SRCT method directly estimates the source signatures to account for this diversity. For the

SRCT method, in some cases a weak signal superimposed with strong interference triggers false

acceptance of H(q∗)
2 over H(p∗,q∗)

3 , thus missing the signal. Other errors for this test are again due

to novel source signatures and their closeness to subspaces of other models. Specifically, strong

plane and helicopter signals occasionally falsely trigger H(p∗,q∗)
3 over H(p∗)

1 , and very strong thunder

also causes false acceptance of H(p∗,q∗)
3 . Clearly, performance issues arising from close subspaces

are more prevalent when the system must contend with more source types, and these issues are

exacerbated when the subspace and observation dimensionalities are closer.

To compare the performance of all three methods under consideration, Fig. 6.2 shows their

associated signal detection ROC curves. As can be seen, the knee-points of the ROC curves

for the SCST, SRCT, and GMM methods are (PD = 94.0%, PFA = 5.99%), (PD = 86.7%%,

PFA = 13.3%%), and (PD = 84.2%, PFA = 15.8%), respectively, while their AUCs are 0.967, 0.863,

and 0.889, respectively. The relative difference in performance between the SRCT and GMM

methods for signal detection can be mostly attributed to the same factors described above. On

the other hand, the SCST achieves a much higher PD at a given PFA primarily because it exploits

the dependencies between the signal components in temporally adjacent observations to yield a

cumulative test statistic. Consequently, even when an event contains some observations with weak

signal components the SCST method maintains a sufficiently high detection statistic throughout

such an event. In contrast, the SRCT and GMM methods perform detection on each observation

independently, leading to more missed detections within some events, though the former performs

better overall at its knee-point since it forms the detection statistic for a given observation using

previous observations. Missed detections for the SCST method are primarily due to a delay in signal

detection that is inherent with transient detection schemes using a likelihood ratio [34], which causes
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Figure 6.2. Signal detection ROC curves for the KEFJ004 data.

a small number of samples to be missed at the beginning of each signal event. Similarly, false alarms

generated by the SCST method are mainly caused by delays to quiescent detection, leading to a

few false detections at the end of each signal event.

6.4.2. Great Sand Dunes Site 1

Recall that the GRSA001 data cannot be used to directly evaluate the SRCT and GMM test

statistics since the presence of interference was not tabulated for this data set. Therefore, only the

signal detection performance of each method is considered here. As can be seen from Fig. 6.3, the

knee-points of the GRSA001 signal detection ROC curves for the SCST, SRCT, and GMM methods

are (PD = 92.8%, PFA = 7.21%), (PD = 84.4%, PFA = 15.6%), and (PD = 79.6%, PFA = 20.4%),

respectively, while their AUCs are 0.962, 0.863, and 0.845, respectively. Many of the same reasons

the SCST method performed signal detection most accurately on the KEFJ004 data set also apply

here. However, for the GRSA001 data set, perhaps the biggest reason the SCST method produced

so few false alarms relative to the other methods is its ability to remain robust to the simultaneous

presence of multiple types of interference. In contrast, both the SRCT and GMM methods assume
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Figure 6.3. Signal detection ROC curves for the GRSA001 data.

a maximum of one type of signal and one type of interference can be simultaneously present. Due to

the wide variety of interference source types associated with the GRSA001 soundscape, the presence

of multiple types of interference in a given observation would sometimes lead to false alarms for

methods other than SCST, since the superimposed signal and interference model would produce a

higher likelihood than the interference alone model. A larger performance gap between the SRCT

and GMM methods is also witnessed for the GRSA001 data when compared to the KEFJ004 data,

which can be primarily attributed to the extremely prominent interference present in the former

data set, and better handling of this interference by the SRCT method. More specifically, variable

and often violent wind led to a higher PD at a given PFA for the SRCT method, since the dual

source GMMs were often insufficient for identifying the presence of weak jet signatures occluded

by such heavy wind.

6.5. Classification Using Entire Data Segments

While the above ROC analyses demonstrated the effectiveness of various test statistics im-

plemented by each method when applied to individual observations in a given data set, here the
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overall performance of each method for correctly detecting and classifying entire signal events in

testing sequences is evaluated. This provides an indication of how each method performs on a

real soundscape analysis problem, where the goal is to tabulate the number of times and when

each signal type is present. These results are based on the true signal locations, as determined by

the annotation process detailed in Section 2.3. For instance, each method estimates the time of

arrival, duration, and class label of a given signal event. If at least half of the set of observations

associated with a manually annotated event (truth) are also in the set of observations associated

with a detected signal event, and they additionally have the same class label, then the annotated

event is considered correctly detected and classified. Missed detections result when too few or no

observations in the annotated event are assigned a label associated with a signal, and misclassifi-

cations occur when the wrong label is assigned a majority of the time. False alarms occur when a

signal event is thought to be present where there is none. Results are presented mainly in terms

of confusion matrices, which are discussed in more detail below, though a few visual examples are

also provided that show the results of applying each method to two-hour long segments from each

data set to yield class labels for observations therein.

6.5.1. Kenai Fjords Site 4

The overall detection and classification results for the KEFJ004 data set are presented in terms

of the confusion matrices in Table 6.1. Each entry in this table indicates the number of times

a certain type of signal event was assigned a specific label by a given method (SCST / SRCT /

GMM). Since “none” means no signal of interest (either present or assigned), the first column in

each confusion matrix indicates instances where signal events are missed, whereas the first row

indicates false alarms (no annotated event present). The shaded diagonal entries indicate the

number of events of each signal type that are assigned the correct label, which show overall correct

signal classification rates of 90.7%, 89.6%, and 79.8% for the SCST, SRCT, and GMM methods,

respectively. False alarm rates are reported in terms of the percentage of all event detections (i.e.,
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Table 6.1. KEFJ004 confusion matrix showing the total number of instances each
signal type was assigned a given label by each method (SCST / SRCT / GMM).

Assigned

None Plane Heli Jet
T

ru
th

None - 3 / 1 / 18 1 / 0 / 7 8 / 7 / 1

Plane 4 / 4 / 13 117 / 120 / 112 3 / 0 / 1 2 / 2 / 0

Heli 3 / 9 / 10 1 / 2 / 4 32 / 27 / 24 2 / 0 / 0

Jet 0 / 2 / 2 1 / 0 / 6 1 / 0 / 1 17 / 17 / 10

entries in the last three columns in each confusion matrix) that are false, which are 6.38%, 4.55%,

and 14.1% for the SCST, SRCT, and GMM methods, respectively. This is also the reason “-”

appears for the “none” diagonal entry in Table 6.1.

As can be seen from Table 6.1, the overall classification results produced by the SCST and

SRCT methods are similar, but both are significantly better than those produced by the GMM

method. The SRCT performs better than the GMM mainly because of the relative differences in

performance of the associated source quantity tests. For example, the GMM missed more signals

when interference was present than when absent, while the SRCT missed fewer signal events overall,

since it was able to adapt to dual source scenarios due to the increased flexibility offered by the

estimation process used to find the likelihood values. Confusion between signal types was also

more common for the GMM method since these models were not quite as effective at estimating

the signal types in the presence of interference. The GMM-based method produced significantly

more false alarms owing to a less powerful source quantity test and the fact that the threshold for

this test was set to detect all signals in the training segments. Most false alarms produced by the

GMM-based method were associated with planes since strong thunder that is frequently present

(interference alone) tends to resemble superimposed rain and plane signatures (dual source). Most

false alarms produced by the SRCT method were for jets since the subspace for this source is close

to weak thunder signatures.

Despite the superior signal detection performance of the SCST method reported in the previous

section, the overall classification results produced by this method were not much better than those
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Table 6.2. Correspondence between colors used in detection/classification strips
and each signal type.

Signal Type None Plane Helicopter Jet
Color Code

of the SRCT method for the KEFJ004 data set. The main reason for this is that the test statistic

evaluations were not influenced by the HMM-based sequential decision fusion applied to the SRCT

and GMM class labels. In other words this decision fusion corrected some classification errors

for individual observations to noticeably improve the overall performance of the SRCT and GMM

methods. Since the differences in performance between each method is larger on the GRSA001

data, a more detailed discussion regarding their relative strengths and weaknesses is reserved until

the results on this data set are presented.

To demonstrate a practical source characterization application, and to offer visual insight into

the cause of some errors made by each method, Figs. 6.4 and 6.5 demonstrate the detection and

classification results obtained for two different two-hour long testing segments from the KEFJ004

data set. Each segment presents a fairly difficult detection/classification problem with signatures

of multiple signal sources that are mostly superimposed with those of competing interference. Each

figure contains both the original data sequence (bottom) and corresponding detection/classification

“strips” (top) that indicate true signal locations, as well as those estimated by each method, us-

ing different colored segments. When a strip is white it means that no source was detected for

those samples, whereas colored strips indicate the presence of a specific type of signal as desig-

nated by Table 6.2. The method that produced the class label sequence represented by a given

detection/classification strip is displayed to its left.

Comparing the “truth” detection/classification strips in Figs. 6.4 and 6.5 to those associated

with each source characterization method shows that, in general, each method detects the signals

for the appropriate time intervals and assigns accurate classification labels. A few errors can be

noted in these examples, namely the SRCT method missing two faint and short helicopter events
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around the 41 min mark of the first hour and 15 min mark of the second hour in Fig. 6.4. These

errors are due to confusion of the helicopter signatures with intense thunder alone, meaning the last

stage of the process incorrectly rejected the appropriate dual source hypothesis in this case. The

SRCT method also underestimated the durations of the first three helicopter events in Fig. 6.4.

The SCST method performs very well on the data shown in Fig. 6.4, and produces only one false

alarm that was a result of some novel interference signatures that resembled those of a distant

plane. The GMM method also performs fairly well, though the first and third helicopter events in

Fig. 6.4 are each broken into two separate detected events.

The detection/classification strips in Fig. 6.5 show that each method performs fairly well even in

the presence of especially heavy rain and thunder. The main errors of note for this data segment are

the SRCT method missing a jet and a helicopter, mostly due to their signatures being superimposed

with those of heavy rain and thunder. The SCST method misclassified a jet as plane and produced

a jet false alarm at the 20 min mark and 26 min mark of the second hour, respectively. The former

error was likely caused by associating some of the jet’s energy with the interference atoms during

the sparse coding stage, leaving few atom coefficients left for discriminating between signal types.

Finally, it can be seen that the GMM misclassified the helicopter and both jet events in Fig. 6.5 as

plane, most probably due to the presence of heavy interference and the inadequacy of dual source

GMMs for modeling the time-varying signatures of two superimposed source types.

6.5.2. Great Sand Dunes Site 1

The overall detection and classification results for the GRSA001 data set are shown in the

confusion matrices in Table 6.3. The shaded diagonal entires indicate overall correct signal classi-

fication rates of 93.0%, 89.0%, and 80.4% for the SCST, SRCT, and GMM methods, respectively,

while the false alarm rates are 3.75%, 11.0%, and 13.9% for the SCST, SRCT, and GMM methods,

respectively. As can be seen, the overall classification results produced by the SCST method are

noticeably better than those produced by the SRCT method, and significantly better than those
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Figure 6.4. Results of applying each method to KEFJ004 data collected on
7/27/08 during hours 15-17.
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Figure 6.5. Results of applying each method to KEFJ004 data collected on
7/29/08 during hours 14-16.

produced by the GMM method, which is mainly due to the increased flexibility offered by the

SCST model. The missed detections and false alarms in each case can be attributed to factors that

influenced the ROC curves discussed above. As far as classifying detected signals, the gap in per-

formance is caused by the drastically different approaches taken by each method. Although GMMs

can approximate arbitrary distributions, there are still severe limitations on the accuracy of a finite

mixture for modeling complicated acoustical signatures. In contrast, the SCST method makes no
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assumptions concerning the distributions of the signals, interference, and noise, but instead sim-

plifies the data representation just enough so that likelihoods can be realistically computed. In

other words, simplifying the data representation has provided superior class discrimination when

compared to restricting the plausible structure of observation components. Moreover, the SCST

method is generally better suited for adapting to sudden changes in the structure of source signa-

tures considered in this study owing to, e.g., Doppler effects. For instance, the 1/3 octave bands

that contain significant energy can rapidly change if a signal source has a high velocity and becomes

relatively close to the receiver. For SCST, such a quick change conveniently manifests itself as a

change in the atoms used in the sparse representation, which can easily be modeled by a BN. On

the other hand, the SRCT method (for example) assumes the coordinates of the source signatures

relative to a specific subspace evolve according to a linear AR vector model, which typically leads

to greater errors when estimating rapidly changing source signatures.

The presence of interference was also less detrimental to the classification performance of the

SCST method. The SRCT method misclassified a fair number of jets as planes, and vice versa,

when strong wind was present, as the superposition of plane and wind signatures can resemble

those of a jet. The sparse coding process used by the SCST method was able to associate the

majority of the wind signatures to the interference atoms in these cases, meaning it did not impact

signal detection and classification. It should also be noted that the SCST method is typically more

robust to the presence of novel signatures within an event since it considers the joint likelihood

of all observations therein. In contrast, the SRCT and GMM-based methods make decisions on

individual observations (though the former also considers previous observations when assigning

labels), and aggregate results using postprocessing.

To conclude this section, Figs. 6.6 and 6.7 present detection/classification strips produced by

each method for two data segments in the GRSA001 data set. The data in Fig. 6.6 represents

a very complex source characterization scenario, where heavy wind is present most of the time,
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Table 6.3. GRSA001 confusion matrix showing the total number of instances each
signal type was assigned a given label by each method (SCST / SRCT / GMM).

Assigned

None Plane Jet

T
ru

th

None - 0 / 10 / 28 11 / 24 / 12

Plane 3 / 9 / 11 38 / 30 / 27 2 / 4 / 5

Jet 16 / 16 / 43 0 / 4 / 0 242 / 238 / 215

with extremely heavy wind during the first 40 minutes. Furthermore, many jets are present, and

the signatures of two jets overlap in a couple of cases, namely near the 16 and 28 min marks of

the second hour. The SCST method performs near perfectly on this data segment, with the only

small errors being splitting each of two jet events into two separate detections; errors that could

be corrected by using a larger quiescent detection threshold. The SRCT method also does fairly

well on the data in Fig. 6.6, but also splits two jet events into separate detections, misclassifies

the only plane as a jet, and misses the last jet event in the sequence. The former error was

caused by the extremely heavy wind, meaning the superimposed signatures were closest to the jet

subspace used by the SRCT method. A jet is missed by the SRCT method since its signatures

were very weak, and reminiscent of wind. The GMM method performs the worst on the data in

Fig. 6.6, as it misclassifies the plane as jet, generates three false alarms, and divides six separate

events into two separate detections each. As before, the errors generated by the GMM method

can mostly be attributed to inadequacies of the GMM for discriminating between single and dual

source hypotheses when signatures of both sources overlap significantly.

The last example in Fig. 6.7 again demonstrates the superior performance of the SCST method

on the GRSA001 data, as it only misclassified one jet event as plane near the 42 min mark of

the second hour. The SRCT method also does very well, but some events are split into multiple

detections again, and it produces three false alarms near the end of the segment. The latter error is

due to the fact that the SRCT method assumes that a maximum of one type of interference will be

present at a given time, whereas the observations at the end of this data segment contain both elk
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Figure 6.6. Results of applying each method to GRSA001 data collected on
9/28/08 during hours 20-22.
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Figure 6.7. Results of applying each method to GRSA001 data collected on
9/29/08 during hours 21-23.

call and wind interference. This led to false acceptance of a dual source hypothesis, as the associated

model was a better match to the data than a single interference model. The GMM method again

splits many of the signal events in Fig. 6.7 into multiple detections, and underestimates the duration

of many other events. However, the GMM does assign mostly accurate class labels.
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6.6. Source Separation Results

While the SCST and SRCT methods were developed primarily for detection and classification

of transient source, they each posses inherent capabilities for separating superimposed signal and

interference signatures in a given observation, thereby producing isolated estimates of each compo-

nent. Therefore, this section presents an evaluation of the ability of these methods for performing

such separation. The SRCT method can estimate the signatures of one signal and one interfer-

ence component from a given observation using the recovery equations in (4.28), which exploit the

estimated basis coefficients corresponding to the accepted hypothesis. In general, the separation

capabilities of the SCST method are dictated by the structure of the dictionary used for sparse

coding. For example, if this dictionary consists of a set of source-specific subdictionaries that are

mutually incoherent [54], then energy in an observation that is associated with different source types

will be assigned to the appropriate subdictionaries during the sparse coding stage. An estimate of

a given source’s signatures can then be formed by using only the atoms associated with this source,

i.e., by setting the coefficients of other atoms to zero before reconstruction. Since the dictionaries

used to generate the results in this chapter were not specifically designed to be mutually incoherent,

here we only emphasizes the ability of the sparse coding stage of the SCST method to separate

the signal and interference components of an observation sequence, where each may contain any

number of sources of the designated type. Results are presented in terms of explicit improvements

to the signal-to-noise ratio (SNR) when each method is applied to sets of synthetically generated

events containing superimposed signal and interference signatures, as well as a visual analysis of

separated sequences.

6.6.1. SNR Improvement Using Synthetic Data

The separation performance of each method was tested in the following manner. First, for

a given data set and for each source type (signal and interference), a set of data segments was
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identified and extracted from the testing segments that contain only the signatures of that source

(plus ambient noise). Ten and twenty events per source type were used for the KEFJ004 and

GRSA001 data sets, respectively, as signals occurred far less often in the former, and hence, isolated

signal events were rare. Next, a unique set of synthetically superimposed events was generated for

each possible signal and interference type pair (PQ sets total), each of which contained the same

number events as the associated signal type, i.e., ten and twenty for the KEFJ004 and GRSA001

data sets, respectively. To generate the set associated with signal type p and interference type q

in a given data set, the signatures of a unique type p signal event were added to the signatures of

a randomly chosen type q interference event. Since KEFJ004 contains three signal types and two

interference types, this procedure resulted in a set of 10× 3× 2 = 60 superimposed events, whereas

20× 2× 4 = 160 superimposed events were generated from the GRSA001 data.

Denote Yn
1 , Sn1 , and Ŝn1 as matrices representing a length n synthetically superimposed data

sequence (i.e., columns of Yn
1 represent individual 1/3 octave vectors), the sequence containing only

signal components present in Yn
1 , and a corresponding estimate of the signal sequence, respectively.

Since Sn1 is known for each Yn
1 , explicit separation results may be generated by comparing the SNR

of the original superimposed event (input SNR) with the SNR of the signal estimate produced by

a given method (output SNR). More explicitly, we compare

Input SNR = 10 log

(
‖Sn1‖

2
F

‖Yn
1 − Sn1‖

2
F

)
dB

with

Output SNR = 10 log

 ‖Sn1‖
2
F∥∥∥Ŝn1 − Sn1

∥∥∥2

F

dB

where ‖·‖2F means Frobenius norm, and interference present in Yn
1 is considered “noise” in this

case.
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Figs. 6.8(a) and 6.8(b) contain scatter plots that show the input SNRs versus the output

SNRs achieved by the SRCT and SCST methods, respectively, when applied to the synthetically

superimposed events associated with the KEFJ004 data set in order to generate an estimate of

the signal component in each case. The solid line represents the linear least squares fit to the

input/output SNR data points, which provides an overall indication of how the performance of

each method changes with input SNR. The dashed line in each figure shows the improvement

threshold, i.e., a point is only above this line if a given method improved the SNR of the sample.

The average input SNR over all events was -3.32 dB, while the average output SNRs were 4.62 dB

and 6.62 dB for the SRCT and SCST methods, respectively. As can be seen, the SCST method

performs best overall on KEFJ004 events. However, the output SNR achieved by both methods

was higher than the input SNR for each sample, with the exception of two events processed by the

SRCT method that had relatively high input SNR. The improvement in the SNR for Ŝn1 ’s generated

by the SRCT method is clearly much greater for events with low input SNR, while events with

high input SNR are improved only slightly on average. This is because the SRCT method assumes

each source follows a subspace model with coefficients that obey a vector linear AR model, and

hence, the estimated signal component in each case is a rough approximation of the true signal

component. This means that, for high input SNR cases, the signal component is degraded nearly

as much as the (relatively weak) interference component whereas, for low input SNR cases, removal

of the prominent interference component is sufficient for drastically improving the overall SNR,

despite the signal estimate being imprecise.

The SCST method maintains more consistent SNR improvement regardless of the input SNR

for a given Yn
1 , which is demonstrated by the slope of the associated linear fit being closer to one.

This is due to the fact that the sparse coding stage is typically able to associate both high and

low levels of interference with the appropriate atoms, which are then discarded when constructing

the signal estimate. The downside to this sparse coding process is that a small amount of the
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(a) SRCT method.
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(b) SCST method.

Figure 6.8. Improvement in SNR achieved by each method when applied to syn-
thetically superimposed signal and interference data segments from the KEFJ004
data set.

signal energy is typically assigned to the interference atoms during sparse coding, and vice versa,

which negatively impacts the output SNR regardless of the level of input SNR. This is caused by

larger than desired coherence between atoms associated with signal and interference subdictionaries

[54], which is common in cases when these different components have similar morphologies [79].

Although a few methods for sparse dictionary learning have been proposed [81, 82] that attempt

to simultaneously constrain the coherence between different dictionaries while retaining their re-

construction capabilities, they involve solving multi-objective optimization problems that do not

guarantee convergence, making it difficult to extract suitable dictionaries. Also of note is the rel-

atively large amount of variance in output SNR produced by the SRCT method for a given input

SNR level, when compared to the SCST method. This can be attributed to the inadequacy of the

models used by the former method for properly estimating the subtle variations of signal events, i.e.,

the SRCT models do not quite capture the severe with-class diversity present in dynamic acoustical

sources. The estimates formed by the SCST method, on the other hand, do not make restrictive
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assumptions about the behavior of these signatures, but rather simply require that the dictionary

be capable of providing a sparse representation of any signal event that may be encountered.

Figs. 6.9(a) and 6.9(b) also contain input/output SNR scatter plots for the SRCT and SCST

methods, respectively, but for synthetically superimposed events associated with the GRSA001

data set. The average input SNR over all events was -1.86 dB, while the average output SNRs were

3.08 dB and 4.47 dB for the SRCT and SCST methods, respectively, meaning the SCST method

again performs best overall on GRSA001 events. These scatter plots show that the KEFJ004

and GRSA001 separation results have many of the same features in common, e.g., higher output

SNR variance for the SRCT method. However, the GRSA001 results reveal some unique behavior,

namely that the improvement in output SNR produced by the SCST is less drastic for high input

SNR cases, which is also the case with the SRCT method for both data sets. This result can

be attributed to the same reasons mentioned above, where some signal energy is associated with

interference atoms during the sparse coding stage of SCST. This effect is more dramatic for the

GRSA001 data set since the signatures of heavy wind interference are very close to those of jet

signals, more so than any other signal and interference combination considered in either data set.

Greater improvements are witnessed for low input SNR cases since the sparse coding still removes

most of the interference, which is sufficient for bringing the signal estimate much closer to the true

signal.

6.6.2. Examples using Real Data

To supplement the above discussion on separation performance, Figs. 6.10–6.13 provide visual

examples of the signal and interference signatures estimated by the SRCT and SCST methods when

applied to two data segments from each of the data sets. For comparison, examples showing the

signatures of each source type in isolation can be found in Tables 2.1 and 2.2 for the KEFJ004 and

GRSA001 data sets, respectively. Note that the SRCT method inherently estimates interference

signatures using the same basis coefficient estimation approach as in the signal estimation case, while
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(a) SRCT method.
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(b) SCST method.

Figure 6.9. Improvement in SNR achieved by each method when applied to syn-
thetically superimposed signal and interference data segments from the GRSA001
data set.

the SCST interference estimate is a result of using only the interference atoms in the dictionary,

along with their corresponding sparse coefficients, to reconstruct the data sequence. Additionally,

the original data sequence in each figure has the noise mean subtracted to better highlight the

signal and interference components.

Fig. 6.10 shows a relatively simple sequence from the KEFJ004 data set, where some light rain

and birdsong signatures are briefly superimposed with signals that are planes, helicopters, and a

jet. The SCST signal and interference estimates in Figs. 6.10 (b) and 6.10(c), respectively, appear

to be very accurate representations, as the former contains almost no interference, while the latter

contains only some faint helicopter signatures around the 35 and 48 min marks in the first hour. The

SRCT signal estimate in Fig. 6.10(d) contains no noticeable interference, but the signal signatures

are somewhat blurred, which is due to basing the estimates on a somewhat restrictive model, as

described above. The SRCT interference estimate in Fig. 6.10(e) appears to be a mostly faithful

representation, apart from dark patches in the low frequency regions where rain is present, namely
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Figure 6.10. Separation of signal and interference components present in the data
segment in (a), which corresponds to KEFJ004 recordings during hours 10-12 on
7/25/08. (b) SCST signal image, (c) SCST interference image, (d) SRCT signal
image, (e) SRCT interference image.

around the 10 and 55 min marks of the first hour. Such errors are caused by the limitations of a

three-dimensional subspace model for constructing observations with high variance.

Fig. 6.11 shows the separation results for another data segment in the KEFJ004 data set, where

moderate rain and thunder are present the entire time, and superimposed with the signatures of a

number of planes. The SCST method again does a fantastic job of separating the two components,
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Figure 6.11. Separation of signal and interference components present in the data
segment in (a), which corresponds to KEFJ004 recordings during hours 14-16 on
7/30/08. (b) SCST signal image, (c) SCST interference image, (d) SRCT signal
image, (e) SRCT interference image.

as no major errors are present. The SRCT method mostly produces seemingly accurate signal and

interference estimates, though as before the former is somewhat blurry. Furthermore, some of the

energy caused by thunder interference is present in the signal estimate owing to it resembling the

broadband portion of plane signatures, and hence, it was associated with this signal’s model.
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Fig. 6.12 shows the separation results for a segment in the GRSA001 data set, where loud elk

calls and light wind represent the interference, and a number of plane and jet events represent the

signals. The SCST method is able to associate most of the signatures of the elk calls and heavier

wind with the interference sequence, but light wind signatures are present in the estimated signal

sequence. This is most noticeable from the 29–42 min mark during the first hour in Fig. 6.12(b),

and is caused by high coherence between some atoms in the wind and jet subdictionaries. The

estimates produced by the SRCT method share many of the same properties mentioned above, i.e.,

rather blurry signal estimates and some association of wind interference with the signal sequence.

Finally, Fig. 6.13 shows one last separation example from the GRSA001 data set, where mod-

erate to extremely heavy wind is superimposed with the signatures of many jets and one plane.

The SCST estimate in Fig. 6.13(b) shows a seemingly accurate representation of the signal com-

ponent, but also includes of some heavy wind interference energy. Although this type of error

means less accurate estimation performance, it typically does not negatively effect classification

performance, as the H0 model for SCST is trained on such sequences containing heavy interference.

The SRCT signal estimate in Fig. 6.13(d) is perhaps the most blurry of all, owing to the severe

overlap between signal and interference signatures, and consequent difficulty of separating these

two components. The interference estimates in Figs. 6.13(c) and Fig. 6.13(e), produced by the

SCST and SRCT methods, respectively, both seem fairly accurate, though the latter has some gaps

in the mid-frequency range when heavy wind was present, since this energy was associated with

the signal estimate. Overall, these results demonstrate that both methods are able to generate

reasonable estimates of the signal and interference components of an observation sequence, though

the SCST method performs best overall.

6.7. Computational Complexity

As a final evaluation measure, the computational cost of the SRCT, SCST, and GMM methods

for processing a single observation yk ∈ RN is considered. This analyzes assumes all the models and
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Figure 6.12. Separation of signal and interference components present in the data
segment in (a), which corresponds to GRSA001 recordings during hours 19-21 on
9/24/08. (b) SCST signal image, (c) SCST interference image, (d) SRCT signal
image, (e) SRCT interference image.

parameters (e.g., the sparse coding dictionary used by the SCST method) are all computed off-line,

as was the case for the results reported above. For the SRCT method, this cost is driven by the

processes with the largest associated growth rates, that are required to find the variables ζk(θk)’s in

(4.8) for the PQ dual source hypotheses (out of all P+Q+PQ hypotheses). In particular, the most

costly processes are implementation of the Kalman filters and calculating ζk(θk)’s directly, which
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Figure 6.13. Separation of signal and interference components present in the data
segment in (a), which corresponds to GRSA001 recordings during hours 16-18 on
10/02/08. (b) SCST signal image, (c) SCST interference image, (d) SRCT signal
image, (e) SRCT interference image.

require O(PQD2.373) and O(PQN2.373) operations, respectively, if efficient implementations are

used, where D is the model subspace dimension. Therefore, since N > D necessarily, O(PQN2.373)

represents the SRCT algorithm cost. For the GMM method, the matrix inversions and determinants

required to find the likelihoods may be calculated off-line, but a likelihood must be found for each

component in a GMM. Assuming an average of K components in each GMM, the cost of this
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method is then O(KPQN2) operations, which is very comparable to that of the SRCT method for

the data considered in this thesis.

When considering the SCST method, the cost of the sparse coding process dominates its overall

computational complexity. If basis pursuit denoising [80] is used, then this process involves finding

the solution to a quadratic programming problem, which can be accomplished with a wide vari-

ety of algorithms, each with different complexities that also depend on tolerated error δ between

the observation and sparse representation. Orthogonal matching pursuit generally requires fewer

computations and is recommended for applications where N and the number of atoms M in the

sparse coding dictionary are large. Though there are still various ways to implement orthogonal

matching pursuit, the cost of computationally efficient algorithms is about O(LNM) [92], where L

is the number of iterations (sparsity level), that depends on δ. In the absolute worst case scenario,

L = N , meaning O(MN2) operations are required for sparse coding. Otherwise, SCST simply

requires updating the signal and quiescent detection statistics, which is very simple since the dis-

tribution parameters are computed off-line, requiring only O(PMs) operations, where Ms ≤ M is

the number of atoms associated with signal components.

Overall, the relative computational complexity of each method depends on M (for SCST only)

and the number of signal sources P and interference sources Q, though it is reasonable to assume

that the cost of SCST is similar to the SRCT and GMM methods for many applications, so long as

an efficient sparse coding algorithm is used. For the results in this chapter, the SCST (using basis

pursuit denoising), SRCT, and GMM methods took an average of 5.87 × 10−2, 5.70 × 10−3, and

2.60 × 10−2 seconds, respectively, to process a single observation using MATLAB on a computer

with a 3.2 GHz quad-core processor and 8 GB of RAM. Clearly, the SCST method was the slowest

in this case, but it still processed the data about 17 times faster than the data sampling rate of

one observation per second.
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6.8. Conclusions

This chapter presented a comprehensive performance evaluation to determine the relative

strengths and weakness of the SRCT, SCST, and GMM methods for performing transient source

detection, classification, and estimation using 1/3 octave data sequences representing real acous-

tical recordings of national park soundscapes. The SRCT and SCST methods were introduced in

Chapters 4 and 5 of this thesis, respectively, while the GMM method was briefly introduced in

Section 6.2, and was used as the benchmark method since this approach is common in acousti-

cal source characterization applications. The performance of the detection, dominant source, and

source quantity test statistics implemented by the SRCT method were first benchmarked against

the equivalent tests implemented by the GMM method using ROC curves and the KEFJ004 data

set. The SCST method was left out of this comparison since it does not rely similar test statistics.

It was found that the SRCT and GMM approaches to calculating likelihoods for the detection and

dominant source tests performed equally well, with both achieving AUCs > 0.965. However, the

SRCT method performed much better on the source quantity test, as the associated AUC was

0.953, while the GMM AUC was only 0.806. This means that the SRCT method is generally more

proficient at detecting the presence of a signal buried in interference.

A separate ROC analysis was used to directly compare the performance of all three methods

for detecting signals, regardless of the presence of interference. For the KEFJ004 data set, the

SCST, SRCT, and GMM methods achieved AUCs of 0.967, 0.863, and 0.889, respectively, while

for the GRSA001 data set these methods achieved AUCs of 0.962, 0.863, and 0.845, respectively.

The SRCT and GMM methods performed similarly for signal detection since they use a similar

hierarchy of tests. However, in this case, the GMM compensated for its inferior performance on

the source quantity test with higher PD for very low PFA values, when compared to the SRCT

method. Still, the SCST method clearly displayed the best overall signal detection performance,
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owing to the cumulative nature of its detection statistic, which remains sufficiently high even when

an event contains some observations with weak signal components.

The overall detection/classification performance of each method was then evaluated on each

data set using confusion matrices. For the KEFJ004 data set overall correct classification rates of

90.7%, 89.6%, and 79.8% were achieved by the SCST, SRCT, and GMM methods, respectively,

while the false alarm rates were 6.38%, 4.55%, and 14.1% for these methods, respectively. The

performance of the SRCT method approached that of the SCST method on this data set since

the former benefited from the HMM-based decision fusion introduced in Section 3.3. The GMM

method performed the worst overall mainly due to a weak source quantity test, as mentioned above,

leading to poor performance in heavy interference. A greater gap in performance was witnessed for

the GRSA001 data set, where overall correct signal classification rates of 93.0%, 89.0%, and 80.4%

were achieved by the the SCST, SRCT, and GMM methods, respectively, while the false alarm

rates were 3.75%, 11.0%, and 13.9%, respectively. The main reason the SCST method performed

best on the GRSA001 data is its ability to remain robust to the simultaneous presence of multiple

types of interference, while the other two methods assume a maximum of one type of interference

is present in a given observation.

The ability of the SRCT and SCST methods to generate accurate estimates of the signal and

interference components of an observation sequence was then evaluated. Testing event sequences

were synthetically generated for each data set that each contained the signatures of one type of

signal and one type of interference, and each method was tasked with estimating the signatures

of the former. On average, the SRCT method was able to improve the SNR of signal sequences

associated with the KEFJ004 data set from -3.32 dB to 4.62 dB, while the SCST method improved

the SNR to 6.62 dB. For sequences associated with the GRSA001 data set, the average input SNR

was -1.86 dB, and the SRCT and SCST methods were able to improve this average to 3.08 dB

and 4.47 dB, respectively. Clearly, the SCST method provided the best source separation results
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overall, which is mostly due to the SRCT method’s reliance on a linear vector AR model to estimate

the temporal evolution of a signal event, whereas the SCST model is far more flexible.

Overall, determining which method to use depends on the requirements of a specific application.

If interference class labels are required, or low computational cost is a priority, then use of the SRCT

method is recommended. On the other hand, if the data contains observations corrupted with

multiple types of interference simultaneously, or contains weak signal events that could benefit

from the use of a cumulative detection statistic, then the SCST method is recommended. The

SCST method is also preferred when sources of interest do not obey the relatively more strict

model assumed by the SRCT method, e.g., for speech recognition applications.
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CHAPTER 7

Conclusions and Suggestions for Future Work

7.1. Summary and Observations

This thesis considered methods and concepts for characterization of multiple time-varying tran-

sient sources using sequential multivariate data. This involves detecting on the onset of new tran-

sient events, estimating their durations, assigning corresponding class labels, and possibly forming

estimates of their signatures. The primary motivation for conducting the present study was tabu-

lating the presence and properties of extrinsic acoustical sources present in national parks. Since

the associated soundscapes were recorded for months at a time, and are represented using 1/3 oc-

tave vector sequences, developing approaches to handle this compressed data format was essential.

This problem carries many intrinsic challenges such as the frequent presence of prominent sources

of interference whose signatures are superimposed with sources of interest (signals), and erratic

source signatures that lead to extreme within-class diversity and between-class similarities. Prior

to the work in this thesis, these complications prevented development of a comprehensive solution

capable of properly and automatically analyzing the national park soundscape data, despite the

fact that such capabilities would be useful in a variety of applications, e.g., medical diagnosis using

magnetic resonance images and target detection using sonar data.

The developments in this thesis address various aspects of the transient source characterization

problem, and include complete solutions that can accommodate all of the intricacies of national

park soundscape data, yet remain flexible enough to allow straightforward adaptation to other

application areas. The major contributions of this work are summarized below.

(1) A new sequential random coefficient tracking (SRCT) method.

The SRCT method [74] was introduced in Chapter 4 as a comprehensive approach to transient

source characterization using sequential multivariate data, that satisfies all of the established
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requirements for successful solutions outlined in Section 1.3. This method is capable of detect-

ing, classifying, and estimating the signatures of a maximum of one signal and one interference

source in each observation, by establishing source composition hypotheses and associated mod-

els for each combination. The models are based on assuming the signatures of each source lie

in low dimensional subspaces, and that the associated random basis coefficients obey a linear

autoregressive (AR) vector model. A Kalman filter estimates these basis coefficients for each

source type and under each hypothesis, which allows for generating the necessary model pa-

rameters. The likelihoods of various parameter sets given the observation are used to form

statistics for conducting a hierarchy of tests to determine the composition of the observation in

terms of a signal, interference, and noise component. The estimated coefficients for the accepted

hypothesis may also be used in conjunction with the associated basis vectors to form estimates

of the actual source signatures present in a given observation, thus performing separation in

dual source cases.

The SRCT method is most useful when analyzing data that contains at most one type of signal

and one type of interference simultaneously, and additionally when a class label for interference

is desired. The SRCT method is also the least computationally intensive of all the comprehensive

approaches introduced in this thesis, and is therefore preferred for large dimensional data, or

when a large number of source types must be considered. It is also simple to extract SRCT

models from training data and apply them to new testing sequences, since only two parameters

are required in the former case (subspace dimension and AR model order), while only three

parameters are required in the latter case (a threshold for each test in the hierarchy).

(2) A new sparse coefficient state tracking (SCST) method.

The SCST method was developed and introduced in Chapter 5 to address a few practical con-

cerns associated with using the SRCT method to characterize complex soundscape data. In

particular, the SRCT method is not robust to the simultaneous presence of multiple types of
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interference, which can be an issue when analyzing, e.g., some natural soundscape data contain-

ing a large number of different types of acoustical interference related to weather effects and

wildlife vocalizations. Furthermore, the SRCT source and noise models may not be appropri-

ate in certain scenarios. For example, although Appendix B demonstrates that it is generally

reasonable to assume noise is multivariate Gaussian in the 1/3 octave domain, the presence of

certain ambient acoustical sources (e.g., waterfalls) may invalidate this assumption. Lastly, the

ability to perform source characterization using other multivariate data formats that do not

have Gaussian noise, e.g., Mel-frequency cepstral coefficients [51], increases the relevance of a

given approach.

Like the SRCT method, the SCST method also meets the requirements outlined in Section 1.3,

but does so by placing very few restrictions on the source signatures and noise. Instead, the

data is simplified by first finding a sparse approximation of a given observation, which makes the

temporal evolution of nonstationary acoustical signatures more tractable. This sparse coding

stage provides inherent robustness to the simultaneous presence of multiple types of interference

since these components may be separated from those of any signal that is present, assuming the

coding dictionary is properly designed. The resulting sparse coefficients are then quantized to

levels that are designed to maximize the discriminatory information they contain as measured by

the J-divergence [85, 86] between different hypotheses, i.e., coefficient “states” are extracted. A

Bayesian network may be trained for each source type that models the conditional distributions

of sparse coefficient states extracted from corresponding 1/3 octave signatures, when given

previous coefficient states. This allows for calculating the likelihood of a particular source

model given a data sequence whose length constantly increases. Likelihood ratio tests (LRT)

are formed to detect entire signal events during a quiescent phase (absence of a signal), and

subsequently detect the next quiescent phase to effectively estimate the duration of the current

signal event.
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The SCST method has proven to be highly versatile and offer superior signal detection, classifi-

cation, and estimation performance in most soundscape characterization scenarios. However, it

is still only capable of detecting a maximum of one type of signal at a time, and is not capable

of classifying interference. Additionally, it is more computationally intensive than the SRCT

method in many circumstances, unless a very efficient sparse coding strategy is used [92].

(3) Sequential decision fusion using hidden Markov models (HMM).

Chapter 3 explained that it is sometimes beneficial to make classification decisions on individual

observations separately, namely when the compositions of these observations in terms of signal,

interference, and noise components change frequently. However, this approach can lead to

decision sequences that do not provide an accurate description of the data contents in terms

of the quantity and properties of acoustical sources that were present. Therefore, Section 3.3

introduced a new sequential decision fusion scheme that is capable of aggregating a stream of

decisions to yield detection and classification results in terms of entire acoustical events. This

approach finds the likelihood of each of several different HMMs [36], that are associated with

different signal types, given a sequence of preliminary decisions (signal class labels) assigned to

individual observations. These likelihoods are then used in to form a set of LRTs [35] that can

be tracked to identify segments of data that contain unique acoustical events. This represents

a new approach to multi-class sequential decision fusion, as most of the existing work in this

area [43] considers binary hypothesis tests and/or fixed length data.

The proposed fusion was used to enhance the decision sequences made by the SRCT and Gauss-

ian mixture model (GMM)-based methods that resulted from their application to the sound-

scape data in Chapter 2. As shown in Section 6.4, when the signal detection performance of

the SCST and SRCT methods were analyzed using receiver operator characteristics (ROC), it

was found that the former provided superior performance on both data sets, as decision fusion

did not impact these tests. On the other hand, as indicated in Section 6.5, the overall detection
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and classification results on the KEFJ004 data set were similar for both of these methods, since

the SRCT results were improved by the proposed decision fusion.

(4) Comprehensive performance evaluation.

In Chapter 6, the SRCT and SCST methods were benchmarked against a GMM-based method

to determine the effectiveness of each for detecting, classifying, and estimating the signatures of

transient sources. These results represent the first comprehensive performance evaluation that

was conducted using 1/3 octave soundscape data collected in national parks, and furthermore,

the first time any automated source characterization method was successfully applied to this

data. In summary, by using receiver operator characteristic (ROC) curves it was found that

the SRCT and GMM methods performed similarly when it came to detection (signal and inter-

ference) and determining the dominant source that is present in a given observation, but the

former performed much better when it came to determining the quantity of sources, making it

more proficient at detecting signals in the presence of interference. When it came to signal de-

tection performance (regardless of interference), the SCST performed best overall by achieving

an area under the ROC curve (AUC) of 0.967 for the KEFJ004 data, whereas AUCs of 0.863

and 0.889 were achieved by the SRCT and GMM methods, respectively.

The overall detection and classification performance of each method were also reported in terms

of confusion matrices, which showed that the SCST and SRCT methods achieved similar per-

formance on the KEFJ004 data, though both of these methods performed much better than the

GMM-based approach. The largest performance differences were witnessed on the GRSA001

data, where overall correct classification rates of 93.0%, 89.0%, and 80.4% were achieved by the

SCST, SRCT, and GMM methods, respectively, with corresponding false alarm rates of 3.75%,

11.0%, and 13.9%, respectively. The main reasons for this performance gap are the ability of

the SCST method to remain robust to multiple types of interference that are simultaneously

present, as well as the flexibility of the Bayesian network model it is based on.
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Chapter 6 also demonstrated the ability of the SRCT and SCST methods to generate estimates

of the signatures of signal sources present in an observation sequence that is corrupted by

heavy interference. The SCST method again performed best in this regard by improving the

average signal-to-noise ratio (SNR) of interference-laden images associated with the KEFJ004

data from -3.32 dB to 6.62 dB, whereas the average SNR of SRCT signal estimates was 4.62 dB.

Similar performance was also witnessed for the GRSA001 data set. Finally, the computational

complexity of each method was compared, where the SCST method was found to have to

highest cost, both theoretically and in practice. It was found that the SCST (using basis

pursuit denoising), SRCT, and GMM methods took an average of 5.87×10−2, 5.70×10−3, and

2.60×10−2 seconds, respectively, to process a single observation using MATLAB on a computer

with a 3.2 GHz quad-core processor and 8 GB of RAM.

7.2. Future Work

There are several important theoretical and experimental research areas related to this problem

that can be pursued as part of future research efforts. These include, but are not limited to:

(1) Extend existing source characterization methods to handle multiple signal events

that are simultaneously present.

Perhaps the biggest deficiency of the proposed source characterization methods for properly

analyzing the data in Chapter 2 is that they are unable to detect when multiple signals are

simultaneously present. In such cases, both the SRCT and SCST methods will report the

presence of the most dominant source within a given time interval, while weaker sources will

go unnoticed; although this happens very infrequently for the present application. Fig. 7.1

shows an example of a 1/3 octave data sequence that contains several instances of overlapping

signatures from different signals, which is common for data collected in parks with high air

traffic, e.g., Grand Canyon and Yosemite National Parks. This is a challenging problem that
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Figure 7.1. Example 1/3 octave data sequence containing multiple instances of
overlapping signatures associated with different signal sources.

has not been addressed in cases where the data arrives sequentially and is multivariate. Some

research in the area of blind source separation [93] may be a proper candidate for extending, but

most existing work only applies to fixed-size time series data and/or when multiple independent

realizations (e.g., multiple microphones) of the data are available.

(2) Evaluate the performance of the SCST method using a more efficient sparse coding

method.

The experimental results produced by the SCST method reported in Chapter 6 were obtained by

using basis pursuit denoising [54, 80] to obtain sparse approximations, which involves solving a

computationally expensive quadratic programming problem. This sparse coding strategy is well-

suited to the SCST method in that it consistently produces sufficiently sparse sequences that can

be easily modeled using a Bayesian network, but its complexity means slow processing for high-

dimensional data and potentially significant challenges associated with direct implementation

of the SCST algorithm on acoustical monitoring stations. It would therefore be worthwhile

to evaluate the detection and classification performance of the SCST method when using a

computationally efficient sparse coding strategy, such as a fast implementation of orthogonal

matching pursuit [92]. Ideally, the performance loss resulting from the new sparse coding

strategy would be negligible, while introducing the benefits mentioned above.
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(3) Design fast implementations of the proposed algorithms.

Section 1.1 thoroughly discussed the primary motivations for developing the algorithms pre-

sented in this thesis, among which was circumventing the current approach for National Park

soundscape characterization, which is based on manual analysis by operators. The results in

Chapter 6 demonstrated that automatic post-mission soundscape characterization using the

proposed algorithms is indeed feasible, but it would be even more beneficial to implement the

best performing and most versatile algorithm directly on acoustical monitoring stations for

real-time soundscape analysis during deployment. Some components of the algorithms, such

as the sparse coding step of the SCST method, would be complicated to implement efficiently

using, e.g., a hardware description language. On the other hand, this task would have numerous

benefits such as real-time reporting of abnormal acoustical conditions within a park and more

widespread analysis of various sites.

(4) Develop a robust method for extracting mutually incoherent sparse coding dictio-

naries for use with the SCST method.

The results in this thesis that were produced by the SCST method used K-SVD [55] to extract

source specific sparse coding dictionaries, which in general are designed to minimize the error

between a training observation set and its sparse reconstruction for a given level of sparsity.

While such dictionaries generally provided sparse coefficient state sequences that offered suffi-

cient discrimination between the signatures of different source types, it was often the case that

signatures associated with a given source type were not exclusively assigned to the associated

source-specific dictionary during the sparse coding process. This is a result of excessive co-

herence between atoms associated with different sub-dictionaries [54], which is common when

their associated signatures have similar morphologies [79]. While methods for sparse dictio-

nary learning exist [81, 82] that attempt to extract a set of dictionaries that simultaneously

have small mutual coherence and retain their reconstruction capabilities, they involve solving
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multi-objective optimization problems that do not guarantee convergence, making their prac-

tical application difficult. It would therefore be interesting to develop a more robust method

of extracting such mutually incoherent source-specific dictionaries to improve source separation

and class discrimination when used in the sparse coding stage of the SCST method.

(5) Use kernel methods to perform sparse coding in a higher dimensional space where

signal and interference components are linearly separable.

The results in Section 6.6 demonstrated the ability of the sparse coding process used by the

SCST method to mostly separate signal and interference components of an observation se-

quences, thus allowing for robust detection of signals whose signatures are corrupted by nui-

sance sources. However, the separation was typically not perfect, as a small amount of the

signal components present in the original observation would often be associated with the inter-

ference atoms, and vice versa. Apart from designing mutually incoherent dictionaries, another

possible solution to this issue is to use the kernel trick [94] to implicitly map the data into a

higher dimensional space where the two components are linearly separable. More specifically, a

multivariate kernel sparse representation framework [95] can be used to find the sparse repre-

sentation of an observation using atoms in a high dimensional space, which essentially performs

nonlinear separation of the different components in this observation. Successful application of

this approach would not only improve signal estimation performance, but also provide better

detection and classification performance for the SCST method, since sparse coefficients should

represent signals to be detected more distinctly in this case.

(6) Investigate the benefits of imposing a temporal sparsity and consistency constraint

for the SCST method.

The first step of the SCST process involves finding a sparse representation of a given vector

in the sequence as it arrives, which is done independently of other observations. The overall

structure of a transient event is then modeled by a Bayesian network that describes the temporal
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evolution of the extracted sparse vectors. It would therefore be interesting to additionally impose

a sparsity constraint over time in order to ensure successive sparse vectors represent only the

salient features of an entire event. While simultaneously imposing sparsity between and within

observations has been studied before [96], there in no known research that deals with this

problem in the context of transient detection and classification using sequential data.

(7) Design an optimal multivariate data representation for source characterization.

As noted in Chapter 2, the 1/3 octave data format is adequate but not necessarily optimal

for performing automated source characterization, as its use was originally motivated by data

storage limitations and its utility for visual analysis by humans. Since automated approaches

for analyzing the data now exist, it would be advantageous to design a data representation that

is optimal for this task to deploy on future acoustical monitoring stations, thus improving the

overall performance of the system. A simple example of the benefits of this work can be seen

in Fig. 7.2, which shows two different representations of a time series containing the simulated

signatures of two sources in motion that emit different narrowband frequencies. The bottom

image shows the 1/3 octave representation of the data, where the signatures of the two sources

overlap in frequency to a large degree. The top image shows a representation of the simulated

data obtained by applying the Karhunen-Loeve transform [88], with basis vectors that were

extracted from the time-domain signatures of each source type. This alternate representation

clearly separates the signatures of the two sources into different areas of the feature space,

thus allowing for improved discrimination. Although the approach used for this example is not

practical, in that a relevant transform needs to provide a unique representation of all source types

that may be present (rather than two simple narrowband sources), it nonetheless demonstrates

that alternate data representations may exist that are more useful than 1/3 octave for source

characterization.
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Figure 7.2. Comparison of Karhunen-Loeve (top) and 1/3 octave (bottom) rep-
resentations of simulated signatures associated with 0.2 kHz and 1 kHz sources in
motion.

(8) Use models learned from one data set to perform source characterization on an-

other.

The results in Chapter 6 were based on scenarios where some training data segments from a

given data set (site) were used to extract models and set parameters for a each method, which

were in turn used to analyze a disjoint set of testing segments from the same site. While such

an approach is still a realistic way to perform source characterization, and a much faster way to

do so than manual analysis of the data by an operator, the proposed methods would have even

greater utility if it were unnecessary to enact the training procedure for each site separately.

Therefore, it would be interesting to evaluate the performance of each method when trained

using only data from a single site, yet tested on data from multiple other sites. Clearly, the

same sources of interest that each method is trained to recognize should be present in these

testing sites in order to obtain valid results.

(9) Incorporate a learning system to improve characterization of novel events and

source types.

Any source characterization approach mentioned in this thesis will only perform well if trained

using data that is representative of testing sequences it is expected to analyze. This is the

main reason applying a system trained on data from one site might not perform as well on
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data from another site, as mentioned above. It might therefore be worthwhile to develop an

in-situ learning framework [94] for updating existing source models and forming new ones. The

main challenge of this task is determining which subset of newly encountered data is suitable

for updating a given model. This is because the performance of the system can quickly degrade

if learned samples do not belong to the class associated with the updated model, for instance.

On the other hand, updating the models would be a fairly simple process once relevant data

has been identified.

(10) Application of the proposed methods to other problems.

As mentioned in Chapter 1, the methods developed in this thesis are relevant to a multitude of

applications that use sequential multivariate data, e.g., speech recognition, habitat monitoring,

medical diagnosis, and battlefield surveillance. This is particularly true of the SCST method, as

it makes few assumptions concerning the structure of signals, interference, and noise present in

the data, making it readily adaptable to other application areas. An example of such an alternate

data sequence can be seen in Fig. 7.3, which shows a synthetic aperture sonar (SAS)-like image

[97] generated using multi-channel sonar data. Such images represent the coherence between

different pings off various spatial locations on the seafloor, where higher levels of coherence (red

pixels) typically occur at locations where underwater objects are present. In [97], objects are

detected by applying the matched subspace detector in Appendix D, to individual pings. It

would be interesting to study the benefits of using the SCST method to perform characterization

of signals/objects of interest, relative to the standard approaches used in a given field of study.
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APPENDIX A

Explicit Form of a One-Third Octave Vector

In this Appendix, the explicit form of a 1/3 octave vector [62] is given, which helps in under-

standing the characteristics of various source signatures present in the data in Chapter 2, and serves

as a precursor to deriving the distribution of ambient noise in the 1/3 octave domain in Appendix

B. Reasons for using the 1/3 octave representation in this thesis are discussed in Section 2.2. The

derivations herein use the standards specified in [64] and [66] for fractional-octave-band filters and

integrating sound level meters, respectively, as guidelines.

Though 1/3 octave vectors may be extracted from either continuous or sampled data, here

it is assumed that the original data captured by the monitoring station is an audio waveform

sampled at M = 51, 200 Hz [63], and hence, may be represented by a time series vector u =

[u[0] · · · u[m− 1]]T ∈ Rm. In this Appendix, there is no prior assumption placed on the composi-

tion or structure of u, meaning it can potentially contain the signatures of any number of acoustical

sources plus ambient noise. Since the soundscape is being continually recorded, the length m of u is

increasing. The elements of the 1/3 octave vector yk = [yk[0] · · · yk[N − 1]]T ∈ RN represent the

average energy in N = 33 different 1/3 octave frequency bands over the interval of u corresponding

to the kth second of the recorded audio waveform, i.e., [u[kM ] · · · u[(k + 1)M − 1]].

The nth 1/3 octave frequency band has a center frequency of f
(n)
c = 103 · 2(n

3
−10), meaning

f
(n+3)
c = 2f

(n)
c , i.e., the center frequency doubles (is one octave higher) every third band, hence

the name 1/3 octave. The upper and lower cutoff frequencies for the nth band are given by

f
(n)
u = 2

1
6 f

(n)
c and f

(n)
l = 2−

1
6 f

(n)
c , respectively. For the data used in this thesis n ∈ [11, 43],

meaning each yk captures energy in the frequency range of 12.4 Hz – 20.2 kHz.

Suppose u = [u[0] · · · u[kM − 1]] ∈ RkM , meaning the kth second of data has just been

recorded. Since the order of operations used to extract a 1/3 octave vector is not standardized,
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the first step used here is windowing in the time domain. Denote uk = Tku ∈ RM as the vector

containing the samples from the kth (last) second of u, where

Tk =
[
0M×(k−1)M IM

]
∈ RM×kM .

To find yk[n], uk is bandpass filtered with a passband that corresponds to the nth 1/3 octave

frequency band, within certain tolerances [64]. For ease of derivations in Appendix B, and to allow

the use of IIR filters, this filtering operation is shown in the frequency domain. Therefore, denote

xk = DMuk as the Fourier representation of uk, where DM =
1√
M

[
wijM

]
i,j=0,...,M−1

is the M ×M

DFT matrix with wM = e−j2π/M . Filtering can then be performed using the matrix whose diagonal

elements are the samples of the M -point frequency response of the bandpass filter associated with

the nth 1/3 octave frequency band, given by

Gn = diag [gn[0] gn[1] · · · gn[M − 1]] . (A.1)

The sound pressure level, in decibels (dB), in the nth 1/3 octave frequency band can then be

written as [66]

yk[n] = 10 log

{
1

p2
0M

uTTT
kDH

MGH
n GnDMTku

}
= 10 log

{
1

p2
0M
‖Gnxk‖22

}
(A.2)

where p0 = 20 µPa is the reference sound pressure and ‖x‖2 = xHx is the Hermitian inner product.
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APPENDIX B

Null Distribution of One-Third Octave Data

This Appendix derives the theoretical distribution, and analyzes the experimental distribution

of ambient noise1 that is present in recorded audio waveforms, in the 1/3 octave domain. The

intent is to justify certain assumptions made about the prior distribution of the noise, which are

often necessary when developing robust detection and classification methods (see Chapter 4). This

material builds on the derivations in Appendix A showing the explicit form of 1/3 octave vectors

in terms of the original time series data, and additionally uses the standards specified in [64] and

[66] for fractional-octave-band filters and integrating sound level meters, respectively. Note that,

since these standards allow for variations in certain processes to accommodate flexible design goals,

assumptions must occasionally be made, e.g., concerning the filter type used.

B.1. Theoretical Noise Distribution

This section derives the distribution of the nth element yk[n] of the 1/3 octave vector yk when

the original audio waveform follows the null distribution, i.e., u = v = [v[0] · · · v[m− 1]]T ∈ Rm

(see Appendix A), where v ∼ N
(
0, σ2Im

)
is a white Gaussian noise sequence. In this case, it

follows that yk = wk, where wk = [wk[0] · · · wk[N − 1]]T is the associated 1/3 octave noise vector.

The assumptions concerning the distribution of v are typical for audio processing applications in

the time domain [98], and are the aggregate result of many factors including thermal noise and

several phenomena that cause subtle variations in the sound pressure levels of natural acoustical

environments.

Since wk[n] represents sound pressure level in decibels (dB), define zk[n] = 10
wk[n]

10 as the nth

element of wk with the dB transformation reversed. The effects of this transformation on the

1Note: ambient noise excludes interference sources, as discussed in Chapter 2.
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distribution of noise will be discussed later in this Appendix. Note that (A.2) can be used to write

zk[n] =
1

p2
0M

vTTT
kDH

MGH
n GnDMTkv. (B.1)

where H is the Hermitian operator. Since Tk simply performs rectangular windowing, it follows

that vk = Tkv ∼ N
(
0, σ2IM

)
. Therefore, in general zk[n] is generated using a quadratic form of

the Gaussian random vector vk, with deterministic matrix DH
MGH

n GnDM , making zk[n] generalized

central chi-squared distributed [99].

For simplicity assume Gn from (A.1) represents an ideal filter for the nth 1/3 octave band, i.e.,

Gn = diag
[
0

1×f (n)
l

1
1×(f

(n)
u −f (n)

l )
0

1×(M−f (n)
u )

]T
(B.2)

is a matrix of zeros apart from a series of ones on the diagonal at locations corresponding to integer

cutoff frequencies f
(n)
l + 1 through f

(n)
u . Note that this type of filter satisfies the specifications in

[64] for 1/3 octave bandpass filter attenuation characteristics. In this case DH
MGH

n GnDM = PDn
M

is a projection matrix for the subspace spanned by the DFT basis functions corresponding to the

filter cutoff frequencies f
(n)
l +1 through f

(n)
u , i.e., the column space of Dn

M , which contains columns

f
(n)
l + 1 through f

(n)
u of DM . Consequently, it can be shown [99] that, since PDn

M
is symmetric

and idempotent, vHk PDn
M

vk ∼ χ2
ν , i.e., central chi-squared distributed with ν = tr(PDn

M
) degrees

of freedom. Note that tr(PDn
M

) = f
(n)
u − f (n)

l since PDn
M

performs projection onto a space spanned

by f
(n)
u − f (n)

l basis vectors.

It is well-known that, for large ν, the χ2
ν distribution asymptotically converges to N (ν, 2ν)

[100]. Thus, for moderately large n, where the bandwidth is large, it is reasonable to assume that

zk[n] ∼ N
(

ν

p2
0M

,
2ν

p4
0M

2

)
. (B.3)
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Moreover, since wk[n] = 10 log(zk[n]), the distribution of wk[n] converges to Gaussian much faster

than the distribution of zk[n] [100], as the logarithm removes much of the asymmetry. The log

transformation is also beneficial here since wk[n] ≤ 0 for 0 < zk[n] < 1, meaning the resulting

distribution of the transformed values is two-sided, as with a Gaussian distribution. Note that a

similar conclusion concerning the distribution of wk[n] can be reached for continuous time audio

using Riemann sums [101]. This means assuming ambient noise is Gaussian in the 1/3 octave

domain is still reasonable even when it is known that yk are extracted from continuous waveforms.

According to the order of operations used in (B.1), where windowing is performed before filtering

in the frequency domain, wk for different k are formed using disjoint sets of time-domain samples

Tkv, meaning it can also be assumed that wk[n] are independent for different k. On the other hand,

since the same vk is used to generate wk[n], ∀n, the noise vector wk is colored (element-wise) with

a non-diagonal full rank covariance matrix Rw. Justification for Rw being full rank comes from the

fact that Gn performs windowing on disjoint 1/3 octave frequency bands, and hence, the subspaces

characterized by PDn
M

’s for different n are orthogonal. Unfortunately, it is difficult to draw further

conclusions on the distribution of the entire vector wk, mainly owing to the log transformation in

(A.2). For this reason, the next section presents an evaluation of the experimental distribution of

wk using the KEFJ004 data from Chapter 2.

B.2. Experimental Noise Distribution

To establish more concrete analytical claims concerning the distribution of wk, this section

provides experimental validation of the assumed distribution of wk, i.e., wk
IID∼ N (µw,Rw), where

µw is the noise mean vector and Rw is the full rank noise covariance matrix. Note that µw 6= 0

since wk represents the average energy in different frequency bands. Here, we begin by testing

the Gaussianity of wk, which is followed by a test for independence between wk’s. The latter is

necessary since the above derivations assume a specific order of operations used in (B.1), as well as

white Gaussian noise in the original time domain.
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B.2.1. Testing for Gaussianity

The goal here is to perform the following hypothesis test

H0 : wk ∼ N (µw,Rw)

H1 : wk 6∼ N (µw,Rw) (B.4)

i.e. H0 means the sample distribution of wk is multivariate Gaussian, as assumed, while H1 means

the assumed distribution is not a good fit to wk. This is accomplished using an energy distance

goodness-of-fit measure [102]. Testing for independence of wk’s is done separately afterward. Given

arbitrary random vectors x ∈ RN and y ∈ RN , with known distributions, the energy distance

between their associated distributions is given by

h(x,y) = 2E ‖x− y‖2 − E
∥∥x− x′

∥∥
2
− E

∥∥y − y′
∥∥

2
≥ 0 (B.5)

where x′ and y′ are random variables that are independent of and identically distributed to x and

y, respectively. It follows that x and y are identically distributed if and only if h(x,y) = 0. This

test is affine invariant, consistent, and simple to implement. Clearly, such a test is unnecessary if

the distributions of x and y are already known, but (B.5) serves as a baseline for constructing an

appropriate sample version of an energy distance goodness-of-fit measure.

Since the hypothesized distribution is wk ∼ N (µw,Rw), consider a set of realizations of this

vector, denoted by {w(j)
k }

J
j=1, as well as the corresponding set of normalized 1/3 octave noise vectors

{ω(j)
k }

J
j=1 where ω

(j)
k = R

−1/2
w

(
w

(j)
k − µw

)
. Lastly, consider the set of independent realizations

{n(l)}Ll=1 of the random vector n ∼ N (0, IN ). The principles of (B.5) may then be used to test the
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sample distribution of {w(j)
k }

J
j=1 as [102]

E({ω(j)
k }j , {n

(l)}l) (B.6)

=
2

JL

∑
j

∑
l

∥∥∥ω(j)
k − n(l)

∥∥∥
2
− 1

J2

∑
j

∑
j′

∥∥∥ω(j)
k − ω

(j′)
k

∥∥∥
2
− 1

L2

∑
l

∑
l′

∥∥∥n(l) − n(l′)
∥∥∥

2
.

As with many applications, the parameters of the hypothesized distribution µw and Rw are un-

known, and hence, their corresponding estimates

µ̂w =
1

J

∑
j

w
(j)
k

R̂w =
1

J

∑
j

(w
(j)
k − µ̂w)(w

(j)
k − µ̂w)T

must be used instead. Defining the normalized vector ω̂
(j)
k = R̂

−1/2
w

(
w

(j)
k − µ̂w

)
, the set {ω̂(j)

k }j

can be generated that is ultimately used to determine goodness of fit according to [102]

E({ω̂(j)
k }j , {n

(l)}l)

accept H1

≥

<

accept H0

η (B.7)

where η is a predetermined threshold that may be based on empirical percentiles of E estimated

by simulations using two independent sequences that are
IID∼ N (0, IN ). The test in (B.7) rejects

multivariate Gaussianity of wk (hypothesis H0) for large values of E .

To test the Gaussianity of wk, the energy distance test in (B.7) was applied to a set of J =

14, 960 (just over eight hours worth) 1/3 octave observation vectors containing noise alone from the

KEFJ004 data set. As mentioned in Chapter 2, noise in this data set is caused by light wind, water

flow, sensor noise, and other phenomena that is continually present and mostly random. Therefore,

168



Figure B.1. Histograms of the energy distances between 1) two different sets of

IID standard normal multivariate vectors {n(l)}l and {n(l′)}l′ (white) and 2) {n(l)}l
and {ω̂(j)

k }j (shaded).

it may not be reasonable to assume the corresponding audio waveforms are pure white Gaussian

noise, though this is part of the reason experimental validations are performed. The test was

implemented using 100 trials, where each used (B.6) to measure the energy distance between the

normalized KEFJ004 noise vectors {ω̂(j)
k }j and a different size J set (i.e. L = J in (B.6) for these

experiments) of vectors {n(l)}l that were generated using the ‘mvnrnd’ command in MATLAB

(i.e., pseudo-random), and are therefore approximately
IID∼ N (0, IN ). The shaded histogram in

Fig. B.1 shows of these energy distance measures along with a white (dashed-line) histogram that

shows the results of a similar set of trials measuring the distance between two independent size J

sets of
IID∼ N (0, IN ) vectors. The latter results are used as a benchmark to determine if acceptingH0

(declaring wk ∼ N (µw,Rw)) is reasonable. In particular, it is common to use a 0.05 significance

level for such tests [103], meaning η may be set as the energy distance measure that divides the

density of the measures E({n(l)}j , {n(l)}l) into its lower 95% and upper 5% portions. Based on this

criterion, a threshold of η = 0.0013 is used to determine whether or not to reject H0.
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As can be seen from the shaded histogram in Fig. B.1, E({ω̂(j)
k }j , {n

(l)}l) is close to zero for

every trial. Furthermore, the maximum value of E({ω̂(j)
k }j , {n

(l)}l) is far below the value of η

specified by the histogram of E({n(j)}j), {n(l)}l). Therefore, it is reasonable to accept H0 in (B.4)

and assume that wk ∼ N (µw,Rw). However, the claim that wk’s are independent ∀k still needs

to be validated, which is investigated next.

B.2.2. Testing for Independence

The goal is now to validate the assumption that wk, ∀k are IID using the locally most pow-

erful invariant test for correlation of Gaussian vectors. It has recently been shown [104] that the

corresponding test statistic is the Frobenius norm of the coherence matrix of a vector formed by

concatenating all the vectors in the set to be tested. This test is often used for signal detection us-

ing multi-channel data where the null hypothesis states that observations from different sensors are

independent, but can be applied to the data in Chapter 2 by treating temporally adjacent vectors

as different data channels to test for independence of wk’s over k. Clearly, the independence and

the above Gaussianity conditions must both be satisfied in order to claim that wk
IID∼ N (µw,Rw),

as originally hypothesized.

Consider the set of random vectors {w̃k}Kk=1 where it assumed that each w̃k = wk−µw ∈ RN is

zero-mean multivariate Gaussian distributed, and define the vector w̃ =
[
w̃T

1 , . . . , w̃T
K

]T ∈ RNK

with covariance matrix Rw̃ = E
[
w̃w̃T

]
. Since w̃k is zero-mean, and the mean and covariance

matrix completely parameterize a multivariate Gaussian distribution, the sufficient statistic for

testing independence of w̃k’s is the composite sample covariance matrix of w̃

R̂w̃ =
1

M

M∑
m=1

w̃(m)w̃(m)T (B.8)

where w̃(m) is the concatenation of the mth measurement of each vector in the set {w̃k}Kk=1.

Defining D̂ = diagN (R̂w̃) as the symmetric block-diagonal matrix formed using the N ×N matrix
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blocks on the diagonal of R̂w̃, the coherence matrix can be written as [104]

Ĉ = D̂−1/2R̂w̃D̂−1/2.

Typically, a coherence matrix denotes the covariance between two random vectors that have been

whitened [105], which transforms each vector to remove the inter-element correlations. Here, the

N × N blocks on the diagonal of Ĉ are IN , while the off-diagonal blocks capture the coherence

between different w̃k’s. The relevant hypothesis test in this case is then [104]

H0 : w̃ ∼ N (0NK ,D)

H1 : w̃ ∼ N (0NK ,R1) (B.9)

where H0 and H1 correspond to accepting and rejecting the notion of w̃k’s being IID, respectively,

and where R1 is an unknown covariance matrix under H1. This test is conducted according to

[104]

∥∥∥Ĉ∥∥∥
F

accept H1

≥

<

accept H0

γ (B.10)

where γ is a predetermined threshold that may be based on empirical percentiles of the Frobenius

norm
∥∥∥Ĉ∥∥∥

F
, estimated by simulations using independent sets of vectors that are

IID∼ N (0, IN ).

The idea behind this test is that
∥∥∥Ĉ∥∥∥

F
in (B.10) becomes larger as the off-diagonal elements of Ĉ

deviate from zero, which is the value of these elements for a set of truly IID vectors.

To test the independence of wk’s for the KEFJ004 data in Chapter 2, the coherence test in

(B.10) was applied to the same set of 1/3 octave noise vectors that was used to test Gaussianity
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Figure B.2. Histogram of the coherence measures obtained for a set of IID
multivariate Gaussian vectors, together with the coherence measure obtained for
KEFJ004 noise vectors.

in Section B.2. For this test, the set of J = 14, 960 N -dimensional vectors was used to form a size

M = 1, 496 set of NK = 330 dimensional vectors (i.e., K = 10), with each element representing a

different realization w̃(m). Each w̃(m) was formed using K temporally adjacent 1/3 octave vectors

containing noise alone to ensure this test measures independence within a sequence of K = 10

vectors. Since the coherence test involves calculating a measure using only the data, as opposed

to making a comparison between the data and an independent set as in the energy distance test

in (B.7), only a single trial was performed to obtain a measure of coherence between noise vectors

in the KEFJ004 data set. This value is shown by the dashed vertical line in Fig. B.2. Though

multiple trials could potentially be performed, this would require an abundance of data, and using

more samples to form R̂w̃ in (B.8) improves the accuracy of the test statistic. However, as with the

Gaussianity test, for benchmarking purposes 100 trials were performed to generate a histogram of

the coherence measures obtained for a set of vectors that are approximately
IID∼ N (0, IN ), which is

also shown in Fig. B.2. As before, these benchmark vector sets were generated using the ‘mvnrnd’

command in MATLAB.
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As can be seen from Fig. B.2, the coherence measure between KEFJ004 noise vectors is close

to the sample mean of the coherence measures obtained from the 100 trials using data that was

specifically generated to be IID. The value of
∥∥∥Ĉ∥∥∥

F
obtained for the KEFJ004 noise is also rea-

sonably close to ‖INK‖F =
√

330, which is the theoretical value of the coherence measure for

IID Gaussian random vectors. Therefore, considering the results of the Gaussianity test above in

addition to these independence results, it is indeed reasonable to accept H0 in (B.9) and declare

wk
IID∼ N (µw,Rw).
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APPENDIX C

One-Third Octave Representation of Doppler-Shifted

Waveforms

This appendix draws a link between the behavior of sources in motion that we wish to char-

acterize (discussed in Section 2.2.2) and their 1/3 octave signatures [62] that must be used for

such analysis. In particular, it is shown how Doppler impacts the 1/3 octave signatures of such

sources by causing the frequency components to vary nonlinearly with time. The intension is to

provide insight regarding what is perhaps the primary cause of variable and nonstationary signa-

tures produced by extrinsic sources, which necessitates the development of sophisticated detection

and classification approaches capable of tracking such signatures. First, a model for the received

continuous time waveform corresponding to the signatures of a single narrowband source are pre-

sented. The implications of this model for the 1/3 octave signatures of a source are then discussed,

together with simulations that directly show the impacts of source motion.

C.1. Signal Model

Consider the data collection scenario presented in Fig. C.1 where a fixed monitoring station

(receiver) records the acoustical signatures of a single source in motion. For simplicity, the source

is assumed to emit a single narrowband tone at frequency fs, and maintain a constant velocity v

throughout the observation period. Additionally, the source is assumed to have a constant linear

trajectory so that the velocity and angle of the source w.r.t. the receiver, denoted by rt and θt at

time t, respectively, are predictable albeit nonlinear. Finally, only 2D motion of the source relative

to the receiver is considered. Denoting fd as the Doppler-shifted frequency, the received signal at
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Source

Closest Point
of Approach

Figure C.1. Geometry of the spatial relationship between a narrowband source
and receiver for the problem considered in this study.

time t can be written as

ut = At cos (2πfdt)

= At cos

(
2π

(
c

c− rt

)
fst

)
= At cos

(
2π

(
c

c− v cos θt

)
fst

)
= At cos

(
2πfst

1− (v/c) cos θt

)
(C.1)

where At is amplitude of the received waveform (dependent on source distance at time t) and c

is the medium velocity, which is approximately equal to 340.29 m/s in air at sea level. Using the

geometry suggested by Fig. C.1 where, without loss of generality, the motion of the source w.r.t. the

receiver is parameterized by a single dimension, the angle of the source w.r.t. the receiver may be

written as

θt =
π

2
− tan−1

(xt
d

)
where xt is x-axis position of the source relative to the receiver at time t, and d is the minimum

distance achieved between the source and receiver.
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Figure C.2. Relationship between Doppler-shifted frequency and time for a source
with the characteristics assumed in this study.

The multiplier (1− (v/c) cos θt)
−1 in (C.1) causes ut to deviate from a single tone, to something

that has nonlinear time-frequency characteristics that are similar to those displayed in Fig. C.2,

for two fs = 1 kHz sources with different motion characteristics. This is a direct consequence

of rt being a nonlinear function of time. In this figure it is assumed that a given source begins

moving toward the receiver until it reaches its closest point of approach, at a distance d from the

receiver, where it then moves away from the receiver. The resulting Doppler-shifted frequencies are

monotonically decreasing in this scenario, being larger than fs as it is moving towards the receiver,

equal to fs at its closet point of approach (where t = 10 s and rt = 0 m/s), and smaller than fs

as it moves away from the receiver. As can be seen, the frequency/time slope and the consequent

impact of Doppler is more severe for larger v and smaller d.

The consequences of these nonlinear frequency shifting characteristics cannot be understated,

as they have a severe impact on the 1/3 octave vectors extracted from such signatures. Although

finding an explicit form of 1/3 octave vectors extracted from Doppler shifted waveforms is possible,

it is not done here since the results are unwieldy and seldom rewarding due to the fact that the

motion parameters of sources are unknown in practice. Instead, simulations are presented that
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(a) fs = 1 kHz, d = 10 m, and v = 100 m/s.
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(b) fs = 1 kHz, d = 100 m, and v = 50 m/s.

Figure C.3. 1/3 octave vector sequences extracted from simulated waveforms cor-
responding to sources with different motion characteristics.

demonstrate the aforementioned effects in the 1/3 octave domain, in order to clarify the underlying

causes of variations in the structure of the data to be analyzed.

C.2. Simulations

To illustrate the effects of Doppler in the 1/3 octave domain, two waveforms were simulated

according to (C.1), that correspond to the received signatures of two sources with different motion

characteristics. These sources have the same time-frequency characteristics as those shown in

Fig. C.2, meaning they emit a single tone at fs = 1 kHz, but one is parameterized by d = 10 m

and v = 100 m/s, while other by d = 100 m and v = 50 m/s. These source velocities are reasonable

values for some aircraft, e.g., propeller planes, though the distances were made to be overly small

to exaggerate the effects of Doppler. Corresponding 1/3 octave vector sequences were extracted

from these simulated time domain waveforms, and are shown in Figs. C.3(a) and C.3(b).

As can be seen in both cases, the energy present in the vector sequences is confined to the 29th

– 31st 1/3 octave frequency bands (which contains fs) when the velocity of the source w.r.t. the

receiver rt is near constant. However, during the times when the observed frequency changes most

rapidly the energy become broadband in the 1/3 octave domain. This result is due to the fact that

the time-frequency characteristics of a source with the assumed characteristics are nearly linear

within the one second observation period used to extract a vector. Consequently, the approximate
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linear FM chirp in the time domain becomes a scaled linear chirp in the frequency domain [106],

meaning the energy in the frequency domain is spread out over a wider range of the spectrum

than Fig. C.2 might indicate. This is why the 1/3 octave vector sequence in Fig. C.3(a) has

broadband signatures only during the two seconds in the middle of the sequence, while the change

in frequency occurs more gradually over time for the source represented in Fig. C.3(b), leading to a

larger number of 1/3 octave vectors with wideband signatures. The latter figure also demonstrates

that the bandwidth of the energy is related to the magnitude of the time-frequency slope of the

time domain source signatures shown in Fig. C.2. This momentary increase in perceived bandwidth

is in addition to the shift in overall received frequency of each tone from the beginning to the end

of a source’s signatures.

As mentioned in Section 2.2.2, there are many other factors that contribute to nonstationary

source signatures that are a mainstay of the present problem, though many of them are unique

to a given source type, e.g., blade-vortex interaction for helicopters. When it comes to designing

algorithms to detect and classify sources with such signatures, it is clear that they must be based

on a flexible measurement model, that is capable of accommodating unpredictable source char-

acteristics. For instance, since there are essentially no restrictions on the trajectory of a source

w.r.t. the receiver, source motion parameters and signatures tend to vary wildly. Nonetheless, a

successful approach to the present problem must be able to assign the same class label to acoustical

events associated with the same source type, but with with largely different parameters, as with

the simplified case in Fig. C.3.
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APPENDIX D

Review of Matched Subspace Detectors

This appendix provides a review of the matched subspace detector (MSD), which uses the

principle of the generalized likelihood ratio test (GLRT) [44] to yield a uniformly most powerful

invariant detector. The MSD is can detect the presence of a signal in a vector observation corrupted

with structured interference and additive Gaussian noise. The MSD is discussed here since it is

a simple but powerful method for performing detection and classification separately on individual

observations in a sequence, as mentioned in Section 3.2.3. Such decisions may then be combined

using, e.g., the HMM-based sequential decision fusion in Section 3.3. Additionally, Appendix E

demonstrates the relationship between the MSD and the sequential random coefficient tracking

(SRCT) method introduced in Chapter 4. Many of the concepts outlined in this appendix are

drawn from [40, 44, 107].

The exact formulation of the MSD varies depending on the assumed composition of the ob-

servation y ∈ RN under each hypothesis in terms of signal, interference, and noise, as well as

the structure of each of these components [44]. Here, the following hypotheses testing problem is

considered

H0 : y = h + w

H1 : y = s + h + w (D.1)

where s and h are signal and interference vectors, respectively, and w ∼ N (0,Rw) is a zero-mean

Gaussian noise vector with full rank covariance matrix Rw ∈ RN×N . The goal of the MSD is

then to detect the presence of s in y. In this formulation only one class of signal and one class

of interference are considered, meaning several MSDs would be required to detect and classify
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sources for the soundscape characterization problem considered in this thesis (see Appendix E for

an elaboration of this concept).

As with the SRCT method in Chapter 4, the MSD is applied to transformed observations

z = R
− 1

2
w y with white observation noise ω = R

− 1
2

w w, meaning E
[
ωωT

]
= IN , i.e.,B the N × N

identity matrix. This transformation allows for writing the test statistic in a simpler form by re-

moving its dependence on Rw [107]. The underlying concept of the MSD is assuming that the

transformed signal vector R
− 1

2
w s and transformed interference vector R

− 1
2

w h lie in known low di-

mensional subspaces, 〈S〉 and 〈H〉, respectively, that are spanned by the columns of S ∈ RN×Ms

and H ∈ RN×Mh , respectively, with Ms < N and Mh < N being the dimensionality of these

subspaces. The subspaces 〈S〉 and 〈H〉 are not necessarily orthogonal, but they are linearly inde-

pendent, meaning no vector in 〈S〉 can be written as a linear combination of vectors in 〈H〉, or vice

versa. It follows that R
− 1

2
w s = Sa and R

− 1
2

w h = Hb where a ∈ RMs and b ∈ RMh are deterministic

but unknown vectors that respectively contain the signal and interference subspace coordinates.

Since a and b are deterministic and ω ∼ N (0, IN ), the hypothesis test in (D.1) may now be

written as

H0 : z ∼ N (Hb, IN )

H1 : z ∼ N (Sa + Hb, IN ) . (D.2)

Therefore, the parameter of the density of z is Θ = {a,b}, and the likelihood of Θ given z is

`(Θ; z) =
1√

(2π)N
exp

{
−1

2
‖ω‖22

}

where the noise may be written as

ω = z− Sa− Sb. (D.3)
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Since the MSD is a GLRT, the test statistic is based on a log-likelihood ratio (LLR) of the

parameters under each hypothesis, i.e., Θi for hypothesis Hi. To make the test generalized, each

Θi is replaced by its maximum likelihood estimate (MLE) Θ̂i to yield the test statistic [44]

L(z) = 2 ln

(
`(Θ̂1; z)

`(Θ̂0; z)

)
= ‖ω̂0‖22 − ‖ω̂1‖22 (D.4)

where ω̂i is the MLE of the noise under Hi, that is obtained by using the MLEs of the source

coordinate vectors under the same hypothesis (elements of Θ̂i), in (D.3). In particular, it can be

shown [44] that

ω̂0 = z−PHz = P⊥Hz

ω̂1 = z−PSHz = P⊥SHz

where PH = H
(
HTH

)−1
HT and PSH = [S,H]

(
[S,H]T [S,H]

)−1
[S,H]T are orthogonal pro-

jection matrices for the subspaces 〈H〉 and 〈[S,H]〉, respectively, while P⊥H = IN − PH and

P⊥SH = IN − PSH project onto the orthogonal complements of these subspaces, respectively. See

Section 4.3.3 or [44] for a more detailed explanation as to why these are the MLEs of the noise in

each case.

Finally, the test statistic in (D.4) may be written as

L(z) = zTP⊥Hz− zTP⊥SHz

= zT (PSH −PH) z.

The form of this test statistic demonstrates that, in general, MSDs operate by determining the

energy of the components of the observation that lie in the signal subspace after the interference
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components have been removed. The hypothesis test is then implemented as

L(z)

z ∈ H1

≥
<

z ∈ H0

η

where η is a predetermined threshold.
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APPENDIX E

Relationship between MSD and SRCT

In Chapter 4, a sequential random coefficient tracking (SRCT) method was introduced as a

comprehensive solution to the source characterization problem considered in this thesis. This

method is based on applying a hierarchy of log-likelihood ratio tests (LLRT) to each observation

(see Section 4.3.4) to discover its composition in terms of signal, interference, and noise, and

assumes basis coefficients associated with each source type follow a linear autoregressive model.

This appendix examines the simplified forms of these LLRTs for the special case where source basis

coefficients are deterministic but unknown. In particular, there exists an interesting relationship

between the SRCT test statistics and those defined by the matched subspace detector (MSD)

introduced in Appendix D. Note that the notation used in this appendix is the same as that in

Chapter 4.

Recall that the SRCT method considers the following hypothesis testing problem

H0 : zk = ωk

H(p)
1 : zk = S(p)ak + ωk

H(q)
2 : zk = H(q)bk + ωk

H(p,q)
3 : zk = S(p)ak + H(q)bk + ωk

where S(p) and H(q) contain basis vectors that span the pth signal space and qth interference space,

respectively, while ak and bk are the coordinates of the signal and interference components of the

observation relative to these subspaces, respectively. In Chapter 4, ak and bk were considered

random, but in this appendix they are assumed to be deterministic but unknown. Application of
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the SRCT method to an observation vector zk involves calculating

ζk =
1

2
ln det (Σk) +

1

2
(zk − µk)T Σ−1

k (zk − µk) (E.1)

for each hypothesis listed above, where µk and Σk denote the mean vector and covariance ma-

trix of a multivariate Gaussian distribution, respectively, that are unique for each hypothesis and

observation.

The model under each hypothesis can be used to find a corresponding parameter set θk =

{µk,Σk} for the observation zk. When source signatures are deterministic but unknown, the noise

vector ωk
IID∼ N (0, IN ) is the only random term in zk, and hence, Σk = IN under all hypotheses.

Since no sources are present under H0, the corresponding test statistic remains unchanged as

ζk = 1
2zTk zk. For other hypotheses, using the notation in Table 4.1, the mean vector µk may be

replaced by its maximum likelihood estimate (MLE) µ̂k = Cx̂k, where x̂k is the MLE of the state

vector that contains estimates of basis coefficients (âk and/or b̂k), given by either (4.16) or (4.20).

More specifically,

H(p)
1 : x̂k = S(p)†zk

H(q)
2 : x̂k = H(q)†zk

H(p,q)
3 : x̂k =

[(
S(p)†E

(p,q)
S zk

)T
,
(
H(q)†E

(p,q)
H zk

)T]T

where E
(p,q)
S and E

(p,q)
H are oblique projection matrices defined in Section 4.3.3, and † means Moore-

Penrose inverse [76]. Now, (E.1) can be used to form the estimate ζ̂k = 1
2 ‖zk −Cx̂k‖22 where ‖·‖2

denotes the `2-norm. By assigning D = I from Table 4.1 (of appropriate dimension), the explicit
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form of ζ̂k under each hypothesis is then

H(p)
1 : ζ̂k =

1

2

∥∥∥zk − S(p)S(p)†zk

∥∥∥2

2
=

1

2
zTkP

(p)⊥
S zk

H(q)
2 : ζ̂k =

1

2

∥∥∥zk −H(q)H(q)†zk

∥∥∥2

2
=

1

2
zTkP

(q)⊥
H zk

H(p,q)
3 : ζ̂k =

1

2

∥∥∥zk −P
(p)
S E

(p,q)
S zk −P

(q)
H E

(p,q)
H zk

∥∥∥2

2
=

1

2
zTkP

(p,q)⊥
SH zk

where the matrices P
(p)⊥
S , P

(q)⊥
H , and P

(p,q)⊥
SH project orthogonally onto the subspaces

〈
S(p)

〉⊥
,〈

H(q)
〉⊥

, and
〈[

S(p),H(q)
]〉⊥

, respectively. These ζ̂k’s are identical to the square of the `2-norm of

noise estimates used to generate test statistics for a MSD [44], as shown in Appendix D for general

H(q)
2 and H(p,q)

3 hypotheses.

In essence, when sources may be modeled as having deterministic but unknown basis coefficients,

the SRCT framework may be implemented as the application of a set of MSDs to zk by replacing

ζk’s with ζ̂k’s when calculating the LLRTs in Section 4.3.4. Consequently, there is no need for

estimation of state vectors using a Kalman filter in this deterministic case, as the distribution

of each observation is not dependent on previous observations. Furthermore, the estimate of the

source signatures under each hypothesis is simply Cx̂k.
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