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ABSTRACT 
 
 
 

EXTREME PRECIPITATION AND FLOODING: EXPOSURE CHARACTERIZATION AND 

THE ASSOCIATION BETWEEN EXPOSURE AND MORTALITY IN 108 UNITED STATES 

COMMUNITIES, 1987-2005 

 
 There is substantial evidence that extreme precipitation and flooding are serious threats to 

public health and safety. These threats are predicted to increase with climate change. 

Epidemiological studies investigating the health effects of these events vary in the methods used 

to characterize exposure. Here, we compare two sources of precipitation data (National Oceanic 

and Atmospheric Administration (NOAA) monitor-based and North American Land Data 

Assimilation Systems (NLDAS-2) Reanalysis data-based) for estimating exposure to extreme 

precipitation and two sources of flooding data, based on United States Geological Survey 

(USGS) streamflow gages and the NOAA Storm Events database. We investigate associations 

between each of the four exposure metrics and short-term risk of four causes of mortality 

(accidental, respiratory-related, cardiovascular-related, and all-cause) in the U.S. from 1987 

through 2005. Average daily precipitation values from the two precipitation data sources were 

moderately- to well-correlated (rho = 0.74); however, values from the two data sources were less 

correlated when comparing binary metrics of exposure to extreme precipitation days (J = 0.35). 

Binary metrics of daily flood exposure were generally poorly correlated between the two flood 

data sources (rho = 0.07; J = 0.05). There was generally little correlation between extreme 

precipitation exposure and flood exposure in study communities. We did not observe evidence of 

a positive association between any of the four exposure metrics and risk of any of the four 

mortality outcomes considered. Our results suggest, due to the observed lack of agreement 
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between different extreme precipitation and flood metrics, that exposure to extreme precipitation 

might not serve as an effective surrogate for exposures related to flooding. Furthermore, it is 

possible that extreme precipitation and flood exposures may often be too localized to allow 

accurate exposure assessment at the community level for epidemiological studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv 

 

ACKNOWLEDGEMENTS 
 
 
 

 Thank you so much to my advisor, Dr. Brooke Anderson. Dr. Anderson has been an 

invaluable mentor and source of support throughout my time here at CSU. Thanks to Dr. 

Anderson I’ve been able to grow from a complete novice at coding to being able to co-write an R 

software package, and conduct the analyses for this project. I have been very grateful for the 

opportunity to work with Dr. Anderson—everything I’ve learned under her guidance will be 

crucial for my future endeavors. Thank you to Dr. Jennifer Peel for welcoming me into the 

Environmental Health program, and for guiding me through the program’s requirements and 

through thinking about my future plans. Dr. Peel’s classes have served as the foundation of my 

epidemiological education, and I’m grateful for her influence on this project. My outside 

committee member, Dr. Neil Grigg, has provided an important perspective throughout. I would 

like to thank him for his interest in my project, and for his suggestions regarding this project and 

future research. Thank you to my friends and family for their support throughout my time 

working through coursework and research. I would not have been able to complete either aspect 

of my degree without their encouragement. Finally, I would like to acknowledge funding from 

the National Institute of Health Sciences and the Colorado State University Water Center.  

 

 

 

 
 

 
 

 
 



 v 

 

TABLE OF CONTENTS 
 
 
 

ABSTRACT……………...……………….……………………………………………………....ii 

ACKNOWLEDGEMENTS………...…………………………………………………………….iv 

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW………………………………1 

 EPIDEMIOLOGICAL EVIDENCE OF HEALTH RISKS ASSOCIATED WITH  

EXTREME PRECIPITATION AND FLOODING……………………………………….1 

ASSESSING EXPOSURE TO EXTREME PRECIPITATION AND FLOODING FOR 

EPIDEMIOLOGICAL RESEARCH…………………………………………………….10 

CHAPTER 2: METHODS………………………………..……………………………………...16 

 DATA……………………………………………………………………………………16 

  STUDY COMMUNITIES AND TIME PERIOD……………………………….16  

  PRECIPITATION DATA………………………………………………………..17 

  FLOOD DATA…………………………………………………………………..18 

  MORTALITY DATA……………………………….…………………………...19 

CLASSIFYING COMMUNITY EXPOSURE TO EXTREME PRECIPITATION AND 

FLOOD DAYS….………………………………………………….……………………20 

MEASURING CORRELATION AND AGREEMENT IN EXPOSURE ASSESSMENT 

ACROSS DATA SOURCES…………………………………………………………….23 

MEASURING THE AGREEMENT BETWEEN EXTREME PRECIPITAITON AND 

FLOOD EXPOSURE……………….…………………………………………………...27 

MEASURING THE ASSOCIATION BETWEEN MORTALITY RISK AND 

EXPOSURE TO EXTREME PRECIPITATION AND FLOODS………………………29  



 vi 

 

CHAPTER 3: RESULTS………………………………………………………………………...33 

 EXPOSURE CHARACTERIZATION………………………………………………….33 

  NOAA AND NLDAS PRECIPITATION……………………………………….33 

  USGS AND NOAA FLOODS…………………………………………………..38 

  EXTREME PRECIPITATION AND FLOOD EVENTS……………………….41  

 HEALTH IMPACTS OF EXTREME PRECIPITATION AND FLOODING………….44 

CHAPTER 4: DISCUSSION…………………………………………………………………….46 

TABLES…………………………………………………………………………………………61 

FIGURES………………………………………………………………………………………..65 

REFERENCES…………………………………………………………………………………..94 

APPENDIX A: THE “COUNTYWEATHER” R PACKAGE…………………………………106 

 
 
 
 
 
 
 
 
 
 
 
 



 1 

 

CHAPTER 1 
 

INTRODUCTION AND LITERATURE REVIEW 
 
 

 

The patterns, intensities, and durations of extreme weather and climate events in the 

United States have changed over the past decades and are expected to continue to vary in the 

coming century with climate change. The health impacts of extreme precipitation and flooding in 

particular are multi-faceted and expected to worsen (Bell et al. 2016). There are several health 

outcomes of concern associated with these events, and several ways to measure their 

occurrence—this is exemplified by the breadth of health outcomes investigated using varying 

methods of measuring exposure in epidemiological studies in the existing literature.  

Epidemiological evidence of health risks associated with extreme precipitation and flooding 
  

Epidemiological research has identified a number of health risks potentially associated 

with extreme precipitation and flood events. For extreme precipitation, epidemiological studies 

have reported evidence of increased risk of gastrointestinal (GI) illness (Thomas et al. 2006; 

Colford et al. 1999; Curriero et al. 2001; Tornevi, Axelsson, and Forsberg 2013; Nichols et al. 

2009), vehicular accident-related injuries and fatalities (Ashley et al. 2015; Black, Villarini, and 

Mote 2017), and respiratory-related health outcomes (Fisman et al. 2005; Dunn et al. 2012; 

Halsby et al. 2014; Brandsema et al. 2014; Soneja et al. 2016; Solomon et al. 2006). 

Several studies have investigated whether rates of GI illness are associated with extreme 

precipitation. In a national study of United States (U.S.) communities, Curriero and coauthors 

analyzed waterborne disease outbreaks and total monthly precipitation in the United States from 

1948 through 1994 and found that over half of GI outbreaks were preceded in the previous two 
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months by precipitation events above the 90th percentile of a community’s typical precipitation, 

and 68% of events were preceded by events above the 80th percentile (Curriero et al. 2001). 

Thomas et al. (2006) conducted another spatially and temporally large-scale study, investigating 

associations between extreme precipitation and waterborne disease outbreaks in Canada between 

1975 and 2001. They reported that extreme precipitation events were associated with an increase 

in the relative odds of an outbreak of 2.28 (95% confidence interval: 1.22, 4.29) (Thomas et al. 

2006). Drayna et al. (2010) investigated a link between precipitation and acute gastrointestinal 

illness pediatric emergency department visits to the Children’s Hospital of Wisconsin. The 

authors found an association between any rainfall 4 days prior and an 11% increase in acute 

gastrointestinal illness pediatric emergency department visits (Drayna et al. 2010). Conversely, 

Colford and coauthors (1999) investigated extreme precipitation and GI outcomes failed to 

identify an association. The authors investigated the association between rainfall and the 

frequency of sick leave use, meant to act as a surrogate for gastrointestinal illness among 449 

U.S. Postal Service workers in Sacramento, CA for seven months between October 1, 1992 and 

April 30, 1993—no meaningful difference was reported in the incidence rates of sick leave use 

between days with and without precipitation (Colford et al. 1999). While these studies 

investigated non-fatal outcomes, for more vulnerable populations such as young children and the 

elderly, these gastrointestinal-related health outcomes could also increase risk of mortality (Lane 

et al. 2013). 

One potential pathway between extreme precipitation events and gastrointestinal illness 

involves exposure to water from combined sewer and storm water systems—these systems may 

be overwhelmed during extreme events (Colford et al. 1999; Jagai et al. 2015). The outflows 

from these systems could contaminate surface or groundwater sources, and could release sewage 
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into local waterways, resulting in an increased exposure to waterborne pathogens (Drayna et al. 

2010). Researchers have detected associations between heavy rainfall and the rate of emergency 

room visit for gastrointestinal illness in regions where combined sewer overflow outfalls to 

drinking water sources. These associations were especially strong among those 65 and older, 

although not statistically significant (Jagai et al. 2015). According to the United States 

Environmental Protection Agency, combined sewer and storm water systems serve about 860 

communities in the United States, totaling about 40 million people (EPA, 2016). Most of these 

communities have populations under 10,000 people (cities like New York, Philadelphia, and 

Atlanta are notable exceptions) and are located in the Northeast U.S. and near the Great Lakes 

(EPA, 2016).  

Another relevant pathway between extreme precipitation and health risks involves 

driving; the visibility impairments caused by heavy rainfall have been found to result in 

increased accident-related vehicular fatalities (Ashley et al. 2015; Black, Villarini, and Mote 

2017; Bergel-Hayat et al. 2013). Ashley et al. (2015) analyzed data from 1994 through 2011 

from the National Highway Traffic Safety Administration (NHTSA)'s Fatality Analysis 

Reporting System (FARS) to characterize the role of weather in fatal motor vehicle crashes 

(2015). The authors observed that of fatal crashes that occurred in adverse weather conditions, 

almost half (46%) occurred in rain. These crashes comprise 8% of all fatal crashes (Ashley et al. 

2015). Ashley et al. argue that these counts, combined with other fog, smoke, or dust-related 

crashes, suggest that crashes due to weather-related obscured vision are an important threat to 

drivers, and the increased risk due to these conditions deserves research attention comparable to 

more high profile hazards like tornadoes and lightning (Ashley et al. 2015). In a matched pair 

analysis, in which each day with measurable precipitation was paired with a control day without 
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precipitation exactly one week before or after, Black and coauthors observed statistically 

significant increases in vehicle crashes (10% increase; 95% confidence interval: 9.8%, 10.2%) 

and injury rates (8% increase; 95% confidence interval: 7.5%, 8.1%) during rainfall days 

compared to dry days in six U.S. states (Black et al. 2017). The risk of crashes was found to 

increase with increasing daily rainfall totals (Black et al. 2017). Positive correlations have been 

observed between rainfall per month and the number of monthly vehicle accidents in other 

countries as well, such as France and the Netherlands (Bergel-Hayat et al. 2013). 

In addition to gastrointestinal illness and accidental fatalities, heavy precipitation could 

result in higher risk of respiratory-related outcomes. For example, Legionella is an 

environmentally ubiquitous bacterium that has been implicated in a type of severe pneumonia 

called legionellosis, or Legionnaires’ disease. Legionnaires’ disease is relatively uncommon but 

still results in a substantial number of outbreaks and fatal cases, particularly among the elderly 

(Phin et al. 2014.; Farnham et al. 2014; Campese et al. 2011). A plausible pathway for the 

transmission of Legionella to humans involves aerosolization of the bacterium. The 

environmental conditions that encourage this process and the survival of the bacterium are 

poorly understood (Dunn et al. 2012). Many researchers have hypothesized that weather 

conditions, particularly temperature, relative humidity, and precipitation, could play a role in 

Legionella transmission and subsequent Legionnaires’ disease case incidence (Falkinham et al. 

2015; Halsby et al. 2014; Chen et al. 2014; Dunn et al. 2012; Brandsema et al. 2014; Hicks et al. 

2007; Farnham et al. 2014). Associations have been detected between rainfall and Legionnaires’ 

disease cases and outbreaks. Brandsema and coauthors investigated sporadic cases in the 

Netherlands from 2003 to 2011, and reported that long-lasting and intense rainfall, in addition to 

temperature, contributes to an increased Legionnaires’ disease incidence. Fishman et al. (2005) 
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reported a positive exposure-response association between rainfall, relative humidity and 

Legionnaires’ in Philadelphia, PA between 1995 and 2003. In a study of cases in England and 

Wales from 1993 through 2008, Halsby et al. (2014) found that there may be an association 

between temperature and rainfall and the risk of sporadic Legionnaires’ disease. Not all studies 

investigating the association between Legionnaires’ and weather have observed an effect; for 

example, Dunn et al. (2012) reported no statistically significant associations with Legionnaires’ 

disease incidence and weather in Glasgow, United Kingdom after adjusting for year-by-year and 

seasonal variation in cases.  

In addition to the potentially fatal pneumonia caused by exposure to Legionella, there is 

evidence that extreme precipitation events are associated with increased risk of hospitalization 

for asthma (Soneja et al. 2016). Soneja and coauthors reported that the observed association was 

particularly strong in summer months, and among youth and adults—weaker associations were 

observed among those 65 and older (Soneja et al. 2016). In related research, there is evidence of 

associations between acute asthma outbreaks and thunderstorms, potentially partially attributable 

to the increase in airborne concentrations pollen and fungal spores that occurs during 

thunderstorm events (Dabrera et al. 2013; W. Anderson et al. 2001; D’Amato, Liccardi, and 

Frenguelli 2007).   

 Depending on soil moisture conditions and land use or cover conditions, extreme 

precipitation can lead to flooding (Rowe and Villarini 2013). Floods are among the most 

dangerous natural disasters due to the number of people affected and due to the average mortality 

per flood event; this is especially true for flash floods (Lowe, Ebi, and Forsberg 2013). There are 

many pathways that result in injury or death during a flood or in its aftermath—older age 

increases the risk of death in all of these pathways (Lane et al. 2013). Epidemiological studies 
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have found evidence of associations between flooding and myriad health outcomes, including 

gastrointestinal illness (T. J. Wade 2004; Wade et al. 2014; Lin, Wade, and Hilborn 2015; Setzer 

and Domino 2004; Tak et al. 2007; Thomas et al. 2006; Ding et al. 2013; Cann et al. 2013), 

accidental injury and fatality (Sharif et al. 2012; Alderman, Turner, and Tong 2012; Kellar and 

Schmidlin 2012), pulmonary impacts (Robinson et al. 2011; Solomon et al. 2006), and 

cardiovascular-related disease (Vanasse et al. 2016).  

As with extreme precipitation events, a well-studied health risk from flood exposure is 

risk of illness resulting from exposure to waterborne pathogens, given that the conditions caused 

by flooding are amenable to the spread of waterborne disease (Setzer and Domino 2004; Wade et 

al. 2004; Wade et al. 2014; Lin, Wade, and Hilborn 2015; Ahern et al. 2005; Cann et al. 2013). 

Cryptosporidium, G. lamblia, and T. gondii have been implicated in waterborne disease 

outbreaks in the United States (Setzer and Domino 2004). Little research has investigated 

linkages between flooding and H. pylori, M. avium; however, there is a potential for exposure. 

M. avium and adenoviruses are notable deviations from the theme of gastrointestinal-related 

illness: they both cause upper respiratory tract infections (Setzer and Domino 2004). 

Wade and coauthors and Setzer and Domino both investigated the health impacts of a 

single flooding event: severe flooding in the Midwestern United States in the spring of 2001 and 

Hurricane Floyd's landfall in North Carolina in September of 1999, respectively (Wade et al. 

2004; Setzer and Domino 2004). Wade and coauthors identified a decrease in the quality of 

source water during the flood period (April 14, 2001 and May 30, 2001)—concentrations of 

Giardia cysts and male-specific coliphages both increased (Wade et al. 2004). They conducted a 

survey to determine if the rates of gastrointestinal symptoms increased in association with the 

flood period or contact with floodwater and found that during the flood period, rates of 
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gastrointestinal symptoms were statistically significantly elevated (Wade et al. 2004). Further, 

they found that among participants aged 50 or older, rates of gastrointestinal symptoms were 

more elevated compared to the entire study population—this effect was particularly evident for 

severe diarrhea. When considering contact with flood water as the exposure of interest, self-

reported flooding of the house or yard was strongly associated with gastrointestinal symptoms 

(Wade et al. 2004). 

Setzer and Domino (2004), conversely, found little evidence of elevated waterborne 

disease risks following a severe flood. They evaluated Medicaid outpatient utilization related to 

six waterborne pathogens (Cryptosporidium, Giardia lamblia, Toxoplasma gondii, Helicobacter 

pylori, Mycobacterium avium, and adenoviruses) and compared Medicaid utilization for the 

associated waterborne diseases during for the pre-Hurricane Floyd to post-Floyd periods. They 

found no clear increase in visits related to the six selected pathogens, concluding that it is unclear 

whether an increased risk of exposure to waterborne pathogens resulted in increased use of the 

health care system following this extreme flooding event (Setzer and Domino 2004).  

In a review of the health impacts of flooding worldwide, Ahern et al. (2005) drew 

inferences from 212 studies and reported that there is inconclusive evidence for increased rates 

of diarrheal deaths associated with flooding but there is evidence for increased risk of non-fatal 

outcomes following flooding, including from increased transmission of fecal-oral, vector-borne, 

and rodent-borne disease (Ahern et al. 2005). Wade et al. (2014) and Lin et al. (2015) both 

conducted longer-term investigations of the association between gastrointestinal illness and 

flooding in Massachusetts (2003 through 2007 and 2003 through 2009, respectively). Wade et al. 

(2014) found that 7% of Emergency Room gastrointestinal-related visits were associated with 

flood events. Lin and coauthors found that in the 7 to 13 days following a flood, there was an 
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elevated rate of Emergency Room and outpatient visits for Clostridium difficile infection—C. 

difficile is a water-borne bacterium, and the primary cause of hospital-acquired infectious 

diarrhea in the United States (Lin et al. 2014).  

Ding et al. (2013) found that floods increase the risk of diarrhea in Chinese people living 

along the Huaihe River, and that long-term, moderate floods may be more concerning regarding 

disease burden compared to shorter, more severe floods. In a systematic review of 83 papers 

investigating associations between waterborne disease outbreaks and extreme water-related 

weather events (the majority of which were in North America) Cann et al. (2011) found that 

heavy rainfall and flooding commonly preceded waterborne disease outbreaks. A possible 

pathway for these outbreaks is the contamination of the of drinking water supply (Cann et al. 

2011).   

In addition to the concern about disease caused by exposure to waterborne pathogens 

resulting from flood events, there is concern about event-related, accidental fatalities related to 

the event or the restoration process (Hajat et al. 2005; Kellar and Schmidlin 2012; Alderman et 

al. 2011; Ahern et al. 2005). Due in part to the various physical hazards brought by flooding, it is 

one of the deadliest types of natural hazards (Kellar and Schmidlin 2012). Hajat et al. (2005) 

found that most flood-related fatalities worldwide are due to the increased risk of drowning that 

comes with rapid-rise floods. Floods are also associated with an increased risk of accidental 

death due to trauma—people are at higher risk of being hit by objects in flowing flood water, for 

example—and vehicular fatalities; this is especially true in the United States (Ahern et al. 2005). 

In a study of vehicle fatalities caused by flash floods in Texas from 1959 to 2009, Sharif et al. 

found an increasing trend in the number of annual fatalities in Texas, and they found that while 

motor vehicle-related flash flood fatalities are a national issue, these fatalities in Texas are 
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greater than that in any other state during the same time period (Sharif et al. 2012). While floods 

of long duration were found to be potentially more important in the context of burden of disease 

(Ding et al. 2013), short-duration floods are more significant for accidental injury and fatalities 

(Spitalar et al. 2014). This is due, in part, to the resulting decreased time for warnings.  

Other respiratory and cardiovascular-related health outcomes are of concern as well, during 

and following flood events. The dispersion of bioaerosols caused by favorable flood and post-

flood conditions has led to concern about increased rates of respiratory illness (Solomon et al. 

2006; Fisman et al. 2005). Pulmonary health can also be impacted by the floodwater itself—for 

example, direct injuries to the lungs can occur due to inhalation of water or traumatic injury 

(Robinson et al. 2011). Also, due in part to conditions like overcrowding and decreased access to 

quality health care, acute respiratory infections have been associated with natural disaster, 

including floods, with risks typically 3 to 5 days following the events (Robinson et al. 2011).   

Solomon et al. (2006) investigated the effect of Hurricane Katrina on indoor and outdoor 

mold concentrations in New Orleans, Louisiana, and found that concentrations were 

considerably elevated 6 and 10 weeks after the hurricane. Increased exposure to mold is 

associated with increased respiratory irritation, as well as allergic or asthmatic responses—this is 

especially true for more susceptible people, including the elderly (Solomon et al. 2006). 

Additionally, while not statistically significant, Vanasse et al. (2016) found evidence that 

flooding may be associated with increased occurrence of cardiovascular disease, potentially due 

to the intense stress and unusual efforts brought about by flood events. The health effects of 

natural disasters can be particularly borne by emergency services workers—Tak and coauthors 

investigated the association between exposure to floodwater following Hurricane Katrina and 
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various health symptoms among firefighters. Of the 525 firefighters interviewed, 38% reported at 

least one new-onset upper respiratory symptom (Tak et al. 2007).  

The environment in which a flood occurs can greatly mediate its impacts on health. For 

example, urban environments are more vulnerable to flash flooding, since various aspects of 

urban environments increase the volume and speed of flood runoff (Spitalar et al. 2014). Short 

and long-term effects are also impacted by characteristics such as the quality of infrastructure in 

an environment and the socio-economic status of those affected (Lowe et al. 2013).  

The health effects of exposure to extreme precipitation and flooding can be both 

immediate and delayed. For example, many potentially dangerous pathogens found in 

contaminated drinking water or flood water have incubation periods of days or weeks (e.g., 

Colford 1999; Wade 2004; Falkinham et al. 2013; Farnham et al. 2014). Therefore, exposure to 

these pathogens may not result in noticeable health effects until a substantial amount of time 

after exposure. Similarly, exacerbations of existing, chronic health problems caused by exposure 

to extreme precipitation or flooding may not manifest in a deterioration in health on the same day 

as exposure, but days, weeks, or months later (Robinson et al. 2011; Vanasse et al. 2016). In the 

context of flooding, there are sustained health concerns related not only to the event itself but 

also to the restoration process, which can last long after the flood period (Ahern et al. 2005; 

Hajat et al. 2005).   

Assessing exposure to extreme precipitation and flooding for epidemiological research 

One key challenge in improving our understanding of the community-wide health risks 

associated with extreme precipitation and flooding is to better understand and improve exposure 
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assessment to these hazards within epidemiological studies. Previous studies have used a number 

approaches to assign exposure to extreme precipitation or flooding in epidemiological research. 

Several studies have used community-specific measurements of precipitation and 

dichotomized days into those of extreme precipitation versus all other days. Thomas et al. (2006) 

in a study of extreme precipitation and waterborne disease outbreaks in Canada, chose to 

dichotomize daily rainfall using the 93rd percentile as a threshold for extreme events. A 

Sacramento-based study of precipitation and sick leave use also dichotomized precipitation 

measurements to identify exposed days, but used a much less stringent threshold for exposure, 

dichotomizing study days based on having any versus no precipitation (Colford et al. 1999). In 

their study of the association between asthma and extreme heat and precipitation, Soneja et al. 

(2016) used National Climatic Data Center (NCDC) meteorological data. The authors calculated 

county- and day-specific 90th percentile thresholds, using 30-year baselines and 31-day windows, 

to calculate a binary exposure to extreme precipitation (Soneja et al. 2016). For example, to 

determine if there was extreme rain on a particular day in a particular county, the authors took 

the 90th percentile of the distribution created by compiling all daily precipitation values for the 

month surrounding that day from 1960 to 1989 (Soneja et al. 2016).  

Another study assessed exposure to extreme precipitation by incorporating rainfall 

beyond a community, extending their exposure analysis to identify relevant events in a 

community’s entire watershed (Curriero et al. 2001). In this study, but the locations of GI 

outbreaks and weather station locations were coded to correspond to the center of the 

corresponding watershed (Curriero et al. 2001). Watersheds represent geographic units that drain 

all of the streamflow or rainfall to a common outlet. More importantly in the context of 

waterborne disease outbreaks, watersheds represent boundaries of drinking water sources 
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(Curriero et al. 2001). By incorporating watersheds in their analysis, Curriero et al. (2001) 

ensured that total monthly precipitation readings for a particular geographic area were being 

associated with waterborne disease outbreaks in the corresponding geographic area most likely 

affected by that precipitation. 

In some cases, the exposure data of interest is included with information about health 

outcomes of interest. For example, in the review of weather-related motor-vehicle fatalities, the 

NHTSA’s FARS dataset included information about the environmental conditions at the time of 

each crash—Ashley et al. (2014) focused on conditions that could affect visibility, including 

precipitation.   

Occasionally in the literature, studies investigating the health effects of extreme 

precipitation hypothesized pathways of increased risk that include increased streamflow or 

flooding (Colford et al. 1999; Tornevi et al. 2013; Thomas et al. 2006; Nichols et al. 2009)—

using extreme precipitation as a surrogate for flooding is not necessarily appropriate (Ivancic and 

Shaw 2015). In a Sacramento-based study of rainfall and sick leave use, rainfall was meant to act 

as a surrogate measure of exposure to combined sewer and storm water outflows, which, due to a 

corresponding increase in the exposure to waterborne pathogens, was hypothesized as the 

exposure likely to increase rates of illness (Colford et al. 1999). In their investigation of the 

association between sporadic cases of gastroenteritis and precipitation, Tornevi et al. (2013) used 

rainfall as a surrogate measure of outflows from combined sewer and storm water systems in 

Gothenburg, Sweden over 1,494 days. Their hypothesized pathway of increased risk of disease 

involved a decreased quality of river water used for drinking water production (Tornevi et al. 

2013). Thomas et al. (2006) hypothesized an association between extreme rainfall and spring 

thaw conditions, measured using daily rainfall and daily streamflow, respectively, and 
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waterborne disease outbreaks in Canada from 1975 to 2001. These chosen exposures were meant 

to capture exposure to waterborne pathogens in the drinking water supply (Thomas et al. 2006). 

Similarly, Nichols et al. (2009) investigated associations between cumulative and excessive 

rainfall and water related disease in England and Wales from 1910 to 1999. Nichols and 

coauthors’ (2009) hypothesized mechanism involved groundwater contamination with polluted 

surface water. Wash out from storm drains and contamination from runoff were also listed as 

relevant processes (Nichols et al. 2009). 

These studies exemplify a few exposures common in literature examining 

gastrointestinal-related health impacts of extreme precipitation: contaminated drinking water due 

to combined sewer system outflows or runoff, or human exposure to the combined sewer system 

outflows or runoff itself. Hypothesized health impacts due to contaminated drinking water are 

valid: there have been several studies that have found associations between drinking water 

turbidity (i.e., cloudiness, which is used as a proxy for water microbial contamination) and 

gastrointestinal illness (Schwartz, Levin, and Goldstein 2000; Mann et al. 2007; Gaffield et al. 

2003). However, the supposition that precipitation is an appropriate event on the pathway that 

leads to contaminated drinking water is less valid. Hydrologic models have predicted increases in 

both higher flood peaks and higher runoff with increased urbanization (EPA 1997; Brun and 

Band 2000); neither event can be described effectively with precipitation alone (Ivancic and 

Shaw 2015; Rowe and Villarini 2013). Rainfall is similarly a poor measure of human contact 

with combined sewer outflows or runoff. Flooding in urban areas, which increases the risk of 

human contact with combined sewer outflows or runoff, can occur when urban drainage systems 

deliver runoff at a rate faster than streams are able to transport it (Fisher et al. 1988). In this case, 

flooding is the more relevant event that leads to contact with outflow or runoff compared to 
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precipitation—while precipitation can sometimes lead to flooding, this relationship is not 

consistent nor reliable (Ivancic and Shaw 2015; Rowe and Villarini 2013), and it is possible for 

flooding to occur without precipitation (Groisman, Knight, and Karl 2001). Overall, the use of 

precipitation as a proxy for relevant exposures in the studies reviewed here is not entirely 

inappropriate, but in most cases using streamflow or the occurrence of floods would more 

effectively capture exposures of interest.  

Flooding ascertainment varies between studies. Many studies examining the health 

effects of floods focus on a single extreme flooding event (Wade et al. 2004; Solomon et al. 

2006; Tak et al. 2007; Setzer and Domino 2004; Ding et al. 2013). For studies investigating 

effects over time periods spanning multiple events, most either estimate flooding exposure using 

streamflow data (Thomas et al. 2006; Rowe and Villarini 2013; Garambois et al. 2015) or use 

datasets with human-entered flood events, such as the NOAA Storm Events database (Wade et 

al. 2014; Lin et al. 2015). There are similar datasets available for worldwide flooding events. For 

example, Hajat et al. (2005) obtained flood information from the Emergency Events Database 

(EM-DAT): The OFDA/CRED International Disaster Database, as did Jonkman et al. (2004). 

The EM-DAT database is publically available at www.emdat.be. In their review of the global 

health impacts of flooding, Ahern et al. (2004) also obtained flood information from this 

database. Events included in the database resulted in 10 or more deaths, 100 or more people 

reported affected, a call for international assistance, the declaration of a state of emergency, or 

any combination thereof (Hajat et al. 2005).  

There are several limitations in estimating health effects related to extreme rain and flood 

events. Many studies to date have investigated the health effects of a single event, or have 

focused on a particular state or community, making it difficult to generalize to a larger 
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population (Jonkman et al. 2009; Tak et al. 2007; Fisman et al. 2005; Tornevi, Axelsson, and 

Forsberg 2013; Lin, Wade, and Hilborn 2015; Sharif et al. 2012; Setzer and Domino 2004; Wade 

et al. 2004; Wade et al. 2014). The use of different metrics to assign exposure may limit 

comparability between studies, especially if exposure metrics are poorly correlated.  

Here, we evaluate and assess differences between four metrics for classifying 

community-level exposure to extreme rain and flooding. Additionally, using a time series 

analysis, we investigate the association between extreme precipitation and flood events and risk 

from four causes of mortality (accidental, respiratory-related, and cardiovascular disease-related) 

in 108 U.S. communities from 1987 through 2005. To date, the literature lacks a U.S.-based 

study of comparable scope investigating the mortality risks associated with extreme rainfall and 

floods. We hope to add to the literature by filling this gap, and by presenting a comparison of 

exposure metrics that could serve future studies investigating other health effects related to these 

extreme events. 
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CHAPTER 2 
 

METHODS  
 
 
 

Data 
 
Study communities and time period  
 

We conducted this study using 108 U.S. communities for which we had daily counts of 

mortality among residents from accidental, respiratory, and cardiovascular causes between 1987 

and 2005 (Figure 1). Each community covered one or more U.S. counties, with a total of 124 

counties making up the 108 study communities. The NMMAPS database was originally 

compiled to assess the health effects of five major ambient air pollutants across 20 of the largest 

U.S. cities from 1987 through 1994 (Samet et al. 2000). The database has since expanded to 

include data for 108 U.S. communities spanning from 1987 to 2005. This dataset includes daily 

exposure data for temperature, humidity, and several air pollutants and has been used extensively 

to study the human mortality risks associated in U.S. communities with exposure to several 

outcomes (Barnett, Huang, and Turner 2012), including mixtures of air pollutants (Roberts and 

Martin, 2006) tropospheric ozone (Bell et al. 2004), particulate matter (Samet et al. 2000), and 

temperature extremes (Anderson and Bell 2009; Anderson et al. 2013). This dataset has not 

previously been used, to our knowledge, to study the mortality risks associated with extreme 

precipitation or floods, nor has a study in the United States of similar scope been conducted with 

a different dataset. In this study, we generated daily exposure classifications for extreme 

precipitation and flooding for the 108 study communities in this database and joined our 

exposure metrics with the daily health outcomes by location and date to create a dataset to 

estimate acute associations between these weather phenomena and human mortality risk.  
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Precipitation data  

We used two sources of precipitation data to identify extreme precipitation events in the 

study locations. First, we obtained daily precipitation data using the “countyweather” R package 

(Severson and Anderson 2016; Appendix A). This open source software package created as part 

of this Master’s project and publicly available through the Comprehensive R Archive Network 

(CRAN). The “countyweather” package has been downloaded over 1,600 times by R users since 

it was published in October 2016. This package pulls data from the Global Historical 

Climatology Network (GHCN-Daily) of weather stations through the National Oceanic and 

Atmospheric Administration’s (NOAA’s) File Transfer Protocol (FTP) server. GHCN-D data is 

archived at NOAA’s National Centers for Environmental Information (NCEI), and spans the 

1800s to present. We obtained daily precipitation values (in millimeters per day) for each county 

in the study communities, and we then aggregated monitor-specific daily precipitation 

measurements across all stations in each study community to obtain a daily, community-level 

estimate of precipitation. This daily estimate was obtained using an unweighted average across 

all available stations on a particular day. During this aggregation step, we used only GHCN-D 

weather stations with non-missing data for at least 90% of the days in the study period: January 

1, 1987 through December 31, 2005.  

Second, we obtained daily precipitation data from the North America Land Data 

Assimilation System (NLDAS) Phase 2 through the Centers for Disease Control and Prevention 

(CDC) Wide-ranging OnLine Data for Epidemiologic Research (WONDER), an online health 

information system of the CDC (Mitchell et al. 2004). NLDAS Phase 2 is a collaborative project 

comprising precipitation, land-surface states, and fluxes from January 1979 to present. The CDC 

WONDER version of this NLDAS-2 precipitation data has been aggregated from the original, 
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gridded format of the NLDAS-2 data to county-level daily values for each U.S. county, and this 

county-aggregated version of the data is available from January 1979 through December 2011 

(Mitchell 2004). From this data source, we obtained daily precipitation data (in millimeters per 

day) from January 1, 1987 through December 31, 2005 for all 124 U.S. counties within the study 

communities. In the case when more than one county comprised a community, a community-

wide daily measurement was generated by averaging daily county-level precipitation 

measurements across all counties in the community.  

Flood data  

We also investigated two sources of data on flooding. First, we pulled streamflow data 

collected by the United States Geological Survey (USGS) from rivers and streams across the 

United States. To pull streamflow data for the study communities and study time period, we used 

the "countyfloods" R package, which pulls streamflow data using the United States Geological 

Survey (USGS) Water Services API while allowing users to query the data by date and county 

(Lammers and Anderson 2017). We pulled daily measures of stream discharge (cubic feet per 

second) from all stream gages with any available data in any of the counties belonging to the 108 

study communities for January 1, 1987 through December 31, 2005.  

Second, we pulled county-level flood data from the Storm Events database maintained by 

NOAA. The Storm Events database includes storms, weather events, and meteorological events 

which cause significant damage, loss of life, or injuries, are rare or unusual, or are otherwise 

significant. While most events in the database are based on reports by the National Weather 

Service (NWS), some are provided by outside sources (e.g., the media, individuals, or other 

government agencies) (Murphy 2016). While reports for some events in this database go back to 
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the 1950s, NOAA only began recording flood events in this database in 1996. We downloaded 

data for all years from 1996 through the end of our study period (2005) and pulled all events that 

occurred in a county in one of our study communities, limiting to events categorized with the 

keywords "Flood", "Flash flood", or "Coastal flood". We used the R package “noaastormevents” 

(development version available on GitHub) to facilitate downloading the data (Anderson and 

Chen 2017). Within the database, each flood event is recorded at the county level and with a 

begin date and end date—we used this information to generate a daily time series for each study 

community from January 1, 1996 through December 31, 2005 with a binary variable indicating 

whether a day was part of a flood event listed in NOAA Storm Events. In cases where more than 

one county comprised a community, we aggregated this flood data from county- level to 

community-level by assigning a day as a flood day for a community if at least one county in that 

community had a flood event recorded in the database on that day.  

Mortality data  

We obtained daily counts of accidental, respiratory-related, cardiovascular disease-

related, and all-cause deaths across 108 U.S. communities from the National Morbidity, 

Mortality, and Air Pollution Study (NMMAPS) database (Figure 1). Daily mortality counts for 

each of the study communities were originally obtained from the National Center for Health 

Statistics. Deaths were classified by cause according to the ninth revision of the International 

Classification of Diseases (ICD-9)—mortality classifications included here include accidental 

(ICD-9 800–999), respiratory-related (ICD-9 490–496), cardiovascular disease-related (ICD-9 

390–429), and all-cause (ICD-9 001–E999) (Samet et al. 2000). Here, we use an updated version 

of the NMMAPS dataset to evaluate associations between extreme precipitation, measured using 

NOAA and NLDAS data, and flood events, measured using USGS and NOAA Storm Events 
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data, and the four health outcomes listed above: accidental, respiratory-related, and 

cardiovascular disease-related deaths.  

Daily temperature data (°F) for the 108 NMMAPS communities, which was included as a 

potentially confounding variable in the association between flood or extreme rain events and 

mortality outcomes, was also obtained from the NMMAPS database.  

Classifying community exposure to extreme precipitation and flood days  

Many epidemiological studies of the association between daily weather conditions and 

human health outcomes dichotomize exposure, especially in cases where the association between 

exposure and health outcomes might have a highly non-linear shape and, therefore, might be 

poorly modeled by a model assuming linearity between exposure and a function of risk of the 

health outcome. For example, Anderson and Bell (2009) investigated the health risks of heat 

waves as determined using 98th, 99th, and 99.5th percentiles of daily temperature distributions. 

Similarly, Liu et al. (2016) used 98th and 99.5th percentiles of particulate matter of 2.5 

micrometers or less in diameter (PM2.5) to determine the occurrence of "smoke waves" caused by 

wildfires. Several epidemiological studies of risks associated with extreme precipitation have 

similarly dichotomized daily precipitation values to identify extreme precipitation days (Thomas 

et al. 2006; Colford et al. 1999; Curriero et al. 2001; Groisman, Knight, and Karl 2001; Soneja et 

al. 2016; Ivancic and Shaw 2015; Pielke R.A. and Downton 2000, Georgakagos et al. 2014). 

While research studies often differ by specific choices made in dichotomizing continuous 

precipitation (i.e., some studies might choose to dichotomize by “any” vs. no precipitation; 

others might choose to use percentile thresholds), this general method of exposure ascertainment 

is relatively common in the literature. Here, we created a binary classification of extreme 
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precipitation exposure in each community from the continuous daily precipitation measurements 

obtained from each of the two precipitation data sources and used these to investigate agreement 

in binary classifications of daily extreme precipitation exposure across study cities, as well as to 

investigate how these binary classifications agreed with community-level daily flood exposure 

classification.  

Within each study community and with each of the two sources of precipitation data, we 

identified days of extreme precipitation based on a threshold of daily precipitation. To calculate 

this threshold for NOAA and NLDAS precipitation data distributions across the study period, we 

first identified the 99th percentile of daily precipitation values across all study days for each study 

community and then averaged these community-specific 99th percentile values of daily rainfall 

across all study communities to obtain a single threshold to use to identify extreme precipitation 

days in all communities. Based on this calculation, we identified threshold values of 32.6 mm per 

day for NOAA data and 31.0 mm per day for NLDAS data. Any day in a community’s dataset 

with precipitation exceeding the threshold value for a specific precipitation data source was 

classified as an extreme precipitation day. 

We next used each of the sources of flood data to separately classify study days as 

exposed or unexposed to flooding within each community. For the USGS streamflow data, each 

gage measures the streamflow at single point in one river or stream, and the typical streamflow 

for any of these gages will vary widely by gage. Therefore, to use this data to identify flood days 

at a gage, we need to compare a gage’s daily streamflow measure to a gage-specific threshold 

defining unusually high flow for that gage. To calculate these gage-specific streamflow flood 

thresholds, the median annual flood value (Q2) was calculated for each gage with at least 20 

years of USGS annual peak flow data. This method is commonly used in flood-frequency 
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analysis, and involves taking the median value of yearly maximums over at least 20 years for a 

particular gage (Figure 2, Rao and Hamed 2000). Daily flood status for each gage was 

determined based on whether the daily streamflow exceeded the gage-specific flood threshold 

value. These calculations done by the “countyfloods” R package—output from this package gave 

binary flood values for each stream gage for each day of data pulled (Lammers and Anderson 

2017). After identifying flood days at each stream gage with available data within each study 

community, we aggregated these values to a community-level flood exposure classification using 

the rule that if at least one gage in a county exceeded the flood threshold value on a given day, a 

flood event was recorded for that county on that day.  

The NOAA Storm Events database is inherently binary, with a listing of flood events by 

county and with a start date and end date for each flood event (Murphy 2011). We expanded this 

into a time series of daily binary flood classifications, with all days from the start date to the end 

date of a flood event classified as exposed to flooding and all remaining days in the study period 

for a community classified as unexposed. We accounted for the change of Dade county, Florida 

(FIPS code 12025) to Miami-Dade county, Florida (FIPS code 12086), effective July 22, 1997, 

in processing this data.  

We investigated regional patterns in these exposure metrics. For each exposure metric, 

we mapped the average number of flood days per year in each study community over the study 

period. We used the average per year to allow comparisons across the two flood data sources, 

since these two data sources have different periods of available data (1987–2005 for the NOAA 

ground-based monitor data and 1996–2005 for the NOAA Storm Events database flood listings).  
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Measuring correlation and agreement in exposure assessment across data sources  

We next evaluated the correlation between precipitation exposure based on the two 

precipitation data sources considered, the NOAA ground-based stations and the NLDAS-2 

Reanalysis data. First, we measured the strength of association between continuous daily 

precipitation measurements from the two data sources within each study community. Since the 

distribution of daily precipitation measurements within a community tends to be highly skewed 

rather than normally distributed, to measure this correlation we used two metrics of non-

parametric rank correlation: Kendall's tau and Spearman's rho. Unlike Pearson’s correlation 

coefficient, these rank correlation metrics do not require an assumption that either of the 

variables is normally distributed. Coefficient values closer to 1 indicate greater correlation 

between the two variables being evaluated. We calculated Kendall's tau and Spearman's rho 

coefficients within each of the study communities and then created summaries of these 

community-specific measurements across all study communities. Kendall’s tau and Spearman’s 

rho are two of the most commonly used nonparametric measures of association used (Fredricks 

and Nelsen 2007). These statistical values were chosen because they are nonparametric: they do 

not require data to conform to the strict assumptions required by Pearson’s r, a more popular 

correlation statistic, such as a bivariate normal distribution (Chen and Popovich 2002). The two 

rank correlation coefficients are similar, often leading to the same statistical inference, but not 

identical—both range from -1 to 1, but should not be compared to each other (Gilpin 1993). 

Spearman’s rho measures the extent of a monotonic relationship between two variables through 

the assignment of relative ranks to each pair of data (Spearman 1906), while Kendall’s tau 

measures the number of pairs in two sets of ranked data that are in different orders (Kendall 

1938; Sanderson and Soboroff 2007). The two tests differ in how they handle ties in the data as 
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well; Kendall’s tau is generally better-suited to handing ties compared to Spearman’s rho (Gilpin 

1993). Because continuous precipitation data is expected to have a large number of ties in the 

ranked data due to large numbers of zeros, differences in how each test handles ties could result 

in important differences in calculated values of Spearman’s rho and Kendall’s tau. Therefore, we 

calculated both Spearman’s rho and Kendall’s tau for each test of correlation between sets of 

continuous daily precipitation data.  

We used scatterplots to visualize patterns in continuous daily measurements of 

precipitation from the two sources of precipitation data for the six largest-population study 

communities, as well as for any communities with outlier values in the Kendall’s tau and/or 

Spearman’s rho distributions. In order to investigate differences in correlation in continuous 

precipitation metrics across communities, we calculated the extent to which Spearman’s rho was 

correlated with (1) the number of NOAA weather stations contributing to average precipitation 

values, (2) the number of NLDAS observations (i.e., grid points included from the original, 

gridded NDLAS product when aggregating to county level), and (3) population in each 

community.  

Next, we compared agreement in binary classifications of daily exposure to extreme 

precipitation within a community for the two precipitation data sources for exposures identified 

using nation-wide 99th percentile thresholds of precipitation. While total agreement in 

classification, as measured by the percent of days where classification agrees over the total 

number of study days, may seem to be an intuitive measure of agreement in exposure 

classification, it may be unhelpful in assessing agreement in exposure classification when 

exposure is rare. In the case of rare exposures, most days will be classified as unexposed by both 

metrics, and so this basic measurement of agreement can be very close to 1 (perfect agreement) 
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even in cases where the days classified as exposed to the hazard are completely different for the 

two exposure metrics. To illustrate this point, Figure 3 shows the two-dimensional distribution of 

daily measures of the two sources of precipitation data (values from NOAA ground-based 

stations are on the x-axis vs. values from NLDAS-2 Reanalysis data on the y-axis) for one of the 

study communities, Los Angeles, California. In each region of the plot, the color of the hexagon 

shows the count of days over the study period with those precipitation values. The vertical and 

horizontal black lines show the relative thresholds used to identify extreme precipitation in Los 

Angeles for each data source, and the letters identify four quadrants of exposure classifications: 

days classified as exposed to extreme precipitation by both metrics (quadrant A), days classified 

as exposed by NOAA ground-based monitor data but not by NLDAS-2 Reanalysis data 

(quadrant B), days classified as exposed by NLDAS-2 Reanalysis data but not by NOAA 

ground-based monitor data (quadrant C), and days classified as unexposed by both data sources 

(quadrant D). The vast majority of days in the study period were in quadrant D, indicating that 

the two precipitation data sources frequently agreed that there was not an extreme rain event on a 

given day. However, if the two precipitation data sources disagree on which rare days are 

exposed to extreme precipitation (i.e., if there were few or no days in quadrant A), 

epidemiological effect estimates based on binary exposure classifications could differ 

substantially depending on which data source was used for exposure classification, even if the 

overall agreement in exposure classification is strong because of the rarity of exposure.  

Instead, we calculated agreement between binary measures of exposure to extreme 

precipitation by using the Jaccard coefficient (Jaccard 1912). The Jaccard coefficient excludes 

days classified as unexposed by both metrics when measuring agreement and so can provide a  
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more useful estimate of whether the identification of a rare exposure is similar across metrics. In 

relation to Figure 3, the Jaccard coefficient is calculated as:  

! = 	 $
$ + & + ' 

 

where a is the number of days in quadrant A (where both metrics of interest detect an event), and 

b and c are the number of days in quadrants B and C, respectively (where one but not both of the 

metrics detect an event). The Jaccard similarity coefficient is particularly suited to evaluating the 

agreement between the exposure metrics we considered here because it does not incorporate the 

days in quadrant D of Figure 3, for which neither metric of interest detects an event. Extreme 

rainfall and flood events are relatively rare events—the Jaccard similarity coefficient prevents an 

inference of agreement due to many days that agree due to a lack of events. The Jaccard 

coefficient ranges from 0 to 1, with values closer to 1 suggesting higher similarity between the 

two metrics.  

 To investigate possible factors that might explain variation in Jaccard similarity 

coefficients across communities, we assessed correlation between Jaccard coefficients and (1) 

the number of stations inputting to the daily NOAA value on average, (2) the number of NLDAS 

observations, and (3) community population. We also visualized geographic patterns in Jaccard 

similarity coefficient values.  

To compare agreement between community-level daily flood classification between the 

two sources of flood data (USGS streamflow data and NOAA Storm Events database), we 

similarly measured a Jaccard coefficient of similarity within each community, using the total 

number of days classified as a flood by either data source as the denominator and the number of 
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days classified as a flood by both data sources as the numerator; days for which neither data 

source identified a flood in the community (the majority of days) were excluded from the 

calculation. Since data on floods is only available since 1996 from the NOAA Storm Events 

database, we limited study data to the period 1996–2005 before calculating the Jaccard 

coefficient for agreement between the two sources of flood data considered for each community. 

To investigate factors that might explain differences in Jaccard similarity coefficient values for 

flood events across communities, we calculated the correlation between Jaccard values and (1) 

the number of USGS streamflow gages reporting in each community, and (2) community 

population. We also investigated geographic patterns in Jaccard values across communities.  

Measuring the agreement between extreme precipitation and flood exposure 

Next, we investigated whether extreme precipitation tended to occur on the same day or 

precede flood events by at most two weeks within each of the study communities. If measures of 

exposure to extreme precipitation and flooding are well-correlated within a community, then 

epidemiological studies could potentially use one exposure measurement as a surrogate for the 

other. Conversely, if the daily exposures to these two hazards are not well-correlated within a 

community, epidemiological studies need to be very rigorous in clarifying pathways by which a 

health outcome of interest might result from one or both of the exposures and be careful in 

selecting how to measure community exposure for time series studies.  

To assess the correlation between exposure measurements, we first looked at a case study 

of documented flooding in two of our study cities. We examined the period of extreme 

precipitation and flooding resulting from an El Niño Southern Oscillation event that impacted 

two of the study communities in the winter of 1997-1998: Santa Ana / Anaheim, CA, and Los 
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Angeles, CA. Within each of these study communities, we investigated patterns in reported 

measurements of daily precipitation and flooding based on each of our data sources, to 

investigate whether exposure data were consistent during a major flooding event.  

We next expanded to investigate agreement between flood exposure and extreme 

precipitation within all of our study communities across the full study period. To simplify this 

assessment, we used only one source of precipitation data (NLDAS) and one source of flooding 

data (USGS streamflow data). To compare the agreement between binary classifications of 

extreme precipitation and flood exposures, we calculated the following proportion P within each 

community:  

( = 	)*+  

 

where f is the number of days recorded as experiencing a flood in the community and rl is the 

number of days in that set of community flood days when there was an extreme precipitation l 

days before the flood day. This metric measures the percent of days classified as exposed to 

flooding for which the community was also classified as exposed to extreme precipitation. We 

measured this value for lags of 0 to 14 days (l of 0 to 14) and also measured the proportion of 

flood days in a community for which an extreme precipitation day was measured for any of the 

days from lag 0 to 14. Lags up to two weeks were considered because heavy rainfall might lead 

to flooding several days after the fact.  

 To explore possible factors that could explain variation in proportion (P) values across 

communities, we investigated patterns in (1) average number of floods per year, (2) average 

length of floods (in days), and (3) geographic patterns.  



 29 

 

Measuring the association between mortality risk and exposure to extreme precipitation 

and floods 

Finally, we estimated the acute association between exposure to extreme precipitation 

and flood events and four mortality outcomes in the 108 study communities. To estimate this 

association, we fit a generalized linear distributed lag model to a daily time series of binary 

exposure (either extreme precipitation or flood) and daily mortality counts in each community, 

including control for day of the week, temperature, and long-term and seasonal trends 

(Gasparrini 2014; Zanobetti et al. 2000). The model included a distributed lag function, which 

allowed us to estimate the association between an exposure and a health outcome for several 

days following the exposure, while limiting potential problems introduced by collinearity in 

lagged exposures (Gasparrini 2014; Zanobetti et al. 2000). The distributed lag framework 

estimates a cumulative exposure over several days by constraining the parameter estimates for 

lags to follow a smooth pattern described by fewer coefficients than the number of lag days of 

exposure modeled. We included exposure lagged up to 14 days. This time period was chosen in 

order to capture both immediate and short to mid-term health effects of exposure to extreme 

precipitation or flooding. This modeling framework has been used in a large number of 

environmental epidemiology studies investigating associations between community-level health 

risks and ambient exposures, including air pollution and extreme temperature (Zanobetti et al. 

2000; Xiao et al. 2017; Cox et al. 2016).  

The equation describing this model we used is:  

log / 012 = 	34 +	 516ℓ2
8

ℓ94
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where:  

• 012 is the count of mortalities on day t in community c for a certain cause of death 

(accidental, respiratory-related, CVD-related, or all-cause), where this count is assumed 

to follow a quasi-Poisson distribution, allowing for potential overdispersion in these daily 

counts;  

• 34 is the model intercept;  

• 516ℓ28
ℓ94 3 ℓ  is the summation across all lag days of the indicator variable 516ℓ2  

(whether there was a flood or extreme precipitation event at lag ℓ from day D) and the 

lag-specific coefficient (log relative risk at a specific lag for an exposed compared to 

unexposed day) is 3 ℓ , which is defined using a distributed lag function constrained to 

follow a smooth pattern (3 ℓ  = ns(ℓ, 3 df), i.e., the coefficient is determined based on a 

natural cubic spline function of the lag day, with three degrees of freedom in the spline, 

and with the function parameters identified through fitting the model to the observed 

data);  

• :;<=>;1?
;9@  incorporates control for day of week as a factor, with separate model 

coefficients (:;) fit for each day of the week (<=>;1) with Mondays set as the reference 

weekday and so incorporated in the model intercept term;  

• A(B) is a smooth function of temperature, included to control for daily temperature, 

which we modeled using a distributed lag non-linear function; and  

• +(B) is a smooth function of time, included to adjust for long-term seasonal trends in 

expected mortality counts, which we modeled using a natural cubic spline with 7 degrees 

of freedom per year.  
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From this model, we calculated the cumulative log relative risk associated with a day of exposure 

over the period from the day of exposure to two weeks following the exposure. We conducted 

this analysis using the R package “dlnm” (Gasparrini 2011).   

We fit this model separately within each study community to each pairwise combination of 

the exposure metrics of interest (specifically, binary exposure classifications determined using 

NOAA precipitation, NLDAS precipitation, USGS flood events, and NOAA flood events) and 

the mortality outcomes of interest (accidental, respiratory-related, cardiovascular-related, and all-

cause mortality). Models run with NOAA flood events as the exposure of interest were fit to data 

only from 1996 though 2005 due to availability of NOAA flood data; all other models were fit to 

data from 1987 to 2005.  

To estimate pooled overall effects of extreme rain and flood events on mortality, aggregated 

across all study communities, we combined community-specific estimates of the association 

between the rain or flood exposure and each morality outcome using a hierarchical model. We 

performed this aggregation using two-level normal independent sampling estimation (TLNise), a 

hierarchical model that assumes: (1) that community-specific estimates of log relative risk, 

estimated from fitting the model described above, are independent across communities, (2) that 

the estimated log relative risk for each community comes from a normally distribution centered 

on the true log relative risk in the community, and (3) that the true community-specific log 

relative risks follow a normal distribution centered on the overall, community-wide log relative 

risk (Peng and Dominici 2008).  For this method of hierarchical pooling, communities for which 

parameter estimates were fit with greater confidence in the first-level, community-specific model 

exert a heavier influence on the overall estimate than communities for which community-specific 

parameter estimates were estimated with more uncertainty (Peng and Dominici 2008). We fit the 
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two-level normal independent sampling estimation using the "tlnise" R package (Everson and 

Morris, 2000). Since this package is no longer available on CRAN, we downloaded the archived 

source code and built the package from source locally. 
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CHAPTER 3 

RESULTS 

 

The populations of the 108 study communities, based on the 2000 Census, ranged from 

approximately 150,000 people to approximately 9.5 million (Figure 4). Across all study 

communities, average daily all-cause mortality counts ranged from around two deaths per day 

(Anchorage, AK) to around 180 deaths per day (New York, NY), with a median value of around 

11 deaths per day (Tables 1 and 2). Among the specific causes of death considered, 

cardiovascular-related deaths were most common (median of approximately 5 cardiovascular 

deaths per day across the study communities) and least common for accidental deaths (median of 

less than 0.5 deaths per day) (Table 1).  

Exposure characterization  

NOAA and NLDAS precipitation  

Precipitation data from NOAA ground-based stations was available for 105 of the 108 

study communities for at least some part of the study period. The number of stations contributing 

to community-wide daily precipitation measures varied by community (Figure 5). For six 

communities, daily precipitation values were based on a single monitor, while for 14 

communities, daily precipitation values were based on 10 or more stations on average per day. 

Los Angeles, CA had the highest average number of stations contributing to daily values (38.6).  

For seven communities, some of study period did not have available data; these 

communities were still included in the study. For four of these communities, missing days were 

very sparse: Boston, MA, Washington, DC, Olympia, WA, and Kansas City, Kansas were 
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missing 2, 3, 3, and 27 days out of 6,940 total, respectively. Three communities were missing a 

higher percent of days: Jersey City, NJ, St. Louis, MO, and Baltimore, MD were missing 228, 

491, and 1,130 days out of 6,940 total, respectively. Data were unavailable during the study 

period for three communities: Honolulu, HI, Richmond, VA, and Newport News, VA. For the 

other 98 study communities, precipitation data was available from NOAA weather stations for all 

days between January 1, 1987, and December 31, 2005. 

Monitor locations were not evenly spaced across a community; instead, stations were 

often available at sites like airports, which could often result in stations being somewhat 

removed from the population center of the community. For example, Figure 6 maps the locations 

of available stations for Topeka, Kansas; of the five stations available for this community during 

the study period, the two stations labeled “A” and “B” are located at airports.  

The NLDAS-2 Reanalysis precipitation data was, conversely, available for every study 

community in the contiguous United States over the entire study period (data was not available 

for Honolulu, HI or Anchorage, AK). Since the CDC WONDER database version of the data is 

aggregated at county level, there was a single daily measurement of precipitation available for 

each county in the study communities. This data was aggregated for the CDC WONDER 

database to county-level in a way meant to represent county-wide precipitation, rather than 

precipitation at specific points within the county (Mitchell et al. 2004). The daily number of 

values aggregated to generate a community-level daily measurement equaled the number of 

counties in the community, which ranged from one to six counties.  

In most communities, correlation was moderate to strong between continuous daily 

precipitation measurements from the two sources of precipitation data. Figure 7 shows 
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scatterplots of daily precipitation measures from the two precipitations data sources in the six 

largest-population study communities: Chicago, Illinois, Dallas/Fort Worth, Texas, Houston, 

Texas, Los Angeles, California, New York, New York, and Phoenix, Arizona. Each point shows 

a day in the study, with the daily precipitation measure from NOAA ground-based stations on the 

x-axis and that from the NLDAS-2 Reanalysis dataset on the y-axis. If the two precipitation 

datasets were perfectly correlated, all points would fall along the diagonal reference line; in these 

six largest cities, the points generally fall close to this line, indicating moderate to strong 

correlation. However, while daily values show moderate to strong correlations between the two 

data sources, precipitation values from NOAA stations are consistently lower than NLDAS 

precipitation values in these six largest communities based on loess smoothing functions 

modeled to this data (smooth curves in Figure 7). The Kendall's tau coefficients of correlation 

between daily precipitation values from the two data sources range between 0.60 (Houston, TX) 

and 0.69 (New York, NY) for these communities, while the Spearman's ' coefficients range 

between 0.69 (Los Angeles, CA) and 0.80 (New York, NY). Both sources of daily precipitation 

data demonstrate that daily precipitation measures tend to be strongly right-skewed, with most 

days having no or little precipitation (lower left corner of the plots in Figure 7), and occasional 

daily precipitation values that are very high.  

Expanding to all study communities, the measured rank correlations between daily 

measures of precipitation from the two precipitation data sources (NOAA stations and NLDAS-2 

Reanalysis data) are fairly strong, with a median community-level Spearman’s rho of 0.75 and 

median community-level Kendall’s tau of 0.64 (Figure 8). In a few communities, the correlation 

in daily measures from the two sources is somewhat lower, with a Kendall’s tau below 0.5 in 

Kansas City, KS, St. Louis, MO, Johnstown, PA, and Washington, DC; conversely, correlation 
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was particularly strong in Portland, OR. Daily measurements of NOAA vs. NLDAS precipitation 

were compared for the six communities that were outliers in the Kendall's tau and or Spearman's 

rho correlation distributions (Figure 9).  

We investigated several factors to determine if they help explain variation across the 

study communities in correlation between daily precipitation values from the two data sources. 

The correlation within a community between the two continuous daily precipitation measures 

was not correlated with the number of stations from which the NOAA monitor-based 

precipitation measurement was aggregated for the community, nor the number of NLDAS 

observations (i.e., grid points included from the original, gridded NLDAS product when 

aggregating to county level) contributing to the aggregated community value (Figure 10, left and 

middle panels). The correlation was not correlated with the population of the community (Figure 

10, right panel).  

To determine a threshold to use to identify extreme precipitation days, we measured the 

99th percentile of daily precipitation values in each community for each of the two precipitation 

data sources and then averaged these community-specific values to generate a single threshold to 

use for each data source. For NOAA precipitation data, the threshold we identified for extreme 

precipitation days was 32.6 millimeters; for NLDAS precipitation data, it was 31.0 millimeters.  

The number of days of exposure to extreme precipitation varied substantially across 

communities, from an average of less than 0.05 days of extreme precipitation exposure per year 

(minimum average yearly exposure in Bakersfield, CA, and El Paso, TX, for the NOAA ground-

based monitor data and in Spokane, WA, and Tucson, AZ, for the NLDAS-2 Reanalysis data; 

Figure 11, Table 2) to over 11 days of extreme precipitation exposure per year (maximum 
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average yearly exposure in Lake Charles, LA, for the NOAA ground-based monitor data and in 

Baton Rouge, LA, for the NLDAS-2 Reanalysis data; Figure 11, Table 2). Average exposure was 

typically highest in the Southeast and lowest in the Southwest. Spatial variation in number of 

days of exposure was smoother when exposure was assessed using the NLDAS- 2 Reanalysis 

dataset, for which it was very rare to have very dissimilar average number of exposed days in 

communities that were geographically close. By comparison, for exposure assessed based on the 

NOAA ground-based stations, there were a few cases where nearby cities had fairly different 

days of exposure per year; for example, Kansas City, KS falls into the third-highest sextile of 

number of exposed days while Kansas City, MO, falls into the highest. For exposure based on 

NLDAS-2 Reanalysis data, these cities both fall into the fourth-highest sextile of average number 

of days exposed to extreme precipitation (Figure 11).  

Across the study communities, there was strong correlation between the two precipitation 

data sources in the number of days the community was exposed to extreme precipitation based 

on the two sources of precipitation data (Spearman’s rho = 0.91, Table 1, Figure 12). Orlando, 

FL stands out as a relatively unusual outlier between average exposed days from NOAA and 

NLDAS data, with an average of 9.4 exposed days per year according to NOAA data and 5 

exposed days per year according to NLDAS data. Orlando’s relatively low number of NOAA 

stations contributing to its daily precipitation measurements (1.5 stations) could explain some of 

this lack of correlation. 

While there tended to be strong correlation between the two precipitation sources in 

continuous daily precipitation metrics (Figure 8) and number of days a community was exposed 

to extreme precipitation (Figure 12), agreement was slightly dampened when considering 

agreement in the specific days identified as exposed to extreme precipitation within a 



 38 

 

community. When we measured the Jaccard similarity coefficient to compare agreement in the 

days classified as exposed to extreme precipitation, we found the value was less than 0.50 in 

most study communities (Figure 13, upper left panel). This result indicates that, in most study 

communities, less than half of the days classified as exposed to extreme precipitation based on 

data from one of the precipitation data sources was classified as exposed based on both sources. 

New York, NY, had the highest agreement (J = 0.68). Conversely, in some communities, there 

was no agreement in the days identified as extreme precipitation days between the two 

precipitation data sources (J = 0.00; Bakersfield, CA, El Paso, TX, Phoenix, AZ, San 

Bernardino, CA, and Spokane, WA). In these communities, in other words, the two precipitation 

data sources identified completely non-overlapping sets of days as exposed to extreme 

precipitation. 

We investigated a few possible factors that might help explain variation across 

communities in this Jaccard coefficient but found none of the factors were strongly related. 

Specifically, community-specific Jaccard coefficients of similarity in the days classified as 

exposed to extreme precipitation were not associated with (1) number of stations inputting to the 

daily NOAA value on average (Figure 13, lower left panel), (2) number of NLDAS observations 

(Figure 13, lower middle panel), (3) community population (Figure 13, lower right panel), or (4) 

geographic patterns (Figure 13, upper right panel).  

USGS and NOAA flood events  

USGS streamflow data was available for at least part of the study period for 92 out of 108 

study communities from 1987 through 2005. For 81 of these communities, streamflow data was 

available for every day in the study period (1987–2005). For communities with streamflow data, 
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the number of gages contributing to the community-wide daily flood assessment varied (Figure 

14), with a minimum of 1 average gage per day (St. Louis, MO, Newark, NY, Arlington, VA, 

Cedar Rapids, IA, Lafayette, LA, and Evansville, IN) to a maximum of 71 average gages per day 

(Seattle, WA). NOAA storm events information was available for all study communities from 

1996 though 2005. Because of this disparity in study communities and years with available data, 

comparisons were made between the 92 communities with available USGS data from the years 

1996 through 2005 with available NOAA flood data.  

There was large variation in the average days of flood exposure, both across communities 

and between the two sources of flood data (Figure 15). Across communities, the distribution of 

exposed days per year is heavily skewed right. There were no strong regional patterns in average 

days of flood exposure based on either of the sources of flood data.  

The distribution of number of days of flood exposure differed between the two flood data 

sources, with communities typically having a little more than twice as many flood days when 

exposure was assessed using USGS flood data compared to NOAA flood data (Table 1). There 

were more communities assessed to have very high exposure when exposure was classified using 

the USGS streamflow data compared to the NOAA storm events data—26 communities fall into 

the highest sextile of exposed days per year based on USGS data, while only 7 NOAA 

communities fall into this sextile (sextile cut-offs were determined separately for both exposure 

data sources). Average community-level exposure was poorly correlated for exposure 

classifications based on the two flood data sources considered—average yearly exposure based 

on USGS data was typically much higher in a community than average yearly exposure based on 

NOAA data (Spearman’s rho = 0.07, Table 1, Figure 16).  
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The exact days classified as flood days within a community also disagreed substantially 

between the two sources of flood data, as measured Jaccard similarity coefficients for each 

community comparing flood classification based on USGS streamflow data and based on NOAA 

Storm Events data (Figure 17, upper left panel). The majority of communities had a Jaccard 

coefficient below 0.1, suggesting very poor agreement between the two measures of flood 

exposure, and all communities had Jaccard coefficients below 0.3, indicating there were no 

communities in which 30% or more of the days identified as a flood day by one flood data source 

were identified as flood-exposed by both data sources. In other words, on a day when the USGS 

streamflow data indicated a flood in a community, it was typically more likely than not that 

NOAA Storm Events database did not record a flood, and vice versa. This extreme lack of 

agreement in exposure classifications for flood exposure contrasts with our results for agreement 

across two data sources in extreme precipitation classifications, for which the Jaccard coefficient 

values suggested mild to moderate agreement in most communities.  

The number of USGS gages contributing to average daily streamflow did not appear to be 

related to the community's Jaccard coefficient (Figure 17, lower left panel), nor did the 

community population (Figure 17, lower right panel) or geographic location (Figure 17, upper 

right panel). This lack of agreement between the two flood metric could in part be due to the 

average difference in length of flood. The average USGS flood lasts 5.5 days, while the average 

NOAA flood only lasts 1.3 days. Figure 18 illustrates a typical disparity between USGS and 

NOAA floods. This community had only one day recorded in the NOAA Storm Events database 

from 1996 through 2005, and a total of 202 days of exposure to USGS-derived floods during this 

period. Many of these USGS-derived floods lasted for several days or weeks (Figure 18).  
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Extreme precipitation and flood events  

To compare measurements from our data sources on flood exposure and extreme 

precipitation exposure within a community, we first investigated as a case study a known period 

of extreme precipitation resulting from an El Niño Southern Oscillation event in 1997–1998 in 

two of the study communities as a case study, Santa Ana / Anaheim, CA, and Los Angeles, CA. 

These comparisons give greater insight into how extreme weather events are captured by the 

different exposure metrics. The El Niño Southern Oscillation event that occurred in 1997-1998 

was one of the most powerful in recorded history—the event lead to several natural disasters 

worldwide, including in southern California (McPhaden 1999). We examined all four sources of 

exposure data (NOAA stations and NLDAS-2 Reanalysis data for precipitation, USGS 

streamflow data and NOAA Storm Events data for flooding) for Santa Ana/Anaheim, CA, from 

December 1, 1997 through February 1, 1998 (Figure 19), and for Los Angeles, CA, from January 

15, 1998 through March 1, 1998 (Figure 20) in order to capture the time periods for which the 

effects of the El Niño were most extreme.  

December 1997 in Orange County, California (the county comprising the Santa 

Ana/Anaheim community) was one of the wettest in history—the day of heavy rainfall on 

December 6, 1997 that resulted shows up in our data as a day when both NLDAS and NOAA 

data recorded an extreme precipitation day. The NOAA storm events database also includes 

December 6th as a flood day. Out of the eight USGS streamflow gages contributing data for 

Santa Ana / Anaheim during this period, seven of those did not record streamflow high enough 

to exceed the gage-specific thresholds (two of those gages, "11078000" and "11088500", are 

shown in Figure 19). Only one gage ("11047300") recorded a streamflow on December 6th that 

was high enough to exceed the gage-specific threshold of 1,820 cubic feet per second to result in 
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a USGS flood being recorded. There were also later, smaller peaks in streamflow later in 

December of 1997 and January of 1998; however, there was not a corresponding NOAA flood 

recorded on those days, nor enough rain reported by NOAA nor NLDAS to exceed the nation-

wide 99th percentile thresholds we used to assess exposure to extreme precipitation.  

The 1997-98 El Niño event affected Los Angeles, California in February of 1998 (Figure 

20). In this period, there is more discrepancy between NOAA and NLDAS extreme rainfall, as 

well as between USGS and NOAA flood events. Similarly to Santa Ana/Anaheim, there were 

also eight USGS streamflow gages contributing to the USGS flood measure for Los Angeles 

during this period. Of these eight gages, five recorded streamflows high enough to exceed the 

gage-specific thresholds— again, a flood was recorded for a community on a particular day if at 

least one gage recorded streamflow that exceeded its threshold on that day. In early February, the 

NOAA Storm Events database recorded flood events; these events are reflected by either NOAA 

or NLDAS extreme rain days—there is one day in this period in early February when the two 

rain metrics agree. During this period, one stream gage had a high enough streamflow to classify 

as flooding ("11109395"), while the other two gages shown did not have correspondingly high 

streamflow. In late February, all three gages recorded high streamflow, and the NOAA Storm 

Events database also recorded two flood days. There was one day in late February when NOAA 

and NLDAS precipitation events did not agree, with NLDAS recording an extreme event when 

NOAA did not.  

Next, we expanded our comparison of daily exposures to extreme precipitation and 

flooding to investigate all study communities over the full period. Specifically, we assessed 

whether flood- exposed days in a community tended to coincide with or closely follow days 

classified as having extreme precipitation. Across communities, there were generally very few 
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days with flooding that also had extreme precipitation on that same day—these exposures rarely 

coincide to occur on the same day (Figure 21, upper panel). There was some evidence that it is 

more likely for a flood day to coincide with extreme precipitation either on the same day or on 

one or more days in the previous two weeks (Figure 21, lower panel).  

We investigated patters of proportions of flood days coinciding with precipitation with a 

two-week lag: Figure 22 shows results across our study communities of calculating the 

proportion of flood days (based on the USGS flood data) in a community for which the 

community also had an extreme rain event (based on the NOAA precipitation data) at lags from 

0 to 14 days. This figure also includes columns for each community showing the average number 

of USGS flood days per community and the average length of floods identified in the 

community. The proportion of days with a flood event which also had extreme precipitation (P) 

was overall very low, close to 0% for most communities. A few communities show high 

proportions closer to 1 (i.e., close to 100% of flood days were associated with an extreme 

precipitation day in the community) for same-day comparisons (lag 0) or with a lag of one or two 

days. There did not appear to be a relationship between this estimated proportion P and the 

number of floods per year or the average length of flood across communities.  

Communities were hierarchically clustered into four groups to determine if there were 

groups of communities with meaningful similarities in patterns of how often and at what lags 

flood days tended to be associated with extreme precipitation days. These clusters are displayed 

on the heatmap as row dendrograms (the colored branches shown on the left of the plot), with 

clusters of similar communities shown in neighboring rows of the histogram. The geographic 

locations of these community clusters is shown in Figure 23. There did not appear to be strong 

geographic patterns in the four clusters. For example, there were no geographical patterns to 
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suggest that the association between flooding and extreme precipitation exposure tended to be 

higher in areas of the country where flooding is likely to be rain-dominated rather than 

snowmelt-dominated. 

Health impacts of extreme precipitation and flooding  

Table 3 shows nationally-averaged risk estimates for the association between extreme 

precipitation (determined using NOAA and NLDAS rainfall data) or flooding (determined using 

USGS and NOAA Storm Events data) and accidental, respiratory-related, cardiovascular-related, 

and all-cause mortality. The effect estimates for all pooled effects indicated a slightly protective 

effect (relative risk below 1.00), with a few estimates barely achieving statistical significance. 

Overall, the pooled effect estimates suggest that, based on our exposure characterization and 

modeling choices, there is either a null or slightly protective overall association between risk of 

these causes of mortality and extreme precipitation or flooding.  

Among community-specific estimates of the association between these two exposures 

and risks from these causes of death, there were a few statistically significant estimates but the 

vast majority of community-specific estimate were not statistically significant and were very 

close to a null association (relative risk of 1.00). Community-specific effect estimates for the 

association between NLDAS extreme rainfall and accidental fatalities illustrate this pattern 

(Figure 24). Further, effect estimates did not show geographic patterns, indicating that it is 

unlikely that overall pooling masked important effects within certain regions of the country 

(Figure 25). While Fresno, CA, and Boston, MA, had a statistically significant increased risk of 

accidental mortality associated with extreme precipitation, all other study communities show a 

statistically insignificant or protective effect, and we expect a few false positives for tests (i.e., 
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erroneously rejecting the null hypothesis) given the number of communities for which we are 

modeling the association, so the few statistically significant results observed are likely spurious.  

We also estimated associations between exposure to every other pairwise comparison of 

exposure (extreme precipitation and flooding) and the four health outcomes of all-cause, 

cardiovascular, respiratory, and accidental deaths. While there were a few communities for each 

measured association for which the association was statistically significant, some false positive 

results are expected given the number of communities for which associations were measured. We 

hypothesized a true positive association between extreme precipitation and flooding and the four 

health outcomes considered. This true association would have been evidenced by statistically 

significant pooled relative risk estimates greater than one. Our results do not support our 

hypothesized association; there is no evidence from the observed overall effect estimates to 

suggest that this true association is likely between either of the exposures and any of the health 

outcomes considered (Table 3). Furthermore, we found little evidence that there were regions of 

the U.S. in which estimated associations were consistently positive or negative. For each of the 

estimated associations, community-level estimates were poorly to-moderately correlated when 

extreme precipitation exposure was measured using the two sources of precipitation data 

considered (Figure 26, upper panels, Table 4). All Spearman’s rho values for extreme 

precipitation-derived estimates indicated a positive correlation. Community-specific estimates 

were completely uncorrelated when USGS flooding exposure was measured against NOAA 

flooding (Figure 26, lower panels, Table 4). All Spearman’s rho values for flood-derived 

estimates were negative and very close to zero.  
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CHAPTER 4 

DISCUSSION 

 

 Overall, our results suggest reasonable correlation between the two precipitation data 

sources under consideration (NOAA monitor-based and NLDAS-2 Reanalysis data-based) for 

continuous daily precipitation measurements and estimates of annual days of exposure for a 

community, weaker agreement between the days classified as extreme precipitation days by 

these two precipitation data sources, and poor agreement between exposure classifications based 

on the two flooding measurements (USGS streamflow-based and NOAA Storm Events-based). 

In most communities, only a low percentage of flood days were concurrent with or preceded by 

14 or fewer days by an extreme precipitation day. When we investigated the associations 

between extreme precipitation or floods and risks of all-cause, accidental, respiratory-related and 

cardiovascular-related mortality using any of the exposure data sources considered, we found 

these exposures tended to have no association or be associated with a slightly decreased risk of 

all outcomes. Estimates of this association were moderately correlated when comparing 

estimates made using the two precipitation data sources and uncorrelated when comparing 

estimates made using the two flood data sources. Our results provide insight for measuring 

exposure to extreme precipitation and floods in epidemiological research.  

In past epidemiological and other research, various methods have been used to measure 

community-level exposure to precipitation and model its effects. Some studies have chosen to 

treat rainfall as a continuous variable (Drayna et al. 2010; Fisman et al. 2005; Thomas et al. 

2006; Tornevi, Axelsson, and Forsberg 2013), while several other past epidemiological studies 

of precipitation and health risks have dichotomized continuous daily precipitation measurements 



 47 

 

to identify days of extreme precipitation, as we do here (Thomas et al. 2006; Colford et al. 1999; 

Curriero et al. 2001; Groisman, Knight, and Karl 2001; Soneja et al. 2016; Ivancic and Shaw 

2015; Pielke R.A. and Downton 2000, Georgakakos 2014). For these studies that dichotomize 

precipitation exposure, researchers have varied in how they define the binary extreme 

precipitation variable. Researchers have defined extreme precipitation days as events that occur 

once in a defined amount of years, or as days with precipitation exceeding a specific percentile 

of the distribution (Groisman, Knight, and Karl 2001). For studies that use percentile-based 

thresholds, different percentiles have been used. Soneja et al. (2016), for example, identified a 

day-of-year-specific 90th and 95th percentiles of precipitation for each county and for each day in 

their study period. An extreme precipitation day was recorded if the precipitation on a day 

exceeded its county- and day-of-year-specific threshold. Ivancic and Shaw (2015), in a study 

examining precipitation and river discharge trends, used a threshold of the 99th percentile of days 

with precipitation across the historic period of record. This method, the authors note, is 

consistent with the Third National Climate Report (Georgakakos et al. 2014). Conversely, a few 

studies have used an absolute millimeter per day value to serve as a threshold: Karl et al. and 

Groisman, Knight, and Karl defined extreme precipitation as a day with precipitation above 50.8 

mm (1996, 1999). Similarly, Pielke and Downton (2000) defined extreme precipitation as days 

with more than 2 inches (50.8 mm) of precipitation.  

While most communities showed reasonable correlation between measures of daily 

continuous precipitation, correlation was low in a few communities (Figure 9). Particularly low 

correlation between the two sources of precipitation data was most notable in Kansas City, KS 

(tau = 0.43; rho = 0.50). A possible explanation for this discrepancy is the low number of NOAA 

stations contributing to daily values—Kansas City had two stations contributing to daily values 
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during the study period; however, one of those stations had missing data the majority of the time 

resulting in an average of 1.03 stations for the study period. It is possible that the values from 

this single monitor were biased based on geographic location compared to values from NLDAS-

2 Reanalysis data. However, St. Louis, MO and Washington, DC, which had higher correlation 

between daily precipitation values compared to Kansas City, KS, also had a low average number 

of stations contributing to daily values (0.96 and 1.90, respectively). Across all communities 

there was no evidence of a link between number of stations and correlation between precipitation 

metrics (Figure 10, left panel). Therefore, it is not clear why the low correlation in Kansas City, 

KS is so striking compared to other communities with few NOAA stations. 

Many of the epidemiological studies that use a threshold to define extreme precipitation 

base that threshold on the single city or state of their study population (Soneja et al. 2016; 

Colford et al. 1999; Tornevi et al. 2013). Here, we used a nation-wide threshold for all study 

communities to identify extreme precipitation. Future research could explore whether defining 

extreme precipitation days using relative thresholds, determined separately for each community 

based on its climate, modifies the associations observed here between (1) extreme precipitation 

and flooding and (2) mortality risks. Research about the health risks associated with extreme 

temperatures have found that community-specific thresholds for extreme event definitions are 

effective in identifying events to which a community may be poorly adapted (Buguet 2007; 

Nixdorf-Miller, Hunsaker, and Hunsaker 2006; B. G. Anderson and Bell 2009; Yang et al. 2017, 

USCGRP 2016); it is possible that a similar approach might identify stronger associations 

between extreme precipitation and mortality risk than those found here. Although many 

epidemiological studies of precipitation used cut points to determine exposure to extreme rain, 

our research suggests that using a continuous measure of precipitation may be more robust to the 



 49 

 

precipitation data used. In environmental epidemiology health studies for which dichotomization 

is used, our analysis found only low correlation in effect estimates calculated using one versus 

the other of the precipitation data sources, suggesting that epidemiological results could be 

highly sensitive to the choice of precipitation dataset. 

For flood exposure assessment, many previous studies have used one of the two methods 

investigated here—some researchers have relied on existing databases of defined flood events 

such as the NOAA Storm Events database (e.g., Wade et al. 2014; Wade et al. 2004; Lin, Wade, 

and Hilborn 2015; Kellar and Schmidlin 2012), others have used streamflow to measure 

dichotomized flood events. Thomas et al. (2006) modeled streamflow using a few different 

methods; one method was to use a rolling five-day cumulative average streamflow for each 

station—the maximum cumulative average six weeks prior to a waterborne disease outbreak was 

selected for analysis. Slater and Villarini (2016) measured flooding using USGS gage height 

values, which indicate water surface elevation. Four corresponding National Weather Service 

(NWS) numeric thresholds indicated categories of severity—action, minor, moderate, and major 

(Slater and Villarini 2016). Stephens et al. (2015) measured the extend of “floodiness” by 

calculating the percentage of gridded river cells that exceed a defined threshold in a given time 

period. Based on our results, epidemiological studies of the health risks associated with floods 

could be highly sensitive to the source of data used to assess flood exposure; we found almost no 

correlation between community-level associations between flood and mortality risk when using 

one versus the other of these flood data sources.  

The discrepancy between the two flood data sources in the average number of exposed 

days per community may be due to the nature of flood determination—NOAA flood events are 

often reported based on the human impacts of a particular event, while USGS floods were 
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determined based on systematic streamflow threshold calculations. The former measure may be 

more selective, missing floods that did not have obvious impacts on humans or caused little 

damage. Additionally, the qualitative data comprising the NOAA Storm Events database could 

be biased in that submitted events included may be more likely to be located in more populated 

areas. Despite efforts of standardization, non-standard event types (i.e., event types not present in 

NOAA Storm Data documentation (Murphy 2011) are present in the database (dos Santos 2016). 

While these non-standard event types amount to only about one-fifth of a percent of the total 

number of events each year, non-standard labeling could result in some relevant events being 

missed in database searchers (dos Santos 2016). Relatedly, although each element of an extreme 

event is meant to be given a separate entry in the database, some floods during tropical storms 

may have been erroneously included within an event listing categorized as “tropical storms,” and 

therefore would not show up in our NOAA Storm Events flood dataset. Furthermore, the USGS 

method tends to result in more long-lasting flood events compared to NOAA floods, so some of 

the discrepancy between the two data sources may also result from days later in a flood that are 

included based on USGS data but not for NOAA data. Figure 27 illustrates this phenomenon in 

Tampa, Florida from 1996 though 2005. While there are periods when both NOAA and USGS 

flood data sources detect a flood, it is common in this dataset for USGS floods to detect more 

days of exposure compared with NOAA floods, and for the USGS floods to last much longer 

than NOAA floods.  

Some of the disagreement between the two sources of precipitation or flood data may 

additionally result from extreme precipitation or flood events being very localized. This makes it 

hard to adequately characterize exposure across a community, and could result in disagreement 

between two datasets if they are capturing exposure at different locations within the community. 
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For example, the locations of NOAA precipitation stations will typically not be identical to the 

locations of grid points used for NLDAS data. For many environmental epidemiology studies of 

community-level risks associated with ambient exposures, epidemiologists have used monitor-

based exposure measurements to estimate community exposure, including for studies of risks 

associated with temperature and air pollution (e.g., Samet et al. 2000; Brook et al. 2010; 

Anderson and Bell 2009; Anderson and Bell 2011). In these cases, values measured at one or a 

few stations are often used as a metric of exposure for an entire community.  

In contrast with some other environmental exposures such as temperature, which can be 

relatively spatially homogenous across a community, precipitation can be highly localized, 

making it difficult to characterize exposure throughout a community using observations from 

stations (Borga et al. 2014). In some locations extreme precipitation may be more likely to result 

from very localized events like thunderstorms, potentially affecting only a small part of the 

community, rather than regional storms that would affect all parts of the community. While 

monitor-based measurements might be appropriate for exposures that are spatially homogenous, 

for which exposure throughout the community is more likely to be similar to values measured at 

the monitor(s), they may be more problematic for assessing daily community exposure to 

precipitation for epidemiological studies. Although some epidemiological studies have identified 

health risks associated with extreme precipitation and flooding (Lin et al. 2015; Thomas et al. 

2006), studies with finer spatial resolution for both health data and exposure data might more 

clearly identify relevant risks given this potential for spatial heterogeneity across a community in 

exposure.  

Given this spatial heterogeneity in precipitation within a community, the NLDAS-2 

precipitation data investigated here may provide improved exposure assessment for 
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epidemiological studies compared to monitor-based measurements. While NLDAS-2 Reanalysis 

data similarly provides community-level estimates, the method of producing these estimates 

differs from monitor-based data—NLDAS-2 data is produced from a combination of modeled 

and observed data (Mitchell 2004) and, while also only generated for points within the 

community, is aggregated at equally spaced grid points. Land surface models (LSM) have been 

continually improved upon since their introduction in the 1960s, helping researchers understand 

land surface-atmospheric interactions (Zhao and Li 2015). Data assimilation (i.e., the 

combination of LSM simulations with ground and satellite-based observations) can minimize the 

effects of errors in these models (Zhao and Li 2015). For example, the Global Land Data 

Assimilation System (GLDAS) incorporates multiple LSMs and a large quantity of observed 

data—this model produces the hourly 1/8 degree (14 by 14-kilometer square) geographic-area 

gridded data that comprises the North American Land Data Assimilation System (NLDAS) 

(Zhao and Li 2015). The number of observations per day that contribute to community-level 

NLDAS Phase 2 estimates in this study represent the total number of precipitation measurements 

(mm) recorded for the 1/8-degree geographic area grids comprising a study community.  

Community-level NLDAS-2 precipitation data and monitor-based precipitation data both 

represent aggregations of smaller-scale data; however, differences in the inputs (i.e., NLDAS-2 

data is a combination of modeled and observed data; NOAA-monitor-based data is comprised 

solely of observed data) could result in important differences in summary measures. Differences 

in summary measures between NLDAS-2 and NOAA monitor-based data could also arise due to 

the tendency of monitor-based data to have both sporadic and lengthy periods of missing values 

(Wilby et al. 2017). Furthermore, the data derived from stations can be inconsistent because of 

changes in the location of the site or of the monitor equipment (Wilby et al. 2017).  
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 In the case of the NOAA monitor-based data, the representativeness of specific monitor 

locations in describing population exposure is also possibly problematic, given that the stations 

are often located away from the population center of the community (e.g., at airports). For 

epidemiological studies assessing the community-wide health risks associated with precipitation 

exposure, therefore, reanalysis data like the NLDAS-2 data available might provide a better 

estimate of exposure; although it also creates a community-wide estimate based on values at 

specific points in the community, its use of equally spaced grid points improves the 

epidemiological relevance of its summary measures. This data source has the added advantage of 

being available for all counties in the contiguous U.S. and for all days (currently between 1979 

and 2011) (Mitchell et al. 2004).  

Like precipitation, flooding can also be very localized, affecting only specific areas in a 

community. Overall exposure across a community is not consistently captured by stream gages 

because of the variation of stream gage density between and within states (Rowe and Villarini 

2013). It is possible that scaling up flood events to the scale of communities (one or multiple 

U.S. counties) could prevent us from detecting an association between flooding and mortality, as 

many of the flood days identified by our methods may only have affected parts of their 

communities. We found that two sources of data relevant to flooding and used in previous 

epidemiological studies (Timothy J. Wade et al. 2014; Timothy J. Wade et al. 2004; Lin, Wade, 

and Hilborn 2015; Kellar and Schmidlin 2012; Ashley et al. 2015; Jonkman et al. 2009; 

Groisman, Knight, and Karl 2001) disagreed substantially in classifying days as exposed and 

unexposed within a community over the same time period and even disagreed strongly in the 

number of days a community was exposed to flooding on average each year.  
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Another critical result of our analysis for planning and interpreting epidemiological 

studies is the finding that neither metric of flooding was well correlated with exposure to 

extreme precipitation. While long-term, systematic increases in precipitation are predicted to 

cause general increases in streamflow, this relationship on a smaller temporal scale depends on 

other factors like soil moisture and snow cover (Groisman, Knight, and Karl 2001). Others have 

found this holds true for predecessor rain events (i.e., systems producing more than 100 mm of 

rainfall per day) and flooding—Rowe and Villarini (2013) found that these events cause 

extensive flooding in the Midwest, but also that rainfall is not a good proxy for discharge, 

because of discharge’s dependence on soil moisture conditions and land use or land cover. 

Ivancic and Shaw (2015) similarly failed to find a consistent relationship between heavy 

precipitation and flooding, reporting that 99th percentile precipitation results in 99th percentile 

river discharge 36% of the time. Furthermore, there are conditions when flooding can occur 

without being preceded by heavy rainfall, including dam or levee failure and debris and landslide 

floods (Perry 2000). Groisman and coauthors investigated the link between precipitation and 

flooding by selecting precipitation and streamflow stations within the same 1-by-1 degree grid 

boxes; many other hydrologic studies investigate this relationship at the watershed level 

(Groisman, Knight, and Karl 2001, Ivancic and Shaw 2015). The lack of agreement observed 

here between extreme precipitation and flooding may be partially explained by the coarseness of 

community units in this study—incorporation of watershed units or comparison of precipitation 

and stream gages within the same grid boxes (instead of within county units, which can span 

several grid boxes) might somewhat improve observed correlations. 

Despite the lack of a consistent relationship between heavy precipitation and increased 

stream discharge, Ivancic and Shaw (2015) observed that non-hydrologist researchers often 
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mistakenly use heavy precipitation as a surrogate for trends in flooding. This is possibly the case 

in a few epidemiological studies reviewed here (Colford et al. 1999; Tornevi, Axelsson, and 

Forsberg 2013; Thomas et al. 2006; Nichols et al. 2009) which were based on the hypothesis that 

precipitation was a relevant cause for contaminated drinking water due to combined sewer 

system outflows or runoff, or for human contact with combined sewer outflows or runoff. In the 

case when precipitation is hypothesized to lead directly to outflows, this hypothesis is not 

incorrect; however, when flooding is an intermediate step in the hypothesized mechanism (i.e., 

heavy precipitation leads to flooding, which leads to outflows or runoff), the use of precipitation 

is inappropriate. The use of precipitation data instead of streamflow or flooding data could be 

partially due to a misunderstanding of the relationship between precipitation and flooding among 

non-hydrologists, and partially due to the relative ease of obtaining precipitation data compared 

to flooding data—there are about half as many stream discharge measurements in the U.S. 

compared to precipitation measurements (Ivancic and Shaw 2015).  

In future epidemiological studies it may be possible to improve estimates of associations 

between health risks and extreme precipitation or floods through a more localized, sub-

community exposure characterization. Other data products could be explored for such studies—

for example, the Federal Emergency Management Agency (FEMA) of the U.S. Department of 

Homeland Security offers several insurance-related data products related to flood risk built on 

the National Flood Insurance Program (NFIP). The NFIP was established in 1968 with the 

Housing and Urban Development Act, and offers flood insurance to communities that agree to 

implement flood mitigation measures (Vaughan 1997; Browne and Hoyt 1999). Insurance rates 

under the NFIP are based on residential proximity to Special Flood Hazard Areas (SFHAs) 

(Browne and Hoyt, 2000). Flood Insurance Rate Maps (FIRMS), which show SFHAs in a 
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community, are offered by FEMA as a flood insurance-related data product. Residential 

proximity to SFHAs, paired with data documenting dates of floods in a community like the 

NOAA flood events listing, could represent a spatially-improved exposure metric for flooding 

compared to USGS stream gage data or NOAA Storm Events data. This method of exposure 

assessment could be further explored for epidemiological research in a future study.  

An additional measure of precipitation that future research could evaluate is the National 

Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) 

dataset. Similarly to NLDAS-2 Reanalysis data, NARR data incorporates both land surface 

model output and precipitation observations (Mesinger et al. 2006). Additionally, advances in 

methods to downscale gridded model predictions, such as NLDAS-2 output, could make 

localized estimates of extreme precipitation exposure more accessible (Zhang 2005). While these 

spatially refined flood and precipitation metrics might give improved estimates of exposure, 

refined location data would also need to be available for each health event—this is not always 

the case. 

Another avenue for future work related to this project involves seasonal analysis. Soneja 

et al. (2016) observed an increased risk of hospitalization for asthma associated with 

summertime extreme precipitation events. It is possible that extreme precipitation and flooding 

are similarly associated with an increased risk of mortality during a particular season.   

The disconnect we observed between exposure profiles resulting from different 

precipitation and flooding data sources emphasizes the importance in environmental 

epidemiology studies of carefully choosing an exposure metric that describes the hypothesized 

pathway of exposure. We have shown that differing precipitation and flood data generate 
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exposure classifications of extremes that are not well correlated within or between exposure type. 

For example, when comparing relative risk estimates between models using the two precipitation 

data sources, we found community-level estimates were only moderately correlated, and that 

relative risk estimates of models using two flooding data sources were very poorly correlated 

(Table 4, Figure 27). These results suggest that community-level estimates are very sensitive to 

the choice of data used in the analysis. Therefore, for example, if researchers are interested in 

health outcomes related to flooding, they would be ill-advised to use extreme precipitation as a 

surrogate for that exposure, as in most large U.S. communities a measure of extreme 

precipitation will capture few of the days the community is exposed to flooding. For example, in 

an investigation of the association between precipitation upstream of a drinking water facility 

and acute gastrointestinal illness, the hypothesized mechanism of increased risk involved 

increased exposure to waterborne pathogens—this might have been better characterized by 

increases in streamflow or incidence of flooding rather than extreme precipitation (Tornevi et al. 

2013).  

When we investigated associations between extreme precipitation or flooding and 

mortality outcomes, we found a null or protective association between extreme precipitation and 

flooding and four different categories of mortality. A possible explanation for this protective 

effect in the context of accidental fatalities could involve behavior changes that occur as a result 

of extreme weather conditions. Hassan and Abdel-Aty (2011) reported that there are several 

human factors (e.g., longer driving experience, number of driving citations) that influence a 

driver’s compliance with variable speed limits (VSL) and recommendations conveyed through 

changeable message signs (CMS) in reduced visibility weather conditions. Extreme rain and  
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flooding events could influence behavior by decreasing the chance of reckless driving, or of 

driving at all, contributing to the observed protective effect for accidental mortality.  

We also considered the explanation that extreme precipitation may be protective because 

of an association with a reduction in other dangerous exposures such as air pollution. Several 

studies have demonstrated an association between air pollution and mortality (e.g., Pope and 

Dockery 2006; Samet et al. 2000; Brunekreef and Holgate 2002), so if precipitation reduces this 

exposure, this pathway may contribute to the observed protective association for all-cause, 

cardiovascular, and respiratory mortality. However, there is little evidence in the literature that 

extreme precipitation might consistently result in decreased levels of ambient air pollution—

instead, researchers have observed that increased air pollution could result in decreased 

precipitation (Givati and Rosenfeld 2004; Rosenfeld et al. 2007).  

We found null associations for most mortality outcomes. Null associations were found 

for accidental, respiratory-related, and CVD-related mortality for all four exposure metrics, 

excluding respiratory-related mortality with NLDAS-2 data, and CVD-related mortality with 

NOAA flood data. Associations for the remaining mortality outcomes and exposure 

combinations were statistically protective, but very close to null (Table 3). As noted previously, 

these null associations might reflect exposure misclassification in assigning exposure measured 

at certain points in a community to the full community population. The direction and magnitude 

of the bias potentially caused by this measurement error would depend on how severely exposure 

is misclassified (Rothman et al. 2008). For example, if for some of the days identified as exposed 

to extreme precipitation or flooding only a small portion of the community’s population was 

actually exposed, it is possible that the entire community is recorded as being exposed to events 

that most of the community is not exposed to. It is unlikely that this over-estimation of exposure 
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would be differential by the health outcome (i.e., would differ between those in our dataset who 

did and did not pass away during the study period). Therefore, non-differential over-estimation 

of exposure would bias community-specific effect estimates towards the null (Rothman et al. 

2008). This again highlights the potential importance of more localized exposure assessment for 

epidemiological studies of extreme precipitation and floods, and that studies based on 

community-wide exposure assessments might miss important associations.  

In comparing two precipitation datasets and two flood datasets commonly used in the 

literature, we found moderate correlation between NOAA and NLDAS-2 continuous 

precipitation measures, and weaker agreement between extreme precipitation events derived 

from each dataset. We found poor agreement between USGS streamflow-derived floods and 

NOAA Storm Events floods. Our finding that precipitation rarely precedes flood events within 

two weeks agrees with hydrologic literature and theory, but suggests that epidemiologic studies 

studying health impacts of precipitation that hypothesize exposure pathways that include 

flooding may not adequately capture exposures of interest. We found null or slightly protective 

associations between all four exposures and accidental, respiratory-related, cardiovascular 

disease-related, and all-cause mortality, suggesting that extreme precipitation and flooding may 

be localized to an extent that their health impacts cannot be captured on the community level. 

These associations were moderately correlated between precipitation measures, and uncorrelated 

between flood measurements. Future research could further investigate differences in exposure 

profiles resulting from additional precipitation or flooding data sources. These comparisons will 

be increasingly relevant with climate change, which will mainly affect societies around the world 

through weather and climate extremes (Trenberth, Fasullo, and Shepherd 2015). There is an 

increasing demand on scientists for updated assessments of the impacts of extreme events; these 
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assessments will require an understanding of how measurements of extreme events can vary 

across data sources (Trenberth, Fasullo, and Shepherd 2015). Our findings have important 

implications for future epidemiologic studies investigating health outcomes related to extreme 

precipitation or flooding—relevant pathways in hypothesized exposures should be carefully 

considered, and should more exclusively inform exposure data choices. 
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TABLES 

Table 1. Mean, median, and 25th and 75th percentile values for the distribution of the number of 
exposed days per year across study communities for rain (based on a threshold of the average of 
community-specific values of the 99th percentile of daily, year-round precipitation) and flood, as 
well as mean, median, and 25th and 75th percentile values for the distribution of fatalities per 
day across study communities for accidental, respiratory-related, cardiovascular-related, and all-
cause mortality. NOAA flood events are measured from 1996 through 2005; all other exposure 
metrics are measured from 1987 through 2005. 
 
Measure Mean Median 25th percentile 75th percentile 
Average number of exposed days in communities 
Extreme precipitation exposure days  
    NOAA monitor data 4.2 4.2 2.0 6.0 
    NLDAS-2 Reanalysis data 4.2 4.6 2.0 6.0 
Flood exposure days 
    USGS streamflow data 8.3 3.8 1.3 9.5 
    NOAA Storm Events data 2.9 2.4 1.3 3.9 
Average daily mortality counts in study communities 
  All-cause deaths 18.3 11.3 6.2 19.8 
  Accidental deaths 0.7 0.4 0.2 0.8 
  Respiratory deaths 1.6 1.1 0.5 1.8 
  Cardiovascular deaths 7.8 4.7 2.6 8.1 
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Table 2. Communities with minimum and maximum values in the distribution of the number of 
exposed days per year across study communities for rain (based on a threshold of the average of 
community-specific values of the 99th percentile of daily, year-round precipitation) and flood, as 
well as mean, median, and 25th and 75th percentile values for the distribution of fatalities per 
day across study communities for accidental, respiratory-related, cardiovascular-related, and all-
cause mortality. NOAA flood events are measured from 1996 through 2005; all other exposure 
metrics are measured from 1987 through 2005. The value listed in parentheses after each 
community is the average number of exposed days per year for the four exposure metrics, or the 
average number of fatalities per day for the four mortality outcome categories. 
 

Measure 
Community with minimum 

(value) 
Community with maximum 

(value) 
Average exposed days per year 
Extreme precipitation exposure days  
  NOAA monitor data Bakersfield, CA, El Paso, TX 

(0) 
Lake Charles, LA (11.32) 

  NLDAS-2 Reanalysis data Spokane, WA, Tucson, AZ 
(0.05) 

Baton Rouge, LA (11.47) 

Flood exposure days 
  USGS streamflow data Arlington, VA, Baltimore, 

MD, Cincinnati, OH, and 
Newark, NJ (0) 

Orlando, FL (62.63) 

  NOAA Storm Events data Seattle, WA (0.10) Tucson, AZ (13.50) 
Average daily mortality counts in study communities 
All-cause Anchorage, AK (2.067) New York, NY (182.80) 
  Accidental deaths Arlington, VA (0.05) New York, NY (5.47) 
  Respiratory deaths Anchorage, AK (0.16) Los Angeles, CA (14.12) 
  Cardiovascular deaths Anchorage, AK (0.6) New York, NY (88.32) 
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Table 3. Pooled effect estimates of the overall association across the 108 study communities 
between four different exposure metrics and four categories of mortality. Relative risk values 
represent the posterior means of pooled, nation-wide effects. Models were adjusted for 
temperature, day of the week, and long-term and seasonal trends. 

 
Exposure Mortality outcome Relative risk 95% posterior interval 

NOAA precipitation Accidental 0.981 (0.952, 1.011) 
 Respiratory-related 0.981 (0.962, 1.000) 
 CVD-related 0.995 (0.998, 1.002) 
 All-cause 0.992 (0.987, 0.998) 

NLDAS rainfall Accidental 0.969 (0.938, 1.000) 
 Respiratory-related 0.980 (0.961, 0.999) 
 CVD-related 0.994 (0.986, 1.003) 
 All-cause 0.990 (0.984, 0.995) 

USGS flood events Accidental 0.982 (0.957, 1.008) 
 Respiratory-related 0.995 (0.978, 1.012) 
 CVD-related 0.997 (0.989, 1.004) 
 All-cause 0.995 (0.990, 0.999) 

NOAA flood events Accidental 0.977 (0.563, 1.694) 
 Respiratory-related 0.996 (0.978, 1.014) 
 CVD-related 0.990 (0.980, 0.999) 
 All-cause 0.992 (0.984, 0.999) 
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Table 4. Spearman’s rho for the correlation between community-specific relative risk estimates 
for accidental, respiratory-related, cardiovascular-related, and all-cause fatalities obtained using 
NOAA monitor-based precipitation and using NLDAS-2 Reanalysis-based data (row 1), and 
Spearman’s rho for relative risk estimates for fatalities obtained using USGS streamflow flood 
data and using NOAA Storm Events data (row 2). Spearman’s rho rank correlation coefficients 
correspond to relative risk estimates in Figure 27.  

 

Measures Accidental 
Respiratory-

related  CVD-related  All-cause  

NOAA monitor-
based 

precipitation 
and NLDAS-2 

Reanalysis-
based 

precipitation 

0.48 0.34 0.30 0.31 

USGS 
streamflow-

based flooding 
and NOAA 

Storm Events-
based flooding 

-0.04 -0.01 -0.02 -0.01 
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FIGURES  
 
 
 

 
 
Figure 1. 106 study locations in the contiguous United States. Honolulu, Hawaii and Anchorage, 
Alaska are not shown.  
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Figure 2. Example of determining a stream gage-specific median annual flood value (Q2) to use 
to identify flood days at the gage. The data shown is for one of 40 USGS streamflow gages 
available in the Los Angeles, California community, USGS streamflow gage number 11087020. 
Each point shows the maximum of daily streamflow values (in cubic feet per second) at the gage 
for one year; in total, these annual maximum streamflow values are shown for 55 years. The x-
axis shows the exceedance probability for each annual maximum streamflow value. The median 
annual flood value (Q2), used as a flood threshold, is indicated by the horizontal red line. This 
value is the maximum annual streamflow that occurs at this gage with a probability of 0.5, 
indicated by the vertical dashed red line.  
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Figure 3. Two-dimensional distribution of daily precipitation values from 1987 to 2005 for two 
sources of precipitation data (x-axis: NOAA ground-based stations; y-axis: NLDAS-2 Reanalysis 
data) for Los Angeles, California. Density of study days at a location in the graph are illustrated 
by color, with colors closer to yellow showing a higher density of days (see legend for mapping 
of color to count of days over the study period). Black vertical and horizontal lines indicate the 
99th percentile thresholds used to identify extreme precipitation days for the NOAA and NLDAS 
data (32.6 mm per day and 31.0 mm per day, respectively). A 1:1 diagonal line is included for 
reference and shows where values would lie in the graph if the two data sources agreed perfectly. 
A, B, C, and D quadrants indicate four different categories of agreement or disagreement 
between binary classification of extreme precipitation days based on the two precipitation data 
sources: days in quadrant A are classified as exposed to extreme precipitation by both data 
sources, days in quadrant D are classified as unexposed by both sources, and days in quadrant B 
and C are classified as exposed by one but not both sources. 
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Figure 4. Populations of 108 study communities as of the 2000 U.S. Census. Each point 
represents one of 108 NMMAPS communities included in this study (x-axis), arranged from 
highest population to lowest, in millions (y-axis).   
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Figure 5. Histogram of the average number of stations per day available for each community’s 
daily NOAA precipitation measurement. The x-axis gives the number of stations available in the 
community on average per day, while the y-axis gives the number of communities with that 
average.  
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Figure 6. Locations of NOAA ground-based stations reporting precipitation values for Topeka, 
KS, during the study period. Yellow shading indicates the outline of the community from which 
data were pulled. Labels “A” and “B” indicate stations located at airports.  
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Figure 7. Daily precipitation values from 1987 to 2005 for NOAA and NLDAS data for the six largest study communities. Horizontal 
lines indicate 99th percentile thresholds for NOAA extreme precipitation events, and horizontal lines indicate the corresponding 
thresholds for NLDAS extreme precipitation events. A 1:1 line and smoothed curves based on modeling a loess smoothing function to 
data from NLDAS-2 regressed on data from NOAA are included for reference (blue lines).
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Figure 8. Boxplots of the distribution of within-community correlation between continuous daily 
measures of daily NOAA vs. NLDAS precipitation, as measured by Spearman's ! (left) and 
Kendall's " (right) rank correlation coefficients. The upper and lower portions of each box show 
the 25th and 75th percentile values of the community-level correlation coefficients, while the 
central line in the box shows the median value. The lines from each side of the box extend a 
distance of 1.5 times the inter-quartile range. Outlier communities, defined as beyond 1.5 times 
the interquartile range from either the 25th or 75th percentile values, are labeled. 
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Figure 9. Daily precipitation values from 1987 to 2005 for NOAA and NLDAS data for six communities with notably low rank 
correlation coefficient values between continuous daily precipitation values for the two metrics. Horizontal lines indicate 99th 
percentile thresholds for NOAA extreme precipitation events, and horizontal lines indicate the corresponding thresholds for NLDAS 
extreme precipitation events. A 1:1 line and smoothed curves based on modeling a loess smoothing function to data from NLDAS-2 
regressed on data from NOAA are included for reference (blue lines).  
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Figure 10. Scatterplots of Spearman’s rho for a community (x-axis) for corrleation between NOAA and NLDAS daily precipitation 
values versus: average number of NOAA stations contributing to the community’s precipitation value each day (left panel), average 
number of NLDAS observations contributing to the community’s precipitation value each day (middle panel), and community 
population, in millions (right panel). A 1:1 line and smoothed curves based on modeling a loess smoothing function to data from 
NOAA stations (left panel), NLDAS observations (middle panel), and community populations (right panel) regressed on Spearman’s 
rho are included for reference (blue lines). Spearman’s rho rank correlation values are shown as text in each plot.  
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Figure 11. The average number of exposed days per year resulting from a nation-wide average 99th percentile extreme precipitation 
threshold (NOAA: 32.6 mm; NLDAS: 31.0 mm). Communities with missing data are shown with open circles, and data for Honolulu, 
HI, and Anchorage, AK, are not shown. There not NOAA data available for Honolulu, HI, Richmond, VA, and Newport News, VA. 
There was NLDAS available for all106 study communities in the contiguous United States. The distribution of the number of exposed 
days per year for both measures is displayed as a histogram to the right of each map. Community points are colored based on the 
sextile into which they fall in this exposure-specific distribution. 
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Figure 12. Association between average days of extreme precipitation exposure within a 
community based on the two precipitation data sources. Each point shows a study community. 
The x-axis shows the community’s average yearly exposure days based on NOAA data and the 
y-axis shows the average yearly exposure based on NLDAS-2 data. A 1:1 line and smoothed 
curve based on modeling a loess smoothing function to data from NLDAS-2 regressed on data 
from NOAA are included for reference (blue line). 
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Figure 13. Histogram of Jaccard similarity coefficient values per community for NOAA monitor-based precipitation and NLDAS-2 
Reanalysis precipitation data (upper left panel). Vertical lines indicate cut points for sextiles of the distribution. Colored points on the 
histogram correspond to colored points on the U.S. map showing geographic locations of Jaccard values (upper right panel). The 
lower three scatterplots show Jaccard similarity coefficient values versus: the average number of NOAA stations reporting per 
community, the average number of NLDAS-2 observations contributing to the average daily precipitation value per community, and 
each community population, in millions (lower left, lower middle, and lower right panels, respectively). Smoothed curves based on 
modeling a loess smoothing function to data from NOAA stations (lower left), NLDAS observations (lower middle), and community 
populations (lower right) regressed on Jaccard similarity coefficients are included for reference (blue lines).  
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Figure 14. Histogram of the average number of streamflow gages per day (averaging only across 
non-missing days) in each community with streamflow data. The x-axis gives the number of 
USGS streamflow gages available in the community on average per day, while the y-axis gives 
the number of communities with that average.  
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Figure 15. The average number of exposed days per year for USGS and NOAA flood data. Communities with missing data are shown 
with open circles, and data for Honolulu, HI, and Anchorage, AK, are not shown. USGS data was unavailable for 16 communities. 
There was NOAA flood data available for all study communities. Due to availability of NOAA flood data, flood values from 1996 
through 2005 from both sources are compared here. The distribution of exposed days per year is displayed as a histogram to the right 
of each map (the x-axes are displayed on a log-10 scale given the highly right-skewed distribution of these exposure estimates across 
communities). Community points are colored based on the sextile they fall into in this exposure-specific distribution.
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Figure 16. Association between average days of exposure to floods per year within a community 
based on the two flood data sources. Each point shows a study community. The x-axis shows the 
community’s average early exposure days based on USGS data and the y-axis shows average 
yearly exposure based on NOAA data. A 1:1 line and smoothed curve based on modeling a loess 
smoothing function to data from NOAA Storm Data floods regressed on data from USGS 
streamflow floods are included for reference (blue line).  
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Figure 17. Histogram of Jaccard similarity coefficient values per community for USGS streamflow gage-based flooding and NOAA 
Storm Data-based flooding (upper left panel). Vertical lines indicate cut points for sextiles of the distribution. Colored points on the 
histogram correspond to colored points on the U.S. map showing geographic locations of Jaccard values (upper right panel). The 
lower two scatterplots show Jaccard similarity coefficient values versus: the average number of USGS streamflow gages reporting per 
community and each community population, in millions (lower left and lower right panels, respectively). Smoothed curves based on 
modeling a loess smoothing function to data from Jaccard similarity coefficients and USGS streamflow gages reporting (lower left) 
and community populations (lower right) are included for reference (blue lines).  
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Figure 18. Calendar plot showing the number of days the Seattle, Washington community was categorized as exposed to either NOAA 
Storm Data floods or USGS streamflow floods from 1996 through 2005. Each colored box represents one day.  Boxes are ordered by 
year (row), month (each block is a month within a year), and day of week (each column within a block). 
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Figure 19. USGS streamflow and flood events, NOAA flood events, and NOAA and NLDAS 
extreme precipitation events in the Santa Ana/Anaheim community in California from December 
1, 1997 through February 1, 1998. Each facet of the figure shows the streamflow from one of the 
USGS streamflow gages contributing to the average flood measure for the community. 
Streamflow is measured in cubic feet per second. Horizontal dotted lines represent gage-specific 
flood thresholds. Blue points indicate days on which there was not a USGS flood, and red points 
indicate days on which there was a USGS flood recorded. Black points falling on the USGS 
flood threshold line represent days for which a flood was recorded in the NOAA Storm Event 
database. Green columns represent days for which both NOAA and NLDAS data recorded an 
extreme precipitation day. There were no days in this period for which only NOAA or only 
NLDAS data indicated an extreme precipitation day.  
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Figure 20. USGS streamflow and flood events, NOAA flood events, and NOAA and NLDAS 
extreme precipitation events in the Santa Ana/Anaheim community in California from December 
1, 1997 through February 1, 1998. Each facet of the figure shows the streamflow from one of the 
USGS streamflow gages contributing to the average flood measure for the community. 
Streamflow is measured in cubic feet per second. Horizontal dotted lines represent gage-specific 
flood thresholds. Black points falling on the USGS flood threshold line represent days for which 
a flood was recorded in the NOAA Storm Event database. Green columns represent days for 
which both NOAA and NLDAS data recorded an extreme precipitation day, yellow columns 
represent days on which only NOAA recorded extreme precipitation, and purple columns 
represent days on which only NLDAS recorded extreme precipitation.  
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Figure 21. Top panel: histogram of the proportion of days with extreme flooding using USGS 
data and extreme rain using NLDAS-2 data on the same day in each community with NLDAS-2 
and USGS data. Bottom panel: histogram of the proportion of days with flooding and extreme 
precipitation on the same day or at least one day in the previous 14 days. The x-axis gives the 
proportion P for each community, and the y-axis gives the number of communities with that 
proportion. 
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Figure 22. Heat map showing the distribution of proportions P of days with flooding that also 
had extreme precipitation on a day a certain lag before the flood day, as measured with NLDAS 
precipitation data, from the day of the flood up to two weeks prior to the flood day. Columns in 
the main heat map indicate the lag day. The "0" column indicates values of P for same-day 
comparisons, while the "1" column, for example, indicates values for P comparing days with 
flooding with extreme precipitation events in the previous day. Values for the average number of 
USGS floods per year and the average length of flood (measured in days) are included in 
columns to the right of the main P heat map. Communities are hierarchically clustered into four 
groups, indicated by row dendrograms to the left of the heat map.  
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Figure 23. Geographic locations of communities included in the NLDAS precipitation vs. USGS 
flooding proportion P calculation. Open circles indicate communities without available USGS 
streamflow data. Point colors correspond to the colors of the row dendrograms in Figure 16.  
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Figure 24. Community-specific effect estimates of the association between extreme precipitation 
(determined using NLDAS precipitation data) and risk of accidental mortality. Models were 
adjusted for temperature, the day of the week, and long-term seasonal trends. Each point shows 
the effect estimate for a specific community and horizontal line shows the 95% confidence 
interval estimated for the community. Communities are ordered by their central point estimates 
of association between extreme precipitation exposure and accidental mortality risk. The pooled 
association estimate across all communities is shown at the bottom of plot (“Meta Estimate”). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 31 

 

 

 
 
Figure 25. Histogram of relative risk estimates for the association between extreme rainfall (determined using NLDAS precipitation 
data) and risk of accidental mortality (left). Vertical lines indicate cut points for quartiles of the distribution. Colored points on the 
histogram correspond to colored points on the U.S. map showing geographic locations of relative risk estimates for each community 
(right). The size of points on the map corresponds to the inverse of the standard error of relative risk estimates.  
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Figure 26. Scatterplots showing the relative risk estimates for accidental, respiratory-related, cardiovascular-related, and all-cause 
fatalities (left, middle-left, middle-right, and right panels, respectively) for NOAA monitor-based precipitation versus NLDAS-2 
Reanalysis-based precipitation data (upper panel) and for USGS streamflow gage-based flooding versus NOAA Storm Events-based 
flooding (lower panel). A 1:1 line is included for reference in each panel, as well as smooth curves based on modeling a loess 
smoothing function to data from relative risks with NLDAS precipitation (upper row) or NOAA flooding (lower row) regressed on   
relative risks with NOAA precipitation (upper row) or USGS flooding (lower row) (blue lines).  
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Figure 27. Calendar plot showing the number of days the Tampa, FL, community was categorized as exposed to either NOAA Storm 
Data floods, USGS streamflow floods, or both from 1996 through 2005. Each colored box represents one day. Boxes are ordered by 
year (row), month (each block is a month within a year), and day of week (each column within a block). 
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APPENDIX A 

THE “COUNTYWEATHER” R PACKAGE  

 

As part of this research, we published the “countyweather” package on the Comprehensive R 
Archive Network in October 2016; a development version currently exists online on GitHub. All 
of the package’s code is open source. This appendix describes this software package and is 
included as a tutorial in the published package. 

While data from weather stations is available at the specific location of the weather station, it is 
often useful to have estimates of daily or hourly weather aggregated on a larger spatial level. For 
U.S.-based studies, it can be particularly useful to be able to pull time series of weather by 
county. For example, the health data used in environmental epidemiology studies is often 
aggregated at the county level for U.S. studies, making it very useful for environmental 
epidemiology applications to be able to create weather datasets by county. 
This package builds on functions from the rnoaa package to identify weather stations within a 
county based on its FIPS code and then pull weather data for a specified date range from those 
weather stations. It then does some additional cleaning and aggregating to produce a single, 
county-level weather dataset. Further, it maps the weather stations used for that county and date 
range and allows you to create and write datasets for many different counties using a single 
function call. 
If you are pulling weather data from single weather station, you should use rnoaa directly. 
However, countyweather allows you to pull and aggregate data from weather stations more 
easily at the county level for the US. 

Required set-up for this package 

To use this package, you will need an API key from NOAA to be able to access the weather data. 
This API key is input with some of your data requests to NOAA within functions in this package. 
You can request an API key from NOAA here: http://www.ncdc.noaa.gov/cdo-web/token. You 
should keep this key private. 

Once you have this NOAA API key, you’ll need to pass it through to some of the functions in 
this package that pull data from NOAA. The most secure way to use this API key is to store it in 
your .Renviron configuration file. Then you can save it as the value of an object in R code or R 
markdown documents without having to include the key itself in the script. To store the NOAA 
API key in your .Renviron configuration file, first check and see if you already have 
an .Renviron file in your home directory. You can check this by running the following from your 
R command line: 
any(grepl("^\\.Renviron", list.files("~", all.files = TRUE))) 

If this call returns TRUE, then you already have an .Renviron file. 

If you already have it, open that file (for example, with system("open ~/.Renviron")). If you do 
not yet have an .Renviron file, open a new text file (in RStudio, do this by navigating 
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to File > New File > Text File) and save this text file as .Renviron in your home directory. If 
prompted with a complaint, you DO want to use a filename that begins with a dot . 

Once you have opened or created an .Renviron file, type the following into the file, replacing 
“your_emailed_key” with the actual string that NOAA emails you: 
noaakey=your_emailed_key 

Do not put quotation marks or anything else around your key. Do make sure to add a blank line 
as the last line of the file. If you find you’re having problems getting this to work, go back and 
confirm that you’ve included a blank line as the last line in your .Renviron file. This is the most 
common reason for this part not working. 
Next, you’ll need to restart R. Once you restart R, you can get the value of this NOAA API key 
from .Renviron anytime with the call Sys.getenv("noaakey"). Before using functions that require 
the API key, set up the object rnoaakey to have your NOAA API key by running: 
options("noaakey" = Sys.getenv("noaakey")) 

This will pull your NOAA API key from the .Renviron file and save it as the object noaakey, 
which functions in this package need to pull weather data from NOAA’s web services. You will 
want to put this line of code as one of the first lines of code in any R script or R Markdown file 
you write that uses functions from this package. 

Basic examples of using the package 

Weather data is collected at weather station, and there are often multiple weather stations within 
a county. The countyweather package allows you to pull weather data from all stations in a 
specified county over a specified date range. The two main functions in the countyweather 
package are daily_fips and hourly_fips, which pull daily and hourly weather data, respectively. 
By default, the weather data pulled from all weather stations in a county will then be averaged 
for each time point to create an average time series of daily or hourly measurements for that 
county. There is also an option that allows the user to opt out of the default aggregation across 
weather stations, and instead pull separate time series for each weather station in the county. This 
option is explained in more detail later in this document. Opting out of the default aggregation 
can be useful if you would like to use a method other than a simple average to aggregate across 
weather stations within a county. 
Throughout, functions in this package identify a county using the county’s Federal Information 
Processing Standard (FIPS) code. FIPS codes are 5-digit codes that uniquely identify every U.S. 
county. The first two digits of a county FIPS code specify state and the last three specify the 
county within the state. This package pulls data based on FIPS designations as of the 2010 
Census. Users will not be able to pull data for the few FIPS codes that have undergone 
substantial changes since 2010 - for a list of those codes see the Census Bureau’s summary of 
these counties for the 2010s. 

Currently, this package can pull daily and hourly weather data for variables like temperature and 
precipitation. For resources with complete lists of weather variables available through this 
package, as well as sources of this weather data, see the section later in this document titled 
“More on the weather data”. 
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Pulling daily data 

The daily_fips function can be used to pull daily weather data for all weather stations within the 
geographic boundaries of a county. This daily weather data comes from NOAA’s Global 
Historical Climatology Network. When pulling data for a county, the user can specify date 
ranges (date_min, date_max), which weather variables to include in the output dataset (var), and 
restrictions on how much non-missing data a weather station must have over the time period to 
be included when generating daily county average values (coverage). This function will pull any 
available data for weather stations in the county under the specified restrictions and output both a 
dataset of average daily observations across all county weather stations, as well as a map plotting 
the stations used in the county-wide averaged data. 

Here is an example of creating a dataset with daily precipitation for Miami-Dade county (FIPS 
code = 12086) for August 1992, when Hurricane Andrew stuck: 
andrew_precip <- daily_fips(fips = "12086", date_min = "1992-08-01",  

                            date_max = "1992-08-31", var = "prcp") 
names(andrew_precip) 

## [1] "daily_data"       "station_metadata" "station_map" 

The output from this function call is a list that includes three elements: a daily time series of 
weather data for the county (andrew_precip$daily_data), a dataframe with meta-data about the 
weather stations used to create the time series data, as well as statistical information about the 
weather values pulled from these stations (andrew_precip$station_metadata), and a map showing 
the locations of weather stations included in the county-averaged dataset 
(andrew_precip$station_map). 
Here are the first few rows of the daily_data dataset: 
head(andrew_precip$daily_data) 

## # A tibble: 6 × 3 

##         date     prcp prcp_reporting 

##       <date>    <dbl>          <int> 

## 1 1992-08-01 1.016667              6 

## 2 1992-08-02 8.850000              6 

## 3 1992-08-03 9.366667              6 

## 4 1992-08-04 5.483333              6 

## 5 1992-08-05 2.716667              6 

## 6 1992-08-06 1.633333              6 

The dataset includes columns for date (date), precipitation (in mm, prcp), and also the number of 
stations used to calculate each daily average precipitation observation (prcp_reporting). 
This function performs some simple data cleaning and quality control on the weather data 
originally pulled from NOAA’s web services; see the “More on the weather data” section later in 
this document for more details, including the units for the weather observations collected by this 
function. 
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Here is a plot of this data, with colors used to show the number of stations included in each daily 
observation: 
library(ggplot2) 

ggplot(andrew_precip$daily_data, aes(x = date, y = prcp, color = prcp_reporting)) +  

  geom_line() + geom_point() + theme_minimal() +  

  xlab("Date in 1992") + ylab("Daily rainfall (mm)") +  

  scale_color_continuous(name = "# stations\nreporting") 

 
From this plot, you can see both the extreme precipitation associated with Hurricane Andrew 
(Aug. 24) and that the storm knocked out quite a few of the weather stations normally available. 
A map is also included in the output of daily_fips with the stations used for the county average, 
as the station_map element: 
andrew_precip$station_map 
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This map uses U.S. Census TIGER/Line shapefiles (vintage 2011) and functions from 
the ggmap package to overlay weather station locations on a shaped map showing the county’s 
boundaries. 
The station_metadata dataframe gives information about all of the stations contributing data to 
the daily_datadataframe, as well as information about how the values by each station vary within 
each weather variable. If a weather station is contributing data for multiple variables, it will show 
up in this dataframe multiple times. Here’s what the station_metadata dataframe looks like for 
the andrew_precip list: 
andrew_precip$station_metadata 

##            id                                     name   var latitude 

##         <chr>                                    <chr> <chr>    <dbl> 

## 1 USC00083909                           HIALEAH, FL US  prcp 25.81750 

## 2 USC00087020                       PERRINE 4 W, FL US  prcp 25.58190 

## 3 USC00088780         TAMIAMI TRAIL 40 MI. BEND, FL US  prcp 25.76080 

## 4 USW00012839       MIAMI INTERNATIONAL AIRPORT, FL US  prcp 25.79050 

## 5 USW00012859 MIAMI WEATHER SERVICE OFFICE CITY, FL US  prcp 25.71667 

## 6 USW00092811                       MIAMI BEACH, FL US  prcp 25.80630 

## # ... with 6 more variables: longitude <dbl>, calc_coverage <dbl>, 

## #   standard_dev <dbl>, min <dbl>, max <dbl>, range <dbl> 

For each station, the dataframe gives an id and name, as well 
as latitude and longitude. var indicates the variable for which the station is pulling data. If a 
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station is contributing data for multiple variables, that station will show up in the dataframe once 
for each of those variables. For each variable and station combination, the dataframe also 
shows calc_coverage, which is the calculated percent of non-missing values. You can filter these 
by using the daily_fips option coverage. standard_dev gives the standard deviation for each 
sample of weather data from each station and weather variable, min and max give the minimum 
and maximum values, and range gives the range of these values. These last four statistical 
calculations (standard deviation, maximum, minimum, and range) are only included for the 
seven core hourly weather variables (which 
include wind_direction, wind_speed, ceiling_height, visibility_distance, temperature, 
and temperature_dewpoint – for more details on these variables, see the “More on the weather 
data” section below). The values of these columns are set to “NA” for other variables, such as 
quality flag data. 

If you are interested in looking at the weather values for certain stations, you can use 
the average_data = FALSE option in daily_fips. For more on this option and a few others, see the 
“Further options available in the package” section below. 

Pulling hourly data 

You can use the hourly_fips function to pull hourly weather data by county from NOAA’s 
Integrated Surface Data (ISD) weather dataset. In this case, NOAA’s web services will not 
identify weather stations by FIPS, so instead this function will pull all stations within a certain 
radius of the county’s population mean center to represent weather within that county. While 
there are seven main weather variables that are possible to pull (listed below in the “More on the 
weather data” section), temperature and wind_speed tend to be non-missing most often. 

An estimated radius is calculated for each county using 2010 U.S. Census Land Area data – each 
county is assumed to be roughly circular. The calculated radius (in km), as well as the longitude 
and latitude of the geographic center for each county are included as elements in the list returned 
from hourly_fips. 

Here is an example of pulling hourly data for Miami-Dade, for the year of Hurricane Andrew. 
While daily weather data can be pulled using a date range specified to the day, hourly data can 
only be pulled by year (for one or multiple years) using the year argument: 
andrew_hourly <- hourly_fips(fips = "12086", year = 1992, 

                           var = c("wind_speed", "temperature")) 

names(andrew_hourly) 

## [1] "hourly_data"      "station_metadata" "station_map"      

## [4] "radius"           "lat_center"       "lon_center" 

The output from this call is a list object that includes six 
elements. andrew_hourly$hourly_data is an hourly time series of weather data for the county. 
The other five elements, station_metadata, station_map, radius, lat_center, and lon_center, are 
explained in more detail below. 
Here are the first few rows of the hourly_data dataset: 
head(andrew_hourly$hourly_data) 
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## # A tibble: 6 × 5 

##             date_time temperature wind_speed temperature_reporting 

##                <dttm>       <dbl>      <dbl>                 <int> 

## 1 1992-01-01 00:00:00    19.63333   2.725000                     3 

## 2 1992-01-01 01:00:00    19.43333   2.450000                     3 

## 3 1992-01-01 02:00:00    19.03333   2.975000                     3 

## 4 1992-01-01 03:00:00    19.03333   2.450000                     3 

## 5 1992-01-01 04:00:00    18.53333   2.200000                     3 

## 6 1992-01-01 05:00:00    18.50000   2.233333                     3 

## # ... with 1 more variables: wind_speed_reporting <int> 

If you need to get the timestamp for each observation in local time, you can use 
the add_local_time function from the countytimezones package to do that: 
andrew_hourly_data <- as.data.frame(andrew_hourly$hourly_data)  

 

library(countytimezones) 
andrew_hourly_data <- add_local_time(df = andrew_hourly_data, fips = "12086", 

                                     datetime_colname = "date_time") 
head(andrew_hourly_data) 

##             date_time temperature wind_speed temperature_reporting 

## 1 1992-01-01 00:00:00    20.00000      2.600                     4 

## 2 1992-01-01 01:00:00    19.85000      1.960                     4 

## 3 1992-01-01 02:00:00    19.03333      2.975                     3 

## 4 1992-01-01 03:00:00    19.42500      1.960                     4 

## 5 1992-01-01 04:00:00    18.53333      1.760                     3 

## 6 1992-01-01 05:00:00    18.60000      2.575                     4 

##   wind_speed_reporting       local_time local_date         local_tz 

## 1                    5 1991-12-31 19:00 1991-12-31 America/New_York 

## 2                    5 1991-12-31 20:00 1991-12-31 America/New_York 

## 3                    4 1991-12-31 21:00 1991-12-31 America/New_York 

## 4                    5 1991-12-31 22:00 1991-12-31 America/New_York 

## 5                    5 1991-12-31 23:00 1991-12-31 America/New_York 

## 6                    4 1992-01-01 00:00 1992-01-01 America/New_York 

Here is a plot of hourly wind speeds for Miami-Dade County, FL, for the month of Hurricane 
Andrew: 
library(dplyr) 

library(lubridate) 
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to_plot <- andrew_hourly$hourly_data %>% 

  filter(months(date_time) == "August") 

ggplot(to_plot, aes(x = date_time, y = wind_speed, 

                    color = wind_speed_reporting)) +  

  geom_line() + theme_minimal() +  

  xlab("Date in August 1992") +  

  ylab("Wind speed (m / s)") +  

  scale_color_continuous(name = "# stations\nreporting") 

 
Again, the intensity of conditions during Hurricane Andrew is clear, as is the reduction in the 
number of reporting stations during the storm. 

The list object returned by hourly_fips also includes a map of station locations (station_map): 
andrew_hourly$station_map 
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Because hourly data is pulled by radius from each county’s geographic center, this plot includes 
the calculated radius from which stations are pulled. This radius is calculated for each county 
using 2010 U.S. Census Land Area data. U.S. Census TIGER/Line shapefiles are used to provide 
county outlines, included on this plot as well. Because stations are pulled within a radius from 
the county’s center, stations from outside of the county’s boundaries may sometimes be 
providing data for that county. 

Other list elements returned by hourly_fips include station_metadata, radius, lat_center, 
and lon_center. Radius is the estimated radius (in km) for the county calculated using 2010 U.S. 
Census Land Area data – the county is assumed to be roughly 
circular. lat_center and lon_center are the longitude and latitude of the geographic center for the 
county, respectively. 
The station_metadata dataframe gives information about all of the stations contributing data to 
the hourly_data dataframe, as well as information about how the values by each station vary 
within each weather variable. If a weather station is contributing data for multiple variables, it 
will show up in this dataframe multiple times. Here’s what the station_metadata dataframe looks 
like for the andrew_hourly list: 
andrew_hourly$station_metadata 

## # A tibble: 8 × 15 

##     usaf  wban      station                station_name         var 

##    <chr> <chr>        <chr>                       <chr>       <chr> 

## 1 722029  <NA>    722029-NA        KENDALL TAMIAMI EXEC  wind_speed 

## 2 722026 12826 722026-12826       HOMESTEAD AFB AIRPORT  wind_speed 
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## 3 722020 12839 722020-12839 MIAMI INTERNATIONAL AIRPORT  wind_speed 

## 4 722024  <NA>    722024-NA                   OPA LOCKA  wind_speed 

## 5 722029  <NA>    722029-NA        KENDALL TAMIAMI EXEC temperature 

## 6 722026 12826 722026-12826       HOMESTEAD AFB AIRPORT temperature 

## 7 722020 12839 722020-12839 MIAMI INTERNATIONAL AIRPORT temperature 

## 8 722024  <NA>    722024-NA                   OPA LOCKA temperature 

## # ... with 10 more variables: calc_coverage <dbl>, standard_dev <dbl>, 

## #   range <dbl>, ctry <chr>, state <chr>, elev_m <dbl>, begin <dbl>, 

## #   end <dbl>, longitude <dbl>, latitude <dbl> 

usaf and wban are station ids. station is a unique identifier for each station – usaf and wban ids have 
been pasted together, separated by “-”. (Note: values for wban or usaf are sometimes missing 
(originally indicated by “99999” or “999999”), which could result in a station value like 722024-
NA.) station_name is the name for each station, and var indicates the variable for which the station is 
pulling data. If a station is contributing data for multiple variables, that station will show up in the 
dataframe once for each of those variables. For each variable and station combination, the 
dataframe also shows calc_coverage, which is the calculated percent of non-missing values. You 
can filter these by using the hourly_fips option coverage. standard_dev gives the standard deviation 
for each sample of weather data from each station and weather variable, and range gives the range 
of these values. Here, we can see in row 7 that the OPA LOCKA station has a very low percent 
coverage for temperature (0.0018), and a correspondingly high standard deviation (17.94). If you are 
interested in looking at the weather values for certain stations, you can use the average_data = 
FALSE option in hourly_fips. For more on this option and a few others, see the “Further options 
available in the package” section below. The dataframe also gives station countries, states, 
elevation (in meters), the earliest and latest dates for which the station has available data 
(begin and end, respectively), longitude, and latitude. 

Writing out time series files 

There are a few functions that allow the user to write out daily or hourly time series datasets for 
many different counties to a specified local directory, as well as plots of this data. For daily weather 
data, see the functions write_daily_timeseries and plot_daily_timeseries. For hourly, 
see write_hourly_timeseries and plot_hourly_timeseries. 
For example, if we wanted to compare daily weather in the month of August for three counties in 
southern Florida, we could run: 
fl_counties <- c("12086", "12087", "12011") 

 

write_daily_timeseries(fips = fl_counties, date_min = "1992-08-01",  

                 date_max = "1992-08-31", var = "prcp",  

                 out_directory = "~/Documents/andrew_data") 

The write_daily_timeseries function saves each county’s time series as a separate file in a 
subdirectory called “data” of the directory specified in the out_directory option. 
The data_type argument allows the user to specify either .rds or .csv files (the default is to write 
.rds files). Each file is a time series dataframe of daily weather data. A dataframe of station 



 56 

 

metadata is saved in a second subdirectory called “metadata”, and maps showing locations of 
weather stations contributing to each time series are saved in a subdirectory called “maps.” At 
this stage, if you were to include a county in the fips argument without available data, a file 
would not be created for that county. 

The function plot_daily_timeseries creates and saves plots for each of these files. (Note: 
the data_type argument for this function also defaults to read .rds files, so if you chose to write 
.csv files, make sure to change that argument in this function as well to data_type = "csv".) 
plot_daily_timeseries("prcp", data_directory = "~/Documents/andrew_data/data",  

                      plot_directory = "~/Documents/andrew_data/plots",  

                      date_min = "1992-08-01", date_max = "1992-08-31") 

Here’s an example of what the time series plots for the three Florida counties would look like: 

 

Further options available in the package 

coverage 

For hourly_fips, daily_fips, and time series functions, the user can choose to filter out any 
stations that report variables for less than a certain percent of the specified date range (coverage). 
For example, if you were to set coverage to 0.90, only stations that reported non-missing values 
at least 90% of the time over the specified date range would be included in your data. 

average_data 

In both daily_fips and hourly_fips, the default is to return a single daily average for the county 
for each day in the time series, giving the value averaged across all available stations on that day. 
However, there is also an option called average_data which allows the user to specify whether 
they would like the weather data returned before it has been averaged across stations. If this 
argument is set to FALSE, the functions will return separate daily data for each station in the 
county. For our Hurricane Andrew example, we can specify average_data = FALSE: 
not_averaged <- daily_fips(fips = "12086",  

                           date_min = "1992-08-01",  

                           date_max = "1992-08-31", 

                           var = "prcp", average_data = FALSE,  

                           station_label = TRUE) 
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not_averaged_data <- not_averaged$daily_data 

head(not_averaged_data) 

## # A tibble: 6 × 3 

##            id       date  prcp 

##         <chr>     <date> <dbl> 

## 1 USC00083909 1992-08-01   1.3 

## 2 USC00083909 1992-08-02   4.8 

## 3 USC00083909 1992-08-03   1.3 

## 4 USC00083909 1992-08-04   0.0 

## 5 USC00083909 1992-08-05   7.6 

## 6 USC00083909 1992-08-06   1.0 

unique(not_averaged_data$id) 

## [1] "USC00083909" "USC00087020" "USC00088780" "USW00012839" "USW00012859" 

## [6] "USW00092811" 

In this example, there are six stations contributing weather data to the time series. We can plot 
the data by station to get a sense for how values from each station compare, and which stations 
were presumably knocked out by the storm, with different colors used to show values for 
different stations: 
library(ggplot2) 

ggplot(not_averaged_data, aes(x = date, y = prcp,  

                         colour = id)) +  

  geom_line() +  

  theme_minimal()  

 
It might be interesting here to compare this plot with the station map, this time with station labels 
included (done using station_label = TRUE when we pulled this data using daily_fips): 
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not_averaged$station_map 

 

Quality Flags 

The hourly Integrated Surface Data includes quality codes for each of the main weather 
variables. For more information about the hourly weather variables, see the “More on the 
weather data” section below. We can use these codes to remove suspect or erroneous values from 
our data. The values in wind_speed_quality, for example, take on the following values: (Values 
in this table were pulled from the ISD documentation file.) 

code definition 

0 Passed gross limits check 

1 Passed all quality control checks 

2 Suspect 

3 Erroneous 

4 Passed gross limits check, data originate from an NCEI data source 
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code definition 

5 Passed all quality control checks, data originate from an NCEI data source 

6 Suspect, data originate from an NCEI data source 

7 Erroneous, data originate from an NCEI data source 

9 Passed gross limits check if element is present 

Because it doesn’t make sense to average these codes across stations, the codes should only be 
pulled when using the option to pull station-specific values (average_data = FALSE). 
ex <- hourly_fips("12086", 1992, var = c("wind_speed", "wind_speed_quality"),  

                  average_data = FALSE) 
ex_data <- ex$hourly_data 

head(ex_data) 

## # A tibble: 6 × 7 

##   usaf_station wban_station           date_time latitude longitude 

##          <dbl>        <dbl>              <dttm>    <dbl>     <dbl> 

## 1       722029           NA 1992-01-01 00:00:00    25.65   -80.433 

## 2       722029           NA 1992-01-01 01:00:00    25.65   -80.433 

## 3       722029           NA 1992-01-01 02:00:00    25.65   -80.433 

## 4       722029           NA 1992-01-01 03:00:00    25.65   -80.433 

## 5       722029           NA 1992-01-01 04:00:00    25.65   -80.433 

## 6       722029           NA 1992-01-01 05:00:00    25.65   -80.433 

## # ... with 2 more variables: wind_speed <dbl>, wind_speed_quality <chr> 

We can replace all wind speed observations with quality codes of 2, 3, 6, or 7 with NAs. 
ex_data$wind_speed_quality <- as.numeric(ex_data$wind_speed_quality) 

ex_data$wind_speed[ex_data$wind_speed_quality %in% c(2, 3, 6, 7)] <- NA 

More on the weather data 

Daily weather data 
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Functions in this package that pull daily weather values (daily_fips(), for example) are pulling 
data from the Daily Global Historical Climatology Network (GHCN-Daily) through NOAA’s 
FTP server. The data is archived at the National Centers for Environmental Information (NCEI) 
(formerly the National Climatic Data Center (NCDC)), and spans from the 1800s to the current 
year. 
Users can specify which weather variables they would like to pull. The five core daily weather 
variables are precipitation (prcp), snowfall (snow), snow depth (snwd), maximum temperature 
(tmax) and minimum temperature (tmin). The daily weather data is filtered so that included 
weather variables fall within a range of possible values. These ranges were chosen to include 
national maximum recorded values. 

Variable Description Units Most extreme value 

prcp precipitation mm 1100 mm 

snow snowfall mm 1600 mm 

snwd snow depth mm 11500 mm 

tmax maximum temperature degrees Celsius 57 degrees C 

tmin minumum temperature degrees Celsius -62 degrees C 

tmax, tmin, and prcp were originally recorded in tenths of units, and are listed as such in NOAA 
documentation. These values are converted to standard units (degrees Celsius and mm, 
respectively) in countyweather output. 

There are several additional, non-core variables available. For example, acmc gives the “average 
cloudiness midnight to midnight from 30-second ceilometer data (percent).” The complete list of 
available weather variables can be found under ‘element’ from the GHCND’s readme file. 
While the datasets resulting from functions in this package return a cleaned and aggregated 
dataset, Menne et al. (2012) give more information about the raw data in the GHCND database. 

Hourly weather data 

Hourly weather data in this package is pulled from NOAA’s Integrated Surface Data (ISD), and 
is available from 1901 to the current year. The data is archived at the National Centers for 
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Environmental Information (NCEI) (formerly the National Climatic Data Center (NCDC)), and 
is also pulled through NOAA’s FTP server. 

The seven core hourly weather variables 
are wind_direction, wind_speed, ceiling_height, visibility_distance, temperature, temperature_de
wpoint, and air_pressure. Values in this table were pulled from the ISD documentation file. 

Variable Description Units Minimum Maximum 

wind_direction 

The angle, measured in a 
clockwise direction, between 
true north and the direction 

from which the wind is 
blowing 

Angular 
Degrees 1 360 

wind_speed The rate of horizontal travel 
of air past a fixed point 

Meters per 
Second 0 90 

ceiling_height 

The height above ground 
level of the lowest cloud or 
obscuring phenomena layer 

aloft with 5/8 or more 
summation total sky cover, 

which may be predominately 
opaque, or the vertical 

visibility into a surface-based 
obstruction 

Meters 0 
22000 

(indicates 
‘Unlimited’) 

visibility_distance 
The horizontal distance at 

which an object can be seen 
and identified 

Meters 0 160000 

temperature The temperature of the air Degrees 
Celsius -93.2 61.8 

temperature_dewpoint 
The temperature to which a 
given parcel of air must be 
cooled at constant pressure 

Degrees 
Celsius -98.2 36.8 
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Variable Description Units Minimum Maximum 

and water vapor content in 
order for saturation to occur 

air_pressure The air pressure relative to 
Mean Sea Level Hectopascals 860 1090 

There are other columns available in addition to these weather variables, such as quality codes 
(e.g., wind_direction_quality — each of the main weather variables has a corresponding quality 
code that can be pulled by adding _quality to the end of the variable name). 
For more information about the weather variables described in the above table and other 
available columns, see the ISD documentation file. 

Error and warning messages you may get 

Not able to pull data from a station 

The following error message will come up after running functions pulling daily data if there isn’t 
available data (for your specified date range, coverage, and weather variables) for a particular 
station or stations: 

In rnoaa::meteo_pull_monitors(monitors = stations, keep_flags = FALSE,: The following 
stations could not be pulled from the GHCN ftp: USR0000FTEN Any other monitors were 
successfully pulled from GHCN. 
The following error message will come up after running functions pulling hourly data 
(hourly_fips()) if there isn’t available data for any of the stations in your specified county. Note: 
some weather variables tend to be missing more often than others. 
Error in isd_monitors_data(fips = fips, year = x, var = var, radius = radius): None of the 
stations had available data. 

The following error message will come up after 
running write_daily_timeseries or write_hourly_timeseries if the function is unable to pull data 
for a particular fips code in your fips vector: 
Unable to pull weather data for FIPS code "(specified fips code)" for the specified percent 
coverage, year(s), and/or weather variables. 

Need an API key for NOAA data 

If you run functions that use NOAA API calls without first requesting an API key from NOAA 
and setting up the key in your R session, you will see the following error message: 
Error in getOption("noaakey", stop("need an API key for NOAA data")) :  
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  need an API key for NOAA data 

You might also see this warning message: 
Warning message: 

Error: (400) - Token parameter is required. 

If you get one of these messages, run the code: 
options("noaakey" = Sys.getenv("noaakey")) 

and then try again. If you still get an error, you may not have set up your NOAA API key 
correctly in your .Renviron file. See the “Required set-up” section of this document for more 
details on doing that correctly. 

NOAA web services down 

Sometimes, some of NOAA’s web services will be off-line. In this case, you may get an error 
message when you try to pull data like: 
Error in gzfile(file, mode) : cannot open the connection 

or 
Error in tt$results : $ operator is invalid for atomic vectors In addition: Warning message: 

Error: (500) - An error occurred while servicing your request.  

In this case, re-starting your R session might fix the problem. If not, wait a few hours and then 
try again. 

Other errors 

If you get other error messages or run into problems with this package, please submit a 
reproducible example on this repository’s Issues page. 
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